THE EXPERT™S VOICE® IN JAVA

Beginning

Java EE 5

From Novice to Professional

Lawarns aurnadl caprpally Saiens mder Nigh taowiglef ennter s
Jeviwr prlaifore armf it AP

Kevin Mukhar and Chris Zelenak
with James L. Weaver and Jim Crume

Apress:

Beginning Java EE 5

From Novice to Professional

Kevin Mukhar and Chris Zelenak
with James L. Weaver and Jim Crume

Apress-

Beginning Java EE 5: From Novice to Professional
Copyright © 2006 by Kevin Mukhar and Chris Zelenak, with James L. Weaver and Jim Crume

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-470-3
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Steve Anglin

Technical Reviewer: Dilip Thomas

Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis, Jason Gilmore,
Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser

Project Manager: Sofia Marchant

Copy Edit Manager: Nicole LeClerc

Copy Editors: Marilyn Smith, Ami Knox, Nicole LeClerc

Assistant Production Director: Kari Brooks-Copony

Production Editor: Laura Cheu

Compositor: Susan Glinert Stevens

Proofreader: Elizabeth Berry

Indexer: Broccoli Information Management

Artist: Kinetic Publishing Services, LLC

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.

Contents at a Glance

About the AUNOTSo e XV
About the Technical ReVIEWET i i e i i ie e Xvii
ACKNOWIBAgMEBNTS ...t e Xix
IMtrOdUCHION ...t i XXi
CHAPTER 1 JavaEEEssentialsii 1
CHAPTER 2 GettingStartedcc i 29
CHAPTER 3 JavaServer Pagesoviiiiiiiiiiiiiiiiiiinannns 43
CHAPTER4 Advanced JSPTOPICS ... 107
CHAPTERS5 JavaServer Facescooiiiiiiiiiiiiinnnnnnnnnn. 167
CHAPTERG Servletscooiiuiiiiiiiii i 229
CHAPTER 7 Working with Databasescooiiiiiiiinnat. 309
CHAPTER 8 Advanced TopicsinJDBGcoiiiiiiiiniinnt. 357
CHAPTER9 EJB Fundamentals and SessionBeans 405
CHAPTER10 EJBEntityBeansccoiiiiiiiiiiiiiiiiiiinnns 425
CHAPTER 11 EJB Relationships, EJBQL,and JDBG 473
CHAPTER 12 DesignPatternsandEJBcoiiiiiitt. 505
CHAPTER 13 Message-DrivenBeansccoiviiiiiiiinin.s. 543
CHAPTER 14 Web Servicesand JAX-WSo i, 561
APPENDIXA Tomcat: Who Needs JavaEES? 581
APPENDIXB SQLandEJBQLc.cooiiiiii i 585
APPENDIXC JavaEE GIOSSAryccoviiriiiiiiiiiii i, 607
INDEX ..o 615

Contents

ADOULThE AUTNOIS . .. o e XV
About the Technical ReVIEWET i i e i i ie e Xvii
ACKNOWIBAgMEBNTS ...t e Xix
IMtrOdUCHION ...t i XXi
CHAPTER1 JavaEEEssentials ... 1
WhatlsJavaEE? 2

How JavaEE Relatesto J2SE ...t 2

WhydavaEE? ... 2

Multitier Architectureo e 3

Single-Tier Systemso vi i e 4

Client/Server (Two-Tier) Architecture. 5

N-Tier Architecture.oov i e 6

Vendor Independence ..ot e 9

Scalability ... e 10

Features and ConceptsinJavaEEcoivnt. 10

JavaEE Clientsand Serversoovviiiiiiiinninn, 10

0] 1 =1 1< 11

Java Serviets. 13

JavaServer Pages (JSPS) . ..o 14

JavaServer Faces (JSF) ... 16

JDBC e 17

B BS . i e 18

XML SUPPOrt . . e e 21

Web Services. ... 21

Transaction Support.oi i e 22

SBCUNMTY .ottt e e 23

Sample Java EE Architectures ... 23

Application Client WithEJBcoviiiiiii it 23

JSPClientwithEJB ... 24

Applet Client with JSP and Database......................... 25

Web Services for Application Integration...................... 25

SUMMAIY ..t e e i e e 26

vi

CONTENTS

CHAPTER 2

CHAPTER 3

Getting Started ...l 29
INStalling JBOSSvv e 29
JBoss Installation Problems and Solutions 32
Testing the JBoss Installationt 32
Startingthe Server.............co i 32
JBoss Server Installation Problem and Solution 34
Compiling and Deployinga JSPPageccoatt 35
Creating the Example Application 35
Learningto Say “Hello” ... 38
Application Creation Problems and Solutions M
SUMMAIY ..t e e e e 41
JavaServerPages ... 43
Introductionto JSPo 43
JSP Developmentot 44
Basic JSP Lifecycle. 44
JSPEIeMENtS ... e 45
Directive Elementst 46
Scripting Elements 48
Action Elements ..o 50
Comments and TemplateData.................coovvviinn, 55
Creating and Deploying a JSP Web Application 55
Writing the JSP Web Application............................. 55
Deploying the Web ApplicationinJavaEE..................... 59
Deploying the Web Application in Tomcat..................... 64
Handling Translation or Compilation Problems................. 68
Handling JSP Initialization and End of Life..................... 71
JSP SCOPE ..o e 71
Using Implicit ObJectSo oot e 72
The request Object.oovi i e 73
The response Object.covevvi i 74
TheoutObject.o e 74
The session Object.oove i i 74
The config Objectcoovvien e 75
The exception Object 76
The application Object. ...t 76
Using Standard Actions and Implicit Objects in JSP Pages....... 76

Translation and Compilationccoiiiiiii i, 85

CHAPTER 4

CHAPTER 5

CONTENTS
Handling Errors and Exceptionscciiiiiiiian.. 88
Dealing with Exceptions through the page Directive 88
Dealing with Exceptions in the Deployment Descriptor 89
Adding Exception Handling in JSP Pages...................... 89
Including and Forwarding from JSP Pages 98
include ACtionoooi i e e 98
forward Action. ... 99
Adding include and forward Actions to JSP Pages............. 100
QUMM ottt i e i e i e 104
EXBICISES .ttt 105
Advanced JSPTopics ...t 107
EXpression Languagecovviii i e 107
SCrptESS JSPS . . ot e 108
Syntax of EL Statements oL 110
Errors and Default Values in EL Statements 116
JSPPagesThatUseEL ...t 117
Custom Actionsand Tag Handlerscoviiini.. 126
How Custom Actions Work ...t 127
Simple TagHandlerscoveiiiiiiiiii it 129
Classic TagHandlerscooveiiieii it 140
A Multitude of Custom Actionsoviiiii., 155
JSP Standard Tag Library (JSTL) ..ot 156
Getting a JSTL Implementation............................. 156
Actionsinthe JSTL. ... i 156
Usingthe JSTLINAJSP. ...t 159
SUMMAIY ..t e i e i et i i 165
EXBICISES ...t e e 166
JavaServerFaces ..., 167
Introductionto JSFo 167
The Relationship Between JSF and Other
Java EE Technologies. ...t 168
Request Processing Lifecycle ..o, 169
Installing JSFo 171
Using JSF with JSPPagescco it 172
Creating a Simple JSF Application 173

Reviewing the JSF Lifecycle for the Sample Application........ 184

vii

viii

CONTENTS

CHAPTER 6

Using Managed Beansccoiiiiiiiiiiiniiennnnnn. 184
Configuring ManagedBeans...............c.covvininn., 185
Using Value Binding Expressions in JSP Pages. 189
Using Method Binding Expressions in JSP Pages.............. 191
Expanding the JSF Sample Application 192

Controlling Page Navigationcoiiiiiiiiin.n, 202
Static and Dynamic Navigation............................. 202
Navigation Rules. ... 203
Adding Dynamic Navigation to the Sample JSF Application 204

Accessing Context DatainBeanso..L 212

ConvertingDatacoveiiiiiiii i, 214
Using Standard Convertersccovviiiiiiiinnin.. 215
Using Custom Convertersc.cooiviiiiiininnnnnn. 216

Validating Input ... 221
Using Standard Validatorsccoeiiiiiiiinn. 221
Using Custom Validatorsccooviieiiinan,. 222
Bypassing Validation ol 224

UsingMessage Bundlescoiiiiiiiiii i, 224

QUMM ..t e i e i e i e 227

EXBICISES ottt 228

Servlets ... 229

HTTP and Server Programsc.ooeeiiiiieinneennennenns. 230
RequestMethods ...t 230
How a Server Respondsto Requestsoovt. .. 234

The Servlet Model and HttpServletsccvvntt, 234
Basic Servlet Design. ... 235
A Servlet That Responds to POST Requests 238
The request Object. ... 247
The response Object. ... 250
Deployment Descriptors.oovvii 250
Serviet LifecyCleovve e 254
Event LogginginServlets ... 258
Multithreading in Servlets 258

ExceptionHandlingccoo i 266
Problems with Exception Handling.......................... 266
Error Pagescooiei i 269

Session Management ...ttt e e 270
Creating and Using SesSiONS.ccvviviieiininnnnnn.. 271

Using Cookies in Place of Sessionscovvvvnnn.. 279

CHAPTER 7

CHAPTER 8

CONTENTS
FierS e 280
Implementing the Filter Interface 281
Modifying the Deployment Descriptor to Use a Filter........... 282
The MVC Architecture e 291
Model Tvs. MVC. e i 291
The Components of MVCoo i 292
ServletChaining ... 293
Creating an MVC Application................ccoviviiin... 295
QUMM ottt i e i e i e 306
EXBICISES .ttt 307
Working with Databases 309
Connecting to Databasescccoiviiiiiiiiiii i, 310
Using Data Sources for Connections 311
Configuring a DataSource and Connection with JavaEE........ 311
Configuring a DataSource and Connection with Tomcat 321
Closing Connections.cvii i 328
Setting the Login Timeout, 330
Handling Exceptions ... 330
Logging with a DataSourcecccviviiiiiiiiii it 332
Creating and Using Statement Objects 333
Executing Single Statements................l 334
Performing Batch Updates..................ccovviiint. 334
Releasing Statementsl 335
Using Statements to Insert Data into a Database 336
Using the ResultSet Classooviiiiiiiiiiiiiinns 344
Moving Through the ResultSetcoill. 344
Reading Data from Resultsets........................ootl 347
Working with Null Values. ..., 351
Using Updatable Resultsets.ccooiiii ... 351
Keeping the ResultSet Open: ResultSet Holdability 353
QUMM .t i i e i e e 354
EXBICISES .ttt e 354
Advanced Topics inJDBGC 357
Prepared Statements i 357
Reasons for Using Prepared Statements..................... 358
Creating a PreparedStatementl 362

Using a Prepared Statement 363

ix

CONTENTS

CHAPTER 9

CHAPTER 10

Callable Statements ... 371
Reasons for Using Stored Procedures 371
Creating a CallableStatementcoiiiatt 372
Calling a Stored Procedureccoviiiiiineann... 375

Transactionso e 376
Ending Transactions. ... 376
Managing Transactionst iiennn... 377
Using Transactions with Stored Procedures 385
Using Distributed Transactions............................. 386

Locking and Isolationcoiiiiiii i 390
Setting Isolation Levels ... 391
Using Pessimistic and Optimistic Locking.................... 392

QUMM ..t e i e i e i e 402

EXBrCISES ..ot e e 403

EJB Fundamentals and SessionBeans 405

Understanding EJBS ... 405
Why USe EJBS?o 406
The EJB Specification. ..., 407
The Three Kinds of EJBSt 407
Which Type of EJB Should You Use? 410

The Anatomy of a SessionBeanc.cccvviviinnnn.. 411

Developing Session Beansooevvivii i 412
Using a Stateless SessionBean 412
Choosing Between Stateful and Stateless Session Beans. 418
Using a Stateful SessionBeanccvvvnnn 419

SUMMAIY ..t e i e i et i i 424

EXBICISES ...t e e 424

EJBEntityBeansl 425

How Entity Beans Work with SessionBeans 425

The Anatomy of anEntityBeanl 426
The Entity Bean Class.coovvriiiiii i 427
Container-Managed Persistence and

the EntityManager Interface.................. ...t 428
Primary Keys. ... e 430

Bean-Managed Persistence.cooiiiii .. 430

CHAPTER 11

CONTENTS

Developing CMP EntityBeans ...t 431
Building the CMP Entity Bean Application 431
Compiling the CMP Entity Bean Application................... 438
Deploying the CMP Entity Bean Application................... 439
Running the CMP Entity Bean Application.................... 439
Reviewing the CMP EntityBeancoovuit 440
Reviewing the SessionBean......................., 440

Developing BMP EntityBeanst a1
Building the BMP Entity Bean Application.................... 442
Deploying the BMP Entity Bean Application................... 458
Running the BMP Entity Bean Application.................... 459
Reviewing the BMP EntityBean 459

The EJB QueryLanguagecovieiieiin i inenn. 464
EJB QL QUENES . ..ot 465
Building and Deploying the EJB QL Queries Application 466
Running the EJB QL Queries Application..................... 469
Reviewing the Session Bean Find Methods................... 470

QUMM ottt i e i e i e 471

EXBICISES .ttt e 471

EJB Relationships, EJBQL,and JDBC 473

Entity Bean Relationshipso it 473
One-to-Many and Many-to-One Relationships 474
Many-to-Many Relationshipsol 476
An EJB QL Query to Acquire a Subset of Data................. 477

Container-Managed Relationshipsand EJBQL 478
Building the ApplicationwithCMR 480
Compiling the CMR Application...................c.ovntt. 491
Deploying the CMR Application. ..., 492
Loadingthe Databaseccoiiiiiiiiiiin.a, 492
Running the CMR Applicationot 492
Reviewing the CMR Applicationcovvuit. 493

JDBC with EJB EntityBeansccoiiiiiiiiiiinnnn.. 496
Implementing JDBC with EJB Applications 497
Using JDBC with the StockListBean 499

QUMM ..t e i e i e i e 503

EXBICISES oottt e e 503

Xi

Xii CONTENTS

CHAPTER 12

CHAPTER 13

CHAPTER 14

Design PatternsandEJB 505
Betterby Design ... 505
Applying Design Patterns ... 506
Building the Application with Design Patterns................. 508
Compiling and Running the Application with Design Patterns. . .. 527
Reviewing the Application’s Design Patterns 529
Using JSP and Servlets withEJBsccoiiiitt, 532
Building the Modified JSP/Servlets Client 532
Reviewing the Modified JSP/Servlets Client 540
QUMM ..t e i e i e i e 541
EXBICISES ..ot e e 54
Message-DrivenBeans 543
Message-Driven Beans OVerviewcovvvinvinennnnnnn. 543
Describing MDBS ...t e 545
The MDB Contextcovvieii i 545
MDB Transactionsouvvueiiii it iannans 546
Invocation of an Interceptor. ... 547
Java Message Service APl ... 548
EJB TiMer Servicecoovve i e 549
Using MDBs, JMS, and the EJB Timer Service:

Putting It All Together ... 550
Creating the MessageTimerApp Example 551
Building and Running MessageTimerAppc... .. 554
Reviewing MessageTimerApp.oovviie i 555
MessageTimerApp SUMMAryovvirevievieninennenns 559

QUMM oottt e e e e i e 559
EXBICISES ..ot e e 560
Web Services and JAX-WS 561
Understanding Web Services ..., 562
Web Services Standards and Models........................ 563
Why Use Web Services? ..., 565

Web Services Protocol Stack. ... 565

CONTENTS
Developing a Web Serviceindava 567

Introducing JAX-WSo 568

Downloadingthe CVSToolccoviviniii i 569

Creating the Web Service ...t 570

Building, Testing, and Serving the Web Service............... 576

QUMM ottt i e i e i e 578

EXBICISES .. ittt e e 579

APPENDIX A Tomcat: Who Needs JavaEES? 581
Obtaining and Installing Tomeatcoiielt. 581

Binary Installation to Windows ..., 582

Binary Installation to Linux/Unixoo.l. 583

RunningTomeat ... 584

APPENDIXB SQLandEJBQL ...ttt 585
Introductionto SQL ... 585

SQLObjECES. ..o 585

SAL Data TYPeS. . oo v vt e e 587

Creating Tables.coviei i i 588

Selecting Datafrom Tables...........coovviiiiineinnnn.. 501

Modifying TableData...................ocoiiiiiiiin.t, 597

Constructing Joinso ot e 599

Introductionto EJBQLoviineiii 600

Entity Bean References ..., 601

The javax.ejb.Query Object ...t 601

Building EJB QUENESov it i 602

Using Relationshipst 605

APPENDIXC JavaEEGlossaryooiiiiiian, 607
INDEX .. e 615

Xiii

About the Authors

KEVIN MUKHAR is a software developer from Colorado Springs, Colorado. For the past seven
years, he has worked on various software systems using different Java Enterprise technologies.
He has coauthored several other books, including Beginning Java Databases: JDBC, SQL, J2EE,
EJB, JSP, XML (Wrox, 2001; ISBN 1-86100-437-0) and The Ultimate Palm Robot (Osborne/
McGraw-Hill, 2003; ISBN 0-07-222880-6). In addition to developing software during the day, he
is working on a master’s degree in computer science. His web page is http://home.earthlink.
net/~kmukhar/.

CHRIS ZELENAK is a programmer at Learning Assistant Technologies,
where he helps in the development of server-side Cocoon and Rails
applications, Java and .NET client applications, and rampant devil’s
advocacy. He recently graduated from the Computer Science department
of Indiana Wesleyan University, and is writing this introduction.

JIM WEAVER is a founding partner of Learning Assistant Technologies
(www.lat-inc.com), a company that specializes in learning and medical
software development.

JIM CRUME (jcrume@fusionalliance.com) is a Java architect with Fusion
Alliance, an Indianapolis-based consulting company that specializes
in web applications development. Jim has spent many years as a
consultant, and he specializes in architecting and developing web-based
systems. For the past seven years, Jim has worked on many software
systems using J2EE technologies.

Xv

About the Technical Reviewer

DILIP THOMAS is an open source enthusiast who keeps a close watch on LAMP technologies,
open standards, and the full range of Apache Jakarta projects. He is coauthor of PHP MySQL
Website Programming: Problem — Design — Solution (Apress, 2003; ISBN 1-59059-150-X) and a
technical reviewer/editor on several open source/open standard book projects. Dilip is an editorial
director at Software & Support Verlag GmbH.

Dilip resides in Bangalore with his beautiful wife, Indu, and several hundred books and
journals. You can reach him via e-mail at dilip.thomas@gmail.com.

Xvii

Acknowledgments

The thing that excites me most about programming is the ability to make ideas come alive
through software. I enjoy writing software that makes someone’s job better or easier. And I
enjoy sharing what I know with other programmers. That’s why I'm grateful to the editors at
Apress for letting me contribute to this book. I hope that what we’ve written in this book will
help you do your job a little bit better or easier.

This edition has been in the works for over a year, and during that year, my wife and I have
experienced a lot of changes and challenges. I'd like to thank the many people who helped
throughout that year: Tom and Marg Gimmy, the doctors and nurses at Harrogate Health Center,
Dave and Kris Johnson, my family, Anne’s family, the doctors and nurses at University of
Chicago Hospital, Dr. Maria Augusteijn, Dr. Richard Meinig, Dr. Brian Toolan, Dawn Girard,
Don Haase, Tedd Dawson, Judy French, Sondra Wenzel, Jenn Masamitsu, the fall semester
CS330 class at UCCS, and all the folks at Apress.

Finally, this book is dedicated to my wife, Anne, and my daughter, Christine.

Kevin Mukhar

I would not have been able to finish this book without the expert assistance of Jim Crume,
whose fast provision of code and sharp wit were necessary encouragements to my revisions.
Kevin Mukhar also deserves my thanks, for being gracious enough to allow a fledgling writer to
help in this book’s revision. I would also like to thank (and thank, and thank) the people at
Apress, who showed an astronomic amount of patience with the work in preparing this book,
most notably Laura Brown (who departed partway through to welcome her son, Ian Daniel Brown,
into the world), Steve Anglin, Sofia Marchant, Dilip Thomas, Marilyn Smith, and Laura Cheu. The
patience of my seemingly worldwide network of friends and family has been incredibly appre-
ciated, and I wish I could name you all and do you justice: Michelle and Derek, Becky and John
from CARE Auto Auction, Russell and Boggstown, Chorna, AJ, Keith and my brother Matt—you
all seemed to show up just when I needed you. Most important, I'd like to acknowledge my
parents, John and Lynn Zelenak, whom no compliment could truly do justice. Jim Weaver, your
trust allowed me to assist in revising this edition and also make a good friend in the process.
Chris Zelenak

This book is dedicated to my wife, Julie; daughters, Lori and Kelli; “son,” Marty; and grandson,
Kaleb James. Thanks for your constant love and support. It is also dedicated to the memory
of Ken Prater, who we miss dearly. Thanks to Merrill and Barbara Bishir, Marilyn Prater, and
Walter Weaver for being such wonderful examples. Thanks also to Laura Lee and Steve Brown,
Jill Weaver, Shari and Doug Beam, Wade and Dawn Weaver, Dan and David Wright, Jerry and
Cheryl Bishir, and Pastor Steve and Cheri Colter. Special thanks go to Chris Zelenak for his tireless
effort on this book, and to Apress for their encouragement. Isaiah 26:3.

Jim Weaver

Xix

XX ACKNOWLEDGMENTS

This book is dedicated to my wife, who loves me for who I am; my son Chris and his wife
Michelle; and my daughter Liz, who all gave up my time for this project. Again, thanks can’t
even come close. I love you all! Joshua 24:15.

Jim Crume

Introduction

We, the authors, have read alot of books on designing and developing software—some better
than others—and have spent a lot of time and money in the process. We had some very specific
thoughts as we put this book together. The authors of this book are software engineers first.
Like you, we have more projects than time to do them in, and we understand that you don’t
have time to waste when it comes to learning new technologies. We hope the result of our efforts
here is a book that you will pick up frequently, highlight, bookmark, and consider a valued
addition to your development resources.

First and foremost, the focus of this book is on the practical aspects of getting started
with developing distributed software for Java Platform, Enterprise Edition (Java EE). Enterprise
Javais a broad and deep subject, and getting started can be like taking a drink from a fire hose.
We wanted to put together a practical approach to getting started and spend most of our time
talking about the topics that you'll use 90% (or more) of the time. We are serving up meat and
potatoes here.

When we pick up a book on software development, we like to have the option of reading
straight through or skipping around and picking and choosing the topics that we’re interested
in at a given time. As an introduction to Java EE, you'll learn the most if you first read through
each chapter in order. Later, as you go back to particular sections, you'll find it easy to locate
specific concepts to refresh your memory and then skip around in the book. We hope that
we’ve done a good job of making each topic stand on its own and provided examples that are
straightforward and relevant.

Like Java Platform, Standard Edition, Java EE consists of several packages that contain
classes and interfaces that define the framework. You're already familiar with J2SE, and you
gained your expertise by taking the J2SE framework one topic at a time. We’ll take Java EE the
same way—one topic at a time.

Part of the allure of programming is the breakneck speed with which software components
are designed, developed, and made available to users. Java EE 5 could be said to be the poster
child for such qualities, as its specification is going through the final steps of development and
review at the same time this book is being published. The book you hold in your hands right
now attempts to provide a good picture of the specification using the JBoss advance imple-
mentation to demonstrate the Java EE features. But the funny thing about specifications in
development is that they often change. (Trust us on that one.) The topics presented in the book
have been consciously written to present those concepts that are not likely to change. That’s no
guarantee, however, so we strongly recommend that you visit the book’s page on the Apress site
(www. apress.com/book/bookDisplay.html?bID=420) in case changes or alterations become available.
Ifyou'd like to stay abreast of changes made to the specification, keep a close eye on the Java EE
5 specification development page (http://jcp.org/en/jsr/detail?id=244), the JBoss website
(www. jboss.com/developers/index), and the TheServerSide.com site (www.theserverside.com).

XXi

XXii

INTRODUCTION

Who This Book Is For

This book is mainly aimed at people who already have knowledge of standard Java and have
been developing small, client-side applications for the desktop. If you have read and absorbed
the information contained in an entry-level book such as Ivor Horton'’s Beginning Java 2 (Wrox,
2004; ISBN 0-7645-6874-4), then you will be well placed to begin your journey to developing
server-side applications using Java EE.

We assume that you know how to use your development environment to compile class
files and create JAR files. If you are a vi and command-line lover, we assume you know how to
set a classpath and use javac to compile files. If you use an integrated development environ-
ment (IDE), we assume you know how to use your IDE to create and compile projects, and
deploy those projects. Maybe you use the Jakarta Ant build system; in that case, we assume you
can create and run your own Ant build scripts to compile, package, and deploy applications.
Whatever system you use, we assume you are comfortable with the process of writing and
compiling code.

If you are coming from another object-oriented language, such as C++ or C#, and you wish
to begin developing enterprise-level applications with Java, then you will also benefit greatly
from this book. The coding concepts, principles, and constructs are similar—you just need to
watch out for the syntax differences and, obviously, the different code architecture for the
different technology areas of Java EE.

What This Book Covers

This book will take you from having a good grip of the basic Java language to being able to
create reusable and scaleable components of Java EE, such as JavaServer Pages (JSP) pages,
Enterprise JavaBeans (EJBs), and web services.

The sections that follow present a rundown of what you can expect to see as you work
through the book.

Chapter 1: Java EE Essentials

This chapter lays out a road map of what Java EE is and how it is used as an application foundation.
You'll get an introduction to the primary components of Java EE and how they fit together.

Chapter 2: Getting Started

Having your machine configured correctly is essential if you want to be able to run the sample
code presented in this book. This chapter walks through the installation, configuration, and
testing of the core components of Java EE.

Chapter 3: JavaServer Pages

This chapter presents an introduction to the world of server-side web programming using JSP
pages. This chapter covers how to write simple JSP pages, covering the fundamentals of the
technology and how JSP pages can be useful in your web applications.

INTRODUCTION

Chapter 4: Advanced JSP Topics

In this chapter, we continue our coverage of JSP basics and look at some more advanced features
of the technology, such as the expression language, custom actions, and the JSP Standard
Tag Library.

Chapter 5: JavaServer Faces

This chapter is an introduction to JavaServer Faces (JSF), a framework for creating component-
based user interfaces. You'll learn how to use JSF with JSP pages to create feature-rich user
interfaces.

Chapter 6: Servlets

Here we cover another frequently used component in Java EE web applications: Servlets. Servlets
are designed to be extensions to servers and to extend the capabilities of servers and provide
dynamic behavior.

Chapter 7: Working with Databases

At some point when you're developing a Java EE application, you'll likely need to store and
manipulate data in a data source. This is where JDBC comes in.

Chapter 8: Advanced Topics in JDBC

After learning the basic data access functionality in the previous chapter, you’ll delve deeper
into JDBC in this chapter, which covers prepared statements and stored procedures, transactions,
and locking.

Chapter 9: EJB Fundamentals and Session Beans

In this part of the book, we begin to examine a feature of Java EE dedicated to expressing the
business logic of an application: Enterprise JavaBeans (EJBs). This chapter mainly focuses on
an overview of the EJB technology and looks at session beans in detail.

Chapter 10: E]JB Entity Beans

This second chapter on E]JBs discusses another type of EJB, entity beans, and how they relate to
and fit in with other types of beans. We cover two different types of persistence and take a look
at the EJB Query Language (EJB QL).

Chapter 11: EJB Relationships, EJB QL, and JDBC

Creating container-managed relationships and combining the use of JDBC and EJBs are the
two topics of this chapter. We also build on the EJB QL foundation from the previous chapter by
looking at EJB QL select methods.

xXxiii

XXiv

INTRODUCTION

Chapter 12: Design Patterns and E]B

In this chapter of the book, we look at what design patterns are, how they can be applied to EJB
applications, and what benefits they offer.

Chapter 13: Message-Driven Beans

In the final EJB chapter of the book, we examine message-driven beans (MDBs). MDBs provide
a way for your web application to respond to external events.

Chapter 14: Web Services and JAX-WS

The last chapter in the book covers concepts of enabling distributed applications via the magic
of web services. We examine web services fundamentals, guidelines, and good practices, and
other issues that you should be aware of when creating web services.

Appendix A: Tomcat: Who Needs Java EE 5?

This appendix briefly lists some alternates to running a full application server such as JBoss. It
also provides instructions on how to obtain, install, and run the Tomcat web container, which
is used in Chapters 3 through 8.

Appendix B: SQL and EJB QL

This appendix provides a brief introduction to the Structured Query Language (SQL) and the
Enterprise JavaBeans Query Language (EJB QL), two techniques for accessing data that you can
use in Java EE programming. We use SQL in Chapters 7 and 8, and we use both SQL and EJB QL
in Chapters 10 and 11.

Appendix C: Java EE Glossary

This appendix features a list of significant Java EE terms and their definitions.

What You Need to Use This Book

The prerequisite system and software requirements for this are not very extensive. Since you
already have a background in Java, you no doubt have a version of the J2SE SDK installed on
your machine already.

In this book, we’ve used the latest version of the Standard Edition SDK, which is J2SE 5 at
the time of this writing. Throughout the book, we use Microsoft Windows as our operating
system, but since Java adheres to the “write once, run anywhere” philosophy, you can use
another platform such as Solaris or Linux without any major changes to the code you see.

The other software you’ll need is a web container and application server of some kind. In
this book, we used the latest release of the Tomcat web container and the JBoss application
server. At the time we wrote this book, JBoss was the only application server that supported the
EJB 3.0 specification. We used Tomcat stand-alone in Chapters 3 through 8, since the examples

INTRODUCTION XXV

in these chapters did not need all the features of JBoss. However, since JBoss uses Tomcat as its
web container, you should be able to run all the examples in this book with just the JBoss appli-
cation server.

Alternatively, you could use any application server that supports the Java EE 5 specification
and the various specifications for the other Java EE technologies. We wrote all the code exam-
ples in this book to comply with the latest specifications, and we refrained from using features
that are Tomcat or JBoss specific. All of the examples should run in any Java EE application
server without needing to be changed. However, the deployment steps may vary by application
server. For more information, please consult your application server’s documentation.

Style Conventions

We have used certain layout conventions and font styles in this book that are designed to help
you to differentiate between the various kinds of information. This section outlines the styles
used, with an explanation of what they mean.

As you might expect, we present code in two different ways: code used inline with text and
code that is displayed on its own. When we need to mention keywords and other coding specifics
within the text (e.g., in discussion relating to an if. . .else construct or the beans package) we
use the single-width font as shown in the parentheses in this sentence. If we want to show a
more substantial block of code, we display it like this:

Listing 9-2. SimpleSessionBean.java

package beans;
import javax.ejb.Stateless;

@Stateless
public class SimpleSessionBean implements SimpleSession {
public String getEchoString(String clientString) {
return clientString + " - from session bean";
}
}

If the code is a complete listing that is part of an example, the code will include a caption
with a listing number and source name as just shown. In cases where we are presenting a
snippet of code, we simply list the code.

Sometimes you will need to type in commands on the command line, which we display
using the following style:

> set classpath=.;%Java EE_HOME%\1lib\j2ee.jar
> javac -d . client/*.java

We show the prompt using a > symbol and then the commands you need to type.

XXvi

INTRODUCTION

Note Advice, hints, and background information come in this type of font offset by borders. Important
pieces of information also come in this format. Depending on the type of information, we preface the text with
the word Note, Tip, or Caution. Notes consist of incidental information of one type or another that defines,
explains, or elaborates upon the main discussion. Tips will make your programming easier. For instance, a Tip
might point out another way to use a certain feature that’s not obvious from the main discussion. Cautions
indicate a potential hazard. For example, a Caution might be a method that if misused could crash your appli-
cation server.

Bullets appear indented, with each new bullet marked as follows:
e Important Words are in a bold font.

* Words that appear on the screen, or in menus like File or Window, are in a monospaced font.

Downloading the Code for This Book

Visit the Apress web page for the book at www.apress.com/book/bookDisplay.html?bID=420, and
then click on the Source Code link (in the “Book Extras” area on the right side of the page) to
obtain all the code for the book.

A Note About URLs in XML Files

A major feature of Java Platform, Enterprise Edition 5 (Java EE 5) is the use of XML files to
configure web applications and web components. As you will see throughout this book, the
elements in these XML files often have attributes that have a uniform resource locator (URL) as
their value. For example, one XML file you will see over and over again is called the deployment
descriptor, and its top-level element looks something like this:

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee/web-app 2 5.xsd"
version="2.5">

We have spared no expense to ensure that the URLs used in the book are correct. We have
hired scores of authors, editors, reviewers, proofreaders, and occasional random programmers
from off the street to check and recheck every URL. Despite our best efforts, though, there is the
potential for a problem.

As we mentioned, we wanted this book to be filled with practical information of value to
you. Part of making this book useful is ensuring that it is available to you when the technology
is available. As of the time of this writing, however, Sun has not finalized the specifications
underlying the technologies in this book. It is entirely possible that the specifications will change
between the time we publish the book and when you read the book. This affects not only the
URLSs in XML files, but the entire book as well.

INTRODUCTION

So, as you start testing the examples in this book or experimenting with JSPs, Servlets, and
EJBs, you should check both the documentation for your application server and the specifica-
tion supported by your application server, to ensure you are using the correct format for XML
files in your web application.

What to Do If You Encounter Problems

Despite all our best efforts, and despite this book’s numerous sharp-eyed editors, there is a
possibility that errors managed to sneak through. It has been known to happen.

If you are having problems with any of the text or code examples, the first place to go for
corrections is the web page for the book (www.apress.com/book/bookDisplay.html?bID=420). If
any errata have been identified, you will find a link for Corrections on the book’s web page. If
you click this link, you will find a page that lists known errors with the code or book text, and
corrections for those problems.

If you can’t find your problem listed on the Corrections page, you will find a link to Submit
Errata on the main book page. If you've double-checked and triple-checked your problem and
still can’t get the code to work or the text to make sense, use the Submit Errata link to send us a
description of the problem. We can’t promise a speedy response, but we do see all submissions

and post responses to the Corrections page after we’'ve had a chance to check out the problem.

Xxvii

CHAPTER 1

Java EE Essentials

The word enterprise has magical powers in computer programming circles. It can increase the
price of a product by an order of magnitude and double the potential salary of an experienced
consultant. Your application may be free of bugs, and cleanly coded using all the latest tech-
niques and tools, but is it enterprise-ready? What exactly is the magic ingredient that makes
enterprise development qualitatively different from run-of-the-mill development?

Enterprise applications solve business problems. This usually involves the safe storage,
retrieval, and manipulation of business data: customer invoices, mortgage applications, flight
bookings, and so on. They might have multiple user interfaces: a web interface for consumers
and a graphical user interface (GUI) application running on computers in the branch offices,
for example. Enterprise applications must deal with communication between remote systems,
coordinate data in multiple stores, and ensure the system always follows the rules laid down by
the business. If any part of the system crashes, the business loses part of its ability to function
and starts to lose money. If the business grows, the application needs to grow with it. All this
adds up to what characterizes enterprise applications: robustness in the face of complexity.

When we set out to build a GUI application, we don’t start by working out how to draw
pixels on the screen and build our own code to track the user’s mouse around the screen; we
rely on a GUI library, like Swing, to do that for us. Similarly, when we set out to create the
components of a full-scale enterprise solution, we would be crazy to start from scratch.

Enterprise programmers build their applications on top of systems called application
servers. Just as GUI toolkits provide services of use to GUI applications, application servers
provide services of use to enterprise applications—things like communication facilities to talk
to other computers, management of database connections, the ability to serve web pages, and
management of transactions.

Just as Java provides a uniform way to program GUI applications on any underlying oper-
ating system, Java also provides a uniform way to program enterprise applications on any
underlying application server. The set of libraries developed by Sun Microsystems and the Java
Community Process that represent this uniform application server application programming
interface (API) is what we call the Java Platform, Enterprise Edition 5 (Java EE 5), and it is the
subject of this book.

This chapter provides a high-level introduction to Java EE. In this chapter, you will learn:

* Why you would want to use Java EE
* What the benefits of a multitier application architecture are

* How Java EE provides vendor independence and scalability

CHAPTER 1 JAVA EE ESSENTIALS

¢ What the main Java EE features and concepts are
¢ How to use common Java EE architectures

So, without further ado, let’s get started!

What Is Java EE?

Since you're reading this book, you obviously have some interest in Java EE, and you probably
have some notion of what you're getting into. For many fledgling Java EE developers, Java EE
equates to Enterprise JavaBeans (EJBs). However, Java EE is a great deal more than just E]JBs.

While perhaps an oversimplification, Java EE is a suite of specifications for APIs, a distributed
computing architecture, and definitions for packaging of distributable components for deploy-
ment. It’s a collection of standardized components, containers, and services for creating and
deploying distributed applications within a well-defined distributed computing architecture.
Sun’s Java web site says, “ Java Platform, Enterprise Edition 5 (Java EE 5) defines the standard
for developing component-based multitier enterprise applications.”

Asitsname implies, Java EE is targeted atlarge-scale business systems. Software that functions
at this level doesn’t run on a single PC—it requires significantly more computing power and
throughput than that. For this reason, the software needs to be partitioned into functional
pieces and deployed on the appropriate hardware platforms. That is the essence of distributed
computing. Java EE provides a collection of standardized components that facilitate software
deployment, standard interfaces that define how the various software modules interconnect,
and standard services that define how the different software modules communicate.

How Java EE Relates to J2SE

Java EE isn’t a replacement for the Java 2 Standard Edition (J2SE). J2SE provides the essential
language framework on which Java EE builds. It is the core on which Java EE is based. As you’ll
see, Java EE consists of several layers, and J2SE is right at the base of that pyramid for each compo-
nent of Java EE.

As aJava developer, you've probably already learned how to build user interfaces with the
Swing or Abstract Window Toolkit (AWT) components. You'll still be using those to build the
user interfaces for your Java EE applications, as well as HTML-based user interfaces. Since J2SE
is at the core of Java EE, everything that you've learned so far remains useful and relevant.

In addition, Java EE provides another API for creating user interfaces. This API is named
JavaServer Faces (JSF) and is one of the newest Java EE technologies. You'll also see that the
Java EE platform provides the most significant benefit in developing the middle-tier portion of
your application—that’s the business logic and the connections to back-end data sources.
You’'ll use familiar J2SE components and APIs in conjunction with the Java EE components and
APIs to build that part of your applications.

Why Java EE?

Java EE defines a number of services that, to someone developing enterprise-class applications,
are as essential as electricity and running water. Life is simple when you simply turn the faucet
and water starts running, or flip the switch and lights come on. If you have ever been involved
with building a house, you know that there is a great deal of effort, time, and expense in building

CHAPTER 1 JAVA EE ESSENTIALS

the infrastructure of plumbing and wiring, which is then so nicely hidden behind freshly painted
walls. At the points where that infrastructure is exposed, there are standard interfaces for
controlling (water faucets and light switches, for example) and connecting (power sockets,
lamp sockets, and hose bibs, for example) to the infrastructure.

Suppose, though, that the wiring and plumbing in your home wasn’t already there. You
would need to put in your own plumbing and electricity. Without standard components and
interfaces, you would need to fabricate your own pipes, wiring, and so on. It would be terrifically
expensive and an awful lot of work.

Similarly, there is a great deal of infrastructure required to write enterprise-class applica-
tions. There are a bunch of different system-level capabilities that you need in order to write
distributed applications that are scalable, robust, secure, and maintainable. Some vital pieces
of thatinfrastructure include security, database access, and transaction control. Security ensures
that users are who they claim to be and can access only the parts of the application that they're
entitled to access. Database access is also a fundamental component so that your application
can store and retrieve data. Transaction support is required to make sure that the right data is
updated at the right time. If you're not familiar with some of these concepts, don’t worry—
you'll be introduced to them one at a time throughout this book.

Putting in a distributed computing infrastructure—the plumbing and wiring of an archi-
tecture that supports enterprise applications—is no simple feat. That’s why Java EE-based
architectures are so compelling; the hard system-level infrastructure is already in place.

But why not custom build (or pay someone to custom build) an infrastructure that is
designed around your particular application? Well, for starters, it would take a fantastic amount
of time, money, and effort. And even if you were to build up that infrastructure, it would be
different from anyone else’s infrastructure, so you wouldn’t be able to share components or
interoperate with anyone else’s distributed computing model. That’s a lot of work for some-
thing that sounds like a dead end. And if you were lucky enough to find a vendor that could sell
you a software infrastructure, you would need to worry about being locked into that single
vendor’s implementation, and not being able to switch vendors at some point in the future.

The good news is, no surprise, that Java EE defines a set of containers, connectors, and
components that fill that gap. Java EE not only fills the gap, but it’s based on well-known,
published specifications. That means that applications written for Java EE will run on any
number of Java EE-compliant implementations. The reference implementation supplied with
the Java EE Software Development Kit from Sun (Java EE SDK) provides a working model that
we’ll use throughout this book, since it’s the implementation that Sun has built from the specifi-
cation and is freely available. In the next chapter, you'll get an introduction to installing and
testing the Java EE SDK.

Multitier Architecture

One of the recurring themes that you’ll run into with Java EE is the notion of supporting
applications that are partitioned into several levels, or fiers. That is an architectural cornerstone
of Java EE and merits a little explanation. If you are already familiar with n-tier application
architectures, feel free to skip ahead. Otherwise, the overview presented here will be a good
introduction or review that will help lay the foundation for understanding the rationale behind
much of Java EE’s design and the services it provides.

If you think about a software application composition, you can break it down into three
fundamental concerns, or logical layers:

CHAPTER 1 JAVA EE ESSENTIALS

» The first area of concern is displaying stuff to the user and collecting data from the user.
That user interface layer is often called the presentation layer, since its job is to present
stuff to the user and provide a means for the user to present stuff to the software system.
The presentation layer includes the part of the software that creates and controls the
user interface and validates the user’s actions.

* Underlying the presentation layer is the logic that makes the application work and
handles the important processing. The process in a payroll application to multiply the
hours worked by the salary to determine how much to pay someone is one example of
this kind of logic. This logical layer is called the business rules layer, or more informally
the middle tier.

¢ All nontrivial business applications need to read and store data, and the part of the soft-
ware that is responsible for reading and writing data—from whatever source that might
be—forms the data access layer.

Single-Tier Systems

Simple software applications are written to run on a single computer, as illustrated in Figure 1-1.
All of the services provided by the application—the user interface, the persistent data access,
and the logic that processes the data input by the user and reads from storage—all exist on the
same physical machine and are often lumped together into the application. That monolithic
architecture is called single tier, because all of the logical application services—the presentation,
the business rules, and the data access layers—exist in a single computing layer.

Single-tier systems are relatively easy to manage, and data consistency is simple because
data is stored in only one single location. However, they also have some disadvantages. Single-
tier systems do not scale to handle multiple users, and they do not provide an easy means of
sharing data across an enterprise. Think of the word processor on your personal computer:

It does an excellent job of helping you to create documents, but the application can be used by
only a single person. Also, while you can share documents with other people, only one person
can work on the document at a time.

User Interface Logic,
Business Rules,
File/Database Access

Lt
[
I

Figure 1-1. In the traditional computer application, all of the functionality of the application
exists on the user’s computer.

CHAPTER 1 JAVA EE ESSENTIALS

Client/Server (Two-Tier) Architecture

More significant applications may take advantage of a database server and access persistent
data by sending SQL commands to a database server to save and retrieve data. In this case, the
database runs as a separate process from the application, or even on a different machine than
the machine that runs the rest of the program. As illustrated in Figure 1-2, the components for
data access are segregated from the rest of the application logic. The rationale for this approach is
to centralize data to allow multiple users to simultaneously work with a common database,
and to provide the ability for a central database server to share some of the load associated with
running the application. This architecture is usually referred to as client/server and includes
any architecture where a client communicates with a server, whether that server provides data
access or some other service.

User Interface Logic,
Business Logic

E Data Access

Client @
—
—
—
=

User Interface Logic,
Business Logic

@ Server

Client

Figure 1-2. In a client/server architecture, an application client accesses services from another
process to do its job.

It’s convenient and more meaningful to conceptualize the division of the responsibility
into layers, or tiers. Figure 1-3 shows the client/server software architecture in two tiers.

CHAPTER 1 JAVA EE ESSENTIALS

User Interface Logic
Business Logic

Data Access

Figure 1-3. The client/server architecture shown in a layer, or tier, diagram

One of the disadvantages of two-tier architecture is that the logic that manipulates the
data and applies specific application rules concerning the data is lumped into the application
itself. This poses a problem when multiple applications use a shared database. Consider, for
example, a database that contains customer information that is used for order fulfillment,
invoicing, promotions, and general customer resource management. Each one of those appli-
cations would need to be built with all of the logic and rules to manipulate and access customer
data. For example, there might be a standard policy within a company that any customer
whose account is more than 90 days overdue will be subject to a credit hold. It seems simple
enough to build that rule into every application that’s accessing customer data, but when the
policy changes to reflect a credit hold at 60 days, updating each application becomes a real
mess.

You might be tempted to try to solve this problem by building a reusable library that
encapsulates the business rules. When the rules change, you can just replace that library,
rebuild the application, and redistribute it to the computers running the application. There are
some fundamental problems with that strategy, however. First, that strategy assumes that all of
the applications have been created using the same programming language, run on the same
platform, or at least have some strategy for gluing the library to the application. Next, the appli-
cations may need to be recompiled or reassembled with the new library. Moreover, even if the
library is a drop-in replacement without requiring recompiling, it’s still going to be a royal pain
to make sure that each installation of the application has the right library installed simultaneously
(it wouldn’t do to have conflicting business rules being enforced by different applications at
the same time).

In order to get out of that mess, the logical thing to do is to physically separate those busi-
ness rules out from the computers running the applications onto a separate server so that the
software that runs the business rules needs to be updated only once, not for each computer
that runs the application.

N-Tier Architecture

Figure 1-4 shows a third tier added to the two-tier client/server model. In this model, all of the
business logic is extracted out of the application running at the desktop. The application at the
desktop is responsible for presenting the user interface to the end user and for communicating
to the business logic tier. It is no longer responsible for enforcing business rules or accessing
databases. Its job is solely as the presentation layer.

CHAPTER 1 JAVA EE ESSENTIALS

Note Bear in mind that at this point we’re talking somewhat abstractly and theoretically. In a perfect
world, without performance and other implications, the division of responsibility in an application would be
very clear-cut. You'll see throughout this book that you must make practical, balanced implementation decisions
about how responsibilities are partitioned in order to create an application that is flexible and performs well.

User Interface Logic

Business Logic

Data Access

Figure 1-4. A common enterprise architecture consists of three tiers: presentation, business,
and data.

Typically, in a deployed application, the business logic tier executes on a server apart from
the workstation (you'll see shortly that this isn’t absolutely required, though). The business
logic tier provides the logical glue to bind the presentation to the database. Since it’s running
on a server, it’s accessible to any number of users on the network running applications that
take advantage of its business rules. As the number of users demanding those services increases,
and the business logic becomes increasingly complex and processor-intensive, the server can
be scaled up or more servers can be added. Scaling a single server is a lot easier and cheaper
than upgrading everyone’s workstations.

One of the really great things that this architecture makes possible is the ability to start to
build application models where the classes defined in the business logic tier are taken directly
from the application domain. The code in the business logic layer can work with classes that
model things in the real world (like a Customers class) rather than working with complex SQL
statements. By pushing implementation details into the appropriate layer, and designing
applications that work with classes modeled from the real world, applications become much
easier to understand and extend.

It’s possible to continue the process of partitioning the application functionality into
increasingly thin functional layers, as illustrated in Figure 1-5. There are some very effective
application architectures based on rn-tier architecture. The application architect is free to
partition the application into as many layers as appropriate, based on the capabilities of the
computing and network hardware on which the system is deployed. However, you do need to
be careful about reaching a point of diminishing returns, since the performance penalty for the
network communication between the layers can start to outweigh any gains in performance.

CHAPTER 1 JAVA EE ESSENTIALS

User Interface Logic

Business Model

Business Rules

Business Object to
Data Source Mapping

Data Access

Figure 1-5. An enterprise application is not limited to two or three tiers. The software architect can
design the system to consist of any number of layers, depending on the system requirements and
deployment configuration.

In summary, n-tier application architecture is intended to address a number of problems,
including the following:

The high cost of maintenance when business rules change. N-tier applications have
improved maintainability.

Inconsistent business rule implementation between applications. N-tier applications
provide consistency.

Inability to share data or business rules between applications. N-tier applications offer
interoperability.

Inability to provide web-based front ends to line-of-business applications. N-tier appli-
cations are flexible.

Poor performance and inability to scale applications to meet increased user load. N-tier
applications are scalable.

Inadequate or inconsistent security across applications. N-tier applications can be
designed to be secure.

The Java EE architecture is based on the notion of n-tier applications. Java EE makes it very
easy to build industrial-strength applications based on two, three, or more application layers,
and provides all of the plumbing and wiring to make that possible.

CHAPTER 1 JAVA EE ESSENTIALS

Note that n-tier architecture does not demand that each of the application layers run on a
separate machine. It’s certainly possible to write n-tier applications that execute on a stand-
alone machine, as you'll see. The merit of the application design is that the layers can be split
apart and deployed on separate machines, as the application requires.

Note Labeling a particular architecture as three-tier, five-tier, and so on is almost guaranteed to spur
some academic debate. Some insist that tiers are defined by the physical partitioning, so if the application
components reside on client workstations, an application server, and a database server machine, it’s defini-
tively a three-tier application. Others will classify applications by the logical partitioning where the potential
exists for physical partitioning. For the discussions in this chapter, we’ll take the latter approach, with apologies in
advance for those who subscribe to the former.

Vendor Independence

Sun Microsystems—the company that created the Java platform and plays a central role in Java
technologies, including the Java EE specification—has promoted the Java platform as a solid
strategy for building applications that aren’tlocked into a single platform. In the same way, the
architects of Java EE have created it as an open specification that can be implemented by anyone.
To date, there are scores of Java EE-based application servers that provide a platform for building
and deploying scalable n-tier applications. Any application server that bills itself as Java EE-
compliant must provide the same suite of services using the interfaces and specifications that
Sun has made part of Java EE.

This provides the application developer with a number of choices when implementing a
project, and similar choices down the road as more applications are added to an organization’s
suite of solutions. Building an application atop the Java EE architecture provides substantial
decoupling between the application logic that you write and the other stuff—security, database
access, transaction support, and so on—provided by the Java EE server.

Remember that all Java EE servers must support the same interfaces defined in the Java EE
specification. That means you can design your application on one server implementation and
deploy it on a different one. You can decide later that you want to change which Java EE server
you use in your production environment. Moving your application over to the new production
environment can be almost trivial.

Platform independence is something that you can take advantage of in your development.
For example, you may be away from the office quite a bit, and use your notebook computer
running Windows to do development. It’s pretty easy to use that configuration to build, test,
and debug (Java EE has great support for pool-side computing). When you'’re back in the office
and happy with a particular component, you can deploy it to, say, Linux-based servers with
little effort, despite the fact that those servers are running a different operating system and
different Java EE implementation (after testing, of course!).

10

CHAPTER 1 JAVA EE ESSENTIALS

Bear in mind that each Java EE vendor provides some added value to its particular Java EE
implementation. After all, if there weren’t market differentiators, there would be no competi-
tion. The Java EE specification covers a lot, but there is also a lot that is not specified in Java EE.
Performance, reliability, and scalability are just a few of the areas that aren’t part of the Java EE
specification but are areas where vendors have focused a great deal of time and attention. That
added value may be ease of use in its deployment tools, highly optimized performance, support for
server clustering (which makes a group of servers able to serve application clients as if it were
asingle super-fast, super-big server), and so on. The key point here is to keep two issues in mind:

* Your production applications can potentially benefit from capabilities not supported in
the SunJava EE reference implementation. Just because your application’s performance
stinks on the reference implementation running on your laptop doesn’t mean that Java EE is
inherently slow.

* Any vendor-specific capabilities that you take advantage of in your production applications
may impact the vendor independence of your application.

Scalability

Defining throughput and performance requirements is a vital step in requirements definition.
Even the best of us get caught off-guard sometimes, though. Things can happen down the
road—an unanticipated number of users using a system at the same time, increased loading on
hardware, unsatisfactory availability in the event of server failure, and so on—that can throw a
monkey wrench into the works.

The Java EE architecture provides a lot of flexibility to accommodate changes as the require-
ments for throughput, performance, and capacity change. The n-tier application architecture
allows software developers to apply additional computing power where it’s needed. Partitioning
applications into tiers also enables refactoring of specific pain points without impacting adjacent
application components.

Clustering, connection pooling, and failover will become familiar terms to you as you build
Java EE applications. Several providers of Java EE application servers have worked diligently to
come up with innovative ways to improve application performance, throughput, and avail-
ability—each with its own special approach within the Java EE framework.

Features and Concepts in Java EE

Getting your arms around the whole of Java EE will take some time, study, and patience. You'll
need to understand a lot of concepts to get started, and these concepts will be the foundation
of more concepts to follow. The journey through Java EE will be a bit of an alphabet soup of
acronyms, but hang tough—you’ll catch on, and we’ll do our best on our end to help you make
sense of it. Here, we'll provide an overview of some important Java EE features and concepts.

Java EE Clients and Servers

Up to this point, we’'ve been using terms like client and server somewhat loosely. These terms
represent fairly specific concepts in the world of distributed computing and Java EE.

CHAPTER 1 JAVA EE ESSENTIALS

AJava EE client can be a console (text) application written in Java, or a GUI application
written using the Java Foundation Classes (JFC) and Swing or AWT. These types of clients are
often called fat clients because they tend to have a fair amount of supporting code for the user
interface.

Java EE clients may also be web-based clients; that is, clients thatlive inside a browser. Because
these clients offload much of their processing to supporting servers, they have very little in the
way of supporting code. This type of client is often called a thin client. A thin client may be a
purely HTML-based interface, a JavaScript-enriched page, or one that contains a fairly simple
applet where a slightly richer user interface is needed.

It would be an oversimplification to describe the application logic called by the Java EE
clients as the “server,” although it is true that, from the perspective of the developer of the client-
side code, that illusion is in no small way the magic of what the Java EE platform provides. In
fact, the Java EE application server is the actual server that connects the client application to
the business logic.

The server-side components created by the application developer can be in the form of
web components and business components. Web components come in the form of JSPs or
Servlets. Business components, in the world of Java EE, are E]Bs.

These server-side components rely on the Java EE framework. Java EE provides support for
the server-side components in the form of containers.

Containers

Containers are a central theme in the Java EE architecture. Earlier in this chapter, we talked
about application infrastructure in terms of the plumbing and electricity that a house provides
for its inhabitants. Containers are like the rooms in the house. People and things exist in the
rooms, and interface with the infrastructure through well-defined interfaces. In an application
server, web and business components exist inside containers and interface with the Java EE infra-
structure through well-defined interfaces.

In the same way that application developers can partition application logic into tiers of
specific functionality, the designers of Java EE have partitioned the infrastructure logic into
logical tiers. They have done the work of writing the application support infrastructure—things
that you would otherwise need to build yourself. These include security, data access, transaction
handling, naming, resource location, and the guts of network communications that connect
the client to the server. Java EE provides a set of interfaces that allow you to plug your applica-
tion logic into that infrastructure and access those services.

Think of containers as playing a role much like a video gaming console into which you
plug game cartridges. As shown in Figure 1-6, the gaming console provides a point of interface
for the game—a suite of services that lets the game be accessed by the user and allows the game
to interact with the user. The game cartridge needs to be concerned only with itself; it doesn’t
need to concern itself with how the game is displayed to the user, what sort of controller is
being used, or even if the household electricity is 120VAC or 220VAC. The console provides a
container that abstracts all of that stuff out for the game, allowing the game programmer to
focus solely on the game and not worry about the infrastructure.

11

12

CHAPTER 1 JAVA EE ESSENTIALS

® Game Console
Application Component

Server Container

Server Infrastructure

Figure 1-6. The container provides an environment for components and an interface between the
components and the services of the server.

If you've ever created an applet, you're already familiar with the concept of containers.
Most web browsers provide a container for applet components, as illustrated in Figure 1-7.
The browser’s container for applets provides an environment for the applet. The browser
and the container know how to interact with any applet because all applets implement the
java.applet.Applet class interface. When you develop applets, you are relieved of the burden
of interfacing with a web browser, and are free to spend your time and effort on the applet
logic. You do not need to be concerned with the issues associated with making your application
appear to be an integral part of the web browsers.

Java Applet

Java Runtime

Web Browser

Figure 1-7. Browsers don’t directly access applets. Instead, the applet runs in a container inside the
browser. The container provides an environment for the applet and acts as an interface between
the browser and the applet.

CHAPTER 1 JAVA EE ESSENTIALS

Java EE provides server-side containers for the same reason: To provide a well-defined
interface, along with a host of services that allow application developers to focus on the business
problems they’re trying to solve, without worrying about the plumbing and electricity.
Containers handle all of the mundane details involved with starting up services on the server
side, activating the application logic, and cleaning up the component.

Java EE and the Java platform provide containers for web components and business compo-
nents. These containers—like the gaming console analogy presented earlier in the chapter—
provide an environment and interface for components that conform to the container’s established
interfaces. The containers defined in Java EE include a container for Servlets, JSPs, and EJBs.

Java Servlets

You are no doubt familiar with accessing simple, static HTML pages using a browser that sends
arequest to a web server, which, in turn, sends back a web page that’s stored at the server, as
illustrated in Figure 1-8. In that role, the web server is simply being used as a virtual librarian
that returns a document based on a request.

/ request \

Workstation

T

Server

Reply

Figure 1-8. A web browser running on a workstation sends a request to a web server. The server
identifies the web page specified in the request and returns that web page to the browser.

That model of serving up static web pages doesn’t provide for dynamically generated
content, though. For example, suppose that the web client wants the server to return a list of
HTML documents based on some query criteria. In that case, some means of generating HTML
on the fly and returning it to the client is needed, as illustrated in Figure 1-9.

Servlets are one of the technologies developed to enhance servers. A Servlet is a Java
component implementing the javax.servlet.Servlet interface. It is invoked as a result of a
client request for that particular Servlet. The Servlet model is fairly generic and not necessarily
bound to the Web and HTTP, but all of the Servlets that you'll encounter will fall into that cate-
gory. The web server receives a request for a given Servlet in the form of an HTTP query. The
web server, in turn, invokes the Servlet and passes back the results to the requesting client. The
Servlet can be passed parameters from the requesting web client. The Servlet is free to perform
whatever computations it cares to, and returns results to the client in the form of HTML.

13

14 CHAPTER 1 JAVA EE ESSENTIALS
/ e \
Workstation
\ /Server
Reply Generated on the Fly

Figure 1-9. Web servers can be supplemented by other processes that perform data access or some other
processing. This other processing is then converted into an HTML web page and sent back to the client.
Thus, web servers that were designed to serve static content can be enhanced to provide dynamic content.

The Servlet itself is managed and invoked by the Java EE Servlet container. When the web
server receives the request for the Servlet, it notifies the Servlet container, which will load the
Servlet as necessary, and invoke the appropriate javax.servlet.Servlet interface service
method to satisfy the request.

Note Serviets were not the first technology designed to enhance web servers. One of the earlier solutions
is known as the Common Gateway Interface (CGl). CGI provided a means for a server to call an external
process that performed additional work for the server. If you’ve done any web application programming using
CGl, you'll be familiar with the limitations of that mechanism, including lack of portability (CGI programs were
often written in C) and no intrinsic support for session management (a much-overused example is the ability
to maintain a list of items in a virtual shopping cart). If you have not done any development using CGl, consider
yourself lucky and take our word for it—life with Java EE is a whole lot better!

Java Servlets are portable, and as you will see in later chapters, the Servlet containers provide
support for session management that allows you to write complex web-based applications.
Servlets can also incorporate JavaBean components (which share little more than a name with
Enterprise JavaBeans) that provide an additional degree of application compartmentalization.
Servlets are covered in detail in Chapter 6.

JavaServer Pages (JSPs)

JSPs, like Servlets, are concerned with dynamically generated web content. These two web
components—Servlets and JSPs—comprise a huge percentage of the content of real-world
Java EE applications.

Building Servlets involves building Java components that emit HTML. In a lot of cases, that
works out well. However, that approach isn’t very accessible for people who spend their time
on the visual side of building web applications and don’t necessarily care to know much about

CHAPTER 1 JAVA EE ESSENTIALS

software development. Enter JSP. JSP pages are HTML-based text documents with chunks of
Java code called scriptlets embedded into the HTML document.

When JSPs are deployed, something remarkable happens: The contents of the JSP are
rolled inside out, like a sock, and a Servlet is created based on the embedded tags and Java code
scriptlets, as shown in Figure 1-10. This happens pretty much invisibly. If you care to, you can
dig under the covers and see how it works (which makes learning about Servlets all the more
worthwhile).

15

JSP
Java
HTML
First request Java JSP is compiled
since application into a Servlet
was started HTML

Server

Servlet

All subsequent requests

Asks server
for JSP

Web Browser

Information Servlet
returned to generates
client as HTML HTML
| HTML

Figure 1-10. When a web server receives a request for a JSP, it passes the request to the JSP container
(not shown). If the JSP page has not been translated, the container translates the JSP into a Java
Servlet source file, and then compiles the source file into a class. The Servlet class is loaded and
the request is passed to the class. The Servlet processes the request and returns the result to the
client. All subsequent requests are routed directly to the Servlet class, without the need to translate
or compile again.

16

CHAPTER 1 JAVA EE ESSENTIALS

You may have had some exposure to JavaScript, which is a Java-like scripting language
that can be included within a web page, and is executed by the web browser when a page
containing JavaScript code is sent to the browser. JSP is a little like that, but the code is compiled
and executed at the server, and the resulting HTML is fed back to the requesting client. JSP
pages are lightweight and fast (after the initial compilation to the Servlet), and they provide a
lot of scalability for web-based applications.

Developers can create both static and dynamic content in a JSP page. Because content based
on HTML, XML, and so on forms the basis of a JSP page, a nontechnical person can create and
update that portion of a page. A more technical Java developer can create the snippets of Java code
that will interface with data sources, perform calculations, and so on—the dynamic stuff.

Since an executing JSP is a Servlet, JSP provides the same support for session management
as Servlets. JSPs can also load and call methods of JavaBean components, access server-based
data sources, or perform complex calculations at the server.

JSPs are introduced in detail in Chapter 3. Chapter 4 continues with more advanced
JSP concepts.

JavaServer Faces (JSF)

JSF is a relatively new technology that attempts to provide a robust, rich user interface for web
applications. JSF is used in conjunction with Servlets and JSPs.

When using just JSPs or Servlets to generate the presentation, your user interface is limited
to what can be implemented in HTML. HTML does provide a good set of user interface compo-
nents, such as lists, check boxes, radio buttons, fields, labels, and buttons. Alternatively, the
client might be implemented as an applet. Applets can provide a rich user interface, but they
do require the client to download and execute code in the browser.

The main drawback with both Servlet-generated HTML and applets is that the user inter-
face components still must be connected to the business logic. When using this solution, much
of your time as a developer will be spent retrieving and validating request parameters, and
passing those parameters to business logic components.

JSF provides a component-based API for building user interfaces. The components in JSF
are user interface components that can be easily put together to create a server-side user interface.
The JSF technology also makes it easy to connect the user interface components to application
data sources, and to connect client-generated events to event handlers on the server.

The JSF components handle all the complexity of managing the user interface, leaving the
developer free to concentrate on business logic. The flexibility comes from the fact the user
interface components do not directly generate any specific presentation code. Creating the
client presentation code is the job of custom renderers. With the correct renderer, the same
user interface components could be used to generate presentation code for any arbitrary
device. Thus, if the client’s device changed, you would simply configure your system to use a
renderer for the new client, without needing to change any of the JSF code. At the moment, the
most common presentation format is HTML, and JSF comes with a custom renderer to create
HTML user interfaces. JSF technology is covered in Chapter 5.

CHAPTER 1 JAVA EE ESSENTIALS

JDBC

If you've done anything at all on the Web other than simple surfing, you’ve probably used a
database. Of course, that database has been hidden behind a fancy user interface, but you've
used one nonetheless.

Have you searched for books or other products at www.amazon.com or www.costco.com or
any other online store? The information about the products for sale is kept in some kind of
database.

Have you searched for web sites on www.google . com or www.yahoo.com or any other search
engine? Information about web pages and the data in them is kept is some kind of database.

Have you looked for information about public laws (thomas.loc.gov), driving directions
(www.mapquest.com), or satellite imagery (www.terraserver.com)? This information is kept in
some kind of database.

The examples can go on and on. The point should be clear though: Almost any type of
nontrivial application will use a database of some kind. In the previous sentence, the term
databaseis used in its loosest most general meaning as a collection of some data. That database
could be anything from a text file of information for very simple applications to full-blown, enter-
prise-level relational or object databases for very complex systems. It could also include other
data-storage systems, such as directories.

Most Java EE applications will include some kind of data-storage solution. Most often, that
data-storage solution will be a relational database server of some kind. The database server
may be an integral part of the application server, or it may be an application separate from the
application server.

In any case, your application components need some means to communicate with the
data-storage system. That is the job of JDBC. JDBC is a set of common APIs and system-specific
libraries for communicating with a data-storage system. By communicating with the data-storage
system through the common APIs, you can concentrate on the data, without needing to learn
custom syntax for the particular data-storage system; that job is left to the system-specific library.

Most JDBC applications are used to communicate with a relational database. In a relational
database, data is stored, conceptually, in tables. Each row in a table represents a set of data—
a customer record, product information, a web site listing, and so on. And each column in
the table represents a piece of data in that set. Tables can be linked by creating a relation
between tables, thus it’s called a relational database. For example, a database might have a
table of customer information and a table of information about orders. It makes no sense to
repeat customer information for each order, so the orders table would include a customer ID
that corresponds to a similar piece of data in the customers table, thus relating every order to
a customer.

While JDBC is used most often with relational databases, it can be used with any data-storage
system, as long as someone has created a system-specific library for that data-storage system.
Using JDBC in Java EE applications is covered in Chapters 7 and 8.

17

18

CHAPTER 1 JAVA EE ESSENTIALS

EJBs

EJBs are to Java EE what Mickey Mouse is to Disney—they represent the flagship technology of
the platform. When Java EE is mentioned, EJBs are what immediately comes to mind. We
mentioned earlier that Java EE is a whole lot more than EJB, but we don’t mean to trivialize
EJBs; the attention that the technology gets is certainly merited.

In order to better understand what EJBs are and do, it helps to start out with Java’s Remote
Method Invocation (RMI). If you're not already familiar with RMI, or if you need a quick over-
view or a refresher, you may want to refer to http://java.sun.com/rmi.

RMI is Java’s native means of allowing a Java object to run on one computer and have
its methods called by another object running on a separate computer across a network. In
order to create a remote object with RMI, you first design an interface that extends the
java.rmi.Remote interface. This interface defines the operations that you want to expose on
your remote object. The next step is to design the remote object as a Java class that implements
the interface you've defined. This class extends the java.rmi.server.UnicastRemoteObject
class, which provides the necessary network communications between this object and the
objects that call it. Finally, you write an application that creates an instance of this class and
registers that instance with the RMI registry.

The RMI registry is a simple lookup service that provides a means to associate a name with
an object, analogous to the way a phone directory associates a name to a phone number. The
same registry service is used by the client application, which requests a named object from the
registry. Once it receives a local reference to the remote object, it can call the methods of the
object; however, rather than executing the method on the client’s computer, the method call is
passed across the network and executed on the machine where the remote object resides.

What RMI provides is a bare-bones client/server implementation. It provides the basic
stuff: a registry for lookup, the guts of network communication for invoking operations and
passing parameters to and from remote objects, and a basic mechanism for managing access
to system resources as a safeguard against malicious code running on a remote computer.

However, RMI is lightweight. It’s not designed to satisfy the requirements of enterprise-
class distributed applications. It lacks the essential infrastructure that enterprise-class applications
rely on, such as security, data access, transaction management, and scalability. While it supplies
base classes that provide networking, it doesn’t provide a framework for an application server
that hosts your server-side business components and scales along with your application. You
must write the client and the server applications. This is where EJBs come into the picture.

EJBs are Java components that implement business logic. This allows the business logic of
an application (or suite of applications) to be compartmentalized into EJBs and kept separate
from the front-end applications that use that business logic.

The Java EE architecture includes a server that is a container for EJBs. The EJB container
loads the bean as needed, invokes the exposed operations, applies security rules, and provides
the transaction support for the bean. If it sounds to you like the EJB container does a lot of
work, you're right—the container provides all of the necessary plumbing and wiring needed for
enterprise applications.

CHAPTER 1 JAVA EE ESSENTIALS

As you'll see in Chapter 9, building EJBs follows the same basic steps as creating an RMI
object. You create an interface that exposes the operations or services provided by the EJB. You
then create a class that implements the interface. When you deploy an EJB to an application
server, the EJB is associated with a name in a registry. Clients can look up the EJB in the registry,
and then remotely call the methods of the EJB. Since the EJB container provides all of the enter-
prise plumbing, you get to spend more time building your application and less time messing
around with trying to shoehorn in services like security and transaction support.

EJBs come in a few different flavors: session beans, entity beans, and message beans.
Session beans, as the name implies, live only as long as the conversation, or session, between
the client application and the bean lasts. The session bean’s primary reason for being is to
provide application services, defined and designed by the application developer, to client
applications. Depending on the design, a session bean may maintain state during the session
or may be stateless. With a stateful EJB, when a subsequent request comes from a client, the
values of the internal member variables have the same values they had when the previous
request ended, so that the EJB can maintain a conversation with the client. A stateless EJB
provides business rules through its exposed operations but doesn’t provide any sense of state;
that responsibility is delegated to the client.

Entity beans represent business objects—such as customers, invoices, and products—in
the application domain. These business objects are persisted so they can be stored and retrieved at
will. The Java EE architecture provides a lot of flexibility for the persistence model. You can
defer all of the work of storing and retrieving the bean’s state information to the container, as
shown in Figure 1-11. This is known as container-managed persistence.

Application EJB

EJB Container
) X

Container-managed
persistence—the EJB

. . allows the container

to handle all of the
details of data

Database access

Figure 1-11. In container-managed persistence, the EJB container is responsible for all actions
required to save the state of the EJB to some persistent store, usually a database.

Alternatively, the Java EE architecture allows you to have complete control over how the
EJB is persisted (which is very useful when you’re dealing with interfacing your Java EE system
to a legacy application!). This is known as bean-managed persistence and is illustrated in
Figure 1-12.

19

20

CHAPTER 1 JAVA EE ESSENTIALS

[T ——F—7 T]
] 1
IBM AS/400 Mainframe
A
‘\ Bean-managed
persistence—the
A EJB handles data

access
Application EJB

EJB Container

Figure 1-12. With bean-managed persistence, the developer must manage all aspects of persisting
the state of the EJB.

The third type of EJB, the message bean, provides a component model for services that
listen to Message Service messages, as illustrated in Figure 1-13. The Java EE platform includes
amessage queue that allows applications to post messages to a queue, as well as to subscribe to
queues that get messages. The advantage of this particular way of doing things is that the
sender and the receiver of the message don’t need to know anything about each other. They
need to know only about the message queue itself. This differs from a client/server model,
where a client must know the server so that it can make a connection and a specific request,
and the server sends the response directly to the client. One example of using a message queue
is an automated stock trading system. Stock prices are sent as messages to a message queue,
and components that are interested in stock prices consume those messages. With message-
driven EJBs, it is possible to create an EJB that responds to messages concerning stock prices
and makes automatic trading decisions based on those messages.

Message-Driven EJB

Message Message EJB Container
Queue

% S

Figure 1-13. A message queue allows senders and receivers of messages to remain unaware of each
other. Senders of messages can send the message to a queue, knowing that something will get the
message, but not knowing exactly what receives the message or when it will be received. Receivers
can subscribe to queues and get the messages they are interested in, without needing to know
who sent the message.

CHAPTER 1 JAVA EE ESSENTIALS

You will learn a lot about the ins and outs of using session and entity beans in Chapters 9
through 12. Your Java EE applications will typically be comprised of both session and entity
beans. Message beans are covered in Chapter 14. They're not used as frequently as the other
flavors in most applications, but they're still pretty darn cool!

XML Support

Extensible Markup Language (XML) is a significant cornerstone for building enterprise systems
that provide interoperability and are resilient in the face of changes. There are several key tech-
nologies in Java EE that rely on XML for configuration and integration with other services.

Java EE provides a number of APIs for developers working with XML. Java API for XML
Processing JAXP) provides support for generating and parsing XML with both the Document
Object Model (DOM), which is a tree-oriented model, and the Simple API for XML (SAX), which
is a stream-based, event-driven processing model.

The Java API for XML Binding (JAXB) provides support for mapping XML to and from Java
classes. It provides a compiler and a framework for performing the mapping, so you don’t need
to write custom code to perform those transformations.

The Java API for XML Registries (JAXR), Java API for XML Messaging JAXM), and Java API
for XML-based Remote Procedure Calls JAX-RPC) round out the XML API provisions. These
sets of APIs provide support for SOAP and web services (discussed in the following section).

This book assumes that you are familiar with XML basics. If you need a refresher on XML, you

might want to review the Sun Java XML tutorial at http://java.sun.com/xml/tutorial_intro.html.

Web Services

The World Wide Web is becoming an increasingly prevalent backbone of business applications.
The endpoints that provide web applications with server-side business rules are considered
web services. The World Wide Web Consortium (W3C), in an effort to unify how web services
are published, discovered, and accessed, has sought to provide more concrete definitions for
web services. Here’s a definition from the Web Services Architecture, Working Group Note 11
(Wwww.w3.0rg/TR/ws-arch):

A Web service is a software system designed to support interoperable machine-
to-machine interaction over a network. It has an interface described in a
machine-processable format (specifically WSDL). Other systems interact with
the Web service in a manner prescribed by its description using SOAP
messages, typically conveyed using HTTP with an XML serialization in
conjunction with other Web-related standards.

This definition contains some specific requirements:
¢ A web service allows one computer to request some service from another machine.

¢ Service descriptions are machine-processible.

* Systems access a service using XML messages sent over HTTP.

21

22

CHAPTER 1 JAVA EE ESSENTIALS

The W3C has established the Web Service Description Language (WSDL) as the XML format
that is used by web services to describe their services and how clients access those services. In
order to call those services, clients need to be able to get their hands on those definitions. XML
registries provide the ability to publish service descriptions, search for services, and obtain the
WSDL information describing the specifics of a given service.

There are a number of overlapping XML registry service specifications, including ebXML
and Universal Description, Discovery, and Integration (UDDI). The JAXR API provides an
implementation-independent API for accessing those XML registries.

Simple Object Access Protocol (SOAP) is the lingua franca used by web services and their
clients for invocation, parameter passing, and obtaining results. SOAP defines the XML message
standards and data mapping required for a client application to call a web service and pass it
parameters. The JAX-RPC API provides an easy-to-use developer interface that masks the
complex underlying plumbing.

Not surprisingly, the Java EE architecture provides a container that hosts web services,
and a component model for easily deploying web services. Chapters 15 and 16 in this book
cover SOAP and web services.

Transaction Support

One of the basic requirements of enterprise applications is the ability to allow multiple users of
multiple applications to simultaneously access shared databases and to absolutely ensure the
integrity of that data across those systems. Maintaining data consistency is no simple thing.

Suppose that your application was responsible for processing bank deposits, transfers,
and withdrawals. Your application is processing a transfer request from one account to another.
That process seems pretty straightforward: deduct the requested amount from one account
and add that same amount to the other account. Suppose, however, that immediately after
deducting the sum from the source account, something went horribly wrong—perhaps a server
failed or a network link was severed—and it became impossible to add the transfer to the target
account. At that point, the data’s integrity has been compromised (and worse yet, someone’s
money is now missing).

Transactions can help to address this sort of problem. A transaction represents a set of
activities that collectively will either succeed and be made permanent, or fail and be discarded.
In the situation of a bank account transfer, you could define the transaction boundaries to start
as the transfer amount is withdrawn from the source account, and end after the target account
is updated successfully. When the transaction had been made successfully, the changes are
committed. Any failure inside the transaction boundary would result in the changes being
rolled back and the account balances restored back to the original values that existed before
the start of the transaction.

Java EE—and the EJB in particular—provides substantial transaction support. The EJB
container provides built-in support for managing transactions, and allows the developer to
specify and modify transaction boundaries without changing code. Where more complex
transaction control is required, the EJB can take over the transaction control from the container
and perform fine-grained or highly customized transaction handling.

CHAPTER 1 JAVA EE ESSENTIALS

You'll find an introduction to transactions, in the context of database transactions with
JDBC, in Chapter 8.

Security

Security is a vital component in enterprise applications, and Java EE provides built-in security
mechanisms that are far more secure than homegrown security solutions that are typically
added as an afterthought.

Java EE allows application resources to be configured for anonymous access where security
isn’ta concern. Where there are system resources that need to be secured, however, it provides
authentication (making sure your users really are who they say they are) and authorization
(matching up users with the privileges they are granted).

Authorization in Java EE is based on roles of users of applications. You can classify the
roles of users who will be using your application, and authorize access to application compo-
nents based on those roles. Java EE provides support for declarative security that is specified
when the application is deployed, as well as programmatic security that allows you to build
fine-grained security into the Java code.

Note If you're interested in learning more about Java EE-specific security, refer to a book devoted to Java
security. One such book is Hacking Exposed J2EE & Java, by Art Taylor, Brian Buege, and Randy Layman
(Osborne/McGraw Hill, 2002; ISBN 0-07-222565-3).

Sample Java EE Architectures

There is no such thing as a single software architecture that fits all applications, but there are
some common architectural patterns that reappear frequently enough to merit attention.

As we explained earlier in the chapter, Java EE provides a platform that enables developers
to easily create n-tier (multitier) applications in a number of different configurations. The basic
n-tier architecture can have any number of components in each tier, and any combination
between tiers.

Here, we will briefly review some architectures that you're likely to run into as you examine
and develop Java EE-based systems. Each one of these has its own merits and strong points. We
present them here to illustrate that there are a number of ways to put together applications and
as a short “field guide” for identifying these architectures as you spot them in the wild.

Application Client with EJB

Figure 1-14 shows an architecture where an application client composes the presentation tier
and communicates with an EJB in the business tier.

The client application is built as a stand-alone (JFC/Swing or console) application. The
application relies on business rules implemented as EJBs running on a separate machine.

23

24 CHAPTER 1 JAVA EE ESSENTIALS

Java JFC or Console Application Presentation Tier
EJB Business Rules Tier
JDBC Data Access Tier

Figure 1-14. An application client can be implemented as a normal Java application based on
Swing or AWT, or even as a console application. The client communicates with EJBs in the
business tier.

JSP Client with EJB

Figure 1-15 shows an architecture based on JSPs. JSPs on the server interface with the business
layer in response to requests. The response is generated as a web page, which is sent to the
client’s web browser.

Web Browser Presentation Tier
JSP Web Tier
EJB Business Logic
JDBC Data Access Tier

Figure 1-15. In this architecture, the application client is a web page in a browser. The web page is
generated by a JSP that communicates with the business layer.

CHAPTER 1 JAVA EE ESSENTIALS

The client in this architecture is a web browser. JSPs access business rules and generate
content for the browser.

Applet Client with JSP and Database

Figure 1-16 shows an architecture similar to the one shown in Figure 1-15. In this case, the
client is a Java applet that resides entirely in the presentation tier and communicates with the
business layer. Although the business layer could be an EJB, as in the previous example, in this
example, the business layer is constructed from JSPs.

Web Browser/Applet Presentation Tier
JSP Business Logic Tier
JDBC Data Access Tier

Figure 1-16. An applet in the presentation layer can communicate over the network with JSPs
(or Servlets) in the business layer.

The Java applet is used within a web page to provide a more interactive, dynamic user
interface for the user. That applet accesses additional content from JSPs. Even though JSPs are
normally used to generate HTML web pages, a JSP could consist of only business logic. The
JSPs access data from a database using the JDBC APIL.

Web Services for Application Integration

Even though Java EE is Java-based, a web application architecture is not limited solely to Java
components. An obvious example is the data tier, where many enterprise-level databases are
implemented in a high-level language such as C or C++. Similarly, components in a tier can be
implemented in languages other than Java, as long as they provide a well-defined interface that
allows for interprocess communication. In the example shown in Figure 1-17, a client applica-
tion implemented in C# accesses data from a web service implemented in Java.

25

26 CHAPTER 1 JAVA EE ESSENTIALS

C# Application Presentation Tier
Web Service Web Tier
EJB Business Logic Tier
JDBC Data Access Tier

Figure 1-17. The web service interface provides a well-defined interface between clients and web
services. It allows clients to be implemented in any language that supports making HTTP
requests to a server. For example, clients written in C# can format a web service request, which
can be serviced by an EJB written in Java and running in a Java EE application server.

Summary

In this opening chapter, we provided an overview of Java EE and how all the various bits fit
together to enable you to create powerful business components. We first looked at what Java EE is
and tackled the obvious issue of moving from creating desktop applications with J2SE to
building enterprise-level applications and dynamic, data-driven web sites using Java EE. We
covered how the two relate to each other and how they differ from each other, as well as looking
at how applications are built using Java EE.

Java EE provides a platform for developing and deploying multitiered, distributed applications
that are designed to be maintainable, scalable, and portable. Just as an office building requires
alot of hidden infrastructure of plumbing, electricity, and telecommunications, large-scale
applications require a great deal of support infrastructure. This infrastructure includes database
access, transaction support, and security. Java EE provides that infrastructure and allows you
to focus on your applications.

Building distributed applications (software with components that run as separate processes,
or on separate computers) allows you to partition the software into layers of responsibility, or
tiers. Distributed applications are commonly partitioned into three primary tiers: presentation,
business rules, and data access. Partitioning applications into distinct tiers makes the software
more maintainable and provides opportunities for scaling up applications as the demand on
those applications increases.

Java EE architecture is based on the idea of building applications around multiple tiers of
responsibility. The application developer creates components, which are hosted by the Java EE
containers. Containers play a central theme in the Java EE architecture.

Servlets are one type of Java EE web component. They are Java classes that are hosted
within, and invoked by the Java EE server by requests made to, a web server. These Servlets
respond to those requests by dynamically generating HTML, which is then returned to the
requesting client.

CHAPTER 1 JAVA EE ESSENTIALS

JSPs are very similar in concept to Servlets, but differ in that the Java code is embedded
within an HTML document. The Java EE server then compiles that HTML document into a
Servlet, and that Servlet generates HTML in response to client requests.

JSF is a Java EE technology designed to create full and rich user interfaces. Standard user
interface components are created on the server and connected to business logic components.
Custom renderers take the components and create the actual user interface.

JDBC is a technology that enables an application to communicate with a data-storage
system. Most often that is a relational database that stores data in tables that are linked through
logical relations between tables. JDBC provides a common interface that allows you to communi-
cate with the database through a standard interface without needing to learn the syntax of a
particular database.

EJBs are the centerpiece of Java EE and are the component model for building the business
rules logic in a Java EE application. EJBs can be designed to maintain state during a conversation
with a client, or can be stateless. They can also be designed to be short-lived and ephemeral, or
can be persisted for later recall. EJBs can also be designed to listen to message queues and
respond to specific messages. Java EE is about a lot more than EJBs, although EJBs do play a
prominent role.

The Java EE platform provides a number of services beyond the component hosting of
Servlets, JSPs, and EJBs. Fundamental services include support for XML, web services, transac-
tions, and security.

Extensive support for XML is a core component of Java EE. Support for both document-based
and stream-based parsing of XML documents forms the foundation of XML support. Additional
APIs provide XML registry service, remote procedure call invocation via XML, and XML-based
messaging support.

Web services, which rely heavily on XML, provide support for describing, registering,
finding, and invoking object services over the Web. Java EE provides support for publishing
and accessing Java EE components as web services.

Transaction support is required in order to ensure data integrity for distributed database
systems. This allows complex, multiple-step updates to databases to be treated as a single step
with provisions to make the entire process committed upon success, or completely undone by
rolling back on a failure. Java EE provides intrinsic support for distributed database transactions.

Java EE provides configurable security to ensure that sensitive systems are afforded appro-
priate protection. Security is provided in the form of authentication and authorization.

After reading this chapter, you should know:

* Containers provide an environment and infrastructure for executing Java EE components.

* Servlets and JSPs provide server-side processing and are used to create the presentation
layer of a Java EE system.

* JSF provides user interface components that make it easy to create flexible user interfaces
and connect user interface widgets to business objects.

* JDBCisan interface to database systems that allows developers to easily read and persist
business data.

» EJBsrepresent business objects in a Java EE application. EJBs come in various categories,
including stateful session beans, stateless session beans, entity beans, and message-
driven beans.

27

28 CHAPTER 1 JAVA EE ESSENTIALS

» Java EE systems can be used to develop service-oriented architectures or web services
systems. A web service architecture is one that provides machine-to-machine services
over a network using a well-defined protocol.

¢ Some of the essential architectural patterns used in Java EE applications include an
application client with EJBs, a JSP client with EJBs, an applet client with JSPs and a data-
base, and web services used for application integration.

That's it for your first taste of how Java EE works and why it is so popular. In the next chapter,
you'll see the steps required to set up your environment and make it ready for developing
powerful Java EE applications.

CHAPTER 2

Getting Started

Since this is a book for developers by developers, you'll get the most out of the material
covered here by running the examples and experimenting. In this chapter, you'll make sure
thatyou’ve properly installed the JBoss application server and walk through the steps of setting
up the environment and writing a simple application. This is vital to ensuring that you don’t
encounter needless frustration as you work through the examples. You'll also get a taste of the
essential steps of creating a Java EE application, what those steps do, and why they’re needed.
Even if you already have your environment set up, it’s a good idea to read through the
development steps in this chapter not only to ensure that your environment is set up correctly,
but also to gain some essential insights into the fundamentals of building a Java EE application.
In this chapter, you will learn the following:

* The prerequisites for installing the JBoss application server
* How to configure your system to run enterprise Java applications

* How to construct, deploy, and run a simple JSP application

Note The installation files for the JBoss application server are available from the JBoss website
(www. jboss.org/products/jbossas/downloads). You'll need to download version 4.0.3 or higher
of the JBoss application server to get started using Java EE 5. To install and run the server, you'll also need
the J2SE SDK from the Sun website at http://java.sun.com. The URL for J2SE 5 SDK is http://
Jjava.sun.com/j2se/1.5.0/download. jsp.

Installing JBoss

Installing the JBoss application server couldn’t be much easier. As you saw in Chapter 1, the
JBoss application server is based on Java Platform, Standard Edition (J2SE), so you need to have
that installed before following the steps described in this chapter. Also, you'll need to ensure
that you have the Java Development Kit JDK) for J2SE 5 (or later) installed. If you have an

29

CHAPTER 2 GETTING STARTED

earlier JDK, you need to update it. If you're not certain which version of Standard Edition you
have, you can find out by opening a command prompt window and entering the following
command:

> java -version

Ifyou have installed the J2SE SDK correctly, a block of text will appear informing you of the
version number for your J2SE SDK installation (see Figure 2-1). You should install the correct
version of the J2SE SDK if this number isn’t 1.5.0 or higher.

YWINDOWS system32cmd.exe

C:\>java -version

java version "1.5.0"
Java(THM) 2 Runtime Environment, Standard Edition (build 1.5.0-b&4)
Java HotSpot(TH) Client UM (build 1.5.8-bB4, mixed mode, sharing)

Figure 2-1. Checking the J2SE SDK version number

Once you’ve checked that you have the correct software installed, installing JBoss is a
breeze. Simply decompress the JBoss archive you've downloaded to some memorable location
such as C:\jboss. Since you're a tough developer who wouldn’t even dream of using a GUI
installer, there are some steps you’ll need to take before continuing; you’ll need to extract the
files manually, and you'll need to create an environment variable called JB0SS_HOME before you
can successfully run the application server.

Note Environment variables are used by the Windows operating system as a shortcut to selected directories
on your system. You can set either user-specific environment variables or (provided you're logged in as a user
with administrative rights) systemwide environment variables. Once you set an environment variable for your
Java installation, you’ll find it much quicker and easier to compile and run your Java applications from the
command line, as you'll see shortly.

Once the installation is complete, it’s time to set up the environment variables you'll need
to run the examples in this book. You can check and set these from the ystem Properties dialog
box (see Figure 2-2). To access this dialog box, from the Control Panel choose the System applet.
Select the Advanced tab and click the Environment Variables button.

CHAPTER 2 GETTING STARTED

System Properties

| System Restaore || Automatic Updates || Remote |
General ” Computer Name H Hardware | Advanced

You mustbe logged on as an Administrator to make most of these changes.

System Properties x| Performance
Genelall Netwark \dennhcanonl Haldware| User Profiles Advanced | Visual effects, processor scheduling. memory usage, and virtual memory

Pertormance options control how applications use memary,
which affects the speed of your computer,

User Profiles

Performance Options.. Desktop settings related to your logon
- Enwironment Variabl -
@ Enviranment variables tell your computer where to find certain

types of information.

Startup and Recovery

Elionmeniiarbics System startup, system failure, and debugging information
r~ Startup and Recover
S et e
BB sndwhat to do f an snor causes your computer o stop
Startup and Recovery |_ Enviropment Variables J [Error Reporting]

0K | Cancel | Apply: I l oK H Cancel] Apply

Figure 2-2. System Properties dialog box in Windows 2000 (left) and Windows XP (right)

When you click the Environment Variables button, a dialog box appears that allows you to
check and set the values for environment variables (see Figure 2-3).

Figure 2-3. Checking and setting the environment variables

Make sure that the environment variables listed in Table 2-1 are set either in your local
user variables or in the system variables. If they don’t already appear in the list, you can add
them by clicking the New button. If they need to be modified, edit them by clicking the Edit
button. Click OK when you've finished.

31

32

CHAPTER 2 GETTING STARTED

Table 2-1. Environment Variable Descriptions

Variable Description

JAVA_HOME Contains the path to the directory where J2SE is installed (e.g., C:\j2sdk5).
JBOSS_HOME Contains the path to the directory where JBoss is installed (e.g., C:\jboss).
PATH Should include the path to the \bin directories of the J2SE SDK and JBoss

(e.g., C:\j2sdk5\bin;c:\JBoss\bin;...). You can alternatively use the
JAVA_HOME and JBOSS_HOME environment variables in your path to make things
a little simpler (e.g., $JAVA_HOME%\bin;%JBOSS_HOME%\bin;...).

Note that the system will search for executable files using the PATH variable, starting with the
directories that appear first in the path. To ensure that there aren’t other versions of the J2SE or
JBoss interfering on this machine, make sure that these new entries go at the front of the PATH
variable.

JBoss Installation Problems and Solutions

Table 2-2 outlines some possible problems you might encounter when running through the
previous steps to install JBoss, as well as their solutions.

Table 2-2. Installation Troubleshooting

Problem Solution

Java version is lower than 1.5 Obtain and install the latest version of the J2SE
SDK. You may want to uninstall the older version
before installing the newer version. (You don’t
have to, but unless you have a compelling reason
to keep the older version around, it’s just dead
weight.)

java -versionreturns the following message: =~ The J2SE SDK is not installed, or the JAVA_HOME

java’ is not recognized as an internal or environment variable does not include the path

external command, operable program or to the J2SE SDK installation directory. Check the

batch file. JAVA_HOME variable and correct the problem, or
reinstall the J2SE SDK.

Testing the JBoss Installation

If everything went according to plan, your system should be set up and ready to use. In this
section, we’ll walk through some quick tests to ensure that you're ready to run the code in
this book.

Starting the Server

The first step in verifying that your installation is working correctly is to start the JBoss server.
The server is launched from the command line (you can also create a shortcut to make this
process easier for you) using the following command (also shown in Figure 2-4):

CHAPTER 2 GETTING STARTED

>%3IBOSS_HOME%\bin\run -c all

e | CHMWINDOWS \system32' cmd.exe

C:\>%JBOSS_HOMEZ\bin\run -c all_

Figure 2-4. JBoss startup command

Once you've done this, you will see a large number of messages flash across the command
window. This will continue for a short time, until you arrive at a screen that looks much like
Figure 2-5.

“system32'cmd.exe - ¢tijboss'bin‘run -c all

,151 INFO [Configuration] processing association property references B
,151 INFO [Configuration] processing foreign key constraints
,151 INFO [Configuration] processing extends queue
,151 INFO [Configuration] processing collection mappings
,151 INFO [Configuration] processing association property references
,151 INFO [Configuration] processing foreign key constraints
,151 INFO [NamingHelper] JNDI InitialContext properties:{}
,151 INFO [SessionFactoryImpl] Checking © named queries
417 INFO [ProxyDeployer] no declared remote bindings
,433 INFO [ProxyDeployer] there is remote interfaces
,433 INFO [ProxyDeployer] default remote binding has jndiName of beans.
StockList
01:26:45,526 INFO [EJB3Deployer] Deployed: file:/C:/jboss/server/all/deploy/Sto)
ckListCmrApp.ejb3
01:26:45,714 INFO [TomcatDeployer] deploy, ctxPath=/jmx-conscle, warUrl=file:/C
:/jboss/server/all/deploy/jmx-console. war/
01:26:46,339 INFO [TomcatDeployer] deploy. ctxPath=/web-console, warUrl=file:/C|
:/jboss/server/all/deploy/management /web-console .war/
01:26:47,886 INFO [Httpl1Protocol] Starting Coyote HTTP/1.1 on http-0.0.0.0-808
0
01:26:48,542 INFO [ChannelSocket] JK2: ajpl13 listening on /0.0.0.0:8009
: 8,542 INFO [JkMain] Jk running ID=0 time=0/531 config=null
01:26:48,558 INFO [Seruver] JBoss (MX MicroKernel) [4.0.1spl (build: CUSTag=JBos
s_4_0_1_SP1 datez200502160314)] Started in 59s:31ms

Figure 2-5. Application server output

At this point, the JBoss server is started. Open a browser, and go to the following URL:
http://localhost:8080

The web browser should display the default JBoss web page, as shown in Figure 2-6.
Pat yourself on the back for a job well done. Let’s go shred a little code for a final test.

33

34

CHAPTER 2 GETTING STARTED

) Welcome to JBoss™ - Mozilla Firefox = |EI |£|
File Edit Wew Go Bookmarks Tools Help o 4

Qg i Eb i @ @ @ [0 http:/fAocainost:B080/ =l G [a

JBoss Online Resources

+ Getting started with JRoss 3.2 [PDF]
+ JBoss Wiki
+ JBoss forums

JBoss Management

+ Torncat status [full) [RML
+ IME Console
+ JBoss Web Console

Jeoss™ Application Server

| Done v

Figure 2-6. The JBoss default web page is displayed when the server first runs.

JBoss Server Installation Problem and Solution

Table 2-3 shows a potential problem you might come up against when running through the
previous steps to test your JBoss application server installation, as well as its solution.

Table 2-3. Startup Troubleshooting

Problem Solution

The web browser reports “Page cannot be Make certain that there aren’t any errors reported
displayed” when trying to open the URL when you start the JBoss server. If you see
http://localhost:8080 messages indicating that the server couldn’t start

because TCP ports were in use by other processes,
you may have either another web server using port
8080 or another instance of the JBoss server
running. Also, make certain that you've specified
the port 8080 in the URL (this is the default port
used by JBoss).

CHAPTER 2 GETTING STARTED 35

Compiling and Deploying a JSP Page

As a final test, we're going to walk through the process of creating and deploying a
JavaServer Pages (JSP) page. This procedure, which consists of the following steps, will confirm
that the Java EE server is working properly and give you your first taste of building, deploying,
and testing a Java EE application:

1.

Create a working directory. This will give you a sandbox where you can create and edit
the application files.

Create a text file for the JSP page. This will be a text file of HTML with snippets of Java
code, which will be compiled by the Java EE server into a Servlet.

Package the files you create into a Web Archive (WAR). The WAR is a JAR file that bundles
all of the application components into a single file for easy deployment.

Package the WAR into an Enterprise Archive (EAR), along with some deployment
instructions for the JBoss server.

Copy the EAR to the JBoss server deployment directory. Once this is done, the application
is available and ready to be run.

Test the application.

So, let’s get started!

Creating the Example Application

Here are the steps to follow to create the example application:

1.

Create a directory on your machine that will be your sandbox for this exercise. We'll use
C:\BJEE5\ChO2 in this example.

Create a new file called index. jsp in that directory using your favorite text editor. Here’s
the code for that file:

<%h--
file: index.jsp
desc: Test installation of Java EE SDK 5
--%>
<html>
<head>
<title>Hello World - test the Java EE SDK installation
</title>
</head>
<body>
<%
for (int i = 1; 1 < 5; i++)
{

%>

36

CHAPTER 2 GETTING STARTED

<h<%=1i%>>Hello World</h<%=i%>>

</body>
</html>

. Create a subdirectory called META-INF and in this directory create a file called

application.xml. This file contains settings used to identify your application and the
resources it depends on to JBoss, and to configure how users will access said resources.
Create this file with the following contents:

<?xml version="1.0"?>
<application>
<display-name>Hello Java EE World!</display-name>
<module>
<web>
<web-uri>web-app.war</web-uri>
<context-root>/hello</context-root>
</web>
</module>
</application>

4. You need to create a new WAR and EAR file. The WAR file will contain the web compo-

nents of the Java EE application, along with a descriptor or “table of contents” that
describes what is in the archive. Web applications frequently consist of many more files
than this simple application, and the WAR is a convenient means of bundling up all of
those files into a single file for deployment. Likewise, an EAR file is a collection of WAR
files, JAR files, and resources that are all meant to operate within the context of a single
application. To create these files, open a command-line window, change your current
directory to the folder you created for this example (e.g., cd\BJEE5\Ch02), and type the
following two commands:

>jar cf web-app.war index.jsp
>jar cf helloworld.ear web-app.war META-INF

. Copy the resultant EAR file, helloworld. ear, to your JBoss server deployment directory

(C:\jboss\server\all\deploy) and start JBoss from the command line with the command
shown in Figure 2-7.

. It's time to test your first JSP page. Start a web browser and open the following URL:

http://localhost:8080/hello

After a couple of seconds, you should see the web page shown in Figure 2-8.
Congratulations! Your first JSP page is a success.

CHAPTER 2

JBoss Bootstrap Environment
JBOSS_HOME: c:\jboss\bin\\..
JAVUA: C:\Program Files\Java\jdkl.5.0\bin\java

JAUA_OPTS: -Dprogram.name:=run.bat -Xms128m -Xmx512m

GETTING STARTED

1ol x|
=

CLASSPATH: C:\Program Files\Java\jdkl.5.0\1lib\tools.jar;c:\jboss\bin\\run.jar

01:25:48,761 INFO [Server] Starting JBoss (MX MicroKernel)...

01:25:48,776 INFO [Server] Release ID: JBoss [Z2ion] 4.0.1spl (build: CUSTag=JBo

ss_4_0_1_SP1 date=200502160314)
01:25:48,776 INFO [Server] Home Dir: C:\jboss
: 8,776 INFO [Server] Home URL: file:/C:/jboss/
8,776 INFO [Server] Library URL: file:/C:/jboss/lib/
8,776 INFO [Server] Patch URL: null
8,776 INFO [Server] Server Name: all
INFO [Server] Server Home Dir: C:\jboss\serveriall

L Hello World - test the J2EE SDK installation - Netscape

. File Edit View Go Bookmarks Tools Window Help

a @oo @ Q [http://localhost:8080/hello/ &3] (X Search | Cgo @

./ B, 4 Home 3 Radio Netscape ©4, Search | E3Bookmarks

) | % Hello World - test the J2EE SDK inst...] G

Hello World

Hello World
Hello World

Hello World

|§Qﬁ(ﬂ Done ﬂt‘ﬂfﬁ

Figure 2-8. Onscreen results for this chapter’s JSP example

37

38

CHAPTER 2 GETTING STARTED

Learning to Say “Hello”

The JSP file that you created is a text file that consists of HTML and embedded snippets of code.

Notice that in this file are tags with enclosed Java code, as we discussed in Chapter 1:

<%--
file: index.jsp
desc: Test installation of JBoss for Beginning Java EE 5
--%>
<html>
<head>
<title>Hello World - test the Java EE SDK installation
</title>
</head>
<body>
<%
for (int i = 1; 1 < 5; i++)
{
%>
<h<%=1%>>Hello World</h<%=1i%>>

</body>
</html>

When the JSP page is compiled into a Servlet, that Servlet code expands the JSP page’s
code snippets and HTML into code that writes HTML to an output stream:

out.write("\n\n");

out.write("<html>\n");

out.write("<head>\n");

out.write(" «<title>Hello World - test the Java EE SDK installation");

out.write(" </title>\n");

out.write("</head>\n");

out.write("<body>\n");

for (int i = 1; i < 5; i++)

{
out.write("\n ");
out.write("<h");
out.write(String.valueOf(i));
out.write(">Hello World");
out.write("</h");

out.write(String.valueOf(i));

out.write(">\n");

}

out.write("</body>\n");

out.write("</html>\n");

CHAPTER 2 GETTING STARTED 39

That code, when executed, will write the following HTML code to the stream that is sent
back to the requesting browser:

<html>

<head>
<title>Hello Hello World - test the Java EE SDK installation
</title>

</head>

<body>

<h1>Hello World</h1>
<h2>Hello World</h2>
<h3>Hello World</h3>
<h4>Hello World</h4>

</body>
</html>

That’s how the JSP code works. The process of packaging and deployment has a few more
steps. Let’s dig in a bit and see what’s happening.

To deploy a Java EE application to a server, it has to be bundled up into an archive (i.e., a
single file that packages up all the requisite files). The WAR has to contain the components
you've created for the application (the JSP file) as well as other (optional) support files. Those
support files include a deployment descriptor that tells the server what’s contained in the WAR
and how to run it, a manifest for the archive that acts as an application table of contents, and a
file containing deployment information specific to the JBoss server (see Figure 2-9).

Once those contents have been assembled into a WAR file, that WAR can then be deployed
to the Java EE server, or it can be repackaged inside an EAR. Packaging the WAR inside an EAR
allows logic that doesn’t necessarily belong inside the WAR file to coexist with the web application.

Once the archive has been copied to the server’s deployment directory, the server reads
the deployment descriptor to determine how to unbundle the contents. In the case of this
application, it sees that the EAR contains a WAR. Once it has extracted the JSP page you created
from the WAR file, it compiles that JSP page into a Servlet.

To run the application once it is deployed, you have to request the JSP page by requesting
a URL with your web browser. Notice that the URL consists of the protocol (http), the server
name (localhost), the root context of the application (hello), and the requested resource
(index.jsp), as shown in Figure 2-10.

40 CHAPTER 2 GETTING STARTED

R

Web Application
JSP Page Archive

(index.jsp) ——| (web-app.war)

R

Deployment
Descriptor I hello.ear
(application.xml)

Archive Table
of Contents
(manifest.mf)

Figure 2-9. The basic high-level model for the JSP example

(0o

- / .

Workstation Servlet Container
HTTP Request Server
(\4 Servlet Compiled
Web from JSP
Browser k <
< HTML Returned Java System Application Server

- J - J

O
Ay

Figure 2-10. The flow of execution for client requests from the JSP application

The server receives the incoming HTTP request and uses the deployment information to
invoke the appropriate Servlet in a Servlet container. The Servlet writes HTML to an output
stream, which is returned to the web browser by the server.

CHAPTER 2 GETTING STARTED

Application Creation Problems and Solutions

Table 2-4 lists some common problems you may encounter during application creation and
how to fix them.

Table 2-4. Deployment Troubleshooting

Problem Solution

The verifier reports errors. Carefully retrace your steps and ensure that you
followed the steps correctly as described in this
section.

When testing the JSP page, the web browser Make certain that there weren’t any errors

reports “Page cannot be displayed” when it reported when you started the Java EE server.

tries to open the URL http://localhost:8080. Ensure that you've specified the port 8080 in the
URL (this is the default port used by the Java EE

server).
When testing the JSP page, JBoss reports a Double-check the code in index. jsp. If you've
compilation error in the web browser. mistyped something, the server won’t be able to

compile the JSP page. The message in the web
browser should give you a hint about where
to look.

Summary

In this chapter, we described how to get the Java EE SDK installed and to verify that the instal-
lation was successful. You got your first taste of creating and running a Java EE application, and
you looked at some of the core concepts involved in building Java EE applications.

After reading this chapter, you should know:

» JavaServer Pages (JSP) consist of HTML with embedded snippets of Java code. AJSP page
is compiled into a Servlet by the Java EE server which, when executed, emits HTML back
to the requesting client.

* Web Archives (WARs) are deployment components that contain the web components
of a Java EE application. The WAR contains the components themselves (such as JSP
pages), and the deployment descriptor that defines the contents of the WAR. The WAR
can also contain server-specific deployment information.

» Enterprise Archives (EARs) make up high-level groupings of application components.
WAR files, JAR files, deployment instructions, and application resources can all be
encapsulated within an EAR file.

At this point in the book, you should now be familiar with the following procedures:
* How to install and configure the JBoss application server
* How to start and stop the JBoss server

* The essential steps of building a Java EE application:

41

42 CHAPTER 2 GETTING STARTED

1. Create the application components.
Bundle the components into an archive.
Verity the contents of the archive to catch problems before deploying.

Copy the archive to the JBoss server deployment directory.

o & 0 DN

Test the application.

If you’'ve been able to get through this chapter, you're more than ready to dive into more
detail. The next chapter will take you deeper into the details of JSP pages. You'll learn the essen-
tial structure of JSP pages and how to enable users to interact with your JSP pages.

CHAPTER 3

JavaServer Pages

In the previous chapters, you received a brief introduction to Java EE and got a chance to build
a very simple JSP page. In this chapter, we’ll start to take a much more detailed look at JSP.

JSP pages are components in a web or Java EE application that consist of HTML and Java
code. You might ask, “What’s so different about that? I've been putting JavaScript into my HTML
for years.” The difference is that JavaScript runs on the client, whereas the code in a JSP page
runs on the server. JavaScript can affect only the particular page in which it is embedded and
has access to only data within the client’s environment. Code in a JSP can access data across the
entire web application and can use server-side resources such as databases, directories, and other
application components.

As components in a Java EE application, JSP pages run on a server and respond to requests
from clients. These clients are usually users accessing the web application through a web
browser. The protocol used by clients to call the JSP pages in the Java EE application is HTTP—
the same protocol used by browsers to get HTML pages from a web server. In this chapter, we’ll
concentrate on the basics of creating JSP pages. We’'ll look at the underlying HTTP protocol in
Chapter 6.

In this chapter, you will learn:

* How to write a JSP page

* How to use directive, scripting, and action elements
* How to access the implicit objects of the page

* How servers translate and compile JSP pages

e How to handle errors and exceptions

* How to forward and include pages from a JSP page

Introduction to JSP

The JSP home page (http://java.sun.com/products/jsp/) says, “Web developers and designers
use JavaServer Pages technology to rapidly develop and easily maintain information-rich,
dynamic web pages that leverage existing business systems.”

43

44

CHAPTER 3 JAVASERVER PAGES

JSP pages can be rapidly developed and easily maintained because they are based on HTML
and XML. Documents with markup such as HTML are easy to understand, and there are many
automated tools for dealing with HTML and XML documents. JSP pages are dynamic because
they can contain Java code, which can process the request and tailor the response based on the
request. All the power of Java sits behind every JSP page.

AJSP page executes inside a JSP container. A container is a piece of software thatloads and
manages Java EE components—in this case, JSP pages. This container can be part of the web
server, or it can run separately from the web server. You were introduced to several different
containers in Chapter 2.

JSP Development

The process of developing a JSP page that can respond to client requests involves three main steps:

¢ Creation: The developer creates a JSP source file that contains HTML and embedded
Java code.

¢ Deployment: The JSP is installed into a server. This can be a full Java EE server or a
stand-alone JSP server.

* Translation and compilation: The JSP container translates the HTML and Java code into
aJava code source file. This file is then compiled into a Java class that is executed by the
server. The class file created from the JSP is known as the JSP page implementation class.

Note that the translation and compilation step can actually occur at any one of several
times, even though it’s listed last here. Because the JSP contains Java code, at some point, the
page is translated and compiled into a Java class. This can happen before the page is loaded to
a server, or it can happen at the time the client makes a request. You can translate and compile
the JSP prior to deployment, and deploy the class file directly. Compiling first allows you to
catch and fix syntax errors in your code prior to deployment. Alternatively, the JSP container
can compile the JSP when it is deployed to the server. Finally, the usual process is that when the
first request is made for the JSP, the server translates and compiles the JSP. This is known as
translation at request time.

Basic JSP Lifecycle

Once compilation is complete, the JSP lifecycle has these phases:

* Loading and instantiation: The server finds or creates the JSP page implementation
class for the JSP page and loads it into the JVM. After the class is loaded, the JVM creates
an instance of the class. This can occur immediately after loading, or it can occur when
the first request is made.

* Initialization: The JSP page object is initialized. If you need to execute code during
initialization, you can add a method to the page that will be called during initialization.

¢ Request processing: The page object responds to requests. Note that a single object
instance will process all requests. After performing its processing, a response is returned
to the client. The response consists solely of HTML tags or other data; none of the Java
source code is sent to the client.

CHAPTER 3 JAVASERVER PAGES

* End of life: The server stops sending requests to the JSP. After all current requests are
finished processing, any instances of the class are released. This usually occurs when the
server is being shut down, but can also occur at other times, such as when the server
needs to conserve resources, when it detects an updated JSP source file, or when it needs
to terminate the instance for other reasons. If you need code to execute and perform any
cleanup actions, you can implement a method that will be called before the class instance is
released, as discussed in the “Handling JSP Initialization and End of Life” section later in
this chapter.

In Chapter 6, you will see that the Servlet lifecycle is the same as the JSP lifecycle. This is
because the JSP is translated into a Servlet; the JSP page implementation class is a Servlet class.
Figure 3-1 shows the request processing phase of the JSP lifecycle.

JSP
Web JSP
Server Container
Translated
Into
Y
i Request Request Request
Client quest qu > quest JSPPage.
” 7| Implementation
Response Response Response Class
o 4 4
< Y N

Figure 3-1. A JSP source file is compiled into a JSP page implementation class. When the server
receives a request for the JSP, the request is sent to the container, which passes the request to the
correct JSP. The response follows the reverse path.

When a client sends a request for a JSP, the web server gives the request to the JSP container,
and the JSP container determines which JSP page implementation class should handle the
request. The JSP container then calls a method of the JSP page implementation class, which
processes the request and returns a response through the container and web server to the
client. In general, this process is referred to simply as “A request is sent to a JSP.”

JSP Elements

So, now that you've seen how JSP pages work, let’s look at what they contain, before we move
on to how you go about writing them. Take a look at the following line of JSP code:

<html><body><p>Hello, World!</p></body></html>

45

46

CHAPTER 3 JAVASERVER PAGES

Admittedly, this is not a very good JSP example. However, these HTML tags do form a
correct and valid JSP file. You could save this line in a file named HelloWorld. jsp and install it
into a web application, and the server would access it as a JSP resource. The point is that JSP
pages tend to look a lot like HTML pages.

The reason this example is not a very good one is that it isn’t dynamic in any way. If your
JSP pages don’t contain Java code, you might as well just make them static HTML pages. JSP
pages are intended to have dynamic behavior; they are supposed to change in response to
specific client requests. You give the page dynamic behavior by embedding Java code into the
page. You can think of JSP pages as web pages with bits of Java embedded in them.

However, you can’t just write Java code in the page wherever you want. You need some
way to tell the JSP translator which bits are code and which bits are regular HTML. To do this,
the JSP specification defines HTML-like or XML tags that enclose the code in the JSP. Those
tags come in three categories:

¢ Directive elements
¢ Scripting elements
e Action elements

The original JSP specification used tag formats for these elements that were not compat-
ible with XML, that is, they were not well-formed according to the XML specification. Starting
with the JSP 1.2 specification, alternative XML-compliant versions of all the tags were introduced.
The XML-compliant tags can be used only in a JSP page that conforms to the XML specification.
You will see both formats in this book, with the original style referred to as JSP style and the
newer style referred to as XML style.

Along with these tag elements, JSP pages can include comments and template data. Now
we will look at each of these page elements.

Directive Elements

Directive elements provide information to the JSP container about the page. Three directives
are available: page, include, and taglib. We will discuss page and include here, deferring
discussion of taglib to the next chapter. A single JSP page can have multiple instances of the
page and include directives.

Page Directives
The page directive is used to specify page attributes. The page directive’s JSP-style form is:

<%@ page attributes %>

The white space following <%@ and before %> is optional.
The page directive’s XML-style form is:

<jsp:directive.page attributes />

As with all HTML attributes, attributes must be name/value pairs, with an equal sign (=)
separating the name from the value and the value in quotes. You can find the complete list
of attributes and their meanings in the JSP specification, which you can download from
http://java.sun.com/products/jsp. Table 3-1 shows the attributes you are most likely to use
as you start developing JSP pages.

CHAPTER 3 JAVASERVER PAGES

Table 3-1. Common Page Directive Attributes

Attribute

Description

import

session

isThreadSafe

info

errorPage

iskrrorPage

contentType

pageEncoding

Lists the Java packages to be imported into the page. Just as with a Java
source file, the Java code embedded in a JSP page must import the pack-
ages of the classes used with the code. Multiple package statements are
delimited by commas; for example, import="java.io.*,java.util.*".

Whether the page participates in a session. The valid values are true or
false. The default value is true. If true, the page participates in a session;
if false, then it does not, and cannot access any session information.
Sessions are covered later in the chapter, in the “The session Object”
section.

Whether the container can pass requests concurrently to the page. The
valid values are true or false.The default is true. If true, the container
can use the JSP for multiple concurrent request threads. If false, the
container must pass the requests one at a time in order of receipt. Page
authors must also ensure that access to shared resources is properly
synchronized.

An arbitrary string. This can have any value. It is provided so that the JSP
can provide a management tool with information about its contents,
purpose, name, and so on.

The URL of the web page that should be sent to the client if an error occurs
in a page. The default URL is implementation-dependent. When you do not
provide a URL, the container can use its own default.

Whether the current page is an error page. The default is false.

Defines the content type of the page. The content type can appear as a simple
type specification, or as a type specification and a character set (charset).
The default value is text/html for JSP-style JSP tags and text/xml for XML-
style JSP tags. When including the charset, the syntax for the attribute is
contentType="text/html;charset=char_set identifier". White space
can follow the semicolon in the attribute value. Charsets indicate how
written characters are encoded, so that pages can support languages that
use different scripts. You can find information about charsets at http://
www.w3.0rg/TR/REC-html40/charset.html.

The charset of the current page. The default is ISO-8859-1 (Latin script) for
JSP-style and UTF-8 (an 8-bit Unicode encoding) for XML-style tags.

Include Directives

The include directive is used to include another page within the current page. The include
directive’s JSP-style form is:

<%@ include attributes %>

And its XML-style form is:

<jsp:directive.include attributes />

47

48

CHAPTER 3 JAVASERVER PAGES

You might typically include a standard header or footer with the include directive, but it
can actually be any content. You would use this when you have standard data that you want to
include in multiple JSP pages. The file that contains the standard data is included when the
page is translated into its Java form.

This directive has a single attribute named file. The file attribute specifies the name of
the file to be included at the current position in the file. The included file can be any HTML or
JSP page or fragment of a page. The file is specified using a URL to a file within the web appli-
cation; the path is relative to the JSP file.

Scripting Elements

The scripting elements are the elements in the page that include the Java code. There are three
subforms of this element: declarations, scriptlets, and expressions.

Declarations

A declaration is used to declare, and optionally define, a Java variable or a method. It works just
like any declaration within a Java source code file. The declaration element’s JSP-style form is:

<%! declaration %>
And its XML-style form is:
<jsp:declaration>declaration</jsp:declaration>

The declaration appears only within the translated JSP page, but not in the output to the
client. For example, to declare a Vector in your JSP, you would use one of these forms:

<%! Vector v = new Vector(); %>
<jsp:declaration>Vector v = new Vector();</jsp:declaration>

This JSP fragment declares a variable v of type Vector and initializes it by calling the Vector
constructor. Any variable you declare within a declaration element becomes an instance variable
of the JSP page implementation class, and therefore is global to the entire page. Thus, you must
take care when initializing variables with a declaration, because instance variables are not
thread-safe. By default, the server can send multiple requests to the same page simultaneously.
You don’t want one thread to change the variable while another thread is using the variable.

You can also declare and define methods within a declaration element, as in these examples:

<!

public int void countTokens(String s) {
StringTokenizer st = new StringTokenizer(s);
return st.countTokens();

}

%>

<jsp:declaration>

public int countTokens(String s) {
StringTokenizer st = new StringTokenizer(s);
return st.countTokens();

}

</jsp:declaration>

CHAPTER 3 JAVASERVER PAGES

Any method you declare within a declaration element becomes an instance method of the
JSP page implementation class, and thus it is global to the entire page. Variables or methods in a
declaration element can be called by any other code in the page.

Declarations, variables, and methods inside declaration elements must be valid Java
code; that is, they must conform to all Java syntax and semantic rules.

Scriptlets

Scriptlets contain Java code statements. The code in the scriptlet appears in the translated JSP,
but not in the output to the client. The scriptlet element’s JSP-style form is:

<% scriptlet code %>
And its XML-style form is:
<jsp:scriptlet>code fragment</jsp:scriptlet>

Any legal Java code statements can appear within a scriptlet. For example, to repeat the
phrase “Hello, World!” ten times in the output page, you could use this scriptlet:

<%

for (int i = 0; i < 10; i++) {
%>
Hello, World!

As in this code snippet, you can freely interleave Java code and HTML and/or text data.
Everything between the scriptlet markers (<% and %>) is script code; everything outside the
markers is template data, which is sent to the client as written. Notice that in this example, the
Java code block does not need to begin and end within the same scriptlet element. This allows
you complete freedom to mix Java code and HTML elements as needed within the page.

Note The scriptlet example shown here is relatively simple. As your application gets more complex and
involved, you’ll get more and more code mixed in with the HTML, and the page will tend to get complicated.
In the next chapter, you will see how tag libraries can give the same rich behavior as in this example, but using
only XML tags.

Since scriptlets can contain Java statements, the following is a legal scriptlet:
<%
Vector v = new Vector();

// More code...
%>

49

50 CHAPTER 3 JAVASERVER PAGES

This looks very similar to the code snippet in the declaration section you saw earlier, which
mightlead you to wonder what the difference between scriptlets and declarations is, since they
appear to be the same. Despite that seeming similarity, they are different in the following ways:

* Scriptlets cannot be used to define a method; only declarations can be used for that.

» Variables declared in a declaration are instance variables of the JSP page implementation
class. These variables are visible to all other code statements or methods in the page.

* Variables declared in a scriptlet are local to a method in the JSP page implementation
class. They are visible only within their defining code block.

Expressions

Expressions are used to output the value of a Java expression to the client. The expression
element’s JSP-style form is:

<%= expression %>
And its XML-style form is:
<Jjsp:expression>expression</jsp:expression>

For example, this code fragment in a JSP would result in the text, “The number of tokens in
this statement is 9.” being displayed in the browser:

The number of tokens in this statement is
<%= countTokens("The number of tokens in this statement is n") %>.

This code snippet calls the hypothetical countTokens(String) method that was shown
previously in the declaration element example. To count the number of tokens in the statement, a
literal copy of the statement is passed to the method. In this code snippet, the method call
returns an int value, which is printed to the client’s browser. Here is the same expression using
XML style:

The number of tokens in this statement is
<jsp:expression>

countTokens("The number of tokens in this statement is n")
</jsp:expression>.

Any legal Java expression can be used with an expression element. An expression could
contain a method call, as shown in the example, a literal expression such as 2 + 2, an expression
using Java variables or keywords such as v instanceof Vector, or any combination of these.
Notice also that because declarations and scriptlets contain Java code, the lines of Java code
must be terminated with a semicolon. Expressions, however, will not necessarily be legal code
statements (but they will be valid expressions), so they do not need a terminating semicolon.

Action Elements

Standard actions are defined by the JSP specification (which is one reason why they are called
standard). They look similar to HTML tags, but they cause the page to perform some action,

CHAPTER 3 JAVASERVER PAGES

hence the name. You can also create your own actions, which are known as custom actions. We
will look at standard actions here, and you will see how to create custom actions in Chapter 4.
The JSP 2.0 specification defines the following standard actions:

* <jsp:useBean>

* <jsp:setProperty>
* <jsp:getProperty>
* <jsp:param>

* <jsp:include>

* <jsp:forward>

* <jsp:plugin>

* <jsp:params>

* <jsp:fallback>

* <jsp:attribute>

* <jsp:body>

* <jsp:invoke>

* <jsp:doBody>

Note Aithough, here, we follow the specification syntax of using <jsp:action_name> to identify the
actions, the jsp prefix can be redefined in a tag library descriptor (TLD). As you will see in the next chapter,
you can also define your own actions that can be used in a JSP page. The next chapter will show how to set
the prefix for both standard actions and custom actions in a TLD.

In this section we will look at the <jsp:useBean>, <jsp:setProperty>, and <jsp:getProperty>
actions. Later in the chapter, in the “Including and Forwarding from JSP Pages” section, we will
cover the <jsp:include>, <jsp:forward>, and <jsp:param> actions.

The elements <jsp:attribute> and <jsp:body> are used with standard and custom actions.
The elements <jsp:invoke> and <jsp:doBody> are valid only in tag libraries. Custom actions
and tag libraries are covered in Chapter 4.

The <jsp:plugin>, <jsp:params>, and <jsp:fallback> elements are used to include applets
or JavaBeans in the HTML page generated by a JSP page. Using these over hand-coding the
HTML allows the server to create browser-specific HTML from the JSP tags. See the JSP speci-
fication for details about using these tags.

51

52

CHAPTER 3 JAVASERVER PAGES

The <jsp:useBean> Action

The <jsp:useBean> action element makes a JavaBean available to the page. A JavaBean (which
is not the same as an Enterprise JavaBean) is simply a Java class that follows certain requirements.
The following two requirements are important for our purposes:

¢ The JavaBean class has a no-argument constructor.

* Every property of the bean that is provided for client use has a method to set the value of
the parameter and a method to get the value of the parameter.

The getter and setter methods have this form:

public type getSomeParameter() { return someParameter; }
public boolean isSomeParameter() { return someBooleanParameter; }
public void setSomeParameter(type someParameter) {

// Set the parameter

}

The name of every setter and getter uses the name of the parameter, with the first letter
capitalized, appended to the token set, get, or is. The getter method has the form isXXX() for
boolean properties; for other properties, its form is getXxX ().

The <jsp:useBean> element has the attributes shown in Table 3-2.

Table 3-2. Attributes of the useBean Tag

Attribute Description

id The name used to access the bean in the rest of the page. It must be unique.
It is essentially the variable name that references the bean instance. When a
<Jjsp:useBean> action is used in a scriptless page, or in the body of an action
marked as scriptless, no Java scripting variables are created; instead, an
Expression Language variable is created. The next chapter covers Expression
Language in detail.

scope The scope of the bean. Valid values are page, request, session, or application.
The default is page. See the “JSP Scope” section later in this chapter for more
information.

class The fully qualified class name of the bean class.

beanname The name of a bean, as expected by the instantiate() method of the

java.beans.Beans class. Most often, you will use the class attribute,
rather than beanName. Refer to the JavaBeans specification at http://
java.sun.com/products/javabeans for details on how to supply a name
to the instantiate() method.

type The type to be used for the variable that references the bean. This follows Java
rules, so it can be the class of the bean, any parent class of the bean, or any interface
implemented by the bean or by a parent class.

CHAPTER 3 JAVASERVER PAGES

The <jsp:useBean> element causes the container to try to find an existing instance of the
object in the specified scope and with the specified id. If no object with the specified id is
found in that scope, and a class or bean name is specified, the container will try to create a new
instance of the object. You can use the class, beanName, and type attributes in these combinations:

* class: Creates an instance of the class that can be referred to by the given id.

* class, type: Creates an instance of the given class; the variable that refers to the bean will
have the given type.

* beanName, type: Creates an instance of the given bean; the variable that refers to the bean
will have the given type.

* type: If an object of the given type exists in the session, the id will refer to that object.

You must create a reference to a JavaBean using the <jsp:useBean> element before you can
use <jsp:setProperty> or <jsp:getProperty>.

The <jsp:setProperty> Action

The <jsp:setProperty> action element sets the property for a JavaBean. It has the attributes
shown in Table 3-3.

Table 3-3. Attributes of the setProperty Tag

Attribute

Description

name

property

param

value

The id of the bean as defined by the useBean action.

The name of the property whose value will be set. The property attribute can
explicitly name a property of the bean; in which case, the setXxX() method
for the property will be called. The value can also be "*"; in which case, the
JSP will read all the parameters that were sent by the browser with the client’s
request and set the properties in the bean that have the same names as the
parameters in the request.

The parameter name in the browser request whose value will be used to
set the property. Allows the JSP to match properties and parameters with
different names.

The value to assign to the property.

The name and property attributes are always required. The param and value elements are
mutually exclusive. If neither paramnor value is used, the jsp:setProperty element attempts to
use the request parameter with the same name as the property attribute. You will see how
request parameters are used later in this chapter, in Listing 3-9.

Suppose you have a JavaBean that holds information about a user of the system. This bean
might look like this:

53

54

CHAPTER 3 JAVASERVER PAGES

public class User {
private String id;
private String surname;
public void setId(String id) { this.id = id; }
public String getId() { return id; }
public void setSurname(String surname) { this.surname = surname; }
public String getSurname() { return surname; }

Here is one simple example of using the <jsp:setProperty> element with a literal value
and an expression:

<jsp:useBean id="userA" class="User" />
<jsp:setProperty name="userA" property="surname" value="Smith" />
<jsp:setProperty name="userA" property="id"

value="<%= validateId("86753") %>" />

After this code in the compiled JSP executes, the surname property of the instance of User
has a value of "Smith", and the id property has whatever value is returned by the hypothetical
validatelId() expression. The JSP translator takes the elements in the example and translates
them into code that creates an instance of the User class, and then calls the setSurname() and
setId() methods of the object.

The <jsp:getProperty> Action

The <jsp:getProperty> element retrieves the value of a property from a JavaBean. It has the
attributes shown in Table 3-4.

Table 3-4. Attributes of the getProperty Tag

Attribute Description
name The id of the bean
property The name of the property to get

The name and property attributes are always required. When used within a JSP, the value of
the property will be output as part of the response. Given the example in the previous section,
you could write template data (described in the next section) that uses <jsp:getProperty> like this:

The user with id <jsp:getProperty name="userA" property="id" />
has a surname of <jsp:getProperty name="userA" property="surname" />

When the JSP page is translated into Java code, this will result in calls to the getSurname()
and getId() methods of the object. The return values are then output with the template data to
the response, so that the client sees this in his browser:

The user with id 86753 has a surname of Smith

CHAPTER 3 JAVASERVER PAGES

Comments and Template Data

You can use standard HTML comments within the JSP, and those comments will appear in the
page received by the client browser. Standard HTML comments have this form:

<!-- This comment will appear in the client's browser -->
You can also include JSP-specific comments that use this syntax:
<%-- This comment will NOT appear in the client's browser --%>

JSP comments will not appear in the page output to the client.

Everything that is not a directive, declaration, scriptlet, expression, action element, or JSP
comment (usually all the HTML and text in the page) is termed template data. In other words,
template data is anything that the JSP translator is ignorant about. This data is output to the
client as if it had appeared within a static web page.

Creating and Deploying a JSP Web Application

Earlier, you saw an example of a JSP page that had no dynamic behavior. Now that you know
about the makeup of a JSP page, we can develop a dynamic example—a welcome page to an
application that manages a Frequently Asked Questions (FAQ) forum. We will go through the
code, and then see how to deploy the JSP application to the Java EE reference implementation
server and to a stand-alone Tomcat server.

Writing the JSP Web Application

Start by creating a directory structure to match the web application. If you are planning to
deploy this application to a stand-alone Tomcat server, you can create this directory directly in
the Tomcat /webapps directory. Figure 3-2 shows the directory structure with the files that will
be created.

- & Jsp_ExD1
-I-{z= WEB-INF
-z classes
=I-{&= com
-I-{&= apress
== faq
FagCategories.class
[FagCategories.java
errorPage.jsp
footer.jspf
web.xml
welcome.jsp

Figure 3-2. Directory structure for the first JSP example

As you go through the following steps and create each file, refer to this directory structure
in Figure 3-2 to determine where to save each file.

55

56

CHAPTER 3 JAVASERVER PAGES

Listing 3-1 is the welcome. jsp file. This is the first page that will be accessed by a user of the
web application.

Listing 3-1. welcome.jsp

<%@ page errorPage="/WEB-INF/errorPage.jsp"
import="java.util.Iterator,com.apress.faq.FaqCategories" %>

<html>
<head>
<title>Java FAQ Welcome Page</title>
</head>

<body>
<h1>Java FAQ Welcome Page</h1>
Welcome to the Java FAQ

<%! FaqCategories faqs = new FaqCategories(); %>
Click a link below for answers to the given topic.
<%
Iterator categories = fags.getAllCategories();
while (categories.hasNext()) {
String category = (String) categories.next();
%>
<p>
<a href="<%= replaceUnderscore(category) %>.jsp"><%= category %>
</ax</p>

<%@ include file="/WEB-INF/footer.jspf" %>
</body>
</html>

<%!
public String replaceUnderscore(String s) {
return s.replace(' ',' ');

%>

The welcome. jsp page has a JSP include directive to add a standard footer. Because the
include file is just a fragment and not a complete JSP file, we use the convention of naming the
file with a . jspf extension, as recommended by the JSP specification. Listing 3-2 shows the
footer. jspf file.

CHAPTER 3 JAVASERVER PAGES

Listing 3-2. footer.jspf

<hr>
Page generated on <%= (new java.util.Date()).toString() %>

With this simple example, we don’t expect any errors to occur. In the unlikely event that
one does occur, Listing 3-3 shows an error page that can be served to the client.

Listing 3-3. errorPage.jsp

<%@ page isErrorPage="true" import="java.io.PrintWriter" %>

<html>
<head>
<title>Error</title>
</head>
<body>
<h1>Error</h1>
There was an error somewhere.
<%@ include file="/WEB-INF/footer.jspf" %>
</body>
</html>

And finally, Listing 3-4 shows the helper file that will be used by welcome. jsp,
FagCategories.java. After entering the source, compile the file into a class file.

Listing 3-4. FaqCategories.java

package com.apress.faq;

import java.util.Iterator;
import java.util.Vector;

public class FaqCategories {
private Vector categories = new Vector();

public FagCategories() {
categories.add("Dates and Times");
categories.add("Strings and StringBuffers");
categories.add("Threading");

}

public Iterator getAllCategories() {
return categories.iterator();

}

}

57

58

CHAPTER 3 JAVASERVER PAGES

The welcome. jsp file (Listing 3-1) demonstrates many of the features that have been intro-
duced in this chapter so far. It begins with the page directive:

<%@ page errorPage="/WEB-INF/errorPage.jsp"
import="java.util.Iterator, com.apress.faq.FaqCategories" %>

This directive has two attributes. First, an errorPage is defined, to which the browser will be
redirected if an error occurs on the welcome. jsp page. The other attribute used with the page
directive is the import. The page imports two Java classes: the Iterator class from the Java API
and the FaqCategories class that is part of this application.

Note that the page can also use this syntax for the import:

<%@ page errorPage="/WEB-INF/errorPage.jsp"
import="java.util.*, com.apress.faq.*" %>

This is followed by some straight HTML. Further down in the page is a declaration
scripting element:

<%! FaqCategories faqs = new FaqCategories(); %>

This element declares a variable called fags and initializes it by calling the constructor of the
FaqCategories helper class. You can see that declaration elements must follow Java coding
rules, including the use of a semicolon to terminate the statement.

The next JSP element in the page is a scriptlet:

<%
Iterator categories = fags.getAllCategories();
while (categories.hasNext()) {
String category = (String)categories.next();

<p><a href="/<%= replaceUnderscore(category) %>"><%= category %></p>

This scriptlet gets an Iterator from the FaqCategories instance. This Iterator is used to loop
through each of the categories defined in the FaqCategories class. Each category is loaded into
a String variable called category, and this is used to create an HTML link. Each category is
printed twice using expression elements: first within the href attribute of the <a> tag to set the
page that the link refers to, and then within the body of the link. The first expression element
calls the replaceUnderscore() method (defined later in the page) and prints the result; the other
expression element simply prints the category value.

Notice that with the scriptlet, you must use Java syntax. However, within an expression
element, you need to use only the expression itself, without a semicolon to end the statement.

At the bottom of the page, an include directive includes a standard footer:

<%@ include file="/WEB-INF/footer.jspf" %>

CHAPTER 3 JAVASERVER PAGES

The last thing in the file is another declaration element:

<!
public String replaceUnderscore(String s) {
return s.replace(' ',' ');

}
%>

This element declares the replaceUnderscore() method, which replaces the spaces in a string
with underscores. It was called by the scriptlet earlier in the file.

The next file is footer.jspf (Listing 3-2). You can see that this is not a complete JSP file.
This file uses an expression element to print the current date and time at the server when the
page is served to the user. The file uses the extension . jspf, as recommended by the JSP spec-
ification, to indicate that this file is a fragment. Also, because it is a fragment and is not meant
to be publicly available, we put the file into the WEB- INF directory. Files in this directory are not
publicly available. This means that you cannot enter an address into a browser to access this
file. Only code within the application can access files within the WEB-INF directory.

The errorPage. jsp file (Listing 3-3) is meant to be used when an uncaught exception
occurs in the welcome. jsp page. Itincludes the standard footer. However, assuming everything
in the welcome. jsp page is correct, it will not be called in this application. This page is not meant
to be publicly available, so it also resides in the WEB- INF directory. Also, since errorPage.jsp
is an error page, the isErrorPage attribute of the page directive is set to true. Apart from
that directive, this page contains just straight HTML and an include directive to include the
footer. jspf file.

The final source file is FagCategories. java (Listing 3-4). This is a helper class that supplies
three categories to the welcome. jsp page. In a real-world application, the categories would
come from some persistent store such as a database or a directory. For this example, the helper
class hard-codes the categories for welcome. jsp. The categories are stored in a Vector object,
which is an instance member of the class. In the class constructor, the hard-coded categories
are added to this Vector. Finally, the class defines a getAl1Categories() method, which simply
returns the Iterator for the Vector. The JSP page uses this Iterator to loop through each of the
categories in turn.

That finishes the code for the application, but before it can actually be accessed by clients,
it must be deployed to an application server. We’ll look at two application servers in this chapter:
the reference implementation server that comes with the Java EE SDK, and the stand-alone
Tomcat server. First, let’s see how to deploy the application with the Java EE server.

Deploying the Web Application in Java EE

Here are the steps for deploying the sample JSP web application in Java EE:

1. Ensure the Sun Application Server is running, and then start up the Sun Java EE
Deployment Tool (introduced in Chapter 2).

2. Select File » New » Web Component from the menu to create a new web component.
This will start the New Web Application Wizard, as shown in Figure 3-3.

59

60

CHAPTER 3 JAVASERVER PAGES

W

X

This wizard will help you to create a new web component. You must hegin with a servlet class, a JSP file, ar a
weh service endpaint. The wizard will then package the selected files into a Weh ARchive (WWAR) file and will
create the deployment descriptor required.

Creating this web component requires the fallowing steps:

Selectthe WAR file to contain the component
|dentify the servlet class, JSP file orweb service endpoint

@ Skip this Screen in the Future

* Required Help.... Cancel et =

Figure 3-3. The opening screen of the New Web Application Wizard. You can check the Skip this
Screen in the Future box at the bottom of the dialog box to skip this screen the next time you run
the wizard.

3. Click the Next button to advance to the first step of the wizard, shown in Figure 3-4.
Click the Edit Contents button in the Contents panel and add the application files to the
web archive (WAR): FaqCategories.class, errorPage. jsp, footer. jspf, and welcome. jsp.
Make sure that the errorPage. jsp and footer. jspf files appear in the correct location
underneath the WEB- INF directory. If they do not, you can drag-and-drop them into the
correct location. Note that the wizard will create several files for you, including the
deployment descriptor, web.xml. You do not need to add web.xml to the application.

CHAPTER 3 JAVASERVER PAGES 61

AWAR module (tveb Application ARchive) is required to contain this web caompaonent.
Selectthe location and name of the YWAR to be used.
Then click the Edit button and add the desired content files {e.q. servlets "class’ JSF pages 'jsp', and “himl' pages) to its
contents.
AR Location® AR Marming®
(@) Create New Stand-Slone WSR Module
() Creste Mew YWAR Madule in Application AR Location:
| = | |EE\ThlrdEdrtlon\ChDSUsp_Exm .War|| Erowse. ..
AR Marme:
(2 Add to Existing WAR Module | Jsp_Exil |
| el

Context Root (Sun-specific):

Contents:

@ [WEB-INF
& [classes
& in
o Ij tags
& [wsdl
D errorPage jsp

D footer jspf Edit Cortents..

D sun-ji2ee-ri project

D ek il
D sun-weeh xml
D weelcame jsp
| Sun-specific Settings... | | Advanced Settings... | | D Description. .. | | lcons.... |
* Required | Help... | | Cancel | | = Back || et = | | Finizh |

Figure 3-4. The first page of the wizard is used to add files to the web component and name the
web component.

4. Inthe WAR Naming section of the first wizard step, select alocation for the WAR file and
aname for the file. In Figure 3-4, you can see that we selected Jsp_Ex01, for JSP Example 01,
as the WAR name on our system, which is the name we will refer to here. Click the Next
button.

5. At the next wizard step, shown in Figure 3-5, select the JSP Page radio button and click
the Next button.

62

CHAPTER 3 JAVASERVER PAGES

W

* Required

X

Ifyou want to define campanent-level settings {i.e initialization parameters, aliases, ar security settings) you will need to

uniguely define the weh component. Ifyou da not need to define these settings, you can choose Mo Component' and only
define settings at the web application level.

Fleaze chooze the type of web component you are creating:
(@) ISP Page

) Serviet

) Wigh Services Endpoint

) N Componert

| Help.... | | Cancel | | = Back || et = |

Figure 3-5. The Choose Component Type dialog box allows you to select which type of component
is being created.

6. The next page of the wizard is the Component General Properties dialog box. In the JSP
Filename drop-down box, select /welcome. jsp as the JSP to define, as shown in Figure 3-6.

The Web Component Name and Web Component Display Name fields will be filled in
automatically. Click the Finish button.

Flease choose the JSF file or servlet class and pravide a name far it
Qptionally, you can define the relative pasition in which this component will be loaded when the web application is started.
ou can also pravide a description and icons for the component.
JSP Filename:*
Movelcome jsp - |
‘Wb Component Mamme:*
...... " |Welcome |
‘Weh Component Display Mame:
|Welcome |
Startup load sequence position:
i |L0ad at any time | - |
] De=cription... |
leans... |
* Required | Help... | | Cancel | | = Back || et = | | Finizh |

Figure 3-6. The Component General Properties dialog box allows you to select which JSP is being

configured. If your application has multiple JSPs, you can rerun the wizard multiple times and
select a different JSP each time.

CHAPTER 3 JAVASERVER PAGES

7. The wizard will close and return you to the Deployment Tool. Select the WAR file (Jsp_Ex01
in this example) in the left pane. Select the File Refs tab in the right pane. Click the Add
button for Welcome files to add an entry for a Welcome File. Enter the name welcome. jspin
the Welcome Files field, as shown in Figure 3-7.

CEX

File Edt Toolz Help

Bl ERKY IR H@ % Beee s
@ |j Files Resource Env. Ref's r Resource Ref's r Security r Wigh Services r Wigh Service Ref's |
9 CdwebwaRs Filter Mapping r JSP Properties r Mezsage Destinations r Mzg Dest Ref's |
¢ @ sspExt i General r Context r EJB Ref's r Erve. Ertries r Event Listeners r File Ref's |
welzorme H

& [servers e ol I o — S —————————
localhost: 4545 .Welcome.jsp I

|

|

Figure 3-7. Creating a welcome file list ensures that users will always see a valid web page, rather
than a directory listing, when they access the web component.

8. Save the WAR file.

9. Select Tools » Deploy from the menu. The Deployment Tool allows you to select the
server to which the web application is deployed. Most likely, you are deploying to the
localhost and will not have any other servers. You may also need to enter the admin
username and password for the server (we hope you wrote those down when you
installed the Java EE server).

10. When you are ready, click the OK button. The Deployment Tool will deploy your web
application. The Deployment Tool displays the results of the deployment in a new window.

11. When the tool is finished deploying the web component, open a browser window. Enter
the appropriate address to run the application, such as http://localhost:8080/3sp_Ex01.
The welcome. jsp page will load, as shown in Figure 3-8.

Note If the welcome page does not display, first check that the server is running. If it is, you should get a
valid page when you type the default URL, usually http://localhost:8080. If the server is running, you
could have a translation or compilation problem. After we look at how to deploy the web components to
Tomcat, we’'ll look at how to deal with translation or compilation problems.

64

CHAPTER 3 JAVASERVER PAGES

A EEX
. Fle Edt View Favorites Took Help "
- Address €] http:/flocalhost:8080/Jsp_Ex01/ v | gd Go

Java FAQ Welcome Page

Welcome to the Java FAQ Click a link below for answers to the given topic.

Dates and Times

Strings and StringBuffers

Threading

Page generated on Fri Feb 11 12:26:23 MST 2005

&) Done &J Local intranet

Figure 3-8. The welcome.jsp page in a browser window

The address and port you use in the web browser depend on where the server is located
and which port it uses to listen for HTTP requests. If you installed the Java EE server to the same
machine as the web browser, then you can access it using localhost, or you can use the local-
host IP address 127.0.0.1 or the actual IP address of the machine. The default HTTP port for the
Java EE reference implementation is 8080, so if you kept the default port setting during instal-
lation (and named your WAR file Jsp_Ex01), you will access the web application using the URL
http://localhost:8080/Jsp_ Ex01. If, however, you installed the Java EE server to a different
machine, or selected a different port for the server to listen for HTTP requests, you will need to
change the URL to use the name or IP address of that machine and the correct port for the server.

Deploying the Web Application in Tomcat

Deploying applications to a stand-alone Tomcat server is easy, but it does require you to write
a special XML file, known as a deployment descriptor. This file is also required by the Java EE
server, but the Deployment Tool creates it for you, so you don’t need to write it by hand.

Tip For details on how to use Tomcat, check out Pro Jakarta Tomcat 5, by Matthew Moodie (Apress, 2004;
ISBN 1-59059-331-6).

Deployment descriptors are XML files that contain configuration information about
the entire web application. Deployment descriptors are covered in more detail in Chapter 6.
Listing 3-5 is the deployment descriptor for our Java FAQ application. This file is called web . xm1
and is placed in the application’s WEB-INF directory.

CHAPTER 3 JAVASERVER PAGES

Listing 3-5. web.xml for Java FAQ Web Component

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app 2 5.xsd">
<display-name>Jsp Ex01</display-name>
<servlet>
<display-name>welcome</display-name>
<servlet-name>welcome</servlet-name>
<jsp-file>/welcome.jsp</jsp-file>
</servlet>
<welcome-file-list>
<welcome-file>welcome.jsp</welcome-file>
</welcome-file-list>
</web-app>

If the Java EE server is running, shut it down and start the Tomcat server. If you created the
directory structure shown in Figure 3-2 earlier in the chapter within the Tomcat /webapps
directory, then you are finished. If the application directory is not under the Tomcat /webapps
directory, you can simply copy the directory structure to Tomcat /webapps. Alternatively, you
can navigate to the top-level directory of the web application (for example, if the highest directory
of the application is /Jsp_Ex01, you would navigate into that directory), create the web archive
(WAR) file manually using the command jar cf Jsp_Ex01.war *, and then copy the .war file to
the Tomcat /webapps directory.

Open a browser window and enter the appropriate address, such as http://localhost:8080/
Jsp_Ex01. The welcome. jsp file will load, as shown earlier in Figure 3-8.

Note If the welcome page does not display, first check that the server is running. If it is, you should get a
valid page when you type the default URL, usually http://localhost:8080. If the server is running, you
could have a translation or compilation problem. The next section talks about how to handle translation or
compilation problems.

Since you'll need to write a deployment descriptor for any web applications you want to
deploy to a stand-alone Tomcat server, let’s take a moment to look at the web. xml file in this
example. The file begins with the standard XML declaration and the root element <web-app>,
which includes attributes for the schema declarations, which you can use for any JSP deploy-
ment descriptors.

65

66

CHAPTER 3 JAVASERVER PAGES

<?xml version="1.0" encoding="UTF-8"?>

<web-app version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app 2 5.xsd">

Next comes the XML content of the file. There are three elements in this descriptor: a
display-name element, a servlet element that provides information about the JSP, and the
welcome-file-1list element.

<display-name>Jsp_Ex01</display-name>

<servlet>
<display-name>welcome</display-name>
<servlet-name>welcome</servlet-name>
<jsp-file>/welcome.jsp</jsp-file>

</servlet>

<welcome-file-list>
<welcome-file>welcome.jsp</welcome-file>

</welcome-file-list>

</web-app>

The display-name element allows you to provide a user-friendly name for your web appli-
cation. This name can be displayed by web application tools. For example, Tomcat has a
management tool that you can link to from the main Tomcat page (http://localhost:8080/).
If you access the management page, it will list all the deployed web components in the server
using the display name to identify the web components. The Sun Java EE server has a management
page that you can access at http://localhost:4848. Figure 3-9 shows this page, where the
display name from the deployment descriptor is used as the web application name.

The servlet element provides information about any JSPs or Servlets that are part of the
web application. As you will see later in this chapter, JSP source files are translated into Servlet
files, and the JSP page implementation class is a Servlet, which is why the element is named
servlet, rather than JSP.

The final element is welcome-file-1ist. This element lists the files that will be served to
any client that simply enters the application context from a browser, rather than identifying a
specific resource in the application. These files are referred to as welcome files. For example, an
address like http://localhost:8080/Jsp_Ex01 does not reference any resource within the web
component. Anyone who enters a URL like this will be served a welcome file from the list. If
multiple files are listed in the welcome file list, the server will respond with the first file that it
finds in the welcome file list.

Note we will cover specific elements of the deployment descriptor as they are used, but will wait to look
at deployment descriptors in more detail in Chapter 6. You can also find more information about deployment
descriptors in the documentation for Tomcat, as well as in the JSP and Servlet specifications.

CHAPTER 3 JAVASERVER PAGES

a 0O
. Fle Edt View Favorites Took Help "
E.ﬁ.jclress &) http://localhost:4848/admingui/ TopFrameset v | ld Go
| Home | version | | Upgrade | Registration | Logout | Help |
/ Application Server Admin Console @Sﬁ]

y User: admin Server: localhost

~

Application Server Application Server = Applications = \Web Applications

¢ C3 Applications

N . .

O3 Enterprise Applications Web Applications
o 3 Web Applications Use this page to manage Web applications.
3 EJB Modules
3 Connector Modules
3 Lifecycle Modules
. Application Context

O3 App Client Modules <~ Name ~ Enabled -~ Root A

? %P Resources O Jsp_Ex01 true Jsp_Ex01 Launch

o JDBC
@,, Fersistence Managers
o & UMS Resources
= JavaMail Sessions 3

Figure 3-9. The Web Applications page in the Sun Application Server management tool shows the
web applications that have been deployed to the server. The display name field in the deployment
descriptor is used to populate the Application Name field in the page.

When you loaded the welcome page, you probably saw that the links in that page do not
reference actual resources within the application. If you clicked one of the links, you probably
received an HTTP 404 error in the browser. You did not see the error page, because the problem
was a resource not found on the server, not an uncaught exception in the page.

Caution Starting with the Servlet 2.4 specification, elements in the deployment descriptor can occur in
any order. For example, if you take the deployment descriptor in Listing 3-5, and move the welcome-file-1ist
element to be the first element in the file, the web application will still work properly. However, in earlier
Servlet and JSP specification versions, the elements in the deployment descriptor had to follow a particular
order specified by a Document Type Definition (DTD) (JSP 1.2 and earlier) or an XML Schema (JSP 2.0), or the
server would not start the application. If your server supports only Servlet 2.3 or JSP 2.0 (or earlier versions),
you will need to check the specification for the correct order of deployment descriptor elements.

To actually deploy the application to Tomcat, you need to copy the files to Tomcat’s
/webapps directory. If you don’t want to store the application’s files directly in this directory,
you can deploy the application by packaging all the files into a WAR file.

67

68

CHAPTER 3 JAVASERVER PAGES

The WAR file is a convenient way to package all the files and components that make up a
web application into one archive. All JSP containers know how to read and deploy web appli-
cations from the WAR file. Thus, deploying a web application can be as simple as creating the
archive with the correct application directory structure and putting it into the correct directory
location for the container. The directory structure of the web application, and thus the WAR, is
defined in the Servlet specification. Likewise, the deployment descriptor is defined by the spec-
ification. When you use a tool like the Sun Java EE Deployment Tool, it takes care of creating the
correct directory structure and deployment descriptor for you. When you’re deploying to a
stand-alone server like Tomcat, you need to handle these manually.

In general, the structure of your application will look like this:

app_context/
public web resources
WEB-INF/
web . xml
tlds/
tld files
lib/
archives used by application
classes/
class files used in application

The directory at the top of the structure defines the web application context. The applica-
tion context provides a separation between different web applications. Under the application
context directory are the public files of the application. These will generally include the HTML
and JSP pages of the application. Under the application context is the WEB-INF directory. This
directory contains the deployment descriptor (web.xml) and other files that are not publicly
accessible by clients of the application. There can be any number of directories under WEB- INF,
but three common directories are tlds, 1ib, and classes. The tlds directory is not required,
but it is commonly used for keeping tag library descriptor files (see Chapter 4). The 1ib directory is
used for Java archives (. jar files) that are used by the web application. Finally, the classes
directory is used for class files in the web application.

Handling Translation or Compilation Problems

The highly experienced technical team at Apress reviewed and tested all the code in this book,
and of course, it’s going to work perfectly for you every time—at least, it should.

However, when entering the code from this book, or when developing your own JSPs, you
may occasionally come across a typo or some other error that causes the translation or compi-
lation to fail. Here, we will give you some pointers on how to find and resolve these problems.

The JSP specification identifies many situations that will cause a translation error. For
example, it says that the page directive can appear multiple times, but that any attribute can be
specified only once. If the same attribute appears a second time, it must have a value identical
to the first appearance; otherwise, a translation error occurs.

To see how this works, go back to welcome. jsp (Listing 3-1). Add this line of code anywhere
in the file:

<%@ page errorPage="/WEB-INF/errorPage2.jsp" %>

Then redeploy the JSP application. On our Tomcat server, when we tried to load the welcome
page, we saw the display shown in Figure 3-10. In this case, Tomcat has sent a nicely formatted
and helpful error page. Depending on your server, you should see a similar message for trans-

lation errors on your system.

Although you can’t see all of it in the figure, the first line of the stack trace looks like this:

CHAPTER 3 JAVASERVER PAGES

org.apache.jasper.JasperException: /welcome.jsp(10,0) Page directive: w»
illegal to have multiple occurrences of errorPage with different values w»
(old: /WEB-INF/errorPage.jsp, new: /WEB-INF/errorPage2.jsp)

. Fle Edit View Favorites Took Help
- Address €] http://localhost:8080/Jsp_Ex01/

CEX

::'
w E,Go

HTTP Status 500 -

lexception|

org

org
org

org.
org.
org.
org.

AT Exception report

The server encountered an internal error () that prevented it from fuffiling this request.

jasper.
jasper.
jasper.
jasper.
jasper.
jasper.
jasper.

compiler.
compiler.
compiler.
compiler.
compiler.
compiler.
compiler.

org.apache.jasper.JasperException: /welcome.jsp(10,0) Page directive: illegal tt
.apache.
apache.
apache.
apache.
apache.
.apache.
.apache.

DefaultErrorHandler.jspError (DefaultErrorHar
ErrorDispatcher.dispatch(ErrorDispatcher.jas
ErrorDispatcher.jspError (ErrorDispatcher.jas
Validator$DirectiveVisitor.visit(Validator.:
Node$PageDirective.accept (Node.java:549)
Node$Nodes.visit (Node.java:2163)
Node$Visitor.visitBody (Node.java:2213)

~

Figure 3-10. Tomcat shows you a helpful stack trace with information about the translation

problem. This makes it easy to find and fix the problem.

As you can see, the stack trace says in which file the error occurred (welcome. jsp), and in
which line and at which character (10,0) the error occurs. It also gives you a clear description of
the error. With this information, you should be able to easily go to line 10 in the file, find the

offending multiple occurrence of errorPage, and fix it.

Compilation problems, unfortunately, are not always so easy to find. Return to welcome. jsp
again and remove the offending duplicate errorPage directive (if you added it earlier). Now add

an extra curly brace, as shown here:

<%@ include file="/WEB-INF/footer.jspf" %>

</body>
</html>

69

70

CHAPTER 3 JAVASERVER PAGES

When we deployed this broken file to Tomcat, we got the page shown in Figure 3-11. Tomcat
again sends an errorPage with a nicely formatted stack trace, but this page does not indicate
where in the JSP source the error occurred. In fact, it shows five errors, starting with this:

C:\Program Files\Apache Software Foundation\Tomcat 5.030\work\Catalina\w
localhost\Jsp_Ex01\org\apache\jsp\welcome jsp.java:43: 'try' without =
‘catch' or 'finally'

try {

N
A 9] m][e3)
. Fle Edt View Favorites Tools Help "
 Address | &) http:/flocalhost:8080/sp_Ex01/ v B co

~

HTTP Status 500 -

[T Exception report

The server encountered an internal error () that prevented it from fuffiling this request.

fexception
org.apache.jasper.JasperException: Unable to compile class for JSP

Generated servlet error:
C:\Program Files\Apache Software Foundation\Tomcat 5.028\work\Catalinal\localhosi
try f{

Figure 3-11. When the server cannot compile the JSP, it sends an error page to the browser. Compi-
lation errors can sometimes be hard to find.

At this point, you might be really puzzled. Why in the world is Tomcat complaining about
try without catch? There is no try-catch block in the JSP source. As we mentioned earlier in the
chapter, the JSP source file is translated into a page implementation class. It is the source file
for this class that contains the try-catch block. Once you realize that, it should be obvious in
hindsight that adding an extra brace messed up the class and caused all the compilation errors.
However, in the real world, you wouldn’t knowingly put in an error, so even though you realize
there is something wrong with the JSP, it won’t necessarily be easy to find and fix.

One way to deal with this problem is to look at the translated source file. The stack trace
shown in Figure 3-11 tells you where the source file, welcome_jsp.java, islocated. You can open
itin an editor and search for the problem there. This may or may not be easier than looking at the
JSP file. In this case, the stack trace says the first error is on line 43 of the translated file, when,
in fact, the real problem occurs much later in the file, at the point where the translated extra
brace occurs.

CHAPTER 3 JAVASERVER PAGES

Sometimes, the best way to deal with a mysterious compilation problem—one where the
error message does not tell you which line of the JSP has the problem—is to go back to basic
Java syntax. Check that all code lines end with a semicolon. Check that all braces match up.
Check that all those little syntax problems that your fancy IDE handles automatically in a Java
file are not causing you problems in your JSP file.

Handling JSP Initialization and End of Life

In the JSP lifecycle section earlier in this chapter, we mentioned that you can add methods to
your JSP that will be called when the JSP is initialized and when the JSP is destroyed. These
methods are declared using the declaration scripting element.

When you need to perform one-time initialization of the JSP, add this method to the JSP:

<!
public void jspInit() {
// ...perform one time initialization.
// ...this method is called only once per JSP, not per request

%>
If you need to clean up any resources used by the JSP, add this method to the JSP:

<!
public void jspDestroy() {
// ...perform one time cleanup of resources

%>

If you don’t need to perform initialization or cleanup, you do not need to add these
methods to the JSP.

JSP Scope

Obijects that are created as part of a JSP have a certain lifetime and may or may not be acces-
sible to other components or objects in the web application. The lifetime and accessibility of
an object is known as scope. In some cases, such as with the implicit objects discussed in the
next section, the scope is set and cannot be changed. With other objects (JavaBeans, for example),
you can set the scope of the object. There are four valid scopes:

» Page scope: This scope is the most restrictive. With page scope, the object is accessible
only within the page in which it is defined. JavaBeans created with page scope and
objects created by scriptlets are thread-safe. (Recall, though, thatJava objects created by
declaration elements are not thread-safe.)

* Request scope: With request scope, objects are available for the life of the specific request.
This means that the object is available within the page in which it is created, and within
pages to which the request is forwarded or included. Objects with request scope are
thread-safe. Only the execution thread for a particular request can access these objects.

|

72

CHAPTER 3 JAVASERVER PAGES

» Session scope: Objects with session scope are available to all application components
that participate in the client’s session. These objects are not thread-safe. If multiple
requests could use the same session object at the same time, you must synchronize
access to that object.

¢ Application scope: This is the least restrictive scope. Objects that are created with appli-
cation scope are available to the entire application for the life of the application. These
objects are not thread-safe, and access to them must be synchronized if there is a chance
that multiple requests will attempt to change the object at the same time.

When you are developing the components in your web application, you need to carefully
consider the scope of the objects. You should give your objects only as much scope as needed
to be successful. It makes no sense to give application scope to an object that is used only within a
single component. Likewise, an object with too much restriction may force your application to
be more complicated. Carefully consider each of the objects and their use to determine the
proper scope for each object.

Using Implicit Objects

Earlier, we stated that the properties of a JavaBean can be set from the parameters in the
request sent by the client browser. Your JSP page can also access the client’s request directly.
You access the client’s request through an object named request. In addition to the request
object, the JSP model provides a number of other implicit objects. These objects are implicit
because a JSP has access to and can use them without needing to explicitly declare and initialize
the objects. Implicit objects are used within scriptlet and expression elements. This section will
cover using the following implicit objects:

* request

* response

e out

* session

e config

e exception

e application

In this section, we will show the methods of these objects that you will use most often. You
should consult the Javadoc for the complete list and explanation of all the available methods.
Each implicit object has a given lifespan and accessibility known as scope, as discussed in the
previous section.

CHAPTER 3 JAVASERVER PAGES

The request Object

JSP pages are web components that respond to and process HTTP requests. The request implicit
object represents this HTTP request. Through the request object, you can access the HTTP
headers, the request parameters, and other information about the request. You will most often
use this object to read the request parameters.

When a browser submits a request to a server, it can send information along with the
request in the form of request parameters. These take two forms:

¢ URL-encoded parameters: These are parameters appended to the requested URL as a
query string. The parameters begin with a question mark, followed by the name/value
pairs of all the parameters, with each name and value delimited by an equal sign (=), and
each pair delimited by an ampersand (8):

http://www.myserver.com/path/to/resource?namei=valuel&name2=value2

¢ Form-encoded parameters: These parameters are submitted as a result of a form
submission. They have the same format as URL-encoded parameters, but are included
with the body of the request and not appended to the requested URL.

These request parameters can be read through various methods of the request object:

String request.getParameter(String name);
String[] request.getParameterValues(String name);
Enumeration request.getParameterNames();

Map getParameterMap();

The getParameter(String) method returns the value of the parameter with the given
name. If the named parameter has multiple values (for example, when a form submits the
value of check boxes), this method returns the first value. For multivalued parameters,
getParameterValues(String) returns all the values for the given name. The getParameterNames ()
method returns all the parameter names used in the request, and getParameterMap() returns
all the parameters as name/value pairs.

Information can also be passed to the server using extra path information. This data is
appended to the requested URL. For example, suppose /Jsp_Ex01/MyComponent were the context
and name of a web application component; additional information could be appended to the
path like this: /Jsp_Ex01/MyComponent/extraPathInfo. With the correct configuration, the server
would send the request to MyComponent, and MyComponent would get the extra path information
using this method:

String request.getPathInfo();

The request object has request scope. That means that the implicit request object is in scope
until the response to the client is complete. It is an instance of javax.servlet.HttpServletRequest.
For further information about the methods of request, see Chapter 6.

73

74

CHAPTER 3 JAVASERVER PAGES

The response Object

The response object encapsulates the response to the web application client. Some of the tasks
you can do using the response object are set headers, set cookies for the client, and send a redirect
response to the client. You can perform those functions with the following methods:

public void addHeader(String name, String value)
public void addCookie(Cookie cookie)
public void sendRedirect(String location)

The response object is an instance of javax.servlet.HttpServletResponse, and it has
page scope.

The out Object

The out implicit object is a reference to an output stream that you can use within scriptlets.
Using the out object, the scriptlet can write data to the response that is sent to the client. For
example, you could rewrite the earlier welcome. jsp (Listing 3-1) to use the out object like this:

<%
Iterator categories = fags.getAllCategories();
while (categories.hasNext()) {
String category = (String)categories.next();
out.println("<p>" +
category + "</ax</p>");

}

%>

This scriptlet would cause the same HTML to be sent to the client as was sent in the original
version of welcome. jsp.
The out object is an instance of javax.jsp.JspWriter. It has page scope.

Note One of the purposes of JSP is to separate the HTML from the Java code. Therefore, the example
shown here is not the best use of the out object.

The session Object

HTTP is a stateless protocol. As far as a web server is concerned, each client request is a new
request, with nothing to connect it to previous requests. However, in web applications, a client’s
interaction with the application will often span many requests and responses. To join all these
separate interactions into one coherent conversation between the client and application, web
applications use the concept of a session. A session refers to the entire conversation between a
client and a server.

The JSP components in a web application automatically participate in a given client’s
session, without needing to do anything special. Any JSP page that uses the page directive to set
the session attribute to false does not have access to the session object, and thus cannot
participate in the session.

CHAPTER 3 JAVASERVER PAGES

Using the session object, the page can store information about the client or the client’s
interaction. Information is stored in the session object, just as you would store information in
aHashtable or aHashMap. This means that a JSP page can store only objects, not Java primitives,
in the session. To store Java primitives, you need to use one of the wrapper classes such as
Integer or Boolean. The methods for storing and retrieving session data are as follows:

Object setAttribute(String name, Object value);
Object getAttribute(String name);

Enumeration getAttributeNames();

void removeAttribute(String name);

When other components in the web application receive a request, they can access the
session data that was stored by other components. They can change information in the session
or add new information to it.

Caution Be aware that sessions are not inherently thread-safe. You should consider the possibility that
two or more web components could access the same objects from the same session simultaneously. If this
could be a problem for your application, you must synchronize access to the objects stored in the session.

Normally, you don’t need to write code in your page to manage the session. The server
creates the session object and associates client requests with a particular session. However,
this association normally happens through the use of a cookie that is sent to the client. The
cookie holds a session ID; when the browser sends the cookie back to the server, the server uses
the session ID to associate the request to a session. When the browser does not accept cookies,
the server falls back to a scheme called URL rewriting to maintain the session. If there is the
possibility that the server will be using URL rewriting, your page needs to rewrite any embedded
URLs. This is actually done with a method of the response object:

response.encodeURL(String);
response.encodeRedirectURL(String);

The second method is used when the URL will be sent as a redirect to the browser using
the response.sendRedirect() method. The first method is used for all other URLs.

The session object has session scope, and all the objects stored in the session object also
have session scope. The session object is an instance of javax.servlet.http.HttpSession.

The config Object

The config object is used to obtain JSP-specific initialization parameters. These initialization
parameters are set in the deployment descriptor, but are specific to a single page. JSP initialization
parameters are set in the <servlet> element of the deployment descriptor. This is because the
page implementation class of the JSP (the Java class that is compiled from the JSP page) is a
Servlet class. The <servlet> element with the <init-param> element will look something like this:

75

76

CHAPTER 3 JAVASERVER PAGES

<servlet>
<servlet-name>StockList</servlet-name>
<servlet-class>web.StocklListServlet</servlet-class>
<init-param>
<param-name>name</param-name>
<param-value>value</param-value>
</init-param>
</servlet>

See Chapter 6 for more information about how to use the <servlet> element.
If JSP initialization parameters are defined in the deployment descriptor, you can access
them using this method:

config.getInitParameter(String name);

The config object has page scope.

The exception Object

The exception object is available only within error pages. It is a reference to the
java.lang.Throwable object that caused the server to call the error page. You would use

it just as you would use any other Exception or Error object in the catch block of a try-catch
section of code. The exception object has page scope.

The application Object

The application object represents the web application environment. You will use this object to
get application-level configuration parameters. Within the deployment descriptor, you can set
application parameters using this element:

<webapp>
<context-param>
<param-name>name</param-name>
<param-value>value</param-value>
</context-param>
</webapp>

The value of the parameter can be accessed using the following method:
application.getInitParameter(String name);

The application object has application scope.

Using Standard Actions and Implicit Objects in JSP Pages

Let’s look at an example that uses standard actions and implicit objects. This example expands
on the previous example, adding a registration page to the Java FAQ application. The registra-
tion page will use a JavaBean. This example will also use the implicit request object to read
request parameters.

Figure 3-12 shows the application structure for this example.

-1 Isp_Ex02
-I-{z= WEB-INF
-z classes
=-{&=F com
-I-{&= apress
== faq
FagCategories.class
[FagCategories.java
User.class
[User.java
errorPage.jsp
footer.jspf
web.xml
registration.jsp
registrationform.html
welcome.jsp

Figure 3-12. Directory structure for the second JSP example

CHAPTER 3

JAVASERVER PAGES

Start by creating the JavaBean. This bean consists of a class called User, and it represents
a user of our application. Listing 3-6 shows the source code for this class. After entering the

source, compile it into a class file.
Listing 3-6. User.java

package com.apress.faq;

public class User {
private String firstName;
private String surname;
private String loginName;
private int age;

public String getFirstName() { return firstName; }
public void setFirstName(String newFirstName) {
this.firstName = newFirstName;

}

public String getSurname() { return surname; }
public void setSurname(String newSurname) {
this.surname = newSurname;

}

public String getlLoginName() { return loginName; }

public void setlLoginName(String newlLoginName) {
this.loginName = newlLoginName;

}

public int getAge() { return age; }

public void setAge(int newAge) {
this.age = newAge;

}

}

77

CHAPTER 3 JAVASERVER PAGES

Next, modify welcome. jsp from the earlier example (Listing 3-1). Listing 3-7 shows the new
welcome.jsp. This page will ask users to register, if they haven’t already done so.

Listing 3-7. Revised welcome.jsp for Using Standard Actions and Implicit Objects

<%@ page errorPage="/WEB-INF/errorPage.jsp"
import="java.util.Iterator, com.apress.faq.*" %>

<html>
<head>
<title>Java FAQ Welcome Page</title>
</head>

<body>
<h1>Java FAQ Welcome Page</h1>

<%
User user = (User) session.getAttribute("user");
if (user == null) {
%>
You are not yet registered, please
register.
<%
} else {
%>
Welcome to the Java FAQ

<%! FaqCategories faqs = new FaqCategories(); %>
Click a link below for answers to the given topic.
<%
Iterator categories = fags.getAllCategories();
while (categories.hasNext()) {
String category = (String) categories.next();
%>
<p>
<a href="<%= replaceUnderscore(category) %>.jsp"><%= category %>
</ax</p>

<%@ include file="/WEB-INF/footer.jspf" %>
<%

%>
</body>
</html>

CHAPTER 3 JAVASERVER PAGES

<!
public String replaceUnderscore(String s) {
return s.replace(' ',' ');

%>

Next, create the registrationform.html page that collects the user information. This source
is shown in Listing 3-8.

Listing 3-8. registrationform.html
<html>
<head>
<title>Registration Page</title>
</head>
<body>
<h1>Registration Page</h1>

<form action="registration.jsp" method="POST">
<table>
<tr>
<td align="right">First name:</td>
<td align="left"><input type="text"
name="firstName" length="30"/></td>
</tr>
<tr>
<td align="right">Surname:</td>
<td align="left"><input type="text"
name="surname" length="30"/></td>
</tr>
<tr>
<td align="right">Login Name:</td>
<td align="left"><input type="text"
name="loginName" length="30"/></td>
</tr>
<tr>
<td align="right">Age:</td>
<td align="left"><input type="text"
name="age" length="5"/></td>
</tr>
</table>

Which topics are you interested in?

<input type="checkbox" name="topics"
value="Dates and Times">

80 CHAPTER 3 JAVASERVER PAGES

Dates and Times</input>

<input type="checkbox" name="topics"
value="Strings and StringBuffers">
Strings and StringBuffers</input>

<input type="checkbox" name="topics"
value="Threading">

Threading</input>
<p><input type="submit" value="Submit"/></p>
</form>
</body>

</html>

This form submits to a JSP page that gathers the form data and populates the User bean.
Listing 3-9 shows the JSP that accepts the form submission, registration.jsp.

Listing 3-9. registration.jsp

<html>
<head>
<title>Register User</title>
</head>
<body>
<h1>Register User</hi1>

<jsp:useBean id="user" scope="session" class="com.apress.faq.User">
<jsp:setProperty name="user" property="*" />
</jsp:useBean>

Welcome new user, these are the values you submitted:
<p>Your first name is <%= user.getFirstName() %>.</p>
<p>Your last name is

<jsp:getProperty name="user" property="surname" />.</p>
<p>Your user id is

<jsp:getProperty name="user" property="loginName" />.</p>
<p>Your age is

<jsp:getProperty name="user" property="age" />.</p>
You selected these topics:

String[] topics = request.getParameterValues("topics");
if (topics == null) { topics = new String[] {"No topics"}; }
for (int i = 0; 1 < topics.length; i++) {

[

<%= topics[i] %>

CHAPTER 3 JAVASERVER PAGES

<p>Go to Topic List Page</p>
<%@ include file="/WEB-INF/footer.jspf" %>
</body>
</html>

The other files for this application remain the same as in the previous example: errorPage. jsp
(Listing 3-3), footer. jspf (Listing 3-2), and FaqCategories. java (Listing 3-4). If you are using
the Sun Deployment Tool, it will create web. xml for you. If you are using Tomcat, Listing 3-10
shows the deployment descriptor, web.xml.

Listing 3-10. web.xml for Jsp_Ex02

<?xml version='1.0' encoding="UTF-8'?>
<web-app
version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_ 2 5.xsd"
>
<display-name>Jsp Ex02</display-name>
<servlet>
<display-name>welcome</display-name>
<servlet-name>welcome</servlet-name>
<jsp-file>/welcome.jsp</jsp-file>
</servlet>
<servlet>
<display-name>registration</display-name>
<servlet-name>registration</servlet-name>
<jsp-file>/registration.jsp</jsp-file>
</servlet>
<welcome-file-list>
<welcome-file>welcome.jsp</welcome-file>
</welcome-file-list>
</web-app>

Deploy this application to the server of your choice, using the same steps as you did for the
first example in this chapter (outlined in the “Deploying the Web Application in Java EE” or
“Deploying the Web Application in Tomcat” section). If you are using the Sun Deployment
Tool, you will need to run the wizard twice. Add all the files and configure one of the JSPs the
first time; the second time, all you need to do is configure the second JSP.

Enter the URL for the welcome. jsp. If you are connecting to your local machine on the
default port, the URL is http://localhost:8080/Jsp_Ex02. Figure 3-13 shows the page you
should see in your browser.

81

82 CHAPTER 3 JAVASERVER PAGES

. Fle Edt View Favorites Took Help 3
 Address | &] hitp://localhost:8080/Jsp_Ex02/ v B co

Java FAQ Welcome Page

You are not yet registered, please register.

Figure 3-13. The welcome page of the application asks the user to register.

Click the register link to load the registration page, as shown in Figure 3-14.

CEBX
. Fle Edt View Favorites Took Help i
- Address €] http://localhost:8080/Jsp_Ex02/registrationform.html v B Go
Registration Page

First name: |Kirk

Surname: |Lindsky

Login Name: klindsky
Age: 39

Which topics are you interested in?
[Dates and Times
Strings and StringBuffers
Threading

Figure 3-14. The user enters data into the registration screen and submits it.

Fill in the fields and check one or more of the boxes. Click the Submit button. Clicking the
Submit button will cause the registration information to be passed to registration.jsp. That
JSP will process the request and display the page shown in Figure 3-15.

Finally, click the link in this page to return to welcome. jsp. This time, welcome. jsp will
display the topic list, as shown in Figure 3-16.

CHAPTER 3

CEX
. Fe Edt View Favorites Took Help 3
Address |&] http:/flocalhost:8080/1sp_Ex02/registration.jsp b ﬂ Go

Register User

Welcome new user, these are the values you submitted:
Your first name is Kirk.

Your last name is Lindsky.

Your user id is klindsky.

Your age is 39.

You selected these topics:
Strings and StringBuffers
Threading

Go to Topic List Page

Page generated on Fri Feb 11 12:53:57 MST 2005

Figure 3-15. The response from the registration.jsp page

CEX
. Fle Edt View Favorites Took Help 3
Address |&] http:/flocalhost:8080/1sp_Ex02/welcome.jsp ~ a Go

Java FAQ Welcome Page

Welcome to the Java FAQ Click a link below for answers to the given topic.

Dates and Times

Strings and StringBuffers

Threading

Page generated on Fri Feb 11 12:54:26 MST 2005

Figure 3-16. The welcome.jsp page after the user has registered

JAVASERVER PAGES

83

84

CHAPTER 3 JAVASERVER PAGES

As in the first example in this chapter, the entry into the application is the welcome. jsp
page. However, this time, the page checks for the existence of a User object in the session using
this code:

User user = (User)session.getAttribute("user");

Recall that all JSP pages have access to the implicit session object, unless specified other-
wise with the page directive. Using the getAttribute() method, the page attempts to get the
named object from the session. Notice that getAttribute() returns a reference of type Object,
which must be cast to the proper type to assign it to the user variable.

If there is no user object in the session (that is, if user is null), welcome. jsp outputs the
HTML with a link for the registrationform.html page. Later, when returning to this page, the
user object will exist, and the welcome page displays the topic list. The remainder of this page
is unchanged.

The registrationform.html page is a standard web page with a form that submits form
data to the server. The resource that it submits to is given in the <form> tag:

<form action="registration.jsp" method="POST">

The action attribute contains the URI for the server resource that should receive the data.
This URI can be relative, as shown here, or absolute. The method attribute indicates which
HTTP method should be used for the submission. The form includes some text fields and some
check boxes. The form submits all its data to registration.jsp.

The first interesting thing about registration.jsp is the <jsp:useBean> tag shown here:

<jsp:useBean id="user" class="com.apress.faq.User">
<jsp:setProperty name="user" property="*" />
</jsp:useBean>

This tag creates an instance of the class given by the class attribute. Throughout the
rest of the page, the object can be referred to using the variable user. Enclosed within the
<jsp:useBean> element is a <jsp:setProperty> element. This element uses the property="*"
attribute, which causes the page to find each setXXX method of the given bean, and call
each method with the same named parameter in the request. If you look at the User class,
you will see it has four public setXXX methods: setFirstName(String), setSurname(String),
setLoginName(String), and setAge(int). These methods must be matched by four request
parameters. If you examine registrationform.html, you will see that it does have four form
fields with the correct names: firstName, surname, loginName, and age. The value from each of
these request parameters is used to set the properties of the User bean.

You may recall that the <jsp:setProperty> tag also has an attribute named param. This
attribute is used when the names in the request do not match the names in the bean. For
example, suppose that the web page form had a field named lastName instead of surname and
that you were not allowed to change the web form or the bean. The JSP could not use the
property="*" syntax, because the JSP is not able to match request parameters to bean properties
in this case. The way to set the properties would be to use this syntax:

<jsp:useBean id="user" class="com.apress.faq.User">

CHAPTER 3 JAVASERVER PAGES

<jsp:setProperty name="user" property="surname" param="lastName"/>
</jsp:useBean>

Using this syntax, the page knows that it can set the bean’s surname property using the
value of the request parameter called lastName.

Although it is shown enclosed within the <jsp:useBean> element, you can use
<jsp:setProperty> any time after the bean is created.

Also, because the bean is created with session scope, the implementation class will store
the object in the session. Notice that there is no code in the JSP source file to do this. The code
to store the bean in the session is generated when the JSP is translated into a class. Storing the
bean in the implicit session object makes it available to every component in the application.
Thus, when the welcome. jsp page is called again, it will find the bean object in the session.

Then the page prints the values of the User bean’s properties. For the first property, a JSP
expression is used to print the property. For the remainder of the properties, the
<jsp:getProperty> element is used. The reason for doing this is simply to show different ways
of printing bean properties.

<p>Your first name is <%= user.getFirstName() %></p>
<p>Your last name is
<jsp:getProperty name="user" property="surname" />.</p>

The page then prints the remainder of the request parameters. These are the values of the
check boxes that were checked in the form. The page calls the method, and then prints every
elementin the String array returned by the method. Notice that the web browser submits values
only for the boxes that were checked. Finally, the JSP prints a link to the welcome. jsp page.

When welcome. jsp is called this time, the User object exists in the session, so the JSP
outputs the topic list.

Translation and Compilation

Asyou develop and test JSP pages, you may have noticed that the first time you access a new
page, there is some delay before the page is sent to the browser. This is a result of the server
translating and compiling the page at request time. After the page has been translated and
compiled, subsequent requests to the page are processed more quickly.

When a page is translated, whether at request time or earlier, it is translated into a Java
source file. This Java class is known as a Servlet. As noted earlier, much of what a JSP does is
based on the Servlet API, another API within Java EE. In fact, the Servlet API predates the JSP API.

Servlets were developed to allow a server’s capabilities to be extended by Java code that
ran inside the server. HttpServlets are Servlets that run inside an HTTP server. A Servlet
accepts HTTP requests from clients and creates dynamic responses to those requests. It sends
response data to the client through an OutputStream. The Servlet uses a session object to store
data about a client and the client’s interactions with the server. The Servlet has access to the
application through a ServletContext object, and it can access Servlet parameters through a
ServletConfig object. In fact, all the features of JSP pages described in this chapter are based
on the Servlet model.

85

86

CHAPTER 3 JAVASERVER PAGES

So, if Servlets can do everything JSP pages can do, why do you need JSPs? If a JSP page is an
HTML page with bits of embedded code, a Servlet is Java code with bits of HTML. However, the
larger the web application, the more HTML tends to be in the Java code. This becomes very
difficult to maintain, especially if your team has web experts who are not programmers.

Servlets tend to be good at computations and processing. JSP pages tend to be good at data
presentation. The JSP specification was created to make it easier for web developers to create
dynamic user interfaces and web applications. By embedding Java code into JSPs, the pages
can dynamically respond to user requests. Unfortunately, this leads to the opposite of the
problem found with Servlets: as the web application gets larger, the more Java code tends to be
embedded in the JSPs. This becomes very hard to maintain, especially if your team has
programmers who are not web experts.

If only there were a way to get all the HTML out of Servlets, and all the Java code out of JSP
pages. That way, programmers could work on the Servlets, and web designers could develop
the JSP pages. In Chapter 4, you will see how to use Expression Language, custom actions, and
tag libraries to achieve this goal.

So, although you don’t need to be a Servlet expert to work with JSPs, knowing how Servlets
work can help you to understand what is happening with the page. We’ll look at Servlets in
detail in Chapter 6. Here, we’ll just take a quick look at a translated JSP to see how the JSP page
is translated into code that implements a Java Servlet. (We will focus on only some of the lines
that show the relationship between the JSP source and the Java source.)

Most servers will keep the translated . java source file in the file system, so you can examine it.
For Sun’s Java EE server, that location is JAVAEE_HOME\domains\{domain}\ generated\jsp\
j2ee-modules\{app name}\org\apache\jsp, where JAVAEE HOME is the location of the Java EE
installation on your system (/Sun/AppServer for Windows), {domain} is the domain name used
when you start your server (domaini is the default), and {app name} is the name of the applica-
tion. For the stand-alone Tomcat server, that location is TOMCAT _HOME\work\Catalina\localhost\
application_context\org\apache\jsp, where TOMCAT HOME is the appropriate location of the
Tomcat installation on your system.

If you have deployed the examples in this chapter, navigate to the appropriate directory
and open the source file for the welcome.jsp page. The Java EE reference implementation and
Tomcat both name the source file as welcome_jsp.java.

Note The example in this section is the welcome jsp.java source file created by Tomcat 5.028 for the
previous example. Your Java source file may differ, depending on which server you have and which source
file you are viewing.

One of the first things you will notice is that the import attribute of the page directive has
been turned into import statements:

CHAPTER 3 JAVASERVER PAGES

package org.apache.jsp;

import javax.servlet.*;
import javax.servlet.http.*;
import javax.servlet.jsp.*;
import java.util.Iterator;
import com.apress.faq.*;

This is followed by the class statement:

public final class welcome jsp
extends org.apache.jasper.runtime.HttpJspBase
implements org.apache.jasper.runtime.JspSourceDependent {

Notice that the class extends HttpJspBase. In Chapter 6, you will see that Servlets in a web
application extend HttpServlet.

Next, you will see that the two declarations in the JSP page have been turned into a variable
declaration and a public method declaration in the Java source. Note that the variable is declared
as a member variable of the class, and so it is accessible from all the methods in the class:

FaqCategories fags = new FaqCategories();

public String replaceUnderscore(String s) {
return s.replace(' ',' ');

}
The main body of the JSP is contained in the jspService() method:

public void jspService(HttpServletRequest request,
HttpServletResponse response)
throws java.io.IOException, ServletException {

JspFactory jspxFactory = null;
PageContext pageContext = null;
HttpSession session = null;
ServletContext application = null;
ServletConfig config = null;

JspWriter out = null;

Object page = this;

JspWriter jspx out = null;
PageContext jspx_page context = null;

In the Servlet API, the analogous method is service(). This method starts by declaring the
implicit objects that are used when servicing a request. Of course, they are not so implicit now
that the translator has added the code to declare and initialize them.

87

88

CHAPTER 3 JAVASERVER PAGES

Next is code that initializes all the implicit objects. Although we will not look at all the
translated code, we do want to show one last snippet from the jspService() method:

out.write(" <body>\r\n");
out.write(" <h1>Java FAQ Welcome Page</hi>\1\n");
out.write("\r\n");

User user = (User) session.getAttribute("user");
if (user == null) {

out.write("\r\n");
out.write(" You are not yet registered, please\r\n");
out.write(" register.\r\n");

This is part of the code that outputs the template data to the client. Notice that the trans-
lated code uses the same implicit out object that the JSP can use. Also notice that the white
space from the JSP source file is preserved in the Java source file. A Servlet implementing the
same page would similarly output the HTML template data using print statements. However,
with a Servlet, you would need to code those statements manually. With a JSP page, it is much
easier to write the template data as HTML and let the container perform the translation to
Java code.

Earlier in the chapter, we stated that you could declare and define a jspInit() method and
a jspDestroy() method. If you define those methods in the JSP, they will appear as additional
methods in the Java source file.

Handling Errors and Exceptions

If you've typed in any of the examples in this chapter, or if you have created any JSP pages of
your own, you have probably run into the situation where you had bugs in your page. Whether
these bugs occur at translation time or at request time affects the response that you see in the
browser when you attempt to test your page. Sometimes, you see a very ugly stack trace. Well,
maybe not ugly to you, as the developer, but you don’t want any of the users of your application
to see anything so unfriendly.

Java web applications can deal with exceptions in a number of ways. Obviously, some
exceptions can be handled as you develop the web application by adding data validation and
try-catchblocks into the code. This technique avoids the exceptions. However, you need a way
to deal with unexpected exceptions. Two ways to deal with unexpected exceptions are through
the page directive and through the deployment descriptor.

Dealing with Exceptions through the page Directive

You have already seen how to include a page directive in your JSP page. The page directive can
have an attribute named errorPage. Whenever an uncaught exception occurs in that particular
page, the server sends the specified error page to the client. This allows you to use different

error pages for different components in the application. The errorPage attribute looks like this:

<%@ page errorPage="/WEB-INF/errorPage.jsp" %>

CHAPTER 3 JAVASERVER PAGES

The value of the errorPage attribute is the path to the error page file. The drawback is that you
can specify only a single error page for all exceptions in the JSP page.

Dealing with Exceptions in the Deployment Descriptor

The deployment descriptor allows you to specify application-wide error handlers for errors in
the application. This provides a way to specify different error pages for exceptions that might
occur within a single page. If a given exception or HTTP error occurs anywhere in the application,
the deployment descriptor identifies an error page that can be served to the client. A specific
error page identified in a JSP page takes precedence over the error page identified in the
deployment descriptor.

You can specify error pages for Java exceptions and for HTTP errors. Error page elements
come immediately after the <welcome-file-1list> element in the deployment descriptor.

To specify an error page for a Java exception, use this element in the deployment descriptor:

<error-page>
<exception-type>java.lang.NumberFormatException</exception-type>
<location>/WEB-INF/BadNumber.htmljsp</location>

</error-page>

To specify an error page for an HTML error, use this element:

<error-page>
<error-code>404</error-code>
<location>/WEB-INF/NoSuchPage.jsp</location>
</error-page>

From these two examples, you can see that the <error-page> element is relatively easy to
use. The body of each <error-page> element contains two subelements.

First, there must be either an <exception-type> element or an <error-code> element. The
value of <exception-type> must be the fully qualified class name of an exception that could
occur in the web application. This can be any exception, not just standard Java API exceptions.
The value of <error-code> must be a valid HTTP error code as defined by the HTTP specification.
A complete list of the HTTP error codes can be found in the HTTP specification at http://
www.w3.org/Protocols/rfc2616/rfc2616-sec10.html.

The second subelement is the <location> element. The value of this element must be the
relative URL of the error page to be sent to the client when the container catches the exception
specified in the <exception-type> subelement or the error code specified in the <error-code>
subelement. The specification also requires that the URL begin with a leading forward slash (/).
This page is located relative to the web application context. So, for example, if your web application
islocated at http://localhost:8080/3sp_Ex03, the page listed in the preceding snippet for error
code 404 would be located at http://localhost:8080/3sp_Ex03/WEB-INF/NoSuchPage.jsp.

Adding Exception Handling in JSP Pages

Let’s take the Java FAQ example and add error handling to it. The structure of the web application
is shown in Figure 3-17.

89

90 CHAPTER 3 JAVASERVER PAGES

-1 Jsp_Ex03
-I-{z= WEB-INF
-z classes
=-{&= com
-I-{&= apress
== faq
FagCategories.class
[FagCategories.java
User.class
[User.java
BadNumber.jsp
errorPage.jsp
footer.jspf
NosuchPage.jsp
web.xml
Dates_and_Times.jsp
registration.jsp
registrationform.html
Threading.jsp
welcome.jsp

Figure 3-17. Directory structure for the third JSP example

As in the second example in this chapter, any files not explicitly shown here are the same
as in previous examples, and you can refer to earlier listings for their source. Listing 3-11 is a
new page in the Java FAQ application. The page is Threading. jsp, and it is located in the root
directory of the application (the same directory where welcome. jsp is located).

Listing 3-11. Threading.jsp

<%@ page errorPage="/WEB-INF/errorPage.jsp" %>

<html>
<head><title>Threading FAQs</title></head>
<body>

<% Integer i = new Integer("string"); %>
</body>

</html>

If you examine this JSP, you should see that it will throw a java.lang.NumberFormatException
as soon as it is called. This is a deliberate exception.
Next, modify errorPage.jsp as shown in Listing 3-12.

Listing 3-12. Revised errorPage.jsp

<%@ page isErrorPage="true" import="java.io.PrintWriter" %>

<html>
<head>
<title>Error</title>
</head>
<body>

CHAPTER 3 JAVASERVER PAGES

<h1>Error</h1>
There was an error somewhere.
<p>Here is the stack trace
<p><% exception.printStackTrace(new PrintWriter(out)); %>
<%@ include file="/WEB-INF/footer.jspf" %>
</body>
</html>

Create the JSP Dates_and_Times.jsp as shown in Listing 3-13.

Listing 3-13. Dates_and_Times.jsp

<html>
<head>
<title>Dates and Times FAQ</title>
</head>

<body>
<h1>Dates and Times FAQ</h1>
<% Integer i = new Integer("string"); %>
<%@ include file="/WEB-INF/footer.jspf"%>
</body>
</html>

This JSP will also throw a NumberFormatException when it is called.
Now, create two JSP pages that will be used as error pages. The first is NoSuchPage. jsp, and
itis located in the WEB-INF directory. It is shown in Listing 3-14.

Listing 3-14. NoSuchPage.jsp

<html>
<head>
<title>Resource Not Found</title>
</head>

<body>

<!--
This is an html comment to ensure the page has enough characters
so that IE displays the page. See the sidebar.
123456789012345678901234567890123456789012345678901234567890
123456789012345678901234567890123456789012345678901234567890
123456789012345678901234567890123456789012345678901234567890
123456789012345678901234567890123456789012345678901234567890
123456789012345678901234567890123456789012345678901234567890
1234567890123456789012345678901234

91

92 CHAPTER 3 JAVASERVER PAGES

-->
<h1>Resource Not Found</h1>
You are attempting to go to a page that does not exist
or is not available. If you entered the address by hand,
please go to the Welcome Page.

<p>If you clicked on a link on this site, the page is
temporarily unavailable. Try again later.
<%@ include file="/WEB-INF/footer.jspf"%>
</body>
</html>

Note In Listings 3-14 and 3-15, you’ll notice that each JSP has an HTML comment embedded in the page
to bring the size of the JSP up to 1024 bytes. This is due to a feature of Microsoft Internet Explorer that causes
Internet Explorer to display its own error page when the server sends a response page under a certain size
with an HTTP status code of 500. The exrorPage. jsp file did not need this comment because including a
stack trace adds enough characters.

The second error page is shown in Listing 3-15 and is named BadNumber . jsp. It is also
located in the WEB-INF directory.

Listing 3-15. BadNumber.jsp

<html>
<head>
<title>Invalid Number</title>
</head>

<body>

<!--
This is an html comment to ensure the page has enough characters
so that IE displays the page. See the sidebar.
123456789012345678901234567890123456789012345678901234567890
123456789012345678901234567890123456789012345678901234567890
123456789012345678901234567890123456789012345678901234567890
123456789012345678901234567890123456789012345678901234567890
123456789012345678901234567890123456789012345678901234567890
123456789012345678901234567890123456789012345678901234567890
123456789012345678901234567890123456789012345678901234567890
123456789012345678901234567890123456789012345678901234567890
1234567890123456789012345

CHAPTER 3 JAVASERVER PAGES

-->
<h1>Invalid Number</h1>
You entered a number that is incorrect.
Only digits are allowed. Please press the
back button and try again.

<%@ include file="/WEB-INF/footer.jspf"%>

</body>
</html>
</html>

If you are using Tomcat, create the deployment descriptor as shown in Listing 3-16.

Listing 3-16. web.xml for Jsp_Ex03

<?xml version='1.0' encoding="UTF-8'?>
<web-app
version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee =
http://java.sun.com/xml/ns/javaee/web-app 2 5.xsd">
<display-name>Jsp Ex03</display-name>
<servlet>
<display-name>welcome</display-name>
<servlet-name>welcome</servlet-name>
<jsp-file>/welcome.jsp</jsp-file>
</servlet>
<welcome-file-list>
<welcome-file>welcome.jsp</welcome-file>
</welcome-file-list>
<error-page>
<exception-type>java.lang.NumberFormatException</exception-type>
<location>/WEB-INF/BadNumber.jsp</location>
</error-page>
<error-page>
<error-code>404</error-code>
<location>/WEB-INF/NoSuchPage.jsp</location>
</error-page>
</web-app>

93

94

CHAPTER 3 " JAVASERVER PAGES

If you are using the Java EE Deployment Tool, modify the File Refs tab for the WebApp as
shown in Figure 3-18. You need to add two entries to the Error Mapping list. One entry is for
java.lang.NumberFormatException, and the resource to be called for this exception is /WEB-INF/
BadNumber. jsp. The second entry is for HTTP error code 404, and the resource for this error is
/WEB-INF/NoSuchPage. jsp.

welcame jsp

java lang MumberFormatException SANEE-INF Badhumber jsp
404 SANEE-INFMoSuchPage j=p

Figure 3-18. The File Refs tab in the Java EE Deployment Tool can be used to create error page
mappings for errors that occur in the web application.

Deploy the application as described earlier in this chapter. Then open a browser and navigate
through the screens until you reach the topic list page, as shown in Figure 3-19.
Click the link for Threading. The page displayed is shown in Figure 3-20.

CHAPTER 3 JAVASERVER PAGES

. Fle Edt View Favorites Took Help 3

Address |&] http:/flocalhost:8080/1sp_Ex03/welcome.jsp ~ a Go

Java FAQ Welcome Page

Welcome to the Java FAQ Click a link below for answers to the given topic.

Dates and Times

Strings and StringBuffers

Threading

Page generated on Fri Feb 11 13:05:53 MST 2005

&) Done &J Local intranet

Figure 3-19. The topic list page

FEX
. Fle Edt View Favorites Toolk Help e
Address |&] http://localhost: 8080/1sp_Ex03/Threading.jsp b a Go
~
Error

There was an error somewhere.
Here is the stack trace

java.lang NumberFormatException: For input string: "string" at

java.lang NumberFormatException forlnputString(NumberFormatException. java:48) at
java.lang Integer parselnt(Integer java:468) at java.lang Integer (Integer.java:609) at
org.apache.jsp.Threading jsp. jspService(Threading jsp.java:47) at

org.apache. jasper.runtime HttpJspBase service(HttpIspBase.java:94) at

javax.servlet.http HttpServlet.service(HttpServlet.java:802) at

org.apache. jasper.servlet.JspServletWrapper.service(JspServletWrapper java:324) at
org.apache. jasper.servlet.JspServlet.serviceIspFile(JspServlet.java:292) at

org apache jasper.servlet TspServlet service(JspServlet java:236) at N

Figure 3-20. The errorPage.jsp page is called when Threading.jsp throws an exception.

Click the link for Dates and Times. You will see a page similar to Figure 3-21.

95

CHAPTER 3 JAVASERVER PAGES

(~EIX)
: Fle Edt View Favorites Tools Help a
{ Address |@ http://localhost:8080/1sp_Ex03/Dates_and_Times.jsp v | Go

Invalid Number

You entered a number that is incorrect. Only digits are allowed. Please press the back
button and try again.

Page generated on Mon Jan 31 22:35:33 MST 2005

Figure 3-21. The BadNumber.jsp page is called when Dates_and_Times.jsp throws a
Jjava.lang. NumberFormatException.

Click the link for Strings and StringBuffers. You will see the page shown in Figure 3-22.

~EIX)
: Fle Edt View Favorites Tools Help o
{ Address |@ http://localhost:8080/1sp_Ex03/5trings_and_StringBuffers.jsp v | Go

Resource Not Found

You are attempting to go to a page that does not exist or is not available. If you entered
the address by hand, please go to the Welcome Page.

If you clicked on a link on this site, the page is temporarily unavailable. Try again later.

Page generated on Mon Jan 31 22:36:58 MST 2005

Figure 3-22. When the String and StringBuffers page cannot be found, NoSuchPage.jsp is called.

CHAPTER 3 JAVASERVER PAGES

Three pages were added to the application, each of which causes a different error-handling
mechanism to control the page flow.

The Threading. jsp page included a page directive that specified the error page. Since
Threading.jsp attempts to create an Integer object with an invalid argument to the constructor, an
exception is thrown, and the page does not have an error handler to catch the exception. This
causes the server to call the error page specified by the page directive, and that page is sent to
the client.

The error page, errorPage. jsp, has access to the implicit exception object. This is because
the page includes the page directive with the isErrorPage attribute set to true. Pages that don’t
have this attribute do not have access to the exception object. You can use this object together
with the implicit out object to print out the stack trace to the response, like this:

<p><% exception.printStackTrace(new PrintWriter(out)); %>

This works because the java.lang.Throwable interface defines a printStackTracew
(PrintWriter) method. The PrintWriter constructor can take an OutputStreaminstance, which
is exactly the type of the implicit out object. The method prints the stack trace to the given
PrintWriter.

Note Keep in mind that you wouldn’t print a stack trace in a live page meant for a user of the application.
It provides no useful information for users, and just gives them a bad feeling about your application. The
example here is just intended to demonstrate that you can access the implicit exception object in an error page.

The Date_and_Times.jsp also uses an Integer object to cause an exception to be thrown
from the page. However, this page does not specify an error page in the page directive. In this
case, the server matches the exception thrown to an exception specified in an <error-page>
element in the deployment descriptor. The server sends the BadNumber . html page to the client.
If the exception did not match a specification in the deployment descriptor, the server would
probably have sent an HTTP 500 error to the client.

Finally, the Strings_and_StringBuffer.jsp page does not exist. This creates an HTTP 404
error in the server. Since this error code matches an error code specified in an <error-page>
element in the deployment descriptor, the server sends the specified page to the client. If the
error code had not matched a specification in the deployment descriptor, the server would
have taken some server-specific action. Some servers, such as Tomcat, may send a server-
specific page back to the client with the error; other servers might simply send the error code
to the browser and let the browser decide how to display the error to the user.

97

98

CHAPTER 3 JAVASERVER PAGES

IS IT ABUG OR A FEATURE?

The first edition of this book was written with J2EE SDK 1.4 Beta 1 and Tomcat 4.0 as the Servlet container.
When we developed the example showing how to use error pages, it worked perfectly. When you clicked the
link for a bad page, the server would respond with the correct error page.

Then Sun released new versions of the Java EE SDK and moved to Tomcat 5.0 as the Servlet container.
When we tested the error page example with the new server, error pages stopped working as we expected.

We tried almost everything: We moved the pages to different locations, we played with the values of the
<error-page> element, and we tried changing the error page JSPs to HTML pages. Nothing resolved the issue.

After thrashing around and getting nowhere, we searched for “error page not working with Tomcat 5”
using Google. In the results, we found several pages that showed that others had the same problem we had
seen. For example, the search results listed a page in the Apache bug database for Bug 21341 (http://
issues.apache.org/bugzilla/show bug.cgi?id=21341), which described the exact same problem:
Error pages that worked with Tomcat 4 no longer worked with Tomcat 5. In the resolution, a developer talked
about an incorrect method being invoked in the error case and provided a patch to Tomcat. Another developer
responded and said that patch was probably bad. However, other bug listings claimed that there was no
problem and that error page dispatching worked correctly. Based on the evidence of our example, we believed
that users were right and the developers were wrong: Error page dispatching was broken.

Then we took another look at Bug 21341. Bug 21341 had a clue that we missed earlier. It said that
Microsoft Internet Explorer does not show the error page if the message size is less than some number. Then
we found Bug 29505 (http://issues.apache.org/bugzilla/show _bug.cgi?id=29505), which was
even more specific information. It showed that when there was an error page returned by the application,
Tomcat 4 returned HTTP status code 200, while Tomcat 5 returned status code 500. It also stated that Internet
Explorer displays its internal error page if the response has less than 512 bytes.

Suddenly, it made sense! Java EE and Tomcat weren’t broken; we had been bitten by an Internet Explorer
bug—oops, we mean feature. We went back to the sample code and added an HTML comment until the error
pages were displayed by Internet Explorer. On our system, it turned out that we needed the file size of the error
pages to be 1024 bytes. (On another system we tested, the error pages worked when they were 512 bytes.)
Now when we clicked the links to go to the example pages, Internet Explorer correctly displayed the error pages we
had developed. Of course, if you are using some other web browser, you may not see this problem at all.

Including and Forwarding from JSP Pages

JSP pages have the ability to include other JSP pages or Servlets in the output that is sent to a client,
or to forward the request to another JSP page or Servlet for servicing. This is accomplished through
the standard actions <jsp:include> and <jsp:forward>, mentioned earlier in the chapter.

include Action

Including a JSP page or Servlet through a standard action differs from the include directive in
the time at which the other resource is included and how the other resource is included. Recall
that an include directive can be used in either of the following two formats, anywhere within
the JSP:

CHAPTER 3 JAVASERVER PAGES

<%@ include file="/WEB-INF/footer.jspf">
<jsp:directive.include file="/WEB-INF/footer.jspf"/>

When the JSP container translates the page, this directive causes the indicated file to be
included in that place in the page and become part of the Java source file that is compiled into
the JSP page implementation class; that is, it is included at translation time. Using the include
directive, the included file does not need to be a complete and valid JSP page.

With the include standard action, the JSP file stops processing the current request and
passes the request to the included file. The included file passes its output to the response. Then
control of the response returns to the calling JSP, which finishes processing the response. The
output of the included page or Servlet is included at request time. Components that are included
via the include action must be valid JSP pages or Servlets.

The included file is not allowed to modify the headers of the response, nor to set cookies in
the response.

The syntax of the include action is:

<jsp:include page="URL" flush="true|false">
<jsp:param name="paramName" value="paramValue"/>
</jsp:include>

For the include element, the page attribute is required, and its value is the URL of the
page whose output is included in the response. This URL is relative to the JSP page. The flush
attribute is optional, and it indicates whether the output buffer should be flushed before the
included file is called. The default value is false.

If the JSP needs to pass parameters to the included file, it does so with the <jsp:param>
element. One element is used for each parameter. This element is optional. If it is included,
both the name and value attributes are required. The included JSP page can access the parameters
using the getParameter() and getParameterValues() methods of the request object.

forward Action

With the forward action, the current page stops processing the request and forwards the request
to another web component. This other component completes the response. Execution never
returns to the calling page. Unlike the include action, which can occur at any time during a
response, the forward action must occur prior to writing any output to the OutputStream. In
other words, the forward action must occur prior to any HTML template data in the JSP, and
prior to any scriptlets or expressions that write data to the OutputStream. If any output has
occurred in the calling JSP, an exception will be thrown when the forward action is encountered.
The format of the forward element is as follows:

<jsp:forward page="URL">
<jsp:param name="paramName" value="paramValue"/>
</jsp:forward>

The meaning and use of the attributes and of the <jsp:param> element are the same as
those for the include action.

99

100 CHAPTER 3 JAVASERVER PAGES

Adding include and forward Actions to JSP Pages

In this last example of the chapter, you will modify the Java FAQ application to use forward
actions to control the application flow. Figure 3-23 shows the application structure.

=% Jsp_Ex04
-I-{z= WEB-INF
-z classes
=-{&= com
-I-{&= apress
== faq
FagCategories.class
[FagCategories.java
User.class
[User.java
BadNumber.jsp
errorPage.jsp
footer.jspf
formatStackTrace.jsp
NosuchPage.jsp
web.xml
Dates_and_Times.jsp
registration.jsp
registrationform.html
Threading.jsp
welcome.jsp

Figure 3-23. Directory structure for the fourth JSP example
Start by modifying welcome. jsp as shown in Listing 3-17.

Lisitng 3-17. Revised welcome.jsp for Forwarding

<%@ page errorPage="/WEB-INF/errorPage.jsp"
import="java.util.Iterator, com.apress.faq.*" %>

<%
User user = (User)session.getAttribute("user");
String reqType = request.getParameter("reqType");
if (user == null 8& reqType == null) {

%>
<jsp:forward page="registrationform.html"/>

<%
} else if (user == null &8 reqType != null) {

%>

<jsp:forward page="registration.jsp">
<jsp:param name="submitTime"
value="<%=(new java.util.Date()).toString()%>" />
</jsp:forward>

CHAPTER 3 JAVASERVER PAGES

<html>
<head>
<meta name="Cache-control" content="no-cache">
<title>Java FAQ Welcome Page</title>
</head>

<body>
<h1>Java FAQ Welcome Page</h1>
Welcome to the Java FAQ

<%! FaqCategories fagqs = new FagCategories(); %>
Click a link below for answers to the given topic.
<%
Iterator categories = fags.getAllCategories();
while (categories.hasNext()) {
String category = (String) categories.next();

<p><a href="<%= replaceUnderscore(category) %>.jsp">
<%= category %></p>

<%@ include file="/WEB-INF/footer.jspf" %>
</body>
</html>

<!
public String replaceUnderscore(String s) {
return s.replace(' ',' ');

%>

The next modified file is registrationform.html. Only the single line that contains the
form tag needs to be modified, as shown in Listing 3-18.

Listing 3-18. Revision to registrationForm.jsp for Forwarding

<html>
<head>
<title>Registration Page</title>
</head>
<body>
<h1>Registration Page</h1>

<form action="welcome.jsp?reqType=register" method="POST">
<table>

101

102 CHAPTER 3 JAVASERVER PAGES

<!-- The remainder of registrationform.html is the same as before,
so it is not shown here -->

A single new line of code has been added to the registration. jsp file; only the applicable
snippet is shown here in Listing 3-19.

Listing 3-19. Revision to registration.jsp for Forwarding

<% String[] topics = request.getParameterValues("topics");
if (topics == null) { topics = new String[] {"No topics"}; }
for (int i = 0; i < topics.length; i++) {

0,

<%= topics[i] %>

<p>This request was submitted at
<%= request.getParameter("submitTime") %>
<p>Go to Topic List Page</p>
<%@ include file="/WEB-INF/footer.jspf" %>
</body>
</html>

Listing 3-20 shows the revised errorPage. jsp. This file now has an include action in addition
to the include directive for the standard footer.

Listing 3-20. Revised errorPage.jsp for Forwarding

n g

<%@ page isErrorPage="true" import="java.io.PrintWriter" %>
<html>
<head>
<title>Error</title>
</head>
<body>
<h1>Error</h1>
There was an error somewhere.
<p>Here is the stack trace
<p>
<% request.setAttribute("ex", exception); %>
<jsp:include page="formatStackTrace.jsp" />
<%@ include file="/WEB-INF/footer.jspf" %>
</body>
</html>

The JSP page included by the include action in errorPage. jsp is shown in Listing 3-21. Itis
named formatStackTrace.jsp

CHAPTER 3 JAVASERVER PAGES

Listing 3-21. formatStackTrace.jsp

n oo

<%@ page import="java.io.PrintWriter" %>
<%

out.println("<pre>");

Throwable t = (Throwable) request.getAttribute("ex");

if (t != null) {

t.printStackTrace(new PrintWriter(out));

}

out.println("</pre>");
%>

Create the web application with these new files and the files you developed in previous
examples. Deploy the application to the Java EE server or the stand-alone Tomcat server. For the
Java EE server, use the same web application settings as in the previous example (Figure 3-18). For
Tomcat, you can use the same deployment descriptor as in the previous example (Listing 3-16).

Open a browser and enter the appropriate address for the welcome. jsp page. The browser
will display the registration form page. Enter some values on the registration form page, and
then click the Submit button. The browser will display the registration page. Click the link in
the registration page, and the browser will display the welcome page with the topic list. If the
topic list is not displayed, your browser has probably cached the welcome page. Click the
Refresh button to get the correct page. Click the Threading topic link. The browser will display
the errorPage. jsp page with a nicely formatted stack trace, as shown in Figure 3-24.

EEX
Fle Edit View Favorites Tools Help o
Address €] http:/flocalhost:8080/Jsp_Ex04/Threading.jsp v B co
~
Error

There was an error somewhere.
Here is the stack trace

java.lang.NumberFormatException: For input string: "string"
at java.lang.NumberFormatException.forInputString (NumberFormatExceptior
at java.lang.Integer.parselnt(Integer.java:468)
at java.lang.Integer.{Integer.java:60%)
at org.apache.jsp.Threading jsp._ jspService (Threading jsp.java:47)
at org.apache.jasper.runtime.HttpJspBase.service (HttpJspBase.java: 94)
at javax.servlet.http.HttpServlet.service (HttpServlet.java:802)
at org.apache.jasper.servlet.JspServletWrapper.service (JspServletWrappe
at org.apache.jasper.servlet.JspServlet.servicedspFile (JspServlet.java:
at org.apache.jasper.servlet.JspServlet.service (JspServlet.java:236)
at javax.servlet.http.HttpServlet.service (HttpServlet.java:802)
at ara.anache.catalina.cnra.frmlicationFilterChain.intarnal DnFiltar (Bnr

< >
&) Done &J Local intranet

Figure 3-24. The error page includes the output of another JSP to format the stack trace.

103

104

CHAPTER 3 JAVASERVER PAGES

The first thing the welcome. jsp page does now is to check for the existence of the user object,
as previously, and for a request parameter with the name reqType. As before, the user object is
putinto the session by the registration. jsp; the reqType parameter will be added to the request by
the registrationform.html page. If both of these are null, neither the registrationform.html
page nor the registration. jsp page has been called, so the welcome. jsp page forwards the
request to the registrationform.html page.

If youlook at the registrationform.html, you will see that the action attribute of the
<form> tag has been modified to add a request parameter to the URL. When the Submit button
is clicked, the form submits to welcome. jsp. This method of submitting request parameters in
the URL is known as URL encoding. This time, welcome. jsp finds that the user object is still null,
but that the reqType parameter has a value. Since this indicates that the registrationform.html
page has been visited, but the registration has not been submitted, welcome. jsp forwards the
request to registration. jsp; itincludes another request parameter with the request using the
<jsp:param> element.

Note This flow is artificially complicated, because it probably makes more sense to have
registrationform.html submit directly to registration.jsp. The main reason for submitting to
welcome.jsp is to provide several different examples of the use of the <jsp:forward> action. However,
there is a little justification for having all requests go through the welcome. jsp page. This is a very simple
example of something known as a Model 2, or Model-View-Controller (MVC), architecture. With a Model 2
architecture, one component acts as a controller, directing the requests to the component that is set up to
handle a particular request. We will look at the Model 2 architecture in more detail in Chapter 6.

The registration. jsp page performs the same actions as in previous examples, with the
addition of reading the new request parameter added by welcome. jsp and displaying the value
of that parameter. When you click the link, the request is again sent to welcome. jsp. This final
time, both user and reqType are not null, so welcome. jsp does not forward the request, but
instead completes the response itself.

Clicking the Threading topic link again calls Threading. jsp, which still causes a
NumberFormatException. This time, however, errorPage. jsp includes formatStackTrace. jsp.
The formatStackTrace. jsp page outputs the stack trace just as older versions of errorPage. jsp did,
but it wraps it in a <pre> tag, so that the stack trace is nicely formatted.

Summary

In this chapter, we’ve taken a tour of many of the basic features of JSP pages. With the informa-
tion in this chapter, you should be able to begin creating JSP web applications of your own.
After reading this chapter, you should know:

»]JSP pages consist of HTML data, also known as template data, and Java code. Before a JSP
can process arequest, it must be compiled into a page implementation class and deployed
to a JSP container.

CHAPTER 3 JAVASERVER PAGES 105

nno,

* You can specify an error page for a JSP using <%@page errorPage=""%>. Error pages are
used to provide meaningful error information to a user when something bad happens to
the web application.

* You can import Java packages for the page using <% page import="" %>.

* Java code is included in the page using a declaration <%! declaration %>, a scriptlet
<% scriptlet %>, or an expression <%= expression %>.These elements allow you to mix
Java code with the template data in the page.

» JavaBean instances can be created using the <jsp:useBean> standard action; properties
of the bean can be set using <jsp:setProperty>; and the value of a bean’s properties can
be obtained using <jsp:getProperty>. JavaBeans are one way to encapsulate business or
domain logic so that JSP pages can be used primarily for presentation.

* Various implicit objects—such as request, response, out, session, and so on—are always
available to the JSP to help process a request. The session object is particularly useful
because it enables the web application to keep track of user information, such as the
contents of a user’s shopping cart in an e-commerce application.

¢ Servers translate and compile JSPs into Java classes that behave like Servlets.

* You can specify error handlers for the entire application using the <error-page> element
in the deployment descriptor.

¢ A]JSP can include the output of other JSPs or Servlets in the response to clients. This is
done through the <jsp:include> standard action.

* A]JSP canforward arequest to another JSP or Servlet for processing. This is done through
the <jsp:forward> standard action.

That’s quite a lot. All these features put together allow application developers to create
dynamic and powerful web applications that can be used for many purposes—f{rom chat rooms
to e-commerce, and from virtual communities to business applications. However, you may
have noticed that as the examples in this chapter became more dynamic and full-featured,
they also tended to have more and more Java code interspersed in the JSP pages. This tends to
be a problem because web page developers are often not Java developers.

What would be ideal is a way to create JSP pages that hide the Java code from the page
developers. This would allow the page developer to concentrate on the format and structure of
the markup, and leave Java developers free to work on only the Java code. There are several
ways to do this, and you will see some of them in the next chapter, where we explore some of
the new JSP features introduced in the latest version of the JSP specification.

Exercises

1. Declare an init and a destroy method in a JSP. Include some debug output so that you
can see when these methods are called. Deploy the JSP and determine when these
methods are called. (Depending on your container, you may not see the output from
the destroy method.)

106 CHAPTER 3 JAVASERVER PAGES

2. Write additional JSP pages for the Java FAQ application that allow a user to submit a
question and answer a question.

3. Create a JSP web application that presents a quiz to the user. Use a JSP page to present
each question one at a time to the user. Use the same page to accept the answer submitted
by the user. (That is, the HTML created by the page should submit the answer to the
same JSP page.) The page should determine whether or not the answer is correct,
compute the current score of the user, select a graphic that illustrates the current status,
and select the next question—this is all put into the response back to the client.

4, Create aJSP that echoes the request data back to the client. You can use implicit objects
such as request and session to retrieve the request data.

CHAPTER 4

Advanced JSP Topics

The previous chapter introduced you to JSP and provided enough information to enable you to begin writing
and using those web components. However, the previous chapter only scratched the surface of what can be
done with JSP pages.

You may have noticed in the previous chapter that as the examples became more involved, the
JSP source pages became littered with a lot of Java code. This is fine if the JSP developer is also
a software developer, but not so good if the page developer knows little or nothing about Java.
One of the design goals for JSP 2.0 was to make it easier to use without needing to learn how to
program in Java. In this chapter, we’ll look at some of the ways that the Java code inside the JSP
page can be moved back to the realm of the software developer, leaving the page designer free
to concentrate on presentation and usability.

In this chapter, you will learn:

* How to use Expression Language (EL) to simplify expressions in JSP pages
* How to create custom actions

* How to use the JSP Standard Tag Library JSTL) in your JSP pages

Note Some of the material in this chapter has been in use for a while as part of earlier JSP specifications.
Other material comes from the JSP 2.0 and JSP 2.1 specifications, and so is relatively new. For the examples
in this chapter that rely on new JSP 2.0 features, you will need to use a server that supports JSP 2.0, such
as J2EE 1.4, Java EE 5.0, Tomcat 5.0, or Tomcat 5.5. (Tomcat 5.0 is designed to run under Java 2 version 1.4;
Tomcat 5.5 is designed to run under Java 2 version 5.) For JSP 2.1 and EL 2.1, you will need a server that
supports JSP 2.1 and EL 2.1. For details about JSP 2.0 see the JSP 2.0 specification (http://jcp.org/
aboutJava/communityprocess/final/jsr152/). For details about JSP 2.1 or EL 2.1, see the JSP 2.1
or EL 2.1 specification (http://jcp.org/aboutJava/communityprocess/edr/jsr245/index. html).

Expression Language

In the previous chapter, you saw how to create scripting elements that can be used to embed
Java code in the JSP file. Scripting elements include Java declarations, scriptlets, and expressions,
as in these examples:

107

108

CHAPTER 4 ADVANCED JSP TOPICS

<%! int a = 5; %> <%-- declaration --%>
<% while (x < 10) { out.write("x=" + x); } % <%-- scriptlet --%>
<%= user.getFirstName() %> <%-- expression --%>

JSP 2.0 adds Expression Language (EL) statements to the JSP toolkit. EL statements provide a
somewhat simpler syntax for performing some of the same actions as the JSP scripting elements.
You can use EL statements to print the value of variables and access the fields of objects in a
page. It has arich set of mathematical, logical, relational, and other operators, and can be used
to call Java functions. In short, EL makes it easy for nonprogrammers to provide dynamic
behavior in JSP pages. Furthermore, you can use EL statements in scriptless JSP pages. Scriptless
JSP pages are those pages that, for whatever reason, are not allowed to use Java declarations,
scriptlets, or scripting expressions.

Note EL was added as part of JSP 2.0. Java Server Faces, which we will see in more detail in the next
chapter, implemented a similar EL. JSP 2.1 unifies the two versions.

Scriptless JSPs

You can, of course, write any JSP page without using any declarations, scriptlets, or expressions.
You saw an example of one such page at the beginning of the previous chapter: HelloWorld. jsp.
That page was scriptless by choice. In other words, HelloWorld. jsp could have included Java
declarations, scriptlets, or expressions, but we chose to write it using only standard HTML tags.
You can also force a page to be scriptless; that is, you can configure your web application so
that Java declarations, scriptlets, and expressions cannot be used in JSP pages. One reason for
doing this is to enforce a separation between display elements and business logic.

When you have scriptless pages—pages without Java scriptlets, directives, or declarations—
the dynamic behavior of JSP pages must be provided through other elements such as JavaBeans,
EL statements, custom actions, and standard tag libraries. By encapsulating business logic in
JavaBeans and custom actions, the page designers do not need to learn any Java code. (Using
JavaBeans with JSP was discussed in the previous chapter, and you will see how to use custom
actions and standard tag libraries later in this chapter.) Whether or not your application should
have scriptless JSP pages is a decision you must make based on the requirements and needs of
your application.

With JSP 2.0 and JSP 2.1, you mark a page as scriptless through the deployment descriptor.
EL statements are disabled or enabled through the page directive or through the deployment
descriptor. With earlier JSP versions, you can use the page directive to disable or enable scripting,
but EL is not supported. If a page is marked as scriptless, then the presence of scriptlets, scripting
expressions, and declarations in the page will cause a translation error.

Designating Scriptless Pages with JSP 2.0 or JSP 2.1

Within the <web-app> element of the deployment descriptor, the <jsp-config> element supplies
configuration information for the JSP pages in a web application. Within the <jsp-property-group>
element of <jsp-config>, the <url-pattern> identifies the JSP pages to which the configuration
applies.

CHAPTER 4 ADVANCED JSP TOPICS

UnderJSP 2.1, the <scripting-invalid> element defines whether or not scripting is enabled.
The default is false, so scripting elements (scriptlets, declarations, and directives) are not
invalid, and thus are allowed in a JSP. If you explicitly specify true, as follows, then scripting
elements are invalid in a JSP page and will cause a translation error if they occur.

<jsp-config>
<jsp-property-group>
<url-pattern>*.jsp</url-pattern>
<scripting-invalid>true</scripting-invalid>
</jsp-property-group>
</jsp-config>

Enabling EL Statements with JSP 2.0 or JSP 2.1

EL statements are enabled or disabled through two different techniques:
* You can enable EL statements for particular pages through the page directive.
* You can enable EL statements for whole sets of pages using the deployment descriptor.
The page directive for enabling or disabling EL statements looks like this:

<%@ page isELIgnored="true|false" %>

If the value of the isELIgnored attribute is true, then EL statements in the JSP are ignored and
treated as template data. If the value is false, then EL statements are evaluated. If you do not
use the attribute, the default is false, and EL statements are enabled.

You can also specify EL configuration information in the deployment descriptor. EL state-
ments are evaluated based on the value of the <el-ignored> element of the <jsp-property-group>
element:

<jsp-config>
<jsp-property-group>
<url-pattern>*.jsp</url-pattern>
<el-ignored>true</el-ignored>
</jsp-property-group>
</jsp-config>

As you might guess, if the value is true, EL statements are ignored and treated as template
data. If the value is false, EL statements are evaluated, and the result of evaluation is sent as
part of the page output. If a JSP source page that matches a URL pattern also contains an
isELIgnored attribute, the attribute in the page directive overrides the value of the <el-ignored>
element in the deployment descriptor. If there is no <el-ignored> element, the default is false,
so that EL statements are not ignored.

You can have multiple <jsp-property-group> elements within the <jsp-config> element,
each with different URL patterns to match. If a resource matches more than one group, the
pattern that is most specific applies.

Also, even though the <scripting-invalid> and <el-ignored> elements were shown
separately, the <jsp-property-group> element can contain both <scripting-invalid> and
<el-ignored> elements.

109

110

CHAPTER 4 ADVANCED JSP TOPICS

Designating Scriptless Pages with JSP 1.2 or Earlier

In the event you are stuck with a server that supports only JSP 1.2 or earlier, the methods for
enabling scripting are slightly different. EL is not supported in JSP 1.2 or earlier.

With JSP 1.2, the page directive has an attribute for scripting. The value of the attribute can
be true or false. The page directive for enabling or disabling scripting looks like this:

<@ page isScriptingEnabled="true|false" %>

The default for isScriptingEnabled is true.

You can also enable scripting in the deployment descriptor. Where the page directive
applies to a single page, the deployment descriptor can apply to whole sets of pages. For
example, to enable scripting, add the following element to the deployment descriptor:

<jsp-config>
<jsp-property-group>
<url-pattern>*.jsp</url-pattern>
<scripting-enabled>true</scripting-enabled>
</jsp-property-group>
</jsp-config>
</web-app>

The <scripting-enabled> element defines whether or not scripting is enabled. The default is true.

You can have multiple <jsp-property-group> elements within the <jsp-config> element,
each with different URL patterns to be matched. If a resource matches more than one group,
the pattern that is most specific applies.

Finally, the isScriptingEnabled attribute of the page directive takes precedence over the
<scripting-enabled> elements of the <jsp-property-group>. So, if the <scripting-enabled>
element is set to false, but a page’s isScriptingEnabled attribute is set to true, then scripting
will be enabled for the page.

Syntax of EL Statements

The basic syntax for an EL statement is as follows:
${expr}

where expr is a valid expression.
If you have a server that supports EL 2.1, you can also use this syntax:

#{expr}

The EL will parse and evaluate ${expr} and #{expr} in exactly the same manner. However,
the JSP 2.1 specification places additional restrictions on where and how ${expr} and #{expr}
can be used. In general, JSP 2.1 specifies ${expr} for expressions that are evaluated immediately
and #{expr} for expressions whose evaluation is deferred. Because of this restriction, you can
use only ${expr} in template text. Both ${expr} and #{expr} can be used to set the value of
attributes in actions.

CHAPTER 4 ADVANCED JSP TOPICS

Valid expressions can include literals, operators, object references (variables), and function
calls. EL statements cannot be nested, so the following expression is not valid:

${ 2 + ${subexpr} }

In the remainder of this chapter, we will use the ${ } syntax for all EL statements, but remember
that if you have a server that supports EL 2.1, you can also use #{ } where appropriate.

Literals

The EL syntax provides for a number of literal values that can be used in expressions, as shown
in Table 4-1.

Table 4-1. Literal Values That Can Be Used in EL Statements

Value Description
Boolean literals true or false values.
String literals Any string delimited by single or double quotes. The backslash is

used as an escape character for quotes and backslashes. For
example, 'This string\'s value has an escaped single quote' or
"the directory is c:\\My Documents\\apress". You need to escape
quotes only when they are enclosed by a quote of the same kind; in
other words, '\"'"' or "\"". Therefore, this version does not need to
be escaped: "This string's value has a single quote”.

Integer literals Any positive or negative integer number (-13, 45, 2374, and so on).

Floating-point literals Any positive or negative floating-point number (-1.3E-30, 3.14159,
2.00000000000001, .45, .56€2, and so on).

Null literal A null value.

Here are some examples of simple expressions and what they evaluate to in a page:

${true} <%-- evaluates to true --%>
${"Single quotes inside 'double quotes' do not need to be escaped"}
<%-- evaluates to Single quotes inside 'double quotes'
do not need to be escaped --%>
${2*4} <%-- evaluates to 8 --%>

Operators

You can use most of the usual Java operators in EL statements. Table 4-2 shows the available
operators.

111

112

CHAPTER 4 ADVANCED JSP TOPICS

Table 4-2. Operators That Can Be Used in EL Statements

Type Operator

Arithmetic + -, %, /,div, %, mod

Relational ==and eq
I=and ne
<and 1t
>and gt
<=and le
>=and ge

Logical &8 and and
|| and or
I'and not

Other (), empty, [], . (dot)

You are probably familiar with most of the operators listed in Table 4-2. However, note
that many of the operators have both symbolic and word variants (such as / and div, or < and 1t).
These equivalents are provided so that if your JSP page needs to be XML-compliant, you can
avoid using entity references (such as 81t; for <). Within an XML document, an EL expression
for “less than” could be coded ${2 1t 3} rather than ${2 < 3}.

In the next few paragraphs, we will look at the last four “other” operators in the list: (),
empty, [], and . (dot).

As with most expressions, parentheses can change the precedence of the expression:

${ (2 * 4) + 3 } <%-- evaluates to 11 --%>
${ 2 * (4 +3) } <%-- evaluates to 14 --%>

You can use the empty operator to test for various conditions. Here is an example:
${empty name}

This expression will return true if name references a null object or if name references an empty
String, List, Map, or array. Otherwise, empty returns false. The object referenced by name is an
object stored in the page, request, session, or application implicit objects. Here is an example:

<% Vector vec = new Vector(); // Create empty vector
pageContext.setAttribute("someName", vec); %> // Store vector in pageContext
${empty someName} // Evaluates to true; notice the operator acts on the

// attribute name someName, not the variable name vec

Keep in mind that this works for any object in one of the contexts, not just objects you
explicitly add using setAttribute() as shown in the example here. For example, as you will see
later in this chapter, custom actions can create variables that are accessible through EL expres-
sions. The empty operator can be applied to these variables. Another way to add objects to a
context is by creating a JavaBean; JavaBeans are stored in a context based on the scope attribute

CHAPTER 4 ADVANCED JSP TOPICS

of the <jsp:useBean> action. The point is that you can apply the empty operator to any object
that can be referenced by name in one of the contexts.

The dot operator (.) and the [] operator are used to access the attributes of an object in the
page. The left-value (1value) of the operator is interpreted to be an object in the page; the right-
value (rvalue) is a property, key, or index. For example, if you have defined a bean in the page
using the <jsp:useBean> standard action, you can access the properties of the bean using either
notation. Given a bean with the ID user and with the properties firstName and surname, you
could access its properties using either notation, like this:

${user.firstName}
${user[surname]}

The two notations are equivalent when accessing the properties of an object in the page. Either
expression results in the page attempting to find the given object in the page and call the getXXX()
method for the given property.

The . and [] operators can also be used for Map, List, or array values. When either operator
is applied to a Map (such as Hashtable or HashMap), the page class attempts to access the Map
attribute with the key given by the rvalue. For example, given the following:

${myObject[name]} <%-- myObject is a Hashtable or HashMap --%>
the equivalent code statement is:

myObject.get(name);

Note In many places in this chapter, you will see code that is equivalent to an EL statement. However,
when the JSP is translated, the EL statement is not translated into that same code. We show equivalent code
so that you can relate the EL statement to the code that you, as a developer, would need to write to achieve
the same effect. The code generated by the JSP translator to evaluate the expression is different.

If the operator is applied to a List or array, the page attempts to convert the rvalue into an
index. When the object implements List, the page class uses the get(int) method of List to
get the value of the expression:

myObject.get(name); // myObject is a List
When the object references an array, the get(Object, int) method of Array is used:

Array.get(myObject, name); // myObject is an array

Object References and Implicit Objects

Asyou have learned, EL statements can include object references. Object references are created
in numerous ways. JSP includes implicit objects that are always available to a page. These
implicit objects, such as out or request, can be included as part of an EL statement. Objects
that are created as part of the useBean standard action can be referenced in EL statements. In
general, any object reference that is available in scripting statements is also available in EL
statements. Through the implicit objects, the EL expression can perform many of the actions

113

114 CHAPTER 4 ADVANCED JSP TOPICS

that can be performed through scriptlets and JSP expressions. The implicit objects are shown
in Table 4-3.

Table 4-3. Implicit Objects That Can Be Used in EL Statements

Object

Description

pageContext

pageScope

requestScope

sessionScope

applicationScope

param

paramValues

header

headerValues

cookie

initParam

The javax.servlet.jsp.PageContext object for the page. Can be used to
access the JSP implicit objects such as request, response, session, out, and so
on. For example, ${pageContext.request} evaluates to the request object for
the page.

A Map that maps page-scoped attribute names to their values. In other words,
given an object, such as a bean, that has page scope in the JSP page, an EL
expression can access the object with ${pageScope.objectName}, and an attribute
of the object can be accessed using ${pageScope.objectName.attributeName}.

A Map that maps request-scoped attribute names to their values. This object
allows you to access the attributes of the request object.

A Map that maps session-scoped attribute names to their values. This object is
used to access the session objects for the client.

A Map that maps application-scoped attribute names to their values. Use this
object to access objects with application scope.

A Map that maps parameter names to a single String parameter value
(obtained by calling ServletRequest.getParameter(String name)). Recall that
arequest object contains data sent by the client. The getParameter(String)
method returns the parameter with the given name. The expression
${param.name} is equivalent to request.getParameter(name). (Note that name
is not the literal string 'name', but the name of the parameter.)

A Map that maps parameter names to a String[] of all values for that parameter
(obtained by calling ServletRequest.getParameterValues(String name)). Similar
to the param implicit object, but it retrieves a String array rather than a
single value. For example, the expression ${paramValues.name} is equiva-
lent to request.getParameterValues(name).

A Map that maps header names to a single String header value (obtained

by calling ServletRequest.getHeader (String name)). Requests always
contain header information such as the content type and length, cookies, the
referring URL, and so on. The expression ${header.name} is equivalent to
request.getHeader(name).

AMap that maps header names to a String[] of all values for that header
(obtained by calling ServletRequest.getHeaders(String)). Similar to the
header implicit object. The expression ${headerValues.name} is equivalent to
request.getHeaderValues(name).

A Map that maps cookie names to a single Cookie object. A client can
send one or more cookies to the server with a request. The expression
${cookie.name.value} returns the value of the first cookie with the given
name. If the request contains multiple cookies with the same name, you
should use ${headerValues.name}.

AMap that maps context initialization parameter names to their String parameter
values (obtained by calling ServletContext.getInitParameter(String name)). To
access an initialization parameter, use ${initParam.name}.

CHAPTER 4 ADVANCED JSP TOPICS

For example, in this code snippet, the bean has been given page scope, and it has a property
named topic:

<jsp:useBean id="questions" scope="page" class="com.apress.jsp.Questions">
<jsp:setProperty name="questions" property="topic"/>
</jsp:useBean>
${pageScope.questions.topic} <%-- Evaluates to the topic property of the
bean referenced by the id 'questions' --%>

As another example, if you've added an object to the session, you can access it as shown here:

<% session.put("address", "123 Maple St."); %>
${sessionScope.address} <%-- evaluates to 123 maple St. --%>
<%= session.get("address"); %> <%-- equivalent scripting expression --%>

Attribute Values in Standard Actions

You can use EL statements of the form ${expr} as attribute values in standard actions. (They
can also be used anywhere there is template text, such as HTML or non-JSP elements, in the
JSP file.) Standard actions were introduced in Chapter 3, and they include actions such as
useBean, setProperty, include, forward, and so on.

EL statements can be used as an attribute value for any attribute that can accept request-
time expression values, such as the page attribute of the forward action:

<jsp:forward page="${param.nextPage}" />

In this example, the <jsp:forward> action will forward the request to the URL specified by the
request parameter named nextPage. If the request parameter does not exist, or if its value is not
avalid URL, an error will occur in the page.

Table 4-4 shows the attributes the JSP 2.1 specification lists as able to accept request-time
expression values.

Table 4-4. Standard Action Attributes That Can Accept Request-Time Expression Values

Action Attribute
useBean beanName
setProperty Value
include page
forward page
param value
height plugin
width plugin

element name

115

116

CHAPTER 4 ADVANCED JSP TOPICS

Since the #{expr} syntax is used for deferred evaluation, it is not legal for the attribute
value of standard actions. The #{expr} syntax can be used for custom actions. See the “Writing
aTag Library Descriptor” section later in this chapter for information about using #{expr } with
custom actions.

Errors and Default Values in EL Statements

Because of their use in display-oriented JSP pages, EL statements do not throw the same excep-
tions that you might expect from the equivalent Java expression. The EL specification states:

The Expression Language has been designed with the presentation layer of web
applications in mind. In that usage, experience suggests that it is most important
to be able to provide as good a presentation as possible, even when there are simple
errors in the page. To meet this requirement, the EL does not provide warnings, just
default values and errors. Default values are type-correct values that are assigned
to a subexpression when there is some problem. An error is an exception thrown (to
be handled by the environment where the EL is used).

For example, given this expression:
${user.surname}
The analogous Java expression is:
user.getSurname();

Now, if you were writing this Java code manually, and you had not defined the user variable or
did not provide a getSurname() method, the compiler would warn you of this situation. Before
the code was ever executed, the compiler would warn of the missing method, and you would
be able to supply it. If you did not initialize the variable user at runtime, the code would throw
aNullPointerException.

However, in a JSP page, many of these requirements cannot be checked until runtime.
You might not realize a method was missing because compilation might not occur until the
first request for the page. Similarly, you might not realize that the reference user had not
been initialized until a page request was made. And at that point, the person who sees the
error message from the server is the page client, not the developer. A translation error or
compilation error at that point could result in an ugly stack trace being sent to the user of
your application. However, since the JSP page is usually used for presentation, many EL
expressions result in default values, rather than thrown exceptions.

For example, in the previous expression, if user is null, the value of the EL expression is
null rather than a NullPointerException. With many of the operators, if either the lvalue or
the rvalue is null, the default value of the expression is null, rather than a thrown exception.
(Consult the EL specification for the full list of default values.) This will usually result in the

CHAPTER 4 ADVANCED JSP TOPICS 117

user receiving some kind of response page, even though that page might have bad data in it,
rather than an error page. When an EL expression does result in an exception, the exception
is handled via the normal JSP exception-handling mechanisms.

JSP Pages That Use EL

At this point, you have enough information to put together a simple application that uses some
of the techniques covered in this chapter. In this first example, we’ll create a few JSPs that use
EL expressions. Note that you must deploy this example to a server that supports JSP 2.0 or JSP 2.1.
If you are trying this example with Java EE or Tomcat, you will need to use J2EE 1.4, Java EE 5.0,
Tomcat 5.0, or Tomcat 5.5. The directory structure of the application is shown in Figure 4-1.

=@ Jsp,

=-{&= com
-I-{&= apress
== faq
Questions.class
[Questions.java
EL_1.jsp
web.xml
Questions.jsp
TopicList.jsp
welcome.jsp

Figure 4-1. Directory structure for the first EL example, JSP_Ex05

Note At the time this book was written, there was no application server that supported JSP 2.1 and EL 2.1.
We will run this example under J2EE 1.4 and Tomcat 5.0. By the time you read this, though, a server that
supports EL 2.1 may be available. We have made every effort to follow the specifications so that this example,
and the other examples in the book, will work with both JSP 2.0 and JSP 2.1, as well as EL 2.1. However, you
should check www. apress.com to see if the source code has been updated to accommodate changes in
the specification.

We will create the files welcome.jsp, TopicList.jsp, Questions.jsp, EL_1.jsp, and
Questions.java. If you are using the Sun Deployment Tool, the web. xml file will be created for
you. If you are deploying to Tomcat, you will need to create the web.xml deployment descriptor
manually. The basic flow of the application is shown in Figure 4-2. (We will use this same flow
for several examples in this chapter.)

118 CHAPTER 4

ADVANCED JSP TOPICS

Questions.class

TopicList displays questions

3. User selects question R

hard-coded in Questions.class

1. Client request for FAQ page Y
A
P TopicList.jsp
<
Web page 2. Display
with FAQ topics
»| questions
diplayed
>
. B A
4. Question Questions.jsp [« Anower
selected included
Web page
with FAQ
question <
and .
answer 5. Display FAQ page

Figure 4-2. TopicList.jsp displays a list of questions from Questions.class. When the user selects a
question, the request is sent to Questions.jsp, which includes the correct answer JSP page.

Although this example appears to build on the Java FAQ example from the previous chapter,
you do not need to use any of the files from previous examples. This example does have a file

EL.1.jsp

named welcome. jsp, but it is different from the previous versions. The much simpler
welcome.jsp is shown in Listing 4-1.

Listing 4-1. welcome.jsp

<html>
<head>

<title>Java FAQ Welcome Page</title>

</head>

<body>

<h1>Java FAQ Welcome Page</h1>

<p>Welcome to the Java FAQ. Click a topic to see FAQ
questions about that topic.</p>

<p>Expression Language

</ax</p>
</body>
</html>

CHAPTER 4 ADVANCED JSP TOPICS

The only purpose of welcome. jsp is to call the topic list page with the appropriate parameter.
The file Topiclist. jsp is shown in Listing 4-2.

Listing 4-2. TopicList.jsp

<%@ page import="java.util.*" %>
<html>
<head><title>Topic Questions</title></head>
<body>
<h1>Topic Questions</h1>

<jsp:useBean id="questions" class="com.apress.faq.Questions">
<jsp:setProperty name="questions" property="topic" />
</jsp:useBean>

The number of questions in topic ${questions.topic} is ${questions.numQuestions}
<%
Map topic = questions.getQuestions();
Iterator keys = topic.keySet().iterator();
while (keys.hasNext()) {
String key = (String) keys.next();
pageContext.setAttribute("key", key);
%>
<p>Question
${key}:
${questions.questions[key]}

</body>
</html>

The Topiclist. jsp page displays a list of questions for a given topic. These questions are
hard-coded into the Questions. java class, shown in Listing 4-3.

Listing 4-3. Questions.java

package com.apress.faq;

import java.util.Map;
import java.util.HashMap;
import java.util.TreeMap;

public class Questions {
private String topic;
private int numQuestions;
private Map questions = new HashMap();

119

120 CHAPTER 4 ADVANCED JSP TOPICS

public String getTopic() { return topic; }
public void setTopic(String t) {
topic = t;
setNumQuestions(getQuestions().size());

}

public int getNumQuestions() { return numQuestions; }
public void setNumQuestions(int n) { numQuestions = n; }

public Map getQuestions() {
return (Map) questions.get(topic);
}

public void setQuestions(Map m) { questions = m; }

public Questions() {
Map topic = new TreeMap()
topic.put("EL_1", "How do I use implicit objects?");
topic.put("EL 2", "How do I use the JSTL?");
topic.put("EL_3", "How do I use the 'empty' operator?");
questions.put("EL", topic);

Compile this file into Questions.class.
After displaying the list of questions, the user can click a link for a particular question. The
request is posted to the Questions. jsp file, shown in Listing 4-4. (Yes, this really is the whole file!)

Listing 4-4. Questions.jsp
<jsp:include page="/WEB-INF/${param.qid}.jsp" />

As you can see, Questions. jsp simply includes the appropriate question file based on the
user’s selection. For this example, we will create the JSP page for only the first question (see
Listing 4-5). In a later example, you will see EL_2.jsp. The EL_3.jsp page is not presented here,
but it is included with the downloadable code for this book.

Listing 4-5. EL_1.jsp

<html>
<head>
<title>Expression Language Qi</title>
</head>

<body>
<h1>Expression Language Question 1</hi1>
<h2>How do I use implicit objects?</h2>

CHAPTER 4

<p>The implicit objects are</p>

pageContext</1i>
pageScope</1i>
requestScope</1i>
sessionScope</1i>
applicationScope</1i>
param</1i>
paramvalues</1i>
header</1i>
headerValues</1i>
cookie</1i>
initParam</1i>

ADVANCED JSP TOPICS

<p>Implicit objects form the lvalue of an EL expression, and their
properties are accessed using the . or [] operator. Here are some

examples:</p>

<%-- The four lines after this comment contain special expression syntax
needed to display a literal ${} in the output of a JSP. This is done
by using an expression to evaluate the literal '${'. That is, the
expression ${ '${' } evaluates to ${, and whatever follows the

expression is treated as normal template text.
--%>

<p>${"'${ "' }pageContext.request.requestURI} evaluates to

"${pageContext.request.requestURI}"</p>
<p>${"${ " }param.qid} evaluates to "${param.qid}"</p>

<p>${'${ ' theader.referer} evaluates to "${header.referer}"</p>

<p>${"'${"' }cookie.JSESSIONID.value} evaluates to
${cookie.JSESSIONID.value}</p>
</body>
</html>

Deploying the FAQ Application to Tomcat

If you are deploying to Tomcat or some other stand-alone JSP container, you will need a
deployment descriptor. Listing 4-6 shows a very simple web.xml file that will do the job.

Listing 4-6. web.xml for Jsp_Ex05

<?xml version="1.0" encoding="ISO-8859-1"?>

<web-app xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://java.sun.com/xml/ns/javaee/web-app 2 5.xsd"

version="2.5">

121

122

CHAPTER 4 ADVANCED JSP TOPICS

<display-name>Jsp Ex05 - Expression Language</display-name>
<welcome-file-list>
<welcome-file>welcome.jsp</welcome-file>
</welcome-file-list>
</web-app>

Note that the deployment descriptor does not need to explicitly enable scripting or EL
statements, because they are enabled by default. If you want to explicitly enable them, add the
following to the deployment descriptor:

<jsp-config>
<jsp-property-group>
<url-pattern>*.jsp</url-pattern>
<scripting-invalid>false</scripting-invalid>
<el-ignored>false</el-ignored>
</jsp-property-group>
</jsp-config>

If you are deploying to a stand-alone Tomcat 5.0 server, you can copy the entire directory
structure into the Tomcat /webapps directory. Alternatively, you can create a .war file and place
that into /webapps. You create the .war file by navigating to the top-level directory of the appli-
cation (/Jsp_Ex05 in this example) and executing this command:

> jar cvf Jsp _Ex05.war *

Deploying the FAQ Application to Java EE

If you are using the Sun Application Server, follow these steps to deploy the application:

1. Run the Deployment Tool and Create a new Web Application Archive by selecting File »
New » Web Component from the menu.

2. Addthe fileswelcome. jsp, TopicList. jsp, Questions.jsp,EL_1.jsp, and Questions.class to
the WAR. Make sure you place the EL_1. jsp file into the /WEB-INF directory. Click Next.

3. Select the JSP radio button, and click Next.
4, In the next wizard step, select TopicList.jsp as the component to create. Click Finish.

5. Deploy the application using Tools » Deploy from the menu.

Running the FAQ Application

After the application is deployed, open a web browser and enter the address http://
localhost:8080/1sp Ex05/welcome.jsp. Note that because this example has not been fully
implemented, the links for EL_2 and EL_3 will not work correctly. When you enter the URL, you
should see a page like the one shown in Figure 4-3.

CHAPTER 4 ADVANCED JSP TOPICS 123

A CBEX
. Fle Edt View Favorites Tools Help "
' Address | €] http:/flocahost:8080/Jsp_Ex0S/ v B6o

Java FAQ Welcome Page

Welcome to the Java FAQ. Click a topic to see FAQ questions about that topic.

Expression Language

&) Done & J Local intranet

Figure 4-3. The welcome.jsp page for the application has a link to the TopicList.jsp page. That
page shows the questions for the Expression Language topic.

When you click the Expression Language link, you will see the page shown in Figure 4-4.

CEBX
. Fle Edt View Favorites Took Help 3
- Address €] http://localhost:8080/Jsp_Ex05/TopicList.jsp?topic=EL A ﬂ Go

Topic Questions

The nmumber of questions in topic EL is 3
Question EL_1: How do I use implicit objects?
Question EL_2: How do I use the JSTL?

Question EL_3: How do I use the 'empty' operator?

&) &J Local intranet

Figure 4-4. There are three questions in the Expression Language topic. Clicking a link here will
display the page for that question.

Click the EL_1 link, and you will see the page displayed in Figure 4-5.

124

CHAPTER 4 ADVANCED JSP TOPICS

File Edit View Favorites Tools Help

Address €] http://localhost: 8080/Jsp_Ex05/Questions.jsp?qid=EL_1 4 L] Go

Expression Language Question 1

How do I use implicit objects?
The implicit objects are

pageContext
pageScope
requestScope
sessionScope
applicationScope
param
paramValues
header
headerValues
cookie
initParam

Implicit objects form the Ivalue of an EL expression, and their properties are accessed
using the . or [] operator. Here are some examples:

&) Done &J Local intranet

Figure 4-5. The Questions.jsp page includes the appropriate FAQ page in its output.

The questions that are displayed on the page for each topic are hard-coded into the Questions
JavaBean class. This class has a field named questions, of type Map, which is used to store the
set of individual questions for each topic. The questions for each topic are also stored in a Map
keyed by the question number. The Map for the topic is stored in the questions Map keyed by a
topic abbreviation.

The constructor for the class creates a topic map holding three questions, and then stores
this map in the questions map. When the class is instantiated in the TopiclList. jsp page, the
topic field is set to the selected topic using the <jsp:setProperty> tag.

This class has standard JavaBean setter and getter methods. This means that in an EL
expression, you can access the questions field using the dot notation:

${questions.questions}

When the EL expression is translated, it is translated into code that calls the getQuestions()
method of the Questions class. The TopicList.jsp page also accesses the topic and numQuestions
fields of the class. These are also translated into code that calls the appropriate getter methods
of the class.

The TopicList.jsp page uses a <useBean> tag to instantiate an instance of the Questions
class. The object that is created automatically has page context, so you can reference it in an EL
statement using the name set by the id attribute in the <jsp:useBean> tag. That is the next thing
the page does, accessing the topic and numQuestions properties using this line of code:

CHAPTER 4 ADVANCED JSP TOPICS

The number of questions in topic ${questions.topic}
is ${questions.numQuestions}

The EL expression references the bean using its id from the <jsp:useBean> action. It
accesses the properties using the dot notation. The expression ${questions.topic} evaluates
to the value of the topic property of the bean, which happens to be "EL". The expression
${questions.numQuestions} evaluates to the value of the numQuestions property, which is "3".
Next, the page uses a scriptlet to iterate over the keys used in the Map that holds the questions.
Notice that each time through the loop, the page stores the current value of the key as a
pageContext attribute using the name "key". This allows another EL expression to access the
current key using the expression ${key}.

Not only does the page access the value of key to create a link in the page, it uses key to
access the value of the question stored by the Questions object.

Since you can access any particular value in a Map if you know the name, you can retrieve a
particular question held by the Questions object like this:

${questions.questions[key]}

Because the value of key is a String that was used as the key to store a question in a Map
object, the expression ${questions.questions[key]} is equivalent to this code:

Map m = questions.getQuestions();
String g = (String)m.get(key);

Note Even though the expression ${questions.questions[key]} is equivalent to the code shown, it
is not translated into that code. You can see what the actual code looks like by examining the translated
source file. See the “Translation and Compilation” section in Chapter 3 for information about how to find a
translated source file.

The value of the expression after evaluation is simply the question string stored by the
class. This is output to the response.

When you click one of the links in the page created by TopiclList.jsp, the requestis sent to
the Questions. jsp page. This is a very simple page consisting of a single standard action, the
<jsp:include> action:

<jsp:include page="/WEB-INF/${param.qid}.jsp" />

Notice that this file does not contain any template text. JSP files can consist solely of JSP
elements and still be valid JSP pages. The include action uses an EL expression in the page
attribute to determine which JSP page to include. It does this by using the implicit param
object and the name of the parameter that is being accessed. The TopiclList. jsp page outputs
a link that looks like this:

EL 1

125

126

CHAPTER 4 ADVANCED JSP TOPICS

This link sends the request to the Questions. jsp file with a request parameter of qid=EL_1. The
Questions.jsp page can access the value of that parameter with this EL expression:

${param.qid}

We want to use this value to include the answer to the selected question in the response to
the user. In this case, the answer is found in a page called EL_1. jsp in the WEB-INF directory, so
the page attribute for our <jsp:include> action is set to "/WEB-INF/EL_1.jsp".

This answer page also uses EL expressions. One interesting thing to note is that the speci-
fication provides a way to have a literal ${expr} in the output of a page. This is done by placing
the quoted expression '${" in an EL expression. The EL expression ${ ' ${ "'} evaluates to ${ in the
page, and the rest of the string is output without evaluation. For example, this line:

<p>${'${ }param.qid} evaluates to "${param.qid}"</p>
will generate this HTML:
<p>${param.qid} evaluates to "EL_1"</p>

The remainder of the page uses various EL expressions to show how to use some of the
implicit objects available in an EL expression.

Although using EL statements in the TopiclList.jsp page allowed us to eliminate some
scriptlet statements, we still needed to use scriptlets to be able to iterate over the set of ques-
tions. We would also need to use scriptlets if we wanted to use a for or while loop. So, using EL
statements by themselves cannot completely eliminate the need for scriptlets in JSP pages. To
make pages that are truly scriptless, we need more tools. One of those other tools is custom
actions, which are described in the next section.

Custom Actions and Tag Handlers

Several times in the previous chapter, we talked about removing Java code from the JSP page to
further separate the display elements from the business logic. In reality, the Java code is not
removed from the page, but it is hidden from the page developer.

Standard actions were introduced in the previous chapter. Standard actions are defined by
the JSP specification and are actions that must be implemented by every JSP container. They
provide a way to encapsulate Java code so that the page designer needs to know only the syntax
of the tag. A standard action appears in a JSP page as an XML-style tag. Here is the tag for a
useBean standard action with an enclosed setProperty action:

<jsp:useBean id="questions" class="com.apress.faq.Questions">
<jsp:setProperty name="questions" property="topic"/>
</jsp:useBean>

At the start of the tag is the namespace prefix, jsp (a namespace is analogous to a Java
package). This is followed by the action name. The standard action can have attributes, and
some actions have bodies between the start and end tag. Tag bodies can include other tags (as
shown in the example here) and/or template data. To anyone familiar with XML, this looks like
astandard XML tag. But even though the taglooks like an XML tag, it is used in a JSP file, which
does not need to be an XML document, and the JSP translator “sees” the tag a little differently.

CHAPTER 4 ADVANCED JSP TOPICS

The translator sees the tag as a token that is to be replaced by Java code. This Java code
implements the functionality specified by the tag. Thus, the Java code is not removed from the
page, but it is encapsulated within the tag. For example, when the JSP translator for Tomcat 5.0.28
sees the previous tag, it generates the following code:

com.apress.faq.Questions questions = null;
synchronized (_jspx_page context) {
questions = (com.apress.faq.Questions) jspx_page context.getAttribute(
"questions", PageContext.PAGE SCOPE);
if (questions == null){questions = new com.apress.faq.Questions();
_jspx_page_context.setAttribute("questions", questions,
PageContext.PAGE_SCOPE);

Now, if the only actions you had available were the standard actions, you would still need
to use Java code embedded in your JSP page. Fortunately, the JSP specification provides a way
for developers to create their own actions. These actions are known as custom actions. Custom
actions are deployed to the web application using a tag library. The mechanism for defining,
implementing, deploying, and executing custom actions is known as tag extension. Using standard
and custom actions, a web designer can build a dynamic web page without needing to know
how to program in Java. Custom actions allow developers to take advantage of the power of
Java—object reuse, encapsulation, and ability to debug—to provide a consistent mechanism
for page designers to provide dynamic web pages.

Frequently in web application development, there are tasks that are done over and over
within a web page. When you come across this type of situation, a light bulb should illuminate,
and you should consider making the task into a custom action. Once you create a custom
action, aJSP page can take advantage of the encapsulated functionality very easily by just refer-
encing the custom actions using XML. Of course, it is also possible to encapsulate functionality
in JavaBeans, and many page authors take that approach. So when should you use a custom
action instead of a JavaBean? The answer is rather simple: JavaBeans cannot access the JSP
page environment, so if you need access to the JSP page environment in a reusable piece of
code, use a custom action.

How Custom Actions Work

When we use the term custom action (or standard action, for that matter), we are generally
referring to the tag in the JSP file. Custom actions are used to create a dynamic response to
arequest.

Custom actions, like standard actions, can be used just like any other tag in aJSP file. Theylook
like HTML tags in a JSP page. They can be customized through attributes passed by the caller and
can access all objects in a JSP page. Custom actions can have bodies and can be nested.

Custom actions are identified by a prefix and a name:

<prefix:name />

The prefix is used to avoid conflicts between tags with the same name. The prefix is selected
and used by the page developer, although the tag developer can suggest a prefix, as you will see
later. The name is the name of the action. This is specified by the tag developer.

127

128

CHAPTER 4 ADVANCED JSP TOPICS

Custom actions can be empty (without a body):

<x:MyCustomAction /> <%-- Start and end tags combined into single tag --%>
<x:MyCustomAction></x:MyCustomAction> <%-- Separate tags --%>

Or they can have bodies:

<x:MyCustomAction>
Body content
</x:MyCustomAction>

The Java code that implements the tag can direct the page to evaluate the body or skip the
body. Actions can be nested. Here is an example using the <jsp:useBean> and <jsp:setProperty>
standard actions:

<jsp:useBean id="user" class="com.apress.faq.User">
<jsp:setProperty name="user" property="*"/>
</jsp:useBean>

Also, as shown with the <jsp:useBean> and <jsp:setProperty> actions, an action can have
attributes that customize the action. Actions can access the implicit objects of JSPs (request,
response, and so on) and use these objects to modify the response to the client. Objects can be
created by a custom action, and these objects can be accessed by other actions or scriptlets in
the JSP.

The actual behavior of a custom action is provided at runtime by an instance of a Java
class. This Java class is also known as a tag handler. Figure 4-6 shows the relationship between
custom actions in a JSP page and the page implementation class for that page.

JSP File Page Implementation Class
<x:MyCustomAction> Y| //code that creates and uses
</x:MyCustomAction> /lthe tag handler class

/lto create a dynamic JSP

Figure 4-6. A custom tag is translated into code in the page implementation class.

The tag handler is the Java class that implements the behavior of a custom action. The tag
handler class follows the requirements of a JavaBean, and it will implement one of the tag
extension interfaces. There are several tag handler interfaces available. These interfaces are
defined in the javax.servlet.jsp.tagext package. These interfaces will be located in some JAR
file of your application server. For example, Tomcat 5.0 is the reference implementation for
J2EE 1.4. So, for the stand-alone Tomcat 5.0 server or the J2EE 1.4 application server, the inter-
face class files arelocated in the jsp-api. jar file. If you have a different application server, your
JAR file will probably have a different name, but you should be able to find it easily enough by
searching the JAR files used by your application server.

CHAPTER 4 ADVANCED JSP TOPICS

Table 4-5 shows the different tag handler interfaces, the specification in which they were
introduced, and the Tomcat and Java EE versions that support them.

Table 4-5. Tag Handlers Listed by the JSP Specification

JSP Tag Handler Interfaces JSP Specification Reference Implementation

Tag, BodyTag JSP 1.1 Tomcat 3, J2SDKEE 1.2
IterationTag JSP1.2 Tomcat 4, J2SDKEE 1.3
SimpleTag, JspFragment JSP 2.0 Tomcat 5, J2EE 1.4, Java EE 5.0

Asyou can see in Table 4-5, JSP 1.1 has two interfaces for tag handlers: Tag and BodyTag. Tag
handles a simple action with no iteration and no need to process the body of the tag. BodyTag is
used when the body of the tag is processed (rather than simply output) as part of the action.

JSP 1.2 introduced the IterationTag to deal with iteration (JSP 1.1 used BodyTag to handle
iteration). These three interfaces—Tag, IterationTag, and BodyTag—are known as classic tag
handlers.

JSP 2.0 adds the SimpleTag interface to make tag handling easier, and the JspFragment interface
to encapsulate the body content of a tag in an object. SimpleTag and JspFragment are known as
simple tag handlers.

Tip If performance concerns are critical, we suggest that you first implement your tag handler as a simple
tag, and then taking some performance metrics to see if your criteria are met before embarking on the more
complicated and time-consuming path of writing a classic handler.

The tag extension mechanism of JSP 1.2 was powerful, but it was also relatively complicated
to use. JSP 2.0’s simple tag handlers simplify the process of developing a tag handler. They are
no less capable than classic tag handlers in dealing with iteration and processing of body content.
You are more likely to be using simple tag handlers than the more complicated classic tag
handlers in your development, so we will look at those first.

Simple Tag Handlers

JSP 2.0 introduces the SimpleTag interface and a base class, SimpleTagSupport that implements
the interface shown in Figure 4-7.

Using the SimpleTag interface and its associated base class significantly simplifies the
process of implementing a tag handler. You can use this interface and base class to implement
any tag handlers in JSP 2.0, regardless of whether the tag needs to be processed multiple times
or has a body that needs to be processed.

129

130

CHAPTER 4 ADVANCED JSP TOPICS

<<interface>> P SimpleTagSupport
s||'aneTag -parentTag : JSPTag
+doTag() : void #JSPContext : JSPContext
+getParent() : JSPTag #JSPBody : JSPFragment

+setJSPContext() : void
+setParent() : void
+setJSPBody() : void +getParent() : JSPTag

+doTag() : void
+setParent() : void

+setJSPContext() : void
#getJSPContext() : JSPContext
+setJSPBody() : void
#getJSPBody() : JSPFragment
+findAncestorWithClass() : JSPTag

Figure 4-7. The UML diagram for the SimpleTag interface and the SimpleTagSupport class

To create a custom action, you create a tag handler class that extends the SimpleTagSupport
base class, overriding the methods as necessary to provide the behavior for a custom action.
Usually, all you will need to do is override the doTag() method. This method provides all the
behavior of the custom action, including tag logic, iterations, and body evaluation. As you will
see later, classic tag handlers used three methods to do everything that is done within the
single doTag() method of SimpleTag.

Translating a Tag Handler

When the tag appears in a JSP source file, the translator creates code that does the following:

Creates an instance of the tag handler by calling the zero-argument constructor of the
implementation class

Calls setJspContext (IspContext) to set the context for the tag handler
Calls setParent(JspTag) if the tag is nested
Initializes the tag handler attributes

Creates a JspFragment object and passes the JspFragment object to setJspBody (JspFragment)
if the tag has a body

Calls the doTag() method

For the page implementation code to be able to create the tag handler instance and
initialize its properties, all tag handlers follow the JavaBean conventions. You may recall that
for our purposes, this means two things:

The tag handler class must have a no-argument constructor.

Properties of the class that can be used by clients must be exposed through public
setXXX() methods to set the value and must have getXXX() or isXXX() methods to
retrieve the value.

CHAPTER 4 ADVANCED JSP TOPICS

This provides a standard way for JSP containers to create instances of tag handlers and
set the properties of tag handlers from attributes of the custom action element in the JSP.
Each attribute in the custom action tag must correspond to a property of the tag handler that
can be set using some setXXX() method.

After the taghandler class is created and initialized, the page class calls doTag(). This method
is called only once for the tag. If the body content needs to be evaluated, it does that through
the JspFragment object that was passed to the class through setJspBody().

Using a JspFragment

Like SimpleTag, JspFragment is also an interface, but the implementation of the interface is left
entirely to the JSP container. As a developer, you need to know only how to call a fragment to
evaluate its contents. If your SimpleTag tag handler needs to evaluate the body of the tag, it calls
the invoke() method of JspFragment:

public void invoke(java.io.Writer out)

Asyou can see, invoke() takes a single argument. If the Writer argument is null, the fragment
will write its output to the current output stream of the client response; otherwise, the fragment will
write its output to the given Writer. JspFragment objects can contain template text, JSP action
elements, and EL expressions, but they cannot contain JSP scriptlets or scriptlet expressions.
Variables used in EL expressions are set through context attributes, as you will see in the
example later in this section.

Writing a Tag Library Descriptor

After creating one or more classes that implement a tag, you need to inform the container
which tag handlers are available to the JSP pages in an application. This is done through a
descriptor file called a tag library descriptor (TLD). The TLD is an XML-compliant document
that contains information about the tag handler classes in a tag library. The tag in the JSP page
must conform to the constraints described in the TLD. If the tag is not used correctly, as described
by the TLD, then a translation error will occur.

A TLD for JSP 2.0 will provide information about the tag library using a <taglib> element,
as shown in Listing 4-7.

Listing 4-7. Sample TLD

<?xml version="1.0" encoding="UTF-8" ?>

<taglib xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee/web-jsptaglibrary 2 1.xsd"
version="2.1">
<tlib-version>1.0</tlib-version>
<short-name>apress</short-name>

131

132

CHAPTER 4 ADVANCED JSP TOPICS

<tag>

<name>example</name>

<tag-class>com.apress.faq.Example</tag-class>

<body-content>empty</body-content>

<variable>
<name-given>scripti</name-given>

</variable>

<variable>
<name-from-attribute>attri</name-from-attribute>

</variable>

<attribute>
<name>attri</name>
<required>yes</required>
<rtexprvalue>true</rtexprvalue>

</attribute>

<attribute>
<name>attr2</name>
<required>no</required>
<rtexprvalue>false</rtexprevalue>

</attribute>

</tag>
</taglib>

The <taglib> element can have a number of subelements. The mandatory elements are
shown in Table 4-6.

Table 4-6. Mandatory Subelements of <taglib>

Element Meaning
tlib-version The version number of the library
short-name A simple default name, which may be used as the preferred prefix value in

taglib directives

Tag Information about a tag handler

The <tag> element has several subelements. Two subelements—name and tag-class—
are mandatory. In addition, you will often need to use the optional subelements of the <tag>
element. The <tag> subelements are shown in Table 4-7.

Table 4-7. Subelements of <tag>

Element Meaning

name The name of the tag handler (mandatory).

tag-class The fully qualified class name of the tag handler class (mandatory).

CHAPTER 4 ADVANCED JSP TOPICS

Table 4-7. Subelements of <tag>

Element Meaning

body-content Whether the body of the tag can have content. Valid values are tagdependent,
scriptless, or empty. The default is scriptless. If the value is empty, the tag
is not allowed to have a body.

variable Defines the scripting variables created by this tag handler and made available
to the rest of the page. This element must contain one of two subelements:
name-given or name-from-attribute. If name-given is used, the value of this
element defines the name that other JSP elements can use to access the
created scripting variable. If name-from-attribute is used, the value of the
attribute with the name given by this element defines the name of the
scripting variable.

attribute Defines attributes for the tag. This element has three subelements: name,
required, and rtexprvalue. The value of the name element will be the name of
the attribute. The element named required is optional, and must be one of
true, false, yes, or no. This indicates whether the attribute is required or
optional. The default value is false (meaning the attribute is optional). The
rtexprvalue element is optional, and must be one of true, false, yes, or no.
The default value is false, which means that the attribute can be set only by
using a static value known at compile time. If the element contains true or
yes, the attribute can be set using a runtime expression.

The TLD in Listing 4-7 is for a tag library that the developer has identified as version 1.0.
It relies on JSP 2.0. The suggested prefix for tags from the library is apress. However, note that
page developers can use whatever prefix they desire. This is so that name conflicts between
libraries with the same suggested prefix can be avoided.

The TLD defines one tag with the name example. The tag handler class for the tag is
com.apress.faq.Example. The tag must have an empty body, because the value of the
<body-content> element is empty.

The tag creates two objects that are made available to the rest of the page as scripting variables.
The JSP page accesses the first object using the name script1 (from the <name-given> element). The
second object is accessed by the name given in the attr1 attribute of the tag.

The tag takes two attributes. The attribute attr1 is required, and can be set by a runtime
expression. The attribute attr2 is optional, and cannot be set at runtime from an expression.

When rtexprvalue is set to true, the attribute can take an EL expression of the form ${expr}. If
the tag element also includes either <deferred-value/> or <deferred-method/> as an empty
element, then the attribute can be set using an EL expression of the form #{expr}. See the JSP spec-
ification for more details about using request-time expressions to set the value of an attribute.

After creating the tag handler classes and the TLD, you need to take a few final steps before
you can use the tags in a JSP page. These include properly setting up the application structure,
writing the deployment descriptor, and importing the tag library into the page.

Building an Application Structure

Although some parts of the structure of a web application are not specified, locations for tag
libraries and TLDs are specified. The following is an example of an application structure.

133

134

CHAPTER 4 ADVANCED JSP TOPICS

context-root
META-INF/
jar_that_contains_TLD.jar
WEB-INF/
lib/
taglib.jar
tlds/
descriptor.tld
classes/
path/to/tag/handler.class

Taghandler classes must be placed in the /classes subdirectory of WEB-INF orina . jar file
in the /1ib subdirectory of WEB-INF. TLD files must be placed under WEB-INF, although the
actual location under WEB-INF is unspecified. In the example shown here, a TLD is located in
the /tlds directory of WEB-INF. Ifa TLD isin a . jar file, it must be in the META-INF directory of
the application.

Writing the Deployment Descriptor

Within the web.xml deployment descriptor, you can create a mapping from a URI to a TLD location.
This is done through the <taglib> element. For example, the following element maps the URI
/examples to the TLD descriptor.tld.

<taglib>
<taglib-uri>/examples</taglib-uri>
<taglib-location>/WEB-INF/tlds/descriptor.tld</taglib-location>
</taglib>

This mapping can then be used in the JSP files, as you will see next.

Importing a Tag Library into a Page

To use a custom action, you need to “import” the tag library into the JSP. This is done with the
taglib directive. The taglib directive has this form:

<%@ taglib uri="URI_of_library" prefix="tag prefix"%>

This element must appear in the JSP file prior to any custom action that uses a tag from the
tag library.

The uri attribute is either an absolute or relative path to the TLD file. Alternately, if the
web.xml deployment descriptor has a <taglib> element, you can refer to the TLD using the value of
the <taglib-uri> element from web.xml. For instance, in the example in the previous section, the
<taglib-uri> element contained the string /examples. This same URL can be used in the
taglib directive in the JSP page:

<%@ taglib uri="/examples" prefix="ex"%>

CHAPTER 4 ADVANCED JSP TOPICS

Combined with the <taglib> element of the previous section, this directive would import
the taglibrary defined by descriptor.tld. Within the particular JSP file that used this taglib
directive, the custom actions would be referenced using the prefix given. For example, the
previous TLD defined a tag handler named example. With the taglib directive shown here, the
action would be referenced in a JSP page as follows:

<ex:example />
<%-- or as --%>
<ex:example></ex:example>

Implementing a Simple Tag Handler

Let’s develop a simple tag handler class and deploy it to the Java FAQ application. In this
example, we’ll develop a tag handler using the simple tag handler interfaces of JSP 2.0. This tag
handler will perform iteration and process the body content of the tag. When this example is
complete, you will see that custom actions and simple tag handlers can make your JSP files
extremely easy to develop. This example has the directory structure shown in Figure 4-8.

- & Isp_Ex06
-I-{z= WEB-INF
-z classes
=-{&=F com
-I-{&= apress
== faq
Questions.class
[Questions.java
SimpleList.class
[SimpleList.java
== tids
simplefaq.tid
EL_1.jsp
sun-j2ee-ri.project
sun-web.xml
web.xml
Questions.jsp
TopicList2.jsp
welcome.jsp

Figure 4-8. Directory structure for the Jsp_Ex06 application

Start with a new tag handler class that extends SimpleTagSupport. This file is called
Simplelist.java (see Listing 4-8), and is located in the /WEB-INF/classes/com/apress/faq
directory. Since this class uses the JSP API, when you compile the class, your classpath will
need to include the correct libraries. If you are using Java EE, your classpath must include
javaee. jar. If you are using Tomcat 5.0, your classpath must include jsp-api. jar. If you are
using some other JSP container, check your documentation for the correct . jar file to include
in the classpath.

135

136 CHAPTER 4 ADVANCED JSP TOPICS

Listing 4-8. SimpleList.java

package com.apress.faq;

import java.util.*;

import javax.servlet.jsp.tagext.*;
import javax.servlet.jsp.*;

import java.io.*;

public class Simplelist extends SimpleTagSupport {
private String topic;
public void setTopic(String s) { topic = s; }
public String getTopic() { return topic; }

public void doTag() throws JspException {
Questions questions = new Questions();
questions.setTopic(topic);

// Get list of questions and the iterator for the keys
Map gmap = questions.getQuestions();
Tterator keys = gmap.keySet().iterator();

while (keys.hasNext()) {
try {
Object key = keys.next();
// Store the parameters for invoke()
getJspContext().setAttribute("qid", key);
getJspContext().setAttribute("question”, gmap.get(key));
// Process the body
getJspBody().invoke(null);
} catch (IOException e) {
throw new JspException("Exception processing body");
}
}
}
}

Now we need to create a TLD for this tag handler. The TLD is named simplefaq.tld, and it
is shown in Listing 4-9. Save the TLD to the /WEB-INF/tlds directory.
Listing 4-9. simplefaq.tld
<?xml version="1.0" encoding="UTF-8" ?>
<taglib xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://java.sun.com/xml/ns/javaee/web-jsptaglibrary 2 1.xsd"
version="2.1">

<tlib-version>1.0</tlib-version>

CHAPTER 4 ADVANCED JSP TOPICS

<short-name>simplefaq</short-name>

<tag>
<name>simplelist</name>
<tag-class>com.apress.faq.Simplelist</tag-class>
<body-content>scriptless</body-content>
<attribute>
<name>topic</name>
<required>yes</required>
<rtexprvalue>true</rtexprvalue>
</attribute>
</tag>
</taglib>

If you are using Tomcat, you'll need to manually create a deployment descriptor. Listing 4-10
shows the web.xml deployment descriptor.

Listing 4-10. web.xml for Jsp_Ex06

<?xml version="1.0" encoding="ISO-8859-1"?>

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee/web-app_2_ 5.xsd"
version="2.5">

<display-name>Jsp Ex06 - Simple Tag Handler</display-name>
<welcome-file-list>
<welcome-file>welcome.jsp</welcome-file>
</welcome-file-list>
<jsp-config>
<taglib>
<taglib-uri>/simplequestions</taglib-uri>
<taglib-location>/WEB-INF/tlds/simplefaq.tld</taglib-location>
</taglib>

<jsp-property-group>
<url-pattern>*.jsp</url-pattern>
<el-ignored>false</el-ignored>
<scripting-invalid>true</scripting-invalid>
</jsp-property-group>
</jsp-config>
</web-app>

Note that the deployment descriptor shown in Listing 4-10 declares that scripting is invalid
for any JSP in this application, but that EL statements are processed.

137

138

CHAPTER 4 ADVANCED JSP TOPICS

If you are using the Java EE Deployment Tool, the mapping between the URI /

simplequestions and the TLD simplefaq.tld is set in the JSP Tag Libraries section of the File
Ref’s tab for the web application. Figure 4-9 shows the entries to make in that tab

File Edt Toolz Help
s|E |[ejEe H@Hﬁ%ﬂ meeel s
@ |jFI|ES Resource Env. Ref's rResource Ref's rSecurrty rWeb Services rWeb Service Ref's |
9 CwiebwaRs Filter Mapping r JSP Properties r Mezsage Destinations r Mzg Dest Ref's |
(2 ysp_Ex05 - simple Tag i | | Ganeral r Context r EJE Ref's r Env. Entries r Evert Listeners r File Ref's |
@ (B servers)
< lacalhost 445 | e
: wvelcame jsp
ke File
JEP Tag Libraries
LRI Location |
lequestions SANEE-IMF A= sirmpletac Hd
Add Tag Library

Figure 4-9. You can use the Java EE 5 Deployment Tool to map between a coded reference and the
actual tag library location.

Now we’ll create a new version of TopiclList. jsp that uses this new tag. Thisis TopiclList2.jsp,
which is shown in Listing 4-11.

Listing 4-11. TopicList2.jsp

<%@ taglib uri="/simplequestions" prefix="faq"%>
<html>

<head><title>Topic Questions 2</title></head>
<body>

<h1>Topic Questions 2</h1>

<faq:simplelist topic="${param.topic}">
<p>Question ${qid}
${question}</p>
</faq:simplelist>
<p>Click a link to get the answer.</p>
</body>

</html>

CHAPTER 4 ADVANCED JSP TOPICS

Finally, we need to modify the welcome. jsp page. Add the welcome. jsp source from Listing 4-1
to this example and modify the anchor tag (<a>) so that it looks like this:

Expression Language

No other changes need to be made to welcome. jsp. Finally, you can directly reuse three
files from the first example in this chapter: Questions. java (Listing 4-3), Questions. jsp (Listing 4-4),
and EL_1.jsp (Listing 4-5).

Deploy these files to the server of your choice and access welcome. jsp from a browser
using the correct URL for your server. If you are using the Sun Application Server or Tomcat,
the URL will probably be http://localhost:8080/3sp Ex06/welcome.jsp. Don’t be shocked
when you see that it looks the same as the first example in this chapter (or it should, assuming
everything is correct).

All the processing for a SimpleTag happens in the doTag() method. The doTag() method of
the Simplelist class starts by instantiating a Questions bean and setting its topic property to
the value of the topic property of our tag handler:

Questions questions = new Questions();
questions.setTopic(topic);

We can do that because the <simplelist> tagis required to have an attribute named topic.
When the TopicList2.jsp page used the <simplelist> tag, it included the topic attribute with
avalue of EL. So, when an instance of the Simplelist class is instantiated to handle the tag, the
page implementation class also sets its topic property based on the value of the topic attribute
in the tag. Since the doTag () method is called after the class is instantiated, we know that the topic
field has been initialized and can be used in the setTopic() method call of the Questions class.

Next, the Simplelist class creates an Iterator that will be used to step through the questions.
It does this by calling the getQuestions() method to get the set of questions (which is also
stored in a map). It then uses the map to get the list of keys used in the map.

Map gmap = questions.getQuestions();
Iterator keys = gmap.keySet().iterator();

The class then iterates over each question in the collection. For each question, two pieces
of data used by the body of the tag are saved as attributes in the JspContext. First, the question
itself is saved as an attribute value using the name "question" as the attribute name. The key
value is then stored with the name "qid".

Object key = keys.next();

// Store the parameters for invoke()
getJspContext().setAttribute("qid", key);
getJspContext().setAttribute("question”, gmap.get(key));

After the parameters for a single question are saved in the JspContext, the doTag() method
gets a reference to the JspFragment for the tag and calls its invoke() method:

getJspBody().invoke(null);

Since null is passed as the argument, the body content is passed to the client’s output response
stream,; that is, it is sent directly to the client.

139

140

CHAPTER 4 ADVANCED JSP TOPICS

The body of the tag consists of HTML text and EL statements that create a link to the question
page for each question. The EL statements ${qid} and ${question} can be evaluated because
the Simplelist class stored values for both of these names in the page context before calling
the doTag() method.

Now let’slook at the tag as itis used in TopicList2. jsp. This page uses the taglib directive
to specify the TLD. The URI /simplequestions is mapped by the deployment descriptor to
simplefaq.tld. The prefix used for the tag is faq. Notice that this is not the short-name used in
the TLD. As we’ve mentioned several times, the page developer chooses the prefix. The name
of the tag is the name given in the TLD, and the tag has a single attribute, called topic. This
attribute was specified in the TLD as a required attribute that could be set using an expression.
In our Topiclist2.jsp page, the value of the attribute is indeed set, with the expression
${param.topic}:

<fag:simplelist topic="${param.topic}">
<p>Question ${qid}
${question}</p>
</faq:simplelist>

The tag has a body, which is allowed by the TLD. The body content is represented by the
JspFragment instance in the doTag() method. When the invoke() method is called, the body is
evaluated and sent as part of the response to the client. You can see that the body of the tag
includes two EL expressions. The values of these expressions come directly from the parameters
that the doTag() method added to the JspContext. The doTag() method placed data into the
JspContext using the names question and gqid. When the EL expressions are evaluated, their
value is obtained by getting the value of the attribute with the same name as the expression body.

Classic Tag Handlers

Prior to JSP 2.0, three interfaces and two implementing classes provided the basic design for
tag handlers. As you will see here, using classic tag handlers is somewhat more involved than
using simple tag handlers. For that reason, as we said earlier, you will probably use simple tag
handlers rather than classic ones. However, you may need to use classic tag handlers for
several reasons:

¢ You're working on a project that still uses a server that supports only JSP 1.2.
¢ You need to work with tag handlers that were written under JSP 1.2.
¢ You need the greater flexibility provided by classic tag handlers.

Figure 4-10 shows the class design for the tag extension API of JSP. The
javax.servlet.jsp.tagext.Tag interface is the primary interface for classic tag handlers. It
provides an interface for simple tag handler classes that do not need to manipulate their body
content. IterationTag extends Tag to provide an interface for tag handlers that need to perform
some iteration or looping. Finally, BodyTag extends IterationTag for tag handlers that manipulate
their body content. The tag extension API includes two classes that implement these interfaces:
TagSupport implements IterationTag, and BodyTagSupport implements BodyTag.

CHAPTER 4 ADVANCED JSP TOPICS

<<interface>>
Tag
+SKIP_BODY : int
+EVAL_BODY_INCLUDE : int

<<interface>>

+SKIP_PAGE : int <<interface>> BodyTag

+EVAL_PAGE : int < lterationTag +EVAL_BODY_TAG : int

+setPageContext(in pc : PageContext) : void +EVAL_BODY_AGAIN : int -EVAL_BODY_BUFFERED : int

+setParent(in t : Tag) : void +doAfterBody() : int +dolnitBody() : void

+getParent() : Tag N +setBodyContent(in bc : BodyContent) : void

+doStartTag() : int '
+doEndTag() : int .
+release() : void 1
1
1

TagSupport
+doStartTag() : int
+doEndTag() : int
+doAfterBody(: int BodyTagSupport
+release() : void +doStartTag() : int
+setParent(in t : Tag) : void +doEndTag() : int
+getParent() : Tag +setBodyContent(in bc : BodyContent) : void
+setld(in id : String) : void <]— +dolnitBody() : void
+getld() : String +doAfterBody() : int
+setPageContext(in pc : PageContext) : void +getBodyContent() : BodyContent
+setValue(in s : String, in o : Object) : void +getPreviousOut() : JspWriter
+getValue(in s : String) : Object +release() : void

+removeValue(in s : String) : void
+getValues() : Enumeration
+findAncestorWithClass(in ¢ : Class) : Tag

141

Figure 4-10. The first interface in the classic tag hierarchy is the Tag interface. This interface is extended by
IterationTag, which is extended by BodyTag. The IterationTag and BodyTag interfaces are implemented

by the classes TagSupport and BodyTagSupport.

Implementing Tag

Tag is the interface to implement when the tag handler does not need to process multiple times and
does not need to manipulate its body. As an alternative to implementing the Tag interface, your tag
handler can extend TagSupport (since TagSupport implements IterationTag, which extends Tag).
In fact, this is the usual way you will implement a tag handler for a tag. When you extend
TagSupport, you will only need to override doStartTag() or doEndTag(). So a tag handler class
that has no properties will look like this:

public class MyTag extends TagSupport {
public int doStartTag() { // method body }
public int doEndTag() { // method body }

}

The doStartTag() method is called by the page class at the point where the start tag appears
in the JSP file. When you implement a tag handler, you implement the doStartTag() method
with code that you want to have executed before the body of the tag is processed. When your code
is finished, it returns one of two values defined by the Tag interface. If it returns Tag.SKIP_BODY, the
body of the tag, which can include template (HTML) data, JSP elements, or other tag extensions,
is not evaluated.

Earlier, you saw that a TLD file contains information about the tag extensions. If the
<body-content> element of the TLD has the value empty, this indicates that a tag mustbe empty,

142

CHAPTER 4 ADVANCED JSP TOPICS

and SKIP_BODY is the only allowed return value. If your doStartTag() method returns
Tag.EVAL_BODY_INCLUDE, the body of the tag is evaluated.

The doEndTag() method is called by the page class at the point where the end tag appears
in the JSP file. When you implement a tag handler, you implement the doEndTag() method with
code that you want to have executed after the body of the tag is processed. After your doEndTag()
completes, it returns Tag.SKIP_PAGE or Tag.EVAL_PACGE. The value SKIP_PACE indicates that the
remainder of the JSP should not be evaluated; EVAL_PAGE indicates the opposite.

This execution flow is illustrated in Figure 4-11.

JSP File Page Implementation Class
//create object
<x:MyCustomAction> | //call tag handler doStartTag()
doStartTag();
body content ————— 3| //code that evaluates body content
</x:MyCustomAction> ———————)| //call tag handler doEndTag()
doEndTag();

Figure 4-11. With classic tags, when the start of a tag is encountered, the doStartTag() method is
called. When the end of a tag is encountered, the doEndTag() method is called.

Note that when extending TagSupport, you can, but do not need to, implement both
doStartTag() and doEndTag(). If the tag handler does not need to perform any action prior to
the body, and the tag must have an empty body, you do not need to implement doStartTag().
However, because the TagSupport implementation of doStartTag() returns SKIP_BODY, if the tag can
have a body, you should implement a minimal doStartTag() that returns EVAL_BODY_ INCLUDE.
If the tag handler does not need to perform any action after the body, you do not need to imple-
ment doEndTag(). The TagSupport implementation of doEndTag() returns EVAL_PAGE.

Implementing IterationTag

When you need a tag handler class to iterate or loop its actions, your tag class will implement
IterationTag. As with Tag, you will usually just extend TagSupport. IterationTag adds one
method and one property, which are used to provide the looping behavior. Here is a tag handler
class without any properties:

public class ListQuestions extends TagSupport {
public int doStartTag() throws JspTagException { // method body }
public int doAfterBody() throws JspTagException { // method body }
public int doEndTag() throws JspTagException { // method body }

}

This time, the example includes the new method: doAfterBody ().

Figure 4-12 illustrates the implementation class methods that correspond to the various
tags in the JSP page. After calling doStartTag() and after evaluating the body of the tag, the
page class calls the doAfterBody () method. The doAfterBody() method allows the tag handler

CHAPTER 4 ADVANCED JSP TOPICS

class to determine whether the page class should evaluate the body another time. If so,
doAfterBody() should return a value of TterationTag.EVAL BODY_ AGAIN, which indicates that
the page class should evaluate the body of the tag again; if not, it returns Tag.SKIP_BODY. The
page class then calls doEndTag() and proceeds as with a Tag.

JSP File Page Implementation Class

/lcreate and initialize tag handler

<x:MyCustomAction> ¥ doStartTag();

body content »>| //evaluate body content
| doatterBody;

</x:MyCustomAction> ¥»-| doEndTag();

Figure 4-12. After evaluating the body of the classic tag, the doAfterBody() method of the tag
handler class is called. The return value of doAfterBody() determines whether the body of the
tag is evaluated again.

Note An additional interface that you can use with any class that implements Tag, IterationTag, or
BodyTag is the TryCatchFinally interface. The TryCatchFinally interface requires that implementing
classes implement two additional methods: doCatch(Throwable) and doFinally(). The container will
call doCatch(Throwable) and doFinally() if an exception is thrown in any of the tag handling methods
of the tag handler. See the Javadoc for details about using these methods.

Implementing BodyTag

With Tag and IterationTag, the implementing class can indicate whether the body of the tag
should be evaluated by the page class; however, the tag handler classes that implement Tag or
IterationTag have no way of actually manipulating the contents of the tag body. This is possible
through the BodyTag interface and its implementing class, BodyTagSupport:

public class ListQuestionsInBody extends BodyTagSupport {
public int doStartTag() throws JspTagException { // method body }
public void setBodyContent(BodyContent bc) { // method body }
public void doInitBody() { // method body }
public int doAfterBody() throws JspTagException { // method body }
public int doEndTag() throws JspTagException { // method body }

Figure 4-13 shows the correspondence between tags in the JSP page and the methods in
the page implementation class. For the most part, the doStartTag() method is the same as for
Tag or IterationTag. The difference is that the BodyTag interface defines an additional return
value for the method: BodyTag.EVAL_BODY BUFFERED. When your code returns EVAL_BODY BUFFERED,

143

144

CHAPTER 4 ADVANCED JSP TOPICS

the page class calls the setBodyContent() and doInitBody() methods. This makes the body
content available to your code in the doAfterBody() and doEndTag() methods. When the
return value of doStartTag() is EVAL_BODY_ BUFFERED, the page class evaluates the tag body and
stores the result in an instance of BodyContent. (Thus, an instance of BodyContent will not
contain actions, scriptlets, and so on—only the results of those elements.) The page class
then needs to pass the BodyContent instance to the tag handler so that it can manipulate the
body content. It does this by calling setBodyContent (). The page class then calls doInitBody().
Inside the doInitBody() method, the tag handler class can perform any initialization that
depends on the body of the tag.

JSP File Page Implementation Class

/lcreate and initialize tag handler

<x:MyCustomAction> »| doStartTag();

body content)| //evaluate body content
————»| setBodyContent(BodyContent);
———————>{ dolnitBody();

»>| doAfterBody();

</x:MyCustomAction> ——— | doEndTag();

Figure 4-13. The doInitBody() and doAfterBody() methods are called to process the body of a tag.

Normally, you will manipulate the body content in the doAfterBody () method. However,
the BodyContent object is also available to the doEndTag() method, so you can use the
BodyContent object there. The BodyContent class defines various methods for getting the body
content and writing the body content to an output stream. For example, this code snippet
shows how to write the body content to the response:

public void doAfterBody() {
// bodyContent is an instance variable of BodyTagSupport
// Call the getEnclosingWriter() method to get the enclosing JspWriter
Writer writer = bodyContent.getEnclosingWriter();
// Call the writeOut(Writer) method to send the body content
// to the writer
bodyContent.writeOut(writer);

if (need_to_eval body again) {
return EVAL_BODY_AGAIN;
} else {
return SKIP_BODY;
}
}

CHAPTER 4 ADVANCED JSP TOPICS

The page class will evaluate the body again if the doAfterBody () method returns
EVAL_BODY_AGAIN; otherwise, if doAfterBody() returns SKIP_BODY, the page class calls doEndTag().

Implementing a Classic Tag Handler with TagSupport

In our next example, we’ll create a custom action using classic tag handlers to list the FAQ
questions in the TopiclList. jsp page. As with the previous tag handler example, by putting the
iteration into the custom action, all the Java code will be eliminated from the JSP page and
encapsulated in the tag handler. This will make the page simpler than the version introduced
in the first example of the chapter. Encapsulating the Java code in beans and tag handlers also
makes the page easier for page developers to develop and maintain. Figure 4-14 shows the
application structure.

-1 Isp_Ex07
-I-{z= WEB-INF
-z classes
=-{&= com
-I-{& apress
== faq
ListQuestions.class
[ListQuestions.java
Questions.class
[Questions.java
== tids
faq.tid
EL_1.jsp
web.xml
Questions.jsp
TopicList3.jsp
welcome.jsp

Figure 4-14. Directory structure for the Jsp_Ex07 application

Most of these files are the same as in the previous example. The new files are
Topiclist3.jsp, web.xml, faq.tld, and ListQuestions.java; you can reuse the files
Questions.class (Listing 4-3), Questions.jsp (Listing 4-4), and EL_1.jsp (Listing 4-5). The
file welcome. jsp (Listing 4-1) requires a simple change to be used with this example.

Listing 4-12 shows the tag handler, ListQuestions.java. The tag handler will need to
iterate over a collection of questions, so it extends TagSupport. Since this class uses the JSP AP],
when you compile the class, your classpath will need to include the correct libraries. If you are
using Java EE, your classpath must include javaee.jar.Ifyou are using Tomcat 5.0, your classpath
must include jsp-api.jar. If you are using some other JSP container, check your documen-
tation for the correct . jar file to include on the classpath. Also, you will need to ensure that
Questions.class either exists or is compiled at the same time. You can do that by using
javac *.java (assuming the classpath is set).

145

146 CHAPTER 4 ADVANCED JSP TOPICS

Listing 4-12. ListQuestions.java

package com.apress.faq;
package com.apress.faq;

import java.util.*;

import javax.servlet.jsp.tagext.*;
import javax.servlet.jsp.*;

import java.io.*;

public class ListQuestions extends TagSupport {
private String topic;
/** Tterator over the question keys.
* Tt is an instance variable because it is set in doStartTag()
* and used in doAfterBody() */
private Iterator qids;
/** Map of questions keyed on question id.
* Tt is an instance variable because it is set in doStartTag()
* and used in doAfterBody() */
private Map gmap;

public void setTopic(String s) { topic = s; }
public int doStartTag() throws JspTagException {

Questions questions = new Questions();
questions.setTopic(topic);

gmap = questions.getQuestions();
qids = gmap.keySet().iterator();
try {

// Write some preliminary data to the response
pageContext.getOut().write("<h2>Questions for Topic</h2>");
pageContext.getOut().write("\nThe number of questions in topic " +

topic + " is " + gmap.size());

} catch (IOException e) {

throw new JspTagException("Error writing to out");
}
return EVAL BODY_ INCLUDE;

}

public int doAfterBody() throws JspTagException {
// Create the link for a single question
// Each time this method is called by the page class,
// the Iterator advances to the next question
if (qids.hasNext()) {
String qid = (String) gids.next();
String s = "<p>Question <a href=\"Questions.jsp?qid=" + qid +

CHAPTER 4 ADVANCED JSP TOPICS

"\">" + qid + ": "+
gmap.get(qid) + "</p>";
try {
pageContext.getOut().write(s);
} catch (IOException e) {
throw new JspTagException("Error writing to out");
}
// Tell the page class to evaluate the body again
return EVAL_BODY_AGAIN;
} else {
// fags.next() was false, so no more questions
return SKIP_BODY;
}
}

public int doEndTag() throws JspTagException {
try {
pageContext.getOut().write("<p>Click a link to see the answer</p>");
} catch (IOException e) {
throw new JspTagException("Error writing to out");
}
return EVAL_PAGE;
}
}

The TLD (faq.tld) for this tag is shown in Listing 4-13.

Listing 4-13. faq.tld

<?xml version="1.0" encoding="UTF-8" ?>

<taglib xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee/web-jsptaglibrary 2 1.xsd"
version="2.1">

<tlib-version>1.0</tlib-version>
<tag>
<name>listFags</name>
<tag-class>com.apress.faq.ListQuestions</tag-class>
<body-content>scriptless</body-content>
<attribute>
<name>topic</name>
<required>yes</required>
<rtexprvalue>true</rtexprvalue>
</attribute>
</tag>
</taglib>

147

148

CHAPTER 4 ADVANCED JSP TOPICS

Ifyou are deploying to Tomcat, you will need to add a <taglib> element to the deployment
descriptor. Listing 4-14 shows the deployment descriptor web . xml for this example.

Listing 4-14. web.xml for Jsp_Ex07

<?xml version="1.0" encoding="ISO-8859-1"?>

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee/web-app 2 5.xsd"
version="2.5">

<display-name>Jsp Ex07 - Classic Tag Handler</display-name>
<welcome-file-list>
<welcome-file>welcome.jsp</welcome-file>
</welcome-file-list>
<taglib>
<taglib-uri>/questions</taglib-uri>
<taglib-location>/WEB-INF/tlds/faq.tld</taglib-location>
</taglib>
</web-app>

If you are deploying to Java EE using the Deployment Tool, you will need to set the <taglib>
element of the deployment descriptor through the Java EE 5 Deployment Tool. This is done in
the File Ref’s tab of the right pane when the web application is selected in the left pane. You
need to add the tag library mapping is the JSP Tag Libraries section, as shown in Figure 4-15.
Enter /questions for the URI and /WEB-INF/tlds/faq.tld for the Location.

Listing 4-15 shows the JSP page. Save this as TopiclList3.jsp.

Listing 4-15. TopicList3.jsp

<%@ taglib uri="/questions" prefix="faq"%>
<html>
<head><title>Topic Questions</title></head>
<body>
<h1>Topic Questions</h1>

<faqg:listFags topic="${param.topic}">
</faq:listFaqs>

</body>
</html>

CHAPTER 4 ADVANCED JSP TOPICS

File Edt Toolz Help

SIEREE H@Ht&\ Beee ¢ ¢

@ |j Files Resource Env. Ref's r Resource Ref's r Security r Wigh Services r Wik Service Ref's |
9 [Jwish wiaRs Fitter Mapping r JSP Properties r Message Destinations r Msg DestRef's |

@ ssp_Ex07 - Classic Ta General r Cortext r EJB Ref's r Env. Ertries r Evert Listeners File Ref's
@ (B servers
Wielcome Files

=] lacalhast 4548

weelcame jsp

JEP Tag Libraries

LRI | Location |

fouestions SANEE-IMF A= fac td
Adld Tag Library

Figure 4-15. The File Ref’s tab is where JSP tag libraries are specified.

Finally, we need to modify the welcome. jsp page. Add the welcome. jsp source from Listing 4-1
to this example and modify the anchor tag (<a>) so that it looks like this:

Expression Language

Deploy the application to your server. Open a browser window and enter the address
http://localhost:8080/Jsp Ex07/welcome.jsp. If everything is correct, you will see the same
display as in the previous two examples in this chapter. However, even though the output from
the tag handler looks the same as in previous examples, how it processes the tag is different.
The tag handler class, ListQuestions, extends the TagSupport class. Since that class implements
IterationTag, the tag handler can perform iterations, but it can’t manipulate the body of the
tag. Thus, the tag handler class needs to perform all the output to the response itself. ListQuestions
provides implementations for the doStartTag(), doAfterBody(), and doEndTag() methods.

The doStartTag() creates an instance of the Questions class, and gets the Map consisting of
the list of questions. It sets up an iterator for the keys used in the map and prints out some
preliminary text. Notice that to do this, it gets an output stream from the pageContext object:

gmap = questions.getQuestions();

qids = gmap.keySet().iterator();

try {
// Write some preliminary data to the response
pageContext.getOut().write("<h2>Questions for Topic</h2>");

149

150 CHAPTER 4 ADVANCED JSP TOPICS

The doAfterBody () method actually uses the Iterator to create the links and text of each
question. As it iterates through each question, it returns a value of EVAL_BODY_AGAIN. This
signals that the page class should call doAfterBody() again. When it has iterated through all the
values, doAfterBody () returns SKIP_BODY:

if (qids.hasNext()) {
String qid = (String) gids.next();
String s = "<p>Question <a href=\"Questions.jsp?qid=" + qid +
"\">" + gid + ": " +
gmap.get(qid) + "</p>";
try {
pageContext.getOut().write(s);
} catch (IOException e) {
throw new JspTagException("Error writing to out");
}
// Tell the page class to evaluate the body again
return EVAL_BODY_AGAIN;
} else {
// fags.next() was false, so no more questions
return SKIP_BODY;

}

The TLD tells the application about the tag handler class. This TLD contains only one
<tag> element. This <tag> element provides the name of the custom action, listFag, and the
name of the class that implements the action. As in the previous example, the action has one
attribute named topic, which is required and can be set through an expression:

<tag>
<name>listFagqs</name>
<tag-class>com.apress.faq.ListQuestions</tag-class>
<body-content>scriptless</body-content>
<attribute>
<name>topic</name>
<required>yes</required>
<rtexprvalue>true</rtexprvalue>
</attribute>
</tag>

We also added a <taglib> element to the deployment descriptor. This <taglib> element
specified that a URI of /questions referred to the TLD at /WEB-INF/tlds/faq.tld.

And now we get to the JSP page. Because all of the work is now done by the tag handler, the
JSP page has become incredibly simple. Notice that there is no Java scriptlet in the page at all.
At the top of the page, the tag library is imported using the taglib directive. The taglib directive
specifies that the TLD is at the URI /questions. Because of the mapping in the web.xml file, this
resolves to the file faq.tld.

The taglib directive specifies that the prefix for custom actions from that library should be
fag. In this case, the prefix is the same as the short name, but remember that the page developer

CHAPTER 4 ADVANCED JSP TOPICS

can set the prefix to any value, regardless of the short name of the library. This is the single
custom action that causes the tag handler to be called:

<faq:listFaqs topic="${param.topic}">
</faq:listFags>

The custom action has the prefix, faq, followed by the tag name, and the topic attribute.
Notice that we set this attribute using an EL expression. This is allowed because the TLD specified
that the attribute could be set by a runtime expression.

So, the JSP has become much simpler, and that’s good, but at what cost? The ListQuestions
class now has HTML tags and data in it. This could become a maintenance problem. Recall that
one of the reasons for JSP pages was to remove template data from code. Although it’s nice that
Topiclist3.jsp is so simple, it would be better to put the presentation data back into the JSP
page, and leave the tag handler to do nonpresentation tasks. Next, we’ll look at how to do that
through the BodyTag interface.

Implementing a Classic Tag Handler with BodyTagSupport

One way to move the presentation back to the JSP page and let the tag handler perform
nonpresentation tasks is by extending the BodyTagSupport class. Figure 4-16 displays the
directory structure for the latest iteration of the FAQ application.

-1 Isp_Ex08
-I-{z= WEB-INF
-z classes
=-{&= com
-I-{&= apress
== faq
ListQuestionsInBody.class
[ListQuestionsInBody.java
Questions.class
[Questions.java
== tids
faq.tid
EL_1.jsp
web.xml
Questions.jsp
TopicList4.jsp
welcome.jsp

Figure 4-16. The directory structure for the Jsp_Ex08 application

As with previous examples, files not explicitly shown here can be reused from earlier examples
in this chapter. In this example, we will create Topcilist4.jsp and modify welcome. jsp.
The deployment descriptor will be updated, as will faq.tld. The new tag handler class,
ListQuestionsInBody.java, will extend BodyTagSupport.

Listing 4-16 is the final tag handler for the FAQ application. This tag handler is called
ListQuestionsInBody. Add this class to the /WEB-INF/classes/com.apress.faq directory (as
shown in Figure 4-16).

151

152 CHAPTER 4 ADVANCED JSP TOPICS

Listing 4-16. ListQuestionsInBody.java

package com.apress.faq;

import java.util.*;
import javax.servlet.jsp.tagext.*;
import javax.servlet.jsp.*;

public class ListQuestionsInBody extends BodyTagSupport {
private String topic;
private Iterator qids;
private Map gmap;

public void setTopic(String s) { topic = s; }

public int doStartTag() throws JspTagException {
Questions questions = new Questions();
questions.setTopic(topic);
gmap = questions.getQuestions();
gids = gmap.keySet().iterator();

if (qids.hasNext()) {
Object qid = gids.next();
setVariables(qid, qmap.get(qid));
return EVAL_BODY_INCLUDE;

} else {
return SKIP_BODY;

}

}

public int doAfterBody() throws JspTagException {
if (qids.hasNext()) {
Object key = gids.next();
setVariables(key, qmap.get(key));
return EVAL_BODY_BUFFERED;
} else {
return SKIP_BODY;

}
}

public int doEndTag() throws JspTagException {
return EVAL_PAGE;

}

CHAPTER 4 ADVANCED JSP TOPICS

void setVariables(Object key, Object value) {
pageContext.setAttribute("question", value);
pageContext.setAttribute("qid", key);
}
}

We need to change the TLD so that it includes this new tag handler. Modify the faq. t1d file
as shown in Listing 4-17.

Listing 4-17. faq.tld for Jsp_Ex08

<?xml version="1.0" encoding="UTF-8" ?>

<taglib xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee/web-jsptaglibrary 2 1.xsd"
version="2.1">

<tlib-version>1.0</tlib-version>

<tag>
<name>fagData</name>
<tag-class>com.apress.faq.ListQuestionsInBody</tag-class>
<body-content>scriptless</body-content>
<variable>
<name-given>qid</name-given>
</variable>
<variable>
<name-given>question</name-given>
</variable>
<attribute>
<name>topic</name>
<required>yes</required>
<rtexprvalue>true</rtexprvalue>
</attribute>
</tag>
</taglib>

We also need a new version of the topic list page. Listing 4-18 shows TopiclList4.jsp.

Listing 4-18. TopicList4.jsp

<%@ taglib uri="/questions" prefix="faq"%>

<html>
<head><title>Topic Questions 4</title></head>
<body>
<h1>Topic Questions 4</h1>

153

154

CHAPTER 4 ADVANCED JSP TOPICS

<faq:faqData topic="${param.topic}">
<p>Question ${qid}
${question}</p>
</faq:fagData>
<p>Click a link to get the answer.</p>
</body>
</html>

Since this application uses the same initial file and the same faq.t1d as the previous
example, you could use the deployment descriptor from the previous example without any
changes. However, we changed the display name to reflect that this is a new application.
Listing 4-19 shows the modified deployment descriptor.

Listing 4-19. web.xml for Jsp_Ex08

<?xml version="1.0" encoding="ISO-8859-1"?>

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee/web-app 2 5.xsd"
version="2.5">

<display-name>Jsp Ex08 - Classic Body Tag Handler</display-name>
<welcome-file-list>
<welcome-file>welcome.jsp</welcome-file>
</welcome-file-list>
<taglib>
<taglib-uri>/questions</taglib-uri>
<taglib-location>/WEB-INF/tlds/faq.tld</taglib-location>
</taglib>
</web-app>

Finally, we need to modify the welcome. jsp page. Add the welcome.jsp source from Listing
4-1 to this example and modify the anchor tag (<a>) so that it looks like this:

Expression Language

No other additions or modifications are needed to the existing files in the application.
After deploying the new files, enter the URL http://localhost:8080/Jsp_Ex08/welcome.jsp.
You should see the same behavior as occurred with the previous examples. However, unlike
the ListQuestions class, the ListQuestionsInBody class no longer has any template data in it
and does not need to output anything to the response. All it does is process the collection of
questions, exposing each one to the rest of the page through the setVariables() method. This
method adds two attributes to the page context. This makes the variables accessible to the rest
of the page. Within the page, these variables are accessed using the EL statements ${question} and
${qid}. To cause the body of the tag to be evaluated, doStartTag() returns EVAL _BODY INCLUDE and
doAfterBody() returns EVAL_BODY_BUFFERED. These return values cause the page class to call the
setBodyContent() and doInitBody() methods of the class. Since our tag handler didn’t need to

CHAPTER 4 ADVANCED JSP TOPICS

do anything special with the body content, the default implementations of these methods in
the parent class were sufficient.

To make the variables created by the tag handler accessible to the page, the TLD specifies
that the tag handler should create two scripting variables that are then available to the rest
of the page (although they are used only within the body of the tag). It did this through the
<variable> element in the TLD:

<variable>
<name-given>qid</name-given>

</variable>

<variable>
<name-given>question</name-given>

</variable>

Each of these elements used the <name-given> element to specify the name by which the
scripting variables could be accessed. These are the same names that the tag handler class
must use when adding the attributes to the page context.

Finally, there is the topic page. Our new tag is called in the same way as the simple tag
example, so Topiclist4.jspis simpler than the original TopicList.jsp, but not quite as simple
as Topiclist3.jsp. The body of the tag consists of template data and EL expressions:

<faq:faqData topic="${param.topic}">
<p>Question ${qid}
${question}</p>
</faq:fagData>

The EL expressions access the scripting variables created by the custom action. Each time
the page class evaluates the body, it gets the current values of these variables from the page
context and inserts them into the response.

This allows page designers to easily change the presentation of the data without needing
to edit and recompile the tag handler.

A Multitude of Custom Actions

At this point, it should be clear that you can create a rich set of behavior with very simple code
that implements any of the tag handler interfaces, or more simply just by extending the tag
support classes. This allows the software developers of a web application to do what they like
best—coding—while providing the web page developers a set of tags that they can use to make
their web pages dynamic without needing to learn how to code.

So, at this point you should be ready to go out and develop some tag handlers. You could
have tag handlers for performing if-then tests and implementing switch constructs. Tag
handlers for looping would also be useful. And how about some tag handlers for formatting
text and numbers, and another set of tag handlers to make it easy for a JSP to communicate
with a database?

Of course, if you have these great ideas, so do dozens or hundreds of other developers. All
of you are out there creating tags for testing, looping, and formatting. And none of these tag
handlers are compatible! What started out as an elegant solution to the problem of mixing logic
and presentation has gotten ugly again.

155

156

CHAPTER 4 ADVANCED JSP TOPICS

Based on the last paragraph, you might guess that there is a solution to this problem. You're
right, and that solution is the JSP Standard Tag Library, which is the subject of the next section.

JSP Standard Tag Library (JSTL)

Much of this chapter has been devoted to information about creating your own custom actions
and tag libraries. However, you are not limited to using just the tags you create. You can use
any tag library that is available. While there are many such libraries distributed, in this section,
we will look at the JSP Standard Tag Library, or JSTL.

The JSTL grew out of the realization that with many developers creating taglibraries, many
actions would be duplicated among the various libraries. Because these libraries were developed
separately, the duplicated actions would probably have different names, syntaxes, and/or
behaviors.

The JSTL standardizes a number of common actions. If you use one implementation of a
standard tag library, switching to another standard tag library implementation should be as
easy as adding the . jar files to your application and changing the web. xml file to map the
taglib-uri to the new different TLD. In this section, we will look how to get a JSTL implemen-
tation, some of the actions in the JSTL, and using the JSTL.

Getting a JSTL Implementation

If you want to experiment with the JSTL, one place where you can get an implementation
of the library is the Jakarta project. You can get a copy of the latest version at http://
jakarta.apache.org/taglibs/index.html. At the time this was written, JSTL 1.1.2 was the
current version; it is designed to run under Tomcat 5.

Using the JSTL is simple:

1. Unpack the distribution into your application. The . jar files containing the tag han-
dlers should go into /WEB-INF/1ib, and the TLDs into a directory under /WEB-INF/.

2. Change the web.xml file to map the taglib-uri element to the location of the TLDs.

3. Add the taglib directive to the pages that will use the JSTL tags.

Actions in the JSTL

The JSTL tags have been divided into four categories:
¢ Core actions (c.t1d)
e XML processing (x.tld)
¢ Internationalization-capable formatting (fmt.t1d)
* Relational database access (sql.t1d)

If you are using the 1.1.2 or later release of the JSTL with a web container that supports JSP 2.0
or later, you will use the TLD files listed here. Since Tomcat 5 is the current reference imple-
mentation for JSP 2.1, the 1.1.2 versions of the TLD files are the ones we will use in this chapter.
You should copy those TLD files into the t1d directory of your web application.

CHAPTER 4 ADVANCED JSP TOPICS

If you have the version 1.1.2 release, you will notice that there are additional TLD files in
the distribution. For example, in addition to c.tld, the 1.1.2 release includes c-1_0.tld and
c-1_0-rt.tld. There are similarly named files corresponding to x.tld, fmt.tld, and sql.tld.
These TLD files are included for backward-compatibility with JSTL 1.0 (hence the 1_0 part of
the filename).

If you are using a web container that does not support JSP 2.0 or later, you will need to use
the JSTL 1.0 versions of the TLD files. If your page uses Java scripting expressions (<%! %>,
<%="%>, or <% %>), you will use the rt version of each TLD. The abbreviation rt is short for
rtexprvalues, which is for runtime (or request-time) expression values. (The JSP specification
uses the terms runtime and request-time interchangeably.) If your page uses EL expressions,
you will use the other version. If your page uses both, you will need both TLDs. You can freely
mix actions from either library in the same JSP. But remember that this applies only if your
container does not support JSP 2.0 or later. The latest versions of the Java EE reference imple-
mentation use Tomcat 5, which supports JSP 2.1 as the web container.

Core Actions

The core actions provide tag handlers for manipulating variables and dealing with errors,
performing tests and conditional behavior, and executing loops and iterations.
The general-purpose actions in the core category provide support for dealing with variables

and errors. Table 4-8 shows the general-purpose actions with a description of how they are used.

Table 4-8. General-Purpose Actions in the JSTL Core Category

Tag Meaning

<c:out value="" default=""> Sends the value to the response stream. You can
specify an optional default value so that if the
value attribute is set with an EL expression, and
the expression is null, the default value will be
output.

value=""> Sets the JSP-scoped variable identified by var to
the given value.

<c:set var=

nn nmn nn

value=""> Sets the property of the given JavaBean or Map
object to the given value.

<c:set target="" property=

nn nn

<c:remove var="" scope=""> Removes the object identified by var from the
given scope. The scope attribute is optional. If
the scope is not given, each scope will be searched
in the order page, request, session, application,
until the object is found or all scopes are searched.
If scope is given, the object is removed only if it
is in the given scope. If the object is not found,
an exception will be thrown.

nn

<c:catch var=""> Encloses a block of code that might throw an
exception. If the exception occurs, the block
terminates but the exception is not propagated.
The thrown exception can be referenced by the

variable named by var.

157

158

CHAPTER 4 ADVANCED JSP TOPICS

Conditional actions, shown in Table 4-9, allow you to test expressions and evaluate tags
based on the result of the test.

Table 4-9. Conditional Actions in the JSTL Core Category

Tag Meaning

nn nn

<c:if test="" var=""> Used like a standard Java if block. The var
attribute is optional; if present, the result of the
test is assigned to the variable identified by var.
If the test expression evaluates to true, the tag is
evaluated; if false, it is not.

nn

<c:choosey, <c:when test="">, <c:otherwise> The analog to aJava if...elseif...else block. The
<c:choose> action starts and ends the block. The
testin each <c:when test=""> tagis evaluated;
the first test that evaluates to true causes that tag
to be evaluated. If no <c:when> action evaluates

to true, the <c:otherwise> tag is evaluated.

Table 4-10 shows iterator actions, which are actions that allow you to loop over a set of
values.

Table 4-10. Iterator Actions in the JSTL Core Category

Tag Meaning

nn nn

items=""> Iterates over each item in the collection identified
by items. Each item can be referenced by var.
When items is a Map, the value of the item is
referenced by var.value.

<c:forkach var=

<c:forEach var="" begin="" end="" step=""> The tag for a for loop. The step attribute is
optional.
<c:forTokens items="" delims=""> Iterates over the tokens in the items string.

Formatting Actions

Formatting actions are part of the internationalization, or [18N, library. As you might guess,
they provide support for formatting output. Among the actions for setting locales and time
zones, are actions for formatting numbers. Here, we’ll look at two of them.

The following formatting action is for dates:

<fmt:formatDate value="date" [type="{time|date|both}"]
[dateStyle="{default|short|medium|long|full}"]
[timeStyle="{default|short|medium|long|full}"]
[pattern="customPattern"] [timeZone="timeZone"] [var="varName"]
[scope="{page|request|session|application}"]/>

CHAPTER 4 ADVANCED JSP TOPICS

With this action, only the value attribute is required. The other attributes define how to format
the date. The pattern attribute can contain a custom pattern for formatting the date string.
This is a formatting action for numbers:

<fmt:formatNumber value="numericValue" [type="{number|currency|percent}"]
[pattern="customPattern"] [currencyCode="currencyCode"]
[currencySymbol="currencySymbol"]

[groupingUsed="{true|false}"] [maxIntegerDigits="maxIntegerDigits"]
[minIntegerDigits="minIntegerDigits"] [maxFractionDigits="maxFractionDigits"]
[minFractionDigits="minFractionDigits"] [var="varName"]
[scope="{page|request|session|application}"]/>

This action formats the number given by value. Various styles are possible, including currency
formats and custom formatting styles. You can also use this tag without the value attribute; in
which case, the number to be formatted is passed in the body of the tag.

SQL Actions

The JSTL SQL actions allow page authors to perform database queries, access query results,
and perform inserts, updates, and deletes. One of the many SQL actions is <sql:query>:

<sql:query var="" dataSource=""> SQL Command </sql:query>

This action queries the database given by the dataSource attribute. The query that is performed
is given in the body of the tag. The results of the query can be accessed by var.rows. You can use
the <c:forEach> tag to iterate over the collection of rows.

The dataSource attribute can identify the database in two ways: use the JDBC URL to
access the database or use the Java Naming and Directory Interface JNDI) data source name
to look up the database. See Chapters 7 and 8 for more information about these techniques.

Using the JSTL in a JSP

Now we will finally add another FAQ answer to the FAQ application we have been developing
in this chapter. This JSP will show various uses of the JSTL. Figure 4-17 shows the structure of
the web application.

For the most part, this example will reuse the files created for the example used earlier to
demonstrate simple tag handlers. Start by finding the files for the simple tag handler example,
Jsp_Ex06, and putting them into the directory structure shown in Figure 4-17. The new files
that need to be added are EL_2.jsp and the . jar and .t1d files from the JSTL.

Download the JSTL 1.1 distribution from the Jakarta web site http://jakarta.apache.org/
taglibs/doc/standard-doc/intro.html. Extract the TLDs c.tld and fmt.tld into the /tlds direc-
tory you've been using for the examples in this chapter. Extract two . jar files into the 1ib
directory: standard. jar and jstl. jar.

159

160 CHAPTER 4 ADVANCED JSP TOPICS

-1 Isp_Ex09
-I-{z= WEB-INF
-z classes
=i com
-I-{&= apress
== faq
Questions.class
[Questions.java
SimpleList.class
[SimpleList.java
== lib
jstl.jar
standard.jar
== tids
c.tid
fmit.tid
simplefaq.tid
EL_1.jsp
EL_2.jsp
web.xml
Questions.jsp
TopicList2.jsp
welcome.jsp

Figure 4-17. The directory structure for the Jsp_Ex09 example application.

Create the EL_2. jsp file shown in Listing 4-20. Save this file in the same place as EL_1.jsp.

Listing 4-20. EL_2.jsp

<k@taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>
<k@taglib uri="http://java.sun.com/jsp/jstl/fmt" prefix="fmt"%>
<html>
<head>
<title>]STL Q2</title>
</head>

<body>
<h1>JSTL Question 2</h1>
<h2>How do I use the JSTL?</h2>

<jsp:useBean id="questions" class="com.apress.faq.Questions"
scope="page">
<jsp:setProperty name="questions" property="topic" value="EL"/>
</jsp:useBean>

<table border="1">
<!-- the literal JSTL tag will be in left column of table -->
<!-- the evaluated JSTL tag will be in right column of table -->
<tr><th>tag</th><th>result</th></tr>

CHAPTER 4 ADVANCED JSP TOPICS

<!-- this tag uses c:out to send the value of an EL to the response -->
<tr><td>81t;c:out value="${"${ }questions.topic}"/8gt;</td>
<td><c:out value="${questions.topic}"/></td>
</tr>

<!-- this tag uses c:set to set the property of a JavaBean -->
<c:set target="${questions}" property="topic" value="JSTL" />
<tr>
<td>81t;c:set target="${'${'}questions}" property="topic"
value="JSTL"/8gt;
</td>
<td><c:out value="${questions.topic}"/></td>
</tr>

<!-- this tag uses c:if to determine whether to create another row -->
<c:if test="${questions.topic == "EL'}">
<tr><td>This row will not be created</td>
<td></td>
</tr>
</c:if>

<c:if test="${questions.topic == 'ISTL'}">
<tr><td>This row was created because the c:if tag result was true</td>
<td></td>
</tr>
</c:if>
</table>

<h2>Multiplication table, 1 - 5¢</h2>

<!-use the forkEach tag to create a table -->
<table border="1">
<tr><td></td><td>1</td><td>2</td><td>3</td><td>4</td><td>5¢</td></tr>
<c:forkach var="i" begin="1" end="5">
<tr><tdy><c:out value="${i}"/></td>
<c:forkach var="j" begin="1" end="5">
<td><c:out value="${i*j}"/></td>
</c:forEach>
</tr>
</c:forEach>

</table>

<h2>Formatting numbers</h2

81t; fmt:formatNumber value="23.456" type="number" /> results in
<fmt:formatNumber value="23.456" type="number" />

161

162 CHAPTER 4 ADVANCED JSP TOPICS

&1t;fmt:formatNumber type="currency">23.456
&1t;/fmt:formatNumber> results in <fmt:formatNumber
type="currency">23.456</fmt: formatNumber>

&1t; fmt:formatNumber value=".23456" type="percent"/> results
in <fmt:formatNumber value=".23456" type="percent"/>

&1t; fmt:formatNumber value=".23456" type="percent"

minFractionDigits="2"/8gt; results in <fmt:formatNumber
value=".23456" type="percent" minFractionDigits="2"/>

</body>
</html>

If you are using Tomcat, modify the web.xml file as shown in Listing 4-21. If you are using
the Java EE Deployment Tool, set the taglib mapping through the Deployment Tool.

Listing 4-21. web.xml for Jsp_Ex09

<?xml version="1.0" encoding="ISO-8859-1"?>

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee/web-app 2 5.xsd"
version="2.5">

<display-name>Jsp Ex09 - ISP Standard Tag Library</display-name>

<welcome-file-list>
<welcome-file>welcome.jsp</welcome-file>
</welcome-file-list>

<jsp-config>
<taglib>
<taglib-uri>/simplequestions</taglib-uri>
<taglib-location>/WEB-INF/tlds/simplefaq.tld</taglib-location>
</taglib>

<taglib>
<taglib-uri>http://java.sun.com/jsp/jstl/core</taglib-uri>
<taglib-location>/WEB-INF/tlds/c.tld</taglib-location>
</taglib>

<taglib>
<taglib-uri>http://java.sun.com/jsp/jstl/fmt</taglib-uri>
<taglib-location>/WEB-INF/tlds/fmt.tld</taglib-location>
</taglib>

CHAPTER 4 ADVANCED JSP TOPICS

<jsp-property-group>
<url-pattern>*.jsp</url-pattern>
<el-ignored>false</el-ignored>
<scripting-invalid>true</scripting-invalid>
</jsp-property-group>
</jsp-config>
</web-app>

That should be all that’s required to make the tags available. Deploy the new files and
enter the URL http://localhost:8080/3sp Ex09/welcome.jsp in a browser. Click the link for
EL_2, and you should see a page like the one shown in Figure 4-18.

. Fle Edt View Favorites Took Help 3

- Address €] http://localhost:8080/Jsp_Ex09/Questions.jsp?qid=EL_2 A ﬂ Go

JSTL Question 2

How do I use the JSTL?

tag result
<c:out value="3$ {questions.topic}"/> EL
<c:set target="3% {questions}" property="topic" value="JSTL"/> JSTL
This row was created because the c:if tag result was true

Multiplication table, 1 - 5

1
11
2214 10
336 9 1215
448 121620
5510152025

5
5

[SV o)

3
3
6

[~ Ry

Figure 4-18. The JSTL provides many custom actions that can be used to create dynamic
web pages.

This page demonstrates a few of the JSTL tags available to you. You've seen the TLD and
the web.xml entries several times now, so we won’t cover those again here. The EL_2.jsp file
begins by importing the tag libraries:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/format" prefix="fmt" %>

163

164

CHAPTER 4 ADVANCED JSP TOPICS

We need one taglib entry for each library we use. The EL_2.jsp uses the core and format-
ting libraries, so there is one taglib entry for each. The taglib entry sets the prefix for the core
library to c and the prefix for the format library to fmt, following the JSTL suggestion. However,
recall that you can make the prefix any value you want; the prefix is set by the page designer,
not by the tag library implementer.

As we mentioned earlier, if you are forced to use the JSTL 1.0 versions of the TLD files
because your web container supports only JSP 1.2, you may need two taglib entries for each
library you use in the JSP page. In addition, the URL for the taglib element is slightly different.
If your JSP page uses JSP scripting expressions such as scriptlets or declarations, you will use
the RT version of the TLD, fmt-1_0-rt.tld, for example. If your JSP page uses EL statements,
you will use the EL version of the TLD, fmt-1_0.tld, for example. So, if Listing 4-20 were being
deployed to a JSP 1.2 container, the taglib entries would look like this:

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>
<%@ taglib uri="http://java.sun.com/jstl/format" prefix="fmt" %>

If you then added any Java scriptlets, expressions, or declarations to the page, you would
add the following taglib entries as well:

<%@ taglib uri="http://java.sun.com/jstl/core rt" prefix="c_rt" %>
<%@ taglib uri="http://java.sun.com/jstl/format rt" prefix="fmt rt" %>

Comparing the URIs above to the URIs used in Listing 4-20, you can see that the JSTL 1.0
URI differs from the JSTL 1.1 URI. The JSTL 1.1 URI adds the name jsp to the URI path.

The page next creates a JavaBean from the Questions class and prints out the value of its
topic property. It then sets the topic property to a different value and prints that out. Next, it
uses two <c:1f> tags to control the creation of another row in the table.

The next part of the page uses nested <c: forEach> tags to create a two-dimensional table
and to fill the table with the result of multiplying the numbers one through five against themselves.

This example should give you a fair idea of how to get started using some of the other tags
in the JSTL. There is, of course, much more information in the JSTL specification, available at
the Jakarta web site and at java.sun.com.

OTHER TAG LIBRARIES

The JSTL is certainly not the only tag library available to you. There are many more commercial and free tag
libraries available. Here is a short listing:

o Struts: The Struts tag library provides tags that are useful in building Model-View-Controller (MVC)
applications. (You saw a simplistic MVC application at the end of the last chapter, and you’ll see the use
of MVC architecture again in the next chapter.) It is available from the Apache web site at http://
struts.apache.org/.

e Jakarta Tag Libraries: In addition to the JSTL, the Apache Software Foundation has well over 20
different tag libraries that you can use in web applications. These libraries are listed on the Jakarta tag
libraries web page at http://jakarta.apache.org/taglibs/index.html.

Continued

CHAPTER 4 ADVANCED JSP TOPICS

o JNDI: This library is also available from Jakarta. It provides tags for using the Java Naming and Directory
Interface (JNDI) API. As you will see throughout this book, you will often use JNDI to look up resources
in your web applications. More information about JNDI can be found at http://java.sun.com/
products/jndi/. The tag library is at http://jakarta.apache.org/taglibs/doc/jndi-doc/
intro.html.

e BEA WebLogic Portal JSP Tag Libraries: This tag library from BEA provides standard tags for working
with BEA’s web portal. For more information, see http://edocs.beasys.com/wlac/portals/
docs/tagscontents.html.

e Coldbeans Bar Charts: This is one of many tag libraries available from www. servletsuite.com/
jsp.htm. This library provides tags for creating horizontal and vertical bar charts.

e QOrion EJB: Available at www.orionserver.com/tags/ejbtags/, this library provides tags for
using EJBs.

e JSPTags.com: Not a single tag library, but a whole collection of them, can be found at http://
jsptags.com/tags/index. jsp. If you can’t find what you need here, you'll probably need to
develop it yourself.

With all these resources, it should be easy to find a tag library with the functionality that you need for your
web application. Once you have a tag library, using it in your web application is as easy as 1-2—3:

1. Unpack the library and add the . jar files to your application.
2. Change the web . xml file to map the URIs to the library location.
3. Add the taglib directive to the pages that will use the JSTL tags, and then use the tags.

Additionally, if you can’t find an existing tag library with the functionality you need, you can apply what
you learned about simple and classic tag handlers and write your own tag library.

Summary

So that’s the nickel tour of advanced JSP topics. We spent some time getting to know the
Expression Language (EL) in some detail, and we spent a lot of time with custom actions and
seeing how to implement tag extensions. After that, we took a quick look at the JSP Standard
Tag Library (JSTL).

By no means, though, did we cover everything on those topics. There are many other
features of EL, tag extensions, and the JSTL. What we did look at, though, was the fundamental
information, which will allow you to sit down and start using these technologies. After you have
spent a little time writing tag extensions or EL expressions, you can start delving into the more
complex material.

After having read this chapter, you should know:

» EL expressions provide a simple syntax for using expressions with attributes and
template text.

» EL expressions are very Java-like in their syntax.

165

166

CHAPTER 4 ADVANCED JSP TOPICS

Custom actions provide a way to hide the Java code from the page designer.

Tag handlers are the Java classes that implement a custom action. You will usually
extend SimpleTagSupport, TagSupport, or BodyTagSupport when creating a tag handler.

Deploying a tag library is an easy, three-step procedure (copy jar files and t1d files, add
mapping to web.xml, and add a taglib directive and tags to the JSP page).

The JSTL provides a library of standard tags that can be used for many basic functions.

If you want to dig deeper into JSP and other advanced topics, we recommend Pro JSP,
Third Edition, by Simon Brown (Apress, 2003; ISBN 1-59059-225-5), and JavaServer Pages,
3rd Edition, by Hans Bergsten (O’Reilly, 2003; ISBN 0-59600-5636).

Exercises

. Implement a client web page that has numerous input elements such as text fields,

buttons, check boxes, radio buttons, and so on. Using only EL, create a JSP page that
echoes back to the caller the request parameters from the request sent by the web page.

Modify Jsp_Ex05 to include two additional topics in addition to the EL topics. Also, add
a page that the user can use to select the desired topic.

Write two custom actions, where one action is nested inside the other action. For
example, with standard actions, a <param> tag is nested inside a <useBean> tag. Do
something similar with your tags.

When using a classic tag handler, investigate if there is any difference in how the tag
handler methods are called for the two different forms of the empty tag: <empty/> and
<empty></empty>. Perform the same investigation for simple tag handlers.

Develop a JSP that uses the sql tag library of the JSTL to communicate with a database.
(You may want to defer this exercise until after completing Chapter 7.)

Use the Jakarta tag libraries (http://jakarta.apache.org/taglibs/index.html) to
create one or more JSP pages. Here are some ideas:

* Use the Scrape tag library to search and scrape book information from an online
bookstore.

* Use the I18N library to create a JSP that displays in two or more languages based on
user preference.

* Use the Random tag library to create a web application that simulates a dice rolling
game or some other game that relies on chance.

CHAPTER 5

JavaServer Faces

J avaServer Faces (JSF), a relatively new technology in the Java EE world, is designed to further
simplify web application development. JSF makes it easy to build user interface components
and pages, and connect those components to business objects. It also automates the process
of bean usage and page navigation.

JSF builds on the experience gained from JSP, Servlet, and various other web application
frameworks. In particular, JSF builds on the Apache Struts project. This is not surprising in light
of the fact that the creator of Struts is the lead specification engineer for JSF. (If you're a Struts
enthusiast, you can even use JSF with Struts; see http://struts.apache.org.)

In this chapter, you will learn:

* Why JSF was developed and how it helps you to create dynamic user interfaces
* How to use custom tags for JSF components in JSP pages

* How to use managed beans with JSF components

* How to control page navigation

* How to convert data and validate input

Introduction to JSF

The JSF specification lists the following ways that JSF helps web application developers to
create user interfaces (UIs):

* Makes it easy to construct a UI from a set of reusable UI components

* Simplifies migration of application data to and from the UI

* Helps manage Ul state across server requests

* Provides a simple model for wiring client-generated events to server-side application code
* Allows custom UI components to be easily built and reused

Ul development is easier because Ul components are provided as reusable objects.
A number of classes, corresponding to UI components, are part of the JSF specification and
implementation. Rather than needing to worry about the syntax of page layout, you simply

167

168

CHAPTER 5 JAVASERVER FACES

drop the UI components into your application. A custom render kit and rendering process
convert the components into appropriate page layout code. The JSF implementation comes
with a default render kit for HTML, but the same JSF code can be rendered by other render kits
for other client systems. This means that you can use the same JSF code for a variety of client
systems, and use different render kits to customize the Ul for each client system.

Moving application data to and from the Ul is simplified by letting the JSF implementation
handle the mechanics of data transfer. You simply specify which data goes where, and the JSF
implementation handles the process of moving the data from UI objects to business objects
and vice versa. The JSF implementation automatically manages state across user requests, so
you do not need to manage or implement any session handling.

As with data, JSF provides an easy way to manage event handling. You specify the events
of interest and the business objects or classes to handle the events, and the JSF implementa-
tion takes care of calling the appropriate methods to handle any events that are generated. The
JSF event-handling model is similar to models used in other UI frameworks, such as Java
Swing. Specifically, this means that multiple event listeners can respond to a single event.

Finally, because JSF is based on reusable components, it provides a design that allows you
to easily create and integrate your own components or third-party components into your JSF-
enabled applications.

Note As with all the Java EE technologies, detailed information about the technology can be found in the
JSF specification (http://java.sun.com/j2ee/javaserverfaces).

The Relationship Between JSF and Other Java EE Technologies

Within Java EE, technologies like JSP pages, Servlets, and EJBs are stand-alone technologies.
You could, if you wanted to, create an application using just EJBs, Servlets, or JSP pages.

JSF is different because it is a supporting technology. You use it in conjunction with JSP
pages, Servlets, or EJBs.

The primary design pattern of JSF is the Model-View-Controller (MVC) pattern. MVC
separates an application architecture into three categories of components: model, view, and
controller. The model is the abstraction of all the domain data in the system. It is the bank
account in a banking application, or a shopping cart in an e-commerce system. The view is the
visualization of the model. In a web application, the view consists of the HTML pages and the
components that create the HTML pages sent to web browsers, the WAP pages sent to mobile
devices, or the Ul components sent to a dedicated client. The controller is the set of components
that manage the communications between model and view.

Asyou’velearned in the previous chapters, you can create Uls with JSP. In fact, as you saw,
JSP was designed to make the view component of a web application easy to create and manage.
It is also possible, if not as easy, to create Uls with Servlets or EJBs. Combining JSF with any of
these other technologies makes Ul creation—and integration of the model, view, and controller—
easier by far. JSF brings a component-based model to web application development that is
similar to the model that has been used in stand-alone GUI applications for years.

CHAPTER 5 JAVASERVER FACES

To use JSF with Servlets and E]Bs, you use the components that make up JSF directly; that
is, within your Servlet or EJB, you explicitly create instances of Ul components and use the Ul
classes directly. However, rather than go through that here, we will focus exclusively on using
JSF with JSP. The JSF implementation includes a tag library of custom tags that you can use
with JSP pages to easily create JSF-enabled applications.

Request Processing Lifecycle

Regardless of whether you are using JSF with JSP pages, Servlets, or EJBs, each request/response
flow that involves JSF follows a certain lifecycle. Several different kinds of request/response
cycles can occur in a JSF-enabled application. You can have requests that come from a previously
rendered JSF page (a JSF request) and a request that comes from a non-JSF page (a non-JSF
request). Likewise, you can have JSF responses and non-JSF responses. We are concerned with
these three request/response pairs:

¢ Non-JSF request generates JSF response
¢ JSF request generates JSF response
¢ JSF request generates non-JSF response

Of course, you can also have a non-JSF request that generates a non-JSF response. Since
this does not involve JSF in any way, the JSF lifecycle does not apply.

Recall that JSP pages have a relatively simple lifecycle. A JSP page source is compiled into
a page implementation class. When a web server receives a request, that request is passed to
the container, which passes the request to the page class. The page class processes the request,
and then writes the response back to the client. When other pages are included or the request
is forwarded, or when an exception occurs, the process is a little more involved, but basically,
a small set of classes processes a request and sends a response back.

When using JSF, the lifecycle is a little more involved. This is due to the fact that the core of
JSF is the MVC pattern, which has several implications. User actions in JSF-generated views
take place in a client that does not have a permanent connection to the server. The delivery of
user actions or page events is delayed until a new connection is established. The JSF lifecycle
must handle this delay between event and event processing. Also, the JSF lifecycle must ensure
the view is correct before rendering the view. To ensure that the business state is never invalid, the
JSF system includes a phase for validating inputs and another for updating the model only after
all inputs pass validation.

Note In MVC, the presentation of data (the view) is separate from its representation in the system (the
model). When the model is updated, the controller sends a message to the view, telling the view to update its
presentation. When the user takes some action with the presentation, the controller sends a message to the
model, telling the model to update its data. In JSF, the model is composed of business objects that are usually
implemented as JavaBeans, the controller is the JSF implementation, and the Ul components are the view.
The MVC architecture is discussed in more detail in Chapter 6.

169

170

CHAPTER 5 JAVASERVER FACES

The JSF lifecycle has six phases, as defined by the JSF specification:

Restore view: In this phase, the JSF implementation restores the objects and data structures
that represent the view of the request. Of course, if this is the client’s first visit to a page,
the JSF implementation must create the view. When a JSF implementation creates and
renders a JSF-enabled page, it creates UI objects for each view component. The compo-
nents are stored in a component tree, and the state of the UI view is saved for subsequent
requests. If this is a subsequent request, the previously saved Ul view is retrieved for the
processing of the current request.

Apply request values: Any data that was sent as part of the request is passed to the
appropriate Ul objects that compose the view. Those objects update their state with the
data values. Data can come from input fields in a web form, from cookies sent as part of
the request, or from request headers. Note that this does not yet update the business
objects that compose the model. It only updates the UI components with the new data.

Process validations: The data that was submitted with the form is validated. As with the
previous phase, this does not yet update the business objects in the application. This is

because if the JSF implementation began to update the business objects as data was vali-
dated, and a piece of data failed validation, the model would be partially updated and in
an invalid state.

Update model values: After all validations are complete, the business objects that make
up the application are updated with the validated data from the request. In addition, if
any of the data needs to be converted to a different format (for example, converting a
String to a Date object) to update the model, the conversion occurs in this phase.
Conversion is needed when the data type of a property is not a String or a Java primitive.

Invoke application: At this point in the lifecycle, any events that were generated during
previous phases and that have not yet been handled are passed to the web application
so that it can complete any other processing of the request that is required.

Render response: The response Ul components are rendered, and the response is sent
to the client. The state of the Ul components is saved so that the component tree can be
restored when the client sends another request.

For a JSF-enabled application, the thread of execution for a request/response cycle can flow
through each phase, in the order listed here and as shown in Figure 5-1. However, depending
on the request, and what happens during the processing and response, not every request will
flow through all six phases.

In Figure 5-1, you can see a number of optional paths through the lifecycle. For example,
if errors occur during any of the phases, the flow of execution transfers immediately to the
render response phase, skipping any remaining phases. Also, if at any point in the lifecycle the
request processing is complete and a non-JSF response is to be sent to the client, the flow of
execution can exit the lifecycle without completing further phases.

CHAPTER 5

Response Complete

JAVASERVER FACES

Response Complete

17

JSF
Request Apply Request Process Process Process
i » \ |
Restore View 7 Values 7| Events 71 validations 7| Events
Response Complete Response Complete
Y Y
JSF

Response Render Process | Invoke Process | Update Model

Response Events Application Events Values

f Conversion Errors | Validation Errors

Figure 5-1. When a request is sent to a JSF enabled application, the request can potentially
encompass all six phases of the JSF lifecycle.

Installing JSF

To run the examples in this chapter, you will need to obtain and install a copy of the JSF refer-
ence implementation, the JSP Standard Tag Library (JSTL) reference implementation, and a
JSP web container or an application server that supports Servlet 2.3 and JSP 1.2 or later.

If you are running the current version of Sun’s Application Server, you already have JSF
and JSTL, so you do not need to take any further action.

If you are running Tomcat 5.0 or 5.5, you need to download JSF from http://java.sun.com/
j2ee/javaserverfaces/download.html and the JSTL from http://jakarta.apache.org/taglibs/
doc/standard-doc/intro.html. For now, simply unpack each distribution into a directory of your
choice, remembering where that directory is.

There are two ways that you can make JSF and JSTL available to your web application
running in Tomcat. Both involve putting the following eight JAR files, which are located in the
1ib directory of each distribution, into a location that can be accessed by the server or the web
application.

* Six JSF JARs: commons-beanutils. jar, commons-collections. jar, commons-digester. jar,
commons-logging.jar, jsf-api.jar, and jsf-impl.jar

* Two JSTLJARs: jstl.jar and standard.jar

If, for some reason, you want only a particular application to have access to JSF and JSTL,
you can place the JAR files from these two APIs into the WEB-INF/1ib directory of the particular
web application. Then only that application will have access to those libraries. If you have another
JSF application, that application would also need access to those files in its own WEB-INF/1ib
directory.

172

CHAPTER 5 JAVASERVER FACES

Alternatively, if you have several JSF applications, you can put the JAR files into a common
location. For Tomcat, thatlocation is tomcat_dir/common/1ib. When the JAR files are located in
the common directory, then every application in the application server has access to them.
Note that if you copy the JAR files into the common directory while the server is running, you
may need to restart the Tomcat server so that the new JAR files can be loaded.

Using JSF with JSP Pages

Now that you've had an introduction to JSF, let’s jump right into creating and deploying a
simple JSF application that shows how to use JSF with JSP. Because JSP pages are easy to imple-
ment and deploy, this example will clearly demonstrate how to use JSF in a web application.
Also, the JSF specification requires that all JSF implementations support JSP pages and provide
custom actions corresponding to JSF UI components.

The JSF implementation from Sun comes with two libraries of custom actions that you can
use with JSP pages: HTML custom actions and core custom actions. The HTML custom actions
are for components that vary based on the render kit used. These custom actions are used to
create HTML elements. As shown in Table 5-1, the HTML custom actions fall into five catego-
ries or elements: input, output, selection, commands, and miscellaneous.

Table 5-1. HTML Custom Actions

Category Elements Purpose

Input h:inputHidden, h:inputSecret, Create various kinds of input elements
h:inputText, h:inputTextarea

Output h:message, h:messages, Create various kinds of output elements
h:outputFormat, h:outputlLabel,
h:outputlLink, h:outputText

Selection h:selectBooleanCheckbox, Create drop-down menus, list boxes,
h:selectManyCheckbox, radio buttons, and check boxes
h:selectManyListbox,
h:selectManyMenu,
h:selectOneListbox,
h:selectOneMenu,
h:selectOneRadio

Commands h:commandButton, Create buttons or links that cause form
h:commandLink submission

Miscellaneous h:dataTable, h:form, Create various HTML elements such as
h:graphicImage, h:panelCrid, tables, forms, and panels
h:panelGroup, h:column

CHAPTER 5 JAVASERVER FACES

The core custom actions create Ul elements that are independent of the render kit. These
actions are usually used in conjunction with the HTML actions listed in Table 5-1 to modify the
behavior of those actions. Table 5-2 shows all the core custom actions, listed by category.

Table 5-2. Core Custom Actions

Category Elements Purpose
Converters f:convertDateTime, Standard converters
f:convertNumber, f:converter
Listeners f:actionlistener, Specify a listener for a component
f:valueChangelistener
Miscellaneous f:attribute, f:1loadBundle, Add attributes or parameters, load a
f:param, f:verbatim resource bundle, and output verbatim
HTML template text
Selection f:selectItem, f:selectItems Specify selection items for HTML
selection elements
Validators f:validateDoubleRange, Standard validators
f:validatelength,
f:validatelongRange,
f:validator
View f:facet, f:subview, f:view Create a JSF view or subview

Tip If you unpack the JSF implementation to your hard drive, a directory of documentation for the custom
actions will be saved to the hard drive in jsf_root/tlddocs/index.html. This documentation is similar
to the Javadoc documentation created with Java source files. For full details on using custom actions, refer
to this documentation.

In this section, you will see a number of these custom tags in action. We will discuss these
tags as we go along.

Creating a Simple JSF Application

Our example simulates a flight reservation system. Figure 5-2 shows the directory structure of
the sample application.

173

174 CHAPTER 5 JAVASERVER FACES

=T Jsf_Ex01
-2 WEB-INF/classes
--## com.apress.jsf
+-[J] FlightSearch.java
-I-{z= WEB-INF
(= lib
faces-config.xml
web.xml
index.html
searchForm.jsp
searchResults.jsp
searchResults.jsp

Figure 5-2. The directory structure of the Jsf_Ex01 example

Implementing a JavaBean

We'll start this example by showing the JavaBean class that represents the business layer of the
web application. This bean will be connected to the presentation layer by the JSF system. It
represents the information necessary to search for a flight in the system. The FlightSearch
class, shown in Listing 5-1, is used to store the search parameters entered by the user. Although
there are various parameters that can be used when searching for a flight, for this first example,
we have chosen to include the following: origination airport, destination airport, departure
date and time, and arrival date and time.

Listing 5-1. FlightSearch.java

package com.apress.jst;

public class FlightSearch {
String origination;
String destination;
String departDate;
String departTime;
String returnDate;
String returnTime;

public String getDepartDate() {
return departDate;

}

public void setDepartDate(String departDate) {
this.departDate = departDate;

}

}

CHAPTER 5 JAVASERVER FACES

public String getDepartTime() {
return departTime;

}

public void setDepartTime(String departTime) {
this.departTime = departTime;

}

public String getDestination() {
return destination;

}

public void setDestination(String destination) {
this.destination = destination;

}

public String getOrigination() {
return origination;

}

public void setOrigination(String origination) {
this.origination = origination;

}

public String getReturnDate() {
return returnDate;

}

public void setReturnDate(String returnDate) {
this.returnDate = returnDate;

}

public String getReturnTime() {
return returnTime;

}

public void setReturnTime(String returnTime) {
this.returnTime = returnTime;

}

175

176

CHAPTER 5 JAVASERVER FACES

Looking at the class, you can see that it is a standard JavaBean. There is no explicit constructor,
so the compiler provides a default no-argument constructor. There are fields for all the parameters
we want to store, and methods for getting and setting each of the fields. This means that all the
properties of the class are exposed as read-write properties to the web application. This will
allow one part of the application to set the properties and a different part to read the properties.
We’ll discuss the role of JavaBeans in JSF implementations in more detail later in this chapter,
in the “Using Managed Beans” section.

Before deploying this example, you will need to compile the FlightSearch. java source
into a class file. Since this source file uses classes from only the java.lang package and does not
use any special APIs or classes, you should be able to compile it without needing to reset your
classpath. Use your IDE to compile the class, or use javac from the command line.

Implementing the View Components

The next part of our example is a web page to accept the user’s inputs for searching for a flight.
This will be a JSP page with input fields for the origination, destination, departure date and time,
and return date and time. Listing 5-2 shows the initial page in our application, searchForm. jsp.

If you created any of the examples in Chapter 3, you will recall that those examples also used
input fields in an HTML page generated by a JSP page. The searchForm. jsp page also uses input
fields, but as you will see, they are slightly different from the HTML input fields we used in
Chapter 3.

Listing 5-2. searchForm.jsp

<html>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

<fiview>
<head>

<title>Freedom Airlines Online Flight Reservation System</title>
</head>

<body>
<h:form>
<h2>Search Flights</h2>
<table>
<tr><td colspan="4">Where and when do you want to travel?</td></tr>
<tr>

<td colspan="2">Leaving from:</td>
<td colspan="2">Going to:</td>
</tr>
<tr>
<td colspan="2">
<h:inputText value="#{flight.origination}" size="35"/>
</td>
<td colspan="2">
<h:inputText value="#{flight.destination}" size="35"/>
</td>

CHAPTER 5 JAVASERVER FACES

</tr>
<tr>
<td colspan="2">Departing:</td>
<td colspan="2">Returning:</td>
</tr>
<tr>
<td>
<h:inputText value="#{flight.departDate}"/>
</td>
<td>
<h:inputText value="#{flight.departTime}"/>
</td>
<td>
<h:inputText value="#{flight.returnDate}"/>
</td>
<td>
<h:inputText value="#{flight.returnTime}"/>
</td>
</tr>
</table>
<p>
<h:commandButton value="Search" action="submit"/>
</p>
</h:form>
</body>
</frview>
</html>

Throughout Chapter 4, we talked about ways to remove Java code from JSP pages. And as
we stated at the beginning of this chapter, JSF provides another way to do this. Looking at
Listing 5-2, you can see there is not a single declaration or scriptlet within the page. There are
only two taglib directives, some standard HTML tags, and some tags that look like tags for
custom actions. The tags that begin with f: or h: come from the tag libraries defined in the
taglib directives.

As you might guess from the taglib directive, the tags that use the prefix f: provide the
core JSF functionality for the page, and tags that use the prefix h: provide HTML elements for
the page. There is one JSF tag in the page: the view tag. Any page that includes JSF elements
must have the view tag as the outermost JSF tag. The rest of the JSF tags in the page create
HTML elements in the page. The form tag creates an HTML form. The input tags create input
text fields in the form. The commandButton tag creates a button in the form.

If you are familiar with HTML forms, you know that every HTML form requires an action
attribute and can include an optional method attribute. The action attribute tells the web browser
where to submit the form data. The method attribute tells the browser whether to submit a GET
request or a POST request. The JSF tag does not use either of these attributes. The JSP specification
requires that all JSF forms post to the same URL from which they were served. (If form data is
submitted to the same page, how then does the application process the data and move between
pages in the application? This question will be answered in Listing 5-4 and in detail in the
“Controlling Page Navigation” section later in this chapter.) The specification also requires

177

178

CHAPTER 5 JAVASERVER FACES

that all JSF forms use the POST method for submitting form data to web applications. Since both
the method and action have mandatory values that the programmer cannot change, they do
not need to be specified in the JSF tag.

Also note that the input tags have a different syntax than standard HTML for the value
attribute. If you read the coverage of Expression Language (EL) in Chapter 4, you will recognize
the #{} syntax as being EL syntax. With EL, an expression such as #{flight.origination} is
used when the JSP page wants to access a property of an object in the page. The name to the left
of the dot is the name of an object accessible by the page; the name to the right of the dotis a
property of the object to be accessed. In Listing 5-1, you can see a property named origination
with associated set and get methods. When this JavaBean is made available to a JSP page, that
page can read or write the property when we use the #{flight.origination} expression in
the page. The searchForm. jsp page uses the expression with input fields. When we submit this
page to the application, the values entered into the fields will be used to set the property in
the JavaBean.

In areal web application that provided an online flight reservation system, the system
would search for and display flights after the user submits a request. In this example, however,
we will start by simply echoing the search parameters back to the user. This is accomplished in
the searchResults. jsp page, shown in Listing 5-3.

Listing 5-3. searchResults.jsp

<html>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

<f:view>
<head>
<title>Freedom Airlines Online Flight Reservation System</title>
</head>
<body>
<h3>You entered these search parameters</h3>
<p>Origination: <h:outputText value="#{flight.origination}"/>
<p>Depart date: <h:outputText value="#{flight.departDate}"/>
<p>Depart time: <h:outputText value="#{flight.departTime}"/>
<p>Destination: <h:outputText value="#{flight.destination}"/>
<p>Return date: <h:outputText value="#{flight.returnDate}"/>
<p>Return time: <h:outputText value="#{flight.returnTime}"/>
<p>Trip type : <h:outputText value="#{flight.tripType}"/>
</body>
</fiview>
</html>

As with searchForm. jsp, the outermost JSF tag is the f:view tag. Within the view, the page
uses h:outputText tags. The outputText tags are obviously used to output text to the page. As
with the inputText tags, they use the #{object.property} syntax to access a property of an
object in the page. In this case, the object is a JavaBean identified by the name flight. The
outputText tag reads the property from the object and displays it in the web page generated by
this JSP page.

CHAPTER 5 JAVASERVER FACES

So, now you've seen the three main parts of the web application: an input page, an output
page, and a JavaBean to hold the business data. In terms of the MVC pattern, FlightSearch is
the model, and searchForm.jsp and searchResults. jsp are the view. What we haven’t shown
yet is the controller. We also haven’t explained how the controller knows where to find the
model or the view, and how the controller knows the logic flow through the web application. In
the MVC example in Chapter 3, we needed to specifically code the flow of control into the JSP
pages. In the listings presented here, you can see that searchForm. jsp or searchResults. jsp do
not have any information thatindicates how control is transferred from page to page. Nowlet’s
see how this control is managed.

Directing Traffic in the JSF Application

Information about the view components in the web application, and information about

how control flows through the application is contained in a special configuration file named
faces-config.xml, shown in Listing 5-4. Although faces-config.xml can contain a lot of different
information about a web application, for this example, we need it to do only two things: identify
the flow of control from searchForm. jsp to searchResults. jsp and identify the JavaBean used
by the application.

Listing 5-4. faces-config.xml

<?xml version="1.0"?>

<faces-config xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee/web-facesconfig 1 2.xsd"
version="1.2">
<navigation-rule>
<from-view-id>/searchForm.jsp</from-view-id>
<navigation-case>
<from-outcome>submit</from-outcome>
<to-view-id>/searchResults.jsp</to-view-id>
<redirect/>
</navigation-case>
</navigation-rule>

<managed-bean>
<managed-bean-name>flight</managed-bean-name>
<managed-bean-class>com.apress.jsf.FlightSearch</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>
</managed-bean>
</faces-config>

The faces-config.xml file identifies the JavaBeans used by the web application in the
managed-bean element. You will have a managed-bean element for every JavaBean used by your
web application. The managed-bean element in Listing 5-4 contains three subelements:

179

180

CHAPTER 5 JAVASERVER FACES

* The first subelement is the name used to identify the bean in a JSP page. In Listing 5-4
the name is given as flight; this is why both searchForm. jsp and searchResults. jsp can
access an instance of the bean using the expression #{flight..}.

* The second element is the fully qualified class name of the JavaBean class. This name
tells the JSP container which class to load and instantiate to create an instance of the
JavaBean.

* The third element identifies the scope of the object. Session scope means that the object
exists for the entire interaction between the user and the application. The container
must persist the object across multiple request/response cycles, until the user’s session
is terminated. We will look at all this in more detail in the “Using Managed Beans” section
later in this chapter.

The faces-config.xml file is also used to tell the controller how to navigate through the
application. Navigation flow is specified in navigation-rule elements. Our example needs only
one element. In general, a navigation-rule element identifies the start page, a condition, and
which page to navigate to when the condition occurs.

In our example, the start page is searchForm. jsp. If the page request is submitted with an
outcome of submit, control is transferred to searchResults. jsp. Looking at Listing 5-2, you can
see that the commandButton element has an action of submit; when the button is clicked and the
form is submitted, this action matches the from-outcome of the navigation-rule.

The navigation-rule element also includes an empty redirect element. With this element,
the response is created by causing the browser to redirect to the searchResults.jsp page, which
also updates the address bar in the browser. Without this element, the response is still created
correctly and sent to the browser, but the address bar of the browser will not be updated and
will still display the address for the submitting page. We will look at navigation in more detail
in the “Controlling Page Navigation” section later in this chapter.

We need just one final piece for our web application. In many of the examples in Chapter 3
and Chapter 4, we identified a default page to be served to users when they first access the web
application. In this example, our default page will be a standard HTML page that redirects to
the correct URL for a JSF application. Listing 5-5 shows index.html.

Listing 5-5. index.html

<html>
<head>
<meta http-equiv="Refresh" content= "0; URL=searchForm.faces"/>
</head>
</html>

You can see that that the redirect URL is searchForm. faces. However, there is no component
in our application named searchForm.faces. How then does the web application know which
page to serve? All requests that are JSF requests are directed to the controller for the application,
which is a Servlet supplied as part of the JSF reference implementation. As you will see when
we deploy this example, we will specify that all URLs of the form *. faces should be sent to the
controller Servlet. This Servlet then converts the searchForm. faces request to searchForm. jsp,
processes the JSP page, and sends the response to the browser.

CHAPTER 5 JAVASERVER FACES

Deploying the Application to the Sun Application Server

As you've seen in the previous chapters, you can deploy applications to the Sun Application
Server by using the Deployment Tool. To deploy this first JSF example, follow these general
steps (for more detailed instructions on using the Deployment Tool, refer to the examples in
Chapters 2, 3, and 4):

1. Create a web application in the Deployment Tool.

2. Add the files index.html, searchForm. jsp, searchResults.jsp, faces-config.xml, and
FlightSearch.class to the application, ensuring they are in the correct location (see
Figure 5-2).

3. Configure the controller Servlet javax.faces.webapp.FacesServlet using the name
Faces Servlet.

4. Configure the welcome file list to include index.html as the welcome page.

5. Create a Servlet mapping so that all URLs that include the pattern *. faces are directed
to the Servlet named Faces Servlet.

6. Save and deploy the application to the server.

Deploying the Application to the Tomcat Server

To deploy the application to the Tomcat server, start by creating an application structure like
that shown in Figure 5-2. You will also need to write the web.xm1 deployment descriptor, shown
in Listing 5-6.

Listing 5-6. web.xml for Jsf Ex01

<?xml version="1.0"?>

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee/web-app_2 5.xsd"
version="2.5">

<display-name>Jsf Ex01 - Simple JSF Application</display-name>

<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>*.faces</url-pattern>
</servlet-mapping>

181

182

CHAPTER 5 JAVASERVER FACES

<welcome-file-list>
<welcome-file>index.html</welcome-file>
</welcome-file-list>
</web-app>

The deployment descriptor identifies the controller Servlet (Faces Servlet) for the appli-
cation, specifies a Servlet mapping for which requests should be sent to the controller Servlet,
and designates the welcome file for the application.

As explained in the “Installing JSF” section earlier in this chapter, you need to copy the JSF
and JSTL JAR files into the application’s WEB-INF/1ib directory or into the Tomcat common/1ib
directory. Copy the entire directory into the Tomcat webapps directory, and deployment is
complete.

Alternatively, after creating the directory structure, you can package all the application
files into a WAR file using the Java jar command. Once the WAR file has been created, copy it
into the Tomcatwebapps directory. Tomcat will automatically unpack the WAR file and start the
application.

Running the Application

When you have successfully deployed the application to the server, open a web browser to the
address http://localhost:8080/1sf Ex01. (As always, replace localhost and 8080 with the
correct values for your installation, and replace Jsf_Ex01 with the correct application context
name, if you created and deployed your JSF application with a different context name.)

The application starts by loading the index.html page, which immediately redirects to
searchForm.faces. Because of the Servlet mapping in web.xml, this request is directed to the
Faces Servlet controller. The controller knows that searchForm. faces is a request for the
searchForm. jsp component. If this is the first request for searchForm. jsp, it is compiled by the
server, and then sent to the browser, as shown in Figure 5-3.

EEX

File Edit View Favorites Tools Help 1

€] http://localhost: 8080/1sf_Ex01/searchForm.faces v L_J Go

Search Flights

Where and when do you want to travel?
Leaving from: Going to:

Departing: Returning:

Search

Figure 5-3. The searchForm.jsp as sent to the browser

CHAPTER 5 JAVASERVER FACES

If you examine the source for the page, you can see that the JSF form tag has been trans-
lated to an HTML form tag. As mentioned earlier, the method for the form is POST and the action
is the URL for searchForm. jsp. Even though it appears that the form submits to the same JSP
page, the controller Servlet will use the navigation rules in the faces-config.xml file to ensure
page navigation occurs correctly. Also, each JSF input tag has been translated into an HTML
input tag. Here is an extract from the HTML source showing these points:

<form id="_ido" method="post" action="/Jsf Ex01/searchForm.faces"
enctype="application/x-www-form-urlencoded">

<h2>Search Flights</h2>
<table>
<tr><td colspan="4">Where and when do you want to travel?
</td></tr>
<tr>
<td colspan="2">Leaving from:</td>
<td colspan="2">Going to:</td>
</tr>
<tr>
<td colspan="2">
<input type="text" name="_ido: id1" size="35" />

Enter values for each of the input fields. Since each property of the FlightSearch JavaBean
is of the String type, you can enter anything you want into each text field. When you have
finished entering values, click the Search button. The request is passed to the server, and the
response generated by searchResults. jsp is sent back to the browser, as shown in Figure 5-4.

EBX
File Edit View Favorites Tools Help .

£] http://localhost:8080/1sf_Ex01/searchResults.faces v Boo

You entered these search parameters
Origination: BOS

Depart date: 06/04/05

Depart time: anytime

Destination: ORD

Return date: 06/18/05

Return time: anytime

Figure 5-4. The searchResults.jsp response from submitting the form in searchForm.jsp

183

184

CHAPTER 5 JAVASERVER FACES

Reviewing the JSF Lifecycle for the Sample Application

The JSF_Ex01 application (Listings 5-1 through 5-6) provides examples of two different
request/response processes. First, index.html causes a non-JSF request to generate a JSF
response when searchForm. jsp is displayed. Then, when searchForm. jsp is submitted, this
causes a JSF request to generate a JSF response.

The first request from the browser comes from a standard HTML page and does not contain
any data. In the restore view phase, rather than restoring an existing view, a new component
tree is created with the components from the view. This will consist of objects that represent
the form and each of the input fields. These objects are stored in the component tree. Since no
other processing is required, control passes to the render response phase. The Ul components
are rendered into HTML, and the response is sent to the client.

The lifecycle of the request and response from searchForm. jsp to searchResults. jsp follows
the phases illustrated in Figure 5-1. The request from searchForm. jsp causes the component
tree to be restored in the restore view phase. Next, the data passed in the form is used to update
the state of the view components in the apply request values phase. The process validations
phase is next, but since the values are all String types, no conversion is needed, and no validation
occurs. Next, the JavaBean is updated with the values from the view in the update model values
phase. Nothing occurs in the invoke application phase. Finally, in the render response phase,
the view components from searchResults. jsp are translated into HTML, using the data from
the JavaBean model, and the response is returned to the client.

Using Managed Beans

As noted earlier in this chapter, the primary design pattern of JSF is the MVC pattern. As you
saw in the previous example, JSF custom actions and JSP pages form the view in the MVC archi-
tecture. The Faces Servlet provided by a JSF implementation is the controller. However, JSF
by itself is not enough to create a working application, because you need the third leg of MVC: the
model. JavaBeans provide that part of the MVC pattern. In the example, FlightSearch was

the model.

JavaBeans are Java components that can be dropped into Java applications. They are simply
Java classes that conform to a certain coding style (documented in the JavaBeans specification
athttp://java.sun.com/products/javabeans/). For our purposes, there are two aspects of the
JavaBeans specification that are important:

¢ The JavaBean used in the web application must have a no-argument constructor. This
allows the container to construct an instance of the JavaBean.

* Any property to be exposed must have a get or set method. If only a get method is present,
the property is read-only. If only a set method is used, the property is write-only. If both
are present, the property is read-write. The format of the set method name is the word
set followed by the name of the property, with the first letter of the property name capital-
ized. The get method format is the word get followed by the name of the property, again
with the firstletter of the property name capitalized. For Boolean properties, the method
is the word is followed by the name of the property.

Because JavaBeans follow a particular design, they can be used programmatically, without
adeveloper needing to explicitly write code that uses the JavaBeans. As you saw in the previous

CHAPTER 5 JAVASERVER FACES

example, by simply identifying the JavaBean to the JSF application in the JSP pages and in the
configuration file, the JSF implementation was able to use the JavaBean, setting and reading its
properties—you didn’t need to write any explicit code.

Within the JSF implementation, JavaBeans that are used by a JSF-enabled application are
referred to as managed beans, because the JSF implementation manages the creation and use
of JavaBean objects.

Within a JSF-enabled application, managed beans appear in two contexts:

* The information needed to create and initialize the managed bean is identified within
the configuration files of the application.

* The properties and methods of managed beans are referenced in JSP pages using value
binding expressions or method binding expressions.

Configuring Managed Beans

You saw one method for identifying the managed bean parameters to the application in the
example earlier in this chapter, where we used a file named faces-config.xml located in the
WEB-INF directory of the application. However, the JSF specification identifies several other
files that can contain managed bean configuration information. The specification states that
configuration files will be searched for as follows:

* The JSF implementation looks for and processes files named META-INF/faces-config.xml.
This is primarily for JSF components packaged as JAR files that are part of the application.

¢ TheJSF implementation checks the web.xml deployment descriptor for a context parameter
named javax.faces.CONFIG_FILES. If the parameter exists, the value of the parameter
must be a comma-delimited list of filenames that will be processed as JSF configuration
files. The filenames must be relative paths from the application root to the file, such as
WEB-INF/my-config.xml.

* Finally, the JSF implementation processes the file WEB-INF/faces-config.xml, if it exists.

The configuration files are used to identify the managed beans, provide initialization
parameters for the beans, and identify the navigation rules for the application (as described in
the “Controlling Page Navigation” section later in this chapter). This information can be placed
in a single file, as in Listing 5-4, or it can be split among multiple files. For example, you could
put all the bean information into one configuration file and all the navigation information into
another configuration file. These multiple files would then be listed in the web. xm1 deployment
descriptor.

Identifying Managed Beans

A configuration file provides managed bean information to the application in the element of
the configuration file named managed-bean. The managed-bean element declares a JavaBean that
is created and populated by the JSF implementation. If the bean does not yet exist when a page
that uses the bean is accessed, the JSF implementation creates the bean based on the informa-
tion in the managed-bean element. Subsequent requests in the same session will access the
existing bean.

185

186

CHAPTER 5 JAVASERVER FACES

The managed-bean element has three required subelements:

* managed-bean-name: The string used to identify the bean instance in any JSF component.
For example, in Listing 5-4, the bean name was given as flight. In Listings 5-2 and 5-3,
we referenced the bean instance using this name.

* managed-bean-class: The fully qualified class name of the class that provides the imple-
mentation for the bean.

* managed-bean-scope: The scope of the bean instance. We will look at scope in more
depth in the “Identifying Bean Scopes” section a little later in this chapter.

The managed-bean element has a number of optional elements, including description,
display-name, icon, and managed-property. The usage of the first three should be relatively
obvious, so we will just look at the managed-property, which is used to initialize the properties
of amanaged bean.

Initializing Bean Properties

Like managed-bean, managed-property can have an optional description, display-name, and
icon. It must have a nested property-name element that identifies the name of an instance variable
(property) of the class with a set and get method. It can have an optional property-class
element that provides the fully qualified class name of the data type of the property. If the data
type is not provided, the JSF implementation will attempt to infer the type from the bean class.
Finally, it can have one of several elements that initialize the value of the property: <value>,
<null-value>, <list-entries>, or <map-entries>. For example, if the property of the bean is a
Java primitive or a String, you can use the value element like this:

<property-name>myProperty</property-name>
<value>3</value>

If the type of the property is a Java object and not a primitive, you can also set the value to
null, using this form:

<property-name>myProperty</property-name>
<null-value/>

If the type of the property is some other managed bean, you can initialize the property by
referencing the other bean by the name of the bean instance. So, for example, if you have a
managed bean of type MyBean, and you create an instance with the name myBean, you can
initialize a property using a value binding expression that is the name of the bean:

<managed-bean>

<managed-bean-name>foo</managed-bean-name>

<managed-bean-class>com.Foo</managed-bean-class>

<managed-bean-scope>session</managed-bean-scope>

<managed-property>
<value-class>com.MyBean</value-class>
<property-name>bar</property-name>
<value>#{myBean}</value>

</managed-property>

CHAPTER 5 JAVASERVER FACES

</managed-bean>

<managed-bean>
<managed-bean-name>myBean</managed-bean-name>
<managed-bean-class>com.MyBean</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>

</managed-bean>

In this snippet, the bean foo has a property of name bar. The type of bar is MyBean. The
value of bar is initialized by referencing the name of the MyBean object in the value binding
expression #{myBean}. (We’ll discuss value binding expressions in more detail in the “Using
Value Binding Expressions in JSP Pages” section a little later in this chapter.)

Finally, if the type of the property is List or a subtype of List, or Map or a subtype of Map,
you can initialize the List or Map in the configuration file. For example, in Listing 5-1, suppose
we wanted to restrict the departTime and arriveTime properties to the values Morning, Afternoon, or
Evening. We could create an additional property like this:

public class FlightSearch {
List times;
/1.

}

We can then initialize the list like this:

<managed-bean>
<managed-bean-name>flight</managed-bean-name>
<managed-bean-class>com.apress.jsf.FlightSearch</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>
<managed-property>
<property-name>times</property-name>
<list-entries>
<value>Morning</value>
<value>Afternoon</value>
<value>Evening</value>
</list-entries>
</managed-property>
</managed-bean>

The list-entries element can have an optional value-class element that provides the
fully qualified class name of the objects stored in the list. If used, it appears before the value
elements. When value-class is used, the JSF implementation will attempt to create objects of
that type, initialize those objects with the given values, and store them in the List. You can also
use the null-value element to store null values in the list.

Initializing a Map is similar. Suppose you have a property of type Map:

public class FlightSearch {
Map airportNames;
/1..

}

187

188

CHAPTER 5 JAVASERVER FACES

You initialize the Map like this:

<managed-bean>
<managed-bean-name>flight</managed-bean-name>
<managed-bean-class>com.apress.jsf.FlightSearch</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>
<managed-property>
<property-name>airportNames</property-name>
<map-entries>
<key-class>java.lang.String</key-class>
<value-class>java.lang.String</value-class>
<map-entry>
<key>B0S</key>
<value>Logan Internation Airport</value>
</map-entry>
<!-- and so on -->
</map-entries>
</managed-property>
</managed-bean>

In the element, both key-class and value-class are optional. The JSF implementation will
choose appropriate classes if you do not provide either element. There can be zero or more
map-entry elements, and each map-entry that appears must have a key and either a value or
null-value.

Identifying Bean Scopes

When you configure a JavaBean to be used in a JSF page, you can configure it with one of four
different scopes:

* None: Objects with this scope are not visible in any JSF page. When used in the configu-
ration file, they indicate JavaBeans that are used by other JavaBeans in the application.
Objects with none scope can use other objects with none scope.

* Request: Objects with this scope are visible from the start of the request until the end of
the request. Request scope starts at the beginning of a request and ends when the response
has been sent to the client. If the request is forwarded, the objects are visible in the
forwarded page, since that page is still part of the same request/response cycle. Objects
with request scope can use other objects with none, request, session, or application scope.

* Session: An object with session scope is visible for any request/response cycle that belongs
to a session. Objects with this scope have their state persisted between requests and last
until the object or the session is invalidated. Objects with session scope can use other
objects with none, session, or application scope.

* Application: An object with application scope is visible in all request/response cycles for
all clients using the application, for as long as the application is active. Objects with
application scope can use other objects with none or application scope.

CHAPTER 5 JAVASERVER FACES

You may recall from Chapter 3 that JavaBeans in JSP pages have similar scopes. The difference
is that JSP scope includes an additional scope: page. Since JSF requests often involve navigation
between pages, objects with page scope have no value in a JSF application. For example, in the
initial example in this chapter, the properties of a JavaBean were set in one JSP page, and those
values were displayed in another page. If the F1lightSearch JavaBean had been given page scope,
the searchResults.jsp page would not have access to the FlightSearch JavaBean, and so would
not have been able to display the data stored in the JavaBean.

Most often, you will define your JavaBeans to have session scope. However, in some cases,
you may have aJavaBean that encapsulates global data. For example, you may have a JavaBean
that holds information common to every page in the application; in that case, you would define
the JavaBean to have application scope. JavaBeans that you use only within a single request/
response will have request scope.

Using Value Binding Expressions in JSP Pages

When using JSF custom actions in your JSP pages, the JSF implementation can set or get the
value of JavaBean properties, based on the tag usage. For example, Listing 5-2 includes this tag:

<h:inputText value="#{flight.origination}" size="35"/>

Caution The syntax in the example shown here is sufficient for Java primitive and String values.
However, if the property is some other data type, you will probably need to supply a converter as well. See the
“Converting Data” section later in this chapter for details.

This is also referred to as a value binding expression because it binds the value of some
bean property to an attribute or property of some JSF element. When using the syntax of
object.property syntax, which we call dot notation, the expression to the left of the dot is some
object accessible to the page, and the thing to the right of the dot is some property of the object.
You can also chain expressions, like this:

object1l.object2.object3.property

Each expression in the chain, reading from left to right, is evaluated as an object reference, and
the final expression is a property of the last object.

Another syntax you can use to write a value binding expression uses brackets to denote the
property. We refer to this syntax as bracket notation:

flight["origination"]
flight['origination']
You would use the form with double quotes when using single quotes to delimit attribute

values, and use single quotes when double quotes are used to delimit the attribute values.
So, the inputText element could be written in either of these ways:

<h:inputText value="#{flight['origination']}" size="35"/>
<h:inputText value='#{flight["origination"]}"' size="35"/>

189

190

CHAPTER 5 JAVASERVER FACES

When creating chained expressions, you can freely mix dot and bracket notation. In fact,
as you will see shortly, when creating an expression to access a List or Map, mixed notation can
be used to create dynamic expressions.

Getting and Setting Bean Properties

When the searchForm. jsp page is rendered, the JSF implementation calls the get method for
the origination property of the FlightSearch class to get the value of the property. This value
is then included in the rendering of the page. It does this for all the properties that are refer-
enced in the page. When the page is first loaded, the properties of the F1lightSearch object have
no values, so the page is rendered with empty text fields.

During the processing of the request from searchForm. jsp, the values entered into the
form are saved by the UI components that correspond to the UI widgets on the page. After
these values are converted as necessary and validated, the JSF implementation updates the
model (the FlightSearch object) by calling the set method for the property.

After the model is updated, the lifecycle advances to the render phase, and the
searchResults. jsp page (Listing 5-3) is rendered. At this point, the FlightSearch object has
some data, and so when the page is rendered, the JSF implementation calls the get methods
for the properties that the page displays, and these values are used in the rendering and display
of the page.

Notice that by using the same simple #{flight.origination} syntax, the JSF implementa-
tion calls different code depending on the current phase of the JSF lifecycle. Note also that the
action does not depend on the tag type. The action taken for the h: inputText tag can be either
a get or set method of the property, regardless of the fact that the JSF tag renders as an HTML
input tag.

Accessing List, Array, and Map Property Types

You can also easily access bean properties that are of type List, array, and Map. You can access
an element of the List or array using a value binding expression. For example, earlier we presented
a possible List property added to FlightSearch:

public class FlightSearch {
List times;
/1.

}

After the bean is initialized, we could access the first value in the list using any of the
following expressions:

#{flight.times["1"]}
#{flight.times['1"]}
#{flight.times[1]}
#{flight .times["var"]}
#{flight .times.var}
#{flight.times[var]}

CHAPTER 5 JAVASERVER FACES

Note For a complete list of valid expression forms, see Section 5.1.2 of the JSF specification.

As mentioned earlier, you can chain expressions together to create a value binding expression.
The last expression following the dot, or inside the brackets, must evaluate to an integer or must be
convertible to an integer. When updating the model, the JSF implementation will attempt to set the
element at the given index. If the given index does not exist, a PropertyNotFoundException will
occur. When reading from the model, the implementation will call the get method to get the
element at the given index. Again, if the index does not exist, a PropertyNotFoundException
will occur.

One difference between value binding expressions for List and Map objects is that you can
use bracket notation to create dynamic value binding expressions. Suppose you had an object
with some intProperty that evaluates to an integer and tried this syntax:

flight.times.object.intProperty

The expression would cause an evaluation error. The JSF implementation expects object to be
a property of times, which is not the case. However, you can use a mixed form with both dot
and bracket notation:

flight.times[object.intProperty]

When this expression is evaluated, the object.intProperty expression evaluates to an integer,
which is then used to access the value stored in the List at that index. The same syntax can be
used when accessing Map entries.

Again, suppose you have this Map property of FlightSearch:

public class FlightSearch {
Map airportNames;
/1..

}

Then any of the following expressions will cause the Map methods get (key) or set(key, value)
to be called, depending on which lifecycle phase is currently being processed.

flight.airportNames.key
flight.airportNames[key]
flight.airportNames["key"]

Using Method Binding Expressions in JSP Pages

Just as you can bind managed bean properties to expressions in the JSP page, you can also bind
managed bean methods to expressions. You use method binding when setting the attribute
values for actions, validators, action listeners, and value change listeners.

The syntax for method binding expressions is the same as the syntax for value binding
expressions. You can use either dot or bracket notation. As with value binding expressions,
every expression in the chain, except the last expression, is evaluated as an object reference.

191

192

CHAPTER 5 JAVASERVER FACES

The last expression in the chain must be a method name of a method. The method signature
must follow a specific pattern, which depends on whether the method binding is used for an
action, a validator, an action listener, or a value change listener.

You will see how to use method binding expressions for actions in the “Controlling Page
Navigation” section later in this chapter. We will also look at method binding expressions for
validators in the “Validating Input” section later in the chapter. For more information about
their use with action and value changed listeners, see the JSF specification and the JSF chapter
in the Java EE tutorial.

Expanding the JSF Sample Application

Let’s update the first example in this chapter (Listings 5-1 through 5-6) to demonstrate some of
the concepts we just discussed. For this version, we’ll change the search form so that a user is

required to select either a one-way trip or a round-trip. We’ll also constrain the departure time
and return time to be Morning, Afternoon, or Evening, as shown in Figure 5-5.

EBX
File Edit View Favorites Tools Help th
] http://localhost: 8080/1sf_Ex02/searchForm.faces v L_J Go

Search Flights

What type of flight do vou need?
 Roundtrip © One way

Where and when do you want to travel?

Leaving from: Going to:

BOS ORD
Departing: Returning:

07/08/05 Morning v ||07/09/05 Evening v

Search

Figure 5-5. The search form now has radio buttons for one-way or round-trip and drop-down
boxes for departure and return times.

When the user enters the search parameters, the search results page will still echo the
search parameters, but will also list two matching flights (imaginary flights, since we will hard-
code them into the application).

CHAPTER 5 JAVASERVER FACES 193

The directory structure for the Jsf_Ex02 example, shown in Figure 5-6, is similar to the one
we used for the first example. The new files are F1ightTypes.java, FlightTimes. java, and
Flight.java.

=T Jsf_Ex02
- WEB-INF/classes
-- @ com.apress.jsf
+-[J] Flight.java
+-[J] FlightSearch.java
+-[J] FlightTimes.java
+-[J] FlightTypes.java
-I-{z= WEB-INF ’ -
- lib
faces-config.xml
web.xml
index.html
searchForm.jsp
searchResults.jsp
searchForm.jsp
searchResults.jsp

Figure 5-6. The directory structure for Jsf_Ex02

Listing 5-7 shows FlightTypes. java. This class is basically a data holder class
with no operations. It holds the two values Roundtrip and One Way in an array of type
javax.faces.SelectItem. This data type is used as part of the list-creation capability of JSF,
which we will explore later when we look at the new searchForm. jsp (Listing 5-12).

Listing 5-7. FlightTypes.java

package com.apress.jsf;
import javax.faces.model.SelectItem;

public class FlightTypes {
static SelectItem[] tripTypes = new SelectItem[] {
new SelectItem("Roundtrip”, "Roundtrip"),
new SelectItem("One way", "One way") };

public SelectItem[] getTripTypes() {
return tripTypes;
}
public void setTripTypes(SelectItem[] tripTypes) {
FlightTypes.tripTypes = tripTypes;
}
}

194

CHAPTER 5 JAVASERVER FACES

Listing 5-8 shows FlightTimes. java. Itis also a data holder class, this time for the depar-
ture and return time values.

Listing 5-8. FlightTimes.java

package com.apress.jst;
import javax.faces.model.SelectItem;

public class FlightTimes {
static SelectItem[] times = new SelectItem[] {
new SelectItem("Anytime", "Anytime"),
new SelectItem("Morning", "Morning"),
new SelectItem("Afternoon”, "Afternoon"),
new SelectItem("Evening", "Evening") };

public SelectItem[] getTimes() {
return times;
}
public void setTimes(SelectItem[] times) {
FlightTimes.times = times;
}
}

Listing 5-9 shows an updated version of FlightSearch. java. This new class has two additional
fields: one for trip type and one for matching flights (flights that supposedly match the search
parameters). In the process of creating the FlightSearch managed bean, the matchingFlights
field will be filled with two Flight objects. We will do this in the faces-config.xml file. Because we
are not going to actually search for flights, each set method in this class will also update the appro-
priate fields in the F1ight objects.

Listing 5-9. FlightSearch.java

package com.apress.jst;

import java.util.list;
import java.util.Arraylist;

public class FlightSearch {
String origination;
String destination;
String departDate;
String departTime;
String returnDate;
String returnTime;
String tripType;
Arraylist matchingFlights = new Arraylist();

CHAPTER 5 JAVASERVER FACES

public String getDepartDate() {
return departDate;
}
public void setDepartDate(String departDate) {
this.departDate = departDate;
((Flight) matchingFlights.get(0)).setDepartDate(departDate);
((Flight) matchingFlights.get(1)).setDepartDate(departDate);
}
public String getDepartTime() {
return departTime;
}
public void setDepartTime(String departTime) {
this.departTime = departTime;
((Flight) matchingFlights.get(0)).setDepartTime(departTime);
((Flight) matchingFlights.get(1)).setDepartTime(departTime);
}
public String getDestination() {
return destination;
}
public void setDestination(String destination) {
this.destination = destination;
((Flight) matchingFlights.get(0)).setDestination(destination);
((Flight) matchingFlights.get(1)).setDestination(destination);
((Flight) matchingFlights.get(0)).setFlightNum("133");
((Flight) matchingFlights.get(1)).setFlightNum("233");
}
public String getOrigination() {
return origination;
}
public void setOrigination(String origination) {
this.origination = origination;
((Flight) matchingFlights.get(0)).setOrigination(origination);
((Flight) matchingFlights.get(1)).setOrigination(origination);
}
public String getReturnDate() {
return returnDate;
}
public void setReturnDate(String returnDate) {
this.returnDate = returnDate;
((Flight) matchingFlights.get(0)).setReturnDate(returnDate);
((Flight) matchingFlights.get(1)).setReturnDate(returnDate);
}
public String getReturnTime() {
return returnTime;

}

195

196 CHAPTER 5 JAVASERVER FACES

public void setReturnTime(String returnTime) {
this.returnTime = returnTime;
((Flight) matchingFlights.get(0)).setReturnTime(returnTime);
((Flight) matchingFlights.get(1)).setReturnTime(returnTime);

}

public String getTripType() {
return tripType;

}

public void setTripType(String tripType) {
this.tripType = tripType;

}

public List getMatchingFlights() {
return matchingFlights;

}

public void setMatchingFlights(List matchingFlights) {
this.matchingFlights.addAll(matchingFlights);

}

}

Listing 5-10 shows the Flight.java code. If you inspect the code in Listing 5-10, you
will notice that many of the properties of the Flight class are identical to the fields of the
FlightSearch class. Again, for this example, Flight is simply a data holder class with no signif-
icant behavior. It does, however, have a toString() method. This method is called by the JSF
implementation when the matching flights are displayed in the search results page.

Listing 5-10. Flight.java

package com.apress.jst;

public class Flight {
String flightNum;
String origination;
String destination;
String departDate;
String departTime;
String returnDate;
String returnTime;

public String getFlightNum() {
return flightNum;

}

public void setFlightNum(String flightNum) {
this.flightNum = flightNum;

}

public String getDepartDate() {
return departDate;

}

CHAPTER 5 JAVASERVER FACES

public void setDepartDate(String departDate) {
this.departDate = departDate;

}

public String getDepartTime() {
return departTime;

}

public void setDepartTime(String departTime) {
this.departTime = departTime;

}

public String getDestination() {
return destination;

}

public void setDestination(String destination) {
this.destination = destination;

}

public String getOrigination() {
return origination;

}

public void setOrigination(String origination) {
this.origination = origination;

}

public String getReturnDate() {
return returnDate;

}

public void setReturnDate(String returnDate) {
this.returnDate = returnDate;

}

public String getReturnTime() {
return returnTime;

}

public void setReturnTime(String returnTime) {
this.returnTime = returnTime;

}

public String toString() {
return "Flight " + flightNum + " departing

+ departTime + " arriving " + destination +

+ origination + " at "
" 2 hours later";

The index.html welcome page and web.xml deployment descriptor remain essentially
unchanged for this example, so you can reuse Listing 5-5 and Listing 5-6 (if needed) for these
two files. If you are using the Sun Deployment Tool, it will create web.xml. You may, however,
want to change the display-name element in the deployment descriptor so that it is correct for
this example.

Let’s next look at the faces-config.xml file, shown in Listing 5-11. The navigation rule is
unchanged. When the user clicks the Search button, the application will navigate to the search
results form. The first significant change is in the managed-bean entry for the FlightSearch
bean. The configuration file now includes an initializer for the new matchingFlight property of

197

198 CHAPTER 5 JAVASERVER FACES

the FlightSearch bean. The matchingFlight list is initialized with two objects, given by the
names flight1and flight2. Note that the beans flight1 and flight2 are created further down
in the configuration file, with a scope of none. The none scope is appropriate because these
two beans are not referenced directly in any page of the application. The configuration file also
initializes instances of FlightTypes and FlightTimes.

Listing 5-11. faces-config.xml

<?xml version="1.0"?>

<faces-config xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee/web-facesconfig 1 2.xsd"
version="1.2">
<navigation-rule>
<from-view-id>/searchForm.jsp</from-view-id>
<navigation-case>
<from-outcome>submit</from-outcome>
<to-view-id>/searchResults.jsp</to-view-id>
<redirect/>
</navigation-case>
</navigation-rule>

<managed-bean>
<managed-bean-name>flight</managed-bean-name>
<managed-bean-class>com.apress.jsf.FlightSearch</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>
<managed-property>
<property-name>matchingFlights</property-name>
<list-entries>
<value-class>com.apress.jsf.Flight</value-class>
<value>#{flight1}</value>
<value>#{flight2}</value>
</list-entries>
</managed-property>
</managed-bean>
<managed-bean>
<managed-bean-name>times</managed-bean-name>
<managed-bean-class>com.apress.jsf.FlightTimes</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>
</managed-bean>
<managed-bean>
<managed-bean-name>types</managed-bean-name>
<managed-bean-class>com.apress.jsft.FlightTypes</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>
</managed-bean>
<managed-bean>

CHAPTER 5 JAVASERVER FACES

<managed-bean-name>flighti</managed-bean-name>
<managed-bean-class>com.apress.jsf.Flight</managed-bean-class>
<managed-bean-scope>none</managed-bean-scope>

</managed-bean>

<managed-bean>
<managed-bean-name>flight2</managed-bean-name>
<managed-bean-class>com.apress.jsf.Flight</managed-bean-class>
<managed-bean-scope>none</managed-bean-scope>

</managed-bean>

</faces-config>

Listing 5-12 shows the searchForm. jsp page. This page includes some new features. Instead
of using just text fields for input, the form includes elements for creating radio buttons and
drop-down menu lists: h: selectOneRadio and h:selectOneMenu. There are two ways to identify
the items in these two elements. First, you can explicitly code a selectItem element for each
element in the list. The code for that would look like this:

<h:selectOneRadio value="#{foo.bar}">
<f:selectItem itemValue="Item 1"/>
<f:selectItem itemValue="item 2"/>

</h:selectOneRadio>

In this code snippet, the JSF implementation creates a set of radio buttons, with one radio
button for each f:selectItem element. The value of the itemValue attribute of the selected
radio button is used to set the value attribute of the h:selectOneRadio element.

The second way to create a set of selection elements is to use a selectItems element. This
is the technique we use in Listing 5-12. The selectItems element has an attribute named value,
which is set by a value binding expression that returns an array of SelectItems. For example, in
the value binding expression #{types.tripTypes}, the name types refers to a bean of type
FlightTypes (see Listing 5-7). This object has a property named tripTypes of type SelectItem[].
When the page is rendered, the array of SelectItems is converted into a selection element, with
one element for each item in the array. The same occurs for the two selectOneMenu elements.

Listing 5-12. searchForm.jsp

<html>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

<frview>
<head>

<title>Freedom Airlines Online Flight Reservation System</title>
</head>

199

200 CHAPTER 5 JAVASERVER FACES

<body>
<h:form>
<h2>Search Flights</h2>
What type of flight do you need?
<h:selectOneRadio layout="lineDirection"
value="#{flight.tripType}">
<f:selectItems value="#{types.tripTypes}"/>
</h:selectOneRadio>
<p/>
<table>
<tr><td colspan="4">Where and when do you want to travel?</td></tr>
<tr>
<td colspan="2">Leaving from:</td>
<td colspan="2">Going to:</td>
</tr>
<tr>
<td colspan="2">
<h:inputText value="#{flight.origination}" size="35"/>
</td>
<td colspan="2">
<h:inputText value="#{flight.destination}" size="35"/>
</td>
</tr>
<tr>
<td colspan="2">Departing:</td>
<td colspan="2">Returning:</td>
</tr>
<tr>
<td>
<h:inputText value="#{flight.departDate}"/>
</td>
<td>
<h:selectOneMenu value="#{flight.departTime}">
<f:selectItems value="#{times.times}"/>
</h:selectOneMenu>
</td>
<td>
<h:inputText value="#{flight.returnDate}"/>
</td>
<td>
<h:selectOneMenu value="#{flight.returnTime}">
<f:selectItems value="#{times.times}"/>
</h:selectOneMenu>
</td>
</tr>
</table>

CHAPTER 5 JAVASERVER FACES

<p>
<h:commandButton value="Search" action="submit"/>
</p>
</h:form>
</body>
</f:view>
</html>

Finally, Listing 5-13 shows an updated search results page. The only additions to this file
are the new outputText element for trip type and the outputText elements for the matching
flights. Note that the matching flights are displayed using the two different variations of the
bracket notation for value binding expressions.

Listing 5-13. searchResults.jsp

<html>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

<f:view>
<head>
<title>Freedom Airlines Online Flight Reservation System</title>
</head>
<body>
<h3>You entered these search parameters</h3>

Trip Type : <h:outputText value="#{flight.tripType}"/>

Origination: <h:outputText value="#{flight.origination}"/>

Depart date: <h:outputText value="#{flight.departDate}"/>

Depart time: <h:outputText value="#{flight.departTime}"/>

Destination: <h:outputText value="#{flight.destination}"/>

Return date: <h:outputText value="#{flight.returnDate}"/>

Return time: <h:outputText value="#{flight.returnTime}"/>
<p/>Matching Flights
<p/><h:outputText value="#{flight.matchingFlights[0]}"/>
<p/><h:outputText value="#{flight.matchingFlights['1']}"/>
</body>
</f:view>
</html>

After entering all the code and compiling the Java files into classes, deploy the application
to the server of your choice. When you load the search form page (see Figure 5-5), you should
see the new radio buttons and drop-down menu boxes. After entering some data and clicking
the Search button, you should see a results page similar to Figure 5-7.

201

202

CHAPTER 5 JAVASERVER FACES

File Edit View Favorites Tools Help 1

€] http://localhost: 8080/1sf_Ex02/searchResults.faces v J Go

You entered these search parameters

Trip Type : Roundtrip
Origination: BOS

Depart date: 07/08/05
Depart time: Morning
Destination: ORD

Return date: 07/09/05
Return time: Evening

Matching Flights
Flight 133 departing BOS at Morning arriving ORD 2 hours later

Flight 233 departing BOS at Morning arriving ORD 2 hours later

Figure 5-7. The search results page now shows two “matching” flights.

Controlling Page Navigation

As you saw in Listing 5-11, page navigation in your JSF application is handled by providing
navigation rules in a configuration file. The navigation can specify which web component
initiates the request, which web component handles the response, and which value causes
navigation to follow the flow. So far, you have seen only navigation based on the hard-coded
string value of an action attribute. You can also control navigation using value binding expres-
sions and method binding expressions. Navigation then depends on the value of the expression.

Static and Dynamic Navigation

When you control navigation through string values of the action attribute, the path of naviga-
tion is known when the application is deployed. We call this static navigation, because the flow
is statically determined and does not change. It is the same for every request.

When using static navigation, you explicitly code a value into the action attribute of a JSF
custom tag. You then define navigation rules in a configuration file. The rule specifies naviga-
tion flow when the from-outcome of a page matches the value of the action attribute. When that
occurs, navigation flows to the specified to-view-id. These elements are part of a navigation
rule element in a configuration file, such as faces-config.xml (see Listing 5-11).

When you control navigation through value binding expressions or method binding expres-
sions, the path of navigation is not known when the application is deployed. In fact, navigation
flow can vary from request to request depending on the value of the expression. We call this
dynamic navigation.

For dynamic navigation, you use a value binding expression or method binding expression as
the value of the action attribute. With value binding expressions, the value of the property must

CHAPTER 5 JAVASERVER FACES

be of type String. With method binding expressions, the method must take no parameters and
return a value of type String:

public String methodName();

The String value is compared to the value specified in the navigation rule.

Navigation Rules

Two JSF custom tags are used to control page navigation in conjunction with navigation rules:
commandButton and commandLink.

You specify navigation rules in a configuration file. In this chapter, we have done this in
the faces-config.xml file. However, navigation rules can be in their own configuration file,
which is then identified in the deployment descriptor web. xml.

The general syntax of navigation rules is as follows:

<navigation-rule>
<from-view-id>/searchForm.jsp</from-view-id>
<navigation-case>
<from-outcome>search</from-outcome>
<to-view-id>/searchResults.jsp</to-view-id>
</navigation-case>
</navigation-rule>

The from-view-id element contains the path to the page from which navigation starts.
In the configuration file, you use the correct name of the file, searchForm. jsp, as we do in
Listing 5-11, rather than searchForm.faces. Note also that the path to the resource begins
with a leading forward slash (/) and is the full path to the resource. So, if searchResults.jsp
were in the WEB-INF/pages/results directory, you would use the path /WEB-INF/pages/
results/searchForm.jsp. The from-outcome element is the string value that is compared to the
value of the action attribute.

You need to specify the from-view-id only one time. This allows you to define multiple
navigation-case elements that apply to one page. You use this when a page has multiple
command buttons or command links.

If you have an action that applies to every page in the application, you can use a
navigation-rule element without a from-view-id. For example, suppose every page in your
application had a link to your privacy policy. Because the following navigation rule does not
have a from-view-1id, it applies to every page in the application.

<navigation-rule>
<navigation-case>
<from-outcome>privacy-policy</from-outcome>
<to-view-id>/WEB-INF/privacy.jsp</to-view-id>
</navigation-case>
</navigation-rule>

In some cases, you may have a rule that applies to some pages, but not all pages, in
your application. If the pages are in a common location, you can use a wildcard to select the
from-view-1id:

203

204

CHAPTER 5 JAVASERVER FACES

<navigation-rule>
<from-view-id>/products/*</from-view-id>
<navigation-case>

</navigation-case>
</navigation-rule>

In this rule, the navigation case applies to every page that is served from the products directory.

Two optional elements you can use with your navigation rules are from-action and
redirect. The from-action elementis used in the navigation-case element. If you have a single
page with multiple command actions or command links, and the command actions or links
have the same value for the action attribute, you use the from-action element to distinguish
between the actions. Suppose we give the FlightSearch bean two methods named search()
and save(). Both methods will return the value success when used in a method binding
expression. Since each returns the value success, we need some way to distinguish between a
success from search() and a success from save(). You do this with the from-action element,
like this:

<navigation-rule>
<from-view-id>/searchForm.jsp</from-view-id>
<navigation-case>
<from-action>#{flight.search}</from-action>
<from-outcome>success</from-outcome>
<to-view-id>/searchResults.jsp</to-view-id>
</navigation-case>
<navigation-case>
<from-action>#{flight.save}</from-action>
<from-outcome>success</from-outcome>
<to-view-id>/searchForm.jsp</to-view-id>
</navigation-case>
</navigation-rule>

The other optional element is redirect. When you submit a request from a JSF form, the
request is sent to the originating page. When you do not use redirect, the origination page
forwards the request to the response page, so when your browser receives the response, it
displays the URL of the originating page. When you use redirect, the response sent to the
browser is a redirect to the response page, which gives the browser a chance to update the
address to the correct responding page. With the redirect in place, both of the earlier exam-
ples show searchResults. jsp in the address bar when the response is received; without
redirect, the address bar would continue to display searchForm. jsp.

Adding Dynamic Navigation to the Sample JSF Application

We can now modify the Flight Search example we have been building in this chapter to use
dynamic navigation. The directory structure for this example, Jsf_Ex03, is shown in Figure 5-8.
We will modify the example to simulate searching for flights that match the search criteria.

In the example, the matching flights will actually be hard-coded into a JavaBean.

CHAPTER 5 JAVASERVER FACES 205

=T Jsf_Ex03

=G WEB-INF/classes
= com.apress.jsf
W[Flight.java
-[4] FlightSearch.java
- [#] FiightTimes.java
=[] FlightTypes.java
== WEB-INF
oG b
faces-config.xml
web.xml
- index.html
----- noFlights.jsp
----- searchForm.jsp
- searchResults.jsp
selectedFlight.jsp
searchResults.jsp
selectedFlight.jsp

Figure 5-8. Directory structure for Jsf_Ex03

Figure 5-9 shows the search results page for this example. Notice that the page no longer
echoes the search parameters. Instead, it lists flights that match the search parameters, with a
link for each flight that selects the flight.

EBX
File Edit View Favorites Tools Help "
“ddress & hitp://localhost: 8080/1sf_Ex03/searchResults.faces R L_]GD

Select a Flight

Flight 133 departing BOS at Morning arriving ORD 2 hours later Select
this flight

Flight 233 departing BOS at Morning arriving ORD 2 hours later Select
this flight

New Search

Figure 5-9. The search results page for Jsf_Ex03 has a link to select a matching flight.

When a link is clicked, the response page shows which flight was selected, as shown in
Figure 5-10.

206

CHAPTER 5 JAVASERVER FACES

EEX

File Edit View Favorites Tools Help

€] http://localhost: 8080,1sf_Ex03/selectedFlight.faces v L.} Go

Flight Reservation
You selected this flight:

Flight 133 departing BOS at Morning arriving ORD 2 hours later

New Search

Figure 5-10. The flight selection page shows which flight was selected.

In this example, the files index.html (Listing 5-5), web.xml (Listing 5-6), FlightTypes. java
(Listing 5-7), FlightTimes. java (Listing 5-8), and Flight. java (Listing 5-10) remain unchanged
from the Jsf_Ex02 example, so we will not repeat that code here.

You need to make only a single change to searchForm. jsp. Listing 5-14 shows the one line
that is changed in the JSP page. In the commandButton element, we change the action attribute
to refer to the method binding expression #{flight.search}. This method does not exist yet;
we will add it to the FlightSearch class (Listing 5-19) shortly.

Listing 5-14. searchForm.jsp Change

<h:commandButton value="Search" action="#{flight.search}"/>

The rest of the searchForm. jsp page remains the same as in Listing 5-12. When you click
the Search button on the searchForm. jsp page, it will submit the search parameters to the
searchResults.jsp page shown in Listing 5-15.

Listing 5-15. searchResults.jsp for Jsf_Ex03

<html>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

CHAPTER 5 JAVASERVER FACES

<frview>
<head>
<title>Freedom Airlines Online Flight Reservation System</title>
</head>
<body>
<h3>Select a Flight</h3>
<h:form>
<p/><h:outputText value="#{flight.matchingFlights[0]}"/>
<h:commandLink action="#{flight.select}" value="Select this flight">
<f:param name="flightNum"
value="#{flight.matchingFlights[o0].flightNum}" />
</h:commandLink>
<p/><h:outputText value="#{flight.matchingFlights[1]}"/>
<h:commandLink action="#{flight.select}" value="Select this flight">
<f:param name="flightNum"
value="#{flight.matchingFlights[1].flightNum}" />
</h:commandLink>
<p/>
<h:commandButton value="New Search" action="#{flight.reset}"/>
</h:form>
</body>
</frview>
</html>

In this new search results page, we have removed the lines that echo the search parameters.
Instead, there are two similar blocks of code that print out a line of text and a link. The outputText
elements use a value binding expression to print out an element of the matchingFlights List
property of the FlightSearch object. Following the outputText elementis a commandLink element.
When the link created by the commandLink element is clicked, the JSF implementation calls the
select() method of the FlightSearch class, which is specified by the method binding expression
#{flight.select}. Like the search() method, select() is a new method. Nested within the
commandLink element is a param element. It creates a name/value pair that is passed as arequest
parameter when the link is clicked. When we look at the select() method of the FlightSearch
class, you will see how a class in the application is able to read the request parameter. Also
notice in Listing 5-15 how the value binding expression to access the f1ightNum property of the
Flight object (#{flight.matchingFlights[0].flightNum}) is a chained expression. As mentioned
earlier in chapter, you can use both dot notation and bracket notation to create chained value
binding expressions.

In this example, we need a page that will display which flight was selected by the user on
the search result page. This page is selectedFlight.jsp, shown in Listing 5-16.

207

208 CHAPTER 5 JAVASERVER FACES

Listing 5-16. selectedFlight.jsp

<html>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

<frview>
<head>
<title>Freedom Airlines Online Flight Reservation System</title>
</head>
<body>
<h3>Flight Reservation</h3>
<h:form>
<p/>You selected this flight:
<p/><h:outputText value="#{flight.matchingFlight}"/>
<p/><h:commandButton value="New Search" action="#{flight.reset}"/>
</h:form>
</body>
</f:view>
</html>

The last page we need to implement is the page that tells the user that no flights that match
the search parameters were found. This is the noFlights. jsp page, shown in Listing 5-17.

Listing 5-17. noFlights.jsp

<html>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

<frview>
<head>
<title>Freedom Airlines Online Flight Reservation System</title>
</head>
<body>
<h3>Search Results</h3>
<h:form>
<p/>No flights that match your search parameters were found.
<p/><h:commandButton value="New Search" action="#{flight.reset}"/>
</h:form>
</body>
</f:view>
</html>

Each of these pages, except for the first search form page, has a New Search button, which
allows the user to reset the search parameters and go back to the search form page. We need to
update the faces-config.xml file to specify this navigation rule and the rules for moving from
the search form to the other pages. Listing 5-18 shows the necessary additions and changes.

CHAPTER 5 JAVASERVER FACES

Note that the managed bean entries in the file are the same as in Listing 5-11, so we do not
show them here.

Listing 5-18. faces-config.xml Changes

<?xml version="1.0"?>

<faces-config xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee/web-facesconfig 1 2.xsd"
version="1.2">
<navigation-rule>
<from-view-id>/searchForm.jsp</from-view-id>
<navigation-case>
<from-outcome>success</from-outcome>
<to-view-id>/searchResults.jsp</to-view-id>
<redirect/>
</navigation-case>
<navigation-case>
<from-outcome>no flights</from-outcome>
<to-view-id>/noFlights.jsp</to-view-id>
<redirect/>
</navigation-case>
</navigation-rule>

<navigation-rule>
<from-view-id>/searchResults.jsp</from-view-id>
<navigation-case>
<from-outcome>select</from-outcome>
<to-view-id>/selectedFlight.jsp</to-view-id>
<redirect/>
</navigation-case>
</navigation-rule>

<navigation-rule>
<navigation-case>
<from-action>#{flight.reset}</from-action>
<from-outcome>success</from-outcome>
<to-view-id>/searchForm.jsp</to-view-id>
<redirect/>
</navigation-case>
</navigation-rule>

<!-- managed beans are the same as in Listing 5-11 and are not shown -->

</faces-config>

209

210

CHAPTER 5 JAVASERVER FACES

The navigation rule for searchForm. jsp now has an additional element: the Search button
on the page calls the FlightSearch search() method. This returns two possible values: success
orno flights. The rule specifies which page sends the response for each return value. There
is a new rule for the search results page. When a link on that page is clicked, its action value
causes the navigation to transfer to selectedFlight. jsp. Finally, there is a rule that applies to
all pages, because it has no from-view-id element. This applies anytime the New Search button
is clicked.

The final piece, presented in Listing 5-19, is F1lightSearch.java. Much of this class is the
same is in Listing 5-9, so we show only the new properties and methods.

Listing 5-19. FlightSearch.java Changes

package com.apress.jst;

import java.util.list;

import java.util.Arraylist;

import java.util.Map;

import javax.faces.context.FacesContext;

public class FlightSearch {
//properties:
//origination, destination, departDate, departTime same as Listing 5-9
//returnDate, returnTime, tripType, matchingFlights same as Listing 5-9
String flightNum;
Flight matchingFlight;

//methods from Listing 5-9 not shown here

//new methods are reset(), search(), and
//get and set methods for flightNum and matchingFlight

public String reset() {
this.setDepartDate("");
this.setDepartTime("");
this.setDestination("");
this.setOrigination("");
this.setReturnDate("");
this.setReturnTime("");
this.setTripType("");
return "success";
}
public String search() {
if (origination.equals("B0S") &8 destination.equals("ORD")) {
return "success";
} else {
return "no flights";
}
}

CHAPTER 5 JAVASERVER FACES

public Flight getMatchingFlight() {
for (int i = 0; i < matchingFlights.size(); i++) {
matchingFlight = (Flight) matchingFlights.get(i);
if (matchingFlight.flightNum.equals(flightNum)) {

break;
}
matchingFlight = null;
}
return matchingFlight;
}

public void setMatchingFlight(Flight flight) {
matchingFlight = flight;

}

public String getFlightNum() {
return flightNum;

}

public void setFlightNum(String string) {
flightNum = string;

}

public String select() {
FacesContext context = FacesContext.getCurrentInstance();
Map requestParams =

context.getExternalContext().getRequestParameterMap();

flightNum = (String) requestParams.get("flightNum");
return "select";

}

}

The reset() method simply resets all the properties to be empty strings and returns the
value success. The matchingFlights List contains entries for two flights that both originate in
Boston (BOS) and fly to Chicago (ORD). If the origination and destination match these values,
the search() method returns success; otherwise, it returns no flights.

The commandLink element on the searchResults. jsp page causes the select() method to
be called. Within this method, the code gets a reference to the context for the application, and
then uses the context to get a reference to the map that holds all the request parameters. From
this Map, the code accesses the request parameter with the name flightNum. Referring back to
Listing 5-15, you can see that the page created a request parameter with that name. The code
sets the flightNum property of the instance and returns the value select. The f1ightNum property
becomes important for the getMatchingFlight() method.

Although most of the get methods simply return the current value of a property, the
getMatchingFlight() method iterates through the matchingFlights list to find the flight with
the same flight number as the f1ightNum property. In other words, get and set are not constrained
to simply return the value of properties, but can perform processing when they are called. The
matchingFlight property is set to this object, and it is also the return value from this method.
This method is called because of the value binding expression #{flight.matchingFlight} in
the selectedFlight.jsp page

Compile the classes and deploy the application to your server. When you load the welcome
page at http://localhost:8080/1sf Ex03 (replacing the host, port, or name as necessary), the

211

212

CHAPTER 5 JAVASERVER FACES

search form page will load, as shown earlier in Figure 5-5. If you enter BOS in the Leaving from
text field and ORD in the Going to text field, and then click the Search button, the search results
page will display as shown in Figure 5-9. On the search results page, clicking either link will
display the selectedFlight.jsp page (see Figure 5-10). If you enter any other data in either the
Leaving from field or Going to field and click the Search button, you should see the noFlights. jsp
page, as shown in Figure 5-11.

EEX

File Edit View Favorites Tools Help
£&] http://localhost: 8080,/1sf_Ex03/noFlights.faces v L_J Go

Search Results

No flights that match vour search parameters were found.

New Search

Figure 5-11. The noFlights.jsp page is served when no flights are found.

Accessing Context Data in Beans

Although JSF makes it easy for you to connect the view with the model without writing any code,
there may be situations where you need direct access to the request data or other data of your
web application. We saw such a situation in Listing 5-19. In that listing, a request parameter had
been set in the JSF page, and the FlightSearch bean needed to access that request parameter.

JSF provides access to the request data and other data through the FacesContext object.
AstheJavadoc states, “FacesContext contains all of the per-request state information related to
the processing of a single JavaServer Faces request, and the rendering of the corresponding
response.... A FacesContext instance is associated with a particular request at the beginning of
request processing...”

As you saw in Listing 5-19, you get access to the FacesContext object like this:

FacesContext context = FacesContext.getCurrentInstance();

After you have a reference to the FacesContext for the request, you can access all the request and
application data through the ExternalContext object. The reference to the ExternalContext
object is obtained through the call to the getExternalContext() method.

Table 5-3 shows the methods of the ExternalContext that return collections of request and
application data. You can use these methods to access request data, session data, request
header data, cookie data, and other sets of data in the application.

CHAPTER 5 JAVASERVER FACES

Table 5-3. Request and Application Data Available Through ExternalContext

Method

Description

Map getApplicationMap()

String getInitParameter(java.lang.String
name)

Map getInitParameterMap()

String getRemoteUser()

Map getRequestCookieMap()

Map getRequestHeaderMap()

Map getRequestHeaderValuesMap()

Map getRequestMap()

Map getRequestParameterMap()

Iterator getRequestParameterNames()

Map getRequestParameterValuesMap()

Map getSessionMap()

Returns a mutable Map representing the applica-
tion scope attributes for the current application

Returns the value of the specified application
initialization parameter (if any)

Returns an immutable Map whose keys are the set
of application initialization parameter names
configured for this application, and whose values
are the corresponding parameter values

Returns the login name of the user making the
current request if any; otherwise, returns null

Returns an immutable Map whose keys are

the set of cookie names included in the
current request, and whose values (of type
javax.servlet.http.Cookie) are the first (or
only) cookie for each cookie name returned by
the underlying request

Returns an immutable Map whose keys are the set
of request header names included in the current
request, and whose values (of type String) are
the first (or only) value for each header name
returned by the underlying request

Returns an immutable Map whose keys are the
set of request header names included in the
current request, and whose values (of type
String[]) are all of the value for each header
name returned by the underlying request

Returns a mutable Map representing the request
scope attributes for the current application

Returns an immutable Map whose keys are the
set of request parameters names included in the
current request, and whose values (of type String)
are the first (or only) value for each parameter
name returned by the underlying request

Returns an Iterator over the names of all request
parameters included in the current request

Returns an immutable Map whose keys are the
set of request parameters names included in
the current request, and whose values (of type
String[]) are all of the values for each parameter
name returned by the underlying request

Returns a mutable Map representing the session
scope attributes for the current application

213

214

CHAPTER 5 JAVASERVER FACES

Mostlikely, if you are accessing request or application data in a managed bean, you will be
accessing request data or session data. As you can see in Table 5-3, you access request data
through the getRequestParameterMap() or getRequestParameterValuesMap() method. You can
access session data through the getSessionMap() method.

Converting Data

Looking at the FlightSearch and Flight objects, we notice that it would probably make more
sense for the departDate and returnDate fields to be actual Date objects rather than String
objects. (To be honest, we noticed this much earlier, but did not want to address that issue
until this point in the chapter.)

Modify the FlightSearch and Flight objects so that the departDate and returnDate fields
are java.util.Date objects and redeploy the application. Now, bring up the search page, enter
data into the fields, and click the Search button. If the application works correctly, you should
see the search page again.

At this point, you should be wondering why the search page was redisplayed, especially if
you entered valid data into all the input fields. The fact that the search page was redisplayed
indicates that there was an error in the data.

When an error occurs in a JSF page, the JSF implementation redisplays the originating
page again. In this case, the problem is that the JSF implementation does not know how to
convert a string into a Date object, which is what is required for the FlightSearch object. Unfor-
tunately, with the sample JSP pages we have deployed so far, we did not include any code to
inform you of what the error is. Let’s take care of that now.

Modify the searchResults. jsp page by adding an id attribute to the inputText elements
and a message element following each inputText element. These changes are shown here:

<h:inputText id="departDate" value="#{flight.departDate}"/>
<h:message for="departDate"/>

<h:inputText id="returnDate" value="#{flight.returnDate}"/>
<h:message for="returnDate"/>

The id attribute allows you to use the value of the attribute to refer to the JSF custom tag
from other tags. The message element obtains a message from the component identified by the
for attribute. If that component does not have a message, the message element keeps an empty
string as its value. If the message component has a nonempty string value, that string is displayed
when the page is rendered.

Deploy the search page with the new source, enter some data, and click the Search button
again. This time, the search page is redisplayed with a message indicating the error, similar to
“Conversion Error setting value '07/08/2005' for 'null Converter',” as shown in Figure 5-12.

In cases where the bean property is a Java primitive (int, float, boolean, and so on), a Java
BigInteger, aJava BigDecimal, or a Java String, the JSF implementation will automatically
convert the input data to the correct type. This is done with standard converters. When the
bean property is a Java Date, there is a standard converter, but you need to explicitly tell the JSF
implementation to perform the conversion. When the bean property is some other data type,
you need to provide a converter for the data.

CHAPTER 5 JAVASERVER FACES 215

DEX
File Edit View Favorites Tools Help .
] http://localhost: 8080/1sf_Ex04/searchForm.faces v L.] Go
Search Flights
What type of flight do vou need?
@ Roundtrip © One way
Where and when do you want to travel?
Leaving from: Going to:
BOS ORD
Departing: Returning:
07/08/05 07/09/05
Conversion Error setting Morming Conversion Error setting Evening v
value '07/08/05' for 'null value '07/09/05" for 'null
Converter'. Converter'.

Figure 5-12. The message element displays an error message when a Ul component has an error.

Using Standard Converters

The JSF implementation comes with two standard converters:

* convertNumber: Converts between strings and numbers. You can include optional attributes
to format the numbers in various ways, including as currency, as integers, and as
floating-point numbers.

» convertDateTime: Converts between strings and dates or times. You can include optional
attributes to format using various styles and time zones.

To use one of these converters, you nest the converter tag inside the inputText tag. In
general, you can nest a converter inside any of the input or output custom tags. The converter
will be called by the JSF implementation in the update model values and render response phases of
the JSF lifecycle. If the conversion succeeds, the lifecycle continues. If the conversion fails, the
lifecycle transitions to the render response phase, where the originating page is rendered and
the error message is displayed (if the page contains message tags).

Note You do not need to use a converter if the type of the managed bean property is a primitive type (int,
double, and so on), a boolean, a BigInteger, a BigDecimal, or a String. You do need to use a converter
if the type of the property is any other object, including Date.

216

CHAPTER 5 JAVASERVER FACES

The JSF implementation will automatically convert input values to numbers when the
bean property is some primitive numeric type. If automatic conversion will not convert the
number properly, you can explicitly control conversion through the standard convertNumber
converter tag. For example, the convertNumber tag has attributes that allow you to convert the
input value to a currency value.

The other standard converter is the convertDateTime tag. By using various attributes of this
tag, you can convert dates or times, in various formats, to Date or Time properties in the managed
bean. Let’s modify the searchForm. jsp page to use the convertDateTime tag. The new inputText
tags look like this:

<h:inputText id="departDate" value="#{flight.departDate}">
<f:convertDateTime pattern="MM/dd/yy"/>

</h:inputText>

<h:message for="departDate"/>

<h:inputText id="returnDate" value="#{flight.returnDate}">
<f:convertDateTime pattern="MM/dd/yy"/>

</h:inputText>

<h:message for="returnDate"/>

The convertDateTime tag is nested in the inputText tag. The convertDateTime tag has
several attributes that control the date conversion. We've used the pattern attribute to identify
the pattern of the date string that will be converted. The symbols that you can use in pattern
strings are the same symbols recognized by the java.text.SimpleDateFormat class. (Can you
guess what the JSF implementation uses to do the conversion?) We've identified that the input
value will consist of the two-digit month, followed by the two-digit day, followed by the two-
digit year, with forward slashes delimiting each value. Now when you click the Search button,
the JSF implementation will convert the date (assuming it follows the MM/dd/yy format), and the
search results page will be sent to the browser.

The latest version of the Flight Search example does not provide any indication that the
date is properly converted (other than displaying the search results page). Adding outputText
fields to the search results page to redisplay the departure and return dates is left as an exercise
to the reader.

Using Custom Converters

If you could use only the convertNumber and convertDateTime tags, your ability to create feature-
rich web applications would be limited. Fortunately, as you might guess from the title of this
section, you can create and use custom converters in your JSF applications.

To create a custom converter, you write a class that implements the javax.faces.
convert.Converter interface. This interface has two methods:

Object getAsObject(javax.faces.context.FacesContext context,
javax.faces.component.UIComponent component, java.lang.String value)

String getAsString(javax.faces.context.FacesContext context,
javax.faces.component.UIComponent component, java.lang.Object value)

CHAPTER 5 JAVASERVER FACES 217

The getAsObject () method converts the String value (which can be null) to an instance
of the supported type and returns the new instance. This method throws a ConverterException
ifthe conversion fails. The getAsString() method converts the provided value of the supported
type (which can again be null) to a String instance and returns the new instance. This method
also throws a ConverterException if the conversion fails.

Note If you check the JSF Javadoc, you will see that the JSF implementation includes a number of imple-
mentations of the javax.faces.convert.Converter interface. These are the standard converters that
handle converting input and output values to the primitive types.

Let’s create an Airport object that will be used as the data type for the origination and
destination fields of the FlightSearch class. We will write a converter that converts between
String and Airport objects.

Listing 5-20 shows the Airport object. It is a simple object that holds an airport code and
the name of the airport.

Listing 5-20. Airport.java

package com.apress.jsf;

public class Airport {
String code;
String name;
public Airport(String code, String name) {
this.code = code;
this.name = name;
}
public String toString() {
return code;
}
}

The converter, shown in Listing 5-21, will create an Airport object when given a string with
the airport code.

Listing 5-21. airportconverter.java

package com.apress.jsf;

import javax.faces.application.FacesMessage;
import javax.faces.component.UIComponent;
import javax.faces.context.FacesContext;
import javax.faces.convert.Converter;

import javax.faces.convert.ConverterException;

218 CHAPTER 5 JAVASERVER FACES

public class AirportConverter implements Converter {
public Object getAsObject(FacesContext ctxt, UIComponent comp,
String value) {
Airport airport = null;
if (value.equals("B0S")) {
airport = new Airport("BOS", "Logan International Airport");
}
if (value.equals("ORD")) {
airport = new Airport("ORD", "0'Hare International Airport");
}
if (airport == null) {
FacesMessage message =
new FacesMessage(
FacesMessage.SEVERITY_ERROR,
"UnrecognizedAirportCode",
"Airport code " + value + " is not recognized");
throw new ConverterException(message);

}

return airport;
}
public String getAsString(FacesContext ctxt, UIComponent comp,
Object obj) {
return obj.toString();
}
}

This converter is very simple. When converting from a string to an object (the getAsObject()
method), the code looks for either the string "BOS" or "ORD". If either of those values is found, an
Airport objectis created. (In a real-world application, we would obviously use a more robust
lookup like a database search, which would recognize all possible airport codes.) If neither
string is found, the converter throws a ConverterException that holds a FacesMessage object.
The FacesMessage object holds a summary string and a detail string, which is displayed by the
message tag when an error occurs.

To convert an object to a String, the getAsString() method simply calls the toString()
method of the object passed to the method. Since this object should be an instance of Airport,
the toString() method of Airport will be called, and that will return the airport code string.

If more involved processing is needed, each method has access to the FacesContext of the
application and the UIComponent of the component instance in the page that the object or string
is associated with. As you saw earlier, the FacesContext instance can be used to get access to
various maps that hold parameters from the page and request being processed.

We will add these two classes to the Flight Search application. Figure 5-13 shows the directory
structure for this example. We will add the classes to the WEB-INF directory. After adding the
classes, we need to tell the JSF implementation when to call the converter.

CHAPTER 5 JAVASERVER FACES

=T Jsf_Ex04
-2 WEB-INF/classes
--# com.apress.jsf
+-[J] Airport.java
[AirportConverter.java
[Flight.java
[FlightSearch.java
[FlightTimes.java
+-[J] FlightTypes.java
-I-{z= WEB-INF :
- lib
faces-config.xml
web.xml
index.html
noFlights.jsp
searchForm.jsp
searchResults.jsp
selectedFlight.jsp
searchResults.jsp
selectedFlight.jsp

4
4
4
4

Figure 5-13. Directory structure for Jsf_Ex04

One way to identify a converter to the JSF implementation is to specify a converter-id for
the converter in a configuration file, and then use that id in the JSP page. To do this, add this
converter element to the faces-config.xml file:

<converter>
<converter-id>airport.converter</converter-id>
<converter-class>com.apress.jsf.AirportConverter</converter-class>
</converter>

Then, in the JSP, use the id in a converter tag like this:

<h:inputText value="#{flight.origination}">
<f:converter converterId="airport.converter"/>
</h:inputText>

or this:
<h:inputText value="#{flight.origination}" converter="airport.converter"/>

Another way to identify a converter is to define a default converter for all properties of type
Airport. This converter element in the faces-config.xml file does that:

219

220

CHAPTER 5 JAVASERVER FACES

<converter>
<converter-for-class>com.apress.jst.Airport</converter-for-class>
<converter-class>com.apress.jst.AirportConverter</converter-class>
</converter>

With this entry, every time you use an input or output tag that references a property of type
Airport, like this:

<h:inputText value="#{flight.origination}"/>

the JSF implementation detects that origination is of type Airport and calls the AirportConverter
for this element. If you use this technique, you must be sure that the converter works for all possible
input strings. This is the technique we will use. Add the preceding converter element to the
faces-config.xml file for this example, Jsf_Ex04.

Note A third way to identify the converter involves creating an object known as a backing bean. Interested
readers should check the JSF specification for details on using backing beans.

If you have not yet done so, enter the Airport. java and AirportConverter. java source
code (Listings 5-20 and 5-21) and save them in the correct directory.

In the Flight. java source file, change the data type of origination and destination to
Airport, and change the set and get methods appropriately.

In the FlightSearch. java file, change the data type of origination and destination to Airport,
and change the set and get methods appropriately. Change the reset () method to set the orig-
ination and destination to null. Also, change the search() method like this:

public String search() {
if (origination.code.equals("B0S") &8&
destination.code.equals("ORD")) {
return "success";
} else {
return "no flights";
}
}

Finally, make this change to the inputText fields for origination and destination in the
searchForm. jsp page:

<h:inputText id="origination"
value="#{flight.origination}" size="35"/>
<h:message for="origination"/»>
</td>
<td colspan="2">
<h:inputText id="destination"
value="#{flight.destination}" size="35"/>
<h:message for="destination"/»

CHAPTER 5 JAVASERVER FACES

All the other files in the example remain the same as in the previous example, Jsf_Ex03.
Compile the classes and deploy the application to the server. Unlike the previous addition of
the date converter, this addition to the application will change the application’s behavior. If
you enter any airport code other than BOS or ORD in the origination or destination fields in the
search form, the application responds with a conversion error and displays the detail string
from the message generated by the converter. If you enter BOS as the origination and ORD as
the destination, the application will find the matching flights. If you enter ORD as the origina-
tion and BOS as the destination, the application will return the noFlights. jsp page. Previously,
you could enter any airport codes, and the application returned noFlights. jsp if the codes did
not match BOS and ORD. Now, the only way to see the noFlights.jsp page is to enter ORD as
the origination and BOS or ORD as the destination.

Validating Input

If you’ve worked with web applications before, you know that a lot of effort is involved in
ensuring that the data entered by the user of your application is correct. JSF provides a means
to simplify data validation, through the use of standard and custom validators.

Using Standard Validators

JSF provides three standard validators as part of the JSF implementation through the following
custom tags:

* validateDoubleRange: Validates that a value is a double. You can include the optional
attributes minimum and maximum to set minimum and maximum values.

* validatelongRange: Validates that a value is a long. You can include the optional
attributes minimum and maximum to set minimum and maximum values.

* validatelength: Validates a string value for length. You can include the optional
attributes minimum and maximum to set minimum and maximum values.

With all three validators, both of the attributes are optional. This means you could add a
validator tag without either a minimum or maximum attribute. In that case, no validation will actu-
ally be performed. When you provide only a minimum, the validator checks that the value is
greater than or equal to the minimum. When you provide only a maximum, the validator checks
that the value is less than or equal to the maximum. When you provide both a minimum and a
maximum, the validator checks that the value is greater than or equal to the minimum and less
than or equal to the maximum.

One other validation you can perform in your JSF application is to require a value. The
input and output tags include an optional attribute required. For example, the following tag
would require that you enter a value in the text field:

<h:inputText id="origination"
value="#{flight.origination}" size="35" required="true"/>

If you do not enter a value, the JSF implementation will return the originating page with a
message that you did not enter a required value (assuming there is a message tag for the id
origination).

221

222

CHAPTER 5 JAVASERVER FACES

Using Custom Validators

You create a custom validator by creating a class that implements the javax.faces.
validator.Validator interface. All validators must implement this interface. The Validator
interface has a single method that your class must implement:

void validate(javax.faces.context.FacesContext context,
javax.faces.component.UIComponent component, java.lang.Object value)

In the validate method, if the value argument passes the validation check, you can simply
return from the method. This signals to the JSF implementation that the value passed the
validation check. If it does not pass the validation check, you throw a javax.faces.
validator.ValidatorException. The ValidatorException instance includes a FacesMessage
instance with summary and detail messages describing the validation error.

Note If you check the JSF Javadoc, you will see that the JSF implementation includes a number of imple-
mentations of the javax.faces.validator.Validator interface. These are the standard validators that
handle validating doubles, longs, and string lengths.

Suppose we wanted to create a date validator to ensure that dates entered by the user of
our Flight Search application are greater than or equal to the day after the current date, and less
than one year from the current date. Listing 5-22 shows the code for this validator.

Listing 5-22. DateValidator.java

package com.apress.jst;

import java.util.Calendar;

import java.util.Date;

import javax.faces.application.FacesMessage;
import javax.faces.component.UIComponent;

import javax.faces.context.FacesContext;

import javax.faces.validator.Validator;

import javax.faces.validator.ValidatorException;

public class DateValidator implements Validator {
public void validate(FacesContext argo, UIComponent argl, Object arg2)
throws ValidatorException {
Calendar date = Calendar.getInstance();
date.setTime((Date) arg2);

Calendar tomorrow = Calendar.getInstance();
tomorrow.set(Calendar.HOUR, 0);
tomorrow.set(Calendar .MINUTE, 0);
tomorrow.set(Calendar.SECOND, 0);

CHAPTER 5 JAVASERVER FACES

Calendar oneYear = Calendar.getInstance();
oneYear.set(Calendar.HOUR, 0);
oneYear.set(Calendar.MINUTE, 0);
oneYear.set(Calendar.SECOND, 0);
oneYear.add(Calendar.YEAR, 1);

if (date.before(tomorrow) || date.after(oneYear)) {
FacesMessage message =
new FacesMessage(
FacesMessage.SEVERITY ERROR,
"Date Error",
"Date must be between tomorrow and one year from today");
throw new ValidatorException(message);
}
}
}

The code in the validate() method creates two Calendar objects: tomorrow corresponds to the
day after the current date, and oneYear corresponds to one year from the current date. Then the
code compares the argument passed to the validate method to see if it is between the dates
represented by those two Calendar objects. If the argument is not between those two Calendar
objects, a ValidatorException is thrown; if it is between those two dates, the method simply
returns.

The validator is registered with the JSF implementation with the validator elementin a
configuration file. The validator element has two required subelements:

* validator-id: Used to create an id string that you can use in the validator tag to specify
a validator instance.

* validator-class: The fully qualified class name of the validator class.

Here is an example of the element you could place in the faces-config.xml configuration
file for this validator:

<validator>
<validator-id>date.validator</validator-id>
<validator-class>com.apress.jsf.DateValidator</validator-class>
</validator>

And in the searchForm. jsp, you could nest this validator tag in an inputText tag:

<h:inputText id="departDate" value="#{flight.departDate}">
<f:convertDateTime pattern="MM/dd/yy"/>
<f:validator validatorId="date.validator"/>
</h:inputText>

Notice that the value of the validatorId in the f:validator tagis the same string used in the
validator-id element.

Adding this validator and deploying it with the Flight Search application is left as an exercise
for the reader.

223

224

CHAPTER 5 JAVASERVER FACES

Bypassing Validation

Validation is an important aspect of your web application, because it ensures that all input
values are valid before the model is updated, thereby enforcing model integrity. However,
there are times when you do not want validation to occur.

For example, in various pages of the Flight Search application, we have a New Search
button. If this button occurred on a page that also specified validators for any fields, we could
have a problem. In the normal JSF lifecycle, the validators would be executed before the New
Search button was processed. Validators are executed during the process validations phase,
while command buttons are processed after the invoke application phase, which occurs after
the process validations phase. By providing a New Search button, we are acknowledging that
the user might want to throw away whatever values are in the page and start a new search.
Thus, we would not want validations to occur when the user clicks the New Search button.

We can tell the JSF implementation to process the event from the button click after the
apply request values phase (before the process validations phase) by adding an attribute
named immediate to the action tag. So, for example, if we wanted the New Search button to
bypass validations in a page, the tag would look like this:

<h:commandButton value="New Search" action="#{flight.reset}"
immediate="true"/>

Using Message Bundles

With the global nature of the web, many web applications must be internationalized. JSF
provides a facility to make it easy to internationalize your web application.

To provide an internationalized version of your web application, all the text strings used in
your application must be collected into a properties file that your application can load and use.
Listing 5-23 shows a properties file of messages that you could use with the searchForm. jsp
page we have developed in this chapter as part of the Flight Search application. This file holds
the English language strings for the application.

Listing 5-23. messages.properties

title=Freedom Airlines Online Flight Reservation System
head=Search Flights

type=What type of flight do you need?

searchLabel=Where and when do you want to travel?
departAirport=Leaving from:

arriveAirport=Going to:

departlLabel=Departing:

returnLabel=Returning:

searchButton=Search

Save this file somewhere in the classpath for your application. In the Flight Search example, we
could save it in the com/apress/jsf directory. When we cause the properties file to be loaded,
we will reference it by a name that includes the classpath.

CHAPTER 5 JAVASERVER FACES 225

The properties file is included in a JSP page with the loadBundle custom action:
<f:loadBundle basename="com.apress.jsf.messages" var="msgs"/>

The loadBundle custom action has two required attributes: basename and var. The basename
attribute is the classpath qualified base name of the properties file. We reference the
messages.properties file using the same package qualified name as if it were a Java class file.
Notice that we do not need to provide the .properties extension of the file. When combined
with locale information, the basenanme is the initial part of the name of the file to be loaded.
Alocale code is appended with an underscore, followed by the . properties extension, to create
the full filename. With no locale information, the basename shown in the preceding example
tells the JSF implementation to look for the file messages . properties in the directory com/
apress/jst of the application.

The var attribute is the name that you will use in the JSP to access the messages stored in
the messages.properties file.

You can use these strings in your application by using a value binding expression. For
example, to add the page header to the searchForm. jsp page, you would replace the original
page header element:

<h2>Search Flights</h2>
with the following outputText element:
<h2><h:outputText value="#{msgs.head}"/></h2>

In elements such as commandButton, you can use the value binding expression directly in
the value attribute of the commandButton element:

<h:commandButton value="#{msgs.searchButton}" action="#{flight.search}"/>

This provides two big advantages. First, if you want to change the text used in the web application,
you need to change only the messages. properties message bundle. Second, and the big reason
for message bundles, is that you can easily internationalize your application by providing addi-
tional message bundles for other languages. For example, you can create a second message
bundle named messages_es.properties, as shown in Listing 5-24. This file holds the Spanish
versions of all the strings.

Listing 5-24. messages_es.properties

title=Freedom Airlines Online Flight Reservation System
head=Busque los Vuelos

type=Qué tipo del vuelo le hace necesita?
searchlLabel=Dénde y cuando le hace quiere viajar?
departAirport=La partida de:

arriveAirport=Ir a:

departlabel=Partir:

returnLabel=Volver:

searchButton=Blsqueda

226

CHAPTER 5 JAVASERVER FACES

Tip If you want to include Unicode characters with an ASCII code greater than 127, you need to encode
them as escape sequences in the form \uxxxx. This provides the ability to support non-Western languages.
And you don’t need to type in these sequences by hand. The Java utility native2ascii can convert native
characters to escape sequences for you.

You add an entry to the faces-config.xml file that identifies which languages your application
supports. For our Flight Search application, you would add this entry to the faces-config.xml
file:

<application>
<locale-config>
<default-locale>en</default-locale>
<supported-locale>es</supported-locale>
</locale-config>
</application>

You need to add a supported-locale element with a locale code for every language that
your application supports. The two-letter and three-letter locale codes are listed at http://
www. loc.gov/standards/is0639-2/englangn.html

When a user accesses your application, and the user’s browser is set to accept Spanish as
the defaultlanguage, your application will access strings from the messages_es.properties file,
as shown in Figure 5-14. Note that you do not need to change the loadBundle tag in your JSP
pages. The browser sends a header parameter that it accepts Spanish as its default language.
The JSF implementation uses that parameter to determine the locale code, and then combines
the basename attribute with the locale code es to determine which message bundle to load.

Adding this language bundle to the Flight Search example is left as an exercise for the
reader. To see the Flight Search application with other languages, you will also need to set the
language preferences of your browser. For Microsoft Internet Explorer, select Tools » Internet
Options » Languages. If you have a different browser, you should be able to set the language
preference in a similar fashion.

Gaution Although we left this as the last topic for the chapter, in the real world, you would not want to
leave the message bundle setup for last. Initially writing your web application with internationalization is much
easier than attempting to retrofit your application with internationalization. This does not mean that you must
write message bundles for every possible language up front. You should write a default message bundle, and
then add other languages as needed.

CHAPTER 5 JAVASERVER FACES

File Edit View Favorites Tools Help

EEX

€] http://localhost: 8080/1sf_Ex05/searchForm.faces v L_J Go

Busque los Vuelos

Qué tipo del vuelo le hace necesita?
 Roundtrip © One way

Donde v cuando le hace quiere viajar?
La partida de: Ir a:

Partir: Volver:

Busqueda

Anytime v Anytime v

Figure 5-14. The search form page with Spanish text

Summary

After completing this chapter, you should know:

JSF was developed to make it easier to create customizable Uls for web applications
using a component-based system. JSF provides a set of Ul components that can easily be
added to web applications and connected to business objects. The components are
converted into user interfaces through the use of a render kit.

The JSF implementation comes with a set of custom actions in two tag libraries that allow
you to easily integrate JSF with JSP. All JSF implementations must support JSP pages.

Managed beans are the business objects in your JSF application. JSF makes it easy to
connect managed beans with UI components. The JSF implementation handles all the
work of moving data from the Ul into the bean, and moving data from the bean to the UL

Page navigation in a JSF application is handled by adding navigation rules to a configu-
ration file. Navigation can be controlled through value binding expressions or method
binding expressions.

Data conversion and validation is handled by converters and validators. The JSF imple-
mentation provides two standard converters: one for numbers and one for dates. The
JSF implementation provides three standard validators for validating the ranges of
doubles or longs and validating the length of strings.

227

228

CHAPTER 5 JAVASERVER FACES

¢ You can implement your own converters or validators to perform custom conversion
and validation.

* Message bundles provide an easy facility for internationalizing and customizing the
pages in your web application.

Exercises

1. Create an even simpler JSF application than the one given in Listings 5-1 through 5-6.
Remove the FlightSearch JavaBean and the searchResults. jsp page from the application.
Modify the faces-config.xml file so that the application consists solely of creating the
display from searchForm.jsp. Draw the lifecycle diagram for this application.

2. Create a managed bean that uses a Map property to store several lists of data. Create a
JSF-enabled application that accepts a key and an integer from the user, and in the
response displays the value of the List element at that index in the List given by the
key. Use both dot and bracket notation in the value binding expressions to explore the
syntax of value binding expressions.

3. After completing Chapter 7, modify the Flight Search application to search for matching
flights from a database table.

4. When the New Search button is clicked, the response page is the search form page with
all the values reset to blanks. Modify the Jsf Ex03 example so that when the button is
clicked from the searchResults. jsp page or the selectedFlight. jsp page, the search
parameters are not reset. They are reset only when the user clicks the New Search
button from the noFlights.jsp page.

5. Create a converter that converts a decimal dollar amount into cents, or converts degrees
from Fahrenheit to Celsius. Create a JSF application that uses one of the converters. For
example, you could have a data-entry page that accepts decimal dollars or temperature
in degrees Fahrenheit, convert the value to cents or degrees Celsius, store the converted
value in a managed bean, and then use a results page to display the converted value.

6. Add the date validator to the Flight Search example.

7. Add the Spanish language message bundle to the Flight Search example. (Don't forget
to set the language preference in your browser to see the new messages.)

CHAPTER 6

Servlets

In Chapters 3 and 4, you learned about JSP pages, which are commonly used in Java EE web
applications. Servlets are the other common component in Java EE web applications.

Servlets are server-side applications in much the same way that applets are client-side
applications. An applet is a program that runs on the client side in a web browser; a Servletis a
program that runs on the server side in a web server. Like JSP pages, Servlets are Java classes
that are loaded and executed by a Servlet container that can run by itself or as a component of
aweb server or a Java EE server. In fact, as you saw in Chapter 3, the container actually compiles the
JSP page into a Servlet class that is then executed by the container. However, while JSP pages
are usually HTML pages with bits of embedded Java code, Servlets are Java classes with bits of
embedded HTML.

Servlets are designed to be extensions to servers and to extend the capabilities of servers.
Servlets were originally intended to be able to extend any server such as a web server, an FTP
server, or an SMTP (e-mail) server. However, in practice, only Servlets that respond to HTTP
requests have been widely implemented. Servlets extend the capabilities of a web server and
provide dynamic behavior for web applications. Servlets are designed to accept a request from
a client (usually a web browser), process that request, and return a response to the client.
Although all the processing can occur within the Servlet, usually helper classes or other web
components such as Enterprise JavaBeans (EJBs) will perform the business logic processing,
leaving the Servlet free to perform the request and response processing.

After JDBC, Servlets were the second Java EE technology invented. Since they were also
developed before JSP, early Servlets had to handle display processing. This mixture of page
design and code was one of the reasons JSP was introduced. When Servlets were first intro-
duced, if you were developing a web application in Java, you were using just Servlets in the
middle tier, and JDBC if you had a database. Now, of course, Servlets are just one aspect of the
whole Java EE architecture.

After reading this chapter, you will be able to develop and use Servlet technology to create
dynamic web applications. If you wish to dig deeper into Servlet technology or the classes and
methods that are part of the Servlet AP, refer to the Servlet specification at http://java.sun.com/
products/Servlet/reference/api/index.html.

This chapter introduces Servlets and shows how to use them correctly in your web appli-
cations. In this chapter, you will learn:

* How HTTP requests are made to servers and what a response looks like
* How Servlets are designed to respond to HTTP requests

* What phases a Servlet goes through during its lifecycle

229

230

CHAPTER 6 SERVLETS

* Why you need to ensure your Servlet is thread-safe
¢ How to handle exceptions in your Servlet

* How to create and use sessions

¢ How to use filters in your web application

¢ What the Model-View-Controller (MVC) architecture is and how it makes applications
easier to maintain

HTTP and Server Programs

Although Servlets were originally intended to work with any server, in practice, Servlets are used
only with web servers. So in a Java EE application, you will be developing Servlets that respond to
HTTP requests. The Servlet API provides a class named HttpServlet specifically for dealing
with these requests. The HttpServlet class is designed to work closely with the HTTP protocol.
The HTTP protocol defines the structure of the requests that a client sends to a web server, the
format for the client to submit request parameters, and the way the server responds. HttpServlets
use the same protocol to handle the service requests they receive and to return responses to
clients. So, understanding the basics of HTTP is important to learning how to use Servlets.

Request Methods

The HTTP specification defines a number of requests that a web client, typically a browser, can
make on a web server. These request types are called methods. Table 6-1 shows the seven methods
that are defined by the HTTP specification (http://www.ietf.org/rfc/rfc2068.txt?number=2068).

Table 6-1. Request Methods Defined by the HTTP Specification

Method Description

GET Retrieves information identified by a request Uniform Resource Identifier (URI).

POST Requests that the server pass the body of the request to the resource identified by
the request URI for processing.

HEAD Returns only the header of the response that would be returned by a GET request.

PUT Uploads data to the server to be stored at the given request URIL. The main

difference between this and POST is that the server should not further process
a PUT request, but simply store it at the request URIL.

DELETE Deletes the resource identified by the request URL
TRACE Causes the server to return the request message.
OPTIONS Asks the server for information about a specific resource or about the server’s

capabilities in general.

When developing web applications, you will be concerned primarily with GET and POST
requests, so let’s take a closer look at those methods.

CHAPTER 6 SERVLETS

The GET Method

Simply stated, the GET method means that the browser sends a formatted string to the server,
and the server returns the content identified by that string, known as a Uniform Resource Identifier
(URD). One specific type of URI is a string that specifies the location of a resource in relation to the
server, which is called a Uniform Resource Locator (URL). The resource can be a static web
page or the result of a web application.

A GET request usually results when a user clicks a link in a web page or enters a URL in the
address bar of the browser. However, there are other ways this can occur. For example, you can
send a GET request through a telnet session or programmatically send a GET request to a server.
You can even create a web page form that uses GET for its requests.

When sending a GET request, additional information can be passed to the web server. For
GET requests, this information usually takes the form of request parameters that are appended
to the URL. For example, when you perform a web search using the web site www.google. com,
the search parameters are passed to the search engine using request parameters, as shown here:

http://www.google.com/search?hl=en&q=Beginning+Java+EE

The request parameters are prefixed by a question mark (?), the parameters are passed as
name/value pairs (h1=en, g=Beginning+Java+EE), and each pair is delimited by an ampersand (8).
If arequest parameter includes embedded space characters, these are replaced by a plus sign (+).
This format is also known as URL encoding.

Another way to pass parameters to a server is by appending the data as additional path
information to the URL. The additional information looks like a continuation of the URL, but
the web application interprets the path information as parameters. For example, suppose you
had a stock brokerage application identified by the URL /stock/StockList. You could append
additional information to the URL, which the StocklList application would interpret as a
parameter. It might look like this:

http://localhost:8080/stock/StockList/AddRating

The /AddRating part of the URL appears to be part of the URL for the web application; however,
it does not identify any resource installed on the server. The resource is StockList, and the
StockList application knows how to interpret the additional path information.

You can create a GET request from the command line to see the basic structure of such a
request. Start by ensuring that your application server is running. Next, start a telnet client,
using one of the following techniques:

Starting a telnet client on Windows: Start the HyperTerminal program (select Start » All
Programs » Accessories » Communications » HyperTerminal). In the opening dialog
box, enter a connection name and click OK. In the Connect To dialog box, shown in
Figure 6-1, select TCP/IP from the Connect Using drop-down box. Then enter the host
name or IP address and port to which you want to connect. For example, if the server on
your computer is listening on port 8080, enter localhost for the host address and 8080 for
the port. Click the OK button. Next, select File » Properties from the menu. Select the
Settings tab, and then click the ASCII Setup button. In the dialog box that opens, ensure
that Echo Typed Characters Locally is selected. Click OK twice to return to the terminal
window.

231

232 CHAPTER 6 SERVLETS

% Tomcat

Enter details for the hostthat you wantto call:

Host address: localhost

Port number: 23

Connectusing: | TCPJIP (Winsock) hd
[oK l I Cancel ‘

Figure 6-1. In the HyperTerminal Connect To dialog box, select TCP/IP in the Connect Using
drop-down box, and enter a valid host and port in the text fields.

Starting a telnet client on Unix or Linux: Open a terminal or console window. Then enter
telnet localhost 8080 to connect to the server on the default port. You can replace
localhost with an IP address or a host name, and the port number with the correct port for
your application server, as necessary.

Now you are ready to send an HTTP request to the server. In either HyperTerminal or the
telnet client, type the following command, and then enter two carriage returns:

GET / HTTP/1.0

Don'’t forget to press the Return key twice. The second return creates a blank line; this tells the
server that the request is complete. The server should respond with the appropriate information.
The following is a short excerpt of what was returned when we connected to the Sun Java
System Application Server. You will get a different response if you connect to some other
application server.

HTTP/1.1 200 OK

X-Powered-By: Servlet/2.4

ETag: W/"10335-1097261056937"

Last-Modified: Fri, 15 Apr 2005 18:44:16 GMT
Content-Type: text/html

Content-Length: 10335

Date: Sun, 17 Apr 2005 21:55:24 GMT

Server: Sun-Java-System/Application-Server
Connection: close

CHAPTER 6 SERVLETS

<!DOCTYPE HTMLPUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>Sun Java(TM) System Application Server</title>
<meta http-equiv="content-type" content="text/html; charset=iso-8859-1">
...remainder of response not shown...

Congratulations, you're now a certified web browser! Using the telnet program, you just
performed the same actions that a web browser does. You sent a request to a server, and then
received a response. The actual request consists of the method name (GET), followed by the
relative URI of the desired resource, followed by the HTTP identifier for the HTTP version that
the telnet program supports. The URI in this case is just /, which is the URI for the root resource
of the server. If the server has been configured to serve a default page for this request (which
both Tomcat and Java EE are), then it will send that page.

The HTTP request is terminated by a blank line. The blank line tells the server that the
header is complete. Since a GET request has no body, this completes the request, and the program
sends the request to the server.

A general HTTP message has this format:

Request-Line

Headers

<Carriage Return/Line Feed>
[message-body]

Each request begins with the request line. In our example, that was GET / HTTP/1.0. This
is followed by header data. In our example, we did not use any header data. A blank line created
by entering just a carriage return/line feed (CRLF) sequence signals the end of the headers.
This is followed by an optional message body. Since our example was a GET request, there was
no message body. POST requests have message bodies.

You can see this entire structure in the response from the server, which has the same
message format as a request. The first line of the response is the status line, which consists of
the HTTP version, a response code (200), and a response message (OK). This is followed by the
response headers: the date, content length, and other information added by the server. The
headers, whether part of the request or response, are in the format name : value. This is followed
by the actual body of the resource. In our example, the server returns the default page for the
resource /.

So, whether you are clicking a link, entering an address in a browser address bar, using
telnet, or connecting to a server programmatically (using code), the request that is sent to the
server must ultimately follow the format prescribed by the HTTP specification. Most of the
time, however, formatting the request is handled for you automatically.

The POST Method

If the request is sent using the POST method, the request can include a message body, and the
server should pass this message body to the resource in the URI for processing. POST requests
are typically generated by users submitting a form through their web browser. Forms can be
used with either GET or POST requests, although they are usually used with POST requests. Addi-
tionally, like GET requests, POST requests can be generated manually, using a program such as
telnet, or programmatically, using classes in the java.net package.

233

234

CHAPTER 6 SERVLETS

Also, while data can be passed to the server using the same techniques as with GET requests
(appending parameters or adding additional path information), a POST request usually submits
data to the server in the body of a request. For example, using the hypothetical StockList appli-
cation, the POST request to submit stock ratings might look like this:

POST /stock/servlet/StockList/AddRating HTTP/1.0
Content-type: application/x-www-form-urlencoding
Content-length: 39

analysts=38stocks=DDC&ratings=Smashing!

Now, if a browser had submitted this POST request, it would pass more information than
we have shown here. However, these commands are sufficient for sending data to a web appli-
cation. The request starts with the method and URL, and the head of the request includes
Content-type and Content-length parameters. This is followed by two pairs of CRLF charac-
ters, followed by the request data in the message-body. The message body is also terminated
by two pairs of CRLF characters. In this example, the POST data consists of 39 characters, formatted
using URL encoding. The data does not need to be URL-encoded, however. POST data can be in
any format that the web application understands. The point is that request data for a POST
request is usually included in the body of the request, rather than appended to the URL.

How a Server Responds to Requests

We already know how a server responds when the GET request is for a static HTML web page.
When you enter an address or click a link, the server locates the resource identified by the URI
and returns that resource as part of an HTTP message to the web browser. In the case of a web
page, the browser displays the web page.

What happens, however, when the resource is a server-side program? In this case, the
server needs to interpret the URI as a request for a server-side program, format the request
parameters in a form the program recognizes, and pass the request to that program. In the
early days of the Web, a standardized format called Common Gateway Interface (CGI) was
developed for this purpose. Whenever you see a URL that has /cgi/ as part of the address,
you are creating a request to a server-side program of that type. The program must interpret
the request parameters, execute the appropriate processing, and return a response to the server,
which returns it to the client. In the past, the server program was usually written in a language
such as C or Perl, which executed in a separate process from the server. Every request caused a
new process to be spawned, and when the program completed processing the request, it was
terminated. This was usually resource-intensive.

Java Servlets, and specifically HttpServlets, provide some advantages over CGI programs
for server-side applications. They can run in the same process as the server, so new processes
don’t need to be spawned for every request. Also, they are portable between servers (as long as
they don’t use any platform-specific code). CGI programs written and compiled in C, for example,
need to be recompiled for a different operating system.

The Serviet Model and HttpServlets

Figure 6-2 presents a slightly simplified view of what happens when a client makes a request
that is processed by a Servlet.

CHAPTER 6 SERVLETS

Web Serviet
Server Container
Client Request Request ServletRequest Servlet
Class
Response Response ServletResponse
a
)

Figure 6-2. A request for a Servlet is passed by the server to the Servlet container, which passes it to
the Servlet class.

When a client (usually, but not necessarily, a web browser) makes a request to the server,
and the server determines that the request is for a Servlet resource, it passes the request to the
Servlet container. The container is the program responsible for loading, initiating, calling, and
releasing Servlet instances. The Servlet container takes the HTTP request; parses its request
UR], the headers, and the body; and stores all of that data inside an object that implements the
javax.servlet.ServletRequest interface. It also creates an instance of an object that implements
javax.servlet.ServletResponse. The response object encapsulates the response back to the
client. The container then calls a method of the Servlet class, passing the request and response
objects. The Servlet processes the request and sends a response back to the client.

If you read the previous chapters about JSP (Chapters 3 and 4), you will realize that this
request/response flow is very similar to the request/response flow for JSP pages. In fact, since
JSP pages are translated into Servlets, the flow is almost identical. Is there any difference between
the two? Or put another way, when should you use Servlets, and when should you use JSP pages?
Here are the general guidelines:

 JSP pages are better suited for web components that contain a large amount of presen-
tation logic and little or no business logic.

* Servlets are better suited for web components that perform processing of data or
contain some business logic.

Servlets can send display data directly through the response, as shown in Figure 6-2.
However, in many web applications, the Servlet will accept and process the request, using
some other component to generate the response back to the client. In the next few sections,
we’ll look at how a Servlet receives the request and returns a response.

Basic Servlet Design

Like CGI programs, HTTP Servlets are designed to respond to GET and POST requests, along with
all the other requests defined for HTTP. However, you will probably never need to respond to
anything other than GET or POST. Figure 6-3 shows the classes you will use when writing Servlets.

235

236

CHAPTER 6 SERVLETS

<<interface>> <<interface>>
Servlet ServletConfig
+init(config:ServletConfig):void +getServietName():String
+getServletConfig():ServletConfig +getServletContext():ServletContext
+service(req:ServletRequest,res:ServletResponse):void +getlnitParameter(name:String):String
+getServletinfo():String +getinitParameterNames(): Enumeration
+destroy():void A

A

GenericServiet

+getInitParameter(name:String):String
+getinitParameterNames(): Enumeration
+getServletConfig():ServletConfig
+GetServletContext():ServietContext
+init(config:ServletConfig):void

+init():void
+service(req:ServletRequest,res:ServietResponse):void

HttpServiet

#doGet(req:HttpServletRequest,resp:HttpServletResponse):void
#doHead(req:HttpServletRequest,resp:HttpServietResponse):void
#doPost(req:HttpServletRequest,resp:HitpServietResponse):void
#doPut(req:HttpServietRequest,resp:HttpServietResponse):void
#doDelete(req:HttpServietRequest,resp:HttpServietResponse):void
#doOptions(req:HttpServletRequest,resp:HitpServietResponse):void
#doTrace(req:HttpServletRequest,resp:HttpServletResponse):void
#service(req:HttpServietRequest,resp:HttpServietResponse):void
+service(req:ServletRequest,res:ServietResponse):void

Figure 6-3. Parent classes that provide the basic functionality of a Servlet

When writing Servlets, you will usually extend a class named javax.servlet.w
http.HttpServlet. This is a base class that provides support for HTTP requests. The HttpServlet
class, in turn, extends javax.servlet.GenericServlet, which provides some basic Servlet
functionality. Finally, GenericServlet implements the primary Servlet API interface,
javax.servlet.Servlet. It also implements an interface called ServletConfig, which allows
it to provide easy access to Servlet configuration information.

Notice that Servlet defines only a small number of methods. You can probably guess that
init() and destroy() don’t handle any requests. We will look at these methods later when we
discuss the Servlet lifecycle in more detail. The getServletConfig() and getServletInfo()
methods don’t handle requests either. That leaves only service() to handle requests.

The service() Method

When a Servlet container receives a request for a Servlet, the container calls the service() method
of the Servlet. So, a Servlet that implements the Servlet interface must implement the service()

CHAPTER 6 SERVLETS

method to handle requests. However, your Servlet does not need to implement service(). The
Servlet API provides a class named HttpServlet, which is a subclass of GenericServlet, itself
a subclass of Servlet. As you can see in Figure 6-3, the HttpServlet class implements two
overloaded versions of service(). When the Servlet container receives a request, it calls
service(ServletRequest, ServletResponse), which calls service(HttpServletRequest,
HttpServletResponse). Depending on the type of response, HttpServlet, then calls your Servlet

to handle a specific request type: GET, POST, or one of the other HTTP request methods.

The doPost() and doGet() Methods

HttpServlet is intended to respond to HTTP requests, and it must handle requests for GET,
POST, HEAD, and so on. Thus, HttpServlet defines additional methods. It defines a doGet () to
handle GET requests, doPost () to handle POST requests, and so on; there is a doXXX () method for
every HTTP method. With the exception of doTrace() and doOptions(), these methods simply
return an error message to the client saying the method is not supported. You, as the developer,
are expected to write your Servlet to extend HttpServlet and override the methods you want
to support.

You will often see Servlet examples in books or tutorials that show a Servlet class that
extends HttpServlet and overrides the service() method to process an HTTP request. This is
acceptable for simple examples of Servlets, and you really won't have any problems if you do
this in a real Java EE application. However, HttpServlet already implements a service() method,
and it determines the correct doXXX() method to call for the HTTP request. In a real-world
application, you should determine the HTTP methods to be supported by your Servlet and
override the corresponding doXXX() method. This will almost always be doPost () or doGet ().
The doTrace() and doOptions() methods are fully implemented by HttpServlet, so you do not
need to override them in your Servlet.

When the Servlet container receives the HTTP request, it maps the URI to a Servlet. It then
calls the service() method of the Servlet. Assuming the Servlet extends HttpServlet, and over-
rides only doPost () or doGet (), the call to service() will go to the HttpServlet parent class. The
service() method determines which HTTP method the request used and calls the correct
doXXX() method, as illustrated in Figure 6-4. If your Servlet has that method, it will be called
because it overrides the same method in HttpServlet. Your doXXX() method processes the
request, generates an HTTP response, and returns it to the client.

In Figure 6-4, note that even though HttpServlet and MyServlet are shown in separate
boxes, together they constitute a single object in the system: an instance of MyServlet.

The actual signature of all of the doXXX() methods is as follows:

public void doXXX(HttpServletRequest request, HttpServletResponse response)

Each method—doPost(), doGet(), and so on—accepts two parameters. The
HttpServletRequest object encapsulates the request to the server. It contains the data
for the request, as well as some header information about the request. Using methods defined
by the request object, the Servlet can access the data submitted as part of the request. The
HttpServletResponse object encapsulates the response to the client. Using the response object
and its methods, you can return a response to the client.

237

238

CHAPTER 6

Client

SERVLETS

Figure 6-4. The request is passed to the service() method of HttpServlet, which calls the correct

Serviet
Container
GET Request service() HttpServiet { MyServlet {
A - A .
> > service() {
doGet(); D doGet(); {

. a }
" HTTP Response } ! }

method in the Servlet subclass.

A Servlet That Responds to POST Requests

Since you know the basic Servlet objects at this point, let’s work through a simple sample
Servlet. We’ll use some of the methods of HttpServletRequest and HttpServletResponse, even
though they have not been introduced yet. We’ll look at those methods in more detail after
the example.

In this example, we’ll create a Servlet that can respond to HTTP POST requests. Start by

creating the simple Servlet shown in Listing 6-1.

Listing 6-1. Login.java

package com.apress.servlet;

import javax.servlet.http.*;

import java.io.*;

public class Login extends HttpServlet {
public void doPost(HttpServletRequest request,
HttpServletResponse response)

{

String username = request.getParameter("username");

try {

response.setContentType("text/html");
PrintWriter writer = response.getWriter();
writer.println("<html><body>");

+ username +

writer.println("Thank you, "
". You are now logged into the system.");

writer.println("</body></html>");
writer.close();

} catch (Exception e) {
e.printStackTrace();

}
}
}

CHAPTER 6 SERVLETS

The Servlet can be compiled the same way as any other Java source file. You can compile
it from the command line using javac, or if you are using an integrated development environ-
ment (IDE), use the IDE’s compile command or menu option. You will need to include the
correct Java EE library for the compilation. There are two possible libraries to choose from,
depending on whether you are using the Java EE reference implementation, the Tomcat server,
or JBoss. It doesn’t matter which one you use. If you have the Java EE SDK, you can use the
javaee. jar library; if you have Tomcat or JBoss (which uses Tomcat), you can use servlet-api. jar.

For example, if you're using the Java EE reference implementation, assuming JAVAEE_HOME
is the environment variable for the location of the Java EE SDK, you could compile the Servlet
with the following command line on Windows systems:

> javac -classpath %JAVAEEHOME%\1ib\javaee.jar Login.java
On Linux and Unix systems, you would use this command line:
> javac -classpath $JAVAEEHOME/lib/javaee.jar Login.java

If you're using Tomcat 5, assuming CATALINA_HOME is the location of the Tomcat installation,
on Windows systems, compile the Servlet with the following command:

> javac -classpath %CATALINA HOME%\common\lib\servlet-api.jar Login.java
On Linux and Unix systems, use this command:
> javac -classpath $CATALINA _HOME/common/lib/servlet-api.jar Login.java

The Servlet in Listing 6-1 implements the doPost () method. So, to call the Servlet, you
need a client that can submit a POST request. Listing 6-2 shows an HTML page (login.html) that
has a form that posts to the Servlet.

Listing 6-2. login.html

<html>
<head>
<title>login</title>
</head>

<body>
<h1>Login</h1>

Please enter your username and password

<form action="Login" method="POST">
<p>Username: <input type="text" name="username" length="40">
<p>Password: <input type="password" name="password" length="40">
<p><input type="submit" value="Submit">

</form>

</body>
</html>

239

240

CHAPTER 6 SERVLETS

Deploying the Login Servlet to Java EE

At this point, you are ready to deploy the Servlet. The next set of steps will show how to deploy
the Servlet with the Sun Java System Application Server. These steps are virtually identical to
the steps used in Chapters 3 and 4 to deploy JSP pages. If you want to deploy to Tomcat, go to
the next section, “Deploying the Login Servlet to Tomcat.”

1. Start the Sun Java System Application Server. For Windows, select Start » All Programs »
Sun Microsystems » Application Server » Start Default Server. For Solaris or Linux, add
the application server \bin directory to the path, and then run this script:

asadmin start-domain domaini

2. Start the Deployment Tool. For Windows, select Start » All Programs » Sun Microsystems
» Application Server » Deploytool. For Solaris or Linux, run the deploytool script.

3. Choose to create a new Web Application WAR. Select File » New » Web Component
from the Deployment Tool menu. Alternatively, you can click the toolbar button for
creating a new web component.

4, The New Web Application Wizard will now run. Click Next on the opening splash
screen (if it is displayed).. In the War Location pane, ensure Create New Stand-Alone
War Module is selected. In the War Naming pane, click the Browse button. In the Create
Module File dialog box, shown in Figure 6-5, select a directory and enter a filename for
the WAR file (Servlet Ex01 in this example). Click the Create Module File button to return
to the wizard.

Laok In; |IjChDB v| @ @ @ @E

D Servlet_Ex01 wear
D Servlet_Ex02 war
D Servlet_Ex03war
D Servlet_ExDd wear
D Servlet_Ex0S war
D Servlet_Ex0E wear

File Mame: | Serviet_Ex01 |

Files of Type: | Wik Module Files [war) - |

| Create Module File | | Cancel |

Figure 6-5. The Create Module File dialog box allows you to enter a name for the WAR file
and select the directory for this file.

CHAPTER 6 SERVLETS 24

5. In the Contents pane of the wizard, shown in Figure 6-6, click the Edit Contents button
and add the login.html and Login.class files to the application. Then click the Next
button.

ANWAR module feb Application ARchive) is required to contain this web campaonent.
Selectthe [ocation and name of the WAR to be used.
Then click the Edit button and add the desired content files {e.q. servlets ‘class’, JSP pages 'jsp', and "himl' pages) to its

contents.
WAR Location® WWAR Marning®
(8 Create Mew Stand-Alone WAR Module
(70 Creste Mew WAR Module in Application VR Location:
[rhirdEditionichosiserviet_Exn war| | Browse... |
WA Marne:
:) Addto Existing YWAR hocule | Serviet_Ex01 |

Context Root (Sun-specific):

Contents:
T[T serviet a
D Login.class W
ool [
@ (Jtags L
Lo
E wsdl Eclt Cantents...
D sUn-j2es-ri project
D weeh xml
D sun-weeh sl
D login.htmml |
| Sun-specific Settings... ‘ | Advanced Settings... | | D Description.. | ‘ lcons...
* Required | Help.... | | Cancel | | = Back || Ilesd = |

Figure 6-6. The first page of the New Web Application Wizard is used to select the files that
are part of the web component and select a name for the WAR file.

6. The next page of the wizard allows you to select the web component to create. Servlet
should already be selected, so click Next.

7. The third page of the wizard allows you to select the Servlet class and the web component
name. There should be only one entry in the Servlet Class drop-down box, com.apress.
servlet.login, so select this. The wizard will automatically create entries for the Web
Component Name and Web Component Display Name fields. Click Finish.

8. In the folder view in the left pane, select the Login WebApp, and then click the Aliases
tab, as shown in Figure 6-7. Click Add to add a new alias, and enter the alias /Login for
the Servlet.

242

CHAPTER 6 SERVLETS

10.

11.

12.

ile Edit Toolz Help

SR EIECE K

9 CJFiles rGeneraI sligses | Init Parameters rSecur'rty |
@ [wiehWaRs :
@ (3 serviet_Ex01 .
Lagin Aliazes
? [servers Login
=] lacalhast 4548 :

Component Alisses

Al

Figure 6-7. Enter an alias for the web component using the Aliases tab.

Save the application using File » Save.

You are now ready to deploy the Servlet. Select Tools » Deploy. If needed, enter the
admin username and password in the deploy dialog box, and then click OK. As the
deployment process proceeds, the progress is reported in a new dialog box. After the
deployment is complete, close the progress dialog box.

Open a browser and enter the URL http://localhost:8080/Servlet Ex01/login.html
into the address bar. If your server is not installed on the local machine, use the actual
server name or IP address in place of localhost; also, replace 8080 with the correct port
if your application server is using a different port. The path name Servlet Ex01 corre-
sponds to the WAR filename. The browser will load the login page, as shown in Figure 6-8.

Enter a username and password into the dialog box and click the Submit button. The
Servlet will process the request and return the web page shown in Figure 6-9 to the browser.

CHAPTER 6 SERVLETS

* login - Microsoft Internet Explorer | | |

File Edit View Favorites Tools Help
Address |&] http://localhost: 8080/Serviet_Ex01/login.html v L] Go

Login
Please enter your username and password

TUsername: kmukhar

Password: """"|

Figure 6-8. The login.html page loaded into the browser

EEX
File Edit View Favorites Tools Help L
Address €] http://localhost: 8080/Serviet_Ex01/Login b L] Go

Thank you, kmukhar. You are now logged into the system.

Figure 6-9. The web page returned by the Login Servlet

Deploying the Login Serviet to Tomcat

To deploy to Tomcat, the application needs an appropriate directory structure. Start by creating
this directory structure shown in Figure 6-10 (the same directory structure created automatically
by the Deployment Tool when you deploy to the Java EE server).

243

244

CHAPTER 6 SERVLETS

= Serviet_Ex01
-I-{z= WEB-INF
-z dasses
--{&= com
-l apress
-I-&= serviet
Login.class
{1 Login.java

login.html
Figure 6-10. The directory structure for Servlet_Ex01

You can create this directory structure anywhere in your filesystem, but if you create it in
the /webapps directory of your Tomcat installation, you’ll be one step ahead of the game.

As you've learned in previous chapters, the web.xml file shown in the directory structure is
also known as the deployment descriptor. Listing 6-3 shows the deployment descriptor (this
deployment descriptor is created automatically by the Deployment Tool).

Listing 6-3. web.xml for Servlet_Ex01

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi=http://www.w3.0rg/2001/XMLSchema-instance
xsi:schemalocation="http://java.sun.com/xml/ns/javaee =
http://java.sun.com/xml/ns/javaee/web-app 2 5.xsd">
<display-name>Servlet Ex01</display-name>
<servlet>
<display-name>Login</display-name>
<servlet-name>Login</servlet-name>
<servlet-class>com.apress.servlet.Login</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>Login</servlet-name>
<url-pattern>/Login</url-pattern>
</servlet-mapping>
</web-app>

If you created the directory structure in the /webapps directory of Tomcat, you can now
browse to the login page. Otherwise, you need to install the application, either by copying the
entire directory structure to the /webapps folder of the Tomcat installation or by creatinga WAR
file and copying it to Tomcat. You can navigate to the /Servlet Ex01 directory and create the
WAR file using the jar tool, as follows:

C:\Servlet Ex01\>jar cf Servlet Ex0Ol.war *

CHAPTER 6 SERVLETS

If you used a different directory for your application, navigate into the root directory for your
application, and then create the WAR file. Finally, copy the WAR file to the Tomcat /webapps
directory.

To see the page, start the Tomcat server, if necessary, and then open a browser and enter
the URL http://localhost:8080/Servlet Ex01/login.html into the address bar. The browser
will load the login page as shown in Figure 6-8. Enter a username and password, and then click
the Submit button. The web browser will display a welcome message returned by the Servlet,
as shown in Figure 6-9.

Let’s take a quick look at the deployment descriptor for this application (Listing 6-3). It has
two important elements under the <web-app> element:

<servlet>
<display-name>Login</display-name>
<servlet-name>Login</servlet-name>
<servlet-class>com.apress.servlet.lLogin</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>Login</servlet-name>
<url-pattern>/Login</url-pattern>

</servlet-mapping>

The <servlet> element tells the container the class that is used for a given Servlet name,
and the <servlet-mapping> element maps a URL to a Servlet name. Thus, when the Servlet
container receives a URL that matches the given pattern, it will know which class to send the
request to.

How the Login Servlet Works

The Login Servlet illustrates some of the main concepts you've learned. The class itself is just
like any other Java class. In this case, it is a subclass of HttpServlet. As a subclass of HttpServlet,
the Login class only needs to override the methods of HttpServlet that it needs to implement
its behavior, or alternatively, add new methods for new behavior. In this example, Login needs
to override only the doPost () method of HttpServlet.

When you click the Submit button of the login.html static web page, the web browser
submits a POST request to the server. Web forms can be used to submit either GET or POST requests.
The <form> tag in the web page has a method attribute that has the value POST. This tells the
browser to submit a POST request to the resource indicated by the action attribute of the <form>
tag. If no method attribute is used, the form defaults to the GET method.

When the server receives the POST request, it parses the URL to determine which resource
to send the request to. There are two kinds of URL paths:

Relative paths: These paths have no leading slash (/). The HTML in Listing 6-2 uses a relative
path to identify the resource. The action attribute of the <form> tag is simply the relative
address Login, and the browser converts that to the appropriate URL. When the browser
converts Login to a URL, it appends it to the current application context because it is a
relative path. It maps Login to a URL relative to the current page. For example, login.html
was served from the URL http://localhost:8080/Servlet Ex01/login.html. The browser
appends Login to the same path as the login.html page to form the URL http://
localhost:8080/Servlet _Ex01/Login.

245

246

CHAPTER 6 SERVLETS

Absolute paths: These paths begin with a slash (/). Absolute paths are formed relative to
the server. If the form in login.html contained the absolute path /Login, the browser
would submit the request to http://localhost:8080/Login. This doesn’t identify a valid
resource to the server, and so would result in an HTTP 404 Not Found error.

You can use either absolute or relative paths in your web pages. If you use absolute paths,
you need to include the web component context as part of the path. For example, the absolute
path shown in the following <form> tag would have caused the browser to submit the form to
the correct resource:

<form action="/Servlet Ex01/Login" method=POST">

When you deployed this Servlet, part of the deployment descriptor told the server and Servlet
container how to map the request path to the Servlet class. When you use the Deployment Tool
to create the web component, this mapping is created when you enter an alias for the web
component. This alias is the web address for the Servlet within the web application context.
Within the deployment descriptor, the mapping is specified by the <servlet-mapping> element.
In this example, the path element /Servlet Ex01 of the URL told the server to pass the
request to the Servlet container. The /Login portion of the path maps to the Login Servlet,
which is implemented by the com.apress.servlet.Login class. The Servlet container constructs
instances of HttpServletRequest and HttpServletResponse, and calls the service() method of
Login. Since Login does not implement service(), the parent class method is called. The service()
method of HttpServlet determines that the request is a POST request and calls the doPost ()
method. Since Login does define doPost (), that method is used to process the request.
Within the doPost () method, the Login Servlet reads a request parameter from the
HttpServletRequest object. The method that it uses to do this is getParameter (String), which
returns a String that has the value of the request parameter with the given name. If no such
parameter exists, then null is returned. The parameter used by the Servlet is "username":

String username = request.getParameter("username");
This is the same as the name attribute used in the web form for the username input field:
<p>Username: <input type="text" name="username" length="40">

There are several other methods used to retrieve the request parameters from the request
object, as discussed in the next section.

The Login Servlet then uses the response object to return a response to the client. It starts
by setting the Content-type of the response to "text/html":

response.setContentType("text/html");

Caution The content type must be set before getting an OutputStream or Writer object from the
response object, since the content type is used to create the OutputStreamor Writer.

After setting the content type, the Servlet gets a Writer object from the response object.
This Writer is used to send the strings that constitute the response to the client:

CHAPTER 6 SERVLETS

try {
response.setContentType("text/html");
PrintWriter writer = response.getWriter();
writer.println("<html><body>");
writer.println("Thank you, " + username +
". You are now logged into the system");
writer.println("</body></html>");
writer.close();
} catch (Exception e) {
e.printStackTrace();

}

Because writing to a stream can throw an I0OException, the whole block is wrapped in a
try...catch block. However, this try...catch block just prints out the stack trace for any exception
thrown. While this is acceptable for this example, it is generally bad practice to ignore exceptions
in the Servlet. We'll talk more about this in the “Exception Handling” section later in the chapter.
You'll see the other methods of the response object in the “The response Object” section a bit
later in the chapter.

The request Object

In the previous example, the Servlet got information from the request object by calling the
getParameter (String) method:

String username = request.getParameter("username");

THE STRANGE CASE OF THE METHOD THAT WAS UNDEPRECATED

The getParameter () method is unique in that it is the only method ever undeprecated by Sun.

In the second version of the Servlet specification, getParameter (String) was deprecated and replaced by
getParameterValues(String). This was done because there are several HTML elements (check boxes,
multiple-selection lists, and multiple elements with the same name) that return multiple values. The
getParameter (String) method returns only a single value. The getParameterValues(String)
method returns a String array, so it can be used for multiple-value elements and single-value elements
(by returning a single-element array).

However, there are still many times when the HTML form sends a single value for a named element.
While you can access array element zero in those situations, it is somewhat more syntactically cumbersome.
For this reason, many developers expressed the opinion that the getParameter (String) method was still
useful, and Sun undeprecated the method.

Asyou've seen, encoding and form encoding use name/value pairs to pass parameters from
the browser to the server. The method getParameter(String) returns the String value for the
given name in the parameter list. If no such name was submitted by the client, the method
returns null.

The ServletRequest interface defines a few other methods for getting and using request
data from the client’s request:

247

248 CHAPTER 6 SERVLETS

e public Enumeration getParameterNames(): Returns an enumeration of all the names in
the request.

e public String[] getParameterValues(String name): Returns all the request parameter
values for the given name.

e public Map getParameterMap(): Returns all the parameters stored in a Map object. Each
parameter name is a key in the Map; the value returned for a name is a String[] array.

The getParameterValues() method is used when the named parameter may have multiple
values. For instance, if an HTML form contains a <select> list that allows multiple selections,
the request will contain all the selected values keyed by a single name, the name of the <select> list.
If you call getParameter () on a parameter with multiple values, the value returned is the same
as the first element returned by getParameterValues(). If you call getParameterValues() and
the name does not exist in the request, null is returned. Also, keep in mind that web browsers
only send non-null values. In other words, if an HTML form has a check box, and the user does
not select the check box, neither the check box name nor value is sent in the request.

Accessing Request Metadata

You can also get information about the request using ServletRequest methods. Here are a few
of the more useful methods:

¢ public String getProtocol(): Returns the protocol used by the request; this will usually
be "HTTP".

e public String getServerName(): Returns the host name of the server that received the
request. This is useful if the server uses virtual servers.

¢ public String getRemoteAddr (): Returns the IP address of the client that made the request.

¢ public String getRemoteHost(): Returns the host name of the client that made the request.

Accessing the Raw Request Data

You can also get access to the request stream containing the unparsed request parameters.
There are two methods available for accessing the request stream:

public BufferedReader getReader()
public ServletInputStream getInputStream()

You can use only one of the methods with a single request. Once you access the request
input stream using one of these methods, the stream cannot be accessed again. Attempting to
call either of them for the same request will result in an exception being thrown. Also, note that
if you use one of these methods, the getParameter () and getParameterValues() methods may
not work. Whether you can access the request stream and use the getParameter(String) or
getParameterValues(String) methods is server-dependent.

Accessing Request Headers
Earlier, we looked at the format of an HTTP message. Recall that it looked like this:

CHAPTER 6 SERVLETS

Request-Line

Headers

<Carriage Return/Line Feed>
[message body]

The HttpServletRequest object provides a number of methods for reading the header data
from the HTTP message:

long getDateHeader(String name)
String getHeader(String name)
Enumeration getHeaders(String name)
Enumeration getHeaderNames()

int getIntHeader(String name)

Two special methods are provided for getting a header value as a date or an int. Headers
that are not dates or int values can be accessed using the general getHeader (String) method.
The name argument passed to any of these methods should be the name of the header. Here
again is part of the header portion of the response we got from the Java EE server in the first
example of the chapter:

Last-Modified: Fri, 15 Apr 2005 18:44:16 GMT
Content-Type: text/html

Content-Length: 10335

Date: Sun, 17 Apr 2005 21:55:24 GMT

Server: Sun-Java-System/Application-Server

A Servlet could get the value of the Last-Modified header by calling getDateHeader
("Last-Modified"). It could get the Content-Length by calling getIntHeader ("Content-Length").
A header like Server, which is neither date nor int, would be obtained by calling
getHeader("Server").

Earlier in the chapter, we mentioned that browsers can append request parameters to the
URL. The Servlet can obtain those parameters by calling getQueryString().

public String getQueryString()
Thus, suppose you have a request URL that looks like this:
http://localhost:8080/Servlet Ex01/Login?name=Kevin

In this case, calling getQueryString() will return the string "name=Kevin".
We also mentioned that information could be added to the URL that looks like a continuation
of the path. This extra path information can be obtained by calling getPathInfo():

public String getPathInfo()
For example, suppose you have a request URL like this:
http://localhost:8080/Servlet Ex01/Login/extra/path/info

In this case, getPathInfo() will return "/extra/path/info".

249

250

CHAPTER 6 SERVLETS

The response Object

In the previous example, we used two methods of the response object:

response.setContentType("text/html");
PrintWriter writer = response.getWriter();

Using the Writer obtained from the response, the Servlet sent HTML data to the client
browser for it to display. There is another object that can be used to send response data. You
will normally use the Writer to send character data, but you can also send data to the client
using an output stream obtained through this method:

public ServletOutputStream getOutputStream()

While the OutputStream object can be used for text data, its primary purpose is to send
binary data to the response. The Servlet would get binary data (an image, for example) and
store it in a byte array, then set the content type ("image/jpeg", perhaps), set the content
length, and then write the binary data to the output stream.

The three methods just mentioned are defined by the ServletResponse interface. The
HttpServletResponse interface adds methods that are useful for responding to HTTP requests.
These methods allow the Servlet to add or set header data in the response:

void addDateHeader(String name, long date)
void addHeader(String name, String value)
void addIntHeader(String name, int value)
void setDateHeader(String name, long date)
void setHeader(String name, String value)
void setIntHeader(String name, int value)

The set methods are used to set a single header in the HTTP response. The add methods
are used to add additional values to a header, for headers that allow multiple values. As you can
tell from their names, two methods are used to set or add date headers, two methods are used
to set or add int headers, and the final two methods are used for all other headers.

Deployment Descriptors

Throughout the last couple of chapters, you've seen several examples of deployment descriptors
for our sample web applications contained in a file called web.xml. However, we’ve postponed
a full coverage of deployment descriptors until now, because many of the elements involved
relate to Servlets rather than to JSP pages. So, now that you know what a Servlet is, we can take
amore detailed look at the deployment descriptor. This will be useful if you need to understand
a deployment descriptor or manually create one.

Note Your Servlet container may have a tool that automates the process of creating the deployment descriptor.
For example, the Deployment Tool that comes with Java EE can automatically create the deployment
descriptor for a web application.

CHAPTER 6 SERVLETS

Because the deployment descriptor is contained in an XML file, it must conform to the
XML standard. This means it should start with the XML declaration (<?xml version="1.0"?>).

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5" xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee =
http://java.sun.com/xml/ns/javaee/web-app_2 5.xsd">
</web-app>

The root element of the deployment descriptor is the <web-app> element. Table 6-2 shows
the subelements defined by the Servlet 2.4 specification that can be used within the <web-app>
element. Under the Servlet 2.4 specification, these elements can occur in any order within the
deployment descriptor.

Table 6-2. Valid Subelements for the <web-app> Element of a Deployment Descriptor

251

Element Description

context-param Contains parameter values that are used across the application

description A description of the web application

display-name A name that can be used by an application management tool to
represent the web application

distributable Describes whether the web application can be distributed across
servers; the default value is false

ejb-local-ref Defines a local reference to an EJB

ejb-ref Defines a remote reference to an EJB

env-entry Defines the name of a resource that can be accessed through the
JNDI interface

error-page Defines the error page returned to the client when a particular
€error occurs

filter Defines filter classes that are called prior to the Servlet

filter-mapping Defines aliases for filters

icon Contains a path to icons that can be used by a graphical tool to
represent the web application

jsp-config Defines global configuration for JSP components

listener Defines listener classes that are called by the container when
certain events occur

locale-encoding-mapping-list Specifies a mapping between a local code and an encoding

login-config Configures the authentication method

message-destination Specifies a message destination

message-destination-ref Defines a reference to a message destination within the web

application

252

CHAPTER 6 SERVLETS

Table 6-2. Valid Subelements for the <web-app> Element of a Deployment Descriptor (Continued)

Element Description

mime-mapping Defines a mapping for the public files of the web application to
MIME types

resource-env-ref Configures an external resource that can be used by the Servlet

resource-ref Configures an external resource that can be used by the Servlet

security-constraint Describes the roles or users that can access the web application

security-role Defines a security role for the application

service-ref Defines how web components can access web services

servlet Defines a Servlet by name and class file

servlet-mapping Defines aliases for Servlets

session-config Defines a timeout value for sessions

welcome-file-1ist Defines the file to return to the client when no resource is specified

in the URL

Caution In previous versions of the Servlet specification, the subelements under <web-app> were
required to be in a particular order. With the latest version of the Servlet specification, this restriction has been
removed. Subelements under <web-app> can be in any arbitrary order. If you are using a Servlet container
that supports only Servlet 2.3 or earlier, you will need to use the order required by the DTD in the Servlet 2.3
specification (www . jcp.org/aboutJava/communityprocess/final/jsr053/): icon, display-name,
description, distributable, context-param, filter, filter-mapping, listener, servlet,
servlet-mapping, session-config, mimemapping, welcome-file-1ist, error-page, taglib,
resourceenv-ref, resource-ref, security-constraint, login-config, security-role,
env-entry, ejb-ref, ejb-local-ref.

Now, let’s take a closer look at some of the most important subelements: <context-param»,
<servlet>, and <servlet-mapping>. Later in this chapter, we’ll look at a few others. In the “Filters”
section, we will discuss <filter> and <filter-mapping>, and in the “Exception Handling” section,
we’ll discuss <error-page>.

The <context-param> Element

The <context-param> element allows you to define context parameters. These parameters specify
values that are available to the entire web application context. The element is used like this:

CHAPTER 6 SERVLETS

<web-app>
<context-param>
<param-name>debug</param-name>
<param-value>true</param-value>
</context-param>
</web-app>

The deployment descriptor can contain zero or more of these elements. Each web compo-
nent that has access to the Servlet context can access these parameters by name. We will show
how this is done later in the chapter in Listings 6-4 and 6-6. Note that because the web.xml file
is in text format, you can pass parameters to the application only as strings.

The <serviet> Element

The <servlet> element is the primary element for describing the Servlets in your web application.
The <servlet> element can have the following subelements:

e <icon>

e <servlet-name>

e <display-name>

e <description>

e <servlet-class>

* <jsp-file>

e <init-param>

e <load-on-startup>

* <run-as>

e <security-role-ref>

The only required subelements are <servlet-name> and one of the subelements
<servlet-class> or <jsp-file>. The <servlet-name> subelement defines a user-friendly name
that can be used for the resource. The <servlet-class> or <jsp-file> subelement defines
the fully qualified name of the Servlet class or JSP file. In the previous example, we used the
following for the <servlet> element:

<servlet>
<servlet-name>Login</servlet-name>
<servlet-class>com.apress.servlet.Login</servlet-class>
</servlet>

By defining the Servlet name as Login, and using the <servlet-mapping> element to map
URLs such as /Login to the name Login, we were able to access the Servlet using the simple URL
/Servlet Ex01/Login. Okay, that’s not such a big deal when the Servlet name and class name
are both Login, but suppose your class name were com.mycompany.subdivision.MyServletWithes
AReallyReallyLongName. Do you really want to type that? It makes much more sense to be able
to access the Servlet using SimpleName.

253

254

CHAPTER 6 SERVLETS

The <servlet-class> subelement told the Servlet container that all requests for Login should
be handled by the com.apress.servlet.Login class.

The other subelements of <servlet> that you will use often are <load-on-startup> and
<init-param>. The <load-on-startup> element, if used, contains a positive integer value that
specifies that the Servlet should be loaded when the server is started. The relative order of
Servletloading is determined by the value: Servlets with lower values are loaded before Servlets
with higher values, and Servlets with the same value are loaded in an arbitrary order. If the
element is not present, the Servlet is loaded when the first request for the Servlet is made.
Here’s an example:

<load-on-startup>5</load-on-startup>

The <init-param> elementis similar to the <context-param> element. The difference is that
<init-param> defines parameters that are accessible only to the given Servlet. Here’s an example:

<init-param>
<param-name>debug</param-name>
<param-value>true</param-value>
</init-param>

The <servlet-mapping> Element

The <servlet-mapping> element is used to define mappings from a particular request URI to a
given Servlet name. For example, in the Login Servlet, we defined this mapping:

<servlet-mapping>
<servlet-name>Login</servlet-name>
<url-pattern>/Login</url-pattern>

</servlet-mapping>

This told the server that if it received any URI that matched the pattern /Login, it should
pass the request to the Servlet with the name Login.

Servlet Lifecycle

In the previous example, we looked at a simple Servlet that processed a POST request. This
processing encompassed just a small portion of a Servlet’s lifecycle (although that’s the most
important portion from the client’s point of view). Now, let’s look at the complete lifecycle of
a Servlet.

The Servlet specification defines the following four stages of a Servlet’s lifecycle:

1. Loading and instantiation
Initialization

Request handling

> 0 DN

End of life

These four stages are illustrated in Figure 6-11.

CHAPTER 6 SERVLETS

Start
Loading and
Instantiation
Y
Initialization . End (Serviet No
(Ready for Service) Longer Exists)

Y
Request N End of
Handling ~ Life

Figure 6-11. From loading through end of life, a Servlet passes through a number of distinct
phases during its lifecycle.

Loading and Instantiation

In the first stage of the lifecycle, the Servlet class is loaded from the classpath and instantiated
by the Servlet container. The method that realizes this stage is the Servlet constructor. However,
unlike the other stages, you do not need to explicitly provide the method for this stage.

How does the Servlet container know which Servlets to load? It knows by reading the
deployment descriptor. The Servlet container reads each web. xml file, and loads the Servlet
classes identified in the deployment descriptor. Then the container instantiates each Servlet by
calling its no-argument constructor.

Since the Servlet container dynamically loads and instantiates Servlets, it does not know
about any constructors you create that might take parameters. Thus, it can call only the no-
argument constructor, and it is useless for you to specify any constructor other than one that
takes no arguments. Since the Java compiler provides this constructor automatically when you
do not supply a constructor, there is no need for you to write any constructor at all in your
Servlet. This is why your Servlet class does not need to define an explicit constructor.

If you do not provide a constructor, how does your Servlet initialize itself? This is handled
in the next phase of the lifecycle, Servlet initialization.

Initialization

After the Servlet is loaded and instantiated, the Servlet must be initialized. This occurs when
the container calls the init(ServletConfig) method. If your Servlet does not need to perform
any initialization, the Servlet does not need to implement this method. The method is provided
for you by the GenericServlet parent class. That is why the Login Servlet class presented earlier
in the chapter did not have an init() method. The init() method allows the Servlet to read
initialization parameters or configuration data, initialize external resources such as database

255

256

CHAPTER 6 SERVLETS

connections, and perform other one-time activities. GenericServlet provides two overloaded
forms of the method:

public void init() throws ServletException
public void init(ServletConfig) throws ServletException

As we mentioned in the previous “Deployment Descriptors” section, the deployment
descriptor can define parameters that apply to the Servlet through the <init-param> element.
The Servlet container reads these parameters from the web. xml file and stores them as name/value
pairs in a ServletConfig object. Because the Servlet interface defines only init(ServletConfig),
this is the method the container must call. GenericServlet implements this method to store
the ServletConfig reference, and then call the parameterless init() method that it defines.
Therefore, to perform initialization, your Servlet needs to implement only the parameterless
init() method. If you implement init(), your init() will be called by GenericServlet; and
because the ServletConfig reference is already stored, your init() method will have access to
all the initialization parameters stored in it.

If you do decide to implement init(ServletConfig) in your Servlet, the method in your
Servlet must call the superclass init(ServletConfig) method:

public class Login extends HttpServlet {
public void init(ServletConfig config) throws ServletException {
super.init(config);
// ...Remainder of init() method

}
//...Rest of Servlet

Caution If you implement init(ServletConfig) without calling super.init(ServletConfig),
the ServletConfig object won'’t be saved, and neither your Servlet nor its parent classes will be able to
access the ServletConfig object during the remainder of the Servlet lifecycle.

The Servlet specification requires that init(ServletConfig) successfully complete before
any requests can be serviced by the Servlet. If your code encounters a problem during init(),
you should throw a ServletException orits subclass UnavailableException. This tells the container
that there was a problem with initialization and that it should not use the Servlet for any requests.
UsingUnavailableException allows you to specify an amount of time that the Servlet is unavailable.
After this time, the container could retry the call to init (). You can specify the unavailable time
for the UnavailableException using this constructor:

public UnavailableException(String msg, int seconds)

The int parameter can be any integer: negative, zero, or positive. A negative or zero value
indicates that the Servlet cannot determine when it will be available again. For example, this
could occur if the Servlet determines that an outside resource is not available; obviously, the
Servlet cannot estimate when the outside resource will be available. A positive value indicates

CHAPTER 6 SERVLETS

that the server should try to initialize the Servlet again after that number of seconds. If you
want to signal that the Servlet is permanently unavailable, use this constructor:

public UnavailableException(String msg)

After the Servlet successfully initializes, the container is allowed to use the Servlet to
handle requests.

Request Handling

Earlier in the chapter, we said that the primary method defined for servicing requests during
this phase of the Servlet lifecycle is the service() method. As each request comes to the Servlet
container, the container calls the service() method of the appropriate Servlet to handle the
request. Since you will almost always be subclassing HttpServlet, however, your Servlet only
needs to override doPost () and/or doGet () to handle requests. Here are the signatures of those
two methods:

protected void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException

protected void doPost(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException

As with init(), the Servlet can throw a ServletException or UnavailableException during
the processing of a request. If your Servlet throws either exception, then the Servlet container
is required to stop sending requests to the Servlet. For a ServletException or for an
UnavailableException that indicates a permanent unavailability (it was created with no value
for seconds unavailable), the Servlet container must end the Servlet’s lifecycle. If the Servlet
throws an UnavailableException with some value for seconds unavailable (as described in the
previous section), the Servlet specification permits the container to keep or destroy the Servlet
at its choosing. If it keeps the Servlet, it must not route any requests to the Servlet until