

Beginning Java EE 5
From Novice to Professional

■ ■ ■

Kevin Mukhar and Chris Zelenak
with James L. Weaver and Jim Crume

Mukhar_470-3Front.fm Page i Tuesday, October 4, 2005 6:20 AM

Beginning Java EE 5: From Novice to Professional

Copyright © 2006 by Kevin Mukhar and Chris Zelenak, with James L. Weaver and Jim Crume

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-470-3

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Steve Anglin
Technical Reviewer: Dilip Thomas
Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis, Jason Gilmore,

Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser
Project Manager: Sofia Marchant
Copy Edit Manager: Nicole LeClerc
Copy Editors: Marilyn Smith, Ami Knox, Nicole LeClerc
Assistant Production Director: Kari Brooks-Copony
Production Editor: Laura Cheu
Compositor: Susan Glinert Stevens
Proofreader: Elizabeth Berry
Indexer: Broccoli Information Management
Artist: Kinetic Publishing Services, LLC
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.

Mukhar_470-3Front.fm Page ii Tuesday, October 4, 2005 6:20 AM

iii

Contents at a Glance

About the Authors . xv

About the Technical Reviewer . xvii

Acknowledgments . xix

Introduction . xxi

■CHAPTER 1 Java EE Essentials . 1

■CHAPTER 2 Getting Started . 29

■CHAPTER 3 JavaServer Pages . 43

■CHAPTER 4 Advanced JSP Topics . 107

■CHAPTER 5 JavaServer Faces . 167

■CHAPTER 6 Servlets . 229

■CHAPTER 7 Working with Databases . 309

■CHAPTER 8 Advanced Topics in JDBC . 357

■CHAPTER 9 EJB Fundamentals and Session Beans . 405

■CHAPTER 10 EJB Entity Beans . 425

■CHAPTER 11 EJB Relationships, EJB QL, and JDBC . 473

■CHAPTER 12 Design Patterns and EJB . 505

■CHAPTER 13 Message-Driven Beans . 543

■CHAPTER 14 Web Services and JAX-WS . 561

■APPENDIX A Tomcat: Who Needs Java EE 5? . 581

■APPENDIX B SQL and EJB QL . 585

■APPENDIX C Java EE Glossary . 607

■INDEX . 615

Mukhar_470-3Front.fm Page iii Tuesday, October 4, 2005 6:20 AM

Mukhar_470-3Front.fm Page iv Tuesday, October 4, 2005 6:20 AM

v

Contents

About the Authors . xv

About the Technical Reviewer . xvii

Acknowledgments . xix

Introduction . xxi

■CHAPTER 1 Java EE Essentials . 1

What Is Java EE? . 2

How Java EE Relates to J2SE . 2

Why Java EE? . 2

Multitier Architecture . 3
Single-Tier Systems . 4

Client/Server (Two-Tier) Architecture . 5

N-Tier Architecture . 6

Vendor Independence . 9
Scalability . 10

Features and Concepts in Java EE . 10

Java EE Clients and Servers . 10

Containers . 11

Java Servlets . 13

JavaServer Pages (JSPs) . 14

JavaServer Faces (JSF) . 16

JDBC . 17

EJBs . 18

XML Support . 21

Web Services. 21

Transaction Support . 22

Security . 23

Sample Java EE Architectures . 23

Application Client with EJB . 23

JSP Client with EJB . 24

Applet Client with JSP and Database . 25

Web Services for Application Integration . 25

Summary . 26

Contents

Mukhar_470-3Front.fm Page v Tuesday, October 4, 2005 6:20 AM

vi ■C O N T E N T S

■CHAPTER 2 Getting Started . 29

Installing JBoss . 29

JBoss Installation Problems and Solutions . 32

Testing the JBoss Installation . 32

Starting the Server . 32

JBoss Server Installation Problem and Solution 34

Compiling and Deploying a JSP Page . 35

Creating the Example Application . 35

Learning to Say “Hello” . 38

Application Creation Problems and Solutions 41

Summary . 41

■CHAPTER 3 JavaServer Pages . 43

Introduction to JSP . 43

JSP Development . 44

Basic JSP Lifecycle. 44

JSP Elements . 45

Directive Elements . 46

Scripting Elements . 48

Action Elements . 50

Comments and Template Data . 55

Creating and Deploying a JSP Web Application . 55

Writing the JSP Web Application. 55

Deploying the Web Application in Java EE. 59

Deploying the Web Application in Tomcat . 64

Handling Translation or Compilation Problems 68

Handling JSP Initialization and End of Life. 71

JSP Scope . 71

Using Implicit Objects . 72

The request Object . 73

The response Object. 74

The out Object . 74

The session Object . 74

The config Object . 75

The exception Object . 76

The application Object . 76

Using Standard Actions and Implicit Objects in JSP Pages 76

Translation and Compilation . 85

Mukhar_470-3Front.fm Page vi Tuesday, October 4, 2005 6:20 AM

■C O N T E N T S vii

Handling Errors and Exceptions . 88

Dealing with Exceptions through the page Directive 88

Dealing with Exceptions in the Deployment Descriptor 89

Adding Exception Handling in JSP Pages. 89

Including and Forwarding from JSP Pages . 98

include Action . 98

forward Action . 99

Adding include and forward Actions to JSP Pages 100

Summary . 104

Exercises . 105

■CHAPTER 4 Advanced JSP Topics . 107

Expression Language . 107

Scriptless JSPs . 108

Syntax of EL Statements . 110

Errors and Default Values in EL Statements 116

JSP Pages That Use EL . 117

Custom Actions and Tag Handlers . 126

How Custom Actions Work . 127

Simple Tag Handlers . 129

Classic Tag Handlers . 140

A Multitude of Custom Actions . 155

JSP Standard Tag Library (JSTL) . 156

Getting a JSTL Implementation . 156

Actions in the JSTL . 156

Using the JSTL in a JSP . 159

Summary . 165

Exercises . 166

■CHAPTER 5 JavaServer Faces . 167

Introduction to JSF . 167

The Relationship Between JSF and Other
 Java EE Technologies . 168

Request Processing Lifecycle . 169

Installing JSF . 171

Using JSF with JSP Pages . 172

Creating a Simple JSF Application . 173

Reviewing the JSF Lifecycle for the Sample Application 184

Mukhar_470-3Front.fm Page vii Tuesday, October 4, 2005 6:20 AM

afec2757f4bc1972c738927ed97bb77a

viii ■C O N T E N T S

Using Managed Beans . 184

Configuring Managed Beans . 185

Using Value Binding Expressions in JSP Pages. 189

Using Method Binding Expressions in JSP Pages 191

Expanding the JSF Sample Application . 192

Controlling Page Navigation . 202

Static and Dynamic Navigation . 202

Navigation Rules . 203

Adding Dynamic Navigation to the Sample JSF Application 204

Accessing Context Data in Beans . 212

Converting Data . 214

Using Standard Converters . 215

Using Custom Converters . 216

Validating Input . 221

Using Standard Validators . 221

Using Custom Validators . 222

Bypassing Validation . 224

Using Message Bundles . 224

Summary . 227

Exercises . 228

■CHAPTER 6 Servlets . 229

HTTP and Server Programs . 230

Request Methods . 230

How a Server Responds to Requests . 234

The Servlet Model and HttpServlets . 234

Basic Servlet Design. 235

A Servlet That Responds to POST Requests 238

The request Object . 247

The response Object. 250

Deployment Descriptors. 250

Servlet Lifecycle . 254

Event Logging in Servlets . 258

Multithreading in Servlets . 258

Exception Handling . 266

Problems with Exception Handling . 266

Error Pages . 269

Session Management . 270

Creating and Using Sessions . 271

Using Cookies in Place of Sessions . 279

Mukhar_470-3Front.fm Page viii Tuesday, October 4, 2005 6:20 AM

■C O N T E N T S ix

Filters . 280

Implementing the Filter Interface . 281

Modifying the Deployment Descriptor to Use a Filter 282

The MVC Architecture . 291

Model 1 vs. MVC . 291

The Components of MVC . 292

Servlet Chaining . 293

Creating an MVC Application . 295

Summary . 306

Exercises . 307

■CHAPTER 7 Working with Databases . 309

Connecting to Databases . 310

Using Data Sources for Connections . 311

Configuring a DataSource and Connection with Java EE 311

Configuring a DataSource and Connection with Tomcat 321

Closing Connections . 328

Setting the Login Timeout . 330

Handling Exceptions . 330

Logging with a DataSource . 332

Creating and Using Statement Objects . 333

Executing Single Statements . 334

Performing Batch Updates . 334

Releasing Statements . 335

Using Statements to Insert Data into a Database 336

Using the ResultSet Class . 344

Moving Through the ResultSet . 344

Reading Data from Resultsets . 347

Working with Null Values . 351

Using Updatable Resultsets . 351

Keeping the ResultSet Open: ResultSet Holdability 353

Summary . 354

Exercises . 354

■CHAPTER 8 Advanced Topics in JDBC . 357

Prepared Statements . 357

Reasons for Using Prepared Statements . 358

Creating a PreparedStatement . 362

Using a Prepared Statement . 363

Mukhar_470-3Front.fm Page ix Tuesday, October 4, 2005 6:20 AM

x ■C O N T E N T S

Callable Statements . 371

Reasons for Using Stored Procedures . 371

Creating a CallableStatement . 372

Calling a Stored Procedure . 375

Transactions . 376

Ending Transactions . 376

Managing Transactions . 377

Using Transactions with Stored Procedures 385

Using Distributed Transactions . 386

Locking and Isolation . 390

Setting Isolation Levels . 391

Using Pessimistic and Optimistic Locking . 392

Summary . 402

Exercises . 403

■CHAPTER 9 EJB Fundamentals and Session Beans 405

Understanding EJBs . 405

Why Use EJBs? . 406

The EJB Specification. 407

The Three Kinds of EJBs . 407

Which Type of EJB Should You Use? . 410

The Anatomy of a Session Bean . 411

Developing Session Beans . 412

Using a Stateless Session Bean . 412

Choosing Between Stateful and Stateless Session Beans 418

Using a Stateful Session Bean . 419

Summary . 424

Exercises . 424

■CHAPTER 10 EJB Entity Beans . 425

How Entity Beans Work with Session Beans . 425

The Anatomy of an Entity Bean . 426

The Entity Bean Class. 427

Container-Managed Persistence and
 the EntityManager Interface . 428

Primary Keys . 430

Bean-Managed Persistence. 430

Mukhar_470-3Front.fm Page x Tuesday, October 4, 2005 6:20 AM

■C O N T E N T S xi

Developing CMP Entity Beans . 431

Building the CMP Entity Bean Application . 431

Compiling the CMP Entity Bean Application. 438

Deploying the CMP Entity Bean Application. 439

Running the CMP Entity Bean Application . 439

Reviewing the CMP Entity Bean . 440

Reviewing the Session Bean . 440

Developing BMP Entity Beans . 441

Building the BMP Entity Bean Application . 442

Deploying the BMP Entity Bean Application. 458

Running the BMP Entity Bean Application . 459

Reviewing the BMP Entity Bean . 459

The EJB Query Language . 464

EJB QL Queries . 465

Building and Deploying the EJB QL Queries Application 466

Running the EJB QL Queries Application . 469

Reviewing the Session Bean Find Methods 470

Summary . 471

Exercises . 471

■CHAPTER 11 EJB Relationships, EJB QL, and JDBC 473

Entity Bean Relationships . 473

One-to-Many and Many-to-One Relationships 474

Many-to-Many Relationships . 476

An EJB QL Query to Acquire a Subset of Data. 477

Container-Managed Relationships and EJB QL . 478

Building the Application with CMR . 480

Compiling the CMR Application . 491

Deploying the CMR Application . 492

Loading the Database . 492

Running the CMR Application . 492

Reviewing the CMR Application . 493

JDBC with EJB Entity Beans . 496

Implementing JDBC with EJB Applications 497

Using JDBC with the StockList Bean . 499

Summary . 503

Exercises . 503

Mukhar_470-3Front.fm Page xi Tuesday, October 4, 2005 6:20 AM

xii ■C O N T E N T S

■CHAPTER 12 Design Patterns and EJB . 505

Better by Design . 505

Applying Design Patterns . 506

Building the Application with Design Patterns. 508

Compiling and Running the Application with Design Patterns. . . . 527

Reviewing the Application’s Design Patterns 529

Using JSP and Servlets with EJBs . 532

Building the Modified JSP/Servlets Client . 532

Reviewing the Modified JSP/Servlets Client 540

Summary . 541

Exercises . 541

■CHAPTER 13 Message-Driven Beans . 543

Message-Driven Beans Overview . 543

Describing MDBs . 545

The MDB Context . 545

MDB Transactions . 546

Invocation of an Interceptor . 547

Java Message Service API . 548

EJB Timer Service . 549

Using MDBs, JMS, and the EJB Timer Service:
 Putting It All Together . 550

Creating the MessageTimerApp Example . 551

Building and Running MessageTimerApp . 554

Reviewing MessageTimerApp . 555

MessageTimerApp Summary . 559

Summary . 559

Exercises . 560

■CHAPTER 14 Web Services and JAX-WS . 561

Understanding Web Services . 562

Web Services Standards and Models . 563

Why Use Web Services? . 565

Web Services Protocol Stack. 565

Mukhar_470-3Front.fm Page xii Tuesday, October 4, 2005 6:20 AM

■C O N T E N T S xiii

Developing a Web Service in Java . 567

Introducing JAX-WS . 568

Downloading the CVS Tool . 569

Creating the Web Service . 570

Building, Testing, and Serving the Web Service 576

Summary . 578

Exercises . 579

■APPENDIX A Tomcat: Who Needs Java EE 5? . 581

Obtaining and Installing Tomcat . 581

Binary Installation to Windows . 582

Binary Installation to Linux/Unix . 583

Running Tomcat . 584

■APPENDIX B SQL and EJB QL . 585

Introduction to SQL . 585

SQL Objects . 585

SQL Data Types. 587

Creating Tables . 588

Selecting Data from Tables . 591

Modifying Table Data . 597

Constructing Joins . 599

Introduction to EJB QL . 600

Entity Bean References . 601

The javax.ejb.Query Object . 601

Building EJB Queries . 602

Using Relationships . 605

■APPENDIX C Java EE Glossary . 607

■INDEX . 615

Mukhar_470-3Front.fm Page xiii Tuesday, October 4, 2005 6:20 AM

Mukhar_470-3Front.fm Page xiv Tuesday, October 4, 2005 6:20 AM

afec2757f4bc1972c738927ed97bb77a

xv

About the Authors

■KEVIN MUKHAR is a software developer from Colorado Springs, Colorado. For the past seven
years, he has worked on various software systems using different Java Enterprise technologies.
He has coauthored several other books, including Beginning Java Databases: JDBC, SQL, J2EE,
EJB, JSP, XML (Wrox, 2001; ISBN 1-86100-437-0) and The Ultimate Palm Robot (Osborne/
McGraw-Hill, 2003; ISBN 0-07-222880-6). In addition to developing software during the day, he
is working on a master’s degree in computer science. His web page is http://home.earthlink.
net/~kmukhar/.

■CHRIS ZELENAK is a programmer at Learning Assistant Technologies,
where he helps in the development of server-side Cocoon and Rails
applications, Java and .NET client applications, and rampant devil’s
advocacy. He recently graduated from the Computer Science department
of Indiana Wesleyan University, and is writing this introduction.

■JIM WEAVER is a founding partner of Learning Assistant Technologies
(www.lat-inc.com), a company that specializes in learning and medical
software development.

■JIM CRUME (jcrume@fusionalliance.com) is a Java architect with Fusion
Alliance, an Indianapolis-based consulting company that specializes
in web applications development. Jim has spent many years as a
consultant, and he specializes in architecting and developing web-based
systems. For the past seven years, Jim has worked on many software
systems using J2EE technologies.

Mukhar_470-3Front.fm Page xv Tuesday, October 4, 2005 6:20 AM

Mukhar_470-3Front.fm Page xvi Tuesday, October 4, 2005 6:20 AM

xvii

About the Technical Reviewer

■DILIP THOMAS is an open source enthusiast who keeps a close watch on LAMP technologies,
open standards, and the full range of Apache Jakarta projects. He is coauthor of PHP MySQL
Website Programming: Problem – Design – Solution (Apress, 2003; ISBN 1-59059-150-X) and a
technical reviewer/editor on several open source/open standard book projects. Dilip is an editorial
director at Software & Support Verlag GmbH.

 Dilip resides in Bangalore with his beautiful wife, Indu, and several hundred books and
journals. You can reach him via e-mail at dilip.thomas@gmail.com.

Mukhar_470-3Front.fm Page xvii Tuesday, October 4, 2005 6:20 AM

Mukhar_470-3Front.fm Page xviii Tuesday, October 4, 2005 6:20 AM

xix

Acknowledgments

The thing that excites me most about programming is the ability to make ideas come alive
through software. I enjoy writing software that makes someone’s job better or easier. And I
enjoy sharing what I know with other programmers. That’s why I’m grateful to the editors at
Apress for letting me contribute to this book. I hope that what we’ve written in this book will
help you do your job a little bit better or easier.

This edition has been in the works for over a year, and during that year, my wife and I have
experienced a lot of changes and challenges. I’d like to thank the many people who helped
throughout that year: Tom and Marg Gimmy, the doctors and nurses at Harrogate Health Center,
Dave and Kris Johnson, my family, Anne’s family, the doctors and nurses at University of
Chicago Hospital, Dr. Maria Augusteijn, Dr. Richard Meinig, Dr. Brian Toolan, Dawn Girard,
Don Haase, Tedd Dawson, Judy French, Sondra Wenzel, Jenn Masamitsu, the fall semester
CS330 class at UCCS, and all the folks at Apress.

Finally, this book is dedicated to my wife, Anne, and my daughter, Christine.
Kevin Mukhar

I would not have been able to finish this book without the expert assistance of Jim Crume,
whose fast provision of code and sharp wit were necessary encouragements to my revisions.
Kevin Mukhar also deserves my thanks, for being gracious enough to allow a fledgling writer to
help in this book’s revision. I would also like to thank (and thank, and thank) the people at
Apress, who showed an astronomic amount of patience with the work in preparing this book,
most notably Laura Brown (who departed partway through to welcome her son, Ian Daniel Brown,
into the world), Steve Anglin, Sofia Marchant, Dilip Thomas, Marilyn Smith, and Laura Cheu. The
patience of my seemingly worldwide network of friends and family has been incredibly appre-
ciated, and I wish I could name you all and do you justice: Michelle and Derek, Becky and John
from CARE Auto Auction, Russell and Boggstown, Chorna, AJ, Keith and my brother Matt—you
all seemed to show up just when I needed you. Most important, I’d like to acknowledge my
parents, John and Lynn Zelenak, whom no compliment could truly do justice. Jim Weaver, your
trust allowed me to assist in revising this edition and also make a good friend in the process.

Chris Zelenak

This book is dedicated to my wife, Julie; daughters, Lori and Kelli; “son,” Marty; and grandson,
Kaleb James. Thanks for your constant love and support. It is also dedicated to the memory
of Ken Prater, who we miss dearly. Thanks to Merrill and Barbara Bishir, Marilyn Prater, and
Walter Weaver for being such wonderful examples. Thanks also to Laura Lee and Steve Brown,
Jill Weaver, Shari and Doug Beam, Wade and Dawn Weaver, Dan and David Wright, Jerry and
Cheryl Bishir, and Pastor Steve and Cheri Colter. Special thanks go to Chris Zelenak for his tireless
effort on this book, and to Apress for their encouragement. Isaiah 26:3.

Jim Weaver

Mukhar_470-3Front.fm Page xix Tuesday, October 4, 2005 6:20 AM

xx ■A C K N O W L E D G M E N T S

This book is dedicated to my wife, who loves me for who I am; my son Chris and his wife
Michelle; and my daughter Liz, who all gave up my time for this project. Again, thanks can’t
even come close. I love you all! Joshua 24:15.

Jim Crume

Mukhar_470-3Front.fm Page xx Tuesday, October 4, 2005 6:20 AM

xxi

Introduction

We, the authors, have read a lot of books on designing and developing software—some better
than others—and have spent a lot of time and money in the process. We had some very specific
thoughts as we put this book together. The authors of this book are software engineers first.
Like you, we have more projects than time to do them in, and we understand that you don’t
have time to waste when it comes to learning new technologies. We hope the result of our efforts
here is a book that you will pick up frequently, highlight, bookmark, and consider a valued
addition to your development resources.

First and foremost, the focus of this book is on the practical aspects of getting started
with developing distributed software for Java Platform, Enterprise Edition (Java EE). Enterprise
Java is a broad and deep subject, and getting started can be like taking a drink from a fire hose.
We wanted to put together a practical approach to getting started and spend most of our time
talking about the topics that you’ll use 90% (or more) of the time. We are serving up meat and
potatoes here.

When we pick up a book on software development, we like to have the option of reading
straight through or skipping around and picking and choosing the topics that we’re interested
in at a given time. As an introduction to Java EE, you’ll learn the most if you first read through
each chapter in order. Later, as you go back to particular sections, you’ll find it easy to locate
specific concepts to refresh your memory and then skip around in the book. We hope that
we’ve done a good job of making each topic stand on its own and provided examples that are
straightforward and relevant.

Like Java Platform, Standard Edition, Java EE consists of several packages that contain
classes and interfaces that define the framework. You’re already familiar with J2SE, and you
gained your expertise by taking the J2SE framework one topic at a time. We’ll take Java EE the
same way—one topic at a time.

Part of the allure of programming is the breakneck speed with which software components
are designed, developed, and made available to users. Java EE 5 could be said to be the poster
child for such qualities, as its specification is going through the final steps of development and
review at the same time this book is being published. The book you hold in your hands right
now attempts to provide a good picture of the specification using the JBoss advance imple-
mentation to demonstrate the Java EE features. But the funny thing about specifications in
development is that they often change. (Trust us on that one.) The topics presented in the book
have been consciously written to present those concepts that are not likely to change. That’s no
guarantee, however, so we strongly recommend that you visit the book’s page on the Apress site
(www.apress.com/book/bookDisplay.html?bID=420) in case changes or alterations become available.
If you’d like to stay abreast of changes made to the specification, keep a close eye on the Java EE
5 specification development page (http://jcp.org/en/jsr/detail?id=244), the JBoss website
(www.jboss.com/developers/index), and the TheServerSide.com site (www.theserverside.com).

Mukhar_470-3Front.fm Page xxi Tuesday, October 4, 2005 6:20 AM

afec2757f4bc1972c738927ed97bb77a

xxii ■I N T R O D U C T I O N

Who This Book Is For
This book is mainly aimed at people who already have knowledge of standard Java and have
been developing small, client-side applications for the desktop. If you have read and absorbed
the information contained in an entry-level book such as Ivor Horton’s Beginning Java 2 (Wrox,
2004; ISBN 0-7645-6874-4), then you will be well placed to begin your journey to developing
server-side applications using Java EE.

We assume that you know how to use your development environment to compile class
files and create JAR files. If you are a vi and command-line lover, we assume you know how to
set a classpath and use javac to compile files. If you use an integrated development environ-
ment (IDE), we assume you know how to use your IDE to create and compile projects, and
deploy those projects. Maybe you use the Jakarta Ant build system; in that case, we assume you
can create and run your own Ant build scripts to compile, package, and deploy applications.
Whatever system you use, we assume you are comfortable with the process of writing and
compiling code.

If you are coming from another object-oriented language, such as C++ or C#, and you wish
to begin developing enterprise-level applications with Java, then you will also benefit greatly
from this book. The coding concepts, principles, and constructs are similar—you just need to
watch out for the syntax differences and, obviously, the different code architecture for the
different technology areas of Java EE.

What This Book Covers
This book will take you from having a good grip of the basic Java language to being able to
create reusable and scaleable components of Java EE, such as JavaServer Pages (JSP) pages,
Enterprise JavaBeans (EJBs), and web services.

The sections that follow present a rundown of what you can expect to see as you work
through the book.

Chapter 1: Java EE Essentials
This chapter lays out a road map of what Java EE is and how it is used as an application foundation.
You’ll get an introduction to the primary components of Java EE and how they fit together.

Chapter 2: Getting Started
Having your machine configured correctly is essential if you want to be able to run the sample
code presented in this book. This chapter walks through the installation, configuration, and
testing of the core components of Java EE.

Chapter 3: JavaServer Pages
This chapter presents an introduction to the world of server-side web programming using JSP
pages. This chapter covers how to write simple JSP pages, covering the fundamentals of the
technology and how JSP pages can be useful in your web applications.

Mukhar_470-3Front.fm Page xxii Tuesday, October 4, 2005 6:20 AM

■I N T R O D U C T I O N xxiii

Chapter 4: Advanced JSP Topics
In this chapter, we continue our coverage of JSP basics and look at some more advanced features
of the technology, such as the expression language, custom actions, and the JSP Standard
Tag Library.

Chapter 5: JavaServer Faces
This chapter is an introduction to JavaServer Faces (JSF), a framework for creating component-
based user interfaces. You’ll learn how to use JSF with JSP pages to create feature-rich user
interfaces.

Chapter 6: Servlets
Here we cover another frequently used component in Java EE web applications: Servlets. Servlets
are designed to be extensions to servers and to extend the capabilities of servers and provide
dynamic behavior.

Chapter 7: Working with Databases
At some point when you’re developing a Java EE application, you’ll likely need to store and
manipulate data in a data source. This is where JDBC comes in.

Chapter 8: Advanced Topics in JDBC
After learning the basic data access functionality in the previous chapter, you’ll delve deeper
into JDBC in this chapter, which covers prepared statements and stored procedures, transactions,
and locking.

Chapter 9: EJB Fundamentals and Session Beans
In this part of the book, we begin to examine a feature of Java EE dedicated to expressing the
business logic of an application: Enterprise JavaBeans (EJBs). This chapter mainly focuses on
an overview of the EJB technology and looks at session beans in detail.

Chapter 10: EJB Entity Beans
This second chapter on EJBs discusses another type of EJB, entity beans, and how they relate to
and fit in with other types of beans. We cover two different types of persistence and take a look
at the EJB Query Language (EJB QL).

Chapter 11: EJB Relationships, EJB QL, and JDBC
Creating container-managed relationships and combining the use of JDBC and EJBs are the
two topics of this chapter. We also build on the EJB QL foundation from the previous chapter by
looking at EJB QL select methods.

Mukhar_470-3Front.fm Page xxiii Tuesday, October 4, 2005 6:20 AM

xxiv ■I N T R O D U C T I O N

Chapter 12: Design Patterns and EJB
In this chapter of the book, we look at what design patterns are, how they can be applied to EJB
applications, and what benefits they offer.

Chapter 13: Message-Driven Beans
In the final EJB chapter of the book, we examine message-driven beans (MDBs). MDBs provide
a way for your web application to respond to external events.

Chapter 14: Web Services and JAX-WS
The last chapter in the book covers concepts of enabling distributed applications via the magic
of web services. We examine web services fundamentals, guidelines, and good practices, and
other issues that you should be aware of when creating web services.

Appendix A: Tomcat: Who Needs Java EE 5?
This appendix briefly lists some alternates to running a full application server such as JBoss. It
also provides instructions on how to obtain, install, and run the Tomcat web container, which
is used in Chapters 3 through 8.

Appendix B: SQL and EJB QL
This appendix provides a brief introduction to the Structured Query Language (SQL) and the
Enterprise JavaBeans Query Language (EJB QL), two techniques for accessing data that you can
use in Java EE programming. We use SQL in Chapters 7 and 8, and we use both SQL and EJB QL
in Chapters 10 and 11.

Appendix C: Java EE Glossary
This appendix features a list of significant Java EE terms and their definitions.

What You Need to Use This Book
The prerequisite system and software requirements for this are not very extensive. Since you
already have a background in Java, you no doubt have a version of the J2SE SDK installed on
your machine already.

In this book, we’ve used the latest version of the Standard Edition SDK, which is J2SE 5 at
the time of this writing. Throughout the book, we use Microsoft Windows as our operating
system, but since Java adheres to the “write once, run anywhere” philosophy, you can use
another platform such as Solaris or Linux without any major changes to the code you see.

The other software you’ll need is a web container and application server of some kind. In
this book, we used the latest release of the Tomcat web container and the JBoss application
server. At the time we wrote this book, JBoss was the only application server that supported the
EJB 3.0 specification. We used Tomcat stand-alone in Chapters 3 through 8, since the examples

Mukhar_470-3Front.fm Page xxiv Tuesday, October 4, 2005 6:20 AM

■I N T R O D U C T I O N xxv

in these chapters did not need all the features of JBoss. However, since JBoss uses Tomcat as its
web container, you should be able to run all the examples in this book with just the JBoss appli-
cation server.

Alternatively, you could use any application server that supports the Java EE 5 specification
and the various specifications for the other Java EE technologies. We wrote all the code exam-
ples in this book to comply with the latest specifications, and we refrained from using features
that are Tomcat or JBoss specific. All of the examples should run in any Java EE application
server without needing to be changed. However, the deployment steps may vary by application
server. For more information, please consult your application server’s documentation.

Style Conventions
We have used certain layout conventions and font styles in this book that are designed to help
you to differentiate between the various kinds of information. This section outlines the styles
used, with an explanation of what they mean.

As you might expect, we present code in two different ways: code used inline with text and
code that is displayed on its own. When we need to mention keywords and other coding specifics
within the text (e.g., in discussion relating to an if...else construct or the beans package) we
use the single-width font as shown in the parentheses in this sentence. If we want to show a
more substantial block of code, we display it like this:

Listing 9-2. SimpleSessionBean.java

package beans;

import javax.ejb.Stateless;

@Stateless
public class SimpleSessionBean implements SimpleSession {
 public String getEchoString(String clientString) {
 return clientString + " - from session bean";
 }
}

If the code is a complete listing that is part of an example, the code will include a caption
with a listing number and source name as just shown. In cases where we are presenting a
snippet of code, we simply list the code.

Sometimes you will need to type in commands on the command line, which we display
using the following style:

> set classpath=.;%Java EE_HOME%\lib\j2ee.jar
> javac -d . client/*.java

We show the prompt using a > symbol and then the commands you need to type.

Mukhar_470-3Front.fm Page xxv Tuesday, October 4, 2005 6:20 AM

xxvi ■I N T R O D U C T I O N

■Note Advice, hints, and background information come in this type of font offset by borders. Important
pieces of information also come in this format. Depending on the type of information, we preface the text with
the word Note, Tip, or Caution. Notes consist of incidental information of one type or another that defines,
explains, or elaborates upon the main discussion. Tips will make your programming easier. For instance, a Tip
might point out another way to use a certain feature that’s not obvious from the main discussion. Cautions
indicate a potential hazard. For example, a Caution might be a method that if misused could crash your appli-
cation server.

Bullets appear indented, with each new bullet marked as follows:

• Important Words are in a bold font.

• Words that appear on the screen, or in menus like File or Window, are in a monospaced font.

Downloading the Code for This Book
Visit the Apress web page for the book at www.apress.com/book/bookDisplay.html?bID=420, and
then click on the Source Code link (in the “Book Extras” area on the right side of the page) to
obtain all the code for the book.

A Note About URLs in XML Files
A major feature of Java Platform, Enterprise Edition 5 (Java EE 5) is the use of XML files to
configure web applications and web components. As you will see throughout this book, the
elements in these XML files often have attributes that have a uniform resource locator (URL) as
their value. For example, one XML file you will see over and over again is called the deployment
descriptor, and its top-level element looks something like this:

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 version="2.5">

We have spared no expense to ensure that the URLs used in the book are correct. We have
hired scores of authors, editors, reviewers, proofreaders, and occasional random programmers
from off the street to check and recheck every URL. Despite our best efforts, though, there is the
potential for a problem.

As we mentioned, we wanted this book to be filled with practical information of value to
you. Part of making this book useful is ensuring that it is available to you when the technology
is available. As of the time of this writing, however, Sun has not finalized the specifications
underlying the technologies in this book. It is entirely possible that the specifications will change
between the time we publish the book and when you read the book. This affects not only the
URLs in XML files, but the entire book as well.

Mukhar_470-3Front.fm Page xxvi Tuesday, October 4, 2005 6:20 AM

■I N T R O D U C T I O N xxvii

So, as you start testing the examples in this book or experimenting with JSPs, Servlets, and
EJBs, you should check both the documentation for your application server and the specifica-
tion supported by your application server, to ensure you are using the correct format for XML
files in your web application.

What to Do If You Encounter Problems
Despite all our best efforts, and despite this book’s numerous sharp-eyed editors, there is a
possibility that errors managed to sneak through. It has been known to happen.

If you are having problems with any of the text or code examples, the first place to go for
corrections is the web page for the book (www.apress.com/book/bookDisplay.html?bID=420). If
any errata have been identified, you will find a link for Corrections on the book’s web page. If
you click this link, you will find a page that lists known errors with the code or book text, and
corrections for those problems.

If you can’t find your problem listed on the Corrections page, you will find a link to Submit
Errata on the main book page. If you’ve double-checked and triple-checked your problem and
still can’t get the code to work or the text to make sense, use the Submit Errata link to send us a
description of the problem. We can’t promise a speedy response, but we do see all submissions
and post responses to the Corrections page after we’ve had a chance to check out the problem.

Mukhar_470-3Front.fm Page xxvii Tuesday, October 4, 2005 6:20 AM

Mukhar_470-3Front.fm Page xxviii Tuesday, October 4, 2005 6:20 AM

afec2757f4bc1972c738927ed97bb77a

1

■ ■ ■

C H A P T E R 1

Java EE Essentials

The word enterprise has magical powers in computer programming circles. It can increase the
price of a product by an order of magnitude and double the potential salary of an experienced
consultant. Your application may be free of bugs, and cleanly coded using all the latest tech-
niques and tools, but is it enterprise-ready? What exactly is the magic ingredient that makes
enterprise development qualitatively different from run-of-the-mill development?

Enterprise applications solve business problems. This usually involves the safe storage,
retrieval, and manipulation of business data: customer invoices, mortgage applications, flight
bookings, and so on. They might have multiple user interfaces: a web interface for consumers
and a graphical user interface (GUI) application running on computers in the branch offices,
for example. Enterprise applications must deal with communication between remote systems,
coordinate data in multiple stores, and ensure the system always follows the rules laid down by
the business. If any part of the system crashes, the business loses part of its ability to function
and starts to lose money. If the business grows, the application needs to grow with it. All this
adds up to what characterizes enterprise applications: robustness in the face of complexity.

When we set out to build a GUI application, we don’t start by working out how to draw
pixels on the screen and build our own code to track the user’s mouse around the screen; we
rely on a GUI library, like Swing, to do that for us. Similarly, when we set out to create the
components of a full-scale enterprise solution, we would be crazy to start from scratch.

Enterprise programmers build their applications on top of systems called application
servers. Just as GUI toolkits provide services of use to GUI applications, application servers
provide services of use to enterprise applications—things like communication facilities to talk
to other computers, management of database connections, the ability to serve web pages, and
management of transactions.

Just as Java provides a uniform way to program GUI applications on any underlying oper-
ating system, Java also provides a uniform way to program enterprise applications on any
underlying application server. The set of libraries developed by Sun Microsystems and the Java
Community Process that represent this uniform application server application programming
interface (API) is what we call the Java Platform, Enterprise Edition 5 (Java EE 5), and it is the
subject of this book.

This chapter provides a high-level introduction to Java EE. In this chapter, you will learn:

• Why you would want to use Java EE

• What the benefits of a multitier application architecture are

• How Java EE provides vendor independence and scalability

Mukhar_470-3.book Page 1 Saturday, October 1, 2005 6:14 AM

2 C H A P T E R 1 ■ JA V A E E E S S E N T I A LS

• What the main Java EE features and concepts are

• How to use common Java EE architectures

So, without further ado, let’s get started!

What Is Java EE?
Since you’re reading this book, you obviously have some interest in Java EE, and you probably
have some notion of what you’re getting into. For many fledgling Java EE developers, Java EE
equates to Enterprise JavaBeans (EJBs). However, Java EE is a great deal more than just EJBs.

While perhaps an oversimplification, Java EE is a suite of specifications for APIs, a distributed
computing architecture, and definitions for packaging of distributable components for deploy-
ment. It’s a collection of standardized components, containers, and services for creating and
deploying distributed applications within a well-defined distributed computing architecture.
Sun’s Java web site says, “ Java Platform, Enterprise Edition 5 (Java EE 5) defines the standard
for developing component-based multitier enterprise applications.”

As its name implies, Java EE is targeted at large-scale business systems. Software that functions
at this level doesn’t run on a single PC—it requires significantly more computing power and
throughput than that. For this reason, the software needs to be partitioned into functional
pieces and deployed on the appropriate hardware platforms. That is the essence of distributed
computing. Java EE provides a collection of standardized components that facilitate software
deployment, standard interfaces that define how the various software modules interconnect,
and standard services that define how the different software modules communicate.

How Java EE Relates to J2SE
Java EE isn’t a replacement for the Java 2 Standard Edition (J2SE). J2SE provides the essential
language framework on which Java EE builds. It is the core on which Java EE is based. As you’ll
see, Java EE consists of several layers, and J2SE is right at the base of that pyramid for each compo-
nent of Java EE.

As a Java developer, you’ve probably already learned how to build user interfaces with the
Swing or Abstract Window Toolkit (AWT) components. You’ll still be using those to build the
user interfaces for your Java EE applications, as well as HTML-based user interfaces. Since J2SE
is at the core of Java EE, everything that you’ve learned so far remains useful and relevant.

In addition, Java EE provides another API for creating user interfaces. This API is named
JavaServer Faces (JSF) and is one of the newest Java EE technologies. You’ll also see that the
Java EE platform provides the most significant benefit in developing the middle-tier portion of
your application—that’s the business logic and the connections to back-end data sources.
You’ll use familiar J2SE components and APIs in conjunction with the Java EE components and
APIs to build that part of your applications.

Why Java EE?
Java EE defines a number of services that, to someone developing enterprise-class applications,
are as essential as electricity and running water. Life is simple when you simply turn the faucet
and water starts running, or flip the switch and lights come on. If you have ever been involved
with building a house, you know that there is a great deal of effort, time, and expense in building

Mukhar_470-3.book Page 2 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 ■ J A V A E E E S S E N T I A L S 3

the infrastructure of plumbing and wiring, which is then so nicely hidden behind freshly painted
walls. At the points where that infrastructure is exposed, there are standard interfaces for
controlling (water faucets and light switches, for example) and connecting (power sockets,
lamp sockets, and hose bibs, for example) to the infrastructure.

Suppose, though, that the wiring and plumbing in your home wasn’t already there. You
would need to put in your own plumbing and electricity. Without standard components and
interfaces, you would need to fabricate your own pipes, wiring, and so on. It would be terrifically
expensive and an awful lot of work.

Similarly, there is a great deal of infrastructure required to write enterprise-class applica-
tions. There are a bunch of different system-level capabilities that you need in order to write
distributed applications that are scalable, robust, secure, and maintainable. Some vital pieces
of that infrastructure include security, database access, and transaction control. Security ensures
that users are who they claim to be and can access only the parts of the application that they’re
entitled to access. Database access is also a fundamental component so that your application
can store and retrieve data. Transaction support is required to make sure that the right data is
updated at the right time. If you’re not familiar with some of these concepts, don’t worry—
you’ll be introduced to them one at a time throughout this book.

Putting in a distributed computing infrastructure—the plumbing and wiring of an archi-
tecture that supports enterprise applications—is no simple feat. That’s why Java EE-based
architectures are so compelling; the hard system-level infrastructure is already in place.

But why not custom build (or pay someone to custom build) an infrastructure that is
designed around your particular application? Well, for starters, it would take a fantastic amount
of time, money, and effort. And even if you were to build up that infrastructure, it would be
different from anyone else’s infrastructure, so you wouldn’t be able to share components or
interoperate with anyone else’s distributed computing model. That’s a lot of work for some-
thing that sounds like a dead end. And if you were lucky enough to find a vendor that could sell
you a software infrastructure, you would need to worry about being locked into that single
vendor’s implementation, and not being able to switch vendors at some point in the future.

The good news is, no surprise, that Java EE defines a set of containers, connectors, and
components that fill that gap. Java EE not only fills the gap, but it’s based on well-known,
published specifications. That means that applications written for Java EE will run on any
number of Java EE-compliant implementations. The reference implementation supplied with
the Java EE Software Development Kit from Sun (Java EE SDK) provides a working model that
we’ll use throughout this book, since it’s the implementation that Sun has built from the specifi-
cation and is freely available. In the next chapter, you’ll get an introduction to installing and
testing the Java EE SDK.

Multitier Architecture
One of the recurring themes that you’ll run into with Java EE is the notion of supporting
applications that are partitioned into several levels, or tiers. That is an architectural cornerstone
of Java EE and merits a little explanation. If you are already familiar with n-tier application
architectures, feel free to skip ahead. Otherwise, the overview presented here will be a good
introduction or review that will help lay the foundation for understanding the rationale behind
much of Java EE’s design and the services it provides.

If you think about a software application composition, you can break it down into three
fundamental concerns, or logical layers:

Mukhar_470-3.book Page 3 Saturday, October 1, 2005 6:14 AM

4 C H A P T E R 1 ■ JA V A E E E S S E N T I A LS

• The first area of concern is displaying stuff to the user and collecting data from the user.
That user interface layer is often called the presentation layer, since its job is to present
stuff to the user and provide a means for the user to present stuff to the software system.
The presentation layer includes the part of the software that creates and controls the
user interface and validates the user’s actions.

• Underlying the presentation layer is the logic that makes the application work and
handles the important processing. The process in a payroll application to multiply the
hours worked by the salary to determine how much to pay someone is one example of
this kind of logic. This logical layer is called the business rules layer, or more informally
the middle tier.

• All nontrivial business applications need to read and store data, and the part of the soft-
ware that is responsible for reading and writing data—from whatever source that might
be—forms the data access layer.

Single-Tier Systems
Simple software applications are written to run on a single computer, as illustrated in Figure 1-1.
All of the services provided by the application—the user interface, the persistent data access,
and the logic that processes the data input by the user and reads from storage—all exist on the
same physical machine and are often lumped together into the application. That monolithic
architecture is called single tier, because all of the logical application services—the presentation,
the business rules, and the data access layers—exist in a single computing layer.

Single-tier systems are relatively easy to manage, and data consistency is simple because
data is stored in only one single location. However, they also have some disadvantages. Single-
tier systems do not scale to handle multiple users, and they do not provide an easy means of
sharing data across an enterprise. Think of the word processor on your personal computer:
It does an excellent job of helping you to create documents, but the application can be used by
only a single person. Also, while you can share documents with other people, only one person
can work on the document at a time.

Figure 1-1. In the traditional computer application, all of the functionality of the application
exists on the user’s computer.

Mukhar_470-3.book Page 4 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 ■ J A V A E E E S S E N T I A L S 5

Client/Server (Two-Tier) Architecture
More significant applications may take advantage of a database server and access persistent
data by sending SQL commands to a database server to save and retrieve data. In this case, the
database runs as a separate process from the application, or even on a different machine than
the machine that runs the rest of the program. As illustrated in Figure 1-2, the components for
data access are segregated from the rest of the application logic. The rationale for this approach is
to centralize data to allow multiple users to simultaneously work with a common database,
and to provide the ability for a central database server to share some of the load associated with
running the application. This architecture is usually referred to as client/server and includes
any architecture where a client communicates with a server, whether that server provides data
access or some other service.

Figure 1-2. In a client/server architecture, an application client accesses services from another
process to do its job.

It’s convenient and more meaningful to conceptualize the division of the responsibility
into layers, or tiers. Figure 1-3 shows the client/server software architecture in two tiers.

Mukhar_470-3.book Page 5 Saturday, October 1, 2005 6:14 AM

6 C H A P T E R 1 ■ JA V A E E E S S E N T I A LS

Figure 1-3. The client/server architecture shown in a layer, or tier, diagram

One of the disadvantages of two-tier architecture is that the logic that manipulates the
data and applies specific application rules concerning the data is lumped into the application
itself. This poses a problem when multiple applications use a shared database. Consider, for
example, a database that contains customer information that is used for order fulfillment,
invoicing, promotions, and general customer resource management. Each one of those appli-
cations would need to be built with all of the logic and rules to manipulate and access customer
data. For example, there might be a standard policy within a company that any customer
whose account is more than 90 days overdue will be subject to a credit hold. It seems simple
enough to build that rule into every application that’s accessing customer data, but when the
policy changes to reflect a credit hold at 60 days, updating each application becomes a real
mess.

You might be tempted to try to solve this problem by building a reusable library that
encapsulates the business rules. When the rules change, you can just replace that library,
rebuild the application, and redistribute it to the computers running the application. There are
some fundamental problems with that strategy, however. First, that strategy assumes that all of
the applications have been created using the same programming language, run on the same
platform, or at least have some strategy for gluing the library to the application. Next, the appli-
cations may need to be recompiled or reassembled with the new library. Moreover, even if the
library is a drop-in replacement without requiring recompiling, it’s still going to be a royal pain
to make sure that each installation of the application has the right library installed simultaneously
(it wouldn’t do to have conflicting business rules being enforced by different applications at
the same time).

In order to get out of that mess, the logical thing to do is to physically separate those busi-
ness rules out from the computers running the applications onto a separate server so that the
software that runs the business rules needs to be updated only once, not for each computer
that runs the application.

N-Tier Architecture
Figure 1-4 shows a third tier added to the two-tier client/server model. In this model, all of the
business logic is extracted out of the application running at the desktop. The application at the
desktop is responsible for presenting the user interface to the end user and for communicating
to the business logic tier. It is no longer responsible for enforcing business rules or accessing
databases. Its job is solely as the presentation layer.

Mukhar_470-3.book Page 6 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 ■ J A V A E E E S S E N T I A L S 7

■Note Bear in mind that at this point we’re talking somewhat abstractly and theoretically. In a perfect
world, without performance and other implications, the division of responsibility in an application would be
very clear-cut. You’ll see throughout this book that you must make practical, balanced implementation decisions
about how responsibilities are partitioned in order to create an application that is flexible and performs well.

Figure 1-4. A common enterprise architecture consists of three tiers: presentation, business,
and data.

Typically, in a deployed application, the business logic tier executes on a server apart from
the workstation (you’ll see shortly that this isn’t absolutely required, though). The business
logic tier provides the logical glue to bind the presentation to the database. Since it’s running
on a server, it’s accessible to any number of users on the network running applications that
take advantage of its business rules. As the number of users demanding those services increases,
and the business logic becomes increasingly complex and processor-intensive, the server can
be scaled up or more servers can be added. Scaling a single server is a lot easier and cheaper
than upgrading everyone’s workstations.

One of the really great things that this architecture makes possible is the ability to start to
build application models where the classes defined in the business logic tier are taken directly
from the application domain. The code in the business logic layer can work with classes that
model things in the real world (like a Customers class) rather than working with complex SQL
statements. By pushing implementation details into the appropriate layer, and designing
applications that work with classes modeled from the real world, applications become much
easier to understand and extend.

It’s possible to continue the process of partitioning the application functionality into
increasingly thin functional layers, as illustrated in Figure 1-5. There are some very effective
application architectures based on n-tier architecture. The application architect is free to
partition the application into as many layers as appropriate, based on the capabilities of the
computing and network hardware on which the system is deployed. However, you do need to
be careful about reaching a point of diminishing returns, since the performance penalty for the
network communication between the layers can start to outweigh any gains in performance.

Mukhar_470-3.book Page 7 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

8 C H A P T E R 1 ■ JA V A E E E S S E N T I A LS

Figure 1-5. An enterprise application is not limited to two or three tiers. The software architect can
design the system to consist of any number of layers, depending on the system requirements and
deployment configuration.

In summary, n-tier application architecture is intended to address a number of problems,
including the following:

• The high cost of maintenance when business rules change. N-tier applications have
improved maintainability.

• Inconsistent business rule implementation between applications. N-tier applications
provide consistency.

• Inability to share data or business rules between applications. N-tier applications offer
interoperability.

• Inability to provide web-based front ends to line-of-business applications. N-tier appli-
cations are flexible.

• Poor performance and inability to scale applications to meet increased user load. N-tier
applications are scalable.

• Inadequate or inconsistent security across applications. N-tier applications can be
designed to be secure.

The Java EE architecture is based on the notion of n-tier applications. Java EE makes it very
easy to build industrial-strength applications based on two, three, or more application layers,
and provides all of the plumbing and wiring to make that possible.

Mukhar_470-3.book Page 8 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 ■ J A V A E E E S S E N T I A L S 9

Note that n-tier architecture does not demand that each of the application layers run on a
separate machine. It’s certainly possible to write n-tier applications that execute on a stand-
alone machine, as you’ll see. The merit of the application design is that the layers can be split
apart and deployed on separate machines, as the application requires.

■Note Labeling a particular architecture as three-tier, five-tier, and so on is almost guaranteed to spur
some academic debate. Some insist that tiers are defined by the physical partitioning, so if the application
components reside on client workstations, an application server, and a database server machine, it’s defini-
tively a three-tier application. Others will classify applications by the logical partitioning where the potential
exists for physical partitioning. For the discussions in this chapter, we’ll take the latter approach, with apologies in
advance for those who subscribe to the former.

Vendor Independence
Sun Microsystems—the company that created the Java platform and plays a central role in Java
technologies, including the Java EE specification—has promoted the Java platform as a solid
strategy for building applications that aren’t locked into a single platform. In the same way, the
architects of Java EE have created it as an open specification that can be implemented by anyone.
To date, there are scores of Java EE-based application servers that provide a platform for building
and deploying scalable n-tier applications. Any application server that bills itself as Java EE-
compliant must provide the same suite of services using the interfaces and specifications that
Sun has made part of Java EE.

This provides the application developer with a number of choices when implementing a
project, and similar choices down the road as more applications are added to an organization’s
suite of solutions. Building an application atop the Java EE architecture provides substantial
decoupling between the application logic that you write and the other stuff—security, database
access, transaction support, and so on—provided by the Java EE server.

Remember that all Java EE servers must support the same interfaces defined in the Java EE
specification. That means you can design your application on one server implementation and
deploy it on a different one. You can decide later that you want to change which Java EE server
you use in your production environment. Moving your application over to the new production
environment can be almost trivial.

Platform independence is something that you can take advantage of in your development.
For example, you may be away from the office quite a bit, and use your notebook computer
running Windows to do development. It’s pretty easy to use that configuration to build, test,
and debug (Java EE has great support for pool-side computing). When you’re back in the office
and happy with a particular component, you can deploy it to, say, Linux-based servers with
little effort, despite the fact that those servers are running a different operating system and
different Java EE implementation (after testing, of course!).

Mukhar_470-3.book Page 9 Saturday, October 1, 2005 6:14 AM

10 C H A P T E R 1 ■ JA V A E E E S S E N T I A LS

Bear in mind that each Java EE vendor provides some added value to its particular Java EE
implementation. After all, if there weren’t market differentiators, there would be no competi-
tion. The Java EE specification covers a lot, but there is also a lot that is not specified in Java EE.
Performance, reliability, and scalability are just a few of the areas that aren’t part of the Java EE
specification but are areas where vendors have focused a great deal of time and attention. That
added value may be ease of use in its deployment tools, highly optimized performance, support for
server clustering (which makes a group of servers able to serve application clients as if it were
a single super-fast, super-big server), and so on. The key point here is to keep two issues in mind:

• Your production applications can potentially benefit from capabilities not supported in
the Sun Java EE reference implementation. Just because your application’s performance
stinks on the reference implementation running on your laptop doesn’t mean that Java EE is
inherently slow.

• Any vendor-specific capabilities that you take advantage of in your production applications
may impact the vendor independence of your application.

Scalability
Defining throughput and performance requirements is a vital step in requirements definition.
Even the best of us get caught off-guard sometimes, though. Things can happen down the
road—an unanticipated number of users using a system at the same time, increased loading on
hardware, unsatisfactory availability in the event of server failure, and so on—that can throw a
monkey wrench into the works.

The Java EE architecture provides a lot of flexibility to accommodate changes as the require-
ments for throughput, performance, and capacity change. The n-tier application architecture
allows software developers to apply additional computing power where it’s needed. Partitioning
applications into tiers also enables refactoring of specific pain points without impacting adjacent
application components.

Clustering, connection pooling, and failover will become familiar terms to you as you build
Java EE applications. Several providers of Java EE application servers have worked diligently to
come up with innovative ways to improve application performance, throughput, and avail-
ability—each with its own special approach within the Java EE framework.

Features and Concepts in Java EE
Getting your arms around the whole of Java EE will take some time, study, and patience. You’ll
need to understand a lot of concepts to get started, and these concepts will be the foundation
of more concepts to follow. The journey through Java EE will be a bit of an alphabet soup of
acronyms, but hang tough—you’ll catch on, and we’ll do our best on our end to help you make
sense of it. Here, we’ll provide an overview of some important Java EE features and concepts.

Java EE Clients and Servers
Up to this point, we’ve been using terms like client and server somewhat loosely. These terms
represent fairly specific concepts in the world of distributed computing and Java EE.

Mukhar_470-3.book Page 10 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 ■ J A V A E E E S S E N T I A L S 11

A Java EE client can be a console (text) application written in Java, or a GUI application
written using the Java Foundation Classes (JFC) and Swing or AWT. These types of clients are
often called fat clients because they tend to have a fair amount of supporting code for the user
interface.

Java EE clients may also be web-based clients; that is, clients that live inside a browser. Because
these clients offload much of their processing to supporting servers, they have very little in the
way of supporting code. This type of client is often called a thin client. A thin client may be a
purely HTML-based interface, a JavaScript-enriched page, or one that contains a fairly simple
applet where a slightly richer user interface is needed.

It would be an oversimplification to describe the application logic called by the Java EE
clients as the “server,” although it is true that, from the perspective of the developer of the client-
side code, that illusion is in no small way the magic of what the Java EE platform provides. In
fact, the Java EE application server is the actual server that connects the client application to
the business logic.

The server-side components created by the application developer can be in the form of
web components and business components. Web components come in the form of JSPs or
Servlets. Business components, in the world of Java EE, are EJBs.

These server-side components rely on the Java EE framework. Java EE provides support for
the server-side components in the form of containers.

Containers
Containers are a central theme in the Java EE architecture. Earlier in this chapter, we talked
about application infrastructure in terms of the plumbing and electricity that a house provides
for its inhabitants. Containers are like the rooms in the house. People and things exist in the
rooms, and interface with the infrastructure through well-defined interfaces. In an application
server, web and business components exist inside containers and interface with the Java EE infra-
structure through well-defined interfaces.

In the same way that application developers can partition application logic into tiers of
specific functionality, the designers of Java EE have partitioned the infrastructure logic into
logical tiers. They have done the work of writing the application support infrastructure—things
that you would otherwise need to build yourself. These include security, data access, transaction
handling, naming, resource location, and the guts of network communications that connect
the client to the server. Java EE provides a set of interfaces that allow you to plug your applica-
tion logic into that infrastructure and access those services.

Think of containers as playing a role much like a video gaming console into which you
plug game cartridges. As shown in Figure 1-6, the gaming console provides a point of interface
for the game—a suite of services that lets the game be accessed by the user and allows the game
to interact with the user. The game cartridge needs to be concerned only with itself; it doesn’t
need to concern itself with how the game is displayed to the user, what sort of controller is
being used, or even if the household electricity is 120VAC or 220VAC. The console provides a
container that abstracts all of that stuff out for the game, allowing the game programmer to
focus solely on the game and not worry about the infrastructure.

Mukhar_470-3.book Page 11 Saturday, October 1, 2005 6:14 AM

12 C H A P T E R 1 ■ JA V A E E E S S E N T I A LS

Figure 1-6. The container provides an environment for components and an interface between the
components and the services of the server.

If you’ve ever created an applet, you’re already familiar with the concept of containers.
Most web browsers provide a container for applet components, as illustrated in Figure 1-7.
The browser’s container for applets provides an environment for the applet. The browser
and the container know how to interact with any applet because all applets implement the
java.applet.Applet class interface. When you develop applets, you are relieved of the burden
of interfacing with a web browser, and are free to spend your time and effort on the applet
logic. You do not need to be concerned with the issues associated with making your application
appear to be an integral part of the web browsers.

Figure 1-7. Browsers don’t directly access applets. Instead, the applet runs in a container inside the
browser. The container provides an environment for the applet and acts as an interface between
the browser and the applet.

Mukhar_470-3.book Page 12 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 ■ J A V A E E E S S E N T I A L S 13

Java EE provides server-side containers for the same reason: To provide a well-defined
interface, along with a host of services that allow application developers to focus on the business
problems they’re trying to solve, without worrying about the plumbing and electricity.
Containers handle all of the mundane details involved with starting up services on the server
side, activating the application logic, and cleaning up the component.

Java EE and the Java platform provide containers for web components and business compo-
nents. These containers—like the gaming console analogy presented earlier in the chapter—
provide an environment and interface for components that conform to the container’s established
interfaces. The containers defined in Java EE include a container for Servlets, JSPs, and EJBs.

Java Servlets
You are no doubt familiar with accessing simple, static HTML pages using a browser that sends
a request to a web server, which, in turn, sends back a web page that’s stored at the server, as
illustrated in Figure 1-8. In that role, the web server is simply being used as a virtual librarian
that returns a document based on a request.

Figure 1-8. A web browser running on a workstation sends a request to a web server. The server
identifies the web page specified in the request and returns that web page to the browser.

That model of serving up static web pages doesn’t provide for dynamically generated
content, though. For example, suppose that the web client wants the server to return a list of
HTML documents based on some query criteria. In that case, some means of generating HTML
on the fly and returning it to the client is needed, as illustrated in Figure 1-9.

Servlets are one of the technologies developed to enhance servers. A Servlet is a Java
component implementing the javax.servlet.Servlet interface. It is invoked as a result of a
client request for that particular Servlet. The Servlet model is fairly generic and not necessarily
bound to the Web and HTTP, but all of the Servlets that you’ll encounter will fall into that cate-
gory. The web server receives a request for a given Servlet in the form of an HTTP query. The
web server, in turn, invokes the Servlet and passes back the results to the requesting client. The
Servlet can be passed parameters from the requesting web client. The Servlet is free to perform
whatever computations it cares to, and returns results to the client in the form of HTML.

Mukhar_470-3.book Page 13 Saturday, October 1, 2005 6:14 AM

14 C H A P T E R 1 ■ JA V A E E E S S E N T I A LS

Figure 1-9. Web servers can be supplemented by other processes that perform data access or some other
processing. This other processing is then converted into an HTML web page and sent back to the client.
Thus, web servers that were designed to serve static content can be enhanced to provide dynamic content.

The Servlet itself is managed and invoked by the Java EE Servlet container. When the web
server receives the request for the Servlet, it notifies the Servlet container, which will load the
Servlet as necessary, and invoke the appropriate javax.servlet.Servlet interface service
method to satisfy the request.

■Note Servlets were not the first technology designed to enhance web servers. One of the earlier solutions
is known as the Common Gateway Interface (CGI). CGI provided a means for a server to call an external
process that performed additional work for the server. If you’ve done any web application programming using
CGI, you’ll be familiar with the limitations of that mechanism, including lack of portability (CGI programs were
often written in C) and no intrinsic support for session management (a much-overused example is the ability
to maintain a list of items in a virtual shopping cart). If you have not done any development using CGI, consider
yourself lucky and take our word for it—life with Java EE is a whole lot better!

Java Servlets are portable, and as you will see in later chapters, the Servlet containers provide
support for session management that allows you to write complex web-based applications.
Servlets can also incorporate JavaBean components (which share little more than a name with
Enterprise JavaBeans) that provide an additional degree of application compartmentalization.
Servlets are covered in detail in Chapter 6.

JavaServer Pages (JSPs)
JSPs, like Servlets, are concerned with dynamically generated web content. These two web
components—Servlets and JSPs—comprise a huge percentage of the content of real-world
Java EE applications.

Building Servlets involves building Java components that emit HTML. In a lot of cases, that
works out well. However, that approach isn’t very accessible for people who spend their time
on the visual side of building web applications and don’t necessarily care to know much about

Mukhar_470-3.book Page 14 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

C H A P T E R 1 ■ J A V A E E E S S E N T I A L S 15

software development. Enter JSP. JSP pages are HTML-based text documents with chunks of
Java code called scriptlets embedded into the HTML document.

When JSPs are deployed, something remarkable happens: The contents of the JSP are
rolled inside out, like a sock, and a Servlet is created based on the embedded tags and Java code
scriptlets, as shown in Figure 1-10. This happens pretty much invisibly. If you care to, you can
dig under the covers and see how it works (which makes learning about Servlets all the more
worthwhile).

Figure 1-10. When a web server receives a request for a JSP, it passes the request to the JSP container
(not shown). If the JSP page has not been translated, the container translates the JSP into a Java
Servlet source file, and then compiles the source file into a class. The Servlet class is loaded and
the request is passed to the class. The Servlet processes the request and returns the result to the
client. All subsequent requests are routed directly to the Servlet class, without the need to translate
or compile again.

Mukhar_470-3.book Page 15 Saturday, October 1, 2005 6:14 AM

16 C H A P T E R 1 ■ JA V A E E E S S E N T I A LS

You may have had some exposure to JavaScript, which is a Java-like scripting language
that can be included within a web page, and is executed by the web browser when a page
containing JavaScript code is sent to the browser. JSP is a little like that, but the code is compiled
and executed at the server, and the resulting HTML is fed back to the requesting client. JSP
pages are lightweight and fast (after the initial compilation to the Servlet), and they provide a
lot of scalability for web-based applications.

Developers can create both static and dynamic content in a JSP page. Because content based
on HTML, XML, and so on forms the basis of a JSP page, a nontechnical person can create and
update that portion of a page. A more technical Java developer can create the snippets of Java code
that will interface with data sources, perform calculations, and so on—the dynamic stuff.

Since an executing JSP is a Servlet, JSP provides the same support for session management
as Servlets. JSPs can also load and call methods of JavaBean components, access server-based
data sources, or perform complex calculations at the server.

JSPs are introduced in detail in Chapter 3. Chapter 4 continues with more advanced
JSP concepts.

JavaServer Faces (JSF)
JSF is a relatively new technology that attempts to provide a robust, rich user interface for web
applications. JSF is used in conjunction with Servlets and JSPs.

When using just JSPs or Servlets to generate the presentation, your user interface is limited
to what can be implemented in HTML. HTML does provide a good set of user interface compo-
nents, such as lists, check boxes, radio buttons, fields, labels, and buttons. Alternatively, the
client might be implemented as an applet. Applets can provide a rich user interface, but they
do require the client to download and execute code in the browser.

The main drawback with both Servlet-generated HTML and applets is that the user inter-
face components still must be connected to the business logic. When using this solution, much
of your time as a developer will be spent retrieving and validating request parameters, and
passing those parameters to business logic components.

JSF provides a component-based API for building user interfaces. The components in JSF
are user interface components that can be easily put together to create a server-side user interface.
The JSF technology also makes it easy to connect the user interface components to application
data sources, and to connect client-generated events to event handlers on the server.

The JSF components handle all the complexity of managing the user interface, leaving the
developer free to concentrate on business logic. The flexibility comes from the fact the user
interface components do not directly generate any specific presentation code. Creating the
client presentation code is the job of custom renderers. With the correct renderer, the same
user interface components could be used to generate presentation code for any arbitrary
device. Thus, if the client’s device changed, you would simply configure your system to use a
renderer for the new client, without needing to change any of the JSF code. At the moment, the
most common presentation format is HTML, and JSF comes with a custom renderer to create
HTML user interfaces. JSF technology is covered in Chapter 5.

Mukhar_470-3.book Page 16 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 ■ J A V A E E E S S E N T I A L S 17

JDBC
If you’ve done anything at all on the Web other than simple surfing, you’ve probably used a
database. Of course, that database has been hidden behind a fancy user interface, but you’ve
used one nonetheless.

Have you searched for books or other products at www.amazon.com or www.costco.com or
any other online store? The information about the products for sale is kept in some kind of
database.

Have you searched for web sites on www.google.com or www.yahoo.com or any other search
engine? Information about web pages and the data in them is kept is some kind of database.

Have you looked for information about public laws (thomas.loc.gov), driving directions
(www.mapquest.com), or satellite imagery (www.terraserver.com)? This information is kept in
some kind of database.

The examples can go on and on. The point should be clear though: Almost any type of
nontrivial application will use a database of some kind. In the previous sentence, the term
database is used in its loosest most general meaning as a collection of some data. That database
could be anything from a text file of information for very simple applications to full-blown, enter-
prise-level relational or object databases for very complex systems. It could also include other
data-storage systems, such as directories.

Most Java EE applications will include some kind of data-storage solution. Most often, that
data-storage solution will be a relational database server of some kind. The database server
may be an integral part of the application server, or it may be an application separate from the
application server.

In any case, your application components need some means to communicate with the
data-storage system. That is the job of JDBC. JDBC is a set of common APIs and system-specific
libraries for communicating with a data-storage system. By communicating with the data-storage
system through the common APIs, you can concentrate on the data, without needing to learn
custom syntax for the particular data-storage system; that job is left to the system-specific library.

Most JDBC applications are used to communicate with a relational database. In a relational
database, data is stored, conceptually, in tables. Each row in a table represents a set of data—
a customer record, product information, a web site listing, and so on. And each column in
the table represents a piece of data in that set. Tables can be linked by creating a relation
between tables, thus it’s called a relational database. For example, a database might have a
table of customer information and a table of information about orders. It makes no sense to
repeat customer information for each order, so the orders table would include a customer ID
that corresponds to a similar piece of data in the customers table, thus relating every order to
a customer.

While JDBC is used most often with relational databases, it can be used with any data-storage
system, as long as someone has created a system-specific library for that data-storage system.
Using JDBC in Java EE applications is covered in Chapters 7 and 8.

Mukhar_470-3.book Page 17 Saturday, October 1, 2005 6:14 AM

18 C H A P T E R 1 ■ JA V A E E E S S E N T I A LS

EJBs
EJBs are to Java EE what Mickey Mouse is to Disney—they represent the flagship technology of
the platform. When Java EE is mentioned, EJBs are what immediately comes to mind. We
mentioned earlier that Java EE is a whole lot more than EJB, but we don’t mean to trivialize
EJBs; the attention that the technology gets is certainly merited.

In order to better understand what EJBs are and do, it helps to start out with Java’s Remote
Method Invocation (RMI). If you’re not already familiar with RMI, or if you need a quick over-
view or a refresher, you may want to refer to http://java.sun.com/rmi.

RMI is Java’s native means of allowing a Java object to run on one computer and have
its methods called by another object running on a separate computer across a network. In
order to create a remote object with RMI, you first design an interface that extends the
java.rmi.Remote interface. This interface defines the operations that you want to expose on
your remote object. The next step is to design the remote object as a Java class that implements
the interface you’ve defined. This class extends the java.rmi.server.UnicastRemoteObject
class, which provides the necessary network communications between this object and the
objects that call it. Finally, you write an application that creates an instance of this class and
registers that instance with the RMI registry.

The RMI registry is a simple lookup service that provides a means to associate a name with
an object, analogous to the way a phone directory associates a name to a phone number. The
same registry service is used by the client application, which requests a named object from the
registry. Once it receives a local reference to the remote object, it can call the methods of the
object; however, rather than executing the method on the client’s computer, the method call is
passed across the network and executed on the machine where the remote object resides.

What RMI provides is a bare-bones client/server implementation. It provides the basic
stuff: a registry for lookup, the guts of network communication for invoking operations and
passing parameters to and from remote objects, and a basic mechanism for managing access
to system resources as a safeguard against malicious code running on a remote computer.

However, RMI is lightweight. It’s not designed to satisfy the requirements of enterprise-
class distributed applications. It lacks the essential infrastructure that enterprise-class applications
rely on, such as security, data access, transaction management, and scalability. While it supplies
base classes that provide networking, it doesn’t provide a framework for an application server
that hosts your server-side business components and scales along with your application. You
must write the client and the server applications. This is where EJBs come into the picture.

EJBs are Java components that implement business logic. This allows the business logic of
an application (or suite of applications) to be compartmentalized into EJBs and kept separate
from the front-end applications that use that business logic.

The Java EE architecture includes a server that is a container for EJBs. The EJB container
loads the bean as needed, invokes the exposed operations, applies security rules, and provides
the transaction support for the bean. If it sounds to you like the EJB container does a lot of
work, you’re right—the container provides all of the necessary plumbing and wiring needed for
enterprise applications.

Mukhar_470-3.book Page 18 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 ■ J A V A E E E S S E N T I A L S 19

As you’ll see in Chapter 9, building EJBs follows the same basic steps as creating an RMI
object. You create an interface that exposes the operations or services provided by the EJB. You
then create a class that implements the interface. When you deploy an EJB to an application
server, the EJB is associated with a name in a registry. Clients can look up the EJB in the registry,
and then remotely call the methods of the EJB. Since the EJB container provides all of the enter-
prise plumbing, you get to spend more time building your application and less time messing
around with trying to shoehorn in services like security and transaction support.

EJBs come in a few different flavors: session beans, entity beans, and message beans.
Session beans, as the name implies, live only as long as the conversation, or session, between
the client application and the bean lasts. The session bean’s primary reason for being is to
provide application services, defined and designed by the application developer, to client
applications. Depending on the design, a session bean may maintain state during the session
or may be stateless. With a stateful EJB, when a subsequent request comes from a client, the
values of the internal member variables have the same values they had when the previous
request ended, so that the EJB can maintain a conversation with the client. A stateless EJB
provides business rules through its exposed operations but doesn’t provide any sense of state;
that responsibility is delegated to the client.

Entity beans represent business objects—such as customers, invoices, and products—in
the application domain. These business objects are persisted so they can be stored and retrieved at
will. The Java EE architecture provides a lot of flexibility for the persistence model. You can
defer all of the work of storing and retrieving the bean’s state information to the container, as
shown in Figure 1-11. This is known as container-managed persistence.

Figure 1-11. In container-managed persistence, the EJB container is responsible for all actions
required to save the state of the EJB to some persistent store, usually a database.

Alternatively, the Java EE architecture allows you to have complete control over how the
EJB is persisted (which is very useful when you’re dealing with interfacing your Java EE system
to a legacy application!). This is known as bean-managed persistence and is illustrated in
Figure 1-12.

Mukhar_470-3.book Page 19 Saturday, October 1, 2005 6:14 AM

20 C H A P T E R 1 ■ JA V A E E E S S E N T I A LS

Figure 1-12. With bean-managed persistence, the developer must manage all aspects of persisting
the state of the EJB.

The third type of EJB, the message bean, provides a component model for services that
listen to Message Service messages, as illustrated in Figure 1-13. The Java EE platform includes
a message queue that allows applications to post messages to a queue, as well as to subscribe to
queues that get messages. The advantage of this particular way of doing things is that the
sender and the receiver of the message don’t need to know anything about each other. They
need to know only about the message queue itself. This differs from a client/server model,
where a client must know the server so that it can make a connection and a specific request,
and the server sends the response directly to the client. One example of using a message queue
is an automated stock trading system. Stock prices are sent as messages to a message queue,
and components that are interested in stock prices consume those messages. With message-
driven EJBs, it is possible to create an EJB that responds to messages concerning stock prices
and makes automatic trading decisions based on those messages.

Figure 1-13. A message queue allows senders and receivers of messages to remain unaware of each
other. Senders of messages can send the message to a queue, knowing that something will get the
message, but not knowing exactly what receives the message or when it will be received. Receivers
can subscribe to queues and get the messages they are interested in, without needing to know
who sent the message.

Mukhar_470-3.book Page 20 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 ■ J A V A E E E S S E N T I A L S 21

You will learn a lot about the ins and outs of using session and entity beans in Chapters 9
through 12. Your Java EE applications will typically be comprised of both session and entity
beans. Message beans are covered in Chapter 14. They’re not used as frequently as the other
flavors in most applications, but they’re still pretty darn cool!

XML Support
Extensible Markup Language (XML) is a significant cornerstone for building enterprise systems
that provide interoperability and are resilient in the face of changes. There are several key tech-
nologies in Java EE that rely on XML for configuration and integration with other services.

Java EE provides a number of APIs for developers working with XML. Java API for XML
Processing (JAXP) provides support for generating and parsing XML with both the Document
Object Model (DOM), which is a tree-oriented model, and the Simple API for XML (SAX), which
is a stream-based, event-driven processing model.

The Java API for XML Binding (JAXB) provides support for mapping XML to and from Java
classes. It provides a compiler and a framework for performing the mapping, so you don’t need
to write custom code to perform those transformations.

The Java API for XML Registries (JAXR), Java API for XML Messaging (JAXM), and Java API
for XML-based Remote Procedure Calls (JAX-RPC) round out the XML API provisions. These
sets of APIs provide support for SOAP and web services (discussed in the following section).

This book assumes that you are familiar with XML basics. If you need a refresher on XML, you
might want to review the Sun Java XML tutorial at http://java.sun.com/xml/tutorial_intro.html.

Web Services
The World Wide Web is becoming an increasingly prevalent backbone of business applications.
The endpoints that provide web applications with server-side business rules are considered
web services. The World Wide Web Consortium (W3C), in an effort to unify how web services
are published, discovered, and accessed, has sought to provide more concrete definitions for
web services. Here’s a definition from the Web Services Architecture, Working Group Note 11
(www.w3.org/TR/ws-arch):

A Web service is a software system designed to support interoperable machine-
to-machine interaction over a network. It has an interface described in a
machine-processable format (specifically WSDL). Other systems interact with
the Web service in a manner prescribed by its description using SOAP
messages, typically conveyed using HTTP with an XML serialization in
conjunction with other Web-related standards.

This definition contains some specific requirements:

• A web service allows one computer to request some service from another machine.

• Service descriptions are machine-processible.

• Systems access a service using XML messages sent over HTTP.

Mukhar_470-3.book Page 21 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

22 C H A P T E R 1 ■ JA V A E E E S S E N T I A LS

The W3C has established the Web Service Description Language (WSDL) as the XML format
that is used by web services to describe their services and how clients access those services. In
order to call those services, clients need to be able to get their hands on those definitions. XML
registries provide the ability to publish service descriptions, search for services, and obtain the
WSDL information describing the specifics of a given service.

There are a number of overlapping XML registry service specifications, including ebXML
and Universal Description, Discovery, and Integration (UDDI). The JAXR API provides an
implementation-independent API for accessing those XML registries.

Simple Object Access Protocol (SOAP) is the lingua franca used by web services and their
clients for invocation, parameter passing, and obtaining results. SOAP defines the XML message
standards and data mapping required for a client application to call a web service and pass it
parameters. The JAX-RPC API provides an easy-to-use developer interface that masks the
complex underlying plumbing.

Not surprisingly, the Java EE architecture provides a container that hosts web services,
and a component model for easily deploying web services. Chapters 15 and 16 in this book
cover SOAP and web services.

Transaction Support
One of the basic requirements of enterprise applications is the ability to allow multiple users of
multiple applications to simultaneously access shared databases and to absolutely ensure the
integrity of that data across those systems. Maintaining data consistency is no simple thing.

Suppose that your application was responsible for processing bank deposits, transfers,
and withdrawals. Your application is processing a transfer request from one account to another.
That process seems pretty straightforward: deduct the requested amount from one account
and add that same amount to the other account. Suppose, however, that immediately after
deducting the sum from the source account, something went horribly wrong—perhaps a server
failed or a network link was severed—and it became impossible to add the transfer to the target
account. At that point, the data’s integrity has been compromised (and worse yet, someone’s
money is now missing).

Transactions can help to address this sort of problem. A transaction represents a set of
activities that collectively will either succeed and be made permanent, or fail and be discarded.
In the situation of a bank account transfer, you could define the transaction boundaries to start
as the transfer amount is withdrawn from the source account, and end after the target account
is updated successfully. When the transaction had been made successfully, the changes are
committed. Any failure inside the transaction boundary would result in the changes being
rolled back and the account balances restored back to the original values that existed before
the start of the transaction.

Java EE—and the EJB in particular—provides substantial transaction support. The EJB
container provides built-in support for managing transactions, and allows the developer to
specify and modify transaction boundaries without changing code. Where more complex
transaction control is required, the EJB can take over the transaction control from the container
and perform fine-grained or highly customized transaction handling.

Mukhar_470-3.book Page 22 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 ■ J A V A E E E S S E N T I A L S 23

You’ll find an introduction to transactions, in the context of database transactions with
JDBC, in Chapter 8.

Security
Security is a vital component in enterprise applications, and Java EE provides built-in security
mechanisms that are far more secure than homegrown security solutions that are typically
added as an afterthought.

Java EE allows application resources to be configured for anonymous access where security
isn’t a concern. Where there are system resources that need to be secured, however, it provides
authentication (making sure your users really are who they say they are) and authorization
(matching up users with the privileges they are granted).

Authorization in Java EE is based on roles of users of applications. You can classify the
roles of users who will be using your application, and authorize access to application compo-
nents based on those roles. Java EE provides support for declarative security that is specified
when the application is deployed, as well as programmatic security that allows you to build
fine-grained security into the Java code.

■Note If you’re interested in learning more about Java EE-specific security, refer to a book devoted to Java
security. One such book is Hacking Exposed J2EE & Java, by Art Taylor, Brian Buege, and Randy Layman
(Osborne/McGraw Hill, 2002; ISBN 0-07-222565-3).

Sample Java EE Architectures
There is no such thing as a single software architecture that fits all applications, but there are
some common architectural patterns that reappear frequently enough to merit attention.

As we explained earlier in the chapter, Java EE provides a platform that enables developers
to easily create n-tier (multitier) applications in a number of different configurations. The basic
n-tier architecture can have any number of components in each tier, and any combination
between tiers.

Here, we will briefly review some architectures that you’re likely to run into as you examine
and develop Java EE-based systems. Each one of these has its own merits and strong points. We
present them here to illustrate that there are a number of ways to put together applications and
as a short “field guide” for identifying these architectures as you spot them in the wild.

Application Client with EJB
Figure 1-14 shows an architecture where an application client composes the presentation tier
and communicates with an EJB in the business tier.

The client application is built as a stand-alone (JFC/Swing or console) application. The
application relies on business rules implemented as EJBs running on a separate machine.

Mukhar_470-3.book Page 23 Saturday, October 1, 2005 6:14 AM

24 C H A P T E R 1 ■ JA V A E E E S S E N T I A LS

Figure 1-14. An application client can be implemented as a normal Java application based on
Swing or AWT, or even as a console application. The client communicates with EJBs in the
business tier.

JSP Client with EJB
Figure 1-15 shows an architecture based on JSPs. JSPs on the server interface with the business
layer in response to requests. The response is generated as a web page, which is sent to the
client’s web browser.

Figure 1-15. In this architecture, the application client is a web page in a browser. The web page is
generated by a JSP that communicates with the business layer.

Mukhar_470-3.book Page 24 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 ■ J A V A E E E S S E N T I A L S 25

The client in this architecture is a web browser. JSPs access business rules and generate
content for the browser.

Applet Client with JSP and Database
Figure 1-16 shows an architecture similar to the one shown in Figure 1-15. In this case, the
client is a Java applet that resides entirely in the presentation tier and communicates with the
business layer. Although the business layer could be an EJB, as in the previous example, in this
example, the business layer is constructed from JSPs.

Figure 1-16. An applet in the presentation layer can communicate over the network with JSPs
(or Servlets) in the business layer.

The Java applet is used within a web page to provide a more interactive, dynamic user
interface for the user. That applet accesses additional content from JSPs. Even though JSPs are
normally used to generate HTML web pages, a JSP could consist of only business logic. The
JSPs access data from a database using the JDBC API.

Web Services for Application Integration
Even though Java EE is Java-based, a web application architecture is not limited solely to Java
components. An obvious example is the data tier, where many enterprise-level databases are
implemented in a high-level language such as C or C++. Similarly, components in a tier can be
implemented in languages other than Java, as long as they provide a well-defined interface that
allows for interprocess communication. In the example shown in Figure 1-17, a client applica-
tion implemented in C# accesses data from a web service implemented in Java.

Mukhar_470-3.book Page 25 Saturday, October 1, 2005 6:14 AM

26 C H A P T E R 1 ■ JA V A E E E S S E N T I A LS

Figure 1-17. The web service interface provides a well-defined interface between clients and web
services. It allows clients to be implemented in any language that supports making HTTP
requests to a server. For example, clients written in C# can format a web service request, which
can be serviced by an EJB written in Java and running in a Java EE application server.

Summary
In this opening chapter, we provided an overview of Java EE and how all the various bits fit
together to enable you to create powerful business components. We first looked at what Java EE is
and tackled the obvious issue of moving from creating desktop applications with J2SE to
building enterprise-level applications and dynamic, data-driven web sites using Java EE. We
covered how the two relate to each other and how they differ from each other, as well as looking
at how applications are built using Java EE.

Java EE provides a platform for developing and deploying multitiered, distributed applications
that are designed to be maintainable, scalable, and portable. Just as an office building requires
a lot of hidden infrastructure of plumbing, electricity, and telecommunications, large-scale
applications require a great deal of support infrastructure. This infrastructure includes database
access, transaction support, and security. Java EE provides that infrastructure and allows you
to focus on your applications.

Building distributed applications (software with components that run as separate processes,
or on separate computers) allows you to partition the software into layers of responsibility, or
tiers. Distributed applications are commonly partitioned into three primary tiers: presentation,
business rules, and data access. Partitioning applications into distinct tiers makes the software
more maintainable and provides opportunities for scaling up applications as the demand on
those applications increases.

Java EE architecture is based on the idea of building applications around multiple tiers of
responsibility. The application developer creates components, which are hosted by the Java EE
containers. Containers play a central theme in the Java EE architecture.

Servlets are one type of Java EE web component. They are Java classes that are hosted
within, and invoked by the Java EE server by requests made to, a web server. These Servlets
respond to those requests by dynamically generating HTML, which is then returned to the
requesting client.

Mukhar_470-3.book Page 26 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 ■ J A V A E E E S S E N T I A L S 27

JSPs are very similar in concept to Servlets, but differ in that the Java code is embedded
within an HTML document. The Java EE server then compiles that HTML document into a
Servlet, and that Servlet generates HTML in response to client requests.

JSF is a Java EE technology designed to create full and rich user interfaces. Standard user
interface components are created on the server and connected to business logic components.
Custom renderers take the components and create the actual user interface.

JDBC is a technology that enables an application to communicate with a data-storage
system. Most often that is a relational database that stores data in tables that are linked through
logical relations between tables. JDBC provides a common interface that allows you to communi-
cate with the database through a standard interface without needing to learn the syntax of a
particular database.

EJBs are the centerpiece of Java EE and are the component model for building the business
rules logic in a Java EE application. EJBs can be designed to maintain state during a conversation
with a client, or can be stateless. They can also be designed to be short-lived and ephemeral, or
can be persisted for later recall. EJBs can also be designed to listen to message queues and
respond to specific messages. Java EE is about a lot more than EJBs, although EJBs do play a
prominent role.

The Java EE platform provides a number of services beyond the component hosting of
Servlets, JSPs, and EJBs. Fundamental services include support for XML, web services, transac-
tions, and security.

Extensive support for XML is a core component of Java EE. Support for both document-based
and stream-based parsing of XML documents forms the foundation of XML support. Additional
APIs provide XML registry service, remote procedure call invocation via XML, and XML-based
messaging support.

Web services, which rely heavily on XML, provide support for describing, registering,
finding, and invoking object services over the Web. Java EE provides support for publishing
and accessing Java EE components as web services.

Transaction support is required in order to ensure data integrity for distributed database
systems. This allows complex, multiple-step updates to databases to be treated as a single step
with provisions to make the entire process committed upon success, or completely undone by
rolling back on a failure. Java EE provides intrinsic support for distributed database transactions.

Java EE provides configurable security to ensure that sensitive systems are afforded appro-
priate protection. Security is provided in the form of authentication and authorization.

After reading this chapter, you should know:

• Containers provide an environment and infrastructure for executing Java EE components.

• Servlets and JSPs provide server-side processing and are used to create the presentation
layer of a Java EE system.

• JSF provides user interface components that make it easy to create flexible user interfaces
and connect user interface widgets to business objects.

• JDBC is an interface to database systems that allows developers to easily read and persist
business data.

• EJBs represent business objects in a Java EE application. EJBs come in various categories,
including stateful session beans, stateless session beans, entity beans, and message-
driven beans.

Mukhar_470-3.book Page 27 Saturday, October 1, 2005 6:14 AM

28 C H A P T E R 1 ■ JA V A E E E S S E N T I A LS

• Java EE systems can be used to develop service-oriented architectures or web services
systems. A web service architecture is one that provides machine-to-machine services
over a network using a well-defined protocol.

• Some of the essential architectural patterns used in Java EE applications include an
application client with EJBs, a JSP client with EJBs, an applet client with JSPs and a data-
base, and web services used for application integration.

That’s it for your first taste of how Java EE works and why it is so popular. In the next chapter,
you’ll see the steps required to set up your environment and make it ready for developing
powerful Java EE applications.

Mukhar_470-3.book Page 28 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

29

■ ■ ■

C H A P T E R 2

Getting Started

Since this is a book for developers by developers, you’ll get the most out of the material
covered here by running the examples and experimenting. In this chapter, you’ll make sure
that you’ve properly installed the JBoss application server and walk through the steps of setting
up the environment and writing a simple application. This is vital to ensuring that you don’t
encounter needless frustration as you work through the examples. You’ll also get a taste of the
essential steps of creating a Java EE application, what those steps do, and why they’re needed.

Even if you already have your environment set up, it’s a good idea to read through the
development steps in this chapter not only to ensure that your environment is set up correctly,
but also to gain some essential insights into the fundamentals of building a Java EE application.

In this chapter, you will learn the following:

• The prerequisites for installing the JBoss application server

• How to configure your system to run enterprise Java applications

• How to construct, deploy, and run a simple JSP application

■Note The installation files for the JBoss application server are available from the JBoss website
(www.jboss.org/products/jbossas/downloads). You’ll need to download version 4.0.3 or higher
of the JBoss application server to get started using Java EE 5. To install and run the server, you’ll also need
the J2SE SDK from the Sun website at http://java.sun.com. The URL for J2SE 5 SDK is http://
java.sun.com/j2se/1.5.0/download.jsp.

Installing JBoss
Installing the JBoss application server couldn’t be much easier. As you saw in Chapter 1, the
JBoss application server is based on Java Platform, Standard Edition (J2SE), so you need to have
that installed before following the steps described in this chapter. Also, you’ll need to ensure
that you have the Java Development Kit (JDK) for J2SE 5 (or later) installed. If you have an

Mukhar_470-3.book Page 29 Saturday, October 1, 2005 6:14 AM

30 C H A P T E R 2 ■ G E T T I N G S T A R T E D

earlier JDK, you need to update it. If you’re not certain which version of Standard Edition you
have, you can find out by opening a command prompt window and entering the following
command:

> java -version

If you have installed the J2SE SDK correctly, a block of text will appear informing you of the
version number for your J2SE SDK installation (see Figure 2-1). You should install the correct
version of the J2SE SDK if this number isn’t 1.5.0 or higher.

Figure 2-1. Checking the J2SE SDK version number

Once you’ve checked that you have the correct software installed, installing JBoss is a
breeze. Simply decompress the JBoss archive you’ve downloaded to some memorable location
such as C:\jboss. Since you're a tough developer who wouldn’t even dream of using a GUI
installer, there are some steps you’ll need to take before continuing; you’ll need to extract the
files manually, and you’ll need to create an environment variable called JBOSS_HOME before you
can successfully run the application server.

■Note Environment variables are used by the Windows operating system as a shortcut to selected directories
on your system. You can set either user-specific environment variables or (provided you’re logged in as a user
with administrative rights) systemwide environment variables. Once you set an environment variable for your
Java installation, you’ll find it much quicker and easier to compile and run your Java applications from the
command line, as you’ll see shortly.

Once the installation is complete, it’s time to set up the environment variables you’ll need
to run the examples in this book. You can check and set these from the ystem Properties dialog
box (see Figure 2-2). To access this dialog box, from the Control Panel choose the System applet.
Select the Advanced tab and click the Environment Variables button.

Mukhar_470-3.book Page 30 Saturday, October 1, 2005 6:14 AM

C H A P T E R 2 ■ G E T T I N G S T A R T E D 31

Figure 2-2. System Properties dialog box in Windows 2000 (left) and Windows XP (right)

When you click the Environment Variables button, a dialog box appears that allows you to
check and set the values for environment variables (see Figure 2-3).

Figure 2-3. Checking and setting the environment variables

Make sure that the environment variables listed in Table 2-1 are set either in your local
user variables or in the system variables. If they don’t already appear in the list, you can add
them by clicking the New button. If they need to be modified, edit them by clicking the Edit
button. Click OK when you’ve finished.

Mukhar_470-3.book Page 31 Saturday, October 1, 2005 6:14 AM

32 C H A P T E R 2 ■ G E T T I N G S T A R T E D

Note that the system will search for executable files using the PATH variable, starting with the
directories that appear first in the path. To ensure that there aren’t other versions of the J2SE or
JBoss interfering on this machine, make sure that these new entries go at the front of the PATH
variable.

JBoss Installation Problems and Solutions
Table 2-2 outlines some possible problems you might encounter when running through the
previous steps to install JBoss, as well as their solutions.

Testing the JBoss Installation
If everything went according to plan, your system should be set up and ready to use. In this
section, we’ll walk through some quick tests to ensure that you’re ready to run the code in
this book.

Starting the Server
The first step in verifying that your installation is working correctly is to start the JBoss server.
The server is launched from the command line (you can also create a shortcut to make this
process easier for you) using the following command (also shown in Figure 2-4):

Table 2-1. Environment Variable Descriptions

Variable Description

JAVA_HOME Contains the path to the directory where J2SE is installed (e.g., C:\j2sdk5).

JBOSS_HOME Contains the path to the directory where JBoss is installed (e.g., C:\jboss).

PATH Should include the path to the \bin directories of the J2SE SDK and JBoss
(e.g., C:\j2sdk5\bin;c:\JBoss\bin;...). You can alternatively use the
JAVA_HOME and JBOSS_HOME environment variables in your path to make things
a little simpler (e.g., %JAVA_HOME%\bin;%JBOSS_HOME%\bin;...).

Table 2-2. Installation Troubleshooting

Problem Solution

Java version is lower than 1.5 Obtain and install the latest version of the J2SE
SDK. You may want to uninstall the older version
before installing the newer version. (You don’t
have to, but unless you have a compelling reason
to keep the older version around, it’s just dead
weight.)

java –version returns the following message:

‘java’ is not recognized as an internal or
external command, operable program or
batch file.

The J2SE SDK is not installed, or the JAVA_HOME
environment variable does not include the path
to the J2SE SDK installation directory. Check the
JAVA_HOME variable and correct the problem, or
reinstall the J2SE SDK.

Mukhar_470-3.book Page 32 Saturday, October 1, 2005 6:14 AM

C H A P T E R 2 ■ G E T T I N G S T A R T E D 33

>%JBOSS_HOME%\bin\run –c all

Figure 2-4. JBoss startup command

Once you’ve done this, you will see a large number of messages flash across the command
window. This will continue for a short time, until you arrive at a screen that looks much like
Figure 2-5.

Figure 2-5. Application server output

At this point, the JBoss server is started. Open a browser, and go to the following URL:

http://localhost:8080

The web browser should display the default JBoss web page, as shown in Figure 2-6.
Pat yourself on the back for a job well done. Let’s go shred a little code for a final test.

Mukhar_470-3.book Page 33 Saturday, October 1, 2005 6:14 AM

34 C H A P T E R 2 ■ G E T T I N G S T A R T E D

Figure 2-6. The JBoss default web page is displayed when the server first runs.

JBoss Server Installation Problem and Solution
Table 2-3 shows a potential problem you might come up against when running through the
previous steps to test your JBoss application server installation, as well as its solution.

Table 2-3. Startup Troubleshooting

Problem Solution

The web browser reports “Page cannot be
displayed” when trying to open the URL
http://localhost:8080

Make certain that there aren’t any errors reported
when you start the JBoss server. If you see
messages indicating that the server couldn’t start
because TCP ports were in use by other processes,
you may have either another web server using port
8080 or another instance of the JBoss server
running. Also, make certain that you’ve specified
the port 8080 in the URL (this is the default port
used by JBoss).

Mukhar_470-3.book Page 34 Saturday, October 1, 2005 6:14 AM

C H A P T E R 2 ■ G E T T I N G S T A R T E D 35

Compiling and Deploying a JSP Page
As a final test, we’re going to walk through the process of creating and deploying a

JavaServer Pages (JSP) page. This procedure, which consists of the following steps, will confirm
that the Java EE server is working properly and give you your first taste of building, deploying,
and testing a Java EE application:

1. Create a working directory. This will give you a sandbox where you can create and edit
the application files.

2. Create a text file for the JSP page. This will be a text file of HTML with snippets of Java
code, which will be compiled by the Java EE server into a Servlet.

3. Package the files you create into a Web Archive (WAR). The WAR is a JAR file that bundles
all of the application components into a single file for easy deployment.

4. Package the WAR into an Enterprise Archive (EAR), along with some deployment
instructions for the JBoss server.

5. Copy the EAR to the JBoss server deployment directory. Once this is done, the application
is available and ready to be run.

6. Test the application.

So, let’s get started!

Creating the Example Application
Here are the steps to follow to create the example application:

1. Create a directory on your machine that will be your sandbox for this exercise. We’ll use
C:\BJEE5\Ch02 in this example.

2. Create a new file called index.jsp in that directory using your favorite text editor. Here’s
the code for that file:

<%--
 file: index.jsp
 desc: Test installation of Java EE SDK 5
--%>
<html>
<head>
 <title>Hello World - test the Java EE SDK installation
 </title>
</head>
<body>
<%
 for (int i = 1; i < 5; i++)
 {
%>

Mukhar_470-3.book Page 35 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

36 C H A P T E R 2 ■ G E T T I N G S T A R T E D

 <h<%=i%>>Hello World</h<%=i%>>
<%
 }
%>
</body>
</html>

3. Create a subdirectory called META-INF, and in this directory create a file called
application.xml. This file contains settings used to identify your application and the
resources it depends on to JBoss, and to configure how users will access said resources.
Create this file with the following contents:

<?xml version="1.0"?>
 <application>
 <display-name>Hello Java EE World!</display-name>
 <module>
 <web>
 <web-uri>web-app.war</web-uri>
 <context-root>/hello</context-root>
 </web>
 </module>
 </application>

4. You need to create a new WAR and EAR file. The WAR file will contain the web compo-
nents of the Java EE application, along with a descriptor or “table of contents” that
describes what is in the archive. Web applications frequently consist of many more files
than this simple application, and the WAR is a convenient means of bundling up all of
those files into a single file for deployment. Likewise, an EAR file is a collection of WAR
files, JAR files, and resources that are all meant to operate within the context of a single
application. To create these files, open a command-line window, change your current
directory to the folder you created for this example (e.g., cd\BJEE5\Ch02), and type the
following two commands:

>jar cf web-app.war index.jsp
>jar cf helloworld.ear web-app.war META-INF

5. Copy the resultant EAR file, helloworld.ear, to your JBoss server deployment directory
(C:\jboss\server\all\deploy) and start JBoss from the command line with the command
shown in Figure 2-7.

6. It’s time to test your first JSP page. Start a web browser and open the following URL:

http://localhost:8080/hello

After a couple of seconds, you should see the web page shown in Figure 2-8.
Congratulations! Your first JSP page is a success.

Mukhar_470-3.book Page 36 Saturday, October 1, 2005 6:14 AM

C H A P T E R 2 ■ G E T T I N G S T A R T E D 37

Figure 2-7. Command-line results for this chapter’s JSP example

Figure 2-8. Onscreen results for this chapter’s JSP example

Mukhar_470-3.book Page 37 Saturday, October 1, 2005 6:14 AM

38 C H A P T E R 2 ■ G E T T I N G S T A R T E D

Learning to Say “Hello”
The JSP file that you created is a text file that consists of HTML and embedded snippets of code.
Notice that in this file are tags with enclosed Java code, as we discussed in Chapter 1:

<%--
 file: index.jsp
 desc: Test installation of JBoss for Beginning Java EE 5
--%>
<html>
<head>
 <title>Hello World - test the Java EE SDK installation
 </title>
</head>
<body>
<%
 for (int i = 1; i < 5; i++)
 {
%>
 <h<%=i%>>Hello World</h<%=i%>>
<%
 }
%>
</body>
</html>

When the JSP page is compiled into a Servlet, that Servlet code expands the JSP page’s
code snippets and HTML into code that writes HTML to an output stream:

out.write("\n\n");
out.write("<html>\n");
out.write("<head>\n");
out.write(" <title>Hello World - test the Java EE SDK installation");
out.write(" </title>\n");
out.write("</head>\n");
out.write("<body>\n");
for (int i = 1; i < 5; i++)
{
 out.write("\n ");
 out.write("<h");
 out.write(String.valueOf(i));
 out.write(">Hello World");
 out.write("</h");
 out.write(String.valueOf(i));
 out.write(">\n");
}
out.write("</body>\n");
out.write("</html>\n");

Mukhar_470-3.book Page 38 Saturday, October 1, 2005 6:14 AM

C H A P T E R 2 ■ G E T T I N G S T A R T E D 39

That code, when executed, will write the following HTML code to the stream that is sent
back to the requesting browser:

<html>
<head>
 <title>Hello Hello World - test the Java EE SDK installation
 </title>
</head>
<body>

 <h1>Hello World</h1>

 <h2>Hello World</h2>

 <h3>Hello World</h3>

 <h4>Hello World</h4>

</body>
</html>

That’s how the JSP code works. The process of packaging and deployment has a few more
steps. Let’s dig in a bit and see what’s happening.

To deploy a Java EE application to a server, it has to be bundled up into an archive (i.e., a
single file that packages up all the requisite files). The WAR has to contain the components
you’ve created for the application (the JSP file) as well as other (optional) support files. Those
support files include a deployment descriptor that tells the server what’s contained in the WAR
and how to run it, a manifest for the archive that acts as an application table of contents, and a
file containing deployment information specific to the JBoss server (see Figure 2-9).

Once those contents have been assembled into a WAR file, that WAR can then be deployed
to the Java EE server, or it can be repackaged inside an EAR. Packaging the WAR inside an EAR
allows logic that doesn’t necessarily belong inside the WAR file to coexist with the web application.

Once the archive has been copied to the server’s deployment directory, the server reads
the deployment descriptor to determine how to unbundle the contents. In the case of this
application, it sees that the EAR contains a WAR. Once it has extracted the JSP page you created
from the WAR file, it compiles that JSP page into a Servlet.

To run the application once it is deployed, you have to request the JSP page by requesting
a URL with your web browser. Notice that the URL consists of the protocol (http), the server
name (localhost), the root context of the application (hello), and the requested resource
(index.jsp), as shown in Figure 2-10.

Mukhar_470-3.book Page 39 Saturday, October 1, 2005 6:14 AM

40 C H A P T E R 2 ■ G E T T I N G S T A R T E D

Figure 2-9. The basic high-level model for the JSP example

Figure 2-10. The flow of execution for client requests from the JSP application

The server receives the incoming HTTP request and uses the deployment information to
invoke the appropriate Servlet in a Servlet container. The Servlet writes HTML to an output
stream, which is returned to the web browser by the server.

Mukhar_470-3.book Page 40 Saturday, October 1, 2005 6:14 AM

C H A P T E R 2 ■ G E T T I N G S T A R T E D 41

Application Creation Problems and Solutions
Table 2-4 lists some common problems you may encounter during application creation and
how to fix them.

Summary
In this chapter, we described how to get the Java EE SDK installed and to verify that the instal-
lation was successful. You got your first taste of creating and running a Java EE application, and
you looked at some of the core concepts involved in building Java EE applications.

After reading this chapter, you should know:

• JavaServer Pages (JSP) consist of HTML with embedded snippets of Java code. A JSP page
is compiled into a Servlet by the Java EE server which, when executed, emits HTML back
to the requesting client.

• Web Archives (WARs) are deployment components that contain the web components
of a Java EE application. The WAR contains the components themselves (such as JSP
pages), and the deployment descriptor that defines the contents of the WAR. The WAR
can also contain server-specific deployment information.

• Enterprise Archives (EARs) make up high-level groupings of application components.
WAR files, JAR files, deployment instructions, and application resources can all be
encapsulated within an EAR file.

At this point in the book, you should now be familiar with the following procedures:

• How to install and configure the JBoss application server

• How to start and stop the JBoss server

• The essential steps of building a Java EE application:

Table 2-4. Deployment Troubleshooting

Problem Solution

The verifier reports errors. Carefully retrace your steps and ensure that you
followed the steps correctly as described in this
section.

When testing the JSP page, the web browser
reports “Page cannot be displayed” when it
tries to open the URL http://localhost:8080.

Make certain that there weren’t any errors
reported when you started the Java EE server.
Ensure that you’ve specified the port 8080 in the
URL (this is the default port used by the Java EE
server).

When testing the JSP page, JBoss reports a
compilation error in the web browser.

Double-check the code in index.jsp. If you’ve
mistyped something, the server won’t be able to
compile the JSP page. The message in the web
browser should give you a hint about where
to look.

Mukhar_470-3.book Page 41 Saturday, October 1, 2005 6:14 AM

42 C H A P T E R 2 ■ G E T T I N G S T A R T E D

1. Create the application components.

2. Bundle the components into an archive.

3. Verify the contents of the archive to catch problems before deploying.

4. Copy the archive to the JBoss server deployment directory.

5. Test the application.

If you’ve been able to get through this chapter, you’re more than ready to dive into more
detail. The next chapter will take you deeper into the details of JSP pages. You’ll learn the essen-
tial structure of JSP pages and how to enable users to interact with your JSP pages.

Mukhar_470-3.book Page 42 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

43

■ ■ ■

C H A P T E R 3

JavaServer Pages

In the previous chapters, you received a brief introduction to Java EE and got a chance to build
a very simple JSP page. In this chapter, we’ll start to take a much more detailed look at JSP.

JSP pages are components in a web or Java EE application that consist of HTML and Java
code. You might ask, “What’s so different about that? I’ve been putting JavaScript into my HTML
for years.” The difference is that JavaScript runs on the client, whereas the code in a JSP page
runs on the server. JavaScript can affect only the particular page in which it is embedded and
has access to only data within the client’s environment. Code in a JSP can access data across the
entire web application and can use server-side resources such as databases, directories, and other
application components.

As components in a Java EE application, JSP pages run on a server and respond to requests
from clients. These clients are usually users accessing the web application through a web
browser. The protocol used by clients to call the JSP pages in the Java EE application is HTTP—
the same protocol used by browsers to get HTML pages from a web server. In this chapter, we’ll
concentrate on the basics of creating JSP pages. We’ll look at the underlying HTTP protocol in
Chapter 6.

In this chapter, you will learn:

• How to write a JSP page

• How to use directive, scripting, and action elements

• How to access the implicit objects of the page

• How servers translate and compile JSP pages

• How to handle errors and exceptions

• How to forward and include pages from a JSP page

Introduction to JSP
The JSP home page (http://java.sun.com/products/jsp/) says, “Web developers and designers
use JavaServer Pages technology to rapidly develop and easily maintain information-rich,
dynamic web pages that leverage existing business systems.”

Mukhar_470-3.book Page 43 Saturday, October 1, 2005 6:14 AM

44 C H A P T E R 3 ■ JA V A S E R V E R P A G E S

JSP pages can be rapidly developed and easily maintained because they are based on HTML
and XML. Documents with markup such as HTML are easy to understand, and there are many
automated tools for dealing with HTML and XML documents. JSP pages are dynamic because
they can contain Java code, which can process the request and tailor the response based on the
request. All the power of Java sits behind every JSP page.

A JSP page executes inside a JSP container. A container is a piece of software that loads and
manages Java EE components—in this case, JSP pages. This container can be part of the web
server, or it can run separately from the web server. You were introduced to several different
containers in Chapter 2.

JSP Development
The process of developing a JSP page that can respond to client requests involves three main steps:

• Creation: The developer creates a JSP source file that contains HTML and embedded
Java code.

• Deployment: The JSP is installed into a server. This can be a full Java EE server or a
stand-alone JSP server.

• Translation and compilation: The JSP container translates the HTML and Java code into
a Java code source file. This file is then compiled into a Java class that is executed by the
server. The class file created from the JSP is known as the JSP page implementation class.

Note that the translation and compilation step can actually occur at any one of several
times, even though it’s listed last here. Because the JSP contains Java code, at some point, the
page is translated and compiled into a Java class. This can happen before the page is loaded to
a server, or it can happen at the time the client makes a request. You can translate and compile
the JSP prior to deployment, and deploy the class file directly. Compiling first allows you to
catch and fix syntax errors in your code prior to deployment. Alternatively, the JSP container
can compile the JSP when it is deployed to the server. Finally, the usual process is that when the
first request is made for the JSP, the server translates and compiles the JSP. This is known as
translation at request time.

Basic JSP Lifecycle
Once compilation is complete, the JSP lifecycle has these phases:

• Loading and instantiation: The server finds or creates the JSP page implementation
class for the JSP page and loads it into the JVM. After the class is loaded, the JVM creates
an instance of the class. This can occur immediately after loading, or it can occur when
the first request is made.

• Initialization: The JSP page object is initialized. If you need to execute code during
initialization, you can add a method to the page that will be called during initialization.

• Request processing: The page object responds to requests. Note that a single object
instance will process all requests. After performing its processing, a response is returned
to the client. The response consists solely of HTML tags or other data; none of the Java
source code is sent to the client.

Mukhar_470-3.book Page 44 Saturday, October 1, 2005 6:14 AM

C H A P T E R 3 ■ J A V A S E R V E R P A G E S 45

• End of life: The server stops sending requests to the JSP. After all current requests are
finished processing, any instances of the class are released. This usually occurs when the
server is being shut down, but can also occur at other times, such as when the server
needs to conserve resources, when it detects an updated JSP source file, or when it needs
to terminate the instance for other reasons. If you need code to execute and perform any
cleanup actions, you can implement a method that will be called before the class instance is
released, as discussed in the “Handling JSP Initialization and End of Life” section later in
this chapter.

In Chapter 6, you will see that the Servlet lifecycle is the same as the JSP lifecycle. This is
because the JSP is translated into a Servlet; the JSP page implementation class is a Servlet class.
Figure 3-1 shows the request processing phase of the JSP lifecycle.

Figure 3-1. A JSP source file is compiled into a JSP page implementation class. When the server
receives a request for the JSP, the request is sent to the container, which passes the request to the
correct JSP. The response follows the reverse path.

When a client sends a request for a JSP, the web server gives the request to the JSP container,
and the JSP container determines which JSP page implementation class should handle the
request. The JSP container then calls a method of the JSP page implementation class, which
processes the request and returns a response through the container and web server to the
client. In general, this process is referred to simply as “A request is sent to a JSP.”

JSP Elements
So, now that you’ve seen how JSP pages work, let’s look at what they contain, before we move
on to how you go about writing them. Take a look at the following line of JSP code:

<html><body><p>Hello, World!</p></body></html>

Mukhar_470-3.book Page 45 Saturday, October 1, 2005 6:14 AM

46 C H A P T E R 3 ■ JA V A S E R V E R P A G E S

Admittedly, this is not a very good JSP example. However, these HTML tags do form a
correct and valid JSP file. You could save this line in a file named HelloWorld.jsp and install it
into a web application, and the server would access it as a JSP resource. The point is that JSP
pages tend to look a lot like HTML pages.

The reason this example is not a very good one is that it isn’t dynamic in any way. If your
JSP pages don’t contain Java code, you might as well just make them static HTML pages. JSP
pages are intended to have dynamic behavior; they are supposed to change in response to
specific client requests. You give the page dynamic behavior by embedding Java code into the
page. You can think of JSP pages as web pages with bits of Java embedded in them.

However, you can’t just write Java code in the page wherever you want. You need some
way to tell the JSP translator which bits are code and which bits are regular HTML. To do this,
the JSP specification defines HTML-like or XML tags that enclose the code in the JSP. Those
tags come in three categories:

• Directive elements

• Scripting elements

• Action elements

The original JSP specification used tag formats for these elements that were not compat-
ible with XML; that is, they were not well-formed according to the XML specification. Starting
with the JSP 1.2 specification, alternative XML-compliant versions of all the tags were introduced.
The XML-compliant tags can be used only in a JSP page that conforms to the XML specification.
You will see both formats in this book, with the original style referred to as JSP style and the
newer style referred to as XML style.

Along with these tag elements, JSP pages can include comments and template data. Now
we will look at each of these page elements.

Directive Elements
Directive elements provide information to the JSP container about the page. Three directives
are available: page, include, and taglib. We will discuss page and include here, deferring
discussion of taglib to the next chapter. A single JSP page can have multiple instances of the
page and include directives.

Page Directives

The page directive is used to specify page attributes. The page directive’s JSP-style form is:

<%@ page attributes %>

The white space following <%@ and before %> is optional.
The page directive’s XML-style form is:

<jsp:directive.page attributes />

As with all HTML attributes, attributes must be name/value pairs, with an equal sign (=)
separating the name from the value and the value in quotes. You can find the complete list
of attributes and their meanings in the JSP specification, which you can download from
http://java.sun.com/products/jsp. Table 3-1 shows the attributes you are most likely to use
as you start developing JSP pages.

Mukhar_470-3.book Page 46 Saturday, October 1, 2005 6:14 AM

C H A P T E R 3 ■ J A V A S E R V E R P A G E S 47

Include Directives

The include directive is used to include another page within the current page. The include
directive’s JSP-style form is:

<%@ include attributes %>

And its XML-style form is:

<jsp:directive.include attributes />

Table 3-1. Common Page Directive Attributes

Attribute Description

import Lists the Java packages to be imported into the page. Just as with a Java
source file, the Java code embedded in a JSP page must import the pack-
ages of the classes used with the code. Multiple package statements are
delimited by commas; for example, import="java.io.*,java.util.*".

session Whether the page participates in a session. The valid values are true or
false. The default value is true. If true, the page participates in a session;
if false, then it does not, and cannot access any session information.
Sessions are covered later in the chapter, in the “The session Object”
section.

isThreadSafe Whether the container can pass requests concurrently to the page. The
valid values are true or false.The default is true. If true, the container
can use the JSP for multiple concurrent request threads. If false, the
container must pass the requests one at a time in order of receipt. Page
authors must also ensure that access to shared resources is properly
synchronized.

info An arbitrary string. This can have any value. It is provided so that the JSP
can provide a management tool with information about its contents,
purpose, name, and so on.

errorPage The URL of the web page that should be sent to the client if an error occurs
in a page. The default URL is implementation-dependent. When you do not
provide a URL, the container can use its own default.

isErrorPage Whether the current page is an error page. The default is false.

contentType Defines the content type of the page. The content type can appear as a simple
type specification, or as a type specification and a character set (charset).
The default value is text/html for JSP-style JSP tags and text/xml for XML-
style JSP tags. When including the charset, the syntax for the attribute is
contentType="text/html;charset=char_set_identifier". White space
can follow the semicolon in the attribute value. Charsets indicate how
written characters are encoded, so that pages can support languages that
use different scripts. You can find information about charsets at http://
www.w3.org/TR/REC-html40/charset.html.

pageEncoding The charset of the current page. The default is ISO-8859-1 (Latin script) for
JSP-style and UTF-8 (an 8-bit Unicode encoding) for XML-style tags.

Mukhar_470-3.book Page 47 Saturday, October 1, 2005 6:14 AM

48 C H A P T E R 3 ■ JA V A S E R V E R P A G E S

You might typically include a standard header or footer with the include directive, but it
can actually be any content. You would use this when you have standard data that you want to
include in multiple JSP pages. The file that contains the standard data is included when the
page is translated into its Java form.

This directive has a single attribute named file. The file attribute specifies the name of
the file to be included at the current position in the file. The included file can be any HTML or
JSP page or fragment of a page. The file is specified using a URL to a file within the web appli-
cation; the path is relative to the JSP file.

Scripting Elements
The scripting elements are the elements in the page that include the Java code. There are three
subforms of this element: declarations, scriptlets, and expressions.

Declarations

A declaration is used to declare, and optionally define, a Java variable or a method. It works just
like any declaration within a Java source code file. The declaration element’s JSP-style form is:

<%! declaration %>

And its XML-style form is:

<jsp:declaration>declaration</jsp:declaration>

The declaration appears only within the translated JSP page, but not in the output to the
client. For example, to declare a Vector in your JSP, you would use one of these forms:

<%! Vector v = new Vector(); %>
<jsp:declaration>Vector v = new Vector();</jsp:declaration>

This JSP fragment declares a variable v of type Vector and initializes it by calling the Vector
constructor. Any variable you declare within a declaration element becomes an instance variable
of the JSP page implementation class, and therefore is global to the entire page. Thus, you must
take care when initializing variables with a declaration, because instance variables are not
thread-safe. By default, the server can send multiple requests to the same page simultaneously.
You don’t want one thread to change the variable while another thread is using the variable.

You can also declare and define methods within a declaration element, as in these examples:

<%!
public int void countTokens(String s) {
 StringTokenizer st = new StringTokenizer(s);
 return st.countTokens();
}
%>
<jsp:declaration>
public int countTokens(String s) {
 StringTokenizer st = new StringTokenizer(s);
 return st.countTokens();
}
</jsp:declaration>

Mukhar_470-3.book Page 48 Saturday, October 1, 2005 6:14 AM

C H A P T E R 3 ■ J A V A S E R V E R P A G E S 49

Any method you declare within a declaration element becomes an instance method of the
JSP page implementation class, and thus it is global to the entire page. Variables or methods in a
declaration element can be called by any other code in the page.

Declarations, variables, and methods inside declaration elements must be valid Java
code; that is, they must conform to all Java syntax and semantic rules.

Scriptlets

Scriptlets contain Java code statements. The code in the scriptlet appears in the translated JSP,
but not in the output to the client. The scriptlet element’s JSP-style form is:

<% scriptlet code %>

And its XML-style form is:

<jsp:scriptlet>code fragment</jsp:scriptlet>

Any legal Java code statements can appear within a scriptlet. For example, to repeat the
phrase “Hello, World!” ten times in the output page, you could use this scriptlet:

<%
 for (int i = 0; i < 10; i++) {
%>
Hello, World!
<%
 }
%>

As in this code snippet, you can freely interleave Java code and HTML and/or text data.
Everything between the scriptlet markers (<% and %>) is script code; everything outside the
markers is template data, which is sent to the client as written. Notice that in this example, the
Java code block does not need to begin and end within the same scriptlet element. This allows
you complete freedom to mix Java code and HTML elements as needed within the page.

■Note The scriptlet example shown here is relatively simple. As your application gets more complex and
involved, you’ll get more and more code mixed in with the HTML, and the page will tend to get complicated.
In the next chapter, you will see how tag libraries can give the same rich behavior as in this example, but using
only XML tags.

Since scriptlets can contain Java statements, the following is a legal scriptlet:

<%
Vector v = new Vector();
// More code...
%>

Mukhar_470-3.book Page 49 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

50 C H A P T E R 3 ■ JA V A S E R V E R P A G E S

This looks very similar to the code snippet in the declaration section you saw earlier, which
might lead you to wonder what the difference between scriptlets and declarations is, since they
appear to be the same. Despite that seeming similarity, they are different in the following ways:

• Scriptlets cannot be used to define a method; only declarations can be used for that.

• Variables declared in a declaration are instance variables of the JSP page implementation
class. These variables are visible to all other code statements or methods in the page.

• Variables declared in a scriptlet are local to a method in the JSP page implementation
class. They are visible only within their defining code block.

Expressions

Expressions are used to output the value of a Java expression to the client. The expression
element’s JSP-style form is:

<%= expression %>

And its XML-style form is:

<jsp:expression>expression</jsp:expression>

For example, this code fragment in a JSP would result in the text, “The number of tokens in
this statement is 9.” being displayed in the browser:

The number of tokens in this statement is
 <%= countTokens("The number of tokens in this statement is n") %>.

This code snippet calls the hypothetical countTokens(String) method that was shown
previously in the declaration element example. To count the number of tokens in the statement, a
literal copy of the statement is passed to the method. In this code snippet, the method call
returns an int value, which is printed to the client’s browser. Here is the same expression using
XML style:

The number of tokens in this statement is
<jsp:expression>
 countTokens("The number of tokens in this statement is n")
</jsp:expression>.

Any legal Java expression can be used with an expression element. An expression could
contain a method call, as shown in the example, a literal expression such as 2 + 2, an expression
using Java variables or keywords such as v instanceof Vector, or any combination of these.
Notice also that because declarations and scriptlets contain Java code, the lines of Java code
must be terminated with a semicolon. Expressions, however, will not necessarily be legal code
statements (but they will be valid expressions), so they do not need a terminating semicolon.

Action Elements
Standard actions are defined by the JSP specification (which is one reason why they are called
standard). They look similar to HTML tags, but they cause the page to perform some action,

Mukhar_470-3.book Page 50 Saturday, October 1, 2005 6:14 AM

C H A P T E R 3 ■ J A V A S E R V E R P A G E S 51

hence the name. You can also create your own actions, which are known as custom actions. We
will look at standard actions here, and you will see how to create custom actions in Chapter 4.

The JSP 2.0 specification defines the following standard actions:

• <jsp:useBean>

• <jsp:setProperty>

• <jsp:getProperty>

• <jsp:param>

• <jsp:include>

• <jsp:forward>

• <jsp:plugin>

• <jsp:params>

• <jsp:fallback>

• <jsp:attribute>

• <jsp:body>

• <jsp:invoke>

• <jsp:doBody>

■Note Although, here, we follow the specification syntax of using <jsp:action_name> to identify the
actions, the jsp prefix can be redefined in a tag library descriptor (TLD). As you will see in the next chapter,
you can also define your own actions that can be used in a JSP page. The next chapter will show how to set
the prefix for both standard actions and custom actions in a TLD.

In this section we will look at the <jsp:useBean>, <jsp:setProperty>, and <jsp:getProperty>
actions. Later in the chapter, in the “Including and Forwarding from JSP Pages” section, we will
cover the <jsp:include>, <jsp:forward>, and <jsp:param> actions.

The elements <jsp:attribute> and <jsp:body> are used with standard and custom actions.
The elements <jsp:invoke> and <jsp:doBody> are valid only in tag libraries. Custom actions
and tag libraries are covered in Chapter 4.

The <jsp:plugin>, <jsp:params>, and <jsp:fallback> elements are used to include applets
or JavaBeans in the HTML page generated by a JSP page. Using these over hand-coding the
HTML allows the server to create browser-specific HTML from the JSP tags. See the JSP speci-
fication for details about using these tags.

Mukhar_470-3.book Page 51 Saturday, October 1, 2005 6:14 AM

52 C H A P T E R 3 ■ JA V A S E R V E R P A G E S

The <jsp:useBean> Action

The <jsp:useBean> action element makes a JavaBean available to the page. A JavaBean (which
is not the same as an Enterprise JavaBean) is simply a Java class that follows certain requirements.
The following two requirements are important for our purposes:

• The JavaBean class has a no-argument constructor.

• Every property of the bean that is provided for client use has a method to set the value of
the parameter and a method to get the value of the parameter.

The getter and setter methods have this form:

public type getSomeParameter() { return someParameter; }
public boolean isSomeParameter() { return someBooleanParameter; }
public void setSomeParameter(type someParameter) {
 // Set the parameter
}

The name of every setter and getter uses the name of the parameter, with the first letter
capitalized, appended to the token set, get, or is. The getter method has the form isXXX() for
boolean properties; for other properties, its form is getXXX().

The <jsp:useBean> element has the attributes shown in Table 3-2.

Table 3-2. Attributes of the useBean Tag

Attribute Description

id The name used to access the bean in the rest of the page. It must be unique.
It is essentially the variable name that references the bean instance. When a
<jsp:useBean> action is used in a scriptless page, or in the body of an action
marked as scriptless, no Java scripting variables are created; instead, an
Expression Language variable is created. The next chapter covers Expression
Language in detail.

scope The scope of the bean. Valid values are page, request, session, or application.
The default is page. See the “JSP Scope” section later in this chapter for more
information.

class The fully qualified class name of the bean class.

beanname The name of a bean, as expected by the instantiate() method of the
java.beans.Beans class. Most often, you will use the class attribute,
rather than beanName. Refer to the JavaBeans specification at http://
java.sun.com/products/javabeans for details on how to supply a name
to the instantiate() method.

type The type to be used for the variable that references the bean. This follows Java
rules, so it can be the class of the bean, any parent class of the bean, or any interface
implemented by the bean or by a parent class.

Mukhar_470-3.book Page 52 Saturday, October 1, 2005 6:14 AM

C H A P T E R 3 ■ J A V A S E R V E R P A G E S 53

The <jsp:useBean> element causes the container to try to find an existing instance of the
object in the specified scope and with the specified id. If no object with the specified id is
found in that scope, and a class or bean name is specified, the container will try to create a new
instance of the object. You can use the class, beanName, and type attributes in these combinations:

• class: Creates an instance of the class that can be referred to by the given id.

• class, type: Creates an instance of the given class; the variable that refers to the bean will
have the given type.

• beanName, type: Creates an instance of the given bean; the variable that refers to the bean
will have the given type.

• type: If an object of the given type exists in the session, the id will refer to that object.

You must create a reference to a JavaBean using the <jsp:useBean> element before you can
use <jsp:setProperty> or <jsp:getProperty>.

The <jsp:setProperty> Action

The <jsp:setProperty> action element sets the property for a JavaBean. It has the attributes
shown in Table 3-3.

The name and property attributes are always required. The param and value elements are
mutually exclusive. If neither param nor value is used, the jsp:setProperty element attempts to
use the request parameter with the same name as the property attribute. You will see how
request parameters are used later in this chapter, in Listing 3-9.

Suppose you have a JavaBean that holds information about a user of the system. This bean
might look like this:

Table 3-3. Attributes of the setProperty Tag

Attribute Description

name The id of the bean as defined by the useBean action.

property The name of the property whose value will be set. The property attribute can
explicitly name a property of the bean; in which case, the setXXX() method
for the property will be called. The value can also be "*"; in which case, the
JSP will read all the parameters that were sent by the browser with the client’s
request and set the properties in the bean that have the same names as the
parameters in the request.

param The parameter name in the browser request whose value will be used to
set the property. Allows the JSP to match properties and parameters with
different names.

value The value to assign to the property.

Mukhar_470-3.book Page 53 Saturday, October 1, 2005 6:14 AM

54 C H A P T E R 3 ■ JA V A S E R V E R P A G E S

public class User {
 private String id;
 private String surname;
 public void setId(String id) { this.id = id; }
 public String getId() { return id; }
 public void setSurname(String surname) { this.surname = surname; }
 public String getSurname() { return surname; }
}

Here is one simple example of using the <jsp:setProperty> element with a literal value
and an expression:

<jsp:useBean id="userA" class="User" />
<jsp:setProperty name="userA" property="surname" value="Smith" />
<jsp:setProperty name="userA" property="id"
 value="<%= validateId("86753") %>" />

After this code in the compiled JSP executes, the surname property of the instance of User
has a value of "Smith", and the id property has whatever value is returned by the hypothetical
validateId() expression. The JSP translator takes the elements in the example and translates
them into code that creates an instance of the User class, and then calls the setSurname() and
setId() methods of the object.

The <jsp:getProperty> Action

The <jsp:getProperty> element retrieves the value of a property from a JavaBean. It has the
attributes shown in Table 3-4.

The name and property attributes are always required. When used within a JSP, the value of
the property will be output as part of the response. Given the example in the previous section,
you could write template data (described in the next section) that uses <jsp:getProperty> like this:

The user with id <jsp:getProperty name="userA" property="id" />
has a surname of <jsp:getProperty name="userA" property="surname" />

When the JSP page is translated into Java code, this will result in calls to the getSurname()
and getId() methods of the object. The return values are then output with the template data to
the response, so that the client sees this in his browser:

The user with id 86753 has a surname of Smith

Table 3-4. Attributes of the getProperty Tag

Attribute Description

name The id of the bean

property The name of the property to get

Mukhar_470-3.book Page 54 Saturday, October 1, 2005 6:14 AM

C H A P T E R 3 ■ J A V A S E R V E R P A G E S 55

Comments and Template Data
You can use standard HTML comments within the JSP, and those comments will appear in the
page received by the client browser. Standard HTML comments have this form:

<!-- This comment will appear in the client's browser -->

You can also include JSP-specific comments that use this syntax:

<%-- This comment will NOT appear in the client's browser --%>

JSP comments will not appear in the page output to the client.
Everything that is not a directive, declaration, scriptlet, expression, action element, or JSP

comment (usually all the HTML and text in the page) is termed template data. In other words,
template data is anything that the JSP translator is ignorant about. This data is output to the
client as if it had appeared within a static web page.

Creating and Deploying a JSP Web Application
Earlier, you saw an example of a JSP page that had no dynamic behavior. Now that you know
about the makeup of a JSP page, we can develop a dynamic example—a welcome page to an
application that manages a Frequently Asked Questions (FAQ) forum. We will go through the
code, and then see how to deploy the JSP application to the Java EE reference implementation
server and to a stand-alone Tomcat server.

Writing the JSP Web Application
Start by creating a directory structure to match the web application. If you are planning to
deploy this application to a stand-alone Tomcat server, you can create this directory directly in
the Tomcat /webapps directory. Figure 3-2 shows the directory structure with the files that will
be created.

Figure 3-2. Directory structure for the first JSP example

As you go through the following steps and create each file, refer to this directory structure
in Figure 3-2 to determine where to save each file.

Mukhar_470-3.book Page 55 Saturday, October 1, 2005 6:14 AM

56 C H A P T E R 3 ■ JA V A S E R V E R P A G E S

Listing 3-1 is the welcome.jsp file. This is the first page that will be accessed by a user of the
web application.

Listing 3-1. welcome.jsp

<%@ page errorPage="/WEB-INF/errorPage.jsp"
 import="java.util.Iterator,com.apress.faq.FaqCategories" %>

<html>
 <head>
 <title>Java FAQ Welcome Page</title>
 </head>

 <body>
 <h1>Java FAQ Welcome Page</h1>
 Welcome to the Java FAQ

<%! FaqCategories faqs = new FaqCategories(); %>
Click a link below for answers to the given topic.
<%
 Iterator categories = faqs.getAllCategories();
 while (categories.hasNext()) {
 String category = (String) categories.next();
%>
 <p>
 <a href="<%= replaceUnderscore(category) %>.jsp"><%= category %>
 </p>
<%
 }
%>

<%@ include file="/WEB-INF/footer.jspf" %>
 </body>
</html>

<%!
public String replaceUnderscore(String s) {
 return s.replace(' ','_');
}
%>

The welcome.jsp page has a JSP include directive to add a standard footer. Because the
include file is just a fragment and not a complete JSP file, we use the convention of naming the
file with a .jspf extension, as recommended by the JSP specification. Listing 3-2 shows the
footer.jspf file.

Mukhar_470-3.book Page 56 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

C H A P T E R 3 ■ J A V A S E R V E R P A G E S 57

Listing 3-2. footer.jspf

<hr>
Page generated on <%= (new java.util.Date()).toString() %>

With this simple example, we don’t expect any errors to occur. In the unlikely event that
one does occur, Listing 3-3 shows an error page that can be served to the client.

Listing 3-3. errorPage.jsp

<%@ page isErrorPage="true" import="java.io.PrintWriter" %>

<html>
 <head>
 <title>Error</title>
 </head>
 <body>
 <h1>Error</h1>
 There was an error somewhere.
 <%@ include file="/WEB-INF/footer.jspf" %>
 </body>
</html>

And finally, Listing 3-4 shows the helper file that will be used by welcome.jsp,
FaqCategories.java. After entering the source, compile the file into a class file.

Listing 3-4. FaqCategories.java

package com.apress.faq;

import java.util.Iterator;
import java.util.Vector;

public class FaqCategories {
 private Vector categories = new Vector();

 public FaqCategories() {
 categories.add("Dates and Times");
 categories.add("Strings and StringBuffers");
 categories.add("Threading");
 }
 public Iterator getAllCategories() {
 return categories.iterator();
 }
}

Mukhar_470-3.book Page 57 Saturday, October 1, 2005 6:14 AM

58 C H A P T E R 3 ■ JA V A S E R V E R P A G E S

The welcome.jsp file (Listing 3-1) demonstrates many of the features that have been intro-
duced in this chapter so far. It begins with the page directive:

<%@ page errorPage="/WEB-INF/errorPage.jsp"
 import="java.util.Iterator, com.apress.faq.FaqCategories" %>

This directive has two attributes. First, an errorPage is defined, to which the browser will be
redirected if an error occurs on the welcome.jsp page. The other attribute used with the page
directive is the import. The page imports two Java classes: the Iterator class from the Java API
and the FaqCategories class that is part of this application.

Note that the page can also use this syntax for the import:

<%@ page errorPage="/WEB-INF/errorPage.jsp"
 import="java.util.*, com.apress.faq.*" %>

This is followed by some straight HTML. Further down in the page is a declaration
scripting element:

<%! FaqCategories faqs = new FaqCategories(); %>

This element declares a variable called faqs and initializes it by calling the constructor of the
FaqCategories helper class. You can see that declaration elements must follow Java coding
rules, including the use of a semicolon to terminate the statement.

The next JSP element in the page is a scriptlet:

<%
 Iterator categories = faqs.getAllCategories();
 while (categories.hasNext()) {
 String category = (String)categories.next();
%>
 <p><a href="/<%= replaceUnderscore(category) %>"><%= category %></p>
<%
 }
%>

This scriptlet gets an Iterator from the FaqCategories instance. This Iterator is used to loop
through each of the categories defined in the FaqCategories class. Each category is loaded into
a String variable called category, and this is used to create an HTML link. Each category is
printed twice using expression elements: first within the href attribute of the <a> tag to set the
page that the link refers to, and then within the body of the link. The first expression element
calls the replaceUnderscore() method (defined later in the page) and prints the result; the other
expression element simply prints the category value.

Notice that with the scriptlet, you must use Java syntax. However, within an expression
element, you need to use only the expression itself, without a semicolon to end the statement.

At the bottom of the page, an include directive includes a standard footer:

<%@ include file="/WEB-INF/footer.jspf" %>

Mukhar_470-3.book Page 58 Saturday, October 1, 2005 6:14 AM

C H A P T E R 3 ■ J A V A S E R V E R P A G E S 59

The last thing in the file is another declaration element:

<%!
public String replaceUnderscore(String s) {
 return s.replace(' ','_');
}
%>

This element declares the replaceUnderscore() method, which replaces the spaces in a string
with underscores. It was called by the scriptlet earlier in the file.

The next file is footer.jspf (Listing 3-2). You can see that this is not a complete JSP file.
This file uses an expression element to print the current date and time at the server when the
page is served to the user. The file uses the extension .jspf, as recommended by the JSP spec-
ification, to indicate that this file is a fragment. Also, because it is a fragment and is not meant
to be publicly available, we put the file into the WEB-INF directory. Files in this directory are not
publicly available. This means that you cannot enter an address into a browser to access this
file. Only code within the application can access files within the WEB-INF directory.

The errorPage.jsp file (Listing 3-3) is meant to be used when an uncaught exception
occurs in the welcome.jsp page. It includes the standard footer. However, assuming everything
in the welcome.jsp page is correct, it will not be called in this application. This page is not meant
to be publicly available, so it also resides in the WEB-INF directory. Also, since errorPage.jsp
is an error page, the isErrorPage attribute of the page directive is set to true. Apart from
that directive, this page contains just straight HTML and an include directive to include the
footer.jspf file.

The final source file is FaqCategories.java (Listing 3-4). This is a helper class that supplies
three categories to the welcome.jsp page. In a real-world application, the categories would
come from some persistent store such as a database or a directory. For this example, the helper
class hard-codes the categories for welcome.jsp. The categories are stored in a Vector object,
which is an instance member of the class. In the class constructor, the hard-coded categories
are added to this Vector. Finally, the class defines a getAllCategories() method, which simply
returns the Iterator for the Vector. The JSP page uses this Iterator to loop through each of the
categories in turn.

That finishes the code for the application, but before it can actually be accessed by clients,
it must be deployed to an application server. We’ll look at two application servers in this chapter:
the reference implementation server that comes with the Java EE SDK, and the stand-alone
Tomcat server. First, let’s see how to deploy the application with the Java EE server.

Deploying the Web Application in Java EE
Here are the steps for deploying the sample JSP web application in Java EE:

1. Ensure the Sun Application Server is running, and then start up the Sun Java EE
Deployment Tool (introduced in Chapter 2).

2. Select File ➤ New ➤ Web Component from the menu to create a new web component.
This will start the New Web Application Wizard, as shown in Figure 3-3.

Mukhar_470-3.book Page 59 Saturday, October 1, 2005 6:14 AM

60 C H A P T E R 3 ■ JA V A S E R V E R P A G E S

Figure 3-3. The opening screen of the New Web Application Wizard. You can check the Skip this
Screen in the Future box at the bottom of the dialog box to skip this screen the next time you run
the wizard.

3. Click the Next button to advance to the first step of the wizard, shown in Figure 3-4.
Click the Edit Contents button in the Contents panel and add the application files to the
web archive (WAR): FaqCategories.class, errorPage.jsp, footer.jspf, and welcome.jsp.
Make sure that the errorPage.jsp and footer.jspf files appear in the correct location
underneath the WEB-INF directory. If they do not, you can drag-and-drop them into the
correct location. Note that the wizard will create several files for you, including the
deployment descriptor, web.xml. You do not need to add web.xml to the application.

Mukhar_470-3.book Page 60 Saturday, October 1, 2005 6:14 AM

C H A P T E R 3 ■ J A V A S E R V E R P A G E S 61

Figure 3-4. The first page of the wizard is used to add files to the web component and name the
web component.

4. In the WAR Naming section of the first wizard step, select a location for the WAR file and
a name for the file. In Figure 3-4, you can see that we selected Jsp_Ex01, for JSP Example 01,
as the WAR name on our system, which is the name we will refer to here. Click the Next
button.

5. At the next wizard step, shown in Figure 3-5, select the JSP Page radio button and click
the Next button.

Mukhar_470-3.book Page 61 Saturday, October 1, 2005 6:14 AM

62 C H A P T E R 3 ■ JA V A S E R V E R P A G E S

Figure 3-5. The Choose Component Type dialog box allows you to select which type of component
is being created.

6. The next page of the wizard is the Component General Properties dialog box. In the JSP
Filename drop-down box, select /welcome.jsp as the JSP to define, as shown in Figure 3-6.
The Web Component Name and Web Component Display Name fields will be filled in
automatically. Click the Finish button.

Figure 3-6. The Component General Properties dialog box allows you to select which JSP is being
configured. If your application has multiple JSPs, you can rerun the wizard multiple times and
select a different JSP each time.

Mukhar_470-3.book Page 62 Saturday, October 1, 2005 6:14 AM

C H A P T E R 3 ■ J A V A S E R V E R P A G E S 63

7. The wizard will close and return you to the Deployment Tool. Select the WAR file (Jsp_Ex01
in this example) in the left pane. Select the File Refs tab in the right pane. Click the Add
button for Welcome files to add an entry for a Welcome File. Enter the name welcome.jsp in
the Welcome Files field, as shown in Figure 3-7.

Figure 3-7. Creating a welcome file list ensures that users will always see a valid web page, rather
than a directory listing, when they access the web component.

8. Save the WAR file.

9. Select Tools ➤ Deploy from the menu. The Deployment Tool allows you to select the
server to which the web application is deployed. Most likely, you are deploying to the
localhost and will not have any other servers. You may also need to enter the admin
username and password for the server (we hope you wrote those down when you
installed the Java EE server).

10. When you are ready, click the OK button. The Deployment Tool will deploy your web
application. The Deployment Tool displays the results of the deployment in a new window.

11. When the tool is finished deploying the web component, open a browser window. Enter
the appropriate address to run the application, such as http://localhost:8080/Jsp_Ex01.
The welcome.jsp page will load, as shown in Figure 3-8.

■Note If the welcome page does not display, first check that the server is running. If it is, you should get a
valid page when you type the default URL, usually http://localhost:8080. If the server is running, you
could have a translation or compilation problem. After we look at how to deploy the web components to
Tomcat, we’ll look at how to deal with translation or compilation problems.

Mukhar_470-3.book Page 63 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

64 C H A P T E R 3 ■ JA V A S E R V E R P A G E S

Figure 3-8. The welcome.jsp page in a browser window

The address and port you use in the web browser depend on where the server is located
and which port it uses to listen for HTTP requests. If you installed the Java EE server to the same
machine as the web browser, then you can access it using localhost, or you can use the local-
host IP address 127.0.0.1 or the actual IP address of the machine. The default HTTP port for the
Java EE reference implementation is 8080, so if you kept the default port setting during instal-
lation (and named your WAR file Jsp_Ex01), you will access the web application using the URL
http://localhost:8080/Jsp_Ex01. If, however, you installed the Java EE server to a different
machine, or selected a different port for the server to listen for HTTP requests, you will need to
change the URL to use the name or IP address of that machine and the correct port for the server.

Deploying the Web Application in Tomcat
Deploying applications to a stand-alone Tomcat server is easy, but it does require you to write
a special XML file, known as a deployment descriptor. This file is also required by the Java EE
server, but the Deployment Tool creates it for you, so you don’t need to write it by hand.

■Tip For details on how to use Tomcat, check out Pro Jakarta Tomcat 5, by Matthew Moodie (Apress, 2004;
ISBN 1-59059-331-6).

Deployment descriptors are XML files that contain configuration information about
the entire web application. Deployment descriptors are covered in more detail in Chapter 6.
Listing 3-5 is the deployment descriptor for our Java FAQ application. This file is called web.xml
and is placed in the application’s WEB-INF directory.

Mukhar_470-3.book Page 64 Saturday, October 1, 2005 6:14 AM

C H A P T E R 3 ■ J A V A S E R V E R P A G E S 65

Listing 3-5. web.xml for Java FAQ Web Component

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">
<display-name>Jsp_Ex01</display-name>
<servlet>
 <display-name>welcome</display-name>
 <servlet-name>welcome</servlet-name>
 <jsp-file>/welcome.jsp</jsp-file>
</servlet>
<welcome-file-list>
 <welcome-file>welcome.jsp</welcome-file>
</welcome-file-list>
</web-app>

If the Java EE server is running, shut it down and start the Tomcat server. If you created the
directory structure shown in Figure 3-2 earlier in the chapter within the Tomcat /webapps
directory, then you are finished. If the application directory is not under the Tomcat /webapps
directory, you can simply copy the directory structure to Tomcat /webapps. Alternatively, you
can navigate to the top-level directory of the web application (for example, if the highest directory
of the application is /Jsp_Ex01, you would navigate into that directory), create the web archive
(WAR) file manually using the command jar cf Jsp_Ex01.war *, and then copy the .war file to
the Tomcat /webapps directory.

Open a browser window and enter the appropriate address, such as http://localhost:8080/
Jsp_Ex01. The welcome.jsp file will load, as shown earlier in Figure 3-8.

■Note If the welcome page does not display, first check that the server is running. If it is, you should get a
valid page when you type the default URL, usually http://localhost:8080. If the server is running, you
could have a translation or compilation problem. The next section talks about how to handle translation or
compilation problems.

Since you’ll need to write a deployment descriptor for any web applications you want to
deploy to a stand-alone Tomcat server, let’s take a moment to look at the web.xml file in this
example. The file begins with the standard XML declaration and the root element <web-app>,
which includes attributes for the schema declarations, which you can use for any JSP deploy-
ment descriptors.

Mukhar_470-3.book Page 65 Saturday, October 1, 2005 6:14 AM

66 C H A P T E R 3 ■ JA V A S E R V E R P A G E S

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">

Next comes the XML content of the file. There are three elements in this descriptor: a
display-name element, a servlet element that provides information about the JSP, and the
welcome-file-list element.

<display-name>Jsp_Ex01</display-name>
<servlet>
 <display-name>welcome</display-name>
 <servlet-name>welcome</servlet-name>
 <jsp-file>/welcome.jsp</jsp-file>
</servlet>
<welcome-file-list>
 <welcome-file>welcome.jsp</welcome-file>
</welcome-file-list>
</web-app>

The display-name element allows you to provide a user-friendly name for your web appli-
cation. This name can be displayed by web application tools. For example, Tomcat has a
management tool that you can link to from the main Tomcat page (http://localhost:8080/).
If you access the management page, it will list all the deployed web components in the server
using the display name to identify the web components. The Sun Java EE server has a management
page that you can access at http://localhost:4848. Figure 3-9 shows this page, where the
display name from the deployment descriptor is used as the web application name.

The servlet element provides information about any JSPs or Servlets that are part of the
web application. As you will see later in this chapter, JSP source files are translated into Servlet
files, and the JSP page implementation class is a Servlet, which is why the element is named
servlet, rather than JSP.

The final element is welcome-file-list. This element lists the files that will be served to
any client that simply enters the application context from a browser, rather than identifying a
specific resource in the application. These files are referred to as welcome files. For example, an
address like http://localhost:8080/Jsp_Ex01 does not reference any resource within the web
component. Anyone who enters a URL like this will be served a welcome file from the list. If
multiple files are listed in the welcome file list, the server will respond with the first file that it
finds in the welcome file list.

■Note We will cover specific elements of the deployment descriptor as they are used, but will wait to look
at deployment descriptors in more detail in Chapter 6. You can also find more information about deployment
descriptors in the documentation for Tomcat, as well as in the JSP and Servlet specifications.

Mukhar_470-3.book Page 66 Saturday, October 1, 2005 6:14 AM

C H A P T E R 3 ■ J A V A S E R V E R P A G E S 67

Figure 3-9. The Web Applications page in the Sun Application Server management tool shows the
web applications that have been deployed to the server. The display name field in the deployment
descriptor is used to populate the Application Name field in the page.

When you loaded the welcome page, you probably saw that the links in that page do not
reference actual resources within the application. If you clicked one of the links, you probably
received an HTTP 404 error in the browser. You did not see the error page, because the problem
was a resource not found on the server, not an uncaught exception in the page.

■Caution Starting with the Servlet 2.4 specification, elements in the deployment descriptor can occur in
any order. For example, if you take the deployment descriptor in Listing 3-5, and move the welcome-file-list
element to be the first element in the file, the web application will still work properly. However, in earlier
Servlet and JSP specification versions, the elements in the deployment descriptor had to follow a particular
order specified by a Document Type Definition (DTD) (JSP 1.2 and earlier) or an XML Schema (JSP 2.0), or the
server would not start the application. If your server supports only Servlet 2.3 or JSP 2.0 (or earlier versions),
you will need to check the specification for the correct order of deployment descriptor elements.

To actually deploy the application to Tomcat, you need to copy the files to Tomcat’s
/webapps directory. If you don’t want to store the application’s files directly in this directory,
you can deploy the application by packaging all the files into a WAR file.

Mukhar_470-3.book Page 67 Saturday, October 1, 2005 6:14 AM

68 C H A P T E R 3 ■ JA V A S E R V E R P A G E S

The WAR file is a convenient way to package all the files and components that make up a
web application into one archive. All JSP containers know how to read and deploy web appli-
cations from the WAR file. Thus, deploying a web application can be as simple as creating the
archive with the correct application directory structure and putting it into the correct directory
location for the container. The directory structure of the web application, and thus the WAR, is
defined in the Servlet specification. Likewise, the deployment descriptor is defined by the spec-
ification. When you use a tool like the Sun Java EE Deployment Tool, it takes care of creating the
correct directory structure and deployment descriptor for you. When you’re deploying to a
stand-alone server like Tomcat, you need to handle these manually.

In general, the structure of your application will look like this:

app_context/
 public web resources
 WEB-INF/
 web.xml
 tlds/
 tld files
 lib/
 archives used by application
 classes/
 class files used in application

The directory at the top of the structure defines the web application context. The applica-
tion context provides a separation between different web applications. Under the application
context directory are the public files of the application. These will generally include the HTML
and JSP pages of the application. Under the application context is the WEB-INF directory. This
directory contains the deployment descriptor (web.xml) and other files that are not publicly
accessible by clients of the application. There can be any number of directories under WEB-INF,
but three common directories are tlds, lib, and classes. The tlds directory is not required,
but it is commonly used for keeping tag library descriptor files (see Chapter 4). The lib directory is
used for Java archives (.jar files) that are used by the web application. Finally, the classes
directory is used for class files in the web application.

Handling Translation or Compilation Problems
The highly experienced technical team at Apress reviewed and tested all the code in this book,
and of course, it’s going to work perfectly for you every time—at least, it should.

However, when entering the code from this book, or when developing your own JSPs, you
may occasionally come across a typo or some other error that causes the translation or compi-
lation to fail. Here, we will give you some pointers on how to find and resolve these problems.

The JSP specification identifies many situations that will cause a translation error. For
example, it says that the page directive can appear multiple times, but that any attribute can be
specified only once. If the same attribute appears a second time, it must have a value identical
to the first appearance; otherwise, a translation error occurs.

To see how this works, go back to welcome.jsp (Listing 3-1). Add this line of code anywhere
in the file:

<%@ page errorPage="/WEB-INF/errorPage2.jsp" %>

Mukhar_470-3.book Page 68 Saturday, October 1, 2005 6:14 AM

C H A P T E R 3 ■ J A V A S E R V E R P A G E S 69

Then redeploy the JSP application. On our Tomcat server, when we tried to load the welcome
page, we saw the display shown in Figure 3-10. In this case, Tomcat has sent a nicely formatted
and helpful error page. Depending on your server, you should see a similar message for trans-
lation errors on your system.

Although you can’t see all of it in the figure, the first line of the stack trace looks like this:

org.apache.jasper.JasperException: /welcome.jsp(10,0) Page directive: ➥

illegal to have multiple occurrences of errorPage with different values ➥

(old: /WEB-INF/errorPage.jsp, new: /WEB-INF/errorPage2.jsp)

Figure 3-10. Tomcat shows you a helpful stack trace with information about the translation
problem. This makes it easy to find and fix the problem.

As you can see, the stack trace says in which file the error occurred (welcome.jsp), and in
which line and at which character (10,0) the error occurs. It also gives you a clear description of
the error. With this information, you should be able to easily go to line 10 in the file, find the
offending multiple occurrence of errorPage, and fix it.

Compilation problems, unfortunately, are not always so easy to find. Return to welcome.jsp
again and remove the offending duplicate errorPage directive (if you added it earlier). Now add
an extra curly brace, as shown here:

<%@ include file="/WEB-INF/footer.jspf" %>
<%
 }
%>
 </body>
</html>

Mukhar_470-3.book Page 69 Saturday, October 1, 2005 6:14 AM

70 C H A P T E R 3 ■ JA V A S E R V E R P A G E S

When we deployed this broken file to Tomcat, we got the page shown in Figure 3-11. Tomcat
again sends an errorPage with a nicely formatted stack trace, but this page does not indicate
where in the JSP source the error occurred. In fact, it shows five errors, starting with this:

C:\Program Files\Apache Software Foundation\Tomcat 5.030\work\Catalina\➥

localhost\Jsp_Ex01\org\apache\jsp\welcome_jsp.java:43: 'try' without ➥

'catch' or 'finally'
 try {
 ^

Figure 3-11. When the server cannot compile the JSP, it sends an error page to the browser. Compi-
lation errors can sometimes be hard to find.

At this point, you might be really puzzled. Why in the world is Tomcat complaining about
try without catch? There is no try-catch block in the JSP source. As we mentioned earlier in the
chapter, the JSP source file is translated into a page implementation class. It is the source file
for this class that contains the try-catch block. Once you realize that, it should be obvious in
hindsight that adding an extra brace messed up the class and caused all the compilation errors.
However, in the real world, you wouldn’t knowingly put in an error, so even though you realize
there is something wrong with the JSP, it won’t necessarily be easy to find and fix.

One way to deal with this problem is to look at the translated source file. The stack trace
shown in Figure 3-11 tells you where the source file, welcome_jsp.java, is located. You can open
it in an editor and search for the problem there. This may or may not be easier than looking at the
JSP file. In this case, the stack trace says the first error is on line 43 of the translated file, when,
in fact, the real problem occurs much later in the file, at the point where the translated extra
brace occurs.

Mukhar_470-3.book Page 70 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

C H A P T E R 3 ■ J A V A S E R V E R P A G E S 71

Sometimes, the best way to deal with a mysterious compilation problem—one where the
error message does not tell you which line of the JSP has the problem—is to go back to basic
Java syntax. Check that all code lines end with a semicolon. Check that all braces match up.
Check that all those little syntax problems that your fancy IDE handles automatically in a Java
file are not causing you problems in your JSP file.

Handling JSP Initialization and End of Life
In the JSP lifecycle section earlier in this chapter, we mentioned that you can add methods to
your JSP that will be called when the JSP is initialized and when the JSP is destroyed. These
methods are declared using the declaration scripting element.

When you need to perform one-time initialization of the JSP, add this method to the JSP:

<%!
public void jspInit() {
 // ...perform one time initialization.
 // ...this method is called only once per JSP, not per request
}
%>

If you need to clean up any resources used by the JSP, add this method to the JSP:

<%!
public void jspDestroy() {
 // ...perform one time cleanup of resources
}
%>

If you don’t need to perform initialization or cleanup, you do not need to add these
methods to the JSP.

JSP Scope
Objects that are created as part of a JSP have a certain lifetime and may or may not be acces-
sible to other components or objects in the web application. The lifetime and accessibility of
an object is known as scope. In some cases, such as with the implicit objects discussed in the
next section, the scope is set and cannot be changed. With other objects (JavaBeans, for example),
you can set the scope of the object. There are four valid scopes:

• Page scope: This scope is the most restrictive. With page scope, the object is accessible
only within the page in which it is defined. JavaBeans created with page scope and
objects created by scriptlets are thread-safe. (Recall, though, that Java objects created by
declaration elements are not thread-safe.)

• Request scope: With request scope, objects are available for the life of the specific request.
This means that the object is available within the page in which it is created, and within
pages to which the request is forwarded or included. Objects with request scope are
thread-safe. Only the execution thread for a particular request can access these objects.

Mukhar_470-3.book Page 71 Saturday, October 1, 2005 6:14 AM

72 C H A P T E R 3 ■ JA V A S E R V E R P A G E S

• Session scope: Objects with session scope are available to all application components
that participate in the client’s session. These objects are not thread-safe. If multiple
requests could use the same session object at the same time, you must synchronize
access to that object.

• Application scope: This is the least restrictive scope. Objects that are created with appli-
cation scope are available to the entire application for the life of the application. These
objects are not thread-safe, and access to them must be synchronized if there is a chance
that multiple requests will attempt to change the object at the same time.

When you are developing the components in your web application, you need to carefully
consider the scope of the objects. You should give your objects only as much scope as needed
to be successful. It makes no sense to give application scope to an object that is used only within a
single component. Likewise, an object with too much restriction may force your application to
be more complicated. Carefully consider each of the objects and their use to determine the
proper scope for each object.

Using Implicit Objects
Earlier, we stated that the properties of a JavaBean can be set from the parameters in the
request sent by the client browser. Your JSP page can also access the client’s request directly.
You access the client’s request through an object named request. In addition to the request
object, the JSP model provides a number of other implicit objects. These objects are implicit
because a JSP has access to and can use them without needing to explicitly declare and initialize
the objects. Implicit objects are used within scriptlet and expression elements. This section will
cover using the following implicit objects:

• request

• response

• out

• session

• config

• exception

• application

In this section, we will show the methods of these objects that you will use most often. You
should consult the Javadoc for the complete list and explanation of all the available methods.
Each implicit object has a given lifespan and accessibility known as scope, as discussed in the
previous section.

Mukhar_470-3.book Page 72 Saturday, October 1, 2005 6:14 AM

C H A P T E R 3 ■ J A V A S E R V E R P A G E S 73

The request Object
JSP pages are web components that respond to and process HTTP requests. The request implicit
object represents this HTTP request. Through the request object, you can access the HTTP
headers, the request parameters, and other information about the request. You will most often
use this object to read the request parameters.

When a browser submits a request to a server, it can send information along with the
request in the form of request parameters. These take two forms:

• URL-encoded parameters: These are parameters appended to the requested URL as a
query string. The parameters begin with a question mark, followed by the name/value
pairs of all the parameters, with each name and value delimited by an equal sign (=), and
each pair delimited by an ampersand (&):

http://www.myserver.com/path/to/resource?name1=value1&name2=value2

• Form-encoded parameters: These parameters are submitted as a result of a form
submission. They have the same format as URL-encoded parameters, but are included
with the body of the request and not appended to the requested URL.

These request parameters can be read through various methods of the request object:

String request.getParameter(String name);
String[] request.getParameterValues(String name);
Enumeration request.getParameterNames();
Map getParameterMap();

The getParameter(String) method returns the value of the parameter with the given
name. If the named parameter has multiple values (for example, when a form submits the
value of check boxes), this method returns the first value. For multivalued parameters,
getParameterValues(String) returns all the values for the given name. The getParameterNames()
method returns all the parameter names used in the request, and getParameterMap() returns
all the parameters as name/value pairs.

Information can also be passed to the server using extra path information. This data is
appended to the requested URL. For example, suppose /Jsp_Ex01/MyComponent were the context
and name of a web application component; additional information could be appended to the
path like this: /Jsp_Ex01/MyComponent/extraPathInfo. With the correct configuration, the server
would send the request to MyComponent, and MyComponent would get the extra path information
using this method:

String request.getPathInfo();

The request object has request scope. That means that the implicit request object is in scope
until the response to the client is complete. It is an instance of javax.servlet.HttpServletRequest.
For further information about the methods of request, see Chapter 6.

Mukhar_470-3.book Page 73 Saturday, October 1, 2005 6:14 AM

74 C H A P T E R 3 ■ JA V A S E R V E R P A G E S

The response Object
The response object encapsulates the response to the web application client. Some of the tasks
you can do using the response object are set headers, set cookies for the client, and send a redirect
response to the client. You can perform those functions with the following methods:

public void addHeader(String name, String value)
public void addCookie(Cookie cookie)
public void sendRedirect(String location)

The response object is an instance of javax.servlet.HttpServletResponse, and it has
page scope.

The out Object
The out implicit object is a reference to an output stream that you can use within scriptlets.
Using the out object, the scriptlet can write data to the response that is sent to the client. For
example, you could rewrite the earlier welcome.jsp (Listing 3-1) to use the out object like this:

<%
 Iterator categories = faqs.getAllCategories();
 while (categories.hasNext()) {
 String category = (String)categories.next();
 out.println("<p>" +
 category + "</p>");
 }
%>

This scriptlet would cause the same HTML to be sent to the client as was sent in the original
version of welcome.jsp.

The out object is an instance of javax.jsp.JspWriter. It has page scope.

■Note One of the purposes of JSP is to separate the HTML from the Java code. Therefore, the example
shown here is not the best use of the out object.

The session Object
HTTP is a stateless protocol. As far as a web server is concerned, each client request is a new
request, with nothing to connect it to previous requests. However, in web applications, a client’s
interaction with the application will often span many requests and responses. To join all these
separate interactions into one coherent conversation between the client and application, web
applications use the concept of a session. A session refers to the entire conversation between a
client and a server.

The JSP components in a web application automatically participate in a given client’s
session, without needing to do anything special. Any JSP page that uses the page directive to set
the session attribute to false does not have access to the session object, and thus cannot
participate in the session.

Mukhar_470-3.book Page 74 Saturday, October 1, 2005 6:14 AM

C H A P T E R 3 ■ J A V A S E R V E R P A G E S 75

Using the session object, the page can store information about the client or the client’s
interaction. Information is stored in the session object, just as you would store information in
a Hashtable or a HashMap. This means that a JSP page can store only objects, not Java primitives,
in the session. To store Java primitives, you need to use one of the wrapper classes such as
Integer or Boolean. The methods for storing and retrieving session data are as follows:

Object setAttribute(String name, Object value);
Object getAttribute(String name);
Enumeration getAttributeNames();
void removeAttribute(String name);

When other components in the web application receive a request, they can access the
session data that was stored by other components. They can change information in the session
or add new information to it.

■Caution Be aware that sessions are not inherently thread-safe. You should consider the possibility that
two or more web components could access the same objects from the same session simultaneously. If this
could be a problem for your application, you must synchronize access to the objects stored in the session.

Normally, you don’t need to write code in your page to manage the session. The server
creates the session object and associates client requests with a particular session. However,
this association normally happens through the use of a cookie that is sent to the client. The
cookie holds a session ID; when the browser sends the cookie back to the server, the server uses
the session ID to associate the request to a session. When the browser does not accept cookies,
the server falls back to a scheme called URL rewriting to maintain the session. If there is the
possibility that the server will be using URL rewriting, your page needs to rewrite any embedded
URLs. This is actually done with a method of the response object:

response.encodeURL(String);
response.encodeRedirectURL(String);

The second method is used when the URL will be sent as a redirect to the browser using
the response.sendRedirect() method. The first method is used for all other URLs.

The session object has session scope, and all the objects stored in the session object also
have session scope. The session object is an instance of javax.servlet.http.HttpSession.

The config Object
The config object is used to obtain JSP-specific initialization parameters. These initialization
parameters are set in the deployment descriptor, but are specific to a single page. JSP initialization
parameters are set in the <servlet> element of the deployment descriptor. This is because the
page implementation class of the JSP (the Java class that is compiled from the JSP page) is a
Servlet class. The <servlet> element with the <init-param> element will look something like this:

Mukhar_470-3.book Page 75 Saturday, October 1, 2005 6:14 AM

76 C H A P T E R 3 ■ JA V A S E R V E R P A G E S

<servlet>
 <servlet-name>StockList</servlet-name>
 <servlet-class>web.StockListServlet</servlet-class>
 <init-param>
 <param-name>name</param-name>
 <param-value>value</param-value>
 </init-param>
</servlet>

See Chapter 6 for more information about how to use the <servlet> element.
If JSP initialization parameters are defined in the deployment descriptor, you can access

them using this method:

config.getInitParameter(String name);

The config object has page scope.

The exception Object
The exception object is available only within error pages. It is a reference to the
java.lang.Throwable object that caused the server to call the error page. You would use
it just as you would use any other Exception or Error object in the catch block of a try-catch
section of code. The exception object has page scope.

The application Object
The application object represents the web application environment. You will use this object to
get application-level configuration parameters. Within the deployment descriptor, you can set
application parameters using this element:

<webapp>
 <context-param>
 <param-name>name</param-name>
 <param-value>value</param-value>
 </context-param>
</webapp>

The value of the parameter can be accessed using the following method:

application.getInitParameter(String name);

The application object has application scope.

Using Standard Actions and Implicit Objects in JSP Pages
Let’s look at an example that uses standard actions and implicit objects. This example expands
on the previous example, adding a registration page to the Java FAQ application. The registra-
tion page will use a JavaBean. This example will also use the implicit request object to read
request parameters.

Figure 3-12 shows the application structure for this example.

Mukhar_470-3.book Page 76 Saturday, October 1, 2005 6:14 AM

C H A P T E R 3 ■ J A V A S E R V E R P A G E S 77

Figure 3-12. Directory structure for the second JSP example

Start by creating the JavaBean. This bean consists of a class called User, and it represents
a user of our application. Listing 3-6 shows the source code for this class. After entering the
source, compile it into a class file.

Listing 3-6. User.java

package com.apress.faq;

public class User {
 private String firstName;
 private String surname;
 private String loginName;
 private int age;

 public String getFirstName() { return firstName; }
 public void setFirstName(String newFirstName) {
 this.firstName = newFirstName;
 }

 public String getSurname() { return surname; }
 public void setSurname(String newSurname) {
 this.surname = newSurname;
 }

 public String getLoginName() { return loginName; }
 public void setLoginName(String newLoginName) {
 this.loginName = newLoginName;
 }
 public int getAge() { return age; }
 public void setAge(int newAge) {
 this.age = newAge;
 }
}

Mukhar_470-3.book Page 77 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

78 C H A P T E R 3 ■ JA V A S E R V E R P A G E S

Next, modify welcome.jsp from the earlier example (Listing 3-1). Listing 3-7 shows the new
welcome.jsp. This page will ask users to register, if they haven’t already done so.

Listing 3-7. Revised welcome.jsp for Using Standard Actions and Implicit Objects

<%@ page errorPage="/WEB-INF/errorPage.jsp"
 import="java.util.Iterator, com.apress.faq.*" %>

<html>
 <head>
 <title>Java FAQ Welcome Page</title>
 </head>

 <body>
 <h1>Java FAQ Welcome Page</h1>

<%
 User user = (User) session.getAttribute("user");
 if (user == null) {
%>
 You are not yet registered, please
 register.
<%
 } else {
%>
 Welcome to the Java FAQ

<%! FaqCategories faqs = new FaqCategories(); %>
Click a link below for answers to the given topic.
<%
 Iterator categories = faqs.getAllCategories();
 while (categories.hasNext()) {
 String category = (String) categories.next();
%>
 <p>
 <a href="<%= replaceUnderscore(category) %>.jsp"><%= category %>
 </p>
<%
 }
%>

<%@ include file="/WEB-INF/footer.jspf" %>
<%
 }
%>
 </body>
</html>

Mukhar_470-3.book Page 78 Saturday, October 1, 2005 6:14 AM

C H A P T E R 3 ■ J A V A S E R V E R P A G E S 79

<%!
public String replaceUnderscore(String s) {
 return s.replace(' ','_');
}
%>

Next, create the registrationform.html page that collects the user information. This source
is shown in Listing 3-8.

Listing 3-8. registrationform.html
<html>
 <head>
 <title>Registration Page</title>
 </head>
 <body>
 <h1>Registration Page</h1>

 <form action="registration.jsp" method="POST">
 <table>
 <tr>
 <td align="right">First name:</td>
 <td align="left"><input type="text"
 name="firstName" length="30"/></td>
 </tr>
 <tr>
 <td align="right">Surname:</td>
 <td align="left"><input type="text"
 name="surname" length="30"/></td>
 </tr>
 <tr>
 <td align="right">Login Name:</td>
 <td align="left"><input type="text"
 name="loginName" length="30"/></td>
 </tr>
 <tr>
 <td align="right">Age:</td>
 <td align="left"><input type="text"
 name="age" length="5"/></td>
 </tr>
 </table>

 Which topics are you interested in?

<input type="checkbox" name="topics"
 value="Dates and Times">

Mukhar_470-3.book Page 79 Saturday, October 1, 2005 6:14 AM

80 C H A P T E R 3 ■ JA V A S E R V E R P A G E S

 Dates and Times</input>

<input type="checkbox" name="topics"
 value="Strings and StringBuffers">
 Strings and StringBuffers</input>

<input type="checkbox" name="topics"
 value="Threading">
 Threading</input>
 <p><input type="submit" value="Submit"/></p>
 </form>
 </body>
</html>

This form submits to a JSP page that gathers the form data and populates the User bean.
Listing 3-9 shows the JSP that accepts the form submission, registration.jsp.

Listing 3-9. registration.jsp

<html>
 <head>
 <title>Register User</title>
 </head>
 <body>
 <h1>Register User</h1>

 <jsp:useBean id="user" scope="session" class="com.apress.faq.User">
 <jsp:setProperty name="user" property="*" />
 </jsp:useBean>

 Welcome new user, these are the values you submitted:
 <p>Your first name is <%= user.getFirstName() %>.</p>
 <p>Your last name is
 <jsp:getProperty name="user" property="surname" />.</p>
 <p>Your user id is
 <jsp:getProperty name="user" property="loginName" />.</p>
 <p>Your age is
 <jsp:getProperty name="user" property="age" />.</p>
 You selected these topics:

<%
 String[] topics = request.getParameterValues("topics");
 if (topics == null) { topics = new String[] {"No topics"}; }
 for (int i = 0; i < topics.length; i++) {
%>

<%= topics[i] %>

Mukhar_470-3.book Page 80 Saturday, October 1, 2005 6:14 AM

C H A P T E R 3 ■ J A V A S E R V E R P A G E S 81

<%
 }
%>
 <p>Go to Topic List Page</p>
 <%@ include file="/WEB-INF/footer.jspf" %>
 </body>
</html>

The other files for this application remain the same as in the previous example: errorPage.jsp
(Listing 3-3), footer.jspf (Listing 3-2), and FaqCategories.java (Listing 3-4). If you are using
the Sun Deployment Tool, it will create web.xml for you. If you are using Tomcat, Listing 3-10
shows the deployment descriptor, web.xml.

Listing 3-10. web.xml for Jsp_Ex02

<?xml version='1.0' encoding='UTF-8'?>
<web-app
 version="2.5"
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 >
 <display-name>Jsp_Ex02</display-name>
 <servlet>
 <display-name>welcome</display-name>
 <servlet-name>welcome</servlet-name>
 <jsp-file>/welcome.jsp</jsp-file>
 </servlet>
 <servlet>
 <display-name>registration</display-name>
 <servlet-name>registration</servlet-name>
 <jsp-file>/registration.jsp</jsp-file>
 </servlet>
 <welcome-file-list>
 <welcome-file>welcome.jsp</welcome-file>
 </welcome-file-list>
</web-app>

Deploy this application to the server of your choice, using the same steps as you did for the
first example in this chapter (outlined in the “Deploying the Web Application in Java EE” or
“Deploying the Web Application in Tomcat” section). If you are using the Sun Deployment
Tool, you will need to run the wizard twice. Add all the files and configure one of the JSPs the
first time; the second time, all you need to do is configure the second JSP.

Enter the URL for the welcome.jsp. If you are connecting to your local machine on the
default port, the URL is http://localhost:8080/Jsp_Ex02. Figure 3-13 shows the page you
should see in your browser.

Mukhar_470-3.book Page 81 Saturday, October 1, 2005 6:14 AM

82 C H A P T E R 3 ■ JA V A S E R V E R P A G E S

Figure 3-13. The welcome page of the application asks the user to register.

Click the register link to load the registration page, as shown in Figure 3-14.

Figure 3-14. The user enters data into the registration screen and submits it.

Fill in the fields and check one or more of the boxes. Click the Submit button. Clicking the
Submit button will cause the registration information to be passed to registration.jsp. That
JSP will process the request and display the page shown in Figure 3-15.

Finally, click the link in this page to return to welcome.jsp. This time, welcome.jsp will
display the topic list, as shown in Figure 3-16.

Mukhar_470-3.book Page 82 Saturday, October 1, 2005 6:14 AM

C H A P T E R 3 ■ J A V A S E R V E R P A G E S 83

Figure 3-15. The response from the registration.jsp page

Figure 3-16. The welcome.jsp page after the user has registered

Mukhar_470-3.book Page 83 Saturday, October 1, 2005 6:14 AM

84 C H A P T E R 3 ■ JA V A S E R V E R P A G E S

As in the first example in this chapter, the entry into the application is the welcome.jsp
page. However, this time, the page checks for the existence of a User object in the session using
this code:

User user = (User)session.getAttribute("user");

Recall that all JSP pages have access to the implicit session object, unless specified other-
wise with the page directive. Using the getAttribute() method, the page attempts to get the
named object from the session. Notice that getAttribute() returns a reference of type Object,
which must be cast to the proper type to assign it to the user variable.

If there is no user object in the session (that is, if user is null), welcome.jsp outputs the
HTML with a link for the registrationform.html page. Later, when returning to this page, the
user object will exist, and the welcome page displays the topic list. The remainder of this page
is unchanged.

The registrationform.html page is a standard web page with a form that submits form
data to the server. The resource that it submits to is given in the <form> tag:

<form action="registration.jsp" method="POST">

The action attribute contains the URI for the server resource that should receive the data.
This URI can be relative, as shown here, or absolute. The method attribute indicates which
HTTP method should be used for the submission. The form includes some text fields and some
check boxes. The form submits all its data to registration.jsp.

The first interesting thing about registration.jsp is the <jsp:useBean> tag shown here:

<jsp:useBean id="user" class="com.apress.faq.User">
 <jsp:setProperty name="user" property="*" />
</jsp:useBean>

This tag creates an instance of the class given by the class attribute. Throughout the
rest of the page, the object can be referred to using the variable user. Enclosed within the
<jsp:useBean> element is a <jsp:setProperty> element. This element uses the property="*"
attribute, which causes the page to find each setXXX method of the given bean, and call
each method with the same named parameter in the request. If you look at the User class,
you will see it has four public setXXX methods: setFirstName(String), setSurname(String),
setLoginName(String), and setAge(int). These methods must be matched by four request
parameters. If you examine registrationform.html, you will see that it does have four form
fields with the correct names: firstName, surname, loginName, and age. The value from each of
these request parameters is used to set the properties of the User bean.

You may recall that the <jsp:setProperty> tag also has an attribute named param. This
attribute is used when the names in the request do not match the names in the bean. For
example, suppose that the web page form had a field named lastName instead of surname and
that you were not allowed to change the web form or the bean. The JSP could not use the
property="*" syntax, because the JSP is not able to match request parameters to bean properties
in this case. The way to set the properties would be to use this syntax:

<jsp:useBean id="user" class="com.apress.faq.User">

Mukhar_470-3.book Page 84 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

C H A P T E R 3 ■ J A V A S E R V E R P A G E S 85

 <jsp:setProperty name="user" property="surname" param="lastName"/>
</jsp:useBean>

Using this syntax, the page knows that it can set the bean’s surname property using the
value of the request parameter called lastName.

Although it is shown enclosed within the <jsp:useBean> element, you can use
<jsp:setProperty> any time after the bean is created.

Also, because the bean is created with session scope, the implementation class will store
the object in the session. Notice that there is no code in the JSP source file to do this. The code
to store the bean in the session is generated when the JSP is translated into a class. Storing the
bean in the implicit session object makes it available to every component in the application.
Thus, when the welcome.jsp page is called again, it will find the bean object in the session.

Then the page prints the values of the User bean’s properties. For the first property, a JSP
expression is used to print the property. For the remainder of the properties, the
<jsp:getProperty> element is used. The reason for doing this is simply to show different ways
of printing bean properties.

<p>Your first name is <%= user.getFirstName() %></p>
<p>Your last name is
 <jsp:getProperty name="user" property="surname" />.</p>

The page then prints the remainder of the request parameters. These are the values of the
check boxes that were checked in the form. The page calls the method, and then prints every
element in the String array returned by the method. Notice that the web browser submits values
only for the boxes that were checked. Finally, the JSP prints a link to the welcome.jsp page.

When welcome.jsp is called this time, the User object exists in the session, so the JSP
outputs the topic list.

Translation and Compilation
As you develop and test JSP pages, you may have noticed that the first time you access a new
page, there is some delay before the page is sent to the browser. This is a result of the server
translating and compiling the page at request time. After the page has been translated and
compiled, subsequent requests to the page are processed more quickly.

When a page is translated, whether at request time or earlier, it is translated into a Java
source file. This Java class is known as a Servlet. As noted earlier, much of what a JSP does is
based on the Servlet API, another API within Java EE. In fact, the Servlet API predates the JSP API.

Servlets were developed to allow a server’s capabilities to be extended by Java code that
ran inside the server. HttpServlets are Servlets that run inside an HTTP server. A Servlet
accepts HTTP requests from clients and creates dynamic responses to those requests. It sends
response data to the client through an OutputStream. The Servlet uses a session object to store
data about a client and the client’s interactions with the server. The Servlet has access to the
application through a ServletContext object, and it can access Servlet parameters through a
ServletConfig object. In fact, all the features of JSP pages described in this chapter are based
on the Servlet model.

Mukhar_470-3.book Page 85 Saturday, October 1, 2005 6:14 AM

86 C H A P T E R 3 ■ JA V A S E R V E R P A G E S

So, if Servlets can do everything JSP pages can do, why do you need JSPs? If a JSP page is an
HTML page with bits of embedded code, a Servlet is Java code with bits of HTML. However, the
larger the web application, the more HTML tends to be in the Java code. This becomes very
difficult to maintain, especially if your team has web experts who are not programmers.

Servlets tend to be good at computations and processing. JSP pages tend to be good at data
presentation. The JSP specification was created to make it easier for web developers to create
dynamic user interfaces and web applications. By embedding Java code into JSPs, the pages
can dynamically respond to user requests. Unfortunately, this leads to the opposite of the
problem found with Servlets: as the web application gets larger, the more Java code tends to be
embedded in the JSPs. This becomes very hard to maintain, especially if your team has
programmers who are not web experts.

If only there were a way to get all the HTML out of Servlets, and all the Java code out of JSP
pages. That way, programmers could work on the Servlets, and web designers could develop
the JSP pages. In Chapter 4, you will see how to use Expression Language, custom actions, and
tag libraries to achieve this goal.

So, although you don’t need to be a Servlet expert to work with JSPs, knowing how Servlets
work can help you to understand what is happening with the page. We’ll look at Servlets in
detail in Chapter 6. Here, we’ll just take a quick look at a translated JSP to see how the JSP page
is translated into code that implements a Java Servlet. (We will focus on only some of the lines
that show the relationship between the JSP source and the Java source.)

Most servers will keep the translated .java source file in the file system, so you can examine it.
For Sun’s Java EE server, that location is JAVAEE_HOME\domains\{domain}\ generated\jsp\
j2ee-modules\{app name}\org\apache\jsp, where JAVAEE_HOME is the location of the Java EE
installation on your system (/Sun/AppServer for Windows), {domain} is the domain name used
when you start your server (domain1 is the default), and {app name} is the name of the applica-
tion. For the stand-alone Tomcat server, that location is TOMCAT_HOME\work\Catalina\localhost\
application_context\org\apache\jsp, where TOMCAT_HOME is the appropriate location of the
Tomcat installation on your system.

If you have deployed the examples in this chapter, navigate to the appropriate directory
and open the source file for the welcome.jsp page. The Java EE reference implementation and
Tomcat both name the source file as welcome_jsp.java.

■Note The example in this section is the welcome_jsp.java source file created by Tomcat 5.028 for the
previous example. Your Java source file may differ, depending on which server you have and which source
file you are viewing.

One of the first things you will notice is that the import attribute of the page directive has
been turned into import statements:

Mukhar_470-3.book Page 86 Saturday, October 1, 2005 6:14 AM

C H A P T E R 3 ■ J A V A S E R V E R P A G E S 87

package org.apache.jsp;

import javax.servlet.*;
import javax.servlet.http.*;
import javax.servlet.jsp.*;
import java.util.Iterator;
import com.apress.faq.*;

This is followed by the class statement:

public final class welcome_jsp
 extends org.apache.jasper.runtime.HttpJspBase
 implements org.apache.jasper.runtime.JspSourceDependent {

Notice that the class extends HttpJspBase. In Chapter 6, you will see that Servlets in a web
application extend HttpServlet.

Next, you will see that the two declarations in the JSP page have been turned into a variable
declaration and a public method declaration in the Java source. Note that the variable is declared
as a member variable of the class, and so it is accessible from all the methods in the class:

FaqCategories faqs = new FaqCategories();

public String replaceUnderscore(String s) {
 return s.replace(' ','_');
}

The main body of the JSP is contained in the _jspService() method:

 public void _jspService(HttpServletRequest request,
 HttpServletResponse response)
 throws java.io.IOException, ServletException {

 JspFactory _jspxFactory = null;
 PageContext pageContext = null;
 HttpSession session = null;
 ServletContext application = null;
 ServletConfig config = null;
 JspWriter out = null;
 Object page = this;
 JspWriter _jspx_out = null;
 PageContext _jspx_page_context = null;

In the Servlet API, the analogous method is service(). This method starts by declaring the
implicit objects that are used when servicing a request. Of course, they are not so implicit now
that the translator has added the code to declare and initialize them.

Mukhar_470-3.book Page 87 Saturday, October 1, 2005 6:14 AM

88 C H A P T E R 3 ■ JA V A S E R V E R P A G E S

Next is code that initializes all the implicit objects. Although we will not look at all the
translated code, we do want to show one last snippet from the _jspService() method:

out.write(" <body>\r\n");
out.write(" <h1>Java FAQ Welcome Page</h1>\r\n");
out.write("\r\n");

User user = (User) session.getAttribute("user");
if (user == null) {

 out.write("\r\n");
 out.write(" You are not yet registered, please\r\n");
 out.write(" register.\r\n");

This is part of the code that outputs the template data to the client. Notice that the trans-
lated code uses the same implicit out object that the JSP can use. Also notice that the white
space from the JSP source file is preserved in the Java source file. A Servlet implementing the
same page would similarly output the HTML template data using print statements. However,
with a Servlet, you would need to code those statements manually. With a JSP page, it is much
easier to write the template data as HTML and let the container perform the translation to
Java code.

Earlier in the chapter, we stated that you could declare and define a jspInit() method and
a jspDestroy() method. If you define those methods in the JSP, they will appear as additional
methods in the Java source file.

Handling Errors and Exceptions
If you’ve typed in any of the examples in this chapter, or if you have created any JSP pages of
your own, you have probably run into the situation where you had bugs in your page. Whether
these bugs occur at translation time or at request time affects the response that you see in the
browser when you attempt to test your page. Sometimes, you see a very ugly stack trace. Well,
maybe not ugly to you, as the developer, but you don’t want any of the users of your application
to see anything so unfriendly.

Java web applications can deal with exceptions in a number of ways. Obviously, some
exceptions can be handled as you develop the web application by adding data validation and
try-catch blocks into the code. This technique avoids the exceptions. However, you need a way
to deal with unexpected exceptions. Two ways to deal with unexpected exceptions are through
the page directive and through the deployment descriptor.

Dealing with Exceptions through the page Directive
You have already seen how to include a page directive in your JSP page. The page directive can
have an attribute named errorPage. Whenever an uncaught exception occurs in that particular
page, the server sends the specified error page to the client. This allows you to use different
error pages for different components in the application. The errorPage attribute looks like this:

<%@ page errorPage="/WEB-INF/errorPage.jsp" %>

Mukhar_470-3.book Page 88 Saturday, October 1, 2005 6:14 AM

C H A P T E R 3 ■ J A V A S E R V E R P A G E S 89

The value of the errorPage attribute is the path to the error page file. The drawback is that you
can specify only a single error page for all exceptions in the JSP page.

Dealing with Exceptions in the Deployment Descriptor
The deployment descriptor allows you to specify application-wide error handlers for errors in
the application. This provides a way to specify different error pages for exceptions that might
occur within a single page. If a given exception or HTTP error occurs anywhere in the application,
the deployment descriptor identifies an error page that can be served to the client. A specific
error page identified in a JSP page takes precedence over the error page identified in the
deployment descriptor.

You can specify error pages for Java exceptions and for HTTP errors. Error page elements
come immediately after the <welcome-file-list> element in the deployment descriptor.

To specify an error page for a Java exception, use this element in the deployment descriptor:

<error-page>
 <exception-type>java.lang.NumberFormatException</exception-type>
 <location>/WEB-INF/BadNumber.htmljsp</location>
</error-page>

To specify an error page for an HTML error, use this element:

<error-page>
 <error-code>404</error-code>
 <location>/WEB-INF/NoSuchPage.jsp</location>
</error-page>

From these two examples, you can see that the <error-page> element is relatively easy to
use. The body of each <error-page> element contains two subelements.

First, there must be either an <exception-type> element or an <error-code> element. The
value of <exception-type> must be the fully qualified class name of an exception that could
occur in the web application. This can be any exception, not just standard Java API exceptions.
The value of <error-code> must be a valid HTTP error code as defined by the HTTP specification.
A complete list of the HTTP error codes can be found in the HTTP specification at http://
www.w3.org/Protocols/rfc2616/rfc2616-sec10.html.

The second subelement is the <location> element. The value of this element must be the
relative URL of the error page to be sent to the client when the container catches the exception
specified in the <exception-type> subelement or the error code specified in the <error-code>
subelement. The specification also requires that the URL begin with a leading forward slash (/).
This page is located relative to the web application context. So, for example, if your web application
is located at http://localhost:8080/Jsp_Ex03, the page listed in the preceding snippet for error
code 404 would be located at http://localhost:8080/Jsp_Ex03/WEB-INF/NoSuchPage.jsp.

Adding Exception Handling in JSP Pages
Let’s take the Java FAQ example and add error handling to it. The structure of the web application
is shown in Figure 3-17.

Mukhar_470-3.book Page 89 Saturday, October 1, 2005 6:14 AM

90 C H A P T E R 3 ■ JA V A S E R V E R P A G E S

Figure 3-17. Directory structure for the third JSP example

As in the second example in this chapter, any files not explicitly shown here are the same
as in previous examples, and you can refer to earlier listings for their source. Listing 3-11 is a
new page in the Java FAQ application. The page is Threading.jsp, and it is located in the root
directory of the application (the same directory where welcome.jsp is located).

Listing 3-11. Threading.jsp

<%@ page errorPage="/WEB-INF/errorPage.jsp" %>
<html>
 <head><title>Threading FAQs</title></head>
 <body>
<% Integer i = new Integer("string"); %>
 </body>
</html>

If you examine this JSP, you should see that it will throw a java.lang.NumberFormatException
as soon as it is called. This is a deliberate exception.

Next, modify errorPage.jsp as shown in Listing 3-12.

Listing 3-12. Revised errorPage.jsp

<%@ page isErrorPage="true" import="java.io.PrintWriter" %>

<html>
 <head>
 <title>Error</title>
 </head>
 <body>

Mukhar_470-3.book Page 90 Saturday, October 1, 2005 6:14 AM

C H A P T E R 3 ■ J A V A S E R V E R P A G E S 91

 <h1>Error</h1>
 There was an error somewhere.
 <p>Here is the stack trace
 <p><% exception.printStackTrace(new PrintWriter(out)); %>
<%@ include file="/WEB-INF/footer.jspf" %>
 </body>
</html>

Create the JSP Dates_and_Times.jsp as shown in Listing 3-13.

Listing 3-13. Dates_and_Times.jsp

<html>
 <head>
 <title>Dates and Times FAQ</title>
 </head>

 <body>
 <h1>Dates and Times FAQ</h1>
<% Integer i = new Integer("string"); %>
<%@ include file="/WEB-INF/footer.jspf"%>
 </body>
</html>

This JSP will also throw a NumberFormatException when it is called.
Now, create two JSP pages that will be used as error pages. The first is NoSuchPage.jsp, and

it is located in the WEB-INF directory. It is shown in Listing 3-14.

Listing 3-14. NoSuchPage.jsp

<html>
 <head>
 <title>Resource Not Found</title>
 </head>

 <body>
 <!--
This is an html comment to ensure the page has enough characters
so that IE displays the page. See the sidebar.
123456789012345678901234567890123456789012345678901234567890
123456789012345678901234567890123456789012345678901234567890
123456789012345678901234567890123456789012345678901234567890
123456789012345678901234567890123456789012345678901234567890
123456789012345678901234567890123456789012345678901234567890
1234567890123456789012345678901234

Mukhar_470-3.book Page 91 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

92 C H A P T E R 3 ■ JA V A S E R V E R P A G E S

 -->
 <h1>Resource Not Found</h1>
 You are attempting to go to a page that does not exist
 or is not available. If you entered the address by hand,
 please go to the Welcome Page.

 <p>If you clicked on a link on this site, the page is
 temporarily unavailable. Try again later.
<%@ include file="/WEB-INF/footer.jspf"%>
 </body>
</html>

■Note In Listings 3-14 and 3-15, you’ll notice that each JSP has an HTML comment embedded in the page
to bring the size of the JSP up to 1024 bytes. This is due to a feature of Microsoft Internet Explorer that causes
Internet Explorer to display its own error page when the server sends a response page under a certain size
with an HTTP status code of 500. The errorPage.jsp file did not need this comment because including a
stack trace adds enough characters.

The second error page is shown in Listing 3-15 and is named BadNumber.jsp. It is also
located in the WEB-INF directory.

Listing 3-15. BadNumber.jsp

<html>
 <head>
 <title>Invalid Number</title>
 </head>

 <body>
 <!--
This is an html comment to ensure the page has enough characters
so that IE displays the page. See the sidebar.
123456789012345678901234567890123456789012345678901234567890
123456789012345678901234567890123456789012345678901234567890
123456789012345678901234567890123456789012345678901234567890
123456789012345678901234567890123456789012345678901234567890
123456789012345678901234567890123456789012345678901234567890
123456789012345678901234567890123456789012345678901234567890
123456789012345678901234567890123456789012345678901234567890
123456789012345678901234567890123456789012345678901234567890
1234567890123456789012345

Mukhar_470-3.book Page 92 Saturday, October 1, 2005 6:14 AM

C H A P T E R 3 ■ J A V A S E R V E R P A G E S 93

 -->
 <h1>Invalid Number</h1>
 You entered a number that is incorrect.
 Only digits are allowed. Please press the
 back button and try again.
<%@ include file="/WEB-INF/footer.jspf"%>
 </body>
</html>
</html>

If you are using Tomcat, create the deployment descriptor as shown in Listing 3-16.

Listing 3-16. web.xml for Jsp_Ex03

<?xml version='1.0' encoding='UTF-8'?>
<web-app
 version="2.5"
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee ➥

 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">
 <display-name>Jsp_Ex03</display-name>
 <servlet>
 <display-name>welcome</display-name>
 <servlet-name>welcome</servlet-name>
 <jsp-file>/welcome.jsp</jsp-file>
 </servlet>
 <welcome-file-list>
 <welcome-file>welcome.jsp</welcome-file>
 </welcome-file-list>
 <error-page>
 <exception-type>java.lang.NumberFormatException</exception-type>
 <location>/WEB-INF/BadNumber.jsp</location>
 </error-page>
 <error-page>
 <error-code>404</error-code>
 <location>/WEB-INF/NoSuchPage.jsp</location>
 </error-page>
</web-app>

Mukhar_470-3.book Page 93 Saturday, October 1, 2005 6:14 AM

94 C H A P T E R 3 ■ JA V A S E R V E R P A G E S

If you are using the Java EE Deployment Tool, modify the File Refs tab for the WebApp as
shown in Figure 3-18. You need to add two entries to the Error Mapping list. One entry is for
java.lang.NumberFormatException, and the resource to be called for this exception is /WEB-INF/
BadNumber.jsp. The second entry is for HTTP error code 404, and the resource for this error is
/WEB-INF/NoSuchPage.jsp.

Figure 3-18. The File Refs tab in the Java EE Deployment Tool can be used to create error page
mappings for errors that occur in the web application.

Deploy the application as described earlier in this chapter. Then open a browser and navigate
through the screens until you reach the topic list page, as shown in Figure 3-19.

Click the link for Threading. The page displayed is shown in Figure 3-20.

Mukhar_470-3.book Page 94 Saturday, October 1, 2005 6:14 AM

C H A P T E R 3 ■ J A V A S E R V E R P A G E S 95

Figure 3-19. The topic list page

Figure 3-20. The errorPage.jsp page is called when Threading.jsp throws an exception.

Click the link for Dates and Times. You will see a page similar to Figure 3-21.

Mukhar_470-3.book Page 95 Saturday, October 1, 2005 6:14 AM

96 C H A P T E R 3 ■ JA V A S E R V E R P A G E S

Figure 3-21. The BadNumber.jsp page is called when Dates_and_Times.jsp throws a
java.lang.NumberFormatException.

Click the link for Strings and StringBuffers. You will see the page shown in Figure 3-22.

Figure 3-22. When the String and StringBuffers page cannot be found, NoSuchPage.jsp is called.

Mukhar_470-3.book Page 96 Saturday, October 1, 2005 6:14 AM

C H A P T E R 3 ■ J A V A S E R V E R P A G E S 97

Three pages were added to the application, each of which causes a different error-handling
mechanism to control the page flow.

The Threading.jsp page included a page directive that specified the error page. Since
Threading.jsp attempts to create an Integer object with an invalid argument to the constructor, an
exception is thrown, and the page does not have an error handler to catch the exception. This
causes the server to call the error page specified by the page directive, and that page is sent to
the client.

The error page, errorPage.jsp, has access to the implicit exception object. This is because
the page includes the page directive with the isErrorPage attribute set to true. Pages that don’t
have this attribute do not have access to the exception object. You can use this object together
with the implicit out object to print out the stack trace to the response, like this:

<p><% exception.printStackTrace(new PrintWriter(out)); %>

This works because the java.lang.Throwable interface defines a printStackTrace➥

(PrintWriter) method. The PrintWriter constructor can take an OutputStream instance, which
is exactly the type of the implicit out object. The method prints the stack trace to the given
PrintWriter.

■Note Keep in mind that you wouldn’t print a stack trace in a live page meant for a user of the application.
It provides no useful information for users, and just gives them a bad feeling about your application. The
example here is just intended to demonstrate that you can access the implicit exception object in an error page.

The Date_and_Times.jsp also uses an Integer object to cause an exception to be thrown
from the page. However, this page does not specify an error page in the page directive. In this
case, the server matches the exception thrown to an exception specified in an <error-page>
element in the deployment descriptor. The server sends the BadNumber.html page to the client.
If the exception did not match a specification in the deployment descriptor, the server would
probably have sent an HTTP 500 error to the client.

Finally, the Strings_and_StringBuffer.jsp page does not exist. This creates an HTTP 404
error in the server. Since this error code matches an error code specified in an <error-page>
element in the deployment descriptor, the server sends the specified page to the client. If the
error code had not matched a specification in the deployment descriptor, the server would
have taken some server-specific action. Some servers, such as Tomcat, may send a server-
specific page back to the client with the error; other servers might simply send the error code
to the browser and let the browser decide how to display the error to the user.

Mukhar_470-3.book Page 97 Saturday, October 1, 2005 6:14 AM

98 C H A P T E R 3 ■ JA V A S E R V E R P A G E S

IS IT A BUG OR A FEATURE?

The first edition of this book was written with J2EE SDK 1.4 Beta 1 and Tomcat 4.0 as the Servlet container.
When we developed the example showing how to use error pages, it worked perfectly. When you clicked the
link for a bad page, the server would respond with the correct error page.

Then Sun released new versions of the Java EE SDK and moved to Tomcat 5.0 as the Servlet container.
When we tested the error page example with the new server, error pages stopped working as we expected.

We tried almost everything: We moved the pages to different locations, we played with the values of the
<error-page> element, and we tried changing the error page JSPs to HTML pages. Nothing resolved the issue.

After thrashing around and getting nowhere, we searched for “error page not working with Tomcat 5”
using Google. In the results, we found several pages that showed that others had the same problem we had
seen. For example, the search results listed a page in the Apache bug database for Bug 21341 (http://
issues.apache.org/bugzilla/show_bug.cgi?id=21341), which described the exact same problem:
Error pages that worked with Tomcat 4 no longer worked with Tomcat 5. In the resolution, a developer talked
about an incorrect method being invoked in the error case and provided a patch to Tomcat. Another developer
responded and said that patch was probably bad. However, other bug listings claimed that there was no
problem and that error page dispatching worked correctly. Based on the evidence of our example, we believed
that users were right and the developers were wrong: Error page dispatching was broken.

Then we took another look at Bug 21341. Bug 21341 had a clue that we missed earlier. It said that
Microsoft Internet Explorer does not show the error page if the message size is less than some number. Then
we found Bug 29505 (http://issues.apache.org/bugzilla/show_bug.cgi?id=29505), which was
even more specific information. It showed that when there was an error page returned by the application,
Tomcat 4 returned HTTP status code 200, while Tomcat 5 returned status code 500. It also stated that Internet
Explorer displays its internal error page if the response has less than 512 bytes.

Suddenly, it made sense! Java EE and Tomcat weren’t broken; we had been bitten by an Internet Explorer
bug—oops, we mean feature. We went back to the sample code and added an HTML comment until the error
pages were displayed by Internet Explorer. On our system, it turned out that we needed the file size of the error
pages to be 1024 bytes. (On another system we tested, the error pages worked when they were 512 bytes.)
Now when we clicked the links to go to the example pages, Internet Explorer correctly displayed the error pages we
had developed. Of course, if you are using some other web browser, you may not see this problem at all.

Including and Forwarding from JSP Pages
JSP pages have the ability to include other JSP pages or Servlets in the output that is sent to a client,
or to forward the request to another JSP page or Servlet for servicing. This is accomplished through
the standard actions <jsp:include> and <jsp:forward>, mentioned earlier in the chapter.

include Action
Including a JSP page or Servlet through a standard action differs from the include directive in
the time at which the other resource is included and how the other resource is included. Recall
that an include directive can be used in either of the following two formats, anywhere within
the JSP:

Mukhar_470-3.book Page 98 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

C H A P T E R 3 ■ J A V A S E R V E R P A G E S 99

<%@ include file="/WEB-INF/footer.jspf">
<jsp:directive.include file="/WEB-INF/footer.jspf"/>

When the JSP container translates the page, this directive causes the indicated file to be
included in that place in the page and become part of the Java source file that is compiled into
the JSP page implementation class; that is, it is included at translation time. Using the include
directive, the included file does not need to be a complete and valid JSP page.

With the include standard action, the JSP file stops processing the current request and
passes the request to the included file. The included file passes its output to the response. Then
control of the response returns to the calling JSP, which finishes processing the response. The
output of the included page or Servlet is included at request time. Components that are included
via the include action must be valid JSP pages or Servlets.

The included file is not allowed to modify the headers of the response, nor to set cookies in
the response.

The syntax of the include action is:

<jsp:include page="URL" flush="true|false">
 <jsp:param name="paramName" value="paramValue"/>
</jsp:include>

For the include element, the page attribute is required, and its value is the URL of the
page whose output is included in the response. This URL is relative to the JSP page. The flush
attribute is optional, and it indicates whether the output buffer should be flushed before the
included file is called. The default value is false.

If the JSP needs to pass parameters to the included file, it does so with the <jsp:param>
element. One element is used for each parameter. This element is optional. If it is included,
both the name and value attributes are required. The included JSP page can access the parameters
using the getParameter() and getParameterValues() methods of the request object.

forward Action
With the forward action, the current page stops processing the request and forwards the request
to another web component. This other component completes the response. Execution never
returns to the calling page. Unlike the include action, which can occur at any time during a
response, the forward action must occur prior to writing any output to the OutputStream. In
other words, the forward action must occur prior to any HTML template data in the JSP, and
prior to any scriptlets or expressions that write data to the OutputStream. If any output has
occurred in the calling JSP, an exception will be thrown when the forward action is encountered.

The format of the forward element is as follows:

<jsp:forward page="URL">
 <jsp:param name="paramName" value="paramValue"/>
</jsp:forward>

The meaning and use of the attributes and of the <jsp:param> element are the same as
those for the include action.

Mukhar_470-3.book Page 99 Saturday, October 1, 2005 6:14 AM

100 C H A P T E R 3 ■ JA V A S E R V E R P A G E S

Adding include and forward Actions to JSP Pages
In this last example of the chapter, you will modify the Java FAQ application to use forward
actions to control the application flow. Figure 3-23 shows the application structure.

Figure 3-23. Directory structure for the fourth JSP example

Start by modifying welcome.jsp as shown in Listing 3-17.

Lisitng 3-17. Revised welcome.jsp for Forwarding

<%@ page errorPage="/WEB-INF/errorPage.jsp"
 import="java.util.Iterator, com.apress.faq.*" %>

<%
 User user = (User)session.getAttribute("user");
 String reqType = request.getParameter("reqType");
 if (user == null && reqType == null) {
%>
 <jsp:forward page="registrationform.html"/>
<%
 } else if (user == null && reqType != null) {
%>
 <jsp:forward page="registration.jsp">
 <jsp:param name="submitTime"
 value="<%=(new java.util.Date()).toString()%>" />
 </jsp:forward>
<%
 }
%>

Mukhar_470-3.book Page 100 Saturday, October 1, 2005 6:14 AM

C H A P T E R 3 ■ J A V A S E R V E R P A G E S 101

<html>
 <head>
 <meta name="Cache-control" content="no-cache">
 <title>Java FAQ Welcome Page</title>
 </head>

 <body>
 <h1>Java FAQ Welcome Page</h1>
 Welcome to the Java FAQ

<%! FaqCategories faqs = new FaqCategories(); %>
Click a link below for answers to the given topic.
<%
 Iterator categories = faqs.getAllCategories();
 while (categories.hasNext()) {
 String category = (String) categories.next();
%>
 <p><a href="<%= replaceUnderscore(category) %>.jsp">
 <%= category %></p>
<%
 }
%>

<%@ include file="/WEB-INF/footer.jspf" %>
 </body>
</html>

<%!
public String replaceUnderscore(String s) {
 return s.replace(' ','_');
}
%>

The next modified file is registrationform.html. Only the single line that contains the
form tag needs to be modified, as shown in Listing 3-18.

Listing 3-18. Revision to registrationForm.jsp for Forwarding

<html>
 <head>
 <title>Registration Page</title>
 </head>
 <body>
 <h1>Registration Page</h1>

 <form action="welcome.jsp?reqType=register" method="POST">
 <table>

Mukhar_470-3.book Page 101 Saturday, October 1, 2005 6:14 AM

102 C H A P T E R 3 ■ JA V A S E R V E R P A G E S

<!-- The remainder of registrationform.html is the same as before,
 so it is not shown here -->

A single new line of code has been added to the registration.jsp file; only the applicable
snippet is shown here in Listing 3-19.

Listing 3-19. Revision to registration.jsp for Forwarding

<% String[] topics = request.getParameterValues("topics");
 if (topics == null) { topics = new String[] {"No topics"}; }
 for (int i = 0; i < topics.length; i++) {
%>

<%= topics[i] %>
<%
 }
%>
 <p>This request was submitted at
 <%= request.getParameter("submitTime") %>
 <p>Go to Topic List Page</p>
 <%@ include file="/WEB-INF/footer.jspf" %>
 </body>
</html>

Listing 3-20 shows the revised errorPage.jsp. This file now has an include action in addition
to the include directive for the standard footer.

Listing 3-20. Revised errorPage.jsp for Forwarding

<%@ page isErrorPage="true" import="java.io.PrintWriter" %>

<html>
 <head>
 <title>Error</title>
 </head>
 <body>
 <h1>Error</h1>
 There was an error somewhere.
 <p>Here is the stack trace
 <p>
 <% request.setAttribute("ex", exception); %>
 <jsp:include page="formatStackTrace.jsp" />
<%@ include file="/WEB-INF/footer.jspf" %>
 </body>
</html>

The JSP page included by the include action in errorPage.jsp is shown in Listing 3-21. It is
named formatStackTrace.jsp.

Mukhar_470-3.book Page 102 Saturday, October 1, 2005 6:14 AM

C H A P T E R 3 ■ J A V A S E R V E R P A G E S 103

Listing 3-21. formatStackTrace.jsp

<%@ page import="java.io.PrintWriter" %>
<%
 out.println("<pre>");
 Throwable t = (Throwable) request.getAttribute("ex");
 if (t != null) {
 t.printStackTrace(new PrintWriter(out));
 }
 out.println("</pre>");
%>

Create the web application with these new files and the files you developed in previous
examples. Deploy the application to the Java EE server or the stand-alone Tomcat server. For the
Java EE server, use the same web application settings as in the previous example (Figure 3-18). For
Tomcat, you can use the same deployment descriptor as in the previous example (Listing 3-16).

Open a browser and enter the appropriate address for the welcome.jsp page. The browser
will display the registration form page. Enter some values on the registration form page, and
then click the Submit button. The browser will display the registration page. Click the link in
the registration page, and the browser will display the welcome page with the topic list. If the
topic list is not displayed, your browser has probably cached the welcome page. Click the
Refresh button to get the correct page. Click the Threading topic link. The browser will display
the errorPage.jsp page with a nicely formatted stack trace, as shown in Figure 3-24.

Figure 3-24. The error page includes the output of another JSP to format the stack trace.

Mukhar_470-3.book Page 103 Saturday, October 1, 2005 6:14 AM

104 C H A P T E R 3 ■ JA V A S E R V E R P A G E S

The first thing the welcome.jsp page does now is to check for the existence of the user object,
as previously, and for a request parameter with the name reqType. As before, the user object is
put into the session by the registration.jsp; the reqType parameter will be added to the request by
the registrationform.html page. If both of these are null, neither the registrationform.html
page nor the registration.jsp page has been called, so the welcome.jsp page forwards the
request to the registrationform.html page.

If you look at the registrationform.html, you will see that the action attribute of the
<form> tag has been modified to add a request parameter to the URL. When the Submit button
is clicked, the form submits to welcome.jsp. This method of submitting request parameters in
the URL is known as URL encoding. This time, welcome.jsp finds that the user object is still null,
but that the reqType parameter has a value. Since this indicates that the registrationform.html
page has been visited, but the registration has not been submitted, welcome.jsp forwards the
request to registration.jsp; it includes another request parameter with the request using the
<jsp:param> element.

■Note This flow is artificially complicated, because it probably makes more sense to have
registrationform.html submit directly to registration.jsp. The main reason for submitting to
welcome.jsp is to provide several different examples of the use of the <jsp:forward> action. However,
there is a little justification for having all requests go through the welcome.jsp page. This is a very simple
example of something known as a Model 2, or Model-View-Controller (MVC), architecture. With a Model 2
architecture, one component acts as a controller, directing the requests to the component that is set up to
handle a particular request. We will look at the Model 2 architecture in more detail in Chapter 6.

The registration.jsp page performs the same actions as in previous examples, with the
addition of reading the new request parameter added by welcome.jsp and displaying the value
of that parameter. When you click the link, the request is again sent to welcome.jsp. This final
time, both user and reqType are not null, so welcome.jsp does not forward the request, but
instead completes the response itself.

Clicking the Threading topic link again calls Threading.jsp, which still causes a
NumberFormatException. This time, however, errorPage.jsp includes formatStackTrace.jsp.
The formatStackTrace.jsp page outputs the stack trace just as older versions of errorPage.jsp did,
but it wraps it in a <pre> tag, so that the stack trace is nicely formatted.

Summary
In this chapter, we’ve taken a tour of many of the basic features of JSP pages. With the informa-
tion in this chapter, you should be able to begin creating JSP web applications of your own.
After reading this chapter, you should know:

• JSP pages consist of HTML data, also known as template data, and Java code. Before a JSP
can process a request, it must be compiled into a page implementation class and deployed
to a JSP container.

Mukhar_470-3.book Page 104 Saturday, October 1, 2005 6:14 AM

C H A P T E R 3 ■ J A V A S E R V E R P A G E S 105

• You can specify an error page for a JSP using <%@page errorPage=""%>. Error pages are
used to provide meaningful error information to a user when something bad happens to
the web application.

• You can import Java packages for the page using <% page import="" %>.

• Java code is included in the page using a declaration <%! declaration %>, a scriptlet
<% scriptlet %>, or an expression <%= expression %>. These elements allow you to mix
Java code with the template data in the page.

• JavaBean instances can be created using the <jsp:useBean> standard action; properties
of the bean can be set using <jsp:setProperty>; and the value of a bean’s properties can
be obtained using <jsp:getProperty>. JavaBeans are one way to encapsulate business or
domain logic so that JSP pages can be used primarily for presentation.

• Various implicit objects—such as request, response, out, session, and so on—are always
available to the JSP to help process a request. The session object is particularly useful
because it enables the web application to keep track of user information, such as the
contents of a user’s shopping cart in an e-commerce application.

• Servers translate and compile JSPs into Java classes that behave like Servlets.

• You can specify error handlers for the entire application using the <error-page> element
in the deployment descriptor.

• A JSP can include the output of other JSPs or Servlets in the response to clients. This is
done through the <jsp:include> standard action.

• A JSP can forward a request to another JSP or Servlet for processing. This is done through
the <jsp:forward> standard action.

That’s quite a lot. All these features put together allow application developers to create
dynamic and powerful web applications that can be used for many purposes—from chat rooms
to e-commerce, and from virtual communities to business applications. However, you may
have noticed that as the examples in this chapter became more dynamic and full-featured,
they also tended to have more and more Java code interspersed in the JSP pages. This tends to
be a problem because web page developers are often not Java developers.

What would be ideal is a way to create JSP pages that hide the Java code from the page
developers. This would allow the page developer to concentrate on the format and structure of
the markup, and leave Java developers free to work on only the Java code. There are several
ways to do this, and you will see some of them in the next chapter, where we explore some of
the new JSP features introduced in the latest version of the JSP specification.

Exercises
1. Declare an init and a destroy method in a JSP. Include some debug output so that you

can see when these methods are called. Deploy the JSP and determine when these
methods are called. (Depending on your container, you may not see the output from
the destroy method.)

Mukhar_470-3.book Page 105 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

106 C H A P T E R 3 ■ JA V A S E R V E R P A G E S

2. Write additional JSP pages for the Java FAQ application that allow a user to submit a
question and answer a question.

3. Create a JSP web application that presents a quiz to the user. Use a JSP page to present
each question one at a time to the user. Use the same page to accept the answer submitted
by the user. (That is, the HTML created by the page should submit the answer to the
same JSP page.) The page should determine whether or not the answer is correct,
compute the current score of the user, select a graphic that illustrates the current status,
and select the next question—this is all put into the response back to the client.

4. Create a JSP that echoes the request data back to the client. You can use implicit objects
such as request and session to retrieve the request data.

Mukhar_470-3.book Page 106 Saturday, October 1, 2005 6:14 AM

107

■ ■ ■

C H A P T E R 4

Advanced JSP Topics

The previous chapter introduced you to JSP and provided enough information to enable you to begin writing
and using those web components. However, the previous chapter only scratched the surface of what can be
done with JSP pages.

You may have noticed in the previous chapter that as the examples became more involved, the
JSP source pages became littered with a lot of Java code. This is fine if the JSP developer is also
a software developer, but not so good if the page developer knows little or nothing about Java.
One of the design goals for JSP 2.0 was to make it easier to use without needing to learn how to
program in Java. In this chapter, we’ll look at some of the ways that the Java code inside the JSP
page can be moved back to the realm of the software developer, leaving the page designer free
to concentrate on presentation and usability.

In this chapter, you will learn:

• How to use Expression Language (EL) to simplify expressions in JSP pages

• How to create custom actions

• How to use the JSP Standard Tag Library (JSTL) in your JSP pages

■Note Some of the material in this chapter has been in use for a while as part of earlier JSP specifications.
Other material comes from the JSP 2.0 and JSP 2.1 specifications, and so is relatively new. For the examples
in this chapter that rely on new JSP 2.0 features, you will need to use a server that supports JSP 2.0, such
as J2EE 1.4, Java EE 5.0, Tomcat 5.0, or Tomcat 5.5. (Tomcat 5.0 is designed to run under Java 2 version 1.4;
Tomcat 5.5 is designed to run under Java 2 version 5.) For JSP 2.1 and EL 2.1, you will need a server that
supports JSP 2.1 and EL 2.1. For details about JSP 2.0 see the JSP 2.0 specification (http://jcp.org/
aboutJava/communityprocess/final/jsr152/). For details about JSP 2.1 or EL 2.1, see the JSP 2.1
or EL 2.1 specification (http://jcp.org/aboutJava/communityprocess/edr/jsr245/index.html).

Expression Language
In the previous chapter, you saw how to create scripting elements that can be used to embed
Java code in the JSP file. Scripting elements include Java declarations, scriptlets, and expressions,
as in these examples:

Mukhar_470-3.book Page 107 Saturday, October 1, 2005 6:14 AM

108 C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S

<%! int a = 5; %> <%-- declaration --%>
<% while (x < 10) { out.write("x=" + x); } %> <%-- scriptlet --%>
<%= user.getFirstName() %> <%-- expression --%>

JSP 2.0 adds Expression Language (EL) statements to the JSP toolkit. EL statements provide a
somewhat simpler syntax for performing some of the same actions as the JSP scripting elements.
You can use EL statements to print the value of variables and access the fields of objects in a
page. It has a rich set of mathematical, logical, relational, and other operators, and can be used
to call Java functions. In short, EL makes it easy for nonprogrammers to provide dynamic
behavior in JSP pages. Furthermore, you can use EL statements in scriptless JSP pages. Scriptless
JSP pages are those pages that, for whatever reason, are not allowed to use Java declarations,
scriptlets, or scripting expressions.

■Note EL was added as part of JSP 2.0. Java Server Faces, which we will see in more detail in the next
chapter, implemented a similar EL. JSP 2.1 unifies the two versions.

Scriptless JSPs
You can, of course, write any JSP page without using any declarations, scriptlets, or expressions.
You saw an example of one such page at the beginning of the previous chapter: HelloWorld.jsp.
That page was scriptless by choice. In other words, HelloWorld.jsp could have included Java
declarations, scriptlets, or expressions, but we chose to write it using only standard HTML tags.
You can also force a page to be scriptless; that is, you can configure your web application so
that Java declarations, scriptlets, and expressions cannot be used in JSP pages. One reason for
doing this is to enforce a separation between display elements and business logic.

When you have scriptless pages—pages without Java scriptlets, directives, or declarations—
the dynamic behavior of JSP pages must be provided through other elements such as JavaBeans,
EL statements, custom actions, and standard tag libraries. By encapsulating business logic in
JavaBeans and custom actions, the page designers do not need to learn any Java code. (Using
JavaBeans with JSP was discussed in the previous chapter, and you will see how to use custom
actions and standard tag libraries later in this chapter.) Whether or not your application should
have scriptless JSP pages is a decision you must make based on the requirements and needs of
your application.

With JSP 2.0 and JSP 2.1, you mark a page as scriptless through the deployment descriptor.
EL statements are disabled or enabled through the page directive or through the deployment
descriptor. With earlier JSP versions, you can use the page directive to disable or enable scripting,
but EL is not supported. If a page is marked as scriptless, then the presence of scriptlets, scripting
expressions, and declarations in the page will cause a translation error.

Designating Scriptless Pages with JSP 2.0 or JSP 2.1

Within the <web-app> element of the deployment descriptor, the <jsp-config> element supplies
configuration information for the JSP pages in a web application. Within the <jsp-property-group>
element of <jsp-config>, the <url-pattern> identifies the JSP pages to which the configuration
applies.

Mukhar_470-3.book Page 108 Saturday, October 1, 2005 6:14 AM

C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S 109

Under JSP 2.1, the <scripting-invalid> element defines whether or not scripting is enabled.
The default is false, so scripting elements (scriptlets, declarations, and directives) are not
invalid, and thus are allowed in a JSP. If you explicitly specify true, as follows, then scripting
elements are invalid in a JSP page and will cause a translation error if they occur.

<jsp-config>
 <jsp-property-group>
 <url-pattern>*.jsp</url-pattern>
 <scripting-invalid>true</scripting-invalid>
 </jsp-property-group>
</jsp-config>

Enabling EL Statements with JSP 2.0 or JSP 2.1

EL statements are enabled or disabled through two different techniques:

• You can enable EL statements for particular pages through the page directive.

• You can enable EL statements for whole sets of pages using the deployment descriptor.

The page directive for enabling or disabling EL statements looks like this:

<%@ page isELIgnored="true|false" %>

If the value of the isELIgnored attribute is true, then EL statements in the JSP are ignored and
treated as template data. If the value is false, then EL statements are evaluated. If you do not
use the attribute, the default is false, and EL statements are enabled.

You can also specify EL configuration information in the deployment descriptor. EL state-
ments are evaluated based on the value of the <el-ignored> element of the <jsp-property-group>
element:

<jsp-config>
 <jsp-property-group>
 <url-pattern>*.jsp</url-pattern>
 <el-ignored>true</el-ignored>
 </jsp-property-group>
</jsp-config>

As you might guess, if the value is true, EL statements are ignored and treated as template
data. If the value is false, EL statements are evaluated, and the result of evaluation is sent as
part of the page output. If a JSP source page that matches a URL pattern also contains an
isELIgnored attribute, the attribute in the page directive overrides the value of the <el-ignored>
element in the deployment descriptor. If there is no <el-ignored> element, the default is false,
so that EL statements are not ignored.

You can have multiple <jsp-property-group> elements within the <jsp-config> element,
each with different URL patterns to match. If a resource matches more than one group, the
pattern that is most specific applies.

Also, even though the <scripting-invalid> and <el-ignored> elements were shown
separately, the <jsp-property-group> element can contain both <scripting-invalid> and
<el-ignored> elements.

Mukhar_470-3.book Page 109 Saturday, October 1, 2005 6:14 AM

110 C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S

Designating Scriptless Pages with JSP 1.2 or Earlier

In the event you are stuck with a server that supports only JSP 1.2 or earlier, the methods for
enabling scripting are slightly different. EL is not supported in JSP 1.2 or earlier.

With JSP 1.2, the page directive has an attribute for scripting. The value of the attribute can
be true or false. The page directive for enabling or disabling scripting looks like this:

<%@ page isScriptingEnabled="true|false" %>

The default for isScriptingEnabled is true.
You can also enable scripting in the deployment descriptor. Where the page directive

applies to a single page, the deployment descriptor can apply to whole sets of pages. For
example, to enable scripting, add the following element to the deployment descriptor:

 <jsp-config>
 <jsp-property-group>
 <url-pattern>*.jsp</url-pattern>
 <scripting-enabled>true</scripting-enabled>
 </jsp-property-group>
 </jsp-config>
</web-app>

The <scripting-enabled> element defines whether or not scripting is enabled. The default is true.
You can have multiple <jsp-property-group> elements within the <jsp-config> element,

each with different URL patterns to be matched. If a resource matches more than one group,
the pattern that is most specific applies.

Finally, the isScriptingEnabled attribute of the page directive takes precedence over the
<scripting-enabled> elements of the <jsp-property-group>. So, if the <scripting-enabled>
element is set to false, but a page’s isScriptingEnabled attribute is set to true, then scripting
will be enabled for the page.

Syntax of EL Statements
The basic syntax for an EL statement is as follows:

${expr}

where expr is a valid expression.
If you have a server that supports EL 2.1, you can also use this syntax:

#{expr}

The EL will parse and evaluate ${expr} and #{expr} in exactly the same manner. However,
the JSP 2.1 specification places additional restrictions on where and how ${expr} and #{expr}
can be used. In general, JSP 2.1 specifies ${expr} for expressions that are evaluated immediately
and #{expr} for expressions whose evaluation is deferred. Because of this restriction, you can
use only ${expr} in template text. Both ${expr} and #{expr} can be used to set the value of
attributes in actions.

Mukhar_470-3.book Page 110 Saturday, October 1, 2005 6:14 AM

C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S 111

Valid expressions can include literals, operators, object references (variables), and function
calls. EL statements cannot be nested, so the following expression is not valid:

${ 2 + ${subexpr} }

In the remainder of this chapter, we will use the ${} syntax for all EL statements, but remember
that if you have a server that supports EL 2.1, you can also use #{} where appropriate.

Literals

The EL syntax provides for a number of literal values that can be used in expressions, as shown
in Table 4-1.

Here are some examples of simple expressions and what they evaluate to in a page:

${true} <%-- evaluates to true --%>
${"Single quotes inside 'double quotes' do not need to be escaped"}
 <%-- evaluates to Single quotes inside 'double quotes'
 do not need to be escaped --%>
${2*4} <%-- evaluates to 8 --%>

Operators

You can use most of the usual Java operators in EL statements. Table 4-2 shows the available
operators.

Table 4-1. Literal Values That Can Be Used in EL Statements

Value Description

Boolean literals true or false values.

String literals Any string delimited by single or double quotes. The backslash is
used as an escape character for quotes and backslashes. For
example, 'This string\'s value has an escaped single quote' or
"the directory is c:\\My Documents\\apress". You need to escape
quotes only when they are enclosed by a quote of the same kind; in
other words, '\'' or "\"". Therefore, this version does not need to
be escaped: "This string's value has a single quote".

Integer literals Any positive or negative integer number (–13, 45, 2374, and so on).

Floating-point literals Any positive or negative floating-point number (–1.3E-30, 3.14159,
2.00000000000001, .45, .56e2, and so on).

Null literal A null value.

Mukhar_470-3.book Page 111 Saturday, October 1, 2005 6:14 AM

112 C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S

You are probably familiar with most of the operators listed in Table 4-2. However, note
that many of the operators have both symbolic and word variants (such as / and div, or < and lt).
These equivalents are provided so that if your JSP page needs to be XML-compliant, you can
avoid using entity references (such as < for <). Within an XML document, an EL expression
for “less than” could be coded ${2 lt 3} rather than ${2 < 3}.

In the next few paragraphs, we will look at the last four “other” operators in the list: (),
empty, [], and . (dot).

As with most expressions, parentheses can change the precedence of the expression:

${ (2 * 4) + 3 } <%-- evaluates to 11 --%>
${ 2 * (4 + 3) } <%-- evaluates to 14 --%>

You can use the empty operator to test for various conditions. Here is an example:

${empty name}

This expression will return true if name references a null object or if name references an empty
String, List, Map, or array. Otherwise, empty returns false. The object referenced by name is an
object stored in the page, request, session, or application implicit objects. Here is an example:

<% Vector vec = new Vector(); // Create empty vector
pageContext.setAttribute("someName", vec); %> // Store vector in pageContext
${empty someName} // Evaluates to true; notice the operator acts on the
 // attribute name someName, not the variable name vec

Keep in mind that this works for any object in one of the contexts, not just objects you
explicitly add using setAttribute() as shown in the example here. For example, as you will see
later in this chapter, custom actions can create variables that are accessible through EL expres-
sions. The empty operator can be applied to these variables. Another way to add objects to a
context is by creating a JavaBean; JavaBeans are stored in a context based on the scope attribute

Table 4-2. Operators That Can Be Used in EL Statements

Type Operator

Arithmetic +, -, *, /, div, %, mod

Relational == and eq

!= and ne

< and lt

> and gt

<= and le

>= and ge

Logical && and and

|| and or

! and not

Other (), empty, [], . (dot)

Mukhar_470-3.book Page 112 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S 113

of the <jsp:useBean> action. The point is that you can apply the empty operator to any object
that can be referenced by name in one of the contexts.

The dot operator (.) and the [] operator are used to access the attributes of an object in the
page. The left-value (lvalue) of the operator is interpreted to be an object in the page; the right-
value (rvalue) is a property, key, or index. For example, if you have defined a bean in the page
using the <jsp:useBean> standard action, you can access the properties of the bean using either
notation. Given a bean with the ID user and with the properties firstName and surname, you
could access its properties using either notation, like this:

${user.firstName}
${user[surname]}

The two notations are equivalent when accessing the properties of an object in the page. Either
expression results in the page attempting to find the given object in the page and call the getXXX()
method for the given property.

The . and [] operators can also be used for Map, List, or array values. When either operator
is applied to a Map (such as Hashtable or HashMap), the page class attempts to access the Map
attribute with the key given by the rvalue. For example, given the following:

${myObject[name]} <%-- myObject is a Hashtable or HashMap --%>

the equivalent code statement is:

myObject.get(name);

■Note In many places in this chapter, you will see code that is equivalent to an EL statement. However,
when the JSP is translated, the EL statement is not translated into that same code. We show equivalent code
so that you can relate the EL statement to the code that you, as a developer, would need to write to achieve
the same effect. The code generated by the JSP translator to evaluate the expression is different.

If the operator is applied to a List or array, the page attempts to convert the rvalue into an
index. When the object implements List, the page class uses the get(int) method of List to
get the value of the expression:

myObject.get(name); // myObject is a List

When the object references an array, the get(Object, int) method of Array is used:

Array.get(myObject, name); // myObject is an array

Object References and Implicit Objects

As you have learned, EL statements can include object references. Object references are created
in numerous ways. JSP includes implicit objects that are always available to a page. These
implicit objects, such as out or request, can be included as part of an EL statement. Objects
that are created as part of the useBean standard action can be referenced in EL statements. In
general, any object reference that is available in scripting statements is also available in EL
statements. Through the implicit objects, the EL expression can perform many of the actions

Mukhar_470-3.book Page 113 Saturday, October 1, 2005 6:14 AM

114 C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S

that can be performed through scriptlets and JSP expressions. The implicit objects are shown
in Table 4-3.

Table 4-3. Implicit Objects That Can Be Used in EL Statements

Object Description

pageContext The javax.servlet.jsp.PageContext object for the page. Can be used to
access the JSP implicit objects such as request, response, session, out, and so
on. For example, ${pageContext.request} evaluates to the request object for
the page.

pageScope A Map that maps page-scoped attribute names to their values. In other words,
given an object, such as a bean, that has page scope in the JSP page, an EL
expression can access the object with ${pageScope.objectName}, and an attribute
of the object can be accessed using ${pageScope.objectName.attributeName}.

requestScope A Map that maps request-scoped attribute names to their values. This object
allows you to access the attributes of the request object.

sessionScope A Map that maps session-scoped attribute names to their values. This object is
used to access the session objects for the client.

applicationScope A Map that maps application-scoped attribute names to their values. Use this
object to access objects with application scope.

param A Map that maps parameter names to a single String parameter value
(obtained by calling ServletRequest.getParameter(String name)). Recall that
a request object contains data sent by the client. The getParameter(String)
method returns the parameter with the given name. The expression
${param.name} is equivalent to request.getParameter(name). (Note that name
is not the literal string 'name', but the name of the parameter.)

paramValues A Map that maps parameter names to a String[] of all values for that parameter
(obtained by calling ServletRequest.getParameterValues(String name)). Similar
to the param implicit object, but it retrieves a String array rather than a
single value. For example, the expression ${paramValues.name} is equiva-
lent to request.getParameterValues(name).

header A Map that maps header names to a single String header value (obtained
by calling ServletRequest.getHeader(String name)). Requests always
contain header information such as the content type and length, cookies, the
referring URL, and so on. The expression ${header.name} is equivalent to
request.getHeader(name).

headerValues A Map that maps header names to a String[] of all values for that header
(obtained by calling ServletRequest.getHeaders(String)). Similar to the
header implicit object. The expression ${headerValues.name} is equivalent to
request.getHeaderValues(name).

cookie A Map that maps cookie names to a single Cookie object. A client can
send one or more cookies to the server with a request. The expression
${cookie.name.value} returns the value of the first cookie with the given
name. If the request contains multiple cookies with the same name, you
should use ${headerValues.name}.

initParam A Map that maps context initialization parameter names to their String parameter
values (obtained by calling ServletContext.getInitParameter(String name)). To
access an initialization parameter, use ${initParam.name}.

Mukhar_470-3.book Page 114 Saturday, October 1, 2005 6:14 AM

C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S 115

For example, in this code snippet, the bean has been given page scope, and it has a property
named topic:

<jsp:useBean id="questions" scope="page" class="com.apress.jsp.Questions">
 <jsp:setProperty name="questions" property="topic"/>
</jsp:useBean>
${pageScope.questions.topic} <%-- Evaluates to the topic property of the
 bean referenced by the id 'questions' --%>

As another example, if you’ve added an object to the session, you can access it as shown here:

<% session.put("address", "123 Maple St."); %>
${sessionScope.address} <%-- evaluates to 123 maple St. --%>
<%= session.get("address"); %> <%-- equivalent scripting expression --%>

Attribute Values in Standard Actions

You can use EL statements of the form ${expr} as attribute values in standard actions. (They
can also be used anywhere there is template text, such as HTML or non-JSP elements, in the
JSP file.) Standard actions were introduced in Chapter 3, and they include actions such as
useBean, setProperty, include, forward, and so on.

EL statements can be used as an attribute value for any attribute that can accept request-
time expression values, such as the page attribute of the forward action:

<jsp:forward page="${param.nextPage}" />

In this example, the <jsp:forward> action will forward the request to the URL specified by the
request parameter named nextPage. If the request parameter does not exist, or if its value is not
a valid URL, an error will occur in the page.

Table 4-4 shows the attributes the JSP 2.1 specification lists as able to accept request-time
expression values.

Table 4-4. Standard Action Attributes That Can Accept Request-Time Expression Values

Action Attribute

useBean beanName

setProperty Value

include page

forward page

param value

height plugin

width plugin

element name

Mukhar_470-3.book Page 115 Saturday, October 1, 2005 6:14 AM

116 C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S

Since the #{expr} syntax is used for deferred evaluation, it is not legal for the attribute
value of standard actions. The #{expr} syntax can be used for custom actions. See the “Writing
a Tag Library Descriptor” section later in this chapter for information about using #{expr} with
custom actions.

Errors and Default Values in EL Statements
Because of their use in display-oriented JSP pages, EL statements do not throw the same excep-
tions that you might expect from the equivalent Java expression. The EL specification states:

The Expression Language has been designed with the presentation layer of web
applications in mind. In that usage, experience suggests that it is most important
to be able to provide as good a presentation as possible, even when there are simple
errors in the page. To meet this requirement, the EL does not provide warnings, just
default values and errors. Default values are type-correct values that are assigned
to a subexpression when there is some problem. An error is an exception thrown (to
be handled by the environment where the EL is used).

For example, given this expression:

${user.surname}

The analogous Java expression is:

user.getSurname();

Now, if you were writing this Java code manually, and you had not defined the user variable or
did not provide a getSurname() method, the compiler would warn you of this situation. Before
the code was ever executed, the compiler would warn of the missing method, and you would
be able to supply it. If you did not initialize the variable user at runtime, the code would throw
a NullPointerException.

However, in a JSP page, many of these requirements cannot be checked until runtime.
You might not realize a method was missing because compilation might not occur until the
first request for the page. Similarly, you might not realize that the reference user had not
been initialized until a page request was made. And at that point, the person who sees the
error message from the server is the page client, not the developer. A translation error or
compilation error at that point could result in an ugly stack trace being sent to the user of
your application. However, since the JSP page is usually used for presentation, many EL
expressions result in default values, rather than thrown exceptions.

For example, in the previous expression, if user is null, the value of the EL expression is
null rather than a NullPointerException. With many of the operators, if either the lvalue or
the rvalue is null, the default value of the expression is null, rather than a thrown exception.
(Consult the EL specification for the full list of default values.) This will usually result in the

Mukhar_470-3.book Page 116 Saturday, October 1, 2005 6:14 AM

C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S 117

user receiving some kind of response page, even though that page might have bad data in it,
rather than an error page. When an EL expression does result in an exception, the exception
is handled via the normal JSP exception-handling mechanisms.

JSP Pages That Use EL
At this point, you have enough information to put together a simple application that uses some
of the techniques covered in this chapter. In this first example, we’ll create a few JSPs that use
EL expressions. Note that you must deploy this example to a server that supports JSP 2.0 or JSP 2.1.
If you are trying this example with Java EE or Tomcat, you will need to use J2EE 1.4, Java EE 5.0,
Tomcat 5.0, or Tomcat 5.5. The directory structure of the application is shown in Figure 4-1.

Figure 4-1. Directory structure for the first EL example, JSP_Ex05

■Note At the time this book was written, there was no application server that supported JSP 2.1 and EL 2.1.
We will run this example under J2EE 1.4 and Tomcat 5.0. By the time you read this, though, a server that
supports EL 2.1 may be available. We have made every effort to follow the specifications so that this example,
and the other examples in the book, will work with both JSP 2.0 and JSP 2.1, as well as EL 2.1. However, you
should check www.apress.com to see if the source code has been updated to accommodate changes in
the specification.

We will create the files welcome.jsp, TopicList.jsp, Questions.jsp, EL_1.jsp, and
Questions.java. If you are using the Sun Deployment Tool, the web.xml file will be created for
you. If you are deploying to Tomcat, you will need to create the web.xml deployment descriptor
manually. The basic flow of the application is shown in Figure 4-2. (We will use this same flow
for several examples in this chapter.)

Mukhar_470-3.book Page 117 Saturday, October 1, 2005 6:14 AM

118 C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S

Figure 4-2. TopicList.jsp displays a list of questions from Questions.class. When the user selects a
question, the request is sent to Questions.jsp, which includes the correct answer JSP page.

Although this example appears to build on the Java FAQ example from the previous chapter,
you do not need to use any of the files from previous examples. This example does have a file
named welcome.jsp, but it is different from the previous versions. The much simpler
welcome.jsp is shown in Listing 4-1.

Listing 4-1. welcome.jsp

<html>
 <head>
 <title>Java FAQ Welcome Page</title>
 </head>

 <body>
 <h1>Java FAQ Welcome Page</h1>

 <p>Welcome to the Java FAQ. Click a topic to see FAQ
 questions about that topic.</p>

 <p>Expression Language
 </p>
 </body>
</html>

Mukhar_470-3.book Page 118 Saturday, October 1, 2005 6:14 AM

C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S 119

The only purpose of welcome.jsp is to call the topic list page with the appropriate parameter.
The file TopicList.jsp is shown in Listing 4-2.

Listing 4-2. TopicList.jsp

<%@ page import="java.util.*" %>
<html>
 <head><title>Topic Questions</title></head>
 <body>
 <h1>Topic Questions</h1>

 <jsp:useBean id="questions" class="com.apress.faq.Questions">
 <jsp:setProperty name="questions" property="topic" />
 </jsp:useBean>

The number of questions in topic ${questions.topic} is ${questions.numQuestions}
<%
 Map topic = questions.getQuestions();
 Iterator keys = topic.keySet().iterator();
 while (keys.hasNext()) {
 String key = (String) keys.next();
 pageContext.setAttribute("key", key);
%>
<p>Question
 ${key}:
 ${questions.questions[key]}
<%
 }
%>
 </body>
</html>

The TopicList.jsp page displays a list of questions for a given topic. These questions are
hard-coded into the Questions.java class, shown in Listing 4-3.

Listing 4-3. Questions.java

package com.apress.faq;

import java.util.Map;
import java.util.HashMap;
import java.util.TreeMap;

public class Questions {
 private String topic;
 private int numQuestions;
 private Map questions = new HashMap();

Mukhar_470-3.book Page 119 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

120 C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S

 public String getTopic() { return topic; }
 public void setTopic(String t) {
 topic = t;
 setNumQuestions(getQuestions().size());
 }

 public int getNumQuestions() { return numQuestions; }
 public void setNumQuestions(int n) { numQuestions = n; }

 public Map getQuestions() {
 return (Map) questions.get(topic);
 }
 public void setQuestions(Map m) { questions = m; }

 public Questions() {
 Map topic = new TreeMap()
 topic.put("EL_1", "How do I use implicit objects?");
 topic.put("EL_2", "How do I use the JSTL?");
 topic.put("EL_3", "How do I use the 'empty' operator?");
 questions.put("EL", topic);
 }
}

Compile this file into Questions.class.
After displaying the list of questions, the user can click a link for a particular question. The

request is posted to the Questions.jsp file, shown in Listing 4-4. (Yes, this really is the whole file!)

Listing 4-4. Questions.jsp

<jsp:include page="/WEB-INF/${param.qid}.jsp" />

As you can see, Questions.jsp simply includes the appropriate question file based on the
user’s selection. For this example, we will create the JSP page for only the first question (see
Listing 4-5). In a later example, you will see EL_2.jsp. The EL_3.jsp page is not presented here,
but it is included with the downloadable code for this book.

Listing 4-5. EL_1.jsp

<html>
 <head>
 <title>Expression Language Q1</title>
 </head>

 <body>
 <h1>Expression Language Question 1</h1>
 <h2>How do I use implicit objects?</h2>

Mukhar_470-3.book Page 120 Saturday, October 1, 2005 6:14 AM

C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S 121

 <p>The implicit objects are</p>

 pageContext
 pageScope
 requestScope
 sessionScope
 applicationScope
 param
 paramValues
 header
 headerValues
 cookie
 initParam

 <p>Implicit objects form the lvalue of an EL expression, and their
 properties are accessed using the . or [] operator. Here are some
 examples:</p>
<%-- The four lines after this comment contain special expression syntax
 needed to display a literal ${} in the output of a JSP. This is done
 by using an expression to evaluate the literal '${'. That is, the
 expression ${ '${' } evaluates to ${, and whatever follows the
 expression is treated as normal template text.
--%>
 <p>${'${'}pageContext.request.requestURI} evaluates to
 "${pageContext.request.requestURI}"</p>
 <p>${'${'}param.qid} evaluates to "${param.qid}"</p>
 <p>${'${'}header.referer} evaluates to "${header.referer}"</p>
 <p>${'${'}cookie.JSESSIONID.value} evaluates to
 ${cookie.JSESSIONID.value}</p>
 </body>
</html>

Deploying the FAQ Application to Tomcat

If you are deploying to Tomcat or some other stand-alone JSP container, you will need a
deployment descriptor. Listing 4-6 shows a very simple web.xml file that will do the job.

Listing 4-6. web.xml for Jsp_Ex05

<?xml version="1.0" encoding="ISO-8859-1"?>

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 version="2.5">

Mukhar_470-3.book Page 121 Saturday, October 1, 2005 6:14 AM

122 C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S

 <display-name>Jsp_Ex05 – Expression Language</display-name>
 <welcome-file-list>
 <welcome-file>welcome.jsp</welcome-file>
 </welcome-file-list>
</web-app>

Note that the deployment descriptor does not need to explicitly enable scripting or EL
statements, because they are enabled by default. If you want to explicitly enable them, add the
following to the deployment descriptor:

<jsp-config>
 <jsp-property-group>
 <url-pattern>*.jsp</url-pattern>
 <scripting-invalid>false</scripting-invalid>
 <el-ignored>false</el-ignored>
 </jsp-property-group>
</jsp-config>

If you are deploying to a stand-alone Tomcat 5.0 server, you can copy the entire directory
structure into the Tomcat /webapps directory. Alternatively, you can create a .war file and place
that into /webapps. You create the .war file by navigating to the top-level directory of the appli-
cation (/Jsp_Ex05 in this example) and executing this command:

> jar cvf Jsp_Ex05.war *

Deploying the FAQ Application to Java EE

If you are using the Sun Application Server, follow these steps to deploy the application:

1. Run the Deployment Tool and Create a new Web Application Archive by selecting File ➤
New ➤ Web Component from the menu.

2. Add the files welcome.jsp, TopicList.jsp, Questions.jsp, EL_1.jsp, and Questions.class to
the WAR. Make sure you place the EL_1.jsp file into the /WEB-INF directory. Click Next.

3. Select the JSP radio button, and click Next.

4. In the next wizard step, select TopicList.jsp as the component to create. Click Finish.

5. Deploy the application using Tools ➤ Deploy from the menu.

Running the FAQ Application

After the application is deployed, open a web browser and enter the address http://
localhost:8080/Jsp_Ex05/welcome.jsp. Note that because this example has not been fully
implemented, the links for EL_2 and EL_3 will not work correctly. When you enter the URL, you
should see a page like the one shown in Figure 4-3.

Mukhar_470-3.book Page 122 Saturday, October 1, 2005 6:14 AM

C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S 123

Figure 4-3. The welcome.jsp page for the application has a link to the TopicList.jsp page. That
page shows the questions for the Expression Language topic.

When you click the Expression Language link, you will see the page shown in Figure 4-4.

Figure 4-4. There are three questions in the Expression Language topic. Clicking a link here will
display the page for that question.

Click the EL_1 link, and you will see the page displayed in Figure 4-5.

Mukhar_470-3.book Page 123 Saturday, October 1, 2005 6:14 AM

124 C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S

Figure 4-5. The Questions.jsp page includes the appropriate FAQ page in its output.

The questions that are displayed on the page for each topic are hard-coded into the Questions
JavaBean class. This class has a field named questions, of type Map, which is used to store the
set of individual questions for each topic. The questions for each topic are also stored in a Map
keyed by the question number. The Map for the topic is stored in the questions Map keyed by a
topic abbreviation.

The constructor for the class creates a topic map holding three questions, and then stores
this map in the questions map. When the class is instantiated in the TopicList.jsp page, the
topic field is set to the selected topic using the <jsp:setProperty> tag.

This class has standard JavaBean setter and getter methods. This means that in an EL
expression, you can access the questions field using the dot notation:

${questions.questions}

When the EL expression is translated, it is translated into code that calls the getQuestions()
method of the Questions class. The TopicList.jsp page also accesses the topic and numQuestions
fields of the class. These are also translated into code that calls the appropriate getter methods
of the class.

The TopicList.jsp page uses a <useBean> tag to instantiate an instance of the Questions
class. The object that is created automatically has page context, so you can reference it in an EL
statement using the name set by the id attribute in the <jsp:useBean> tag. That is the next thing
the page does, accessing the topic and numQuestions properties using this line of code:

Mukhar_470-3.book Page 124 Saturday, October 1, 2005 6:14 AM

C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S 125

The number of questions in topic ${questions.topic}
is ${questions.numQuestions}

The EL expression references the bean using its id from the <jsp:useBean> action. It
accesses the properties using the dot notation. The expression ${questions.topic} evaluates
to the value of the topic property of the bean, which happens to be "EL". The expression
${questions.numQuestions} evaluates to the value of the numQuestions property, which is "3".
Next, the page uses a scriptlet to iterate over the keys used in the Map that holds the questions.
Notice that each time through the loop, the page stores the current value of the key as a
pageContext attribute using the name "key". This allows another EL expression to access the
current key using the expression ${key}.

Not only does the page access the value of key to create a link in the page, it uses key to
access the value of the question stored by the Questions object.

Since you can access any particular value in a Map if you know the name, you can retrieve a
particular question held by the Questions object like this:

 ${questions.questions[key]}

Because the value of key is a String that was used as the key to store a question in a Map
object, the expression ${questions.questions[key]} is equivalent to this code:

Map m = questions.getQuestions();
String q = (String)m.get(key);

■Note Even though the expression ${questions.questions[key]} is equivalent to the code shown, it
is not translated into that code. You can see what the actual code looks like by examining the translated
source file. See the “Translation and Compilation” section in Chapter 3 for information about how to find a
translated source file.

The value of the expression after evaluation is simply the question string stored by the
class. This is output to the response.

When you click one of the links in the page created by TopicList.jsp, the request is sent to
the Questions.jsp page. This is a very simple page consisting of a single standard action, the
<jsp:include> action:

<jsp:include page="/WEB-INF/${param.qid}.jsp" />

Notice that this file does not contain any template text. JSP files can consist solely of JSP
elements and still be valid JSP pages. The include action uses an EL expression in the page
attribute to determine which JSP page to include. It does this by using the implicit param
object and the name of the parameter that is being accessed. The TopicList.jsp page outputs
a link that looks like this:

EL_1

Mukhar_470-3.book Page 125 Saturday, October 1, 2005 6:14 AM

126 C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S

This link sends the request to the Questions.jsp file with a request parameter of qid=EL_1. The
Questions.jsp page can access the value of that parameter with this EL expression:

${param.qid}

We want to use this value to include the answer to the selected question in the response to
the user. In this case, the answer is found in a page called EL_1.jsp in the WEB-INF directory, so
the page attribute for our <jsp:include> action is set to "/WEB-INF/EL_1.jsp".

This answer page also uses EL expressions. One interesting thing to note is that the speci-
fication provides a way to have a literal ${expr} in the output of a page. This is done by placing
the quoted expression '${' in an EL expression. The EL expression ${'${'} evaluates to ${ in the
page, and the rest of the string is output without evaluation. For example, this line:

 <p>${'${'}param.qid} evaluates to "${param.qid}"</p>

will generate this HTML:

 <p>${param.qid} evaluates to "EL_1"</p>

The remainder of the page uses various EL expressions to show how to use some of the
implicit objects available in an EL expression.

Although using EL statements in the TopicList.jsp page allowed us to eliminate some
scriptlet statements, we still needed to use scriptlets to be able to iterate over the set of ques-
tions. We would also need to use scriptlets if we wanted to use a for or while loop. So, using EL
statements by themselves cannot completely eliminate the need for scriptlets in JSP pages. To
make pages that are truly scriptless, we need more tools. One of those other tools is custom
actions, which are described in the next section.

Custom Actions and Tag Handlers
Several times in the previous chapter, we talked about removing Java code from the JSP page to
further separate the display elements from the business logic. In reality, the Java code is not
removed from the page, but it is hidden from the page developer.

Standard actions were introduced in the previous chapter. Standard actions are defined by
the JSP specification and are actions that must be implemented by every JSP container. They
provide a way to encapsulate Java code so that the page designer needs to know only the syntax
of the tag. A standard action appears in a JSP page as an XML-style tag. Here is the tag for a
useBean standard action with an enclosed setProperty action:

<jsp:useBean id="questions" class="com.apress.faq.Questions">
 <jsp:setProperty name="questions" property="topic"/>
</jsp:useBean>

At the start of the tag is the namespace prefix, jsp (a namespace is analogous to a Java
package). This is followed by the action name. The standard action can have attributes, and
some actions have bodies between the start and end tag. Tag bodies can include other tags (as
shown in the example here) and/or template data. To anyone familiar with XML, this looks like
a standard XML tag. But even though the tag looks like an XML tag, it is used in a JSP file, which
does not need to be an XML document, and the JSP translator “sees” the tag a little differently.

Mukhar_470-3.book Page 126 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S 127

The translator sees the tag as a token that is to be replaced by Java code. This Java code
implements the functionality specified by the tag. Thus, the Java code is not removed from the
page, but it is encapsulated within the tag. For example, when the JSP translator for Tomcat 5.0.28
sees the previous tag, it generates the following code:

com.apress.faq.Questions questions = null;
synchronized (_jspx_page_context) {
 questions = (com.apress.faq.Questions) _jspx_page_context.getAttribute(
 "questions", PageContext.PAGE_SCOPE);
 if (questions == null){questions = new com.apress.faq.Questions();
 _jspx_page_context.setAttribute("questions", questions,
 PageContext.PAGE_SCOPE);

Now, if the only actions you had available were the standard actions, you would still need
to use Java code embedded in your JSP page. Fortunately, the JSP specification provides a way
for developers to create their own actions. These actions are known as custom actions. Custom
actions are deployed to the web application using a tag library. The mechanism for defining,
implementing, deploying, and executing custom actions is known as tag extension. Using standard
and custom actions, a web designer can build a dynamic web page without needing to know
how to program in Java. Custom actions allow developers to take advantage of the power of
Java—object reuse, encapsulation, and ability to debug—to provide a consistent mechanism
for page designers to provide dynamic web pages.

Frequently in web application development, there are tasks that are done over and over
within a web page. When you come across this type of situation, a light bulb should illuminate,
and you should consider making the task into a custom action. Once you create a custom
action, a JSP page can take advantage of the encapsulated functionality very easily by just refer-
encing the custom actions using XML. Of course, it is also possible to encapsulate functionality
in JavaBeans, and many page authors take that approach. So when should you use a custom
action instead of a JavaBean? The answer is rather simple: JavaBeans cannot access the JSP
page environment, so if you need access to the JSP page environment in a reusable piece of
code, use a custom action.

How Custom Actions Work
When we use the term custom action (or standard action, for that matter), we are generally
referring to the tag in the JSP file. Custom actions are used to create a dynamic response to
a request.

Custom actions, like standard actions, can be used just like any other tag in a JSP file. They look
like HTML tags in a JSP page. They can be customized through attributes passed by the caller and
can access all objects in a JSP page. Custom actions can have bodies and can be nested.

Custom actions are identified by a prefix and a name:

<prefix:name />

The prefix is used to avoid conflicts between tags with the same name. The prefix is selected
and used by the page developer, although the tag developer can suggest a prefix, as you will see
later. The name is the name of the action. This is specified by the tag developer.

Mukhar_470-3.book Page 127 Saturday, October 1, 2005 6:14 AM

128 C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S

Custom actions can be empty (without a body):

<x:MyCustomAction /> <%-- Start and end tags combined into single tag --%>
<x:MyCustomAction></x:MyCustomAction> <%-- Separate tags --%>

Or they can have bodies:

<x:MyCustomAction>
 Body content
</x:MyCustomAction>

The Java code that implements the tag can direct the page to evaluate the body or skip the
body. Actions can be nested. Here is an example using the <jsp:useBean> and <jsp:setProperty>
standard actions:

<jsp:useBean id="user" class="com.apress.faq.User">
 <jsp:setProperty name="user" property="*"/>
</jsp:useBean>

Also, as shown with the <jsp:useBean> and <jsp:setProperty> actions, an action can have
attributes that customize the action. Actions can access the implicit objects of JSPs (request,
response, and so on) and use these objects to modify the response to the client. Objects can be
created by a custom action, and these objects can be accessed by other actions or scriptlets in
the JSP.

The actual behavior of a custom action is provided at runtime by an instance of a Java
class. This Java class is also known as a tag handler. Figure 4-6 shows the relationship between
custom actions in a JSP page and the page implementation class for that page.

Figure 4-6. A custom tag is translated into code in the page implementation class.

The tag handler is the Java class that implements the behavior of a custom action. The tag
handler class follows the requirements of a JavaBean, and it will implement one of the tag
extension interfaces. There are several tag handler interfaces available. These interfaces are
defined in the javax.servlet.jsp.tagext package. These interfaces will be located in some JAR
file of your application server. For example, Tomcat 5.0 is the reference implementation for
J2EE 1.4. So, for the stand-alone Tomcat 5.0 server or the J2EE 1.4 application server, the inter-
face class files are located in the jsp-api.jar file. If you have a different application server, your
JAR file will probably have a different name, but you should be able to find it easily enough by
searching the JAR files used by your application server.

Mukhar_470-3.book Page 128 Saturday, October 1, 2005 6:14 AM

C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S 129

Table 4-5 shows the different tag handler interfaces, the specification in which they were
introduced, and the Tomcat and Java EE versions that support them.

As you can see in Table 4-5, JSP 1.1 has two interfaces for tag handlers: Tag and BodyTag. Tag
handles a simple action with no iteration and no need to process the body of the tag. BodyTag is
used when the body of the tag is processed (rather than simply output) as part of the action.

JSP 1.2 introduced the IterationTag to deal with iteration (JSP 1.1 used BodyTag to handle
iteration). These three interfaces—Tag, IterationTag, and BodyTag—are known as classic tag
handlers.

JSP 2.0 adds the SimpleTag interface to make tag handling easier, and the JspFragment interface
to encapsulate the body content of a tag in an object. SimpleTag and JspFragment are known as
simple tag handlers.

■Tip If performance concerns are critical, we suggest that you first implement your tag handler as a simple
tag, and then taking some performance metrics to see if your criteria are met before embarking on the more
complicated and time-consuming path of writing a classic handler.

The tag extension mechanism of JSP 1.2 was powerful, but it was also relatively complicated
to use. JSP 2.0’s simple tag handlers simplify the process of developing a tag handler. They are
no less capable than classic tag handlers in dealing with iteration and processing of body content.
You are more likely to be using simple tag handlers than the more complicated classic tag
handlers in your development, so we will look at those first.

Simple Tag Handlers
JSP 2.0 introduces the SimpleTag interface and a base class, SimpleTagSupport that implements
the interface shown in Figure 4-7.

Using the SimpleTag interface and its associated base class significantly simplifies the
process of implementing a tag handler. You can use this interface and base class to implement
any tag handlers in JSP 2.0, regardless of whether the tag needs to be processed multiple times
or has a body that needs to be processed.

Table 4-5. Tag Handlers Listed by the JSP Specification

JSP Tag Handler Interfaces JSP Specification Reference Implementation

Tag, BodyTag JSP 1.1 Tomcat 3, J2SDKEE 1.2

IterationTag JSP 1.2 Tomcat 4, J2SDKEE 1.3

SimpleTag, JspFragment JSP 2.0 Tomcat 5, J2EE 1.4, Java EE 5.0

Mukhar_470-3.book Page 129 Saturday, October 1, 2005 6:14 AM

130 C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S

Figure 4-7. The UML diagram for the SimpleTag interface and the SimpleTagSupport class

To create a custom action, you create a tag handler class that extends the SimpleTagSupport
base class, overriding the methods as necessary to provide the behavior for a custom action.
Usually, all you will need to do is override the doTag() method. This method provides all the
behavior of the custom action, including tag logic, iterations, and body evaluation. As you will
see later, classic tag handlers used three methods to do everything that is done within the
single doTag() method of SimpleTag.

Translating a Tag Handler

When the tag appears in a JSP source file, the translator creates code that does the following:

• Creates an instance of the tag handler by calling the zero-argument constructor of the
implementation class

• Calls setJspContext(JspContext) to set the context for the tag handler

• Calls setParent(JspTag) if the tag is nested

• Initializes the tag handler attributes

• Creates a JspFragment object and passes the JspFragment object to setJspBody(JspFragment)
if the tag has a body

• Calls the doTag() method

For the page implementation code to be able to create the tag handler instance and
initialize its properties, all tag handlers follow the JavaBean conventions. You may recall that
for our purposes, this means two things:

• The tag handler class must have a no-argument constructor.

• Properties of the class that can be used by clients must be exposed through public
setXXX() methods to set the value and must have getXXX() or isXXX() methods to
retrieve the value.

Mukhar_470-3.book Page 130 Saturday, October 1, 2005 6:14 AM

C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S 131

This provides a standard way for JSP containers to create instances of tag handlers and
set the properties of tag handlers from attributes of the custom action element in the JSP.
Each attribute in the custom action tag must correspond to a property of the tag handler that
can be set using some setXXX() method.

After the tag handler class is created and initialized, the page class calls doTag(). This method
is called only once for the tag. If the body content needs to be evaluated, it does that through
the JspFragment object that was passed to the class through setJspBody().

Using a JspFragment

Like SimpleTag, JspFragment is also an interface, but the implementation of the interface is left
entirely to the JSP container. As a developer, you need to know only how to call a fragment to
evaluate its contents. If your SimpleTag tag handler needs to evaluate the body of the tag, it calls
the invoke() method of JspFragment:

public void invoke(java.io.Writer out)

As you can see, invoke() takes a single argument. If the Writer argument is null, the fragment
will write its output to the current output stream of the client response; otherwise, the fragment will
write its output to the given Writer. JspFragment objects can contain template text, JSP action
elements, and EL expressions, but they cannot contain JSP scriptlets or scriptlet expressions.
Variables used in EL expressions are set through context attributes, as you will see in the
example later in this section.

Writing a Tag Library Descriptor

After creating one or more classes that implement a tag, you need to inform the container
which tag handlers are available to the JSP pages in an application. This is done through a
descriptor file called a tag library descriptor (TLD). The TLD is an XML-compliant document
that contains information about the tag handler classes in a tag library. The tag in the JSP page
must conform to the constraints described in the TLD. If the tag is not used correctly, as described
by the TLD, then a translation error will occur.

A TLD for JSP 2.0 will provide information about the tag library using a <taglib> element,
as shown in Listing 4-7.

Listing 4-7. Sample TLD

<?xml version="1.0" encoding="UTF-8" ?>

<taglib xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee/web-jsptaglibrary_2_1.xsd"
 version="2.1">
 <tlib-version>1.0</tlib-version>
 <short-name>apress</short-name>

Mukhar_470-3.book Page 131 Saturday, October 1, 2005 6:14 AM

132 C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S

 <tag>
 <name>example</name>
 <tag-class>com.apress.faq.Example</tag-class>
 <body-content>empty</body-content>
 <variable>
 <name-given>script1</name-given>
 </variable>
 <variable>
 <name-from-attribute>attr1</name-from-attribute>
 </variable>
 <attribute>
 <name>attr1</name>
 <required>yes</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>attr2</name>
 <required>no</required>
 <rtexprvalue>false</rtexprevalue>
 </attribute>
 </tag>
</taglib>

The <taglib> element can have a number of subelements. The mandatory elements are
shown in Table 4-6.

The <tag> element has several subelements. Two subelements—name and tag-class—
are mandatory. In addition, you will often need to use the optional subelements of the <tag>
element. The <tag> subelements are shown in Table 4-7.

Table 4-6. Mandatory Subelements of <taglib>

Element Meaning

tlib-version The version number of the library

short-name A simple default name, which may be used as the preferred prefix value in
taglib directives

Tag Information about a tag handler

Table 4-7. Subelements of <tag>

Element Meaning

name The name of the tag handler (mandatory).

tag-class The fully qualified class name of the tag handler class (mandatory).

Mukhar_470-3.book Page 132 Saturday, October 1, 2005 6:14 AM

C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S 133

The TLD in Listing 4-7 is for a tag library that the developer has identified as version 1.0.
It relies on JSP 2.0. The suggested prefix for tags from the library is apress. However, note that
page developers can use whatever prefix they desire. This is so that name conflicts between
libraries with the same suggested prefix can be avoided.

The TLD defines one tag with the name example. The tag handler class for the tag is
com.apress.faq.Example. The tag must have an empty body, because the value of the
<body-content> element is empty.

The tag creates two objects that are made available to the rest of the page as scripting variables.
The JSP page accesses the first object using the name script1 (from the <name-given> element). The
second object is accessed by the name given in the attr1 attribute of the tag.

The tag takes two attributes. The attribute attr1 is required, and can be set by a runtime
expression. The attribute attr2 is optional, and cannot be set at runtime from an expression.

When rtexprvalue is set to true, the attribute can take an EL expression of the form ${expr}. If
the tag element also includes either <deferred-value/> or <deferred-method/> as an empty
element, then the attribute can be set using an EL expression of the form #{expr}. See the JSP spec-
ification for more details about using request-time expressions to set the value of an attribute.

After creating the tag handler classes and the TLD, you need to take a few final steps before
you can use the tags in a JSP page. These include properly setting up the application structure,
writing the deployment descriptor, and importing the tag library into the page.

Building an Application Structure

Although some parts of the structure of a web application are not specified, locations for tag
libraries and TLDs are specified. The following is an example of an application structure.

body-content Whether the body of the tag can have content. Valid values are tagdependent,
scriptless, or empty. The default is scriptless. If the value is empty, the tag
is not allowed to have a body.

variable Defines the scripting variables created by this tag handler and made available
to the rest of the page. This element must contain one of two subelements:
name-given or name-from-attribute. If name-given is used, the value of this
element defines the name that other JSP elements can use to access the
created scripting variable. If name-from-attribute is used, the value of the
attribute with the name given by this element defines the name of the
scripting variable.

attribute Defines attributes for the tag. This element has three subelements: name,
required, and rtexprvalue. The value of the name element will be the name of
the attribute. The element named required is optional, and must be one of
true, false, yes, or no. This indicates whether the attribute is required or
optional. The default value is false (meaning the attribute is optional). The
rtexprvalue element is optional, and must be one of true, false, yes, or no.
The default value is false, which means that the attribute can be set only by
using a static value known at compile time. If the element contains true or
yes, the attribute can be set using a runtime expression.

Table 4-7. Subelements of <tag>

Element Meaning

Mukhar_470-3.book Page 133 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

134 C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S

context-root
 META-INF/
 jar_that_contains_TLD.jar
 WEB-INF/
 lib/
 taglib.jar
 tlds/
 descriptor.tld
 classes/
 path/to/tag/handler.class

Tag handler classes must be placed in the /classes subdirectory of WEB-INF or in a .jar file
in the /lib subdirectory of WEB-INF. TLD files must be placed under WEB-INF, although the
actual location under WEB-INF is unspecified. In the example shown here, a TLD is located in
the /tlds directory of WEB-INF. If a TLD is in a .jar file, it must be in the META-INF directory of
the application.

Writing the Deployment Descriptor

Within the web.xml deployment descriptor, you can create a mapping from a URI to a TLD location.
This is done through the <taglib> element. For example, the following element maps the URI
/examples to the TLD descriptor.tld.

<taglib>
 <taglib-uri>/examples</taglib-uri>
 <taglib-location>/WEB-INF/tlds/descriptor.tld</taglib-location>
</taglib>

This mapping can then be used in the JSP files, as you will see next.

Importing a Tag Library into a Page

To use a custom action, you need to “import” the tag library into the JSP. This is done with the
taglib directive. The taglib directive has this form:

<%@ taglib uri="URI_of_library" prefix="tag_prefix"%>

This element must appear in the JSP file prior to any custom action that uses a tag from the
tag library.

The uri attribute is either an absolute or relative path to the TLD file. Alternately, if the
web.xml deployment descriptor has a <taglib> element, you can refer to the TLD using the value of
the <taglib-uri> element from web.xml. For instance, in the example in the previous section, the
<taglib-uri> element contained the string /examples. This same URL can be used in the
taglib directive in the JSP page:

<%@ taglib uri="/examples" prefix="ex"%>

Mukhar_470-3.book Page 134 Saturday, October 1, 2005 6:14 AM

C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S 135

Combined with the <taglib> element of the previous section, this directive would import
the tag library defined by descriptor.tld. Within the particular JSP file that used this taglib
directive, the custom actions would be referenced using the prefix given. For example, the
previous TLD defined a tag handler named example. With the taglib directive shown here, the
action would be referenced in a JSP page as follows:

<ex:example />
<%-- or as --%>
<ex:example></ex:example>

Implementing a Simple Tag Handler

Let’s develop a simple tag handler class and deploy it to the Java FAQ application. In this
example, we’ll develop a tag handler using the simple tag handler interfaces of JSP 2.0. This tag
handler will perform iteration and process the body content of the tag. When this example is
complete, you will see that custom actions and simple tag handlers can make your JSP files
extremely easy to develop. This example has the directory structure shown in Figure 4-8.

Figure 4-8. Directory structure for the Jsp_Ex06 application

Start with a new tag handler class that extends SimpleTagSupport. This file is called
SimpleList.java (see Listing 4-8), and is located in the /WEB-INF/classes/com/apress/faq
directory. Since this class uses the JSP API, when you compile the class, your classpath will
need to include the correct libraries. If you are using Java EE, your classpath must include
javaee.jar. If you are using Tomcat 5.0, your classpath must include jsp-api.jar. If you are
using some other JSP container, check your documentation for the correct .jar file to include
in the classpath.

Mukhar_470-3.book Page 135 Saturday, October 1, 2005 6:14 AM

136 C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S

Listing 4-8. SimpleList.java

package com.apress.faq;

import java.util.*;
import javax.servlet.jsp.tagext.*;
import javax.servlet.jsp.*;
import java.io.*;

public class SimpleList extends SimpleTagSupport {
 private String topic;
 public void setTopic(String s) { topic = s; }
 public String getTopic() { return topic; }

 public void doTag() throws JspException {
 Questions questions = new Questions();
 questions.setTopic(topic);

 // Get list of questions and the iterator for the keys
 Map qmap = questions.getQuestions();
 Iterator keys = qmap.keySet().iterator();

 while (keys.hasNext()) {
 try {
 Object key = keys.next();
 // Store the parameters for invoke()
 getJspContext().setAttribute("qid", key);
 getJspContext().setAttribute("question", qmap.get(key));
 // Process the body
 getJspBody().invoke(null);
 } catch (IOException e) {
 throw new JspException("Exception processing body");
 }
 }
 }
}

Now we need to create a TLD for this tag handler. The TLD is named simplefaq.tld, and it
is shown in Listing 4-9. Save the TLD to the /WEB-INF/tlds directory.

Listing 4-9. simplefaq.tld

<?xml version="1.0" encoding="UTF-8" ?>

<taglib xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee/web-jsptaglibrary_2_1.xsd"
 version="2.1">

 <tlib-version>1.0</tlib-version>

Mukhar_470-3.book Page 136 Saturday, October 1, 2005 6:14 AM

C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S 137

 <short-name>simplefaq</short-name>

 <tag>
 <name>simplelist</name>
 <tag-class>com.apress.faq.SimpleList</tag-class>
 <body-content>scriptless</body-content>
 <attribute>
 <name>topic</name>
 <required>yes</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>
</taglib>

If you are using Tomcat, you’ll need to manually create a deployment descriptor. Listing 4-10
shows the web.xml deployment descriptor.

Listing 4-10. web.xml for Jsp_Ex06

<?xml version="1.0" encoding="ISO-8859-1"?>

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 version="2.5">

 <display-name>Jsp_Ex06 - Simple Tag Handler</display-name>
 <welcome-file-list>
 <welcome-file>welcome.jsp</welcome-file>
 </welcome-file-list>
 <jsp-config>
 <taglib>
 <taglib-uri>/simplequestions</taglib-uri>
 <taglib-location>/WEB-INF/tlds/simplefaq.tld</taglib-location>
 </taglib>

 <jsp-property-group>
 <url-pattern>*.jsp</url-pattern>
 <el-ignored>false</el-ignored>
 <scripting-invalid>true</scripting-invalid>
 </jsp-property-group>
 </jsp-config>
</web-app>

Note that the deployment descriptor shown in Listing 4-10 declares that scripting is invalid
for any JSP in this application, but that EL statements are processed.

Mukhar_470-3.book Page 137 Saturday, October 1, 2005 6:14 AM

138 C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S

If you are using the Java EE Deployment Tool, the mapping between the URI /
simplequestions and the TLD simplefaq.tld is set in the JSP Tag Libraries section of the File
Ref’s tab for the web application. Figure 4-9 shows the entries to make in that tab.

Figure 4-9. You can use the Java EE 5 Deployment Tool to map between a coded reference and the
actual tag library location.

Now we’ll create a new version of TopicList.jsp that uses this new tag. This is TopicList2.jsp,
which is shown in Listing 4-11.

Listing 4-11. TopicList2.jsp
<%@ taglib uri="/simplequestions" prefix="faq"%>
<html>
 <head><title>Topic Questions 2</title></head>
 <body>
 <h1>Topic Questions 2</h1>

 <faq:simplelist topic="${param.topic}">
 <p>Question ${qid}
 ${question}</p>
 </faq:simplelist>
 <p>Click a link to get the answer.</p>
 </body>
</html>

Mukhar_470-3.book Page 138 Saturday, October 1, 2005 6:14 AM

C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S 139

Finally, we need to modify the welcome.jsp page. Add the welcome.jsp source from Listing 4-1
to this example and modify the anchor tag (<a>) so that it looks like this:

Expression Language

No other changes need to be made to welcome.jsp. Finally, you can directly reuse three
files from the first example in this chapter: Questions.java (Listing 4-3), Questions.jsp (Listing 4-4),
and EL_1.jsp (Listing 4-5).

Deploy these files to the server of your choice and access welcome.jsp from a browser
using the correct URL for your server. If you are using the Sun Application Server or Tomcat,
the URL will probably be http://localhost:8080/Jsp_Ex06/welcome.jsp. Don’t be shocked
when you see that it looks the same as the first example in this chapter (or it should, assuming
everything is correct).

All the processing for a SimpleTag happens in the doTag() method. The doTag() method of
the SimpleList class starts by instantiating a Questions bean and setting its topic property to
the value of the topic property of our tag handler:

 Questions questions = new Questions();
 questions.setTopic(topic);

We can do that because the <simplelist> tag is required to have an attribute named topic.
When the TopicList2.jsp page used the <simplelist> tag, it included the topic attribute with
a value of EL. So, when an instance of the SimpleList class is instantiated to handle the tag, the
page implementation class also sets its topic property based on the value of the topic attribute
in the tag. Since the doTag() method is called after the class is instantiated, we know that the topic
field has been initialized and can be used in the setTopic() method call of the Questions class.

Next, the SimpleList class creates an Iterator that will be used to step through the questions.
It does this by calling the getQuestions() method to get the set of questions (which is also
stored in a map). It then uses the map to get the list of keys used in the map.

 Map qmap = questions.getQuestions();
 Iterator keys = qmap.keySet().iterator();

The class then iterates over each question in the collection. For each question, two pieces
of data used by the body of the tag are saved as attributes in the JspContext. First, the question
itself is saved as an attribute value using the name "question" as the attribute name. The key
value is then stored with the name "qid".

 Object key = keys.next();
 // Store the parameters for invoke()
 getJspContext().setAttribute("qid", key);
 getJspContext().setAttribute("question", qmap.get(key));

After the parameters for a single question are saved in the JspContext, the doTag() method
gets a reference to the JspFragment for the tag and calls its invoke() method:

getJspBody().invoke(null);

Since null is passed as the argument, the body content is passed to the client’s output response
stream; that is, it is sent directly to the client.

Mukhar_470-3.book Page 139 Saturday, October 1, 2005 6:14 AM

140 C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S

The body of the tag consists of HTML text and EL statements that create a link to the question
page for each question. The EL statements ${qid} and ${question} can be evaluated because
the SimpleList class stored values for both of these names in the page context before calling
the doTag() method.

Now let’s look at the tag as it is used in TopicList2.jsp. This page uses the taglib directive
to specify the TLD. The URI /simplequestions is mapped by the deployment descriptor to
simplefaq.tld. The prefix used for the tag is faq. Notice that this is not the short-name used in
the TLD. As we’ve mentioned several times, the page developer chooses the prefix. The name
of the tag is the name given in the TLD, and the tag has a single attribute, called topic. This
attribute was specified in the TLD as a required attribute that could be set using an expression.
In our TopicList2.jsp page, the value of the attribute is indeed set, with the expression
${param.topic}:

 <faq:simplelist topic="${param.topic}">
 <p>Question ${qid}
 ${question}</p>
 </faq:simplelist>

The tag has a body, which is allowed by the TLD. The body content is represented by the
JspFragment instance in the doTag() method. When the invoke() method is called, the body is
evaluated and sent as part of the response to the client. You can see that the body of the tag
includes two EL expressions. The values of these expressions come directly from the parameters
that the doTag() method added to the JspContext. The doTag() method placed data into the
JspContext using the names question and qid. When the EL expressions are evaluated, their
value is obtained by getting the value of the attribute with the same name as the expression body.

Classic Tag Handlers
Prior to JSP 2.0, three interfaces and two implementing classes provided the basic design for
tag handlers. As you will see here, using classic tag handlers is somewhat more involved than
using simple tag handlers. For that reason, as we said earlier, you will probably use simple tag
handlers rather than classic ones. However, you may need to use classic tag handlers for
several reasons:

• You’re working on a project that still uses a server that supports only JSP 1.2.

• You need to work with tag handlers that were written under JSP 1.2.

• You need the greater flexibility provided by classic tag handlers.

Figure 4-10 shows the class design for the tag extension API of JSP. The
javax.servlet.jsp.tagext.Tag interface is the primary interface for classic tag handlers. It
provides an interface for simple tag handler classes that do not need to manipulate their body
content. IterationTag extends Tag to provide an interface for tag handlers that need to perform
some iteration or looping. Finally, BodyTag extends IterationTag for tag handlers that manipulate
their body content. The tag extension API includes two classes that implement these interfaces:
TagSupport implements IterationTag, and BodyTagSupport implements BodyTag.

Mukhar_470-3.book Page 140 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S 141

Figure 4-10. The first interface in the classic tag hierarchy is the Tag interface. This interface is extended by
IterationTag, which is extended by BodyTag. The IterationTag and BodyTag interfaces are implemented
by the classes TagSupport and BodyTagSupport.

Implementing Tag

Tag is the interface to implement when the tag handler does not need to process multiple times and
does not need to manipulate its body. As an alternative to implementing the Tag interface, your tag
handler can extend TagSupport (since TagSupport implements IterationTag, which extends Tag).
In fact, this is the usual way you will implement a tag handler for a tag. When you extend
TagSupport, you will only need to override doStartTag() or doEndTag(). So a tag handler class
that has no properties will look like this:

public class MyTag extends TagSupport {
 public int doStartTag() { // method body }
 public int doEndTag() { // method body }
}

The doStartTag() method is called by the page class at the point where the start tag appears
in the JSP file. When you implement a tag handler, you implement the doStartTag() method
with code that you want to have executed before the body of the tag is processed. When your code
is finished, it returns one of two values defined by the Tag interface. If it returns Tag.SKIP_BODY, the
body of the tag, which can include template (HTML) data, JSP elements, or other tag extensions,
is not evaluated.

Earlier, you saw that a TLD file contains information about the tag extensions. If the
<body-content> element of the TLD has the value empty, this indicates that a tag must be empty,

Mukhar_470-3.book Page 141 Saturday, October 1, 2005 6:14 AM

142 C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S

and SKIP_BODY is the only allowed return value. If your doStartTag() method returns
Tag.EVAL_BODY_INCLUDE, the body of the tag is evaluated.

The doEndTag() method is called by the page class at the point where the end tag appears
in the JSP file. When you implement a tag handler, you implement the doEndTag() method with
code that you want to have executed after the body of the tag is processed. After your doEndTag()
completes, it returns Tag.SKIP_PAGE or Tag.EVAL_PAGE. The value SKIP_PAGE indicates that the
remainder of the JSP should not be evaluated; EVAL_PAGE indicates the opposite.

This execution flow is illustrated in Figure 4-11.

Figure 4-11. With classic tags, when the start of a tag is encountered, the doStartTag() method is
called. When the end of a tag is encountered, the doEndTag() method is called.

Note that when extending TagSupport, you can, but do not need to, implement both
doStartTag() and doEndTag(). If the tag handler does not need to perform any action prior to
the body, and the tag must have an empty body, you do not need to implement doStartTag().
However, because the TagSupport implementation of doStartTag() returns SKIP_BODY, if the tag can
have a body, you should implement a minimal doStartTag() that returns EVAL_BODY_INCLUDE.
If the tag handler does not need to perform any action after the body, you do not need to imple-
ment doEndTag(). The TagSupport implementation of doEndTag() returns EVAL_PAGE.

Implementing IterationTag

When you need a tag handler class to iterate or loop its actions, your tag class will implement
IterationTag. As with Tag, you will usually just extend TagSupport. IterationTag adds one
method and one property, which are used to provide the looping behavior. Here is a tag handler
class without any properties:

public class ListQuestions extends TagSupport {
 public int doStartTag() throws JspTagException { // method body }
 public int doAfterBody() throws JspTagException { // method body }
 public int doEndTag() throws JspTagException { // method body }
}

This time, the example includes the new method: doAfterBody().
Figure 4-12 illustrates the implementation class methods that correspond to the various

tags in the JSP page. After calling doStartTag() and after evaluating the body of the tag, the
page class calls the doAfterBody() method. The doAfterBody() method allows the tag handler

Mukhar_470-3.book Page 142 Saturday, October 1, 2005 6:14 AM

C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S 143

class to determine whether the page class should evaluate the body another time. If so,
doAfterBody() should return a value of IterationTag.EVAL_BODY_AGAIN, which indicates that
the page class should evaluate the body of the tag again; if not, it returns Tag.SKIP_BODY. The
page class then calls doEndTag() and proceeds as with a Tag.

Figure 4-12. After evaluating the body of the classic tag, the doAfterBody() method of the tag
handler class is called. The return value of doAfterBody() determines whether the body of the
tag is evaluated again.

■Note An additional interface that you can use with any class that implements Tag, IterationTag, or
BodyTag is the TryCatchFinally interface. The TryCatchFinally interface requires that implementing
classes implement two additional methods: doCatch(Throwable) and doFinally(). The container will
call doCatch(Throwable) and doFinally() if an exception is thrown in any of the tag handling methods
of the tag handler. See the Javadoc for details about using these methods.

Implementing BodyTag

With Tag and IterationTag, the implementing class can indicate whether the body of the tag
should be evaluated by the page class; however, the tag handler classes that implement Tag or
IterationTag have no way of actually manipulating the contents of the tag body. This is possible
through the BodyTag interface and its implementing class, BodyTagSupport:

public class ListQuestionsInBody extends BodyTagSupport {
 public int doStartTag() throws JspTagException { // method body }
 public void setBodyContent(BodyContent bc) { // method body }
 public void doInitBody() { // method body }
 public int doAfterBody() throws JspTagException { // method body }
 public int doEndTag() throws JspTagException { // method body }
}

Figure 4-13 shows the correspondence between tags in the JSP page and the methods in
the page implementation class. For the most part, the doStartTag() method is the same as for
Tag or IterationTag. The difference is that the BodyTag interface defines an additional return
value for the method: BodyTag.EVAL_BODY_BUFFERED. When your code returns EVAL_BODY_BUFFERED,

Mukhar_470-3.book Page 143 Saturday, October 1, 2005 6:14 AM

144 C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S

the page class calls the setBodyContent() and doInitBody() methods. This makes the body
content available to your code in the doAfterBody() and doEndTag() methods. When the
return value of doStartTag() is EVAL_BODY_BUFFERED, the page class evaluates the tag body and
stores the result in an instance of BodyContent. (Thus, an instance of BodyContent will not
contain actions, scriptlets, and so on—only the results of those elements.) The page class
then needs to pass the BodyContent instance to the tag handler so that it can manipulate the
body content. It does this by calling setBodyContent(). The page class then calls doInitBody().
Inside the doInitBody() method, the tag handler class can perform any initialization that
depends on the body of the tag.

Figure 4-13. The doInitBody() and doAfterBody() methods are called to process the body of a tag.

Normally, you will manipulate the body content in the doAfterBody() method. However,
the BodyContent object is also available to the doEndTag() method, so you can use the
BodyContent object there. The BodyContent class defines various methods for getting the body
content and writing the body content to an output stream. For example, this code snippet
shows how to write the body content to the response:

public void doAfterBody() {
 // bodyContent is an instance variable of BodyTagSupport
 // Call the getEnclosingWriter() method to get the enclosing JspWriter
 Writer writer = bodyContent.getEnclosingWriter();
 // Call the writeOut(Writer) method to send the body content
 // to the writer
 bodyContent.writeOut(writer);

 if (need_to_eval_body_again) {
 return EVAL_BODY_AGAIN;
 } else {
 return SKIP_BODY;
 }
}

Mukhar_470-3.book Page 144 Saturday, October 1, 2005 6:14 AM

C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S 145

The page class will evaluate the body again if the doAfterBody() method returns
EVAL_BODY_AGAIN; otherwise, if doAfterBody() returns SKIP_BODY, the page class calls doEndTag().

Implementing a Classic Tag Handler with TagSupport

In our next example, we’ll create a custom action using classic tag handlers to list the FAQ
questions in the TopicList.jsp page. As with the previous tag handler example, by putting the
iteration into the custom action, all the Java code will be eliminated from the JSP page and
encapsulated in the tag handler. This will make the page simpler than the version introduced
in the first example of the chapter. Encapsulating the Java code in beans and tag handlers also
makes the page easier for page developers to develop and maintain. Figure 4-14 shows the
application structure.

Figure 4-14. Directory structure for the Jsp_Ex07 application

Most of these files are the same as in the previous example. The new files are
TopicList3.jsp, web.xml, faq.tld, and ListQuestions.java; you can reuse the files
Questions.class (Listing 4-3), Questions.jsp (Listing 4-4), and EL_1.jsp (Listing 4-5). The
file welcome.jsp (Listing 4-1) requires a simple change to be used with this example.

Listing 4-12 shows the tag handler, ListQuestions.java. The tag handler will need to
iterate over a collection of questions, so it extends TagSupport. Since this class uses the JSP API,
when you compile the class, your classpath will need to include the correct libraries. If you are
using Java EE, your classpath must include javaee.jar. If you are using Tomcat 5.0, your classpath
must include jsp-api.jar. If you are using some other JSP container, check your documen-
tation for the correct .jar file to include on the classpath. Also, you will need to ensure that
Questions.class either exists or is compiled at the same time. You can do that by using
javac *.java (assuming the classpath is set).

Mukhar_470-3.book Page 145 Saturday, October 1, 2005 6:14 AM

146 C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S

Listing 4-12. ListQuestions.java

package com.apress.faq;
package com.apress.faq;

import java.util.*;
import javax.servlet.jsp.tagext.*;
import javax.servlet.jsp.*;
import java.io.*;

public class ListQuestions extends TagSupport {
 private String topic;
 /** Iterator over the question keys.
 * It is an instance variable because it is set in doStartTag()
 * and used in doAfterBody() */
 private Iterator qids;
 /** Map of questions keyed on question id.
 * It is an instance variable because it is set in doStartTag()
 * and used in doAfterBody() */
 private Map qmap;

 public void setTopic(String s) { topic = s; }

 public int doStartTag() throws JspTagException {
 Questions questions = new Questions();
 questions.setTopic(topic);

 qmap = questions.getQuestions();
 qids = qmap.keySet().iterator();
 try {
 // Write some preliminary data to the response
 pageContext.getOut().write("<h2>Questions for Topic</h2>");
 pageContext.getOut().write("\nThe number of questions in topic " +
 topic + " is " + qmap.size());

 } catch (IOException e) {
 throw new JspTagException("Error writing to out");
 }
 return EVAL_BODY_INCLUDE;
 }

 public int doAfterBody() throws JspTagException {
 // Create the link for a single question
 // Each time this method is called by the page class,
 // the Iterator advances to the next question
 if (qids.hasNext()) {
 String qid = (String) qids.next();
 String s = "<p>Question <a href=\"Questions.jsp?qid=" + qid +

Mukhar_470-3.book Page 146 Saturday, October 1, 2005 6:14 AM

C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S 147

 "\">" + qid + ": " +
 qmap.get(qid) + "</p>";
 try {
 pageContext.getOut().write(s);
 } catch (IOException e) {
 throw new JspTagException("Error writing to out");
 }
 // Tell the page class to evaluate the body again
 return EVAL_BODY_AGAIN;
 } else {
 // faqs.next() was false, so no more questions
 return SKIP_BODY;
 }
 }

 public int doEndTag() throws JspTagException {
 try {
 pageContext.getOut().write("<p>Click a link to see the answer</p>");
 } catch (IOException e) {
 throw new JspTagException("Error writing to out");
 }
 return EVAL_PAGE;
 }
}

The TLD (faq.tld) for this tag is shown in Listing 4-13.

Listing 4-13. faq.tld

<?xml version="1.0" encoding="UTF-8" ?>

<taglib xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee/web-jsptaglibrary_2_1.xsd"
 version="2.1">

 <tlib-version>1.0</tlib-version>
 <tag>
 <name>listFaqs</name>
 <tag-class>com.apress.faq.ListQuestions</tag-class>
 <body-content>scriptless</body-content>
 <attribute>
 <name>topic</name>
 <required>yes</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>
</taglib>

Mukhar_470-3.book Page 147 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

148 C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S

If you are deploying to Tomcat, you will need to add a <taglib> element to the deployment
descriptor. Listing 4-14 shows the deployment descriptor web.xml for this example.

Listing 4-14. web.xml for Jsp_Ex07

<?xml version="1.0" encoding="ISO-8859-1"?>

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 version="2.5">

 <display-name>Jsp_Ex07 - Classic Tag Handler</display-name>
 <welcome-file-list>
 <welcome-file>welcome.jsp</welcome-file>
 </welcome-file-list>
 <taglib>
 <taglib-uri>/questions</taglib-uri>
 <taglib-location>/WEB-INF/tlds/faq.tld</taglib-location>
 </taglib>
</web-app>

If you are deploying to Java EE using the Deployment Tool, you will need to set the <taglib>
element of the deployment descriptor through the Java EE 5 Deployment Tool. This is done in
the File Ref’s tab of the right pane when the web application is selected in the left pane. You
need to add the tag library mapping is the JSP Tag Libraries section, as shown in Figure 4-15.
Enter /questions for the URI and /WEB-INF/tlds/faq.tld for the Location.

Listing 4-15 shows the JSP page. Save this as TopicList3.jsp.

Listing 4-15. TopicList3.jsp

<%@ taglib uri="/questions" prefix="faq"%>
<html>
 <head><title>Topic Questions</title></head>
 <body>
 <h1>Topic Questions</h1>

 <faq:listFaqs topic="${param.topic}">
 </faq:listFaqs>

 </body>
</html>

Mukhar_470-3.book Page 148 Saturday, October 1, 2005 6:14 AM

C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S 149

Figure 4-15. The File Ref’s tab is where JSP tag libraries are specified.

Finally, we need to modify the welcome.jsp page. Add the welcome.jsp source from Listing 4-1
to this example and modify the anchor tag (<a>) so that it looks like this:

Expression Language

Deploy the application to your server. Open a browser window and enter the address
http://localhost:8080/Jsp_Ex07/welcome.jsp. If everything is correct, you will see the same
display as in the previous two examples in this chapter. However, even though the output from
the tag handler looks the same as in previous examples, how it processes the tag is different.
The tag handler class, ListQuestions, extends the TagSupport class. Since that class implements
IterationTag, the tag handler can perform iterations, but it can’t manipulate the body of the
tag. Thus, the tag handler class needs to perform all the output to the response itself. ListQuestions
provides implementations for the doStartTag(), doAfterBody(), and doEndTag() methods.

The doStartTag() creates an instance of the Questions class, and gets the Map consisting of
the list of questions. It sets up an iterator for the keys used in the map and prints out some
preliminary text. Notice that to do this, it gets an output stream from the pageContext object:

 qmap = questions.getQuestions();
 qids = qmap.keySet().iterator();
 try {
 // Write some preliminary data to the response
 pageContext.getOut().write("<h2>Questions for Topic</h2>");

Mukhar_470-3.book Page 149 Saturday, October 1, 2005 6:14 AM

150 C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S

The doAfterBody() method actually uses the Iterator to create the links and text of each
question. As it iterates through each question, it returns a value of EVAL_BODY_AGAIN. This
signals that the page class should call doAfterBody() again. When it has iterated through all the
values, doAfterBody() returns SKIP_BODY:

 if (qids.hasNext()) {
 String qid = (String) qids.next();
 String s = "<p>Question <a href=\"Questions.jsp?qid=" + qid +
 "\">" + qid + ": " +
 qmap.get(qid) + "</p>";
 try {
 pageContext.getOut().write(s);
 } catch (IOException e) {
 throw new JspTagException("Error writing to out");
 }
 // Tell the page class to evaluate the body again
 return EVAL_BODY_AGAIN;
 } else {
 // faqs.next() was false, so no more questions
 return SKIP_BODY;
 }

The TLD tells the application about the tag handler class. This TLD contains only one
<tag> element. This <tag> element provides the name of the custom action, listFaq, and the
name of the class that implements the action. As in the previous example, the action has one
attribute named topic, which is required and can be set through an expression:

 <tag>
 <name>listFaqs</name>
 <tag-class>com.apress.faq.ListQuestions</tag-class>
 <body-content>scriptless</body-content>
 <attribute>
 <name>topic</name>
 <required>yes</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>

We also added a <taglib> element to the deployment descriptor. This <taglib> element
specified that a URI of /questions referred to the TLD at /WEB-INF/tlds/faq.tld.

And now we get to the JSP page. Because all of the work is now done by the tag handler, the
JSP page has become incredibly simple. Notice that there is no Java scriptlet in the page at all.
At the top of the page, the tag library is imported using the taglib directive. The taglib directive
specifies that the TLD is at the URI /questions. Because of the mapping in the web.xml file, this
resolves to the file faq.tld.

The taglib directive specifies that the prefix for custom actions from that library should be
faq. In this case, the prefix is the same as the short name, but remember that the page developer

Mukhar_470-3.book Page 150 Saturday, October 1, 2005 6:14 AM

C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S 151

can set the prefix to any value, regardless of the short name of the library. This is the single
custom action that causes the tag handler to be called:

<faq:listFaqs topic="${param.topic}">
</faq:listFaqs>

The custom action has the prefix, faq, followed by the tag name, and the topic attribute.
Notice that we set this attribute using an EL expression. This is allowed because the TLD specified
that the attribute could be set by a runtime expression.

So, the JSP has become much simpler, and that’s good, but at what cost? The ListQuestions
class now has HTML tags and data in it. This could become a maintenance problem. Recall that
one of the reasons for JSP pages was to remove template data from code. Although it’s nice that
TopicList3.jsp is so simple, it would be better to put the presentation data back into the JSP
page, and leave the tag handler to do nonpresentation tasks. Next, we’ll look at how to do that
through the BodyTag interface.

Implementing a Classic Tag Handler with BodyTagSupport

One way to move the presentation back to the JSP page and let the tag handler perform
nonpresentation tasks is by extending the BodyTagSupport class. Figure 4-16 displays the
directory structure for the latest iteration of the FAQ application.

Figure 4-16. The directory structure for the Jsp_Ex08 application

As with previous examples, files not explicitly shown here can be reused from earlier examples
in this chapter. In this example, we will create TopciList4.jsp and modify welcome.jsp.
The deployment descriptor will be updated, as will faq.tld. The new tag handler class,
ListQuestionsInBody.java, will extend BodyTagSupport.

Listing 4-16 is the final tag handler for the FAQ application. This tag handler is called
ListQuestionsInBody. Add this class to the /WEB-INF/classes/com.apress.faq directory (as
shown in Figure 4-16).

Mukhar_470-3.book Page 151 Saturday, October 1, 2005 6:14 AM

152 C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S

Listing 4-16. ListQuestionsInBody.java

package com.apress.faq;

import java.util.*;
import javax.servlet.jsp.tagext.*;
import javax.servlet.jsp.*;

public class ListQuestionsInBody extends BodyTagSupport {
 private String topic;
 private Iterator qids;
 private Map qmap;

 public void setTopic(String s) { topic = s; }

 public int doStartTag() throws JspTagException {
 Questions questions = new Questions();
 questions.setTopic(topic);
 qmap = questions.getQuestions();
 qids = qmap.keySet().iterator();

 if (qids.hasNext()) {
 Object qid = qids.next();
 setVariables(qid, qmap.get(qid));
 return EVAL_BODY_INCLUDE;
 } else {
 return SKIP_BODY;
 }
 }

 public int doAfterBody() throws JspTagException {
 if (qids.hasNext()) {
 Object key = qids.next();
 setVariables(key, qmap.get(key));
 return EVAL_BODY_BUFFERED;
 } else {
 return SKIP_BODY;
 }
 }

 public int doEndTag() throws JspTagException {
 return EVAL_PAGE;
 }

Mukhar_470-3.book Page 152 Saturday, October 1, 2005 6:14 AM

C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S 153

 void setVariables(Object key, Object value) {
 pageContext.setAttribute("question", value);
 pageContext.setAttribute("qid", key);
 }
}

We need to change the TLD so that it includes this new tag handler. Modify the faq.tld file
as shown in Listing 4-17.

Listing 4-17. faq.tld for Jsp_Ex08

<?xml version="1.0" encoding="UTF-8" ?>

<taglib xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee/web-jsptaglibrary_2_1.xsd"
 version="2.1">

 <tlib-version>1.0</tlib-version>

 <tag>
 <name>faqData</name>
 <tag-class>com.apress.faq.ListQuestionsInBody</tag-class>
 <body-content>scriptless</body-content>
 <variable>
 <name-given>qid</name-given>
 </variable>
 <variable>
 <name-given>question</name-given>
 </variable>
 <attribute>
 <name>topic</name>
 <required>yes</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>
</taglib>

We also need a new version of the topic list page. Listing 4-18 shows TopicList4.jsp.

Listing 4-18. TopicList4.jsp

<%@ taglib uri="/questions" prefix="faq"%>

<html>
 <head><title>Topic Questions 4</title></head>
 <body>
 <h1>Topic Questions 4</h1>

Mukhar_470-3.book Page 153 Saturday, October 1, 2005 6:14 AM

154 C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S

 <faq:faqData topic="${param.topic}">
 <p>Question ${qid}
 ${question}</p>
 </faq:faqData>
 <p>Click a link to get the answer.</p>
 </body>
</html>

Since this application uses the same initial file and the same faq.tld as the previous
example, you could use the deployment descriptor from the previous example without any
changes. However, we changed the display name to reflect that this is a new application.
Listing 4-19 shows the modified deployment descriptor.

Listing 4-19. web.xml for Jsp_Ex08

<?xml version="1.0" encoding="ISO-8859-1"?>

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 version="2.5">

 <display-name>Jsp_Ex08 - Classic Body Tag Handler</display-name>
 <welcome-file-list>
 <welcome-file>welcome.jsp</welcome-file>
 </welcome-file-list>
 <taglib>
 <taglib-uri>/questions</taglib-uri>
 <taglib-location>/WEB-INF/tlds/faq.tld</taglib-location>
 </taglib>
</web-app>

Finally, we need to modify the welcome.jsp page. Add the welcome.jsp source from Listing
4-1 to this example and modify the anchor tag (<a>) so that it looks like this:

Expression Language

No other additions or modifications are needed to the existing files in the application.
After deploying the new files, enter the URL http://localhost:8080/Jsp_Ex08/welcome.jsp.
You should see the same behavior as occurred with the previous examples. However, unlike
the ListQuestions class, the ListQuestionsInBody class no longer has any template data in it
and does not need to output anything to the response. All it does is process the collection of
questions, exposing each one to the rest of the page through the setVariables() method. This
method adds two attributes to the page context. This makes the variables accessible to the rest
of the page. Within the page, these variables are accessed using the EL statements ${question} and
${qid}. To cause the body of the tag to be evaluated, doStartTag() returns EVAL_BODY_INCLUDE and
doAfterBody() returns EVAL_BODY_BUFFERED. These return values cause the page class to call the
setBodyContent() and doInitBody() methods of the class. Since our tag handler didn’t need to

Mukhar_470-3.book Page 154 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S 155

do anything special with the body content, the default implementations of these methods in
the parent class were sufficient.

To make the variables created by the tag handler accessible to the page, the TLD specifies
that the tag handler should create two scripting variables that are then available to the rest
of the page (although they are used only within the body of the tag). It did this through the
<variable> element in the TLD:

 <variable>
 <name-given>qid</name-given>
 </variable>
 <variable>
 <name-given>question</name-given>
 </variable>

Each of these elements used the <name-given> element to specify the name by which the
scripting variables could be accessed. These are the same names that the tag handler class
must use when adding the attributes to the page context.

Finally, there is the topic page. Our new tag is called in the same way as the simple tag
example, so TopicList4.jsp is simpler than the original TopicList.jsp, but not quite as simple
as TopicList3.jsp. The body of the tag consists of template data and EL expressions:

 <faq:faqData topic="${param.topic}">
 <p>Question ${qid}
 ${question}</p>
 </faq:faqData>

The EL expressions access the scripting variables created by the custom action. Each time
the page class evaluates the body, it gets the current values of these variables from the page
context and inserts them into the response.

This allows page designers to easily change the presentation of the data without needing
to edit and recompile the tag handler.

A Multitude of Custom Actions
At this point, it should be clear that you can create a rich set of behavior with very simple code
that implements any of the tag handler interfaces, or more simply just by extending the tag
support classes. This allows the software developers of a web application to do what they like
best—coding—while providing the web page developers a set of tags that they can use to make
their web pages dynamic without needing to learn how to code.

So, at this point you should be ready to go out and develop some tag handlers. You could
have tag handlers for performing if-then tests and implementing switch constructs. Tag
handlers for looping would also be useful. And how about some tag handlers for formatting
text and numbers, and another set of tag handlers to make it easy for a JSP to communicate
with a database?

Of course, if you have these great ideas, so do dozens or hundreds of other developers. All
of you are out there creating tags for testing, looping, and formatting. And none of these tag
handlers are compatible! What started out as an elegant solution to the problem of mixing logic
and presentation has gotten ugly again.

Mukhar_470-3.book Page 155 Saturday, October 1, 2005 6:14 AM

156 C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S

Based on the last paragraph, you might guess that there is a solution to this problem. You’re
right, and that solution is the JSP Standard Tag Library, which is the subject of the next section.

JSP Standard Tag Library (JSTL)
Much of this chapter has been devoted to information about creating your own custom actions
and tag libraries. However, you are not limited to using just the tags you create. You can use
any tag library that is available. While there are many such libraries distributed, in this section,
we will look at the JSP Standard Tag Library, or JSTL.

The JSTL grew out of the realization that with many developers creating tag libraries, many
actions would be duplicated among the various libraries. Because these libraries were developed
separately, the duplicated actions would probably have different names, syntaxes, and/or
behaviors.

The JSTL standardizes a number of common actions. If you use one implementation of a
standard tag library, switching to another standard tag library implementation should be as
easy as adding the .jar files to your application and changing the web.xml file to map the
taglib-uri to the new different TLD. In this section, we will look how to get a JSTL implemen-
tation, some of the actions in the JSTL, and using the JSTL.

Getting a JSTL Implementation
If you want to experiment with the JSTL, one place where you can get an implementation
of the library is the Jakarta project. You can get a copy of the latest version at http://
jakarta.apache.org/taglibs/index.html. At the time this was written, JSTL 1.1.2 was the
current version; it is designed to run under Tomcat 5.

Using the JSTL is simple:

1. Unpack the distribution into your application. The .jar files containing the tag han-
dlers should go into /WEB-INF/lib, and the TLDs into a directory under /WEB-INF/.

2. Change the web.xml file to map the taglib-uri element to the location of the TLDs.

3. Add the taglib directive to the pages that will use the JSTL tags.

Actions in the JSTL
The JSTL tags have been divided into four categories:

• Core actions (c.tld)

• XML processing (x.tld)

• Internationalization-capable formatting (fmt.tld)

• Relational database access (sql.tld)

If you are using the 1.1.2 or later release of the JSTL with a web container that supports JSP 2.0
or later, you will use the TLD files listed here. Since Tomcat 5 is the current reference imple-
mentation for JSP 2.1, the 1.1.2 versions of the TLD files are the ones we will use in this chapter.
You should copy those TLD files into the tld directory of your web application.

Mukhar_470-3.book Page 156 Saturday, October 1, 2005 6:14 AM

C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S 157

If you have the version 1.1.2 release, you will notice that there are additional TLD files in
the distribution. For example, in addition to c.tld, the 1.1.2 release includes c-1_0.tld and
c-1_0-rt.tld. There are similarly named files corresponding to x.tld, fmt.tld, and sql.tld.
These TLD files are included for backward-compatibility with JSTL 1.0 (hence the 1_0 part of
the filename).

If you are using a web container that does not support JSP 2.0 or later, you will need to use
the JSTL 1.0 versions of the TLD files. If your page uses Java scripting expressions (<%! %>,
<%= %>, or <% %>), you will use the rt version of each TLD. The abbreviation rt is short for
rtexprvalues, which is for runtime (or request-time) expression values. (The JSP specification
uses the terms runtime and request-time interchangeably.) If your page uses EL expressions,
you will use the other version. If your page uses both, you will need both TLDs. You can freely
mix actions from either library in the same JSP. But remember that this applies only if your
container does not support JSP 2.0 or later. The latest versions of the Java EE reference imple-
mentation use Tomcat 5, which supports JSP 2.1 as the web container.

Core Actions

The core actions provide tag handlers for manipulating variables and dealing with errors,
performing tests and conditional behavior, and executing loops and iterations.

The general-purpose actions in the core category provide support for dealing with variables
and errors. Table 4-8 shows the general-purpose actions with a description of how they are used.

Table 4-8. General-Purpose Actions in the JSTL Core Category

Tag Meaning

<c:out value="" default=""> Sends the value to the response stream. You can
specify an optional default value so that if the
value attribute is set with an EL expression, and
the expression is null, the default value will be
output.

<c:set var="" value=""> Sets the JSP-scoped variable identified by var to
the given value.

<c:set target="" property="" value=""> Sets the property of the given JavaBean or Map
object to the given value.

<c:remove var="" scope=""> Removes the object identified by var from the
given scope. The scope attribute is optional. If
the scope is not given, each scope will be searched
in the order page, request, session, application,
until the object is found or all scopes are searched.
If scope is given, the object is removed only if it
is in the given scope. If the object is not found,
an exception will be thrown.

<c:catch var=""> Encloses a block of code that might throw an
exception. If the exception occurs, the block
terminates but the exception is not propagated.
The thrown exception can be referenced by the
variable named by var.

Mukhar_470-3.book Page 157 Saturday, October 1, 2005 6:14 AM

158 C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S

Conditional actions, shown in Table 4-9, allow you to test expressions and evaluate tags
based on the result of the test.

Table 4-10 shows iterator actions, which are actions that allow you to loop over a set of
values.

Formatting Actions

Formatting actions are part of the internationalization, or I18N, library. As you might guess,
they provide support for formatting output. Among the actions for setting locales and time
zones, are actions for formatting numbers. Here, we’ll look at two of them.

The following formatting action is for dates:

<fmt:formatDate value="date" [type="{time|date|both}"]
[dateStyle="{default|short|medium|long|full}"]
[timeStyle="{default|short|medium|long|full}"]
[pattern="customPattern"] [timeZone="timeZone"] [var="varName"]
[scope="{page|request|session|application}"]/>

Table 4-9. Conditional Actions in the JSTL Core Category

Tag Meaning

<c:if test="" var=""> Used like a standard Java if block. The var
attribute is optional; if present, the result of the
test is assigned to the variable identified by var.
If the test expression evaluates to true, the tag is
evaluated; if false, it is not.

<c:choose>, <c:when test="">, <c:otherwise> The analog to a Java if...elseif...else block. The
<c:choose> action starts and ends the block. The
test in each <c:when test=""> tag is evaluated;
the first test that evaluates to true causes that tag
to be evaluated. If no <c:when> action evaluates
to true, the <c:otherwise> tag is evaluated.

Table 4-10. Iterator Actions in the JSTL Core Category

Tag Meaning

<c:forEach var="" items=""> Iterates over each item in the collection identified
by items. Each item can be referenced by var.
When items is a Map, the value of the item is
referenced by var.value.

<c:forEach var="" begin="" end="" step=""> The tag for a for loop. The step attribute is
optional.

<c:forTokens items="" delims=""> Iterates over the tokens in the items string.

Mukhar_470-3.book Page 158 Saturday, October 1, 2005 6:14 AM

C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S 159

With this action, only the value attribute is required. The other attributes define how to format
the date. The pattern attribute can contain a custom pattern for formatting the date string.

This is a formatting action for numbers:

<fmt:formatNumber value="numericValue" [type="{number|currency|percent}"]
[pattern="customPattern"] [currencyCode="currencyCode"]
[currencySymbol="currencySymbol"]
[groupingUsed="{true|false}"] [maxIntegerDigits="maxIntegerDigits"]
[minIntegerDigits="minIntegerDigits"] [maxFractionDigits="maxFractionDigits"]
[minFractionDigits="minFractionDigits"] [var="varName"]
[scope="{page|request|session|application}"]/>

This action formats the number given by value. Various styles are possible, including currency
formats and custom formatting styles. You can also use this tag without the value attribute; in
which case, the number to be formatted is passed in the body of the tag.

SQL Actions

The JSTL SQL actions allow page authors to perform database queries, access query results,
and perform inserts, updates, and deletes. One of the many SQL actions is <sql:query>:

<sql:query var="" dataSource=""> SQL Command </sql:query>

This action queries the database given by the dataSource attribute. The query that is performed
is given in the body of the tag. The results of the query can be accessed by var.rows. You can use
the <c:forEach> tag to iterate over the collection of rows.

The dataSource attribute can identify the database in two ways: use the JDBC URL to
access the database or use the Java Naming and Directory Interface (JNDI) data source name
to look up the database. See Chapters 7 and 8 for more information about these techniques.

Using the JSTL in a JSP
Now we will finally add another FAQ answer to the FAQ application we have been developing
in this chapter. This JSP will show various uses of the JSTL. Figure 4-17 shows the structure of
the web application.

For the most part, this example will reuse the files created for the example used earlier to
demonstrate simple tag handlers. Start by finding the files for the simple tag handler example,
Jsp_Ex06, and putting them into the directory structure shown in Figure 4-17. The new files
that need to be added are EL_2.jsp and the .jar and .tld files from the JSTL.

Download the JSTL 1.1 distribution from the Jakarta web site http://jakarta.apache.org/
taglibs/doc/standard-doc/intro.html. Extract the TLDs c.tld and fmt.tld into the /tlds direc-
tory you’ve been using for the examples in this chapter. Extract two .jar files into the lib
directory: standard.jar and jstl.jar.

Mukhar_470-3.book Page 159 Saturday, October 1, 2005 6:14 AM

160 C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S

Figure 4-17. The directory structure for the Jsp_Ex09 example application.

Create the EL_2.jsp file shown in Listing 4-20. Save this file in the same place as EL_1.jsp.

Listing 4-20. EL_2.jsp

<%@taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>
<%@taglib uri="http://java.sun.com/jsp/jstl/fmt" prefix="fmt"%>
<html>
 <head>
 <title>JSTL Q2</title>
 </head>

 <body>
 <h1>JSTL Question 2</h1>
 <h2>How do I use the JSTL?</h2>

 <jsp:useBean id="questions" class="com.apress.faq.Questions"
 scope="page">
 <jsp:setProperty name="questions" property="topic" value="EL"/>
 </jsp:useBean>

 <table border="1">
<!-- the literal JSTL tag will be in left column of table -->
<!-- the evaluated JSTL tag will be in right column of table -->
 <tr><th>tag</th><th>result</th></tr>

Mukhar_470-3.book Page 160 Saturday, October 1, 2005 6:14 AM

C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S 161

<!-- this tag uses c:out to send the value of an EL to the response -->
 <tr><td><c:out value="${'${'}questions.topic}"/></td>
 <td><c:out value="${questions.topic}"/></td>
 </tr>

<!-- this tag uses c:set to set the property of a JavaBean -->
 <c:set target="${questions}" property="topic" value="JSTL" />
 <tr>
 <td><c:set target="${'${'}questions}" property="topic"
 value="JSTL"/>
 </td>
 <td><c:out value="${questions.topic}"/></td>
 </tr>

<!-- this tag uses c:if to determine whether to create another row -->
 <c:if test="${questions.topic == 'EL'}">
 <tr><td>This row will not be created</td>
 <td></td>
 </tr>
 </c:if>

 <c:if test="${questions.topic == 'JSTL'}">
 <tr><td>This row was created because the c:if tag result was true</td>
 <td></td>
 </tr>
 </c:if>
 </table>

<h2>Multiplication table, 1 - 5</h2>

<!-use the forEach tag to create a table -->
 <table border="1">
 <tr><td></td><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td></tr>
 <c:forEach var="i" begin="1" end="5">
 <tr><td><c:out value="${i}"/></td>
 <c:forEach var="j" begin="1" end="5">
 <td><c:out value="${i*j}"/></td>
 </c:forEach>
 </tr>
 </c:forEach>
 </table>

<h2>Formatting numbers</h2

<fmt:formatNumber value="23.456" type="number" /> results in
 <fmt:formatNumber value="23.456" type="number" />

Mukhar_470-3.book Page 161 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

162 C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S

<fmt:formatNumber type="currency">23.456
 </fmt:formatNumber> results in <fmt:formatNumber
 type="currency">23.456</fmt:formatNumber>

<fmt:formatNumber value=".23456" type="percent"/> results
 in <fmt:formatNumber value=".23456" type="percent"/>

<fmt:formatNumber value=".23456" type="percent"
 minFractionDigits="2"/> results in <fmt:formatNumber
 value=".23456" type="percent" minFractionDigits="2"/>

 </body>
</html>

If you are using Tomcat, modify the web.xml file as shown in Listing 4-21. If you are using
the Java EE Deployment Tool, set the taglib mapping through the Deployment Tool.

Listing 4-21. web.xml for Jsp_Ex09

<?xml version="1.0" encoding="ISO-8859-1"?>

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 version="2.5">

 <display-name>Jsp_Ex09 - JSP Standard Tag Library</display-name>

 <welcome-file-list>
 <welcome-file>welcome.jsp</welcome-file>
 </welcome-file-list>

 <jsp-config>
 <taglib>
 <taglib-uri>/simplequestions</taglib-uri>
 <taglib-location>/WEB-INF/tlds/simplefaq.tld</taglib-location>
 </taglib>

 <taglib>
 <taglib-uri>http://java.sun.com/jsp/jstl/core</taglib-uri>
 <taglib-location>/WEB-INF/tlds/c.tld</taglib-location>
 </taglib>

 <taglib>
 <taglib-uri>http://java.sun.com/jsp/jstl/fmt</taglib-uri>
 <taglib-location>/WEB-INF/tlds/fmt.tld</taglib-location>
 </taglib>

Mukhar_470-3.book Page 162 Saturday, October 1, 2005 6:14 AM

C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S 163

 <jsp-property-group>
 <url-pattern>*.jsp</url-pattern>
 <el-ignored>false</el-ignored>
 <scripting-invalid>true</scripting-invalid>
 </jsp-property-group>
 </jsp-config>
</web-app>

That should be all that’s required to make the tags available. Deploy the new files and
enter the URL http://localhost:8080/Jsp_Ex09/welcome.jsp in a browser. Click the link for
EL_2, and you should see a page like the one shown in Figure 4-18.

Figure 4-18. The JSTL provides many custom actions that can be used to create dynamic
web pages.

This page demonstrates a few of the JSTL tags available to you. You’ve seen the TLD and
the web.xml entries several times now, so we won’t cover those again here. The EL_2.jsp file
begins by importing the tag libraries:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/format" prefix="fmt" %>

Mukhar_470-3.book Page 163 Saturday, October 1, 2005 6:14 AM

164 C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S

We need one taglib entry for each library we use. The EL_2.jsp uses the core and format-
ting libraries, so there is one taglib entry for each. The taglib entry sets the prefix for the core
library to c and the prefix for the format library to fmt, following the JSTL suggestion. However,
recall that you can make the prefix any value you want; the prefix is set by the page designer,
not by the tag library implementer.

As we mentioned earlier, if you are forced to use the JSTL 1.0 versions of the TLD files
because your web container supports only JSP 1.2, you may need two taglib entries for each
library you use in the JSP page. In addition, the URL for the taglib element is slightly different.
If your JSP page uses JSP scripting expressions such as scriptlets or declarations, you will use
the RT version of the TLD, fmt-1_0-rt.tld, for example. If your JSP page uses EL statements,
you will use the EL version of the TLD, fmt-1_0.tld, for example. So, if Listing 4-20 were being
deployed to a JSP 1.2 container, the taglib entries would look like this:

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>
<%@ taglib uri="http://java.sun.com/jstl/format" prefix="fmt" %>

If you then added any Java scriptlets, expressions, or declarations to the page, you would
add the following taglib entries as well:

<%@ taglib uri="http://java.sun.com/jstl/core_rt" prefix="c_rt" %>
<%@ taglib uri="http://java.sun.com/jstl/format_rt" prefix="fmt_rt" %>

Comparing the URIs above to the URIs used in Listing 4-20, you can see that the JSTL 1.0
URI differs from the JSTL 1.1 URI. The JSTL 1.1 URI adds the name jsp to the URI path.

The page next creates a JavaBean from the Questions class and prints out the value of its
topic property. It then sets the topic property to a different value and prints that out. Next, it
uses two <c:if> tags to control the creation of another row in the table.

The next part of the page uses nested <c:forEach> tags to create a two-dimensional table
and to fill the table with the result of multiplying the numbers one through five against themselves.

This example should give you a fair idea of how to get started using some of the other tags
in the JSTL. There is, of course, much more information in the JSTL specification, available at
the Jakarta web site and at java.sun.com.

OTHER TAG LIBRARIES

The JSTL is certainly not the only tag library available to you. There are many more commercial and free tag
libraries available. Here is a short listing:

• Struts: The Struts tag library provides tags that are useful in building Model-View-Controller (MVC)
applications. (You saw a simplistic MVC application at the end of the last chapter, and you’ll see the use
of MVC architecture again in the next chapter.) It is available from the Apache web site at http://
struts.apache.org/.

• Jakarta Tag Libraries: In addition to the JSTL, the Apache Software Foundation has well over 20
different tag libraries that you can use in web applications. These libraries are listed on the Jakarta tag
libraries web page at http://jakarta.apache.org/taglibs/index.html.

Continued

Mukhar_470-3.book Page 164 Saturday, October 1, 2005 6:14 AM

C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S 165

• JNDI: This library is also available from Jakarta. It provides tags for using the Java Naming and Directory
Interface (JNDI) API. As you will see throughout this book, you will often use JNDI to look up resources
in your web applications. More information about JNDI can be found at http://java.sun.com/
products/jndi/. The tag library is at http://jakarta.apache.org/taglibs/doc/jndi-doc/
intro.html.

• BEA WebLogic Portal JSP Tag Libraries: This tag library from BEA provides standard tags for working
with BEA’s web portal. For more information, see http://edocs.beasys.com/wlac/portals/
docs/tagscontents.html.

• Coldbeans Bar Charts: This is one of many tag libraries available from www.servletsuite.com/
jsp.htm. This library provides tags for creating horizontal and vertical bar charts.

• Orion EJB: Available at www.orionserver.com/tags/ejbtags/, this library provides tags for
using EJBs.

• JSPTags.com: Not a single tag library, but a whole collection of them, can be found at http://
jsptags.com/tags/index.jsp. If you can’t find what you need here, you’ll probably need to
develop it yourself.

With all these resources, it should be easy to find a tag library with the functionality that you need for your
web application. Once you have a tag library, using it in your web application is as easy as 1–2–3:

1. Unpack the library and add the .jar files to your application.

2. Change the web.xml file to map the URIs to the library location.

3. Add the taglib directive to the pages that will use the JSTL tags, and then use the tags.

Additionally, if you can’t find an existing tag library with the functionality you need, you can apply what
you learned about simple and classic tag handlers and write your own tag library.

Summary
So that’s the nickel tour of advanced JSP topics. We spent some time getting to know the
Expression Language (EL) in some detail, and we spent a lot of time with custom actions and
seeing how to implement tag extensions. After that, we took a quick look at the JSP Standard
Tag Library (JSTL).

By no means, though, did we cover everything on those topics. There are many other
features of EL, tag extensions, and the JSTL. What we did look at, though, was the fundamental
information, which will allow you to sit down and start using these technologies. After you have
spent a little time writing tag extensions or EL expressions, you can start delving into the more
complex material.

After having read this chapter, you should know:

• EL expressions provide a simple syntax for using expressions with attributes and
template text.

• EL expressions are very Java-like in their syntax.

Mukhar_470-3.book Page 165 Saturday, October 1, 2005 6:14 AM

166 C H A P T E R 4 ■ A D V A N C E D J S P T O P I C S

• Custom actions provide a way to hide the Java code from the page designer.

• Tag handlers are the Java classes that implement a custom action. You will usually
extend SimpleTagSupport, TagSupport, or BodyTagSupport when creating a tag handler.

• Deploying a tag library is an easy, three-step procedure (copy jar files and tld files, add
mapping to web.xml, and add a taglib directive and tags to the JSP page).

• The JSTL provides a library of standard tags that can be used for many basic functions.

If you want to dig deeper into JSP and other advanced topics, we recommend Pro JSP,
Third Edition, by Simon Brown (Apress, 2003; ISBN 1-59059-225-5), and JavaServer Pages,
3rd Edition, by Hans Bergsten (O’Reilly, 2003; ISBN 0-59600-5636).

Exercises
1. Implement a client web page that has numerous input elements such as text fields,

buttons, check boxes, radio buttons, and so on. Using only EL, create a JSP page that
echoes back to the caller the request parameters from the request sent by the web page.

2. Modify Jsp_Ex05 to include two additional topics in addition to the EL topics. Also, add
a page that the user can use to select the desired topic.

3. Write two custom actions, where one action is nested inside the other action. For
example, with standard actions, a <param> tag is nested inside a <useBean> tag. Do
something similar with your tags.

4. When using a classic tag handler, investigate if there is any difference in how the tag
handler methods are called for the two different forms of the empty tag: <empty/> and
<empty></empty>. Perform the same investigation for simple tag handlers.

5. Develop a JSP that uses the sql tag library of the JSTL to communicate with a database.
(You may want to defer this exercise until after completing Chapter 7.)

6. Use the Jakarta tag libraries (http://jakarta.apache.org/taglibs/index.html) to
create one or more JSP pages. Here are some ideas:

• Use the Scrape tag library to search and scrape book information from an online
bookstore.

• Use the I18N library to create a JSP that displays in two or more languages based on
user preference.

• Use the Random tag library to create a web application that simulates a dice rolling
game or some other game that relies on chance.

Mukhar_470-3.book Page 166 Saturday, October 1, 2005 6:14 AM

167

■ ■ ■

C H A P T E R 5

JavaServer Faces

JavaServer Faces (JSF), a relatively new technology in the Java EE world, is designed to further
simplify web application development. JSF makes it easy to build user interface components
and pages, and connect those components to business objects. It also automates the process
of bean usage and page navigation.

JSF builds on the experience gained from JSP, Servlet, and various other web application
frameworks. In particular, JSF builds on the Apache Struts project. This is not surprising in light
of the fact that the creator of Struts is the lead specification engineer for JSF. (If you’re a Struts
enthusiast, you can even use JSF with Struts; see http://struts.apache.org.)

In this chapter, you will learn:

• Why JSF was developed and how it helps you to create dynamic user interfaces

• How to use custom tags for JSF components in JSP pages

• How to use managed beans with JSF components

• How to control page navigation

• How to convert data and validate input

Introduction to JSF
The JSF specification lists the following ways that JSF helps web application developers to
create user interfaces (UIs):

• Makes it easy to construct a UI from a set of reusable UI components

• Simplifies migration of application data to and from the UI

• Helps manage UI state across server requests

• Provides a simple model for wiring client-generated events to server-side application code

• Allows custom UI components to be easily built and reused

UI development is easier because UI components are provided as reusable objects.
A number of classes, corresponding to UI components, are part of the JSF specification and
implementation. Rather than needing to worry about the syntax of page layout, you simply

Mukhar_470-3.book Page 167 Saturday, October 1, 2005 6:14 AM

168 C H A P T E R 5 ■ JA V A S E R V E R F A C E S

drop the UI components into your application. A custom render kit and rendering process
convert the components into appropriate page layout code. The JSF implementation comes
with a default render kit for HTML, but the same JSF code can be rendered by other render kits
for other client systems. This means that you can use the same JSF code for a variety of client
systems, and use different render kits to customize the UI for each client system.

Moving application data to and from the UI is simplified by letting the JSF implementation
handle the mechanics of data transfer. You simply specify which data goes where, and the JSF
implementation handles the process of moving the data from UI objects to business objects
and vice versa. The JSF implementation automatically manages state across user requests, so
you do not need to manage or implement any session handling.

As with data, JSF provides an easy way to manage event handling. You specify the events
of interest and the business objects or classes to handle the events, and the JSF implementa-
tion takes care of calling the appropriate methods to handle any events that are generated. The
JSF event-handling model is similar to models used in other UI frameworks, such as Java
Swing. Specifically, this means that multiple event listeners can respond to a single event.

Finally, because JSF is based on reusable components, it provides a design that allows you
to easily create and integrate your own components or third-party components into your JSF-
enabled applications.

■Note As with all the Java EE technologies, detailed information about the technology can be found in the
JSF specification (http://java.sun.com/j2ee/javaserverfaces).

The Relationship Between JSF and Other Java EE Technologies
Within Java EE, technologies like JSP pages, Servlets, and EJBs are stand-alone technologies.
You could, if you wanted to, create an application using just EJBs, Servlets, or JSP pages.

JSF is different because it is a supporting technology. You use it in conjunction with JSP
pages, Servlets, or EJBs.

The primary design pattern of JSF is the Model-View-Controller (MVC) pattern. MVC
separates an application architecture into three categories of components: model, view, and
controller. The model is the abstraction of all the domain data in the system. It is the bank
account in a banking application, or a shopping cart in an e-commerce system. The view is the
visualization of the model. In a web application, the view consists of the HTML pages and the
components that create the HTML pages sent to web browsers, the WAP pages sent to mobile
devices, or the UI components sent to a dedicated client. The controller is the set of components
that manage the communications between model and view.

As you’ve learned in the previous chapters, you can create UIs with JSP. In fact, as you saw,
JSP was designed to make the view component of a web application easy to create and manage.
It is also possible, if not as easy, to create UIs with Servlets or EJBs. Combining JSF with any of
these other technologies makes UI creation—and integration of the model, view, and controller—
easier by far. JSF brings a component-based model to web application development that is
similar to the model that has been used in stand-alone GUI applications for years.

Mukhar_470-3.book Page 168 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

C H A P T E R 5 ■ J A V A S E R V E R F A C E S 169

To use JSF with Servlets and EJBs, you use the components that make up JSF directly; that
is, within your Servlet or EJB, you explicitly create instances of UI components and use the UI
classes directly. However, rather than go through that here, we will focus exclusively on using
JSF with JSP. The JSF implementation includes a tag library of custom tags that you can use
with JSP pages to easily create JSF-enabled applications.

Request Processing Lifecycle
Regardless of whether you are using JSF with JSP pages, Servlets, or EJBs, each request/response
flow that involves JSF follows a certain lifecycle. Several different kinds of request/response
cycles can occur in a JSF-enabled application. You can have requests that come from a previously
rendered JSF page (a JSF request) and a request that comes from a non-JSF page (a non-JSF
request). Likewise, you can have JSF responses and non-JSF responses. We are concerned with
these three request/response pairs:

• Non-JSF request generates JSF response

• JSF request generates JSF response

• JSF request generates non-JSF response

Of course, you can also have a non-JSF request that generates a non-JSF response. Since
this does not involve JSF in any way, the JSF lifecycle does not apply.

Recall that JSP pages have a relatively simple lifecycle. A JSP page source is compiled into
a page implementation class. When a web server receives a request, that request is passed to
the container, which passes the request to the page class. The page class processes the request,
and then writes the response back to the client. When other pages are included or the request
is forwarded, or when an exception occurs, the process is a little more involved, but basically,
a small set of classes processes a request and sends a response back.

When using JSF, the lifecycle is a little more involved. This is due to the fact that the core of
JSF is the MVC pattern, which has several implications. User actions in JSF-generated views
take place in a client that does not have a permanent connection to the server. The delivery of
user actions or page events is delayed until a new connection is established. The JSF lifecycle
must handle this delay between event and event processing. Also, the JSF lifecycle must ensure
the view is correct before rendering the view. To ensure that the business state is never invalid, the
JSF system includes a phase for validating inputs and another for updating the model only after
all inputs pass validation.

■Note In MVC, the presentation of data (the view) is separate from its representation in the system (the
model). When the model is updated, the controller sends a message to the view, telling the view to update its
presentation. When the user takes some action with the presentation, the controller sends a message to the
model, telling the model to update its data. In JSF, the model is composed of business objects that are usually
implemented as JavaBeans, the controller is the JSF implementation, and the UI components are the view.
The MVC architecture is discussed in more detail in Chapter 6.

Mukhar_470-3.book Page 169 Saturday, October 1, 2005 6:14 AM

170 C H A P T E R 5 ■ JA V A S E R V E R F A C E S

The JSF lifecycle has six phases, as defined by the JSF specification:

• Restore view: In this phase, the JSF implementation restores the objects and data structures
that represent the view of the request. Of course, if this is the client’s first visit to a page,
the JSF implementation must create the view. When a JSF implementation creates and
renders a JSF-enabled page, it creates UI objects for each view component. The compo-
nents are stored in a component tree, and the state of the UI view is saved for subsequent
requests. If this is a subsequent request, the previously saved UI view is retrieved for the
processing of the current request.

• Apply request values: Any data that was sent as part of the request is passed to the
appropriate UI objects that compose the view. Those objects update their state with the
data values. Data can come from input fields in a web form, from cookies sent as part of
the request, or from request headers. Note that this does not yet update the business
objects that compose the model. It only updates the UI components with the new data.

• Process validations: The data that was submitted with the form is validated. As with the
previous phase, this does not yet update the business objects in the application. This is
because if the JSF implementation began to update the business objects as data was vali-
dated, and a piece of data failed validation, the model would be partially updated and in
an invalid state.

• Update model values: After all validations are complete, the business objects that make
up the application are updated with the validated data from the request. In addition, if
any of the data needs to be converted to a different format (for example, converting a
String to a Date object) to update the model, the conversion occurs in this phase.
Conversion is needed when the data type of a property is not a String or a Java primitive.

• Invoke application: At this point in the lifecycle, any events that were generated during
previous phases and that have not yet been handled are passed to the web application
so that it can complete any other processing of the request that is required.

• Render response: The response UI components are rendered, and the response is sent
to the client. The state of the UI components is saved so that the component tree can be
restored when the client sends another request.

For a JSF-enabled application, the thread of execution for a request/response cycle can flow
through each phase, in the order listed here and as shown in Figure 5-1. However, depending
on the request, and what happens during the processing and response, not every request will
flow through all six phases.

In Figure 5-1, you can see a number of optional paths through the lifecycle. For example,
if errors occur during any of the phases, the flow of execution transfers immediately to the
render response phase, skipping any remaining phases. Also, if at any point in the lifecycle the
request processing is complete and a non-JSF response is to be sent to the client, the flow of
execution can exit the lifecycle without completing further phases.

Mukhar_470-3.book Page 170 Saturday, October 1, 2005 6:14 AM

C H A P T E R 5 ■ J A V A S E R V E R F A C E S 171

Figure 5-1. When a request is sent to a JSF enabled application, the request can potentially
encompass all six phases of the JSF lifecycle.

Installing JSF
To run the examples in this chapter, you will need to obtain and install a copy of the JSF refer-
ence implementation, the JSP Standard Tag Library (JSTL) reference implementation, and a
JSP web container or an application server that supports Servlet 2.3 and JSP 1.2 or later.

If you are running the current version of Sun’s Application Server, you already have JSF
and JSTL, so you do not need to take any further action.

If you are running Tomcat 5.0 or 5.5, you need to download JSF from http://java.sun.com/
j2ee/javaserverfaces/download.html and the JSTL from http://jakarta.apache.org/taglibs/
doc/standard-doc/intro.html. For now, simply unpack each distribution into a directory of your
choice, remembering where that directory is.

There are two ways that you can make JSF and JSTL available to your web application
running in Tomcat. Both involve putting the following eight JAR files, which are located in the
lib directory of each distribution, into a location that can be accessed by the server or the web
application.

• Six JSF JARs: commons-beanutils.jar, commons-collections.jar, commons-digester.jar,
commons-logging.jar, jsf-api.jar, and jsf-impl.jar

• Two JSTL JARs: jstl.jar and standard.jar

If, for some reason, you want only a particular application to have access to JSF and JSTL,
you can place the JAR files from these two APIs into the WEB-INF/lib directory of the particular
web application. Then only that application will have access to those libraries. If you have another
JSF application, that application would also need access to those files in its own WEB-INF/lib
directory.

Mukhar_470-3.book Page 171 Saturday, October 1, 2005 6:14 AM

172 C H A P T E R 5 ■ JA V A S E R V E R F A C E S

Alternatively, if you have several JSF applications, you can put the JAR files into a common
location. For Tomcat, that location is tomcat_dir/common/lib. When the JAR files are located in
the common directory, then every application in the application server has access to them.
Note that if you copy the JAR files into the common directory while the server is running, you
may need to restart the Tomcat server so that the new JAR files can be loaded.

Using JSF with JSP Pages
Now that you’ve had an introduction to JSF, let’s jump right into creating and deploying a
simple JSF application that shows how to use JSF with JSP. Because JSP pages are easy to imple-
ment and deploy, this example will clearly demonstrate how to use JSF in a web application.
Also, the JSF specification requires that all JSF implementations support JSP pages and provide
custom actions corresponding to JSF UI components.

The JSF implementation from Sun comes with two libraries of custom actions that you can
use with JSP pages: HTML custom actions and core custom actions. The HTML custom actions
are for components that vary based on the render kit used. These custom actions are used to
create HTML elements. As shown in Table 5-1, the HTML custom actions fall into five catego-
ries or elements: input, output, selection, commands, and miscellaneous.

Table 5-1. HTML Custom Actions

Category Elements Purpose

Input h:inputHidden, h:inputSecret,
h:inputText, h:inputTextarea

Create various kinds of input elements

Output h:message, h:messages,
h:outputFormat, h:outputLabel,
h:outputLink, h:outputText

Create various kinds of output elements

Selection h:selectBooleanCheckbox,
h:selectManyCheckbox,
h:selectManyListbox,
h:selectManyMenu,
h:selectOneListbox,
h:selectOneMenu,
h:selectOneRadio

Create drop-down menus, list boxes,
radio buttons, and check boxes

Commands h:commandButton,
h:commandLink

Create buttons or links that cause form
submission

Miscellaneous h:dataTable, h:form,
h:graphicImage, h:panelGrid,
h:panelGroup, h:column

Create various HTML elements such as
tables, forms, and panels

Mukhar_470-3.book Page 172 Saturday, October 1, 2005 6:14 AM

C H A P T E R 5 ■ J A V A S E R V E R F A C E S 173

The core custom actions create UI elements that are independent of the render kit. These
actions are usually used in conjunction with the HTML actions listed in Table 5-1 to modify the
behavior of those actions. Table 5-2 shows all the core custom actions, listed by category.

■Tip If you unpack the JSF implementation to your hard drive, a directory of documentation for the custom
actions will be saved to the hard drive in jsf_root/tlddocs/index.html. This documentation is similar
to the Javadoc documentation created with Java source files. For full details on using custom actions, refer
to this documentation.

In this section, you will see a number of these custom tags in action. We will discuss these
tags as we go along.

Creating a Simple JSF Application
Our example simulates a flight reservation system. Figure 5-2 shows the directory structure of
the sample application.

Table 5-2. Core Custom Actions

Category Elements Purpose

Converters f:convertDateTime,
f:convertNumber, f:converter

Standard converters

Listeners f:actionListener,
f:valueChangeListener

Specify a listener for a component

Miscellaneous f:attribute, f:loadBundle,
f:param, f:verbatim

Add attributes or parameters, load a
resource bundle, and output verbatim
HTML template text

Selection f:selectItem, f:selectItems Specify selection items for HTML
selection elements

Validators f:validateDoubleRange,
f:validateLength ,
f:validateLongRange ,
f:validator

Standard validators

View f:facet, f:subview, f:view Create a JSF view or subview

Mukhar_470-3.book Page 173 Saturday, October 1, 2005 6:14 AM

174 C H A P T E R 5 ■ JA V A S E R V E R F A C E S

Figure 5-2. The directory structure of the Jsf_Ex01 example

Implementing a JavaBean

We’ll start this example by showing the JavaBean class that represents the business layer of the
web application. This bean will be connected to the presentation layer by the JSF system. It
represents the information necessary to search for a flight in the system. The FlightSearch
class, shown in Listing 5-1, is used to store the search parameters entered by the user. Although
there are various parameters that can be used when searching for a flight, for this first example,
we have chosen to include the following: origination airport, destination airport, departure
date and time, and arrival date and time.

Listing 5-1. FlightSearch.java

package com.apress.jsf;

public class FlightSearch {
 String origination;
 String destination;
 String departDate;
 String departTime;
 String returnDate;
 String returnTime;

 public String getDepartDate() {
 return departDate;
 }

 public void setDepartDate(String departDate) {
 this.departDate = departDate;
 }

Mukhar_470-3.book Page 174 Saturday, October 1, 2005 6:14 AM

C H A P T E R 5 ■ J A V A S E R V E R F A C E S 175

 public String getDepartTime() {
 return departTime;
 }

 public void setDepartTime(String departTime) {
 this.departTime = departTime;
 }

 public String getDestination() {
 return destination;
 }

 public void setDestination(String destination) {
 this.destination = destination;
 }

 public String getOrigination() {
 return origination;
 }

 public void setOrigination(String origination) {
 this.origination = origination;
 }

 public String getReturnDate() {
 return returnDate;
 }

 public void setReturnDate(String returnDate) {
 this.returnDate = returnDate;
 }

 public String getReturnTime() {
 return returnTime;
 }

 public void setReturnTime(String returnTime) {
 this.returnTime = returnTime;
 }
}

Mukhar_470-3.book Page 175 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

176 C H A P T E R 5 ■ JA V A S E R V E R F A C E S

Looking at the class, you can see that it is a standard JavaBean. There is no explicit constructor,
so the compiler provides a default no-argument constructor. There are fields for all the parameters
we want to store, and methods for getting and setting each of the fields. This means that all the
properties of the class are exposed as read-write properties to the web application. This will
allow one part of the application to set the properties and a different part to read the properties.
We’ll discuss the role of JavaBeans in JSF implementations in more detail later in this chapter,
in the “Using Managed Beans” section.

Before deploying this example, you will need to compile the FlightSearch.java source
into a class file. Since this source file uses classes from only the java.lang package and does not
use any special APIs or classes, you should be able to compile it without needing to reset your
classpath. Use your IDE to compile the class, or use javac from the command line.

Implementing the View Components

The next part of our example is a web page to accept the user’s inputs for searching for a flight.
This will be a JSP page with input fields for the origination, destination, departure date and time,
and return date and time. Listing 5-2 shows the initial page in our application, searchForm.jsp.
If you created any of the examples in Chapter 3, you will recall that those examples also used
input fields in an HTML page generated by a JSP page. The searchForm.jsp page also uses input
fields, but as you will see, they are slightly different from the HTML input fields we used in
Chapter 3.

Listing 5-2. searchForm.jsp

<html>
 <%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
 <%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

 <f:view>
 <head>
 <title>Freedom Airlines Online Flight Reservation System</title>
 </head>
 <body>
 <h:form>
 <h2>Search Flights</h2>
 <table>
 <tr><td colspan="4">Where and when do you want to travel?</td></tr>
 <tr>
 <td colspan="2">Leaving from:</td>
 <td colspan="2">Going to:</td>
 </tr>
 <tr>
 <td colspan="2">
 <h:inputText value="#{flight.origination}" size="35"/>
 </td>
 <td colspan="2">
 <h:inputText value="#{flight.destination}" size="35"/>
 </td>

Mukhar_470-3.book Page 176 Saturday, October 1, 2005 6:14 AM

C H A P T E R 5 ■ J A V A S E R V E R F A C E S 177

 </tr>
 <tr>
 <td colspan="2">Departing:</td>
 <td colspan="2">Returning:</td>
 </tr>
 <tr>
 <td>
 <h:inputText value="#{flight.departDate}"/>
 </td>
 <td>
 <h:inputText value="#{flight.departTime}"/>
 </td>
 <td>
 <h:inputText value="#{flight.returnDate}"/>
 </td>
 <td>
 <h:inputText value="#{flight.returnTime}"/>
 </td>
 </tr>
 </table>
 <p>
 <h:commandButton value="Search" action="submit"/>
 </p>
 </h:form>
 </body>
 </f:view>
</html>

Throughout Chapter 4, we talked about ways to remove Java code from JSP pages. And as
we stated at the beginning of this chapter, JSF provides another way to do this. Looking at
Listing 5-2, you can see there is not a single declaration or scriptlet within the page. There are
only two taglib directives, some standard HTML tags, and some tags that look like tags for
custom actions. The tags that begin with f: or h: come from the tag libraries defined in the
taglib directives.

As you might guess from the taglib directive, the tags that use the prefix f: provide the
core JSF functionality for the page, and tags that use the prefix h: provide HTML elements for
the page. There is one JSF tag in the page: the view tag. Any page that includes JSF elements
must have the view tag as the outermost JSF tag. The rest of the JSF tags in the page create
HTML elements in the page. The form tag creates an HTML form. The input tags create input
text fields in the form. The commandButton tag creates a button in the form.

If you are familiar with HTML forms, you know that every HTML form requires an action
attribute and can include an optional method attribute. The action attribute tells the web browser
where to submit the form data. The method attribute tells the browser whether to submit a GET
request or a POST request. The JSF tag does not use either of these attributes. The JSP specification
requires that all JSF forms post to the same URL from which they were served. (If form data is
submitted to the same page, how then does the application process the data and move between
pages in the application? This question will be answered in Listing 5-4 and in detail in the
“Controlling Page Navigation” section later in this chapter.) The specification also requires

Mukhar_470-3.book Page 177 Saturday, October 1, 2005 6:14 AM

178 C H A P T E R 5 ■ JA V A S E R V E R F A C E S

that all JSF forms use the POST method for submitting form data to web applications. Since both
the method and action have mandatory values that the programmer cannot change, they do
not need to be specified in the JSF tag.

Also note that the input tags have a different syntax than standard HTML for the value
attribute. If you read the coverage of Expression Language (EL) in Chapter 4, you will recognize
the #{} syntax as being EL syntax. With EL, an expression such as #{flight.origination} is
used when the JSP page wants to access a property of an object in the page. The name to the left
of the dot is the name of an object accessible by the page; the name to the right of the dot is a
property of the object to be accessed. In Listing 5-1, you can see a property named origination
with associated set and get methods. When this JavaBean is made available to a JSP page, that
page can read or write the property when we use the #{flight.origination} expression in
the page. The searchForm.jsp page uses the expression with input fields. When we submit this
page to the application, the values entered into the fields will be used to set the property in
the JavaBean.

In a real web application that provided an online flight reservation system, the system
would search for and display flights after the user submits a request. In this example, however,
we will start by simply echoing the search parameters back to the user. This is accomplished in
the searchResults.jsp page, shown in Listing 5-3.

Listing 5-3. searchResults.jsp

<html>
 <%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
 <%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

 <f:view>
 <head>
 <title>Freedom Airlines Online Flight Reservation System</title>
 </head>
 <body>
 <h3>You entered these search parameters</h3>
 <p>Origination: <h:outputText value="#{flight.origination}"/>
 <p>Depart date: <h:outputText value="#{flight.departDate}"/>
 <p>Depart time: <h:outputText value="#{flight.departTime}"/>
 <p>Destination: <h:outputText value="#{flight.destination}"/>
 <p>Return date: <h:outputText value="#{flight.returnDate}"/>
 <p>Return time: <h:outputText value="#{flight.returnTime}"/>
 <p>Trip type : <h:outputText value="#{flight.tripType}"/>
 </body>
 </f:view>
</html>

As with searchForm.jsp, the outermost JSF tag is the f:view tag. Within the view, the page
uses h:outputText tags. The outputText tags are obviously used to output text to the page. As
with the inputText tags, they use the #{object.property} syntax to access a property of an
object in the page. In this case, the object is a JavaBean identified by the name flight. The
outputText tag reads the property from the object and displays it in the web page generated by
this JSP page.

Mukhar_470-3.book Page 178 Saturday, October 1, 2005 6:14 AM

C H A P T E R 5 ■ J A V A S E R V E R F A C E S 179

So, now you’ve seen the three main parts of the web application: an input page, an output
page, and a JavaBean to hold the business data. In terms of the MVC pattern, FlightSearch is
the model, and searchForm.jsp and searchResults.jsp are the view. What we haven’t shown
yet is the controller. We also haven’t explained how the controller knows where to find the
model or the view, and how the controller knows the logic flow through the web application. In
the MVC example in Chapter 3, we needed to specifically code the flow of control into the JSP
pages. In the listings presented here, you can see that searchForm.jsp or searchResults.jsp do
not have any information that indicates how control is transferred from page to page. Now let’s
see how this control is managed.

Directing Traffic in the JSF Application

Information about the view components in the web application, and information about
how control flows through the application is contained in a special configuration file named
faces-config.xml, shown in Listing 5-4. Although faces-config.xml can contain a lot of different
information about a web application, for this example, we need it to do only two things: identify
the flow of control from searchForm.jsp to searchResults.jsp and identify the JavaBean used
by the application.

Listing 5-4. faces-config.xml

<?xml version="1.0"?>

<faces-config xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee/web-facesconfig_1_2.xsd"
 version="1.2">
 <navigation-rule>
 <from-view-id>/searchForm.jsp</from-view-id>
 <navigation-case>
 <from-outcome>submit</from-outcome>
 <to-view-id>/searchResults.jsp</to-view-id>
 <redirect/>
 </navigation-case>
 </navigation-rule>

 <managed-bean>
 <managed-bean-name>flight</managed-bean-name>
 <managed-bean-class>com.apress.jsf.FlightSearch</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 </managed-bean>
</faces-config>

The faces-config.xml file identifies the JavaBeans used by the web application in the
managed-bean element. You will have a managed-bean element for every JavaBean used by your
web application. The managed-bean element in Listing 5-4 contains three subelements:

Mukhar_470-3.book Page 179 Saturday, October 1, 2005 6:14 AM

180 C H A P T E R 5 ■ JA V A S E R V E R F A C E S

• The first subelement is the name used to identify the bean in a JSP page. In Listing 5-4
the name is given as flight; this is why both searchForm.jsp and searchResults.jsp can
access an instance of the bean using the expression #{flight…}.

• The second element is the fully qualified class name of the JavaBean class. This name
tells the JSP container which class to load and instantiate to create an instance of the
JavaBean.

• The third element identifies the scope of the object. Session scope means that the object
exists for the entire interaction between the user and the application. The container
must persist the object across multiple request/response cycles, until the user’s session
is terminated. We will look at all this in more detail in the “Using Managed Beans” section
later in this chapter.

The faces-config.xml file is also used to tell the controller how to navigate through the
application. Navigation flow is specified in navigation-rule elements. Our example needs only
one element. In general, a navigation-rule element identifies the start page, a condition, and
which page to navigate to when the condition occurs.

In our example, the start page is searchForm.jsp. If the page request is submitted with an
outcome of submit, control is transferred to searchResults.jsp. Looking at Listing 5-2, you can
see that the commandButton element has an action of submit; when the button is clicked and the
form is submitted, this action matches the from-outcome of the navigation-rule.

The navigation-rule element also includes an empty redirect element. With this element,
the response is created by causing the browser to redirect to the searchResults.jsp page, which
also updates the address bar in the browser. Without this element, the response is still created
correctly and sent to the browser, but the address bar of the browser will not be updated and
will still display the address for the submitting page. We will look at navigation in more detail
in the “Controlling Page Navigation” section later in this chapter.

We need just one final piece for our web application. In many of the examples in Chapter 3
and Chapter 4, we identified a default page to be served to users when they first access the web
application. In this example, our default page will be a standard HTML page that redirects to
the correct URL for a JSF application. Listing 5-5 shows index.html.

Listing 5-5. index.html

<html>
 <head>
 <meta http-equiv="Refresh" content= "0; URL=searchForm.faces"/>
 </head>
</html>

You can see that that the redirect URL is searchForm.faces. However, there is no component
in our application named searchForm.faces. How then does the web application know which
page to serve? All requests that are JSF requests are directed to the controller for the application,
which is a Servlet supplied as part of the JSF reference implementation. As you will see when
we deploy this example, we will specify that all URLs of the form *.faces should be sent to the
controller Servlet. This Servlet then converts the searchForm.faces request to searchForm.jsp,
processes the JSP page, and sends the response to the browser.

Mukhar_470-3.book Page 180 Saturday, October 1, 2005 6:14 AM

C H A P T E R 5 ■ J A V A S E R V E R F A C E S 181

Deploying the Application to the Sun Application Server

As you’ve seen in the previous chapters, you can deploy applications to the Sun Application
Server by using the Deployment Tool. To deploy this first JSF example, follow these general
steps (for more detailed instructions on using the Deployment Tool, refer to the examples in
Chapters 2, 3, and 4):

1. Create a web application in the Deployment Tool.

2. Add the files index.html, searchForm.jsp, searchResults.jsp, faces-config.xml, and
FlightSearch.class to the application, ensuring they are in the correct location (see
Figure 5-2).

3. Configure the controller Servlet javax.faces.webapp.FacesServlet using the name
Faces Servlet.

4. Configure the welcome file list to include index.html as the welcome page.

5. Create a Servlet mapping so that all URLs that include the pattern *.faces are directed
to the Servlet named Faces Servlet.

6. Save and deploy the application to the server.

Deploying the Application to the Tomcat Server

To deploy the application to the Tomcat server, start by creating an application structure like
that shown in Figure 5-2. You will also need to write the web.xml deployment descriptor, shown
in Listing 5-6.

Listing 5-6. web.xml for Jsf_Ex01

<?xml version="1.0"?>

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 version="2.5">

 <display-name>Jsf_Ex01 - Simple JSF Application</display-name>

 <servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>*.faces</url-pattern>
 </servlet-mapping>

Mukhar_470-3.book Page 181 Saturday, October 1, 2005 6:14 AM

182 C H A P T E R 5 ■ JA V A S E R V E R F A C E S

 <welcome-file-list>
 <welcome-file>index.html</welcome-file>
 </welcome-file-list>
</web-app>

The deployment descriptor identifies the controller Servlet (Faces Servlet) for the appli-
cation, specifies a Servlet mapping for which requests should be sent to the controller Servlet,
and designates the welcome file for the application.

As explained in the “Installing JSF” section earlier in this chapter, you need to copy the JSF
and JSTL JAR files into the application’s WEB-INF/lib directory or into the Tomcat common/lib
directory. Copy the entire directory into the Tomcat webapps directory, and deployment is
complete.

Alternatively, after creating the directory structure, you can package all the application
files into a WAR file using the Java jar command. Once the WAR file has been created, copy it
into the Tomcat webapps directory. Tomcat will automatically unpack the WAR file and start the
application.

Running the Application

When you have successfully deployed the application to the server, open a web browser to the
address http://localhost:8080/Jsf_Ex01. (As always, replace localhost and 8080 with the
correct values for your installation, and replace Jsf_Ex01 with the correct application context
name, if you created and deployed your JSF application with a different context name.)

The application starts by loading the index.html page, which immediately redirects to
searchForm.faces. Because of the Servlet mapping in web.xml, this request is directed to the
Faces Servlet controller. The controller knows that searchForm.faces is a request for the
searchForm.jsp component. If this is the first request for searchForm.jsp, it is compiled by the
server, and then sent to the browser, as shown in Figure 5-3.

Figure 5-3. The searchForm.jsp as sent to the browser

Mukhar_470-3.book Page 182 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

C H A P T E R 5 ■ J A V A S E R V E R F A C E S 183

If you examine the source for the page, you can see that the JSF form tag has been trans-
lated to an HTML form tag. As mentioned earlier, the method for the form is POST and the action
is the URL for searchForm.jsp. Even though it appears that the form submits to the same JSP
page, the controller Servlet will use the navigation rules in the faces-config.xml file to ensure
page navigation occurs correctly. Also, each JSF input tag has been translated into an HTML
input tag. Here is an extract from the HTML source showing these points:

 <form id="_id0" method="post" action="/Jsf_Ex01/searchForm.faces"
 enctype="application/x-www-form-urlencoded">

 <h2>Search Flights</h2>
 <table>
 <tr><td colspan="4">Where and when do you want to travel?
 </td></tr>
 <tr>
 <td colspan="2">Leaving from:</td>
 <td colspan="2">Going to:</td>
 </tr>
 <tr>
 <td colspan="2">
 <input type="text" name="_id0:_id1" size="35" />

Enter values for each of the input fields. Since each property of the FlightSearch JavaBean
is of the String type, you can enter anything you want into each text field. When you have
finished entering values, click the Search button. The request is passed to the server, and the
response generated by searchResults.jsp is sent back to the browser, as shown in Figure 5-4.

Figure 5-4. The searchResults.jsp response from submitting the form in searchForm.jsp

Mukhar_470-3.book Page 183 Saturday, October 1, 2005 6:14 AM

184 C H A P T E R 5 ■ JA V A S E R V E R F A C E S

Reviewing the JSF Lifecycle for the Sample Application
The JSF_Ex01 application (Listings 5-1 through 5-6) provides examples of two different
request/response processes. First, index.html causes a non-JSF request to generate a JSF
response when searchForm.jsp is displayed. Then, when searchForm.jsp is submitted, this
causes a JSF request to generate a JSF response.

The first request from the browser comes from a standard HTML page and does not contain
any data. In the restore view phase, rather than restoring an existing view, a new component
tree is created with the components from the view. This will consist of objects that represent
the form and each of the input fields. These objects are stored in the component tree. Since no
other processing is required, control passes to the render response phase. The UI components
are rendered into HTML, and the response is sent to the client.

The lifecycle of the request and response from searchForm.jsp to searchResults.jsp follows
the phases illustrated in Figure 5-1. The request from searchForm.jsp causes the component
tree to be restored in the restore view phase. Next, the data passed in the form is used to update
the state of the view components in the apply request values phase. The process validations
phase is next, but since the values are all String types, no conversion is needed, and no validation
occurs. Next, the JavaBean is updated with the values from the view in the update model values
phase. Nothing occurs in the invoke application phase. Finally, in the render response phase,
the view components from searchResults.jsp are translated into HTML, using the data from
the JavaBean model, and the response is returned to the client.

Using Managed Beans
As noted earlier in this chapter, the primary design pattern of JSF is the MVC pattern. As you
saw in the previous example, JSF custom actions and JSP pages form the view in the MVC archi-
tecture. The Faces Servlet provided by a JSF implementation is the controller. However, JSF
by itself is not enough to create a working application, because you need the third leg of MVC: the
model. JavaBeans provide that part of the MVC pattern. In the example, FlightSearch was
the model.

JavaBeans are Java components that can be dropped into Java applications. They are simply
Java classes that conform to a certain coding style (documented in the JavaBeans specification
at http://java.sun.com/products/javabeans/). For our purposes, there are two aspects of the
JavaBeans specification that are important:

• The JavaBean used in the web application must have a no-argument constructor. This
allows the container to construct an instance of the JavaBean.

• Any property to be exposed must have a get or set method. If only a get method is present,
the property is read-only. If only a set method is used, the property is write-only. If both
are present, the property is read-write. The format of the set method name is the word
set followed by the name of the property, with the first letter of the property name capital-
ized. The get method format is the word get followed by the name of the property, again
with the first letter of the property name capitalized. For Boolean properties, the method
is the word is followed by the name of the property.

Because JavaBeans follow a particular design, they can be used programmatically, without
a developer needing to explicitly write code that uses the JavaBeans. As you saw in the previous

Mukhar_470-3.book Page 184 Saturday, October 1, 2005 6:14 AM

C H A P T E R 5 ■ J A V A S E R V E R F A C E S 185

example, by simply identifying the JavaBean to the JSF application in the JSP pages and in the
configuration file, the JSF implementation was able to use the JavaBean, setting and reading its
properties—you didn’t need to write any explicit code.

Within the JSF implementation, JavaBeans that are used by a JSF-enabled application are
referred to as managed beans, because the JSF implementation manages the creation and use
of JavaBean objects.

Within a JSF-enabled application, managed beans appear in two contexts:

• The information needed to create and initialize the managed bean is identified within
the configuration files of the application.

• The properties and methods of managed beans are referenced in JSP pages using value
binding expressions or method binding expressions.

Configuring Managed Beans
You saw one method for identifying the managed bean parameters to the application in the
example earlier in this chapter, where we used a file named faces-config.xml located in the
WEB-INF directory of the application. However, the JSF specification identifies several other
files that can contain managed bean configuration information. The specification states that
configuration files will be searched for as follows:

• The JSF implementation looks for and processes files named META-INF/faces-config.xml.
This is primarily for JSF components packaged as JAR files that are part of the application.

• The JSF implementation checks the web.xml deployment descriptor for a context parameter
named javax.faces.CONFIG_FILES. If the parameter exists, the value of the parameter
must be a comma-delimited list of filenames that will be processed as JSF configuration
files. The filenames must be relative paths from the application root to the file, such as
WEB-INF/my-config.xml.

• Finally, the JSF implementation processes the file WEB-INF/faces-config.xml, if it exists.

The configuration files are used to identify the managed beans, provide initialization
parameters for the beans, and identify the navigation rules for the application (as described in
the “Controlling Page Navigation” section later in this chapter). This information can be placed
in a single file, as in Listing 5-4, or it can be split among multiple files. For example, you could
put all the bean information into one configuration file and all the navigation information into
another configuration file. These multiple files would then be listed in the web.xml deployment
descriptor.

Identifying Managed Beans

A configuration file provides managed bean information to the application in the element of
the configuration file named managed-bean. The managed-bean element declares a JavaBean that
is created and populated by the JSF implementation. If the bean does not yet exist when a page
that uses the bean is accessed, the JSF implementation creates the bean based on the informa-
tion in the managed-bean element. Subsequent requests in the same session will access the
existing bean.

Mukhar_470-3.book Page 185 Saturday, October 1, 2005 6:14 AM

186 C H A P T E R 5 ■ JA V A S E R V E R F A C E S

The managed-bean element has three required subelements:

• managed-bean-name: The string used to identify the bean instance in any JSF component.
For example, in Listing 5-4, the bean name was given as flight. In Listings 5-2 and 5-3,
we referenced the bean instance using this name.

• managed-bean-class: The fully qualified class name of the class that provides the imple-
mentation for the bean.

• managed-bean-scope: The scope of the bean instance. We will look at scope in more
depth in the “Identifying Bean Scopes” section a little later in this chapter.

 The managed-bean element has a number of optional elements, including description,
display-name, icon, and managed-property. The usage of the first three should be relatively
obvious, so we will just look at the managed-property, which is used to initialize the properties
of a managed bean.

Initializing Bean Properties

Like managed-bean, managed-property can have an optional description, display-name, and
icon. It must have a nested property-name element that identifies the name of an instance variable
(property) of the class with a set and get method. It can have an optional property-class
element that provides the fully qualified class name of the data type of the property. If the data
type is not provided, the JSF implementation will attempt to infer the type from the bean class.
Finally, it can have one of several elements that initialize the value of the property: <value>,
<null-value>, <list-entries>, or <map-entries>. For example, if the property of the bean is a
Java primitive or a String, you can use the value element like this:

<property-name>myProperty</property-name>
<value>3</value>

If the type of the property is a Java object and not a primitive, you can also set the value to
null, using this form:

<property-name>myProperty</property-name>
<null-value/>

If the type of the property is some other managed bean, you can initialize the property by
referencing the other bean by the name of the bean instance. So, for example, if you have a
managed bean of type MyBean, and you create an instance with the name myBean, you can
initialize a property using a value binding expression that is the name of the bean:

 <managed-bean>
 <managed-bean-name>foo</managed-bean-name>
 <managed-bean-class>com.Foo</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 <managed-property>
 <value-class>com.MyBean</value-class>
 <property-name>bar</property-name>
 <value>#{myBean}</value>
 </managed-property>

Mukhar_470-3.book Page 186 Saturday, October 1, 2005 6:14 AM

C H A P T E R 5 ■ J A V A S E R V E R F A C E S 187

 </managed-bean>
 <managed-bean>
 <managed-bean-name>myBean</managed-bean-name>
 <managed-bean-class>com.MyBean</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 </managed-bean>

In this snippet, the bean foo has a property of name bar. The type of bar is MyBean. The
value of bar is initialized by referencing the name of the MyBean object in the value binding
expression #{myBean}. (We’ll discuss value binding expressions in more detail in the “Using
Value Binding Expressions in JSP Pages” section a little later in this chapter.)

Finally, if the type of the property is List or a subtype of List, or Map or a subtype of Map,
you can initialize the List or Map in the configuration file. For example, in Listing 5-1, suppose
we wanted to restrict the departTime and arriveTime properties to the values Morning, Afternoon, or
Evening. We could create an additional property like this:

public class FlightSearch {
 List times;
 //…
}

We can then initialize the list like this:

<managed-bean>
 <managed-bean-name>flight</managed-bean-name>
 <managed-bean-class>com.apress.jsf.FlightSearch</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 <managed-property>
 <property-name>times</property-name>
 <list-entries>
 <value>Morning</value>
 <value>Afternoon</value>
 <value>Evening</value>
 </list-entries>
 </managed-property>
</managed-bean>

The list-entries element can have an optional value-class element that provides the
fully qualified class name of the objects stored in the list. If used, it appears before the value
elements. When value-class is used, the JSF implementation will attempt to create objects of
that type, initialize those objects with the given values, and store them in the List. You can also
use the null-value element to store null values in the list.

Initializing a Map is similar. Suppose you have a property of type Map:

public class FlightSearch {
 Map airportNames;
 //…
}

Mukhar_470-3.book Page 187 Saturday, October 1, 2005 6:14 AM

188 C H A P T E R 5 ■ JA V A S E R V E R F A C E S

You initialize the Map like this:

<managed-bean>
 <managed-bean-name>flight</managed-bean-name>
 <managed-bean-class>com.apress.jsf.FlightSearch</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 <managed-property>
 <property-name>airportNames</property-name>
 <map-entries>
 <key-class>java.lang.String</key-class>
 <value-class>java.lang.String</value-class>
 <map-entry>
 <key>BOS</key>
 <value>Logan Internation Airport</value>
 </map-entry>
 <!-- and so on -->
 </map-entries>
 </managed-property>
</managed-bean>

In the element, both key-class and value-class are optional. The JSF implementation will
choose appropriate classes if you do not provide either element. There can be zero or more
map-entry elements, and each map-entry that appears must have a key and either a value or
null-value.

Identifying Bean Scopes

When you configure a JavaBean to be used in a JSF page, you can configure it with one of four
different scopes:

• None: Objects with this scope are not visible in any JSF page. When used in the configu-
ration file, they indicate JavaBeans that are used by other JavaBeans in the application.
Objects with none scope can use other objects with none scope.

• Request: Objects with this scope are visible from the start of the request until the end of
the request. Request scope starts at the beginning of a request and ends when the response
has been sent to the client. If the request is forwarded, the objects are visible in the
forwarded page, since that page is still part of the same request/response cycle. Objects
with request scope can use other objects with none, request, session, or application scope.

• Session: An object with session scope is visible for any request/response cycle that belongs
to a session. Objects with this scope have their state persisted between requests and last
until the object or the session is invalidated. Objects with session scope can use other
objects with none, session, or application scope.

• Application: An object with application scope is visible in all request/response cycles for
all clients using the application, for as long as the application is active. Objects with
application scope can use other objects with none or application scope.

Mukhar_470-3.book Page 188 Saturday, October 1, 2005 6:14 AM

C H A P T E R 5 ■ J A V A S E R V E R F A C E S 189

You may recall from Chapter 3 that JavaBeans in JSP pages have similar scopes. The difference
is that JSP scope includes an additional scope: page. Since JSF requests often involve navigation
between pages, objects with page scope have no value in a JSF application. For example, in the
initial example in this chapter, the properties of a JavaBean were set in one JSP page, and those
values were displayed in another page. If the FlightSearch JavaBean had been given page scope,
the searchResults.jsp page would not have access to the FlightSearch JavaBean, and so would
not have been able to display the data stored in the JavaBean.

Most often, you will define your JavaBeans to have session scope. However, in some cases,
you may have a JavaBean that encapsulates global data. For example, you may have a JavaBean
that holds information common to every page in the application; in that case, you would define
the JavaBean to have application scope. JavaBeans that you use only within a single request/
response will have request scope.

Using Value Binding Expressions in JSP Pages
When using JSF custom actions in your JSP pages, the JSF implementation can set or get the
value of JavaBean properties, based on the tag usage. For example, Listing 5-2 includes this tag:

<h:inputText value="#{flight.origination}" size="35"/>

■Caution The syntax in the example shown here is sufficient for Java primitive and String values.
However, if the property is some other data type, you will probably need to supply a converter as well. See the
“Converting Data” section later in this chapter for details.

This is also referred to as a value binding expression because it binds the value of some
bean property to an attribute or property of some JSF element. When using the syntax of
object.property syntax, which we call dot notation, the expression to the left of the dot is some
object accessible to the page, and the thing to the right of the dot is some property of the object.
You can also chain expressions, like this:

object1.object2.object3.property

Each expression in the chain, reading from left to right, is evaluated as an object reference, and
the final expression is a property of the last object.

Another syntax you can use to write a value binding expression uses brackets to denote the
property. We refer to this syntax as bracket notation:

flight["origination"]
flight['origination']

You would use the form with double quotes when using single quotes to delimit attribute
values, and use single quotes when double quotes are used to delimit the attribute values.
So, the inputText element could be written in either of these ways:

<h:inputText value="#{flight['origination']}" size="35"/>
<h:inputText value='#{flight["origination"]}' size="35"/>

Mukhar_470-3.book Page 189 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

190 C H A P T E R 5 ■ JA V A S E R V E R F A C E S

When creating chained expressions, you can freely mix dot and bracket notation. In fact,
as you will see shortly, when creating an expression to access a List or Map, mixed notation can
be used to create dynamic expressions.

Getting and Setting Bean Properties

When the searchForm.jsp page is rendered, the JSF implementation calls the get method for
the origination property of the FlightSearch class to get the value of the property. This value
is then included in the rendering of the page. It does this for all the properties that are refer-
enced in the page. When the page is first loaded, the properties of the FlightSearch object have
no values, so the page is rendered with empty text fields.

During the processing of the request from searchForm.jsp, the values entered into the
form are saved by the UI components that correspond to the UI widgets on the page. After
these values are converted as necessary and validated, the JSF implementation updates the
model (the FlightSearch object) by calling the set method for the property.

After the model is updated, the lifecycle advances to the render phase, and the
searchResults.jsp page (Listing 5-3) is rendered. At this point, the FlightSearch object has
some data, and so when the page is rendered, the JSF implementation calls the get methods
for the properties that the page displays, and these values are used in the rendering and display
of the page.

Notice that by using the same simple #{flight.origination} syntax, the JSF implementa-
tion calls different code depending on the current phase of the JSF lifecycle. Note also that the
action does not depend on the tag type. The action taken for the h:inputText tag can be either
a get or set method of the property, regardless of the fact that the JSF tag renders as an HTML
input tag.

Accessing List, Array, and Map Property Types

You can also easily access bean properties that are of type List, array, and Map. You can access
an element of the List or array using a value binding expression. For example, earlier we presented
a possible List property added to FlightSearch:

public class FlightSearch {
 List times;
 //…
}

After the bean is initialized, we could access the first value in the list using any of the
following expressions:

#{flight.times["1"]}
#{flight.times['1']}
#{flight.times[1]}
#{flight .times["var"]}
#{flight .times.var}
#{flight.times[var]}

Mukhar_470-3.book Page 190 Saturday, October 1, 2005 6:14 AM

C H A P T E R 5 ■ J A V A S E R V E R F A C E S 191

■Note For a complete list of valid expression forms, see Section 5.1.2 of the JSF specification.

As mentioned earlier, you can chain expressions together to create a value binding expression.
The last expression following the dot, or inside the brackets, must evaluate to an integer or must be
convertible to an integer. When updating the model, the JSF implementation will attempt to set the
element at the given index. If the given index does not exist, a PropertyNotFoundException will
occur. When reading from the model, the implementation will call the get method to get the
element at the given index. Again, if the index does not exist, a PropertyNotFoundException
will occur.

One difference between value binding expressions for List and Map objects is that you can
use bracket notation to create dynamic value binding expressions. Suppose you had an object
with some intProperty that evaluates to an integer and tried this syntax:

flight.times.object.intProperty

The expression would cause an evaluation error. The JSF implementation expects object to be
a property of times, which is not the case. However, you can use a mixed form with both dot
and bracket notation:

flight.times[object.intProperty]

When this expression is evaluated, the object.intProperty expression evaluates to an integer,
which is then used to access the value stored in the List at that index. The same syntax can be
used when accessing Map entries.

Again, suppose you have this Map property of FlightSearch:

public class FlightSearch {
 Map airportNames;
 //…
}

Then any of the following expressions will cause the Map methods get(key) or set(key, value)
to be called, depending on which lifecycle phase is currently being processed.

flight.airportNames.key
flight.airportNames[key]
flight.airportNames["key"]

Using Method Binding Expressions in JSP Pages
Just as you can bind managed bean properties to expressions in the JSP page, you can also bind
managed bean methods to expressions. You use method binding when setting the attribute
values for actions, validators, action listeners, and value change listeners.

The syntax for method binding expressions is the same as the syntax for value binding
expressions. You can use either dot or bracket notation. As with value binding expressions,
every expression in the chain, except the last expression, is evaluated as an object reference.

Mukhar_470-3.book Page 191 Saturday, October 1, 2005 6:14 AM

192 C H A P T E R 5 ■ JA V A S E R V E R F A C E S

The last expression in the chain must be a method name of a method. The method signature
must follow a specific pattern, which depends on whether the method binding is used for an
action, a validator, an action listener, or a value change listener.

You will see how to use method binding expressions for actions in the “Controlling Page
Navigation” section later in this chapter. We will also look at method binding expressions for
validators in the “Validating Input” section later in the chapter. For more information about
their use with action and value changed listeners, see the JSF specification and the JSF chapter
in the Java EE tutorial.

Expanding the JSF Sample Application
Let’s update the first example in this chapter (Listings 5-1 through 5-6) to demonstrate some of
the concepts we just discussed. For this version, we’ll change the search form so that a user is
required to select either a one-way trip or a round-trip. We’ll also constrain the departure time
and return time to be Morning, Afternoon, or Evening, as shown in Figure 5-5.

Figure 5-5. The search form now has radio buttons for one-way or round-trip and drop-down
boxes for departure and return times.

When the user enters the search parameters, the search results page will still echo the
search parameters, but will also list two matching flights (imaginary flights, since we will hard-
code them into the application).

Mukhar_470-3.book Page 192 Saturday, October 1, 2005 6:14 AM

C H A P T E R 5 ■ J A V A S E R V E R F A C E S 193

The directory structure for the Jsf_Ex02 example, shown in Figure 5-6, is similar to the one
we used for the first example. The new files are FlightTypes.java, FlightTimes.java, and
Flight.java.

Figure 5-6. The directory structure for Jsf_Ex02

Listing 5-7 shows FlightTypes.java. This class is basically a data holder class
with no operations. It holds the two values Roundtrip and One Way in an array of type
javax.faces.SelectItem. This data type is used as part of the list-creation capability of JSF,
which we will explore later when we look at the new searchForm.jsp (Listing 5-12).

Listing 5-7. FlightTypes.java

package com.apress.jsf;

import javax.faces.model.SelectItem;

public class FlightTypes {
 static SelectItem[] tripTypes = new SelectItem[] {
 new SelectItem("Roundtrip", "Roundtrip"),
 new SelectItem("One way", "One way") };

 public SelectItem[] getTripTypes() {
 return tripTypes;
 }
 public void setTripTypes(SelectItem[] tripTypes) {
 FlightTypes.tripTypes = tripTypes;
 }
}

Mukhar_470-3.book Page 193 Saturday, October 1, 2005 6:14 AM

194 C H A P T E R 5 ■ JA V A S E R V E R F A C E S

Listing 5-8 shows FlightTimes.java. It is also a data holder class, this time for the depar-
ture and return time values.

Listing 5-8. FlightTimes.java

package com.apress.jsf;

import javax.faces.model.SelectItem;

public class FlightTimes {
 static SelectItem[] times = new SelectItem[] {
 new SelectItem("Anytime", "Anytime"),
 new SelectItem("Morning", "Morning"),
 new SelectItem("Afternoon", "Afternoon"),
 new SelectItem("Evening", "Evening") };

 public SelectItem[] getTimes() {
 return times;
 }
 public void setTimes(SelectItem[] times) {
 FlightTimes.times = times;
 }
}

Listing 5-9 shows an updated version of FlightSearch.java. This new class has two additional
fields: one for trip type and one for matching flights (flights that supposedly match the search
parameters). In the process of creating the FlightSearch managed bean, the matchingFlights
field will be filled with two Flight objects. We will do this in the faces-config.xml file. Because we
are not going to actually search for flights, each set method in this class will also update the appro-
priate fields in the Flight objects.

Listing 5-9. FlightSearch.java

package com.apress.jsf;

import java.util.List;
import java.util.ArrayList;

public class FlightSearch {
 String origination;
 String destination;
 String departDate;
 String departTime;
 String returnDate;
 String returnTime;
 String tripType;
 ArrayList matchingFlights = new ArrayList();

Mukhar_470-3.book Page 194 Saturday, October 1, 2005 6:14 AM

C H A P T E R 5 ■ J A V A S E R V E R F A C E S 195

 public String getDepartDate() {
 return departDate;
 }
 public void setDepartDate(String departDate) {
 this.departDate = departDate;
 ((Flight) matchingFlights.get(0)).setDepartDate(departDate);
 ((Flight) matchingFlights.get(1)).setDepartDate(departDate);
 }
 public String getDepartTime() {
 return departTime;
 }
 public void setDepartTime(String departTime) {
 this.departTime = departTime;
 ((Flight) matchingFlights.get(0)).setDepartTime(departTime);
 ((Flight) matchingFlights.get(1)).setDepartTime(departTime);
 }
 public String getDestination() {
 return destination;
 }
 public void setDestination(String destination) {
 this.destination = destination;
 ((Flight) matchingFlights.get(0)).setDestination(destination);
 ((Flight) matchingFlights.get(1)).setDestination(destination);
 ((Flight) matchingFlights.get(0)).setFlightNum("133");
 ((Flight) matchingFlights.get(1)).setFlightNum("233");
 }
 public String getOrigination() {
 return origination;
 }
 public void setOrigination(String origination) {
 this.origination = origination;
 ((Flight) matchingFlights.get(0)).setOrigination(origination);
 ((Flight) matchingFlights.get(1)).setOrigination(origination);
 }
 public String getReturnDate() {
 return returnDate;
 }
 public void setReturnDate(String returnDate) {
 this.returnDate = returnDate;
 ((Flight) matchingFlights.get(0)).setReturnDate(returnDate);
 ((Flight) matchingFlights.get(1)).setReturnDate(returnDate);
 }
 public String getReturnTime() {
 return returnTime;
 }

Mukhar_470-3.book Page 195 Saturday, October 1, 2005 6:14 AM

196 C H A P T E R 5 ■ JA V A S E R V E R F A C E S

 public void setReturnTime(String returnTime) {
 this.returnTime = returnTime;
 ((Flight) matchingFlights.get(0)).setReturnTime(returnTime);
 ((Flight) matchingFlights.get(1)).setReturnTime(returnTime);
 }
 public String getTripType() {
 return tripType;
 }
 public void setTripType(String tripType) {
 this.tripType = tripType;
 }
 public List getMatchingFlights() {
 return matchingFlights;
 }
 public void setMatchingFlights(List matchingFlights) {
 this.matchingFlights.addAll(matchingFlights);
 }
}

Listing 5-10 shows the Flight.java code. If you inspect the code in Listing 5-10, you
will notice that many of the properties of the Flight class are identical to the fields of the
FlightSearch class. Again, for this example, Flight is simply a data holder class with no signif-
icant behavior. It does, however, have a toString() method. This method is called by the JSF
implementation when the matching flights are displayed in the search results page.

Listing 5-10. Flight.java

package com.apress.jsf;

public class Flight {
 String flightNum;
 String origination;
 String destination;
 String departDate;
 String departTime;
 String returnDate;
 String returnTime;

 public String getFlightNum() {
 return flightNum;
 }
 public void setFlightNum(String flightNum) {
 this.flightNum = flightNum;
 }
 public String getDepartDate() {
 return departDate;
 }

Mukhar_470-3.book Page 196 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

C H A P T E R 5 ■ J A V A S E R V E R F A C E S 197

 public void setDepartDate(String departDate) {
 this.departDate = departDate;
 }
 public String getDepartTime() {
 return departTime;
 }
 public void setDepartTime(String departTime) {
 this.departTime = departTime;
 }
 public String getDestination() {
 return destination;
 }
 public void setDestination(String destination) {
 this.destination = destination;
 }
 public String getOrigination() {
 return origination;
 }
 public void setOrigination(String origination) {
 this.origination = origination;
 }
 public String getReturnDate() {
 return returnDate;
 }
 public void setReturnDate(String returnDate) {
 this.returnDate = returnDate;
 }
 public String getReturnTime() {
 return returnTime;
 }
 public void setReturnTime(String returnTime) {
 this.returnTime = returnTime;
 }
 public String toString() {
 return "Flight " + flightNum + " departing " + origination + " at "
 + departTime + " arriving " + destination + " 2 hours later";
 }
}

The index.html welcome page and web.xml deployment descriptor remain essentially
unchanged for this example, so you can reuse Listing 5-5 and Listing 5-6 (if needed) for these
two files. If you are using the Sun Deployment Tool, it will create web.xml. You may, however,
want to change the display-name element in the deployment descriptor so that it is correct for
this example.

Let’s next look at the faces-config.xml file, shown in Listing 5-11. The navigation rule is
unchanged. When the user clicks the Search button, the application will navigate to the search
results form. The first significant change is in the managed-bean entry for the FlightSearch
bean. The configuration file now includes an initializer for the new matchingFlight property of

Mukhar_470-3.book Page 197 Saturday, October 1, 2005 6:14 AM

198 C H A P T E R 5 ■ JA V A S E R V E R F A C E S

the FlightSearch bean. The matchingFlight list is initialized with two objects, given by the
names flight1 and flight2. Note that the beans flight1 and flight2 are created further down
in the configuration file, with a scope of none. The none scope is appropriate because these
two beans are not referenced directly in any page of the application. The configuration file also
initializes instances of FlightTypes and FlightTimes.

Listing 5-11. faces-config.xml

<?xml version="1.0"?>

<faces-config xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee/web-facesconfig_1_2.xsd"
 version="1.2">
 <navigation-rule>
 <from-view-id>/searchForm.jsp</from-view-id>
 <navigation-case>
 <from-outcome>submit</from-outcome>
 <to-view-id>/searchResults.jsp</to-view-id>
 <redirect/>
 </navigation-case>
 </navigation-rule>

 <managed-bean>
 <managed-bean-name>flight</managed-bean-name>
 <managed-bean-class>com.apress.jsf.FlightSearch</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 <managed-property>
 <property-name>matchingFlights</property-name>
 <list-entries>
 <value-class>com.apress.jsf.Flight</value-class>
 <value>#{flight1}</value>
 <value>#{flight2}</value>
 </list-entries>
 </managed-property>
 </managed-bean>
 <managed-bean>
 <managed-bean-name>times</managed-bean-name>
 <managed-bean-class>com.apress.jsf.FlightTimes</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 </managed-bean>
 <managed-bean>
 <managed-bean-name>types</managed-bean-name>
 <managed-bean-class>com.apress.jsf.FlightTypes</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 </managed-bean>
 <managed-bean>

Mukhar_470-3.book Page 198 Saturday, October 1, 2005 6:14 AM

C H A P T E R 5 ■ J A V A S E R V E R F A C E S 199

 <managed-bean-name>flight1</managed-bean-name>
 <managed-bean-class>com.apress.jsf.Flight</managed-bean-class>
 <managed-bean-scope>none</managed-bean-scope>
 </managed-bean>
 <managed-bean>
 <managed-bean-name>flight2</managed-bean-name>
 <managed-bean-class>com.apress.jsf.Flight</managed-bean-class>
 <managed-bean-scope>none</managed-bean-scope>
 </managed-bean>
</faces-config>

Listing 5-12 shows the searchForm.jsp page. This page includes some new features. Instead
of using just text fields for input, the form includes elements for creating radio buttons and
drop-down menu lists: h:selectOneRadio and h:selectOneMenu. There are two ways to identify
the items in these two elements. First, you can explicitly code a selectItem element for each
element in the list. The code for that would look like this:

<h:selectOneRadio value="#{foo.bar}">
 <f:selectItem itemValue="Item 1"/>
 <f:selectItem itemValue="item 2"/>
</h:selectOneRadio>

In this code snippet, the JSF implementation creates a set of radio buttons, with one radio
button for each f:selectItem element. The value of the itemValue attribute of the selected
radio button is used to set the value attribute of the h:selectOneRadio element.

The second way to create a set of selection elements is to use a selectItems element. This
is the technique we use in Listing 5-12. The selectItems element has an attribute named value,
which is set by a value binding expression that returns an array of SelectItems. For example, in
the value binding expression #{types.tripTypes}, the name types refers to a bean of type
FlightTypes (see Listing 5-7). This object has a property named tripTypes of type SelectItem[].
When the page is rendered, the array of SelectItems is converted into a selection element, with
one element for each item in the array. The same occurs for the two selectOneMenu elements.

Listing 5-12. searchForm.jsp

<html>
 <%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
 <%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

 <f:view>
 <head>
 <title>Freedom Airlines Online Flight Reservation System</title>
 </head>

Mukhar_470-3.book Page 199 Saturday, October 1, 2005 6:14 AM

200 C H A P T E R 5 ■ JA V A S E R V E R F A C E S

 <body>
 <h:form>
 <h2>Search Flights</h2>
 What type of flight do you need?
 <h:selectOneRadio layout="lineDirection"
 value="#{flight.tripType}">
 <f:selectItems value="#{types.tripTypes}"/>
 </h:selectOneRadio>
 <p/>
 <table>
 <tr><td colspan="4">Where and when do you want to travel?</td></tr>
 <tr>
 <td colspan="2">Leaving from:</td>
 <td colspan="2">Going to:</td>
 </tr>
 <tr>
 <td colspan="2">
 <h:inputText value="#{flight.origination}" size="35"/>
 </td>
 <td colspan="2">
 <h:inputText value="#{flight.destination}" size="35"/>
 </td>
 </tr>
 <tr>
 <td colspan="2">Departing:</td>
 <td colspan="2">Returning:</td>
 </tr>
 <tr>
 <td>
 <h:inputText value="#{flight.departDate}"/>
 </td>
 <td>
 <h:selectOneMenu value="#{flight.departTime}">
 <f:selectItems value="#{times.times}"/>
 </h:selectOneMenu>
 </td>
 <td>
 <h:inputText value="#{flight.returnDate}"/>
 </td>
 <td>
 <h:selectOneMenu value="#{flight.returnTime}">
 <f:selectItems value="#{times.times}"/>
 </h:selectOneMenu>
 </td>
 </tr>
 </table>

Mukhar_470-3.book Page 200 Saturday, October 1, 2005 6:14 AM

C H A P T E R 5 ■ J A V A S E R V E R F A C E S 201

 <p>
 <h:commandButton value="Search" action="submit"/>
 </p>
 </h:form>
 </body>
 </f:view>
</html>

Finally, Listing 5-13 shows an updated search results page. The only additions to this file
are the new outputText element for trip type and the outputText elements for the matching
flights. Note that the matching flights are displayed using the two different variations of the
bracket notation for value binding expressions.

Listing 5-13. searchResults.jsp

<html>
 <%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
 <%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

 <f:view>
 <head>
 <title>Freedom Airlines Online Flight Reservation System</title>
 </head>
 <body>
 <h3>You entered these search parameters</h3>

Trip Type : <h:outputText value="#{flight.tripType}"/>

Origination: <h:outputText value="#{flight.origination}"/>

Depart date: <h:outputText value="#{flight.departDate}"/>

Depart time: <h:outputText value="#{flight.departTime}"/>

Destination: <h:outputText value="#{flight.destination}"/>

Return date: <h:outputText value="#{flight.returnDate}"/>

Return time: <h:outputText value="#{flight.returnTime}"/>
 <p/>Matching Flights
 <p/><h:outputText value="#{flight.matchingFlights[0]}"/>
 <p/><h:outputText value="#{flight.matchingFlights['1']}"/>
 </body>
 </f:view>
</html>

After entering all the code and compiling the Java files into classes, deploy the application
to the server of your choice. When you load the search form page (see Figure 5-5), you should
see the new radio buttons and drop-down menu boxes. After entering some data and clicking
the Search button, you should see a results page similar to Figure 5-7.

Mukhar_470-3.book Page 201 Saturday, October 1, 2005 6:14 AM

202 C H A P T E R 5 ■ JA V A S E R V E R F A C E S

Figure 5-7. The search results page now shows two “matching” flights.

Controlling Page Navigation
As you saw in Listing 5-11, page navigation in your JSF application is handled by providing
navigation rules in a configuration file. The navigation can specify which web component
initiates the request, which web component handles the response, and which value causes
navigation to follow the flow. So far, you have seen only navigation based on the hard-coded
string value of an action attribute. You can also control navigation using value binding expres-
sions and method binding expressions. Navigation then depends on the value of the expression.

Static and Dynamic Navigation
When you control navigation through string values of the action attribute, the path of naviga-
tion is known when the application is deployed. We call this static navigation, because the flow
is statically determined and does not change. It is the same for every request.

When using static navigation, you explicitly code a value into the action attribute of a JSF
custom tag. You then define navigation rules in a configuration file. The rule specifies naviga-
tion flow when the from-outcome of a page matches the value of the action attribute. When that
occurs, navigation flows to the specified to-view-id. These elements are part of a navigation
rule element in a configuration file, such as faces-config.xml (see Listing 5-11).

When you control navigation through value binding expressions or method binding expres-
sions, the path of navigation is not known when the application is deployed. In fact, navigation
flow can vary from request to request depending on the value of the expression. We call this
dynamic navigation.

For dynamic navigation, you use a value binding expression or method binding expression as
the value of the action attribute. With value binding expressions, the value of the property must

Mukhar_470-3.book Page 202 Saturday, October 1, 2005 6:14 AM

C H A P T E R 5 ■ J A V A S E R V E R F A C E S 203

be of type String. With method binding expressions, the method must take no parameters and
return a value of type String:

public String methodName();

The String value is compared to the value specified in the navigation rule.

Navigation Rules
Two JSF custom tags are used to control page navigation in conjunction with navigation rules:
commandButton and commandLink.

You specify navigation rules in a configuration file. In this chapter, we have done this in
the faces-config.xml file. However, navigation rules can be in their own configuration file,
which is then identified in the deployment descriptor web.xml.

The general syntax of navigation rules is as follows:

<navigation-rule>
 <from-view-id>/searchForm.jsp</from-view-id>
 <navigation-case>
 <from-outcome>search</from-outcome>
 <to-view-id>/searchResults.jsp</to-view-id>
 </navigation-case>
</navigation-rule>

The from-view-id element contains the path to the page from which navigation starts.
In the configuration file, you use the correct name of the file, searchForm.jsp, as we do in
Listing 5-11, rather than searchForm.faces. Note also that the path to the resource begins
with a leading forward slash (/) and is the full path to the resource. So, if searchResults.jsp
were in the WEB-INF/pages/results directory, you would use the path /WEB-INF/pages/
results/searchForm.jsp. The from-outcome element is the string value that is compared to the
value of the action attribute.

You need to specify the from-view-id only one time. This allows you to define multiple
navigation-case elements that apply to one page. You use this when a page has multiple
command buttons or command links.

If you have an action that applies to every page in the application, you can use a
navigation-rule element without a from-view-id. For example, suppose every page in your
application had a link to your privacy policy. Because the following navigation rule does not
have a from-view-id, it applies to every page in the application.

<navigation-rule>
 <navigation-case>
 <from-outcome>privacy-policy</from-outcome>
 <to-view-id>/WEB-INF/privacy.jsp</to-view-id>
 </navigation-case>
</navigation-rule>

In some cases, you may have a rule that applies to some pages, but not all pages, in
your application. If the pages are in a common location, you can use a wildcard to select the
from-view-id:

Mukhar_470-3.book Page 203 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

204 C H A P T E R 5 ■ JA V A S E R V E R F A C E S

<navigation-rule>
 <from-view-id>/products/*</from-view-id>
 <navigation-case>
 . . .
 </navigation-case>
</navigation-rule>

In this rule, the navigation case applies to every page that is served from the products directory.
Two optional elements you can use with your navigation rules are from-action and

redirect. The from-action element is used in the navigation-case element. If you have a single
page with multiple command actions or command links, and the command actions or links
have the same value for the action attribute, you use the from-action element to distinguish
between the actions. Suppose we give the FlightSearch bean two methods named search()
and save(). Both methods will return the value success when used in a method binding
expression. Since each returns the value success, we need some way to distinguish between a
success from search() and a success from save(). You do this with the from-action element,
like this:

<navigation-rule>
 <from-view-id>/searchForm.jsp</from-view-id>
 <navigation-case>
 <from-action>#{flight.search}</from-action>
 <from-outcome>success</from-outcome>
 <to-view-id>/searchResults.jsp</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-action>#{flight.save}</from-action>
 <from-outcome>success</from-outcome>
 <to-view-id>/searchForm.jsp</to-view-id>
 </navigation-case>
</navigation-rule>

The other optional element is redirect. When you submit a request from a JSF form, the
request is sent to the originating page. When you do not use redirect, the origination page
forwards the request to the response page, so when your browser receives the response, it
displays the URL of the originating page. When you use redirect, the response sent to the
browser is a redirect to the response page, which gives the browser a chance to update the
address to the correct responding page. With the redirect in place, both of the earlier exam-
ples show searchResults.jsp in the address bar when the response is received; without
redirect, the address bar would continue to display searchForm.jsp.

Adding Dynamic Navigation to the Sample JSF Application
We can now modify the Flight Search example we have been building in this chapter to use
dynamic navigation. The directory structure for this example, Jsf_Ex03, is shown in Figure 5-8.
We will modify the example to simulate searching for flights that match the search criteria.
In the example, the matching flights will actually be hard-coded into a JavaBean.

Mukhar_470-3.book Page 204 Saturday, October 1, 2005 6:14 AM

C H A P T E R 5 ■ J A V A S E R V E R F A C E S 205

Figure 5-8. Directory structure for Jsf_Ex03

Figure 5-9 shows the search results page for this example. Notice that the page no longer
echoes the search parameters. Instead, it lists flights that match the search parameters, with a
link for each flight that selects the flight.

Figure 5-9. The search results page for Jsf_Ex03 has a link to select a matching flight.

When a link is clicked, the response page shows which flight was selected, as shown in
Figure 5-10.

Mukhar_470-3.book Page 205 Saturday, October 1, 2005 6:14 AM

206 C H A P T E R 5 ■ JA V A S E R V E R F A C E S

Figure 5-10. The flight selection page shows which flight was selected.

In this example, the files index.html (Listing 5-5), web.xml (Listing 5-6), FlightTypes.java
(Listing 5-7), FlightTimes.java (Listing 5-8), and Flight.java (Listing 5-10) remain unchanged
from the Jsf_Ex02 example, so we will not repeat that code here.

You need to make only a single change to searchForm.jsp. Listing 5-14 shows the one line
that is changed in the JSP page. In the commandButton element, we change the action attribute
to refer to the method binding expression #{flight.search}. This method does not exist yet;
we will add it to the FlightSearch class (Listing 5-19) shortly.

Listing 5-14. searchForm.jsp Change

…
 <h:commandButton value="Search" action="#{flight.search}"/>
…

The rest of the searchForm.jsp page remains the same as in Listing 5-12. When you click
the Search button on the searchForm.jsp page, it will submit the search parameters to the
searchResults.jsp page shown in Listing 5-15.

Listing 5-15. searchResults.jsp for Jsf_Ex03

<html>
 <%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
 <%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

Mukhar_470-3.book Page 206 Saturday, October 1, 2005 6:14 AM

C H A P T E R 5 ■ J A V A S E R V E R F A C E S 207

 <f:view>
 <head>
 <title>Freedom Airlines Online Flight Reservation System</title>
 </head>
 <body>
 <h3>Select a Flight</h3>
 <h:form>
 <p/><h:outputText value="#{flight.matchingFlights[0]}"/>
 <h:commandLink action="#{flight.select}" value="Select this flight">
 <f:param name="flightNum"
 value="#{flight.matchingFlights[0].flightNum}" />
 </h:commandLink>
 <p/><h:outputText value="#{flight.matchingFlights[1]}"/>
 <h:commandLink action="#{flight.select}" value="Select this flight">
 <f:param name="flightNum"
 value="#{flight.matchingFlights[1].flightNum}" />
 </h:commandLink>
 <p/>
 <h:commandButton value="New Search" action="#{flight.reset}"/>
 </h:form>
 </body>
 </f:view>
</html>

In this new search results page, we have removed the lines that echo the search parameters.
Instead, there are two similar blocks of code that print out a line of text and a link. The outputText
elements use a value binding expression to print out an element of the matchingFlights List
property of the FlightSearch object. Following the outputText element is a commandLink element.
When the link created by the commandLink element is clicked, the JSF implementation calls the
select() method of the FlightSearch class, which is specified by the method binding expression
#{flight.select}. Like the search() method, select() is a new method. Nested within the
commandLink element is a param element. It creates a name/value pair that is passed as a request
parameter when the link is clicked. When we look at the select() method of the FlightSearch
class, you will see how a class in the application is able to read the request parameter. Also
notice in Listing 5-15 how the value binding expression to access the flightNum property of the
Flight object (#{flight.matchingFlights[0].flightNum}) is a chained expression. As mentioned
earlier in chapter, you can use both dot notation and bracket notation to create chained value
binding expressions.

In this example, we need a page that will display which flight was selected by the user on
the search result page. This page is selectedFlight.jsp, shown in Listing 5-16.

Mukhar_470-3.book Page 207 Saturday, October 1, 2005 6:14 AM

208 C H A P T E R 5 ■ JA V A S E R V E R F A C E S

Listing 5-16. selectedFlight.jsp

<html>
 <%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
 <%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

 <f:view>
 <head>
 <title>Freedom Airlines Online Flight Reservation System</title>
 </head>
 <body>
 <h3>Flight Reservation</h3>
 <h:form>
 <p/>You selected this flight:
 <p/><h:outputText value="#{flight.matchingFlight}"/>
 <p/><h:commandButton value="New Search" action="#{flight.reset}"/>
 </h:form>
 </body>
 </f:view>
</html>

The last page we need to implement is the page that tells the user that no flights that match
the search parameters were found. This is the noFlights.jsp page, shown in Listing 5-17.

Listing 5-17. noFlights.jsp

<html>
 <%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
 <%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

 <f:view>
 <head>
 <title>Freedom Airlines Online Flight Reservation System</title>
 </head>
 <body>
 <h3>Search Results</h3>
 <h:form>
 <p/>No flights that match your search parameters were found.
 <p/><h:commandButton value="New Search" action="#{flight.reset}"/>
 </h:form>
 </body>
 </f:view>
</html>

Each of these pages, except for the first search form page, has a New Search button, which
allows the user to reset the search parameters and go back to the search form page. We need to
update the faces-config.xml file to specify this navigation rule and the rules for moving from
the search form to the other pages. Listing 5-18 shows the necessary additions and changes.

Mukhar_470-3.book Page 208 Saturday, October 1, 2005 6:14 AM

C H A P T E R 5 ■ J A V A S E R V E R F A C E S 209

Note that the managed bean entries in the file are the same as in Listing 5-11, so we do not
show them here.

Listing 5-18. faces-config.xml Changes

<?xml version="1.0"?>

<faces-config xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee/web-facesconfig_1_2.xsd"
 version="1.2">
 <navigation-rule>
 <from-view-id>/searchForm.jsp</from-view-id>
 <navigation-case>
 <from-outcome>success</from-outcome>
 <to-view-id>/searchResults.jsp</to-view-id>
 <redirect/>
 </navigation-case>
 <navigation-case>
 <from-outcome>no flights</from-outcome>
 <to-view-id>/noFlights.jsp</to-view-id>
 <redirect/>
 </navigation-case>
 </navigation-rule>

 <navigation-rule>
 <from-view-id>/searchResults.jsp</from-view-id>
 <navigation-case>
 <from-outcome>select</from-outcome>
 <to-view-id>/selectedFlight.jsp</to-view-id>
 <redirect/>
 </navigation-case>
 </navigation-rule>

 <navigation-rule>
 <navigation-case>
 <from-action>#{flight.reset}</from-action>
 <from-outcome>success</from-outcome>
 <to-view-id>/searchForm.jsp</to-view-id>
 <redirect/>
 </navigation-case>
 </navigation-rule>

<!-- managed beans are the same as in Listing 5-11 and are not shown -->

</faces-config>

Mukhar_470-3.book Page 209 Saturday, October 1, 2005 6:14 AM

210 C H A P T E R 5 ■ JA V A S E R V E R F A C E S

The navigation rule for searchForm.jsp now has an additional element: the Search button
on the page calls the FlightSearch search() method. This returns two possible values: success
or no flights. The rule specifies which page sends the response for each return value. There
is a new rule for the search results page. When a link on that page is clicked, its action value
causes the navigation to transfer to selectedFlight.jsp. Finally, there is a rule that applies to
all pages, because it has no from-view-id element. This applies anytime the New Search button
is clicked.

The final piece, presented in Listing 5-19, is FlightSearch.java. Much of this class is the
same is in Listing 5-9, so we show only the new properties and methods.

Listing 5-19. FlightSearch.java Changes

package com.apress.jsf;

import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import javax.faces.context.FacesContext;

public class FlightSearch {
 //properties:
 //origination, destination, departDate, departTime same as Listing 5-9
 //returnDate, returnTime, tripType, matchingFlights same as Listing 5-9
 String flightNum;
 Flight matchingFlight;

 //methods from Listing 5-9 not shown here

 //new methods are reset(), search(), and
 //get and set methods for flightNum and matchingFlight

 public String reset() {
 this.setDepartDate("");
 this.setDepartTime("");
 this.setDestination("");
 this.setOrigination("");
 this.setReturnDate("");
 this.setReturnTime("");
 this.setTripType("");
 return "success";
 }
 public String search() {
 if (origination.equals("BOS") && destination.equals("ORD")) {
 return "success";
 } else {
 return "no flights";
 }
 }

Mukhar_470-3.book Page 210 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

C H A P T E R 5 ■ J A V A S E R V E R F A C E S 211

 public Flight getMatchingFlight() {
 for (int i = 0; i < matchingFlights.size(); i++) {
 matchingFlight = (Flight) matchingFlights.get(i);
 if (matchingFlight.flightNum.equals(flightNum)) {
 break;
 }
 matchingFlight = null;
 }
 return matchingFlight;
 }
 public void setMatchingFlight(Flight flight) {
 matchingFlight = flight;
 }
 public String getFlightNum() {
 return flightNum;
 }
 public void setFlightNum(String string) {
 flightNum = string;
 }
 public String select() {
 FacesContext context = FacesContext.getCurrentInstance();
 Map requestParams =
 context.getExternalContext().getRequestParameterMap();
 flightNum = (String) requestParams.get("flightNum");
 return "select";
 }
}

The reset() method simply resets all the properties to be empty strings and returns the
value success. The matchingFlights List contains entries for two flights that both originate in
Boston (BOS) and fly to Chicago (ORD). If the origination and destination match these values,
the search() method returns success; otherwise, it returns no flights.

The commandLink element on the searchResults.jsp page causes the select() method to
be called. Within this method, the code gets a reference to the context for the application, and
then uses the context to get a reference to the map that holds all the request parameters. From
this Map, the code accesses the request parameter with the name flightNum. Referring back to
Listing 5-15, you can see that the page created a request parameter with that name. The code
sets the flightNum property of the instance and returns the value select. The flightNum property
becomes important for the getMatchingFlight() method.

Although most of the get methods simply return the current value of a property, the
getMatchingFlight() method iterates through the matchingFlights list to find the flight with
the same flight number as the flightNum property. In other words, get and set are not constrained
to simply return the value of properties, but can perform processing when they are called. The
matchingFlight property is set to this object, and it is also the return value from this method.
This method is called because of the value binding expression #{flight.matchingFlight} in
the selectedFlight.jsp page.

Compile the classes and deploy the application to your server. When you load the welcome
page at http://localhost:8080/Jsf_Ex03 (replacing the host, port, or name as necessary), the

Mukhar_470-3.book Page 211 Saturday, October 1, 2005 6:14 AM

212 C H A P T E R 5 ■ JA V A S E R V E R F A C E S

search form page will load, as shown earlier in Figure 5-5. If you enter BOS in the Leaving from
text field and ORD in the Going to text field, and then click the Search button, the search results
page will display as shown in Figure 5-9. On the search results page, clicking either link will
display the selectedFlight.jsp page (see Figure 5-10). If you enter any other data in either the
Leaving from field or Going to field and click the Search button, you should see the noFlights.jsp
page, as shown in Figure 5-11.

Figure 5-11. The noFlights.jsp page is served when no flights are found.

Accessing Context Data in Beans
Although JSF makes it easy for you to connect the view with the model without writing any code,
there may be situations where you need direct access to the request data or other data of your
web application. We saw such a situation in Listing 5-19. In that listing, a request parameter had
been set in the JSF page, and the FlightSearch bean needed to access that request parameter.

JSF provides access to the request data and other data through the FacesContext object.
As the Javadoc states, “FacesContext contains all of the per-request state information related to
the processing of a single JavaServer Faces request, and the rendering of the corresponding
response.… A FacesContext instance is associated with a particular request at the beginning of
request processing…”

As you saw in Listing 5-19, you get access to the FacesContext object like this:

FacesContext context = FacesContext.getCurrentInstance();

After you have a reference to the FacesContext for the request, you can access all the request and
application data through the ExternalContext object. The reference to the ExternalContext
object is obtained through the call to the getExternalContext() method.

Table 5-3 shows the methods of the ExternalContext that return collections of request and
application data. You can use these methods to access request data, session data, request
header data, cookie data, and other sets of data in the application.

Mukhar_470-3.book Page 212 Saturday, October 1, 2005 6:14 AM

C H A P T E R 5 ■ J A V A S E R V E R F A C E S 213

Table 5-3. Request and Application Data Available Through ExternalContext

Method Description

Map getApplicationMap() Returns a mutable Map representing the applica-
tion scope attributes for the current application

String getInitParameter(java.lang.String
name)

Returns the value of the specified application
initialization parameter (if any)

Map getInitParameterMap() Returns an immutable Map whose keys are the set
of application initialization parameter names
configured for this application, and whose values
are the corresponding parameter values

String getRemoteUser() Returns the login name of the user making the
current request if any; otherwise, returns null

Map getRequestCookieMap() Returns an immutable Map whose keys are
the set of cookie names included in the
current request, and whose values (of type
javax.servlet.http.Cookie) are the first (or
only) cookie for each cookie name returned by
the underlying request

Map getRequestHeaderMap() Returns an immutable Map whose keys are the set
of request header names included in the current
request, and whose values (of type String) are
the first (or only) value for each header name
returned by the underlying request

Map getRequestHeaderValuesMap() Returns an immutable Map whose keys are the
set of request header names included in the
current request, and whose values (of type
String[]) are all of the value for each header
name returned by the underlying request

Map getRequestMap() Returns a mutable Map representing the request
scope attributes for the current application

Map getRequestParameterMap() Returns an immutable Map whose keys are the
set of request parameters names included in the
current request, and whose values (of type String)
are the first (or only) value for each parameter
name returned by the underlying request

Iterator getRequestParameterNames() Returns an Iterator over the names of all request
parameters included in the current request

Map getRequestParameterValuesMap() Returns an immutable Map whose keys are the
set of request parameters names included in
the current request, and whose values (of type
String[]) are all of the values for each parameter
name returned by the underlying request

Map getSessionMap() Returns a mutable Map representing the session
scope attributes for the current application

Mukhar_470-3.book Page 213 Saturday, October 1, 2005 6:14 AM

214 C H A P T E R 5 ■ JA V A S E R V E R F A C E S

Most likely, if you are accessing request or application data in a managed bean, you will be
accessing request data or session data. As you can see in Table 5-3, you access request data
through the getRequestParameterMap() or getRequestParameterValuesMap() method. You can
access session data through the getSessionMap() method.

Converting Data
Looking at the FlightSearch and Flight objects, we notice that it would probably make more
sense for the departDate and returnDate fields to be actual Date objects rather than String
objects. (To be honest, we noticed this much earlier, but did not want to address that issue
until this point in the chapter.)

Modify the FlightSearch and Flight objects so that the departDate and returnDate fields
are java.util.Date objects and redeploy the application. Now, bring up the search page, enter
data into the fields, and click the Search button. If the application works correctly, you should
see the search page again.

At this point, you should be wondering why the search page was redisplayed, especially if
you entered valid data into all the input fields. The fact that the search page was redisplayed
indicates that there was an error in the data.

When an error occurs in a JSF page, the JSF implementation redisplays the originating
page again. In this case, the problem is that the JSF implementation does not know how to
convert a string into a Date object, which is what is required for the FlightSearch object. Unfor-
tunately, with the sample JSP pages we have deployed so far, we did not include any code to
inform you of what the error is. Let’s take care of that now.

Modify the searchResults.jsp page by adding an id attribute to the inputText elements
and a message element following each inputText element. These changes are shown here:

<h:inputText id="departDate" value="#{flight.departDate}"/>
<h:message for="departDate"/>
 . . .
<h:inputText id="returnDate" value="#{flight.returnDate}"/>
<h:message for="returnDate"/>

The id attribute allows you to use the value of the attribute to refer to the JSF custom tag
from other tags. The message element obtains a message from the component identified by the
for attribute. If that component does not have a message, the message element keeps an empty
string as its value. If the message component has a nonempty string value, that string is displayed
when the page is rendered.

Deploy the search page with the new source, enter some data, and click the Search button
again. This time, the search page is redisplayed with a message indicating the error, similar to
“Conversion Error setting value '07/08/2005' for 'null Converter',” as shown in Figure 5-12.

In cases where the bean property is a Java primitive (int, float, boolean, and so on), a Java
BigInteger, a Java BigDecimal, or a Java String, the JSF implementation will automatically
convert the input data to the correct type. This is done with standard converters. When the
bean property is a Java Date, there is a standard converter, but you need to explicitly tell the JSF
implementation to perform the conversion. When the bean property is some other data type,
you need to provide a converter for the data.

Mukhar_470-3.book Page 214 Saturday, October 1, 2005 6:14 AM

C H A P T E R 5 ■ J A V A S E R V E R F A C E S 215

Figure 5-12. The message element displays an error message when a UI component has an error.

Using Standard Converters
The JSF implementation comes with two standard converters:

• convertNumber: Converts between strings and numbers. You can include optional attributes
to format the numbers in various ways, including as currency, as integers, and as
floating-point numbers.

• convertDateTime: Converts between strings and dates or times. You can include optional
attributes to format using various styles and time zones.

To use one of these converters, you nest the converter tag inside the inputText tag. In
general, you can nest a converter inside any of the input or output custom tags. The converter
will be called by the JSF implementation in the update model values and render response phases of
the JSF lifecycle. If the conversion succeeds, the lifecycle continues. If the conversion fails, the
lifecycle transitions to the render response phase, where the originating page is rendered and
the error message is displayed (if the page contains message tags).

■Note You do not need to use a converter if the type of the managed bean property is a primitive type (int,
double, and so on), a boolean, a BigInteger, a BigDecimal, or a String. You do need to use a converter
if the type of the property is any other object, including Date.

Mukhar_470-3.book Page 215 Saturday, October 1, 2005 6:14 AM

216 C H A P T E R 5 ■ JA V A S E R V E R F A C E S

The JSF implementation will automatically convert input values to numbers when the
bean property is some primitive numeric type. If automatic conversion will not convert the
number properly, you can explicitly control conversion through the standard convertNumber
converter tag. For example, the convertNumber tag has attributes that allow you to convert the
input value to a currency value.

The other standard converter is the convertDateTime tag. By using various attributes of this
tag, you can convert dates or times, in various formats, to Date or Time properties in the managed
bean. Let’s modify the searchForm.jsp page to use the convertDateTime tag. The new inputText
tags look like this:

<h:inputText id="departDate" value="#{flight.departDate}">
 <f:convertDateTime pattern="MM/dd/yy"/>
</h:inputText>
<h:message for="departDate"/>
 . . .
<h:inputText id="returnDate" value="#{flight.returnDate}">
 <f:convertDateTime pattern="MM/dd/yy"/>
</h:inputText>
<h:message for="returnDate"/>

The convertDateTime tag is nested in the inputText tag. The convertDateTime tag has
several attributes that control the date conversion. We’ve used the pattern attribute to identify
the pattern of the date string that will be converted. The symbols that you can use in pattern
strings are the same symbols recognized by the java.text.SimpleDateFormat class. (Can you
guess what the JSF implementation uses to do the conversion?) We’ve identified that the input
value will consist of the two-digit month, followed by the two-digit day, followed by the two-
digit year, with forward slashes delimiting each value. Now when you click the Search button,
the JSF implementation will convert the date (assuming it follows the MM/dd/yy format), and the
search results page will be sent to the browser.

The latest version of the Flight Search example does not provide any indication that the
date is properly converted (other than displaying the search results page). Adding outputText
fields to the search results page to redisplay the departure and return dates is left as an exercise
to the reader.

Using Custom Converters
If you could use only the convertNumber and convertDateTime tags, your ability to create feature-
rich web applications would be limited. Fortunately, as you might guess from the title of this
section, you can create and use custom converters in your JSF applications.

To create a custom converter, you write a class that implements the javax.faces.
convert.Converter interface. This interface has two methods:

Object getAsObject(javax.faces.context.FacesContext context,
 javax.faces.component.UIComponent component, java.lang.String value)
String getAsString(javax.faces.context.FacesContext context,
 javax.faces.component.UIComponent component, java.lang.Object value)

Mukhar_470-3.book Page 216 Saturday, October 1, 2005 6:14 AM

C H A P T E R 5 ■ J A V A S E R V E R F A C E S 217

The getAsObject() method converts the String value (which can be null) to an instance
of the supported type and returns the new instance. This method throws a ConverterException
if the conversion fails. The getAsString() method converts the provided value of the supported
type (which can again be null) to a String instance and returns the new instance. This method
also throws a ConverterException if the conversion fails.

■Note If you check the JSF Javadoc, you will see that the JSF implementation includes a number of imple-
mentations of the javax.faces.convert.Converter interface. These are the standard converters that
handle converting input and output values to the primitive types.

Let’s create an Airport object that will be used as the data type for the origination and
destination fields of the FlightSearch class. We will write a converter that converts between
String and Airport objects.

Listing 5-20 shows the Airport object. It is a simple object that holds an airport code and
the name of the airport.

Listing 5-20. Airport.java

package com.apress.jsf;

public class Airport {
 String code;
 String name;
 public Airport(String code, String name) {
 this.code = code;
 this.name = name;
 }
 public String toString() {
 return code;
 }
}

The converter, shown in Listing 5-21, will create an Airport object when given a string with
the airport code.

Listing 5-21. airportconverter.java

package com.apress.jsf;

import javax.faces.application.FacesMessage;
import javax.faces.component.UIComponent;
import javax.faces.context.FacesContext;
import javax.faces.convert.Converter;
import javax.faces.convert.ConverterException;

Mukhar_470-3.book Page 217 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

218 C H A P T E R 5 ■ JA V A S E R V E R F A C E S

public class AirportConverter implements Converter {
 public Object getAsObject(FacesContext ctxt, UIComponent comp,
 String value) {
 Airport airport = null;
 if (value.equals("BOS")) {
 airport = new Airport("BOS", "Logan International Airport");
 }
 if (value.equals("ORD")) {
 airport = new Airport("ORD", "O'Hare International Airport");
 }
 if (airport == null) {
 FacesMessage message =
 new FacesMessage(
 FacesMessage.SEVERITY_ERROR,
 "UnrecognizedAirportCode",
 "Airport code " + value + " is not recognized");
 throw new ConverterException(message);
 }
 return airport;
 }
 public String getAsString(FacesContext ctxt, UIComponent comp,
 Object obj) {
 return obj.toString();
 }
}

This converter is very simple. When converting from a string to an object (the getAsObject()
method), the code looks for either the string "BOS" or "ORD". If either of those values is found, an
Airport object is created. (In a real-world application, we would obviously use a more robust
lookup like a database search, which would recognize all possible airport codes.) If neither
string is found, the converter throws a ConverterException that holds a FacesMessage object.
The FacesMessage object holds a summary string and a detail string, which is displayed by the
message tag when an error occurs.

To convert an object to a String, the getAsString() method simply calls the toString()
method of the object passed to the method. Since this object should be an instance of Airport,
the toString() method of Airport will be called, and that will return the airport code string.

If more involved processing is needed, each method has access to the FacesContext of the
application and the UIComponent of the component instance in the page that the object or string
is associated with. As you saw earlier, the FacesContext instance can be used to get access to
various maps that hold parameters from the page and request being processed.

We will add these two classes to the Flight Search application. Figure 5-13 shows the directory
structure for this example. We will add the classes to the WEB-INF directory. After adding the
classes, we need to tell the JSF implementation when to call the converter.

Mukhar_470-3.book Page 218 Saturday, October 1, 2005 6:14 AM

C H A P T E R 5 ■ J A V A S E R V E R F A C E S 219

Figure 5-13. Directory structure for Jsf_Ex04

One way to identify a converter to the JSF implementation is to specify a converter-id for
the converter in a configuration file, and then use that id in the JSP page. To do this, add this
converter element to the faces-config.xml file:

<converter>
 <converter-id>airport.converter</converter-id>
 <converter-class>com.apress.jsf.AirportConverter</converter-class>
</converter>

Then, in the JSP, use the id in a converter tag like this:

<h:inputText value="#{flight.origination}">
 <f:converter converterId="airport.converter"/>
</h:inputText>

or this:

<h:inputText value="#{flight.origination}" converter="airport.converter"/>

Another way to identify a converter is to define a default converter for all properties of type
Airport. This converter element in the faces-config.xml file does that:

Mukhar_470-3.book Page 219 Saturday, October 1, 2005 6:14 AM

220 C H A P T E R 5 ■ JA V A S E R V E R F A C E S

<converter>
 <converter-for-class>com.apress.jsf.Airport</converter-for-class>
 <converter-class>com.apress.jsf.AirportConverter</converter-class>
</converter>

With this entry, every time you use an input or output tag that references a property of type
Airport, like this:

<h:inputText value="#{flight.origination}"/>

the JSF implementation detects that origination is of type Airport and calls the AirportConverter
for this element. If you use this technique, you must be sure that the converter works for all possible
input strings. This is the technique we will use. Add the preceding converter element to the
faces-config.xml file for this example, Jsf_Ex04.

■Note A third way to identify the converter involves creating an object known as a backing bean. Interested
readers should check the JSF specification for details on using backing beans.

If you have not yet done so, enter the Airport.java and AirportConverter.java source
code (Listings 5-20 and 5-21) and save them in the correct directory.

In the Flight.java source file, change the data type of origination and destination to
Airport, and change the set and get methods appropriately.

In the FlightSearch.java file, change the data type of origination and destination to Airport,
and change the set and get methods appropriately. Change the reset() method to set the orig-
ination and destination to null. Also, change the search() method like this:

 public String search() {
 if (origination.code.equals("BOS") &&
 destination.code.equals("ORD")) {
 return "success";
 } else {
 return "no flights";
 }
 }

Finally, make this change to the inputText fields for origination and destination in the
searchForm.jsp page:

 <h:inputText id="origination"
 value="#{flight.origination}" size="35"/>
 <h:message for="origination"/>
</td>
<td colspan="2">
 <h:inputText id="destination"
 value="#{flight.destination}" size="35"/>
 <h:message for="destination"/>

Mukhar_470-3.book Page 220 Saturday, October 1, 2005 6:14 AM

C H A P T E R 5 ■ J A V A S E R V E R F A C E S 221

All the other files in the example remain the same as in the previous example, Jsf_Ex03.
Compile the classes and deploy the application to the server. Unlike the previous addition of
the date converter, this addition to the application will change the application’s behavior. If
you enter any airport code other than BOS or ORD in the origination or destination fields in the
search form, the application responds with a conversion error and displays the detail string
from the message generated by the converter. If you enter BOS as the origination and ORD as
the destination, the application will find the matching flights. If you enter ORD as the origina-
tion and BOS as the destination, the application will return the noFlights.jsp page. Previously,
you could enter any airport codes, and the application returned noFlights.jsp if the codes did
not match BOS and ORD. Now, the only way to see the noFlights.jsp page is to enter ORD as
the origination and BOS or ORD as the destination.

Validating Input
If you’ve worked with web applications before, you know that a lot of effort is involved in
ensuring that the data entered by the user of your application is correct. JSF provides a means
to simplify data validation, through the use of standard and custom validators.

Using Standard Validators
JSF provides three standard validators as part of the JSF implementation through the following
custom tags:

• validateDoubleRange: Validates that a value is a double. You can include the optional
attributes minimum and maximum to set minimum and maximum values.

• validateLongRange: Validates that a value is a long. You can include the optional
attributes minimum and maximum to set minimum and maximum values.

• validateLength: Validates a string value for length. You can include the optional
attributes minimum and maximum to set minimum and maximum values.

With all three validators, both of the attributes are optional. This means you could add a
validator tag without either a minimum or maximum attribute. In that case, no validation will actu-
ally be performed. When you provide only a minimum, the validator checks that the value is
greater than or equal to the minimum. When you provide only a maximum, the validator checks
that the value is less than or equal to the maximum. When you provide both a minimum and a
maximum, the validator checks that the value is greater than or equal to the minimum and less
than or equal to the maximum.

One other validation you can perform in your JSF application is to require a value. The
input and output tags include an optional attribute required. For example, the following tag
would require that you enter a value in the text field:

 <h:inputText id="origination"
 value="#{flight.origination}" size="35" required="true"/>

If you do not enter a value, the JSF implementation will return the originating page with a
message that you did not enter a required value (assuming there is a message tag for the id
origination).

Mukhar_470-3.book Page 221 Saturday, October 1, 2005 6:14 AM

222 C H A P T E R 5 ■ JA V A S E R V E R F A C E S

Using Custom Validators
You create a custom validator by creating a class that implements the javax.faces.
validator.Validator interface. All validators must implement this interface. The Validator
interface has a single method that your class must implement:

void validate(javax.faces.context.FacesContext context,
 javax.faces.component.UIComponent component, java.lang.Object value)

In the validate method, if the value argument passes the validation check, you can simply
return from the method. This signals to the JSF implementation that the value passed the
validation check. If it does not pass the validation check, you throw a javax.faces.
validator.ValidatorException. The ValidatorException instance includes a FacesMessage
instance with summary and detail messages describing the validation error.

■Note If you check the JSF Javadoc, you will see that the JSF implementation includes a number of imple-
mentations of the javax.faces.validator.Validator interface. These are the standard validators that
handle validating doubles, longs, and string lengths.

Suppose we wanted to create a date validator to ensure that dates entered by the user of
our Flight Search application are greater than or equal to the day after the current date, and less
than one year from the current date. Listing 5-22 shows the code for this validator.

Listing 5-22. DateValidator.java

package com.apress.jsf;

import java.util.Calendar;
import java.util.Date;
import javax.faces.application.FacesMessage;
import javax.faces.component.UIComponent;
import javax.faces.context.FacesContext;
import javax.faces.validator.Validator;
import javax.faces.validator.ValidatorException;

public class DateValidator implements Validator {
 public void validate(FacesContext arg0, UIComponent arg1, Object arg2)
 throws ValidatorException {
 Calendar date = Calendar.getInstance();
 date.setTime((Date) arg2);

 Calendar tomorrow = Calendar.getInstance();
 tomorrow.set(Calendar.HOUR, 0);
 tomorrow.set(Calendar.MINUTE, 0);
 tomorrow.set(Calendar.SECOND, 0);

Mukhar_470-3.book Page 222 Saturday, October 1, 2005 6:14 AM

C H A P T E R 5 ■ J A V A S E R V E R F A C E S 223

 Calendar oneYear = Calendar.getInstance();
 oneYear.set(Calendar.HOUR, 0);
 oneYear.set(Calendar.MINUTE, 0);
 oneYear.set(Calendar.SECOND, 0);
 oneYear.add(Calendar.YEAR, 1);

 if (date.before(tomorrow) || date.after(oneYear)) {
 FacesMessage message =
 new FacesMessage(
 FacesMessage.SEVERITY_ERROR,
 "Date Error",
 "Date must be between tomorrow and one year from today");
 throw new ValidatorException(message);
 }
 }
}

The code in the validate() method creates two Calendar objects: tomorrow corresponds to the
day after the current date, and oneYear corresponds to one year from the current date. Then the
code compares the argument passed to the validate method to see if it is between the dates
represented by those two Calendar objects. If the argument is not between those two Calendar
objects, a ValidatorException is thrown; if it is between those two dates, the method simply
returns.

The validator is registered with the JSF implementation with the validator element in a
configuration file. The validator element has two required subelements:

• validator-id: Used to create an id string that you can use in the validator tag to specify
a validator instance.

• validator-class: The fully qualified class name of the validator class.

Here is an example of the element you could place in the faces-config.xml configuration
file for this validator:

 <validator>
 <validator-id>date.validator</validator-id>
 <validator-class>com.apress.jsf.DateValidator</validator-class>
 </validator>

And in the searchForm.jsp, you could nest this validator tag in an inputText tag:

 <h:inputText id="departDate" value="#{flight.departDate}">
 <f:convertDateTime pattern="MM/dd/yy"/>
 <f:validator validatorId="date.validator"/>
 </h:inputText>

Notice that the value of the validatorId in the f:validator tag is the same string used in the
validator-id element.

Adding this validator and deploying it with the Flight Search application is left as an exercise
for the reader.

Mukhar_470-3.book Page 223 Saturday, October 1, 2005 6:14 AM

224 C H A P T E R 5 ■ JA V A S E R V E R F A C E S

Bypassing Validation
Validation is an important aspect of your web application, because it ensures that all input
values are valid before the model is updated, thereby enforcing model integrity. However,
there are times when you do not want validation to occur.

For example, in various pages of the Flight Search application, we have a New Search
button. If this button occurred on a page that also specified validators for any fields, we could
have a problem. In the normal JSF lifecycle, the validators would be executed before the New
Search button was processed. Validators are executed during the process validations phase,
while command buttons are processed after the invoke application phase, which occurs after
the process validations phase. By providing a New Search button, we are acknowledging that
the user might want to throw away whatever values are in the page and start a new search.
Thus, we would not want validations to occur when the user clicks the New Search button.

We can tell the JSF implementation to process the event from the button click after the
apply request values phase (before the process validations phase) by adding an attribute
named immediate to the action tag. So, for example, if we wanted the New Search button to
bypass validations in a page, the tag would look like this:

<h:commandButton value="New Search" action="#{flight.reset}"
 immediate="true"/>

Using Message Bundles
With the global nature of the web, many web applications must be internationalized. JSF
provides a facility to make it easy to internationalize your web application.

To provide an internationalized version of your web application, all the text strings used in
your application must be collected into a properties file that your application can load and use.
Listing 5-23 shows a properties file of messages that you could use with the searchForm.jsp
page we have developed in this chapter as part of the Flight Search application. This file holds
the English language strings for the application.

Listing 5-23. messages.properties

title=Freedom Airlines Online Flight Reservation System
head=Search Flights
type=What type of flight do you need?
searchLabel=Where and when do you want to travel?
departAirport=Leaving from:
arriveAirport=Going to:
departLabel=Departing:
returnLabel=Returning:
searchButton=Search

Save this file somewhere in the classpath for your application. In the Flight Search example, we
could save it in the com/apress/jsf directory. When we cause the properties file to be loaded,
we will reference it by a name that includes the classpath.

Mukhar_470-3.book Page 224 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

C H A P T E R 5 ■ J A V A S E R V E R F A C E S 225

The properties file is included in a JSP page with the loadBundle custom action:

<f:loadBundle basename="com.apress.jsf.messages" var="msgs"/>

The loadBundle custom action has two required attributes: basename and var. The basename
attribute is the classpath qualified base name of the properties file. We reference the
messages.properties file using the same package qualified name as if it were a Java class file.
Notice that we do not need to provide the .properties extension of the file. When combined
with locale information, the basename is the initial part of the name of the file to be loaded.
A locale code is appended with an underscore, followed by the .properties extension, to create
the full filename. With no locale information, the basename shown in the preceding example
tells the JSF implementation to look for the file messages.properties in the directory com/
apress/jsf of the application.

The var attribute is the name that you will use in the JSP to access the messages stored in
the messages.properties file.

You can use these strings in your application by using a value binding expression. For
example, to add the page header to the searchForm.jsp page, you would replace the original
page header element:

<h2>Search Flights</h2>

with the following outputText element:

<h2><h:outputText value="#{msgs.head}"/></h2>

In elements such as commandButton, you can use the value binding expression directly in
the value attribute of the commandButton element:

<h:commandButton value="#{msgs.searchButton}" action="#{flight.search}"/>

This provides two big advantages. First, if you want to change the text used in the web application,
you need to change only the messages.properties message bundle. Second, and the big reason
for message bundles, is that you can easily internationalize your application by providing addi-
tional message bundles for other languages. For example, you can create a second message
bundle named messages_es.properties, as shown in Listing 5-24. This file holds the Spanish
versions of all the strings.

Listing 5-24. messages_es.properties

title=Freedom Airlines Online Flight Reservation System
head=Busque los Vuelos
type=Qué tipo del vuelo le hace necesita?
searchLabel=Dónde y cuando le hace quiere viajar?
departAirport=La partida de:
arriveAirport=Ir a:
departLabel=Partir:
returnLabel=Volver:
searchButton=Búsqueda

Mukhar_470-3.book Page 225 Saturday, October 1, 2005 6:14 AM

226 C H A P T E R 5 ■ JA V A S E R V E R F A C E S

■Tip If you want to include Unicode characters with an ASCII code greater than 127, you need to encode
them as escape sequences in the form \uxxxx. This provides the ability to support non-Western languages.
And you don’t need to type in these sequences by hand. The Java utility native2ascii can convert native
characters to escape sequences for you.

You add an entry to the faces-config.xml file that identifies which languages your application
supports. For our Flight Search application, you would add this entry to the faces-config.xml
file:

 <application>
 <locale-config>
 <default-locale>en</default-locale>
 <supported-locale>es</supported-locale>
 </locale-config>
 </application>

You need to add a supported-locale element with a locale code for every language that
your application supports. The two-letter and three-letter locale codes are listed at http://
www.loc.gov/standards/iso639-2/englangn.html.

When a user accesses your application, and the user’s browser is set to accept Spanish as
the default language, your application will access strings from the messages_es.properties file,
as shown in Figure 5-14. Note that you do not need to change the loadBundle tag in your JSP
pages. The browser sends a header parameter that it accepts Spanish as its default language.
The JSF implementation uses that parameter to determine the locale code, and then combines
the basename attribute with the locale code es to determine which message bundle to load.

Adding this language bundle to the Flight Search example is left as an exercise for the
reader. To see the Flight Search application with other languages, you will also need to set the
language preferences of your browser. For Microsoft Internet Explorer, select Tools ➤ Internet
Options ➤ Languages. If you have a different browser, you should be able to set the language
preference in a similar fashion.

■Caution Although we left this as the last topic for the chapter, in the real world, you would not want to
leave the message bundle setup for last. Initially writing your web application with internationalization is much
easier than attempting to retrofit your application with internationalization. This does not mean that you must
write message bundles for every possible language up front. You should write a default message bundle, and
then add other languages as needed.

Mukhar_470-3.book Page 226 Saturday, October 1, 2005 6:14 AM

C H A P T E R 5 ■ J A V A S E R V E R F A C E S 227

Figure 5-14. The search form page with Spanish text

Summary
After completing this chapter, you should know:

• JSF was developed to make it easier to create customizable UIs for web applications
using a component-based system. JSF provides a set of UI components that can easily be
added to web applications and connected to business objects. The components are
converted into user interfaces through the use of a render kit.

• The JSF implementation comes with a set of custom actions in two tag libraries that allow
you to easily integrate JSF with JSP. All JSF implementations must support JSP pages.

• Managed beans are the business objects in your JSF application. JSF makes it easy to
connect managed beans with UI components. The JSF implementation handles all the
work of moving data from the UI into the bean, and moving data from the bean to the UI.

• Page navigation in a JSF application is handled by adding navigation rules to a configu-
ration file. Navigation can be controlled through value binding expressions or method
binding expressions.

• Data conversion and validation is handled by converters and validators. The JSF imple-
mentation provides two standard converters: one for numbers and one for dates. The
JSF implementation provides three standard validators for validating the ranges of
doubles or longs and validating the length of strings.

Mukhar_470-3.book Page 227 Saturday, October 1, 2005 6:14 AM

228 C H A P T E R 5 ■ JA V A S E R V E R F A C E S

• You can implement your own converters or validators to perform custom conversion
and validation.

• Message bundles provide an easy facility for internationalizing and customizing the
pages in your web application.

Exercises
1. Create an even simpler JSF application than the one given in Listings 5-1 through 5-6.

Remove the FlightSearch JavaBean and the searchResults.jsp page from the application.
Modify the faces-config.xml file so that the application consists solely of creating the
display from searchForm.jsp. Draw the lifecycle diagram for this application.

2. Create a managed bean that uses a Map property to store several lists of data. Create a
JSF-enabled application that accepts a key and an integer from the user, and in the
response displays the value of the List element at that index in the List given by the
key. Use both dot and bracket notation in the value binding expressions to explore the
syntax of value binding expressions.

3. After completing Chapter 7, modify the Flight Search application to search for matching
flights from a database table.

4. When the New Search button is clicked, the response page is the search form page with
all the values reset to blanks. Modify the Jsf_Ex03 example so that when the button is
clicked from the searchResults.jsp page or the selectedFlight.jsp page, the search
parameters are not reset. They are reset only when the user clicks the New Search
button from the noFlights.jsp page.

5. Create a converter that converts a decimal dollar amount into cents, or converts degrees
from Fahrenheit to Celsius. Create a JSF application that uses one of the converters. For
example, you could have a data-entry page that accepts decimal dollars or temperature
in degrees Fahrenheit, convert the value to cents or degrees Celsius, store the converted
value in a managed bean, and then use a results page to display the converted value.

6. Add the date validator to the Flight Search example.

7. Add the Spanish language message bundle to the Flight Search example. (Don’t forget
to set the language preference in your browser to see the new messages.)

Mukhar_470-3.book Page 228 Saturday, October 1, 2005 6:14 AM

229

■ ■ ■

C H A P T E R 6

Servlets

In Chapters 3 and 4, you learned about JSP pages, which are commonly used in Java EE web
applications. Servlets are the other common component in Java EE web applications.

Servlets are server-side applications in much the same way that applets are client-side
applications. An applet is a program that runs on the client side in a web browser; a Servlet is a
program that runs on the server side in a web server. Like JSP pages, Servlets are Java classes
that are loaded and executed by a Servlet container that can run by itself or as a component of
a web server or a Java EE server. In fact, as you saw in Chapter 3, the container actually compiles the
JSP page into a Servlet class that is then executed by the container. However, while JSP pages
are usually HTML pages with bits of embedded Java code, Servlets are Java classes with bits of
embedded HTML.

Servlets are designed to be extensions to servers and to extend the capabilities of servers.
Servlets were originally intended to be able to extend any server such as a web server, an FTP
server, or an SMTP (e-mail) server. However, in practice, only Servlets that respond to HTTP
requests have been widely implemented. Servlets extend the capabilities of a web server and
provide dynamic behavior for web applications. Servlets are designed to accept a request from
a client (usually a web browser), process that request, and return a response to the client.
Although all the processing can occur within the Servlet, usually helper classes or other web
components such as Enterprise JavaBeans (EJBs) will perform the business logic processing,
leaving the Servlet free to perform the request and response processing.

After JDBC, Servlets were the second Java EE technology invented. Since they were also
developed before JSP, early Servlets had to handle display processing. This mixture of page
design and code was one of the reasons JSP was introduced. When Servlets were first intro-
duced, if you were developing a web application in Java, you were using just Servlets in the
middle tier, and JDBC if you had a database. Now, of course, Servlets are just one aspect of the
whole Java EE architecture.

After reading this chapter, you will be able to develop and use Servlet technology to create
dynamic web applications. If you wish to dig deeper into Servlet technology or the classes and
methods that are part of the Servlet API, refer to the Servlet specification at http://java.sun.com/
products/Servlet/reference/api/index.html.

This chapter introduces Servlets and shows how to use them correctly in your web appli-
cations. In this chapter, you will learn:

• How HTTP requests are made to servers and what a response looks like

• How Servlets are designed to respond to HTTP requests

• What phases a Servlet goes through during its lifecycle

Mukhar_470-3.book Page 229 Saturday, October 1, 2005 6:14 AM

230 C H A P T E R 6 ■ S E R V L E T S

• Why you need to ensure your Servlet is thread-safe

• How to handle exceptions in your Servlet

• How to create and use sessions

• How to use filters in your web application

• What the Model-View-Controller (MVC) architecture is and how it makes applications
easier to maintain

HTTP and Server Programs
Although Servlets were originally intended to work with any server, in practice, Servlets are used
only with web servers. So in a Java EE application, you will be developing Servlets that respond to
HTTP requests. The Servlet API provides a class named HttpServlet specifically for dealing
with these requests. The HttpServlet class is designed to work closely with the HTTP protocol.
The HTTP protocol defines the structure of the requests that a client sends to a web server, the
format for the client to submit request parameters, and the way the server responds. HttpServlets
use the same protocol to handle the service requests they receive and to return responses to
clients. So, understanding the basics of HTTP is important to learning how to use Servlets.

Request Methods
The HTTP specification defines a number of requests that a web client, typically a browser, can
make on a web server. These request types are called methods. Table 6-1 shows the seven methods
that are defined by the HTTP specification (http://www.ietf.org/rfc/rfc2068.txt?number=2068).

When developing web applications, you will be concerned primarily with GET and POST
requests, so let’s take a closer look at those methods.

Table 6-1. Request Methods Defined by the HTTP Specification

Method Description

GET Retrieves information identified by a request Uniform Resource Identifier (URI).

POST Requests that the server pass the body of the request to the resource identified by
the request URI for processing.

HEAD Returns only the header of the response that would be returned by a GET request.

PUT Uploads data to the server to be stored at the given request URI. The main
difference between this and POST is that the server should not further process
a PUT request, but simply store it at the request URI.

DELETE Deletes the resource identified by the request URI.

TRACE Causes the server to return the request message.

OPTIONS Asks the server for information about a specific resource or about the server’s
capabilities in general.

Mukhar_470-3.book Page 230 Saturday, October 1, 2005 6:14 AM

C H A P T E R 6 ■ S E R V LE T S 231

The GET Method

Simply stated, the GET method means that the browser sends a formatted string to the server,
and the server returns the content identified by that string, known as a Uniform Resource Identifier
(URI). One specific type of URI is a string that specifies the location of a resource in relation to the
server, which is called a Uniform Resource Locator (URL). The resource can be a static web
page or the result of a web application.

A GET request usually results when a user clicks a link in a web page or enters a URL in the
address bar of the browser. However, there are other ways this can occur. For example, you can
send a GET request through a telnet session or programmatically send a GET request to a server.
You can even create a web page form that uses GET for its requests.

When sending a GET request, additional information can be passed to the web server. For
GET requests, this information usually takes the form of request parameters that are appended
to the URL. For example, when you perform a web search using the web site www.google.com,
the search parameters are passed to the search engine using request parameters, as shown here:

http://www.google.com/search?hl=en&q=Beginning+Java+EE

The request parameters are prefixed by a question mark (?), the parameters are passed as
name/value pairs (hl=en, q=Beginning+Java+EE), and each pair is delimited by an ampersand (&).
If a request parameter includes embedded space characters, these are replaced by a plus sign (+).
This format is also known as URL encoding.

Another way to pass parameters to a server is by appending the data as additional path
information to the URL. The additional information looks like a continuation of the URL, but
the web application interprets the path information as parameters. For example, suppose you
had a stock brokerage application identified by the URL /stock/StockList. You could append
additional information to the URL, which the StockList application would interpret as a
parameter. It might look like this:

http://localhost:8080/stock/StockList/AddRating

The /AddRating part of the URL appears to be part of the URL for the web application; however,
it does not identify any resource installed on the server. The resource is StockList, and the
StockList application knows how to interpret the additional path information.

You can create a GET request from the command line to see the basic structure of such a
request. Start by ensuring that your application server is running. Next, start a telnet client,
using one of the following techniques:

Starting a telnet client on Windows: Start the HyperTerminal program (select Start ➤ All
Programs ➤ Accessories ➤ Communications ➤ HyperTerminal). In the opening dialog
box, enter a connection name and click OK. In the Connect To dialog box, shown in
Figure 6-1, select TCP/IP from the Connect Using drop-down box. Then enter the host
name or IP address and port to which you want to connect. For example, if the server on
your computer is listening on port 8080, enter localhost for the host address and 8080 for
the port. Click the OK button. Next, select File ➤ Properties from the menu. Select the
Settings tab, and then click the ASCII Setup button. In the dialog box that opens, ensure
that Echo Typed Characters Locally is selected. Click OK twice to return to the terminal
window.

Mukhar_470-3.book Page 231 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

232 C H A P T E R 6 ■ S E R V L E T S

Figure 6-1. In the HyperTerminal Connect To dialog box, select TCP/IP in the Connect Using
drop-down box, and enter a valid host and port in the text fields.

Starting a telnet client on Unix or Linux: Open a terminal or console window. Then enter
telnet localhost 8080 to connect to the server on the default port. You can replace
localhost with an IP address or a host name, and the port number with the correct port for
your application server, as necessary.

Now you are ready to send an HTTP request to the server. In either HyperTerminal or the
telnet client, type the following command, and then enter two carriage returns:

GET / HTTP/1.0

Don’t forget to press the Return key twice. The second return creates a blank line; this tells the
server that the request is complete. The server should respond with the appropriate information.
The following is a short excerpt of what was returned when we connected to the Sun Java
System Application Server. You will get a different response if you connect to some other
application server.

HTTP/1.1 200 OK
X-Powered-By: Servlet/2.4
ETag: W/"10335-1097261056937"
Last-Modified: Fri, 15 Apr 2005 18:44:16 GMT
Content-Type: text/html
Content-Length: 10335
Date: Sun, 17 Apr 2005 21:55:24 GMT
Server: Sun-Java-System/Application-Server
Connection: close

Mukhar_470-3.book Page 232 Saturday, October 1, 2005 6:14 AM

C H A P T E R 6 ■ S E R V LE T S 233

<!DOCTYPE HTMLPUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
 <title>Sun Java(TM) System Application Server</title>
 <meta http-equiv="content-type" content="text/html; charset=iso-8859-1">
...remainder of response not shown...

Congratulations, you’re now a certified web browser! Using the telnet program, you just
performed the same actions that a web browser does. You sent a request to a server, and then
received a response. The actual request consists of the method name (GET), followed by the
relative URI of the desired resource, followed by the HTTP identifier for the HTTP version that
the telnet program supports. The URI in this case is just /, which is the URI for the root resource
of the server. If the server has been configured to serve a default page for this request (which
both Tomcat and Java EE are), then it will send that page.

The HTTP request is terminated by a blank line. The blank line tells the server that the
header is complete. Since a GET request has no body, this completes the request, and the program
sends the request to the server.

A general HTTP message has this format:

Request-Line
Headers
<Carriage Return/Line Feed>
[message-body]

Each request begins with the request line. In our example, that was GET / HTTP/1.0. This
is followed by header data. In our example, we did not use any header data. A blank line created
by entering just a carriage return/line feed (CRLF) sequence signals the end of the headers.
This is followed by an optional message body. Since our example was a GET request, there was
no message body. POST requests have message bodies.

You can see this entire structure in the response from the server, which has the same
message format as a request. The first line of the response is the status line, which consists of
the HTTP version, a response code (200), and a response message (OK). This is followed by the
response headers: the date, content length, and other information added by the server. The
headers, whether part of the request or response, are in the format name : value. This is followed
by the actual body of the resource. In our example, the server returns the default page for the
resource /.

So, whether you are clicking a link, entering an address in a browser address bar, using
telnet, or connecting to a server programmatically (using code), the request that is sent to the
server must ultimately follow the format prescribed by the HTTP specification. Most of the
time, however, formatting the request is handled for you automatically.

The POST Method

If the request is sent using the POST method, the request can include a message body, and the
server should pass this message body to the resource in the URI for processing. POST requests
are typically generated by users submitting a form through their web browser. Forms can be
used with either GET or POST requests, although they are usually used with POST requests. Addi-
tionally, like GET requests, POST requests can be generated manually, using a program such as
telnet, or programmatically, using classes in the java.net package.

Mukhar_470-3.book Page 233 Saturday, October 1, 2005 6:14 AM

234 C H A P T E R 6 ■ S E R V L E T S

Also, while data can be passed to the server using the same techniques as with GET requests
(appending parameters or adding additional path information), a POST request usually submits
data to the server in the body of a request. For example, using the hypothetical StockList appli-
cation, the POST request to submit stock ratings might look like this:

POST /stock/servlet/StockList/AddRating HTTP/1.0
Content-type: application/x-www-form-urlencoding
Content-length: 39

analysts=3&stocks=DDC&ratings=Smashing!

Now, if a browser had submitted this POST request, it would pass more information than
we have shown here. However, these commands are sufficient for sending data to a web appli-
cation. The request starts with the method and URL, and the head of the request includes
Content-type and Content-length parameters. This is followed by two pairs of CRLF charac-
ters, followed by the request data in the message-body. The message body is also terminated
by two pairs of CRLF characters. In this example, the POST data consists of 39 characters, formatted
using URL encoding. The data does not need to be URL-encoded, however. POST data can be in
any format that the web application understands. The point is that request data for a POST
request is usually included in the body of the request, rather than appended to the URL.

How a Server Responds to Requests
We already know how a server responds when the GET request is for a static HTML web page.
When you enter an address or click a link, the server locates the resource identified by the URI
and returns that resource as part of an HTTP message to the web browser. In the case of a web
page, the browser displays the web page.

What happens, however, when the resource is a server-side program? In this case, the
server needs to interpret the URI as a request for a server-side program, format the request
parameters in a form the program recognizes, and pass the request to that program. In the
early days of the Web, a standardized format called Common Gateway Interface (CGI) was
developed for this purpose. Whenever you see a URL that has /cgi/ as part of the address,
you are creating a request to a server-side program of that type. The program must interpret
the request parameters, execute the appropriate processing, and return a response to the server,
which returns it to the client. In the past, the server program was usually written in a language
such as C or Perl, which executed in a separate process from the server. Every request caused a
new process to be spawned, and when the program completed processing the request, it was
terminated. This was usually resource-intensive.

Java Servlets, and specifically HttpServlets, provide some advantages over CGI programs
for server-side applications. They can run in the same process as the server, so new processes
don’t need to be spawned for every request. Also, they are portable between servers (as long as
they don’t use any platform-specific code). CGI programs written and compiled in C, for example,
need to be recompiled for a different operating system.

The Servlet Model and HttpServlets
Figure 6-2 presents a slightly simplified view of what happens when a client makes a request
that is processed by a Servlet.

Mukhar_470-3.book Page 234 Saturday, October 1, 2005 6:14 AM

C H A P T E R 6 ■ S E R V LE T S 235

Figure 6-2. A request for a Servlet is passed by the server to the Servlet container, which passes it to
the Servlet class.

When a client (usually, but not necessarily, a web browser) makes a request to the server,
and the server determines that the request is for a Servlet resource, it passes the request to the
Servlet container. The container is the program responsible for loading, initiating, calling, and
releasing Servlet instances. The Servlet container takes the HTTP request; parses its request
URI, the headers, and the body; and stores all of that data inside an object that implements the
javax.servlet.ServletRequest interface. It also creates an instance of an object that implements
javax.servlet.ServletResponse. The response object encapsulates the response back to the
client. The container then calls a method of the Servlet class, passing the request and response
objects. The Servlet processes the request and sends a response back to the client.

If you read the previous chapters about JSP (Chapters 3 and 4), you will realize that this
request/response flow is very similar to the request/response flow for JSP pages. In fact, since
JSP pages are translated into Servlets, the flow is almost identical. Is there any difference between
the two? Or put another way, when should you use Servlets, and when should you use JSP pages?
Here are the general guidelines:

• JSP pages are better suited for web components that contain a large amount of presen-
tation logic and little or no business logic.

• Servlets are better suited for web components that perform processing of data or
contain some business logic.

Servlets can send display data directly through the response, as shown in Figure 6-2.
However, in many web applications, the Servlet will accept and process the request, using
some other component to generate the response back to the client. In the next few sections,
we’ll look at how a Servlet receives the request and returns a response.

Basic Servlet Design
Like CGI programs, HTTP Servlets are designed to respond to GET and POST requests, along with
all the other requests defined for HTTP. However, you will probably never need to respond to
anything other than GET or POST. Figure 6-3 shows the classes you will use when writing Servlets.

Mukhar_470-3.book Page 235 Saturday, October 1, 2005 6:14 AM

236 C H A P T E R 6 ■ S E R V L E T S

Figure 6-3. Parent classes that provide the basic functionality of a Servlet

When writing Servlets, you will usually extend a class named javax.servlet.➥

http.HttpServlet. This is a base class that provides support for HTTP requests. The HttpServlet
class, in turn, extends javax.servlet.GenericServlet, which provides some basic Servlet
functionality. Finally, GenericServlet implements the primary Servlet API interface,
javax.servlet.Servlet. It also implements an interface called ServletConfig, which allows
it to provide easy access to Servlet configuration information.

Notice that Servlet defines only a small number of methods. You can probably guess that
init() and destroy() don’t handle any requests. We will look at these methods later when we
discuss the Servlet lifecycle in more detail. The getServletConfig() and getServletInfo()
methods don’t handle requests either. That leaves only service() to handle requests.

The service() Method

When a Servlet container receives a request for a Servlet, the container calls the service() method
of the Servlet. So, a Servlet that implements the Servlet interface must implement the service()

Mukhar_470-3.book Page 236 Saturday, October 1, 2005 6:14 AM

C H A P T E R 6 ■ S E R V LE T S 237

method to handle requests. However, your Servlet does not need to implement service(). The
Servlet API provides a class named HttpServlet, which is a subclass of GenericServlet, itself
a subclass of Servlet. As you can see in Figure 6-3, the HttpServlet class implements two
overloaded versions of service(). When the Servlet container receives a request, it calls
service(ServletRequest, ServletResponse), which calls service(HttpServletRequest,
HttpServletResponse). Depending on the type of response, HttpServlet, then calls your Servlet
to handle a specific request type: GET, POST, or one of the other HTTP request methods.

The doPost() and doGet() Methods

HttpServlet is intended to respond to HTTP requests, and it must handle requests for GET,
POST, HEAD, and so on. Thus, HttpServlet defines additional methods. It defines a doGet() to
handle GET requests, doPost() to handle POST requests, and so on; there is a doXXX() method for
every HTTP method. With the exception of doTrace() and doOptions(), these methods simply
return an error message to the client saying the method is not supported. You, as the developer,
are expected to write your Servlet to extend HttpServlet and override the methods you want
to support.

You will often see Servlet examples in books or tutorials that show a Servlet class that
extends HttpServlet and overrides the service() method to process an HTTP request. This is
acceptable for simple examples of Servlets, and you really won’t have any problems if you do
this in a real Java EE application. However, HttpServlet already implements a service() method,
and it determines the correct doXXX() method to call for the HTTP request. In a real-world
application, you should determine the HTTP methods to be supported by your Servlet and
override the corresponding doXXX() method. This will almost always be doPost() or doGet().
The doTrace() and doOptions() methods are fully implemented by HttpServlet, so you do not
need to override them in your Servlet.

When the Servlet container receives the HTTP request, it maps the URI to a Servlet. It then
calls the service() method of the Servlet. Assuming the Servlet extends HttpServlet, and over-
rides only doPost() or doGet(), the call to service() will go to the HttpServlet parent class. The
service() method determines which HTTP method the request used and calls the correct
doXXX() method, as illustrated in Figure 6-4. If your Servlet has that method, it will be called
because it overrides the same method in HttpServlet. Your doXXX() method processes the
request, generates an HTTP response, and returns it to the client.

In Figure 6-4, note that even though HttpServlet and MyServlet are shown in separate
boxes, together they constitute a single object in the system: an instance of MyServlet.

The actual signature of all of the doXXX() methods is as follows:

public void doXXX(HttpServletRequest request, HttpServletResponse response)

Each method—doPost(), doGet(), and so on—accepts two parameters. The
HttpServletRequest object encapsulates the request to the server. It contains the data
for the request, as well as some header information about the request. Using methods defined
by the request object, the Servlet can access the data submitted as part of the request. The
HttpServletResponse object encapsulates the response to the client. Using the response object
and its methods, you can return a response to the client.

Mukhar_470-3.book Page 237 Saturday, October 1, 2005 6:14 AM

238 C H A P T E R 6 ■ S E R V L E T S

Figure 6-4. The request is passed to the service() method of HttpServlet, which calls the correct
method in the Servlet subclass.

A Servlet That Responds to POST Requests
Since you know the basic Servlet objects at this point, let’s work through a simple sample
Servlet. We’ll use some of the methods of HttpServletRequest and HttpServletResponse, even
though they have not been introduced yet. We’ll look at those methods in more detail after
the example.

In this example, we’ll create a Servlet that can respond to HTTP POST requests. Start by
creating the simple Servlet shown in Listing 6-1.

Listing 6-1. Login.java

package com.apress.servlet;

import javax.servlet.http.*;
import java.io.*;

public class Login extends HttpServlet {
 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 {
 String username = request.getParameter("username");
 try {
 response.setContentType("text/html");
 PrintWriter writer = response.getWriter();
 writer.println("<html><body>");
 writer.println("Thank you, " + username +
 ". You are now logged into the system.");
 writer.println("</body></html>");
 writer.close();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Mukhar_470-3.book Page 238 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

C H A P T E R 6 ■ S E R V LE T S 239

The Servlet can be compiled the same way as any other Java source file. You can compile
it from the command line using javac, or if you are using an integrated development environ-
ment (IDE), use the IDE’s compile command or menu option. You will need to include the
correct Java EE library for the compilation. There are two possible libraries to choose from,
depending on whether you are using the Java EE reference implementation, the Tomcat server,
or JBoss. It doesn’t matter which one you use. If you have the Java EE SDK, you can use the
javaee.jar library; if you have Tomcat or JBoss (which uses Tomcat), you can use servlet-api.jar.

For example, if you’re using the Java EE reference implementation, assuming JAVAEE_HOME
is the environment variable for the location of the Java EE SDK, you could compile the Servlet
with the following command line on Windows systems:

> javac –classpath %JAVAEEHOME%\lib\javaee.jar Login.java

On Linux and Unix systems, you would use this command line:

> javac –classpath $JAVAEEHOME/lib/javaee.jar Login.java

If you’re using Tomcat 5, assuming CATALINA_HOME is the location of the Tomcat installation,
on Windows systems, compile the Servlet with the following command:

> javac –classpath %CATALINA_HOME%\common\lib\servlet-api.jar Login.java

On Linux and Unix systems, use this command:

> javac –classpath $CATALINA_HOME/common/lib/servlet-api.jar Login.java

The Servlet in Listing 6-1 implements the doPost() method. So, to call the Servlet, you
need a client that can submit a POST request. Listing 6-2 shows an HTML page (login.html) that
has a form that posts to the Servlet.

Listing 6-2. login.html

<html>
 <head>
 <title>Login</title>
 </head>

 <body>
 <h1>Login</h1>

 Please enter your username and password
 <form action="Login" method="POST">
 <p>Username: <input type="text" name="username" length="40">
 <p>Password: <input type="password" name="password" length="40">
 <p><input type="submit" value="Submit">
 </form>
 </body>
</html>

Mukhar_470-3.book Page 239 Saturday, October 1, 2005 6:14 AM

240 C H A P T E R 6 ■ S E R V L E T S

Deploying the Login Servlet to Java EE

At this point, you are ready to deploy the Servlet. The next set of steps will show how to deploy
the Servlet with the Sun Java System Application Server. These steps are virtually identical to
the steps used in Chapters 3 and 4 to deploy JSP pages. If you want to deploy to Tomcat, go to
the next section, “Deploying the Login Servlet to Tomcat.”

1. Start the Sun Java System Application Server. For Windows, select Start ➤ All Programs ➤
Sun Microsystems ➤ Application Server ➤ Start Default Server. For Solaris or Linux, add
the application server \bin directory to the path, and then run this script:

asadmin start-domain domain1

2. Start the Deployment Tool. For Windows, select Start ➤ All Programs ➤ Sun Microsystems
➤ Application Server ➤ Deploytool. For Solaris or Linux, run the deploytool script.

3. Choose to create a new Web Application WAR. Select File ➤ New ➤ Web Component
from the Deployment Tool menu. Alternatively, you can click the toolbar button for
creating a new web component.

4. The New Web Application Wizard will now run. Click Next on the opening splash
screen (if it is displayed).. In the War Location pane, ensure Create New Stand-Alone
War Module is selected. In the War Naming pane, click the Browse button. In the Create
Module File dialog box, shown in Figure 6-5, select a directory and enter a filename for
the WAR file (Servlet_Ex01 in this example). Click the Create Module File button to return
to the wizard.

Figure 6-5. The Create Module File dialog box allows you to enter a name for the WAR file
and select the directory for this file.

Mukhar_470-3.book Page 240 Saturday, October 1, 2005 6:14 AM

C H A P T E R 6 ■ S E R V LE T S 241

5. In the Contents pane of the wizard, shown in Figure 6-6, click the Edit Contents button
and add the login.html and Login.class files to the application. Then click the Next
button.

Figure 6-6. The first page of the New Web Application Wizard is used to select the files that
are part of the web component and select a name for the WAR file.

6. The next page of the wizard allows you to select the web component to create. Servlet
should already be selected, so click Next.

7. The third page of the wizard allows you to select the Servlet class and the web component
name. There should be only one entry in the Servlet Class drop-down box, com.apress.
servlet.Login, so select this. The wizard will automatically create entries for the Web
Component Name and Web Component Display Name fields. Click Finish.

8. In the folder view in the left pane, select the Login WebApp, and then click the Aliases
tab, as shown in Figure 6-7. Click Add to add a new alias, and enter the alias /Login for
the Servlet.

Mukhar_470-3.book Page 241 Saturday, October 1, 2005 6:14 AM

242 C H A P T E R 6 ■ S E R V L E T S

Figure 6-7. Enter an alias for the web component using the Aliases tab.

9. Save the application using File ➤ Save.

10. You are now ready to deploy the Servlet. Select Tools ➤ Deploy. If needed, enter the
admin username and password in the deploy dialog box, and then click OK. As the
deployment process proceeds, the progress is reported in a new dialog box. After the
deployment is complete, close the progress dialog box.

11. Open a browser and enter the URL http://localhost:8080/Servlet_Ex01/login.html
into the address bar. If your server is not installed on the local machine, use the actual
server name or IP address in place of localhost; also, replace 8080 with the correct port
if your application server is using a different port. The path name Servlet_Ex01 corre-
sponds to the WAR filename. The browser will load the login page, as shown in Figure 6-8.

12. Enter a username and password into the dialog box and click the Submit button. The
Servlet will process the request and return the web page shown in Figure 6-9 to the browser.

Mukhar_470-3.book Page 242 Saturday, October 1, 2005 6:14 AM

C H A P T E R 6 ■ S E R V LE T S 243

Figure 6-8. The login.html page loaded into the browser

Figure 6-9. The web page returned by the Login Servlet

Deploying the Login Servlet to Tomcat

To deploy to Tomcat, the application needs an appropriate directory structure. Start by creating
this directory structure shown in Figure 6-10 (the same directory structure created automatically
by the Deployment Tool when you deploy to the Java EE server).

Mukhar_470-3.book Page 243 Saturday, October 1, 2005 6:14 AM

244 C H A P T E R 6 ■ S E R V L E T S

Figure 6-10. The directory structure for Servlet_Ex01

You can create this directory structure anywhere in your filesystem, but if you create it in
the /webapps directory of your Tomcat installation, you’ll be one step ahead of the game.

As you’ve learned in previous chapters, the web.xml file shown in the directory structure is
also known as the deployment descriptor. Listing 6-3 shows the deployment descriptor (this
deployment descriptor is created automatically by the Deployment Tool).

Listing 6-3. web.xml for Servlet_Ex01

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee ➥

 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">
 <display-name>Servlet_Ex01</display-name>
 <servlet>
 <display-name>Login</display-name>
 <servlet-name>Login</servlet-name>
 <servlet-class>com.apress.servlet.Login</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>Login</servlet-name>
 <url-pattern>/Login</url-pattern>
 </servlet-mapping>
</web-app>

If you created the directory structure in the /webapps directory of Tomcat, you can now
browse to the login page. Otherwise, you need to install the application, either by copying the
entire directory structure to the /webapps folder of the Tomcat installation or by creating a WAR
file and copying it to Tomcat. You can navigate to the /Servlet_Ex01 directory and create the
WAR file using the jar tool, as follows:

C:\Servlet_Ex01\>jar cf Servlet_Ex01.war *

Mukhar_470-3.book Page 244 Saturday, October 1, 2005 6:14 AM

C H A P T E R 6 ■ S E R V LE T S 245

If you used a different directory for your application, navigate into the root directory for your
application, and then create the WAR file. Finally, copy the WAR file to the Tomcat /webapps
directory.

To see the page, start the Tomcat server, if necessary, and then open a browser and enter
the URL http://localhost:8080/Servlet_Ex01/login.html into the address bar. The browser
will load the login page as shown in Figure 6-8. Enter a username and password, and then click
the Submit button. The web browser will display a welcome message returned by the Servlet,
as shown in Figure 6-9.

Let’s take a quick look at the deployment descriptor for this application (Listing 6-3). It has
two important elements under the <web-app> element:

 <servlet>
 <display-name>Login</display-name>
 <servlet-name>Login</servlet-name>
 <servlet-class>com.apress.servlet.Login</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>Login</servlet-name>
 <url-pattern>/Login</url-pattern>
 </servlet-mapping>

The <servlet> element tells the container the class that is used for a given Servlet name,
and the <servlet-mapping> element maps a URL to a Servlet name. Thus, when the Servlet
container receives a URL that matches the given pattern, it will know which class to send the
request to.

How the Login Servlet Works

The Login Servlet illustrates some of the main concepts you’ve learned. The class itself is just
like any other Java class. In this case, it is a subclass of HttpServlet. As a subclass of HttpServlet,
the Login class only needs to override the methods of HttpServlet that it needs to implement
its behavior, or alternatively, add new methods for new behavior. In this example, Login needs
to override only the doPost() method of HttpServlet.

When you click the Submit button of the login.html static web page, the web browser
submits a POST request to the server. Web forms can be used to submit either GET or POST requests.
The <form> tag in the web page has a method attribute that has the value POST. This tells the
browser to submit a POST request to the resource indicated by the action attribute of the <form>
tag. If no method attribute is used, the form defaults to the GET method.

When the server receives the POST request, it parses the URL to determine which resource
to send the request to. There are two kinds of URL paths:

Relative paths: These paths have no leading slash (/). The HTML in Listing 6-2 uses a relative
path to identify the resource. The action attribute of the <form> tag is simply the relative
address Login, and the browser converts that to the appropriate URL. When the browser
converts Login to a URL, it appends it to the current application context because it is a
relative path. It maps Login to a URL relative to the current page. For example, login.html
was served from the URL http://localhost:8080/Servlet_Ex01/login.html. The browser
appends Login to the same path as the login.html page to form the URL http://
localhost:8080/Servlet_Ex01/Login.

Mukhar_470-3.book Page 245 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

246 C H A P T E R 6 ■ S E R V L E T S

Absolute paths: These paths begin with a slash (/). Absolute paths are formed relative to
the server. If the form in login.html contained the absolute path /Login, the browser
would submit the request to http://localhost:8080/Login. This doesn’t identify a valid
resource to the server, and so would result in an HTTP 404 Not Found error.

You can use either absolute or relative paths in your web pages. If you use absolute paths,
you need to include the web component context as part of the path. For example, the absolute
path shown in the following <form> tag would have caused the browser to submit the form to
the correct resource:

<form action="/Servlet_Ex01/Login" method=POST">

When you deployed this Servlet, part of the deployment descriptor told the server and Servlet
container how to map the request path to the Servlet class. When you use the Deployment Tool
to create the web component, this mapping is created when you enter an alias for the web
component. This alias is the web address for the Servlet within the web application context.
Within the deployment descriptor, the mapping is specified by the <servlet-mapping> element.

In this example, the path element /Servlet_Ex01 of the URL told the server to pass the
request to the Servlet container. The /Login portion of the path maps to the Login Servlet,
which is implemented by the com.apress.servlet.Login class. The Servlet container constructs
instances of HttpServletRequest and HttpServletResponse, and calls the service() method of
Login. Since Login does not implement service(), the parent class method is called. The service()
method of HttpServlet determines that the request is a POST request and calls the doPost()
method. Since Login does define doPost(), that method is used to process the request.

Within the doPost() method, the Login Servlet reads a request parameter from the
HttpServletRequest object. The method that it uses to do this is getParameter(String), which
returns a String that has the value of the request parameter with the given name. If no such
parameter exists, then null is returned. The parameter used by the Servlet is "username":

String username = request.getParameter("username");

This is the same as the name attribute used in the web form for the username input field:

<p>Username: <input type="text" name="username" length="40">

There are several other methods used to retrieve the request parameters from the request
object, as discussed in the next section.

The Login Servlet then uses the response object to return a response to the client. It starts
by setting the Content-type of the response to "text/html":

response.setContentType("text/html");

■Caution The content type must be set before getting an OutputStream or Writer object from the
response object, since the content type is used to create the OutputStream or Writer.

After setting the content type, the Servlet gets a Writer object from the response object.
This Writer is used to send the strings that constitute the response to the client:

Mukhar_470-3.book Page 246 Saturday, October 1, 2005 6:14 AM

C H A P T E R 6 ■ S E R V LE T S 247

try {
 response.setContentType("text/html");
 PrintWriter writer = response.getWriter();
 writer.println("<html><body>");
 writer.println("Thank you, " + username +
 ". You are now logged into the system");
 writer.println("</body></html>");
 writer.close();
} catch (Exception e) {
 e.printStackTrace();
}

Because writing to a stream can throw an IOException, the whole block is wrapped in a
try...catch block. However, this try...catch block just prints out the stack trace for any exception
thrown. While this is acceptable for this example, it is generally bad practice to ignore exceptions
in the Servlet. We’ll talk more about this in the “Exception Handling” section later in the chapter.
You’ll see the other methods of the response object in the “The response Object” section a bit
later in the chapter.

The request Object
In the previous example, the Servlet got information from the request object by calling the
getParameter(String) method:

String username = request.getParameter("username");

THE STRANGE CASE OF THE METHOD THAT WAS UNDEPRECATED

The getParameter() method is unique in that it is the only method ever undeprecated by Sun.
In the second version of the Servlet specification, getParameter(String) was deprecated and replaced by

getParameterValues(String). This was done because there are several HTML elements (check boxes,
multiple-selection lists, and multiple elements with the same name) that return multiple values. The
getParameter(String) method returns only a single value. The getParameterValues(String)
method returns a String array, so it can be used for multiple-value elements and single-value elements
(by returning a single-element array).

However, there are still many times when the HTML form sends a single value for a named element.
While you can access array element zero in those situations, it is somewhat more syntactically cumbersome.
For this reason, many developers expressed the opinion that the getParameter(String) method was still
useful, and Sun undeprecated the method.

As you’ve seen, encoding and form encoding use name/value pairs to pass parameters from
the browser to the server. The method getParameter(String) returns the String value for the
given name in the parameter list. If no such name was submitted by the client, the method
returns null.

The ServletRequest interface defines a few other methods for getting and using request
data from the client’s request:

Mukhar_470-3.book Page 247 Saturday, October 1, 2005 6:14 AM

248 C H A P T E R 6 ■ S E R V L E T S

• public Enumeration getParameterNames(): Returns an enumeration of all the names in
the request.

• public String[] getParameterValues(String name): Returns all the request parameter
values for the given name.

• public Map getParameterMap(): Returns all the parameters stored in a Map object. Each
parameter name is a key in the Map; the value returned for a name is a String[] array.

The getParameterValues() method is used when the named parameter may have multiple
values. For instance, if an HTML form contains a <select> list that allows multiple selections,
the request will contain all the selected values keyed by a single name, the name of the <select> list.
If you call getParameter() on a parameter with multiple values, the value returned is the same
as the first element returned by getParameterValues(). If you call getParameterValues() and
the name does not exist in the request, null is returned. Also, keep in mind that web browsers
only send non-null values. In other words, if an HTML form has a check box, and the user does
not select the check box, neither the check box name nor value is sent in the request.

Accessing Request Metadata

You can also get information about the request using ServletRequest methods. Here are a few
of the more useful methods:

• public String getProtocol(): Returns the protocol used by the request; this will usually
be "HTTP".

• public String getServerName(): Returns the host name of the server that received the
request. This is useful if the server uses virtual servers.

• public String getRemoteAddr(): Returns the IP address of the client that made the request.

• public String getRemoteHost(): Returns the host name of the client that made the request.

Accessing the Raw Request Data

You can also get access to the request stream containing the unparsed request parameters.
There are two methods available for accessing the request stream:

public BufferedReader getReader()
public ServletInputStream getInputStream()

You can use only one of the methods with a single request. Once you access the request
input stream using one of these methods, the stream cannot be accessed again. Attempting to
call either of them for the same request will result in an exception being thrown. Also, note that
if you use one of these methods, the getParameter() and getParameterValues() methods may
not work. Whether you can access the request stream and use the getParameter(String) or
getParameterValues(String) methods is server-dependent.

Accessing Request Headers

Earlier, we looked at the format of an HTTP message. Recall that it looked like this:

Mukhar_470-3.book Page 248 Saturday, October 1, 2005 6:14 AM

C H A P T E R 6 ■ S E R V LE T S 249

Request-Line
Headers
<Carriage Return/Line Feed>
[message body]

The HttpServletRequest object provides a number of methods for reading the header data
from the HTTP message:

long getDateHeader(String name)
String getHeader(String name)
Enumeration getHeaders(String name)
Enumeration getHeaderNames()
int getIntHeader(String name)

Two special methods are provided for getting a header value as a date or an int. Headers
that are not dates or int values can be accessed using the general getHeader(String) method.
The name argument passed to any of these methods should be the name of the header. Here
again is part of the header portion of the response we got from the Java EE server in the first
example of the chapter:

Last-Modified: Fri, 15 Apr 2005 18:44:16 GMT
Content-Type: text/html
Content-Length: 10335
Date: Sun, 17 Apr 2005 21:55:24 GMT
Server: Sun-Java-System/Application-Server

A Servlet could get the value of the Last-Modified header by calling getDateHeader
("Last-Modified"). It could get the Content-Length by calling getIntHeader("Content-Length").
A header like Server, which is neither date nor int, would be obtained by calling
getHeader("Server").

Earlier in the chapter, we mentioned that browsers can append request parameters to the
URL. The Servlet can obtain those parameters by calling getQueryString().

public String getQueryString()

Thus, suppose you have a request URL that looks like this:

http://localhost:8080/Servlet_Ex01/Login?name=Kevin

In this case, calling getQueryString() will return the string "name=Kevin".
We also mentioned that information could be added to the URL that looks like a continuation

of the path. This extra path information can be obtained by calling getPathInfo():

public String getPathInfo()

For example, suppose you have a request URL like this:

http://localhost:8080/Servlet_Ex01/Login/extra/path/info

In this case, getPathInfo() will return "/extra/path/info".

Mukhar_470-3.book Page 249 Saturday, October 1, 2005 6:14 AM

250 C H A P T E R 6 ■ S E R V L E T S

The response Object
In the previous example, we used two methods of the response object:

response.setContentType("text/html");
PrintWriter writer = response.getWriter();

Using the Writer obtained from the response, the Servlet sent HTML data to the client
browser for it to display. There is another object that can be used to send response data. You
will normally use the Writer to send character data, but you can also send data to the client
using an output stream obtained through this method:

public ServletOutputStream getOutputStream()

While the OutputStream object can be used for text data, its primary purpose is to send
binary data to the response. The Servlet would get binary data (an image, for example) and
store it in a byte array, then set the content type ("image/jpeg", perhaps), set the content
length, and then write the binary data to the output stream.

The three methods just mentioned are defined by the ServletResponse interface. The
HttpServletResponse interface adds methods that are useful for responding to HTTP requests.
These methods allow the Servlet to add or set header data in the response:

void addDateHeader(String name, long date)
void addHeader(String name, String value)
void addIntHeader(String name, int value)
void setDateHeader(String name, long date)
void setHeader(String name, String value)
void setIntHeader(String name, int value)

The set methods are used to set a single header in the HTTP response. The add methods
are used to add additional values to a header, for headers that allow multiple values. As you can
tell from their names, two methods are used to set or add date headers, two methods are used
to set or add int headers, and the final two methods are used for all other headers.

Deployment Descriptors
Throughout the last couple of chapters, you’ve seen several examples of deployment descriptors
for our sample web applications contained in a file called web.xml. However, we’ve postponed
a full coverage of deployment descriptors until now, because many of the elements involved
relate to Servlets rather than to JSP pages. So, now that you know what a Servlet is, we can take
a more detailed look at the deployment descriptor. This will be useful if you need to understand
a deployment descriptor or manually create one.

■Note Your Servlet container may have a tool that automates the process of creating the deployment descriptor.
For example, the Deployment Tool that comes with Java EE can automatically create the deployment
descriptor for a web application.

Mukhar_470-3.book Page 250 Saturday, October 1, 2005 6:14 AM

C H A P T E R 6 ■ S E R V LE T S 251

Because the deployment descriptor is contained in an XML file, it must conform to the
XML standard. This means it should start with the XML declaration (<?xml version="1.0"?>).

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5" xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee ➥

 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">
</web-app>

The root element of the deployment descriptor is the <web-app> element. Table 6-2 shows
the subelements defined by the Servlet 2.4 specification that can be used within the <web-app>
element. Under the Servlet 2.4 specification, these elements can occur in any order within the
deployment descriptor.

Table 6-2. Valid Subelements for the <web-app> Element of a Deployment Descriptor

Element Description

context-param Contains parameter values that are used across the application

description A description of the web application

display-name A name that can be used by an application management tool to
represent the web application

distributable Describes whether the web application can be distributed across
servers; the default value is false

ejb-local-ref Defines a local reference to an EJB

ejb-ref Defines a remote reference to an EJB

env-entry Defines the name of a resource that can be accessed through the
JNDI interface

error-page Defines the error page returned to the client when a particular
error occurs

filter Defines filter classes that are called prior to the Servlet

filter-mapping Defines aliases for filters

icon Contains a path to icons that can be used by a graphical tool to
represent the web application

jsp-config Defines global configuration for JSP components

listener Defines listener classes that are called by the container when
certain events occur

locale-encoding-mapping-list Specifies a mapping between a local code and an encoding

login-config Configures the authentication method

message-destination Specifies a message destination

message-destination-ref Defines a reference to a message destination within the web
application

Mukhar_470-3.book Page 251 Saturday, October 1, 2005 6:14 AM

252 C H A P T E R 6 ■ S E R V L E T S

■Caution In previous versions of the Servlet specification, the subelements under <web-app> were
required to be in a particular order. With the latest version of the Servlet specification, this restriction has been
removed. Subelements under <web-app> can be in any arbitrary order. If you are using a Servlet container
that supports only Servlet 2.3 or earlier, you will need to use the order required by the DTD in the Servlet 2.3
specification (www.jcp.org/aboutJava/communityprocess/final/jsr053/): icon, display-name,
description, distributable, context-param, filter, filter-mapping, listener, servlet,
servlet-mapping, session-config, mimemapping, welcome-file-list, error-page, taglib,
resourceenv-ref, resource-ref, security-constraint, login-config, security-role,
env-entry, ejb-ref, ejb-local-ref.

Now, let’s take a closer look at some of the most important subelements: <context-param>,
<servlet>, and <servlet-mapping>. Later in this chapter, we’ll look at a few others. In the “Filters”
section, we will discuss <filter> and <filter-mapping>, and in the “Exception Handling” section,
we’ll discuss <error-page>.

The <context-param> Element

The <context-param> element allows you to define context parameters. These parameters specify
values that are available to the entire web application context. The element is used like this:

mime-mapping Defines a mapping for the public files of the web application to
MIME types

resource-env-ref Configures an external resource that can be used by the Servlet

resource-ref Configures an external resource that can be used by the Servlet

security-constraint Describes the roles or users that can access the web application

security-role Defines a security role for the application

service-ref Defines how web components can access web services

servlet Defines a Servlet by name and class file

servlet-mapping Defines aliases for Servlets

session-config Defines a timeout value for sessions

welcome-file-list Defines the file to return to the client when no resource is specified
in the URL

Table 6-2. Valid Subelements for the <web-app> Element of a Deployment Descriptor (Continued)

Element Description

Mukhar_470-3.book Page 252 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

C H A P T E R 6 ■ S E R V LE T S 253

<web-app>
 <context-param>
 <param-name>debug</param-name>
 <param-value>true</param-value>
 </context-param>
</web-app>

The deployment descriptor can contain zero or more of these elements. Each web compo-
nent that has access to the Servlet context can access these parameters by name. We will show
how this is done later in the chapter in Listings 6-4 and 6-6. Note that because the web.xml file
is in text format, you can pass parameters to the application only as strings.

The <servlet> Element

The <servlet> element is the primary element for describing the Servlets in your web application.
The <servlet> element can have the following subelements:

• <icon>

• <servlet-name>

• <display-name>

• <description>

• <servlet-class>

• <jsp-file>

• <init-param>

• <load-on-startup>

• <run-as>

• <security-role-ref>

The only required subelements are <servlet-name> and one of the subelements
<servlet-class> or <jsp-file>. The <servlet-name> subelement defines a user-friendly name
that can be used for the resource. The <servlet-class> or <jsp-file> subelement defines
the fully qualified name of the Servlet class or JSP file. In the previous example, we used the
following for the <servlet> element:

<servlet>
 <servlet-name>Login</servlet-name>
 <servlet-class>com.apress.servlet.Login</servlet-class>
 </servlet>

By defining the Servlet name as Login, and using the <servlet-mapping> element to map
URLs such as /Login to the name Login, we were able to access the Servlet using the simple URL
/Servlet_Ex01/Login. Okay, that’s not such a big deal when the Servlet name and class name
are both Login, but suppose your class name were com.mycompany.subdivision.MyServletWith➥

AReallyReallyLongName. Do you really want to type that? It makes much more sense to be able
to access the Servlet using SimpleName.

Mukhar_470-3.book Page 253 Saturday, October 1, 2005 6:14 AM

254 C H A P T E R 6 ■ S E R V L E T S

The <servlet-class> subelement told the Servlet container that all requests for Login should
be handled by the com.apress.servlet.Login class.

The other subelements of <servlet> that you will use often are <load-on-startup> and
<init-param>. The <load-on-startup> element, if used, contains a positive integer value that
specifies that the Servlet should be loaded when the server is started. The relative order of
Servlet loading is determined by the value: Servlets with lower values are loaded before Servlets
with higher values, and Servlets with the same value are loaded in an arbitrary order. If the
element is not present, the Servlet is loaded when the first request for the Servlet is made.
Here’s an example:

<load-on-startup>5</load-on-startup>

The <init-param> element is similar to the <context-param> element. The difference is that
<init-param> defines parameters that are accessible only to the given Servlet. Here’s an example:

<init-param>
 <param-name>debug</param-name>
 <param-value>true</param-value>
</init-param>

The <servlet-mapping> Element

The <servlet-mapping> element is used to define mappings from a particular request URI to a
given Servlet name. For example, in the Login Servlet, we defined this mapping:

<servlet-mapping>
 <servlet-name>Login</servlet-name>
 <url-pattern>/Login</url-pattern>
</servlet-mapping>

This told the server that if it received any URI that matched the pattern /Login, it should
pass the request to the Servlet with the name Login.

Servlet Lifecycle
In the previous example, we looked at a simple Servlet that processed a POST request. This
processing encompassed just a small portion of a Servlet’s lifecycle (although that’s the most
important portion from the client’s point of view). Now, let’s look at the complete lifecycle of
a Servlet.

The Servlet specification defines the following four stages of a Servlet’s lifecycle:

1. Loading and instantiation

2. Initialization

3. Request handling

4. End of life

These four stages are illustrated in Figure 6-11.

Mukhar_470-3.book Page 254 Saturday, October 1, 2005 6:14 AM

C H A P T E R 6 ■ S E R V LE T S 255

Figure 6-11. From loading through end of life, a Servlet passes through a number of distinct
phases during its lifecycle.

Loading and Instantiation

In the first stage of the lifecycle, the Servlet class is loaded from the classpath and instantiated
by the Servlet container. The method that realizes this stage is the Servlet constructor. However,
unlike the other stages, you do not need to explicitly provide the method for this stage.

How does the Servlet container know which Servlets to load? It knows by reading the
deployment descriptor. The Servlet container reads each web.xml file, and loads the Servlet
classes identified in the deployment descriptor. Then the container instantiates each Servlet by
calling its no-argument constructor.

Since the Servlet container dynamically loads and instantiates Servlets, it does not know
about any constructors you create that might take parameters. Thus, it can call only the no-
argument constructor, and it is useless for you to specify any constructor other than one that
takes no arguments. Since the Java compiler provides this constructor automatically when you
do not supply a constructor, there is no need for you to write any constructor at all in your
Servlet. This is why your Servlet class does not need to define an explicit constructor.

If you do not provide a constructor, how does your Servlet initialize itself? This is handled
in the next phase of the lifecycle, Servlet initialization.

Initialization

After the Servlet is loaded and instantiated, the Servlet must be initialized. This occurs when
the container calls the init(ServletConfig) method. If your Servlet does not need to perform
any initialization, the Servlet does not need to implement this method. The method is provided
for you by the GenericServlet parent class. That is why the Login Servlet class presented earlier
in the chapter did not have an init() method. The init() method allows the Servlet to read
initialization parameters or configuration data, initialize external resources such as database

Mukhar_470-3.book Page 255 Saturday, October 1, 2005 6:14 AM

256 C H A P T E R 6 ■ S E R V L E T S

connections, and perform other one-time activities. GenericServlet provides two overloaded
forms of the method:

public void init() throws ServletException
public void init(ServletConfig) throws ServletException

As we mentioned in the previous “Deployment Descriptors” section, the deployment
descriptor can define parameters that apply to the Servlet through the <init-param> element.
The Servlet container reads these parameters from the web.xml file and stores them as name/value
pairs in a ServletConfig object. Because the Servlet interface defines only init(ServletConfig),
this is the method the container must call. GenericServlet implements this method to store
the ServletConfig reference, and then call the parameterless init() method that it defines.
Therefore, to perform initialization, your Servlet needs to implement only the parameterless
init() method. If you implement init(), your init() will be called by GenericServlet; and
because the ServletConfig reference is already stored, your init() method will have access to
all the initialization parameters stored in it.

If you do decide to implement init(ServletConfig) in your Servlet, the method in your
Servlet must call the superclass init(ServletConfig) method:

public class Login extends HttpServlet {
 public void init(ServletConfig config) throws ServletException {
 super.init(config);
 // ...Remainder of init() method
 }
 //...Rest of Servlet
}

■Caution If you implement init(ServletConfig) without calling super.init(ServletConfig),
the ServletConfig object won’t be saved, and neither your Servlet nor its parent classes will be able to
access the ServletConfig object during the remainder of the Servlet lifecycle.

The Servlet specification requires that init(ServletConfig) successfully complete before
any requests can be serviced by the Servlet. If your code encounters a problem during init(),
you should throw a ServletException or its subclass UnavailableException. This tells the container
that there was a problem with initialization and that it should not use the Servlet for any requests.
Using UnavailableException allows you to specify an amount of time that the Servlet is unavailable.
After this time, the container could retry the call to init(). You can specify the unavailable time
for the UnavailableException using this constructor:

public UnavailableException(String msg, int seconds)

The int parameter can be any integer: negative, zero, or positive. A negative or zero value
indicates that the Servlet cannot determine when it will be available again. For example, this
could occur if the Servlet determines that an outside resource is not available; obviously, the
Servlet cannot estimate when the outside resource will be available. A positive value indicates

Mukhar_470-3.book Page 256 Saturday, October 1, 2005 6:14 AM

C H A P T E R 6 ■ S E R V LE T S 257

that the server should try to initialize the Servlet again after that number of seconds. If you
want to signal that the Servlet is permanently unavailable, use this constructor:

public UnavailableException(String msg)

After the Servlet successfully initializes, the container is allowed to use the Servlet to
handle requests.

Request Handling

Earlier in the chapter, we said that the primary method defined for servicing requests during
this phase of the Servlet lifecycle is the service() method. As each request comes to the Servlet
container, the container calls the service() method of the appropriate Servlet to handle the
request. Since you will almost always be subclassing HttpServlet, however, your Servlet only
needs to override doPost() and/or doGet() to handle requests. Here are the signatures of those
two methods:

protected void doGet(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException
protected void doPost(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException

As with init(), the Servlet can throw a ServletException or UnavailableException during
the processing of a request. If your Servlet throws either exception, then the Servlet container
is required to stop sending requests to the Servlet. For a ServletException or for an
UnavailableException that indicates a permanent unavailability (it was created with no value
for seconds unavailable), the Servlet container must end the Servlet’s lifecycle. If the Servlet
throws an UnavailableException with some value for seconds unavailable (as described in the
previous section), the Servlet specification permits the container to keep or destroy the Servlet
at its choosing. If it keeps the Servlet, it must not route any requests to the Servlet until it is
again available; if it destroys the Servlet, it will presumably create a new Servlet instance when
the Servlet is estimated to be available again.

End of Life

When the Servlet container needs to unload the Servlet, either because it is being shut down or
for some other reason such as a ServletException, the Servlet container will call the destroy()
method. However, prior to calling destroy(), the container must allow time for any request
threads that are still processing to complete their processing. After these threads are finished
processing, or after a server-defined timeout period, the container is allowed to call destroy().
Note that destroy() does not actually destroy the Servlet or cause it to be garbage-collected. It
simply provides an opportunity for the Servlet to clean up any resources it used or opened.
Obviously, after this method is called, the container will not send any more requests to the
Servlet. The signature of the destroy() method is as follows:

public void destroy()

The destroy() method allows the Servlet to release or clean up any resources that it uses.
For example, it can close database connections or files, flush any streams, or close any sockets.
This method is implemented by the GenericServlet parent class, so if your Servlet does not

Mukhar_470-3.book Page 257 Saturday, October 1, 2005 6:14 AM

258 C H A P T E R 6 ■ S E R V L E T S

need to perform any cleanup, your Servlet does not need to implement this method. After the
destroy() method completes, the container will release its references to the Servlet instance,
and the Servlet instance will be eligible for garbage collection.

Although this method is public, it is meant to be called only by the Servlet container. You
should never call the destroy() method from within your Servlet, and you should not allow
other code to call this method.

Lifecycle of the Login Servlet

Even though we did not explicitly see it, the Login Servlet in the previous example followed all
the steps of the Servlet lifecycle. Since the deployment descriptor did not have a <load-on-startup>
element, the Servlet was loaded when the first request for the Login Servlet was made. After the
class was loaded, the init() method was called. Since the Login.class did not have an init()
method, this call was handled by the GenericServlet class, the parent class of HttpServlet.
After initialization completed successfully, the request was sent to the service() method of
HttpServlet, which called the doPost() method of Login. When and if you stop the server, the
destroy() method is called, again to be handled by GenericServlet.

Event Logging in Servlets
In addition to the methods of GenericServlet that were presented earlier, you will find two
other methods of GenericServlet useful:

public void log(String)
public void log(String, Throwable)

Although you can use the poor man’s debug tool (System.out.println()) with Servlets,
GenericServlet provides two log() methods. Rather than sending their output to System.out,
these methods write the log information to the servlet container’s log. This provides a more
convenient and permanent logging mechanism than System.out.println(). We will use these
methods in the remainder of the examples in this chapter.

Multithreading in Servlets
The fact that Servlets are multithreaded may seem obvious—or maybe it doesn’t. It’s obvious
because all Java classes are inherently multithreaded; that is, whether or not you use them as
such, they have the potential to have multiple threads executing their methods. (Unless, of
course, a method is marked as synchronized.) On the other hand, it’s not obvious because
most of the time, you don’t think about multithreading when you are writing your Java classes.
Think about your first "Hello, World!" class (or whatever you wrote as your first Java class). You
probably wrote it with a single static main() method, in which all the processing occurred.
When you ran the class, the JVM created a single thread of execution, and this thread executed
the main() method. Even today, unless you are writing GUI applications with Swing or AWT, or
web applications, most of the classes you write are usually executed by only a single thread.

With Servlets, you need to change that mindset. Since Servlets are firmly in the Web world
of the HTTP protocol, where concurrent requests are the norm and not the exception, you
need to plan for multiple concurrent requests being sent to your Servlet.

Mukhar_470-3.book Page 258 Saturday, October 1, 2005 6:14 AM

C H A P T E R 6 ■ S E R V LE T S 259

Listing 6-4 shows a Servlet that is not thread-safe. This is a Calculator Servlet, which
provides a very rudimentary service for calculating the sum or difference of two numbers.
In this example, you will see how a Servlet that is not thread-safe can cause problems for a web
application.

Listing 6-4. Calculator Servlet

package com.apress.servlet;
import javax.servlet.http.*;
import java.io.*;
public class Calculator extends HttpServlet {
 private int result;
 private int sleepTime;
 public void init() {
 String sleep_time = getInitParameter("sleep.time");
 sleepTime = getNumber(sleep_time);
 }
 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 {
 String value1 = request.getParameter("value1");
 int v1 = getNumber(value1);
 String value2 = request.getParameter("value2");
 int v2 = getNumber(value2);
 String op = request.getParameter("submit");
 if ("Plus".equals(op)) {
 result = v1 + v2;
 } else {
 result = v1 - v2;
 }
 try {
 Thread.sleep(sleepTime);
 } catch (Exception e) {
 log("Exception during sleep", e);
 }
 try {
 response.setContentType("text/html");
 PrintWriter writer = response.getWriter();
 writer.println("<html><body>");
 writer.println(v1 + " " + op + " " + v2 + " is " + result);
 writer.println("</body></html>");
 writer.close();
 } catch (Exception e) {
 log("Error writing output", e);
 }
 }

Mukhar_470-3.book Page 259 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

260 C H A P T E R 6 ■ S E R V L E T S

 private int getNumber(String s) {
 int result = 0;
 try {
 result = Integer.parseInt(s);
 } catch (NumberFormatException e) {
 log("Error parsing '" + s + "'",e);
 }
 return result;
 }
}

The Calculator Servlet reads two values from the request and adds or subtracts them
based on a third parameter. If the parameter named submit has the value Plus, then the Servlet
adds the two values; otherwise, the Servlet subtracts the second value from the first. Before
printing the result, the Servlet sleeps for a short time period. That time period is set as an init
parameter, which the Servlet reads in the init() method.

Listing 6-5 shows the client for this Servlet. It submits two numbers with the names value1
and value2. It also submits a string with the name "submit" and the value of "Plus" to add the
two numbers or the value "Minus" to subtract the two numbers.

Listing 6-5. calc.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
 html>
 <head>
 <title>Calculator</title>
 </head>
 <body>
 <h1>Calculator</h1>
 Please enter two values
 <form action="Calc" method="POST">
 <p>Value 1: <input type="text" name="value1" length="10">
 <p>Value 2: <input type="text" name="value2" length="10">
 <p><input type="submit" name="submit" value="Plus">
 <input type="submit" name="submit" value="Minus">
 </form>
 </body>
</html>

You can deploy this Servlet and HTML page just as you did with the previous example in
this chapter. The following sections contain instructions for deploying to the Sun Application
Server and a Tomcat server.

Deploying the Calculator Servlet to Java EE

If you are using the Java EE Deployment Tool, follow these steps:

Mukhar_470-3.book Page 260 Saturday, October 1, 2005 6:14 AM

C H A P T E R 6 ■ S E R V LE T S 261

1. Use Servlet_Ex02 as the name of the WAR file. Add the Calculator.class (Listing 6-4)
and calc.html file (Listing 6-5) to the web component.

2. Select the Calculator Servlet in the folder pane on the left. Add an initialization parameter
to the Servlet through the Init.Parameters tab, as shown in Figure 6-12. The parameter’s
name is sleep.time and the value is 5000. To add the parameter, click the Add button
and enter the name in the Coded Parameter field and the value in the Value field.

Figure 6-12. Adding an init parameter to the Servlet

3. Select the Aliases tab and enter the alias Calc for the Servlet.

Deploying the Calculator Servlet to Tomcat

If you are using a Tomcat server, create the directory structure shown in Figure 6-13.

Figure 6-13. The directory structure for Servlet_Ex02

Listing 6-6 shows the web.xml for this application. In the <servlet> element, the Servlet
name Calculator is associated with the Calculator class. This element also includes the init
parameter sleep.time, which the Servlet reads in the init() method. The <servlet-mapping>
element maps the URL pattern /Calc to the Calculator Servlet.

Mukhar_470-3.book Page 261 Saturday, October 1, 2005 6:14 AM

262 C H A P T E R 6 ■ S E R V L E T S

Listing 6-6. web.xml for Servlet_Ex02

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5" xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">
 <display-name>Servlet Example 02</display-name>
 <servlet>
 <display-name>Servlet Example 02</display-name>
 <servlet-name>Calculator</servlet-name>
 <servlet-class>com.apress.servlet.Calculator</servlet-class>
 <init-param>
 <param-name>sleep.time</param-name>
 <param-value>5000</param-value>
 </init-param>
 </servlet>
 <servlet-mapping>
 <servlet-name>Calculator</servlet-name>
 <url-pattern>/Calc</url-pattern>
 </servlet-mapping>
</web-app>

If you create the directory structure in the Tomcat webapps directory, simply copy the
Servlet class, the HTML file, and the web.xml file to the appropriate directory. If the directories
are elsewhere, you can copy the entire directory structure and contents to webapps, or you can
create a WAR file and copy it to webapps. The WAR file can be created by navigating into the top-
level directory (Servlet_Ex02/) and running the following command:

C:\Servlet_Ex02\>jar cf Servlet_Ex02.war *

After creating the WAR file for Tomcat, copy it to the webapps directory, and Tomcat will
deploy the web component.

■Note If you have previously put a WAR file into the webapps directory, Tomcat will not redeploy the applica-
tion if you copy a new version of the same WAR file into webapps. You need to first undeploy the application.
This can be done from the Tomcat Manager page. Load the Tomcat home page (http://localhost:8080)
and click the Tomcat Manager link. On the Tomcat Manager page, there will be an undeploy link for each web
application.

Running the Calculator Servlet

To test the Servlet, open two browser windows and load the calc.html page into each browser.
Enter values into each of the fields, but do not click either the Plus or Minus button. Figure 6-14
shows the two pages before submitting the requests to the Servlet.

Mukhar_470-3.book Page 262 Saturday, October 1, 2005 6:14 AM

C H A P T E R 6 ■ S E R V LE T S 263

Figure 6-14. Two windows open to the calc.html page and ready to be submitted

After entering data into both web pages, click the Plus button in one browser; wait approx-
imately one to two seconds, and then click the Minus button in the other browser. Figure 6-15
shows the response from the Servlet for each submission.

Figure 6-15. The response from each submission

It looks like there’s a problem: one response appears to have computed the result correctly,
but the other response appears to be wrong. You can easily verify that the Servlet works
correctly with a single request. So what’s going on when two requests are submitted at the
same time?

In the Calculator Servlet, we’ve created a situation that allows multiple concurrent request
threads to interfere with each other. This was done by using a member variable in the Servlet
class to hold the result of the calculation. Member variables, also known as instance variables,
are inherently not thread-safe. Each thread that enters a Java class has access to the same

Mukhar_470-3.book Page 263 Saturday, October 1, 2005 6:14 AM

264 C H A P T E R 6 ■ S E R V L E T S

instance variables. The Calculator Servlet has two instance variables: result and sleepTime.
The variable sleepTime is set during initialization, and it is never changed again during the
Servlet lifecycle. The result variable is where the problem lies.

Inside doPost(), the code reads the value1 and value2 parameters from the request, and
then computes the sum or difference based on which submit button was pressed and assigns
that new value to the result variable. The Servlet then sleeps by calling the Thread.sleep().

To determine how long to sleep, the Servlet reads an init parameter by calling the
getInitParameter(String) method in the init() method. Recall that the init parameter is set
in the deployment descriptor.

You can define any number of init parameters for a Servlet using one or more <init-param>
elements. The <param-name> element is the name that the Servlet will use in the
getInitParameter(String) method. The <param-value> element is the value for the init parameter.
Each init parameter is Servlet-specific; this means that no Servlet can access the init parameters
defined for another Servlet. Notice that parameter values can be passed only as String values
to the Servlet. So, if you need to pass a number to the Servlet, the Servlet will need to convert
the string to a numeric type, as the Calculator Servlet does.

The getInitParameter(String) method is defined by the ServletConfig interface. Your
Servlet is able to call getInitParameter(String) because GenericServlet implements the
ServletConfig interface (see Figure 6-3), and your Servlet inherits that implementation. As you
may recall from the “Servlet Lifecycle” section earlier in the chapter, when the init() method
is called, GenericServlet saves a copy of the ServletConfig object. The GenericServlet class
implements all the required methods of the ServletConfig interface by delegating the
method call to the ServletConfig object that it stored. This allows your Servlet to call the
ServletConfig methods without explicitly using a ServletConfig object. When your Servlet
calls getInitParameter(String), the GenericServlet method will return the value of the
parameter with the same name in the deployment descriptor. If no such parameter exists, the
method will return a null.

By sleeping, the two requests that you generate—one from each browser window—have a
chance to interact with each other. The first request sets the result variable to a certain value.
The second request then changes the same instance variable. The first request sees that change
because it shares the instance variables with every other request thread.

Now, this example was pretty simple. We simply read some strings from the request and
added or subtracted the values in those strings. Imagine what would happen, however, if you
used member variables for a more important resource. For example, suppose you used a
member variable to hold a database connection. Concurrent requests would end up writing
data with the same connection, and the database would become corrupted with bad data. That
is why it is so important not to use instance variables for request-specific data.

How to Make Your Servlets Thread-Safe

In the Calculator Servlet example, you saw one way to make Servlets thread-unsafe: by using a
member variable for data that was specific to a request. What you really need to know, however, is
how to make your Servlet thread-safe. Here are some techniques that we recommend:

Use method variables for request-specific data. Whenever you need to access data from a
request, that data should be stored in method variables, also known as local variables.
These are variables defined within the scope of a method. Each thread that enters a method
gets its own copy of the method variables. Thus, no thread can change the member variables

Mukhar_470-3.book Page 264 Saturday, October 1, 2005 6:14 AM

C H A P T E R 6 ■ S E R V LE T S 265

of any other thread. If you need to persist data between separate requests, use a session to
store that data (see the “Session Management” section later in this chapter).

Use the Servlet member variables only for data that does not change. You should do this
as much as possible, but there are exceptions, as described in the next two items. Usually,
you will use member variables for data that is initialized at startup and does not change for
the life of the Servlet. This might be data such as lookup names for database connections
(see Chapter 7), paths to other resources, paths to other web components, and so on. In
the Calculator Servlet example, we made sleepTime a member variable, because this value
was set at initialization and did not change during the lifetime of the Servlet.

Protect access to member variables that may be changed by a request. Occasionally, you
may need to use a member variable for data that could be changed by a request. Or, you
may have a context attribute that can be changed by a request. When you are using member
variables or context attributes that can be changed by a request, you need to synchronize
access to that data so that different threads aren’t changing the data simultaneously. For
example, suppose your web application allows an administrator to pause the application
via a Servlet request. Information about how the application was paused needs to persist
across requests and between users. So, you save the data in objects that are instance variables
of the Servlet. Since you don’t want two administrators trying to pause or unpause the
application at the same time, you synchronize access to the objects; thus, while one
administrator is pausing or unpausing the application, no other request can use those
objects, and therefore cannot pause or unpause the application at the same time.

If your Servlet accesses outside resources, protect access to those resources. For example,
suppose you decide to have your Servlet read and write data to a file in the filesystem. One
request thread could be reading or writing to that file, while some other request thread is
writing or reading the file. File access is not inherently thread-safe, so you must include
code that manages synchronized access to this resource.

How Not to Make Your Servlets Thread-Safe

In addition to the preceding recommendations, you may see two other suggestions for making
your Servlet thread-safe:

• Use SingleThreadModel

• Synchronize doPost(), doGet(), or service()

Do not follow these suggestions! They will either not solve your problem or will be too
impractical for a real-world application.

Implementing the interface SingleThreadModel is a common, but incorrect, solution
attempted by Servlet developers. SingleThreadModel is a marker interface. You use it like this:

public class MyServlet implements SingleThreadModel

Marker interfaces, such as SingleThreadModel (and other interfaces such as Serializable
or Clonable), have no methods to implement. SingleThreadModel signals to the Servlet container
that only a single thread should be allowed in the class at a time. There are various ways for the
Servlet container to do this. The usual way is to create a pool of Servlet instances. The Servlet

Mukhar_470-3.book Page 265 Saturday, October 1, 2005 6:14 AM

266 C H A P T E R 6 ■ S E R V L E T S

specification allows the Servlet container to create multiple instances of any Servlet that imple-
ments SingleThreadModel. As each request comes to the container, an instance of the Servlet
from the pool is used to satisfy the request. While any request thread is executing in a Servlet
instance, no other thread is allowed to execute in the same instance. However, this does not
guarantee that your Servlet is thread-safe.

Remember that static member variables are shared by all instances of a Servlet; moreover,
external resources, such as files, may be accessed concurrently by request threads. If your Servlet
uses static member variables, outside resources, or context attributes, using SingleThreadModel
does not make your Servlet thread-safe. You still need to synchronize access to those resources.

An even more important reason not to use SingleThreadModel is because it is not scalable.
There is a limit to the number of Servlet instances that can be created. All those instances need
to be managed. The larger the number of concurrent requests, the more unusable this solution
becomes. It is always easier to create new threads than it is to create new objects. Again, we
don’t recommend it, but if you must use SingleThreadModel, you should use it only where the
number of concurrent requests is relatively small (but remember that you still need to make
the Servlet thread-safe).

Synchronizing methods in an attempt to make a Servlet thread-safe is even worse than
attempting to use SingleThreadModel. If you override service() and make it synchronized at
the same time, you have limited your Servlet to handling only a single request at a time (remember
that the specification allows only a single instance of Servlet per JVM for non-SingleThreadModel
Servlets). That may be fine while you are reading this book and you are the only client of the Servlets
you write, but as soon as you move to any real-world application, this will become totally
unworkable. As the number of requests increases, your clients are more and more likely to
spend their time watching the little progress icon go around and around. As you probably
know, it won’t take much of that for users to abandon your web site. Synchronizing doPost()
and doGet() is just as bad. Since the service() method of HttpServlet almost always calls
doPost() or doGet(), synchronizing doPost() and doGet() has the same effect as if you had
synchronized service().

As we mentioned in the previous section, sometimes you must synchronize access to
resources used by your Servlet. If you must synchronize code within your Servlet, you should
attempt to synchronize the smallest block of code possible; the less code that is synchronized,
the better your Servlet will execute.

Exception Handling
So far in this chapter, we’ve concentrated on how to use the various features of the Servlet API,
so exception handling has consisted simply of logging the exception stack trace. In a real-world
application, though, you will need to be more vigilant in the way you handle exceptions. We’ll
look at some techniques here.

Problems with Exception Handling
Let’s begin with an example of a Servlet that doesn’t perform any exception handling, as shown
in Listing 6-7.

Mukhar_470-3.book Page 266 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

C H A P T E R 6 ■ S E R V LE T S 267

Listing 6-7. BadServlet.java

package web;
 import java.io.*;
import javax.servlet.http.*;
 public class BadServlet extends HttpServlet {
 public void doPost(HttpServletRequest req, HttpServletResponse res)
 throws IOException
 {
 res.setContentType("text/html");
 PrintWriter writer = res.getWriter();
 writer.println("<html><body>");
 String num = req.getParameter("number");
 Integer i = new Integer(num);
 writer.println("You entered the number " + i.intValue());
 writer.println("</body></html>");
 writer.close();
 }
}

Can you see the problem in the code in Listing 6-7? Listing 6-8 shows an HTML form that
includes a field named number and calls the Servlet. Deploy the application and test various values.

Listing 6-8. index.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
 html>
 <body>
 Please enter a value
 <form action="BadServlet" method="POST">
 <p><input type="text" name="number" length="10">
 <p><input type="submit" name="submit" value="Submit">
 </form>
 </body>
</html>

If you entered any literal integer, the Servlet responds with a web page telling you what you
entered. But what happens if you enter anything other than an integer? In this case, the Integer
constructor throws an exception. What happens on the client side depends on the exception
and the server. The user might get an ugly (from the user’s point of view) stack trace, or the user
might get no response from the server. Figure 6-16 shows Tomcat 5.0’s response. To the client,
it appears as though your application is broken (which it is). You probably should have checked the
request parameters to ensure they were valid.

Mukhar_470-3.book Page 267 Saturday, October 1, 2005 6:14 AM

268 C H A P T E R 6 ■ S E R V L E T S

Figure 6-16. The response from BadServlet when anything other than a literal integer is submitted
in the request

This brings up a good question: Where should data validation be done—on the client side
or the server side? The answer depends in part on the requirements of your application. However,
you will probably need to do data validation on both sides. You need to validate some data on
the client side so that errors can be corrected prior to making the HTTP request. You need to
validate on the client side to avoid a relatively expensive network communication just to tell
users they did something wrong. You also need to validate data on the server side in case users
bypass client-side validation.

Your Servlet also needs to attempt to provide error handling for every error that could
occur. Let’s look at a common attempt at error handling and why it is not the best solution.
Suppose we take the example in Listing 6-8 and add a try...catch block, as shown in the code
snippet below:

try {
 res.setContentType("text/html");
 PrintWriter writer = res.getWriter();
 writer.println("<html><body>");
 String num = req.getParameter("number");
 Integer i = new Integer(num);
 writer.println("You entered the number " + i.intValue());
 writer.println("</body></html>");
 writer.close();
 } catch (Exception e) {
 log("Exception in response", e);
 }

Mukhar_470-3.book Page 268 Saturday, October 1, 2005 6:14 AM

C H A P T E R 6 ■ S E R V LE T S 269

This looks okay, right? No, there is still a problem. What happens when the Integer
constructor throws an exception? No output is sent back to the client, because the exception
causes the thread of execution to immediately jump to the catch block. The client gets to stare
at a blank screen.

Unless the exception is an IOException thrown while writing the response, you should always
attempt to return some kind of response to the client. That could mean putting try...catch
blocks around the code that you anticipate could throw exceptions or adding output statements
that would be called from a catch block to send a response back to the client.

Error Pages
One other way to make your application more robust is to define error pages for your application.
For example, given the BadServlet we’ve been using, we might create a web page or JSP that
tells the user that they must enter integers only. Then we can specify that the application serve
this error page whenever a NumberFormatException occurs. This is done with the <error-page>
element of the deployment descriptor, as shown in Listing 6-9.

Listing 6-9. web.xml for Servlet_Ex03

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">

 <display-name>Servlet_Ex03</display-name>
 <servlet>
 <servlet-name>BadServlet</servlet-name>
 <servlet-class>com.apress.servlet.BadServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>BadServlet</servlet-name>
 <url-pattern>/BadServlet</url-pattern>
 </servlet-mapping>
 <error-page>
 <exception-type>java.lang.NumberFormatException</exception-type>
 <location>/BadNumber.html</location>
 </error-page>
</web-app>

Using this deployment descriptor, the BadNumber.html page will be sent to the client when-
ever the Servlet container catches a NumberFormatException. You can also specify error pages
for HTTP error codes. The <error-page> element in the deployment descriptor looks like this:

Mukhar_470-3.book Page 269 Saturday, October 1, 2005 6:14 AM

270 C H A P T E R 6 ■ S E R V L E T S

<error-page>
 <error-code>404</error-code>
 <location>/NoSuchPage.html</location>
</error-page>

When a user attempts to access a page or resource that does not exist, the server generates
a 404 Not Found error. Because the deployment descriptor says to send the NoSuchPage.html
page whenever a 404 error occurs, this is what will be sent to the client. You can find the
complete list of error codes at www.w3c.org/Protocols/HTTP/HTTPRESP.html.

You can define any number of error pages that you need for your application. If you specify
an exception, the exception type needs to be the fully qualified class name of the exception.
According to the Servlet specification, “The location element contains the location of the
resource in the web application relative to the root of the web application. The value of the
location must have a leading `/’.”

■Note We don’t explicitly show how to deploy this example, Servlet_Ex03, in this chapter. However, a
complete WAR file for this example is included with the downloadable code for this book.

The one error page you should specify for every application is for error code 500. An error
code of 500 indicates an error in the server that the server was unable to deal with. This could
be anything from a JSP page that cannot be compiled to an uncaught exception in a Servlet. By
specifying a page to be sent to the client for a 500 error, you can be sure that if an error of this
type occurs, the client will get a nicely formatted error page, rather than an ugly stack trace.

■Caution As you saw in JSP_Ex03 in Chapter 3, Microsoft Internet Explorer does not always behave properly
when Tomcat 5 returns an error page to the browser. When Tomcat sends a status code of 500 with an error
page, Internet Explorer displays its own page rather than the error page when the error page is below a certain
size (usually 512 bytes). You may need to pad your error page to ensure it meets that minimum size if any of
your users have Internet Explorer. See Chapter 3 for more information.

Session Management
There’s one big challenge with relying on HTTP for web applications: HTTP is a stateless protocol.
Each request and response stands alone. Without session management, each time a client
makes a request to a server, the server doesn’t remember any information about the client. From
the server’s point of view, it’s a brand-new user with a brand-new request, with no relation to
any other request. To deal with this issue, web applications use the concept of a session.

A session refers to the entire interaction between a client and a server from the time of the
client’s first request, which generally begins the session, to the time the session is terminated.

Mukhar_470-3.book Page 270 Saturday, October 1, 2005 6:14 AM

C H A P T E R 6 ■ S E R V LE T S 271

The session could be terminated by the client’s request, or the server could automatically close
it after a certain period of time. A session can last for just a few minutes, or it could last days or
weeks or months (if the application were willing to let a session last that long).

A web application can associate various requests into a single session by using additional
information that the client sends with each request. The following are two common ways to
do this:

• The application server sends a session ID as a cookie to the client. When the client makes
a request, the session ID is sent back to the server, and the application server can use the
ID to associate the request with a session.

• The web application embeds the session ID in the URLs in a web response. When the
client clicks a link in the response web page, the URL sent to the server includes the
session ID, and the web application can use the ID to associate the request with the session.

Note that when the client accepts cookies, your Servlet does not need to explicitly send the
session ID to the client. However, if the client does not accept cookies, your Servlet must explicitly
rewrite any URLs embedded in its web pages to include the session ID.

The Servlet API provides classes and methods for creating and managing sessions. In this
section, we’ll look in detail at session creation and management.

Creating and Using Sessions
Two methods of the HttpServletRequest object are used to access a session:

HttpSession getSession();
HttpSession getSession(boolean);

If a session already exists, then getSession(), getSession(true), and getSession(false) will
return the existing session. If a session does not exist, then getSession() and getSession(true)
will cause one to be created by the application server. The getSession(false) method will
return null rather than create a new session when one does not already exist. Note that you
must call one of these methods before writing any data to the response. This is because the
default technique for session tracking is to use cookies. Cookies are sent in the header part of
an HTTP message by the application server, so they must be set in the response prior to writing
any data to the response.

In addition, HttpServletRequest provides a few other methods for dealing with sessions:

• String getRequestedSessionId(): Gets the ID assigned by the server to the session.

• boolean isRequestedSessionIdValid(): Returns true if the request contains a valid
session ID.

• boolean isRequestedSessionIdFromCookie(): Returns true if the session ID was sent as
part of a cookie.

• boolean isRequestedSessionIdFromURL(): Returns true if the session ID was sent
through URL rewriting.

Mukhar_470-3.book Page 271 Saturday, October 1, 2005 6:14 AM

272 C H A P T E R 6 ■ S E R V L E T S

Session Tracking with Cookies

All the data for the session, and all the data stored with the session, is maintained on the server.
The server therefore needs some way to associate a client’s request with a session on the server. The
primary technique for doing this is to use cookies. When the server creates a session, it sends a
session ID to the client in the form of a cookie. When the client makes another request and
sends the cookie with the session ID, the server can select the correct session for the client
based on the session ID.

Cookies are strings of text that a server can send to a client. The client can either accept
and store the cookie or reject the cookie. Cookies should contain information relevant to the
client. When the client makes a request to a given server, it sends the cookies it has from the
server back with the request. (You can read the cookie specification at www.w3.org/Protocols/
rfc2109/rfc2109).

When the client is accepting cookies, there is nothing your Servlet needs to do as far as
session tracking is concerned. The Servlet container and the server handle all the session
tracking for you.

Session Tracking with URL Rewriting

Some users don’t like cookies. If you are working with a public web application, you can accept
as fact that some users of your application will not accept the cookies sent to them by the
server. When that occurs, the server resorts to another technique to track a user’s session: URL
rewriting. With this technique, the server appends the session ID to the URLs of the pages it
serves. When that occurs, the Servlet does need to do something. In this case, the URLs embedded
within the HTML pages of the application need to be modified for each client by rewriting the
URL. This can be done with the following methods of HttpServletResponse:

encodeURL(String)
encodeRedirectURL(String)

These methods will rewrite the URL given by the String argument when the client is not
accepting cookies. If the client does accept cookies, then the URLs are returned unchanged.
You use encodeRedirectURL() for URLs that will be used with the sendRedirect() method of
HttpServletResponse. Use encodeURL() for all other URLs.

Storing and Managing Session Data

What can you do with a session? All kinds of stuff, it turns out. Primarily, though, sessions are
useful for persisting information about a client and a client’s interactions with an application.
If you had an e-commerce application, you could store information about the customer and
the items in her shopping cart. If you were running an Internet radio station, you could use a
session to record the listener’s favorite music styles. Sessions store objects, so you can store
anything at all in the session. Whenever your application needs to store information between
requests, it can use a session to store the information.

To store and manage data, the HttpSession interface defines a number of methods. The
methods you will probably use most often are those for setting and getting attributes from the
session. You would store information in the session using the setAttribute(String, Object)
method. Since the session is common to the entire application, this data then becomes available
to every component in the application (so you need to consider synchronizing access to the
session and session data). The stored data is retrieved with the getAttribute(String) method.
You can use the following methods with sessions to set and get data:

Mukhar_470-3.book Page 272 Saturday, October 1, 2005 6:14 AM

C H A P T E R 6 ■ S E R V LE T S 273

• public Object getAttribute(String name): Gets the object with the given name from
the session. If no object exists with that name, the method returns null.

• public Enumeration getAttributeNames(): Gets an enumeration of all the names used to
store data in the session.

• public void setAttribute(String name, Object value): Uses the given name to store
the object in the session.

• public void removeAttribute(String name): Removes the object with the given name
from the session.

Creating and Managing a Session’s Lifecycle

You can use the following methods to create sessions and manage a session’s lifecycle:

• public long getCreationTime(): Returns the time that the session was created in milli-
seconds from January 1, 1970, 00:00:00 GMT.

• public String getId(): Gets the session ID.

• public long getLastAccessedTime(): Returns the last time in milliseconds from January 1,
1970, that the client sent a request associated with the session.

• public boolean isNew(): Returns true if the session was just created by a call to
getSession() or getSession(true). Also returns true if the client chooses not to join
the session.

• public void setMaxInactiveInterval(int interval): Sets the amount of time in seconds
between requests that the session will remain active. After this amount of time, the
server can invalidate the session. Passing a negative value indicates the session should
never time out.

• public int getMaxInactiveInterval(): Returns the amount of time that the session will
remain active between requests.

• public void invalidate(): Invalidates the session and all the objects stored in the session.

The isNew() method returns true when the client has refused the session (usually by
rejecting the cookie with the session ID), or when the session has just been created and the
session ID has not been sent to the client yet. The setMaxInactiveInterval(int) method is
used to tell the Servlet container how long a session can be inactive before it is invalidated.
When that time limit is reached without activity, the session is invalidated. Using a negative
value for the argument tells the container never to expire a session. A session is considered
active when a client makes a request and sends the session ID with the request. Finally, the
Servlet can actively expire the session by calling the invalidate() method.

Additionally, the following method returns the ServletContext for the session:

public ServletContext getServletContext()

This method returns a reference to the ServletContext object associated with the web application.

Mukhar_470-3.book Page 273 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

274 C H A P T E R 6 ■ S E R V L E T S

Storing Login Credentials in a Session

In the first Servlet example in this chapter (Listing 6-1), we created a simple Login Servlet. Now
we’ll see how to have that Servlet store login credentials in a session. Modify the Login Servlet
from Listing 6-1 as shown in Listing 6-10.

■Note The original Login Servlet did not validate the user credentials, did not use a secure connection for
receiving the username and password, and did not store the Login information. In a real application, the
Servlet would probably do all these things.

Listing 6-10. Login Servlet, Modified to Use Sessions

package com.apress.servlet;

import javax.servlet.http.*;
import java.io.*;

public class Login extends HttpServlet {
 public void doPost(
 HttpServletRequest request,
 HttpServletResponse response)
 {
 String username = request.getParameter("username");
 String password = request.getParameter("password");
 HttpSession session = request.getSession(true);
 session.setAttribute("username", username);
 session.setAttribute("password", password);
 try {
 response.setContentType("text/html");
 PrintWriter writer = response.getWriter();
 writer.println("<html><body>");
 writer.println(
 "Thank you, " + username + ". You are now logged into the system");
 String newURL = response.encodeURL("GetSession");
 writer.println(
 "Click here for another servlet");
 writer.println("</body></html>");
 writer.close();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Mukhar_470-3.book Page 274 Saturday, October 1, 2005 6:14 AM

C H A P T E R 6 ■ S E R V LE T S 275

The Login Servlet includes a link to another Servlet. This Servlet, GetSession, is shown in
Listing 6-11.

Listing 6-11. GetSession Servlet

package com.apress.servlet;

import javax.servlet.http.*;
import java.io.*;
import java.util.*;

public class GetSession extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 {
 HttpSession session = request.getSession(false);
 try {
 response.setContentType("text/html");
 PrintWriter writer = response.getWriter();
 writer.println("<html><body>");
 if (session == null) {
 writer.println("You are not logged in");
 } else {
 writer.println("Thank you, you are already logged in");
 writer.println("Here is the data in your session");
 Enumeration names = session.getAttributeNames();
 while (names.hasMoreElements()) {
 String name = (String) names.nextElement();
 Object value = session.getAttribute(name);
 writer.println("<p>name=" + name + " value=" + value);
 }
 }
 writer.println(
 "<p>Return" + " to login page");
 writer.println("</body></html>");
 writer.close();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Compile these Servlets. The GetSession Servlet includes a link to an HTML page named
login.html. This is the same page shown in Listing 6-2 earlier in this chapter. The directory
structure for this example is shown in Figure 6-17.

Mukhar_470-3.book Page 275 Saturday, October 1, 2005 6:14 AM

276 C H A P T E R 6 ■ S E R V L E T S

Figure 6-17. The directory structure for Servlet_Ex04

If you are using the Tomcat server, you will need a deployment descriptor. Listing 6-12
shows the deployment descriptor for this application. If you are using the Sun Application
Server, the Deployment Tool will create the deployment descriptor for you.

Listing 6-12. web.xml for Servlet_Ex03

<?xml version='1.0' encoding='UTF-8'?>
<web-app
 version="2.5"
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee ➥

 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">
 <display-name>Servlet_Ex04</display-name>
 <servlet>
 <display-name>GetSession</display-name>
 <servlet-name>GetSession</servlet-name>
 <servlet-class>
 com.apress.servlet.GetSession
 </servlet-class>
 </servlet>
 <servlet>
 <display-name>Login</display-name>
 <servlet-name>Login</servlet-name>
 <servlet-class>com.apress.servlet.Login</servlet-class>
 </servlet>

Mukhar_470-3.book Page 276 Saturday, October 1, 2005 6:14 AM

C H A P T E R 6 ■ S E R V LE T S 277

 <servlet-mapping>
 <servlet-name>GetSession</servlet-name>
 <url-pattern>/GetSession</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>Login</servlet-name>
 <url-pattern>/Login</url-pattern>
 </servlet-mapping>
</web-app>

If you are using the Sun Application Server and Deployment Tool, create a web application
named Servlet_Ex04. Use the New Web Application WAR Wizard (File ➤ New ➤ Web Compo-
nent) to create components for both Servlets. Make sure that you add both Servlet .class files
to the first WAR module, and for the second component, select Add to Existing WAR Module
on the second wizard screen, instead of creating a new WAR module. Select each component
in the left pane, and select the Aliases tab in the right pane to set the alias. The alias for the
GetSession Servlet is /GetSession; the alias for the Login Servlet is /Login.

After deploying the application, open a browser and ensure that it is accepting cookies.
Enter the URL http://localhost:8080/Servlet_Ex04/GetSession (assuming that you gave the
name Servlet_Ex04 to the web application). Because you do not have a session yet, this Servlet
should respond with a page that tells you to go to the login.html page, as shown in Figure 6-18.

Figure 6-18. Since there is no session yet, GetSession prints out a message and link to the login page.

On the login page, enter a username and password, as shown in Figure 6-19, and click Submit.

Mukhar_470-3.book Page 277 Saturday, October 1, 2005 6:14 AM

278 C H A P T E R 6 ■ S E R V L E T S

Figure 6-19. Enter a username and password in the login page and click the Submit button.

The next page prints a short message that includes a link to the GetSession Servlet. Click
the link. Now that you have a session, the GetSession Servlet prints out the value of the
attributes in your session. In Figure 6-20, you can also see the session ID has been appended
to the URL.

Figure 6-20. GetSession prints out the request attributes when you have a session.

Mukhar_470-3.book Page 278 Saturday, October 1, 2005 6:14 AM

C H A P T E R 6 ■ S E R V LE T S 279

When you first access the GetSession Servlet, there is no session. Since there is no session,
the GetSession Servlet provides a link to the login page. At the login page, you can enter a user-
name and password, and then submit the request to the Login Servlet.

This new version of the Login Servlet starts by trying to access an existing session by calling
the request.getSession() method. Since we pass in true as the parameter, a new session will
be created if one doesn’t already exist. Once the Servlet has a session object, it stores the user-
name and password in it.

A client does not have a session until the server creates a session for the client, the server
has sent the session ID to the client, and the client has returned the session ID in a cookie or
URL. Because the Login Servlet is the first web component to create the session, the session has
not been joined when Login generates the page that has the link for the GetSession Servlet. The
Login Servlet calls encodeURL() for the link, and since the client has not joined the session, the
URL is rewritten to append the session ID. This is the session ID that appears in the browser
address window for the page generated by GetSession Servlet. When you click the link that
sends the request to GetSession, you have finally joined the session.

Using Cookies in Place of Sessions
Using the session object provided through the Servlet API is the preferred method for working
with sessions. However, you can use another method for storing and retrieving information
about the client in conjunction with, or in place of, session objects. That method is to use
cookies.

Usually, information about the client’s request is kept in a session object, and cookies are
only used to pass the session ID between the client and server. Instead of storing information
about a client’s request in a session object, you could send all that information as a cookie to
the client. For example, in an e-commerce application, you could store all the shopping cart
information in cookies that are sent to the client.

The session object has two advantages over cookies:

• As mentioned earlier, clients can reject cookies sent by a server; however session objects
live on the server, and can always be created, either by setting the session ID in a cookie
or through URL rewriting.

• Cookies can store only text data, so you are limited to storing text information or infor-
mation that can be represented by text. Using a session object, you can store any Java
object in a session.

For these reasons, you should always use the Session API for session management. However,
there is one place where cookies make sense.

Have you ever registered at a web site, and then the next time you went back to the site, the
site logged you in automatically? This was probably accomplished by sending a cookie to your
browser. The cookie was used as a mini-session to bootstrap your session on the server. The
cookie contained an ID that the server could use to identify you. When your browser sends the
request, it sends the cookie, and the server is able to identify you, retrieve your personalization
information from some persistent store, and preload a session object with your data before
your browser has actually joined the session.

Let’s look briefly at how you might use a cookie to do this. Using the Cookie object in the
Servlet API is straightforward. Cookie data comes in name/value pairs, so the Cookie constructor
takes a name and a value:

Mukhar_470-3.book Page 279 Saturday, October 1, 2005 6:14 AM

280 C H A P T E R 6 ■ S E R V L E T S

Cookie(String name, String value)

You could then set a number of properties of the cookie. The following are the two property
settings that you are most likely to use:

• public void setMaxAge(int expiry): Specifies how long, in seconds, the cookie should
be kept by the client. If you do not set a maximum age, the cookie is discarded when the
client exits the browser.

• public void setValue(String newValue): Allows you to change the value held by
the cookie.

After creating a cookie, you can add it to the response using the addCookie() method of the
HttpServletResponse class:

void addCookie(Cookie cookie)

Cookies are added to the header of the response message, so the Servlet must call the
addCookie() method before any message body data is written to the response.

When a client sends a request to the Servlet, the Servlet can access the cookies using the
HttpServletRequest’s getCookies() method:

Cookie[] getCookies()

This returns an array containing Cookie objects for all the cookies sent by the client. Note that
the client sends only the name/value pairs of the cookies, and not any other information such
as maximum age. The Servlet can access the names and values of each Cookie using the Cookie
methods getName() and getValue(String name).

Finally, even though we have discussed the Cookie object and its methods in terms of
session management, cookies can be used to send any text data to the client browser, regardless
of whether or not it is used for session management.

Filters
So, you’ve finished writing the Servlet for your application, and it’s working great. You have a
Servlet that handles user logins; when users submit their credentials, your code checks them
against the user information stored by the application. The Servlet creates a session for the
user, so that other components in the application know that the user has logged in properly
and can get user data from the session.

Everything is fine—until the customer comes to you and asks you to make a log entry for
each login attempt to the application server’s log system. That’s relatively simple, so you edit
the Servlet code and redeploy it. Then the customer decides that login attempts should be
logged to a database table. So, you edit the code and redeploy it again. Then the customer
changes his mind again.

Pretty soon, your Servlet is filled with a lot of code that is useful but is outside the scope of
the core job of a Servlet, which is receiving and responding to requests. There has got to be an
easier way. The solution is to use filters.

Filters are a way to provide a plug-in capability to your web application. Using filters, you
can encapsulate different behaviors needed to help process a request. Filters also make it easy
to modify the functionality of a web application with just a change to the deployment descriptor.

Mukhar_470-3.book Page 280 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

C H A P T E R 6 ■ S E R V LE T S 281

The Javadoc for the Filter interface suggests a number of filter uses, including the following:

• Authentication filters

• Logging and auditing filters

• Data compression filters

• Encryption filters

The primary job of a Servlet is to accept requests and provide responses to clients. Anything
outside that scope is the candidate for other classes. So, whether you need the functionality
suggested by the list in the Javadoc or your application needs to provide some other function-
ality, filters offer an excellent solution. Furthermore, by encapsulating that functionality in a
filter, the same filter can easily be used with several Servlets.

To implement a filter for your web application, you need to do two things: write a class that
implements the Filter interface and modify the deployment descriptor to tell the container
when to call the filter.

Implementing the Filter Interface
The Filter API consists of three interfaces: Filter, FilterChain, and FilterConfig.
javax.servlet.Filter is the interface you will use to implement a filter. It has three methods:

• void init(FilterConfig filterConfig): Called by the web container to indicate to a
filter that it is being placed into service.

• void doFilter(ServletRequest request, ServletResponse response, FilterChain
chain): Called by the container each time a request/response pair is passed through the
chain due to a client request for a resource at the end of the chain.

• void destroy(): Called by the web container to indicate to a filter that it is being taken
out of service.

You can see that this interface is very similar to the Servlet interface. Based on this inter-
face, you won’t be surprised to learn that a filter lifecycle is very similar to a Servlet lifecycle.
When the filter is created, the container will call the init() method. Inside the init() method,
you can access init parameters through the FilterConfig interface. However, unlike with a
Servlet, if you need to access the FilterConfig in the doFilter() method, you will need to save
the reference yourself. To service requests, the container calls the doFilter() method. When
the container needs to end the filter lifecycle, it will call the destroy() method.

The javax.servlet.FilterConfig interface is fairly straightforward and almost identical to
ServletConfig. If you need to use init parameters or other features of the FilterConfig, you can
get more details from the Javadoc.

The javax.servlet.FilterChain interface represents a chain of filters. It defines a method
that each filter can use to call the next filter in the chain:

void doFilter(ServletRequest request, ServletResponse response)

This method causes the next filter in the chain to be invoked, or if the calling filter is the last
filter in the chain, it causes the resource at the end of the chain to be invoked.

Mukhar_470-3.book Page 281 Saturday, October 1, 2005 6:14 AM

282 C H A P T E R 6 ■ S E R V L E T S

Notice that when a filter’s doFilter() method is called, one of the arguments passed is a
reference to a FilterChain. When the filter calls chain.doFilter(), the next filter in the chain is
called. Code that is executed before the chain.doFilter() method call is executed prior to the
Servlet processing. Thus, any processing that the filter needs to do to the request should occur
prior to the call to chain.doFilter(). Code that is executed after the chain.doFilter() method
call returns is executed after the Servlet, so that code performs processing on the response. If
you need to do processing both before and after the Servlet, then you put code both before and
after the chain.doFilter() call. On the other hand, if any of the filters needs to abort processing
(think of a filter that provides user authentication), it can easily do this by not calling doFilter().
If all this sounds a little confusing, Figure 6-21 should make it clearer.

Figure 6-21. Each filter in the chain calls the next filter until the Servlet is called. Then execution
returns through each filter. Code that executes before a call to doFilter() acts on the request; code
that executes after doFilter() acts on the response.

Modifying the Deployment Descriptor to Use a Filter
You use the deployment descriptor to tell the container which, if any, filters to call for each
Servlet in the application. Two tags within the deployment descriptor describe the filters and
indicate to which Servlet requests the filters should be applied.

The first element is <filter>, which has several subelements:

<filter>
 <icon>path to an icon file</icon>
 <filter-name>the name of the filter for the application</filter-name>
 <display-name>named for use by management tool</display-name>
 <description>a description</description>
 <filter-class>fully qualified class name</filter-class>
 <init-param>

Mukhar_470-3.book Page 282 Saturday, October 1, 2005 6:14 AM

C H A P T E R 6 ■ S E R V LE T S 283

 <param-name>some_name</param-name>
 <param-value>a_value</param-value>
 </init-param>
</filter>

Only two of these subelements are required: <filter-name> and <filter-class>. If you use
<init-param>, then <param-name> and <param-value> are required. These init values can be
accessed through the FilterConfig object.

The second element is the <filter-mapping> element. It looks like this:

<filter-mapping>
 <filter-name>same name as filter-name in filter element</filter-name>
 <url-pattern>URL pattern that the filter applies to</url-pattern>
</filter-mapping>

or like this:

<filter-mapping>
 <filter-name>Same name as filter-name in filter element</filter-name>
 <servlet-name>Name of Servlet from servlet element</servlet-name>
</filter-mapping>

If multiple filters are needed for a request, then each filter is listed in separate
<filter-mapping> elements. The filters are applied in the same order that the <filter-mapping>
elements appear in the deployment descriptor. For example, suppose you had this series of
<filter-mapping> elements in the deployment descriptor:

<filter-mapping>
 <filter-name>FilterD</filter-name>
 <servlet-name>Login</servlet-name>
</filter-mapping>

<filter-mapping>
 <filter-name>FilterA</filter-name>
 <servlet-name>Login</servlet-name>
</filter-mapping>

<filter-mapping>
 <filter-name>FilterW</filter-name>
 <servlet-name>Login</servlet-name>
</filter-mapping>

Then any request for the Login Servlet is first sent to FilterD, since the <filter-mapping>
element for that filter appears first in the deployment descriptor. When FilterD calls
chain.doFilter(), FilterA is called. After that, FilterW is called. Finally, when FilterW calls
doFilter(), the Login Servlet is invoked.

Listing 6-13 is the first of two filters that show filter processing. It actually does nothing
except print some output to the log and pass the request to the next filter.

Mukhar_470-3.book Page 283 Saturday, October 1, 2005 6:14 AM

284 C H A P T E R 6 ■ S E R V L E T S

Listing 6-13. FilterA.class

package com.apress.servlet;

import java.util.logging.Logger;

import javax.servlet.*;

public class FilterA implements Filter {
 private ServletContext context;
 public void init(FilterConfig filterConfig) {
 context = filterConfig.getServletContext();
 }

 public void doFilter(
 ServletRequest request,
 ServletResponse response,
 FilterChain chain) {
 Logger logger = Logger.getLogger("com.apress.beginjavaee");
 logger.info("Entered FilterA.doFilter()");
 logger.info("FilterA passing request to next filter");

 try {
 chain.doFilter(request, response);
 } catch (Exception e) {
 System.out.println("Exception on doFilter" + e.getMessage());
 }

 logger.info("Returned to FilterA.doFilter()");
 logger.info("FilterA is now processing the response");
 }

 public void destroy() {}
}

Listing 6-14 shows another filter, which reads some data from the request and logs it to the
server log.

Listing 6-14. FilterB.java

package com.apress.servlet;

import java.util.logging.Logger;

import javax.servlet.*;

Mukhar_470-3.book Page 284 Saturday, October 1, 2005 6:14 AM

C H A P T E R 6 ■ S E R V LE T S 285

public class FilterB implements Filter {
 private ServletContext context;
 public void init(FilterConfig filterConfig) {
 context = filterConfig.getServletContext();
 }

 public void doFilter(
 ServletRequest request,
 ServletResponse response,
 FilterChain chain)
 {
 Logger logger = Logger.getLogger("com.apress.beginjavaee");
 logger.info("Entered LogB doFilter()");
 logger.info("protocol is " + request.getProtocol());
 logger.info("remote host is " + request.getRemoteHost());
 logger.info("content type is " + request.getContentType());
 logger.info("content length is " + request.getContentLength());
 logger.info("username is " + request.getParameter("username"));
 logger.info("FilterB passing request to next filter");

 try {
 chain.doFilter(request, response);
 } catch (Exception e) {
 e.printStackTrace();
 }
 logger.info("Returned to FilterB.doFilter()");
 logger.info("FilterB is now processing the response");
 }

 public void destroy() {}
}

Both of these classes use the java.util.logging API to log messages to the Servlet log.
At the start of the doFilter() method, each class gets a reference to a named logger using the
static Logger.getLogger(String) method.

Listing 6-15 shows the Servlet for this web application. This is a Login Servlet that is very
similar to the first example in this chapter.

Listing 6-15. Login.java

package com.apress.servlet;

import javax.servlet.http.*;
import java.io.*;
import java.util.logging.Logger;

Mukhar_470-3.book Page 285 Saturday, October 1, 2005 6:14 AM

286 C H A P T E R 6 ■ S E R V L E T S

public class Login extends HttpServlet {
 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 {
 Logger logger = Logger.getLogger("com.apress.beginjavaee");
 logger.info("Entered Login servlet doPost()");
 String username = request.getParameter("username");
 try {
 response.setContentType("text/html");
 PrintWriter writer = response.getWriter();
 writer.println("<html><body>");
 writer.println("Thank you, " + username +
 ". You are now logged into the system.");
 writer.println("</body></html>");
 writer.close();
 } catch (Exception e) {
 e.printStackTrace();
 }
 logger.info("Login do Post finished processing");
 }
}

Finally, you will need a web client to call the Servlet. For this example, use the same
login.html page shown in Listing 6-2.

Deploying the Login Servlet Using Filters to Tomcat

If you are using the Tomcat server, you will also need to create the deployment descriptor.
Listing 6-16 shows the deployment descriptor for this example.

Listing 6-16. web.xml for Servlet_Ex05

<?xml version='1.0' encoding='UTF-8'?>
<web-app
 version="2.5"
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">
 <display-name>Servlet_Ex05</display-name>
 <filter>
 <filter-name>FilterA</filter-name>
 <filter-class>com.apress.servlet.FilterA</filter-class>
 </filter>

Mukhar_470-3.book Page 286 Saturday, October 1, 2005 6:14 AM

C H A P T E R 6 ■ S E R V LE T S 287

 <filter>
 <filter-name>FilterB</filter-name>
 <filter-class>com.apress.servlet.FilterB</filter-class>
 </filter>
 <filter-mapping>
 <filter-name>FilterA</filter-name>
 <url-pattern>/Login</url-pattern>
 </filter-mapping>
 <filter-mapping>
 <filter-name>FilterB</filter-name>
 <url-pattern>/Login</url-pattern>
 </filter-mapping>
 <servlet>
 <display-name>Login</display-name>
 <servlet-name>Login</servlet-name>
 <servlet-class>com.apress.servlet.Login</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>Login</servlet-name>
 <url-pattern>/Login</url-pattern>
 </servlet-mapping>
 <welcome-file-list>
 <welcome-file>login.html</welcome-file>
 </welcome-file-list>
</web-app>

Figure 6-22 shows the directory structure for this example.

Figure 6-22. The directory structure for Servlet_Ex05

To deploy this application, create a WAR file and copy it to the Tomcat webapps directory.

Mukhar_470-3.book Page 287 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

288 C H A P T E R 6 ■ S E R V L E T S

Deploying the Login Servlet Using Filters to Java EE

If you are using the Sun Application Server, follow these steps to deploy the Servlet:

1. Run the Deployment Tool and create a web component using the login.html,
Login.class, FilterA.class, and FilterB.class files. Name the WAR file Servlet_Ex05.

2. Select the Login web component in the folder view of the Deployment Tool, and create
an alias of /Login in the Aliases tab, as shown in Figure 6-23.

Figure 6-23. The alias for the Servlet is /Login.

3. Select the Servlet_Ex05 WAR file in the folder view, and select the Filter Mappings tab in
the left pane of the Deployment Tool.

4. Click the Edit Filter List button to bring up a dialog box that you can use to specify the
available filter classes. Click the Add Filter button and add each of the filter classes,
FilterA and FilterB, to the list, as shown in Figure 6-24. Then click OK.

5. When you are back in the main window, you can add filter mappings by clicking the Add
button in the Filter Mapping tab. In the Add Servlet Filter Mapping dialog box, pick the
filter name from a drop-down list, and then select the target by either entering a URL
pattern or picking a Servlet name. In the Dispatcher Options section, you can further
limit which types of request the filter applies to: forwards, includes, normal requests, or
errors. If you select none of the options, the filter applies to all types; if you want the
filter to apply to only certain types, select the check boxes for those types. Figure 6-25
shows the Add Servlet Filter Mapping dialog box for the FilterA filter.

Mukhar_470-3.book Page 288 Saturday, October 1, 2005 6:14 AM

C H A P T E R 6 ■ S E R V LE T S 289

Figure 6-24. The Servlet Filters dialog box is used to add filter elements to the web
application.

Figure 6-25. The Add Servlet Filter Mapping dialog box is used to specify the filters and
which actions and components they apply to.

Mukhar_470-3.book Page 289 Saturday, October 1, 2005 6:14 AM

290 C H A P T E R 6 ■ S E R V L E T S

6. After you’ve added both filter mappings, the Filter Mapping tab should look like
Figure 6-26.

Figure 6-26. The complete list of filter mappings

Running the Login Servlet Using Filters

After the application is deployed, load the login.html page into a browser. Enter a username
and password, and click the Submit button. Assuming the application is configured and
deployed correctly, you will not see anything special about the page returned. It should look
like Figure 6-9, shown earlier in this chapter. However, if you examine the server log, you should
see entries in the log from each filter and from the Servlet.

To examine the server log, you will need to find the log file for your server. Tomcat’s log file
is stdout.log located in the Tomcat /logs directory. The log file for the Sun Application Server
is server.log located in the /logs directory for the domain. Here are the relevant lines from the
Sun Application Server log on our system. We’ve edited the entries for conciseness by removing
the time tags and other extraneous information.

Entered FilterA.doFilter()
FilterA passing request to next filter
Entered LogB doFilter()
protocol is HTTP/1.1
remote host is 127.0.0.1
content type is application/x-www-form-urlencoded
content length is 24
username is Kevin
FilterB passing request to next filter
Entered Login servlet doPost()
Login do Post finished processing
Returned to FilterB.doFilter()
FilterB is now processing the response
Returned to FilterA.doFilter()
FilterA is now processing the response

Mukhar_470-3.book Page 290 Saturday, October 1, 2005 6:14 AM

C H A P T E R 6 ■ S E R V LE T S 291

If you examine the output, you can see that each logger.info() method call in the classes
resulted in a log entry in the server log.

The FilterA filter, which was the first filter listed in the deployment descriptor, is called
first. It makes some log entries, and then calls the chain.doFilter() method. This calls the next
filter in the chain, FilterB. The FilterB filter reads some of the request headers and the request
parameter from the request and prints them to the log. Then FilterB calls chain.doFilter().
Since it is the last filter in the chain, this calls the Servlet, which performs its processing of
the request.

When the doPost() method of the Servlet completes, the thread of execution returns to the
caller, which, in this case, is the FilterB filter. The thread of execution returns to the doFilter()
method of FilterB. After FilterB makes a few more log entries, its doFilter() method completes,
and execution returns to FilterB’s caller, FilterA. When the thread of execution returns to
FilterA, execution continues after from the method call chain.doFilter(). Since there is code
following that method call, it now executes. In a real filter, when the thread of execution
returned to the filter, the filter could perform some processing on the response. In the example,
all that the filter does is write some strings to the log.

The MVC Architecture
In the previous JSP chapters, and previously in this chapter, we used an architectural model
known as Model 1. In a Model 1 architecture, HTTP requests are handled primarily by web
components— Servlets or JSP pages—which process the request and then return a response to
a client. In this architecture, a single web component (or small number of components) handles
both the business logic and display logic.

A second model is also used for Java EE applications. Unsurprisingly, this model is known
as Model 2 or Model-View-Controller (MVC). In an MVC architecture, there is a division of function-
ality: the business data is separated from the display logic, and components that process the
data do not manage the display of the data, and vice versa.

■Note We use MVC to refer to the Model 2 architecture. Although both terms are used in the development
world, we think MVC is more descriptive.

Model 1 vs. MVC
A Model 1 system mixes both application and business logic with display logic. While this is
probably okay for small applications, it becomes more and more of a problem as your application
grows. This model leads to JSP pages interspersed with a lot of Java code, or Servlets that have
a lot of print statements that output HTML text to the client. While the examples we’ve used
previously aren’t too bad (the first Login Servlet example in this chapter had only three println
statements), imagine an HTML-heavy application written entirely with Servlets, or a code-
intensive application written with JSP pages. Your application will become less maintainable
as changes to display logic affect business logic and vice versa.

You can solve this problem in various ways. For example, one approach, before the days of
JSP, was to create template files for all the web pages in the application. The template files

Mukhar_470-3.book Page 291 Saturday, October 1, 2005 6:14 AM

292 C H A P T E R 6 ■ S E R V L E T S

contained HTML with special place markers for request-specific data. When a Servlet needed
to send a response to a client, it used a utility class that had methods for reading a template and
replacing the markers with strings. The toString() method of the utility class returned a String
that contained the entire HTML web page. Then it was just a simple matter of using one println
statement to send the response to the client. While this solution is workable, it starts to break
down when you have lists, tables, or combo boxes in the web page. You don’t know ahead of
time how many list items or table rows you might have. Thus, HTML strings start appearing in
your Servlet code again.

MVC separates the display from the business logic in another way. In an MVC application,
separate components handle the business logic and the display logic. As long as the interface
between the two is stable and well defined, the business logic can be changed without affecting
the view components, and vice versa.

The Components of MVC
In an MVC application, the components of the application are divided into three categories:

Model: The model includes both the data and the business logic components that operate
on that data. Again, any class can act as a model component, and many web applications
use only JSP pages or Servlets with regular (not Java EE API) classes providing business
logic. As you will see from Chapter 9 onwards, EJBs make excellent components for the
model category.

View: After the request is processed, the controller determines which view component
should be used to display the data to the user. In simpler applications, the controller
component may also act as the view component. In more complex systems, view and
controller objects are separate. JSP pages tend to make good view components.

Controller: Components in this category receive the client requests, process the request,
or forward the request to other components that process the data, and then direct the
request to a view component. Any web application component—such as a JSP page, a
Servlet, or an EJB—could be a controller component. However, Servlets tend to make good
controllers due to their basic structure. A Servlet is intended to receive requests from
clients and return responses to clients, and that matches the purpose of the controller.

Let’s take a quick look at an example of a design that uses MVC. Imagine that we are
working on an application that lists stock market analysts and the ratings they have made on
certain stocks. In this example, we want to have a web page that shows the names of the stock
market analysts, with actions to add or delete an analyst. We also want to have a page that
shows the different stocks and the ratings given to them by an analyst, with an action to add a
new rating. That’s the view side of our simple application.

What about the controller side? For this application, we’ll use a Servlet to be the controller.
The primary job of the controller Servlet is to route requests to the appropriate JSP page or to
another Servlet. The other Servlet in this application will be a Servlet that responds to the “add
rating” request from a JSP page.

Finally, for the model side, in a real application, we would probably use a robust data
persistence tier. This might include both a database and objects such as EJBs to access the
data. Figure 6-27 shows a simple diagram illustrating what this application might look like.

Mukhar_470-3.book Page 292 Saturday, October 1, 2005 6:14 AM

C H A P T E R 6 ■ S E R V LE T S 293

Figure 6-27. An example of the MVC architecture

Servlet Chaining
If a Servlet is going to be a controller in an MVC application, it needs some way to forward
requests to the display components of the application, since the display components create the
response back to the client. This is accomplished by getting an object called a RequestDispatcher.
Through a request dispatcher, a Servlet can forward the request to another web component or
include the response of another web component in the current response. This is the same as
the JSP standard actions <jsp:forward> and <jsp:include>, which we looked at in Chapter 3.

Getting a RequestDispatcher

You can get a RequestDispatcher from the ServletRequest object or from the ServletContext
object. The method signature for the ServletRequest method is as follows:

RequestDispatcher getRequestDispatcher(String path)

This method returns a RequestDispatcher for the web component at the given location.
The path argument is the path to the web application resource. This path can be a relative path
or an absolute path, as explained earlier in this chapter. Recall that the path to the Login Servlet
earlier in the chapter was /Login. This path starts with a forward slash (/), so it is interpreted as
an absolute path that is relative to the application context. For example, if the application context
is /Servlet_Ex06, then /Login would be the resource at /Servlet_Ex06/Login. If the path does
not start with a slash, it is a relative path that is interpreted relative to the current web component
location. For example, if the web component were /Servlet_Ex06/reports/DisplayReport, then

Mukhar_470-3.book Page 293 Saturday, October 1, 2005 6:14 AM

294 C H A P T E R 6 ■ S E R V L E T S

the path PrintReport would be the resource /Servlet_Ex06/reports/PrintReport. If the resource
does not exist, the method returns null.

You can also get a RequestDispatcher using a ServletContext object. The GenericServlet
class defines a method to get a reference to the ServletContext object for your Servlet:

ServletContext getServletContext()

Since your Servlet is a subclass of GenericServlet, you can just call this method directly
from your Servlet. The ServletContext represents the application context in which the Servlet
executes. Next, your Servlet can call one of two methods of the ServletContext to get a
RequestDispatcher:

RequestDispatcher getNamedDispatcher(String name)
RequestDispatcher getRequestDispatcher(String path)

Either method can be used to return a RequestDispatcher for the resource at the given path
or name. If the resource does not exist, the methods return null. The path argument for
getRequestDispatcher(String) must begin with a slash (/), and is interpreted relative to the
application context. The name argument for getNamedDispatcher(String) must be the same
name used in the <servlet-name> subelement of <servlet-mapping> in the deployment descriptor.
So, using the Login Servlet example again, the deployment descriptor for this Servlet had this entry:

<servlet-mapping>
 <servlet-name>Login</servlet-name>
 <url-pattern>/Login</url-pattern>
 </servlet-mapping>

The call to getNamedDispatcher("Login") would return a RequestDispatcher for the web
resource /Servlet_Ex06/Login (remember that /Login is interpreted relative to the application
context).

Forwarding or Including Requests Using a Request Dispatcher

Request dispatchers can be used either to forward a request to another resource or to include
another resource’s response in the current response. To forward a request, use this method:

void forward(ServletRequest request, ServletResponse response)
 throws ServletException, java.io.IOException

Since this method relies on another resource to generate the response output, the calling
Servlet should not write any data to the response stream before calling this method. If response
data is sent to the client before this method is called, this method will throw an exception. Also,
since the response stream will be complete when the other resource is finished, the calling
Servlet should not attempt to use the response object after the forward() method returns.

Alternatively, you can call another resource and include its response data in the current
response. This is done with the following method:

void include(ServletRequest request, ServletResponse response)
 throws ServletException, java.io.IOException

Since this method includes another response in the current response, you can safely write
response data to the client both before and after calling this method.

Mukhar_470-3.book Page 294 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

C H A P T E R 6 ■ S E R V LE T S 295

Adding Parameters to the Request

At times, you may need to add additional information to the request object that you use in a
forward() or include() method call. The ServletRequest interface defines a number of methods
for adding, getting, and removing data from the request object:

Object getAttribute(String name)
Enumeration getAttributeNames()
void setAttribute(String name, Object o)
void removeAttribute(String name)

The calling Servlet can add attributes to the request object using setAttribute(String
name, Object o). Take care not to duplicate names already used for attributes; if you use a duplicate
name, the new attribute will replace the previous attribute. The receiving Servlet will use the
getAttribute(String name) method to get the attribute, using the same name that the calling
Servlet used to set the attribute.

Creating an MVC Application
Let’s take the simple stock market analysts and ratings design we introduced at the beginning
of this section and turn it into a working web application. We will develop view and controller
segments as described earlier. For the model layer, we will simply use some ArrayList and
Vector objects to store the data.

We’ll start with a view component that is a static HTML page, to serve as the entry point
into the application. Listing 6-17 shows this file. Save the file into the /Servlet_Ex06 directory
with the name index.html. This web page provides two links into the application.

Listing 6-17. index.html for the StockList Application

<html>
 <head>
 <title>Stocks and Analysts</title>
 </head>
 <body>
 <h1>Stocks and Analysts</h1>
 <p>
 See all Analysts
 <p>
 See all Ratings
 <hr>
 </body>
</html>

As you will see later, the link is simply StockList, which specifies the StockList Servlet.
The additional path information of AnalystForm or RatingsForm will be used by the StockList
Servlet. Now we’ll create the controller for this application. Listing 6-18 shows this Servlet.
Name this code StockListServlet.java. Save it into the /WEB-INF/classes/ directory, following the
package structure for the subdirectories.

Mukhar_470-3.book Page 295 Saturday, October 1, 2005 6:14 AM

296 C H A P T E R 6 ■ S E R V L E T S

Listing 6-18. StockListServlet

package com.apress.servlet;

import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;

public class StockListServlet extends HttpServlet {
 static ArrayList analysts = new ArrayList();
 static ArrayList unratedStocks = new ArrayList();
 static ArrayList ratings = new ArrayList();

 public void init() {
 analysts.add("Fred");
 analysts.add("Leonard");
 analysts.add("Sarah");
 analysts.add("Nancy");
 unratedStocks.add("ABC");
 unratedStocks.add("DDBC");
 unratedStocks.add("DDC");
 unratedStocks.add("FBC");
 unratedStocks.add("INT");
 unratedStocks.add("JIM");
 unratedStocks.add("SRI");
 unratedStocks.add("SRU");
 unratedStocks.add("UDE");
 unratedStocks.add("ZAP");
 Vector v = new Vector();
 v.add("Fred");
 v.add("ZZZ");
 v.add("Smashing!");
 ratings.add(v);
 }

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 {
 doGet(request, response);
 }

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 {
 try {
 ArrayList data = null;
 RequestDispatcher dispatcher;
 ServletContext context = getServletContext();

Mukhar_470-3.book Page 296 Saturday, October 1, 2005 6:14 AM

C H A P T E R 6 ■ S E R V LE T S 297

 String name = request.getPathInfo();
 name = name.substring(1);

 if ("AnalystForm".equals(name)) {
 data = analysts;
 request.setAttribute("data", data);
 } else if ("RatingsForm".equals(name)) {
 request.setAttribute("data", ratings);
 request.setAttribute("analysts", analysts);
 request.setAttribute("unrated", unratedStocks);
 } else if ("AddRating".equals(name)) {
 request.setAttribute("data", ratings);
 request.setAttribute("analysts", analysts);
 request.setAttribute("unrated", unratedStocks);
 } else if (“ProcessAnalyst".equals(name)) {
 //no need to set any attributes for this resource
 } else {
 name = "Error";
 }

 dispatcher = context.getNamedDispatcher(name);
 if (dispatcher == null) {
 dispatcher = context.getNamedDispatcher("Error");
 }
 dispatcher.forward(request, response);
 } catch (Exception e) {
 log("Exception in StockListServlet.doGet()");
 }
 }
}

You’re now ready for the first JSP view component. This is a page that will show all the
analysts in the application. Listing 6-19 shows the file AnalystForm.jsp, which you should save
into the /Servlet_Ex06 directory.

Listing 6-19. AnalystForm.jsp

<html>
 <head>
 <title>Analyst Management</title>
 </head>
 <body>
 <%@ page import="java.util.*" %>
 <h1>Analyst Management Form</h1>
 <form action="ProcessAnalyst" method="POST">
 <table>
 <%
 ArrayList analysts = (ArrayList)request.getAttribute("data");

Mukhar_470-3.book Page 297 Saturday, October 1, 2005 6:14 AM

298 C H A P T E R 6 ■ S E R V L E T S

 if (analysts == null) {
 %>
 <h2> Attribute is null </h2>
 <%
 } else {
 for (int i = 0; i < analysts.size(); i++) {
 String analyst = (String)analysts.get(i);
 %>
 <tr>
 <td>
 <input type="checkbox" name="checkbox" value="<%= analyst %>"
 </td>
 <td>
 <%= analyst %>
 </td>
 </tr>
 <%
 }
 }
 %>
 </table>
 <input type="submit" value="Delete Selected" name="delete"><p>
 <input type="text" size="40" name="addname">
 <input type="submit" value="Add New Analyst" name="add">
 </form>
 </body>
</html>

When the user attempts to add or delete an analyst from AnalystForm.jsp, the request is
sent directly to another JSP page. That JSP page is ProcessAnalyst.jsp, shown in Listing 6-20.
You will see it does not really add or delete an analyst. Save this file into the /Servlet_Ex06
directory, too.

Listing 6-20. ProcessAnalyst.jsp

<html>
 <head>
 <title>Process Analyst Request</title>
 </head>

 <body>
 <h1>Process Analyst Request</h1>
 Adding or deleting an analyst from the database is not currently
 implemented. Implementation of this feature is left as an exercise
 for the reader.
 </body>
</html>

Mukhar_470-3.book Page 298 Saturday, October 1, 2005 6:14 AM

C H A P T E R 6 ■ S E R V LE T S 299

The other functionality provided by this application is to show the ratings the analysts
have given to certain stocks. This view of the data is handled by the RatingsForm.jsp shown in
Listing 6-21. Again, since this is a JSP page, save it to the /Servlet_Ex06 directory.

Listing 6-21. RatingsForm.jsp

<html>
 <head>
 <title>Stock Ratings</title>
 </head>

 <body>
 <h1>Stock Ratings</h1>

 <%@ page import="java.util.*" %>
 <%
 ArrayList stocks = (ArrayList) request.getAttribute("data");
 if (stocks != null && stocks.size() > 0) {
 %>
 <form action="AddRating" method="post">
 <table border="1">
 <tr>
 <th>Ticker</th>
 <th>Analyst</th>
 <th>Rating</th>
 </tr>
 <%
 for (int i = 0; i < stocks.size(); i++) {
 Vector v = (Vector) stocks.get(i);
 String ticker = (String)v.elementAt(0);
 String analyst = (String)v.elementAt(1);
 String rating = (String)v.elementAt(2);
 %>
 <tr>
 <td><%= ticker %></td>
 <td><%= analyst %></td>
 <td><%= rating %></td>
 </tr>
 <%
 }
 %>
 </table>

Mukhar_470-3.book Page 299 Saturday, October 1, 2005 6:14 AM

300 C H A P T E R 6 ■ S E R V L E T S

 <table>
 <tr>
 <td>
 <select name="analysts">
 <%
 ArrayList analysts =
 (ArrayList) request.getAttribute("analysts");
 for (int i = 0; i < analysts.size(); i++) {
 String analyst = (String)analysts.get(i);
 %>
 <option value="<%= analyst %>">
 <%= analyst %>
 <%
 }
 %>
 </select>
 </td>
 <td>
 <select name="stocks">
 <%
 ArrayList unratedStocks =
 (ArrayList) request.getAttribute("unrated");
 for (int i = 0; i < unratedStocks.size(); i++) {
 String ticker = (String)unratedStocks.get(i);
 %>
 <option value="<%= ticker %>">
 <%= ticker %>
 <%
 }
 %>
 </select>
 </td>
 <td>
 <select name="ratings">
 <option value="Run away! Run away!">Run away! Run away!
 <option value="Could be worse!">Could be worse!
 <option value="A bit of OK!">A bit of OK!
 <option value="Take a chance!">Take a chance!
 <option value="Smashing!">Smashing!
 </select>
 </td>
 </tr>
 <tr>
 <td>
 <input type="submit" value="Submit Rating">
 </td>
 </tr>

Mukhar_470-3.book Page 300 Saturday, October 1, 2005 6:14 AM

C H A P T E R 6 ■ S E R V LE T S 301

 </table>
 </form>
 <%
 } else {
 %>
 No stock information found
 <%
 }
 %>
 </body>
</html>

Now, we need a Servlet to process the request to add a stock rating from an analyst. After
adding the rating, the Servlet will send the request back to the RatingsForm.jsp to display the
new model of the data. This Servlet is shown in Listing 6-22. Save it to the /WEB-INF/classes
directory.

Listing 6-22. AddRating Servlet

package com.apress.servlet;

import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;

public class AddRating extends HttpServlet {
 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 {
 try {
 String analyst = request.getParameter("analysts");
 String ticker = request.getParameter("stocks");
 String rating = request.getParameter("ratings");

 Vector v = new Vector();
 v.add(analyst);
 v.add(ticker);
 v.add(rating);

 ArrayList ratings = (ArrayList)request.getAttribute("data");
 ratings.add(v);

 ArrayList unratedStocks =
 (ArrayList)request.getAttribute("unrated");
 unratedStocks.remove(unratedStocks.indexOf(ticker));

Mukhar_470-3.book Page 301 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

302 C H A P T E R 6 ■ S E R V L E T S

 ServletContext context = getServletContext();
 RequestDispatcher dispatcher =
 context.getNamedDispatcher("RatingsForm");
 dispatcher.forward(request, response);
 } catch (Exception e) {
 log("Exception in AddRating.doPost()", e);
 }
 }
}

Last, if you plan to deploy this application to a Tomcat server, you need to create the
deployment descriptor. The web.xml file we used is shown in Listing 6-23. Save this file into the
/WEB-INF directory. If you are deploying this application to the Java EE server, you can skip this
step (as you know, the Java EE Deployment Tool will create an appropriate deployment descriptor
for you).

Listing 6-23. web.xml for Servlet_Ex06

<?xml version='1.0' encoding='UTF-8'?>
<web-app
 version="2.5"
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">
 <display-name>Servlet_Ex06</display-name>
 <servlet>
 <display-name>AnalystForm</display-name>
 <servlet-name>AnalystForm</servlet-name>
 <jsp-file>/AnalystForm.jsp</jsp-file>
 </servlet>
 <servlet>
 <display-name>ProcessAnalyst</display-name>
 <servlet-name>ProcessAnalyst</servlet-name>
 <jsp-file>/ProcessAnalyst.jsp</jsp-file>
 </servlet>
 <servlet>
 <display-name>AddRating</display-name>
 <servlet-name>AddRating</servlet-name>
 <servlet-class>com.apress.servlet.AddRating</servlet-class>
 </servlet>
 <servlet>
 <display-name>StockListServlet</display-name>
 <servlet-name>StockListServlet</servlet-name>
 <servlet-class>com.apress.servlet.StockListServlet</servlet-class>
 </servlet>

Mukhar_470-3.book Page 302 Saturday, October 1, 2005 6:14 AM

C H A P T E R 6 ■ S E R V LE T S 303

 <servlet>
 <display-name>RatingsForm</display-name>
 <servlet-name>RatingsForm</servlet-name>
 <jsp-file>/RatingsForm.jsp</jsp-file>
 </servlet>
 <servlet-mapping>
 <servlet-name>ProcessAnalyst</servlet-name>
 <url-pattern>/ProcessAnalyst</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>StockListServlet</servlet-name>
 <url-pattern>/StockList/*</url-pattern>
 </servlet-mapping>
 <jsp-config>
 </jsp-config>
</web-app>

Compile the Servlet classes. The directory structure of your application should now look
like Figure 6-28.

Figure 6-28. The directory structure for Servlet_Ex06

Finally, deploy the application.
If you’re using the Sun Application Server, use the Java EE Deployment Tool, as you have

for the other examples in this chapter. When you first create the web component, using the wizard,
you can specify only a single Servlet or JSP to set up. You can create additional components by
selecting File ➤ New ➤ Web Application War from the menu. Then, instead of creating a new
WAR module, add the components to the existing WAR module. You also need to create two
aliases. First, alias the StockListServlet to /StockList/*. Second, alias the ProcessAnalyst JSP
to /ProcessAnalyst. When you are finished, the Deployment Tool will show five web components
in the web application, as shown in Figure 6-29.

Mukhar_470-3.book Page 303 Saturday, October 1, 2005 6:14 AM

304 C H A P T E R 6 ■ S E R V L E T S

Figure 6-29. The Stock application has five web components.

If you’re deploying to the Tomcat server, copy the entire directory structure into the /webapps
directory of the Tomcat installation, or create the WAR file and copy it into the /webapps directory.

After you’ve deployed the application, fire up your browser and navigate to the URL
http://localhost:8080/Servlet_Ex06/index.html. Use the links or buttons to navigate and
try different requests. Figure 6-30 shows the RatingsForm.jsp web page after adding a rating.

Figure 6-30. After adding a rating, the RatingsForm displays the ratings.

Although this is a simple example, there is a lot of code here. Rather than go over each
Servlet and JSP line by line, we’ll cover some of the more interesting points of each.

The index.html static HTML page contains links that create two slightly different requests.
Each link goes to the same Servlet, StockListServlet, but each link uses the additional path

Mukhar_470-3.book Page 304 Saturday, October 1, 2005 6:14 AM

C H A P T E R 6 ■ S E R V LE T S 305

technique to pass information to the controller Servlet. In the first link, /AnalystForm is the
additional path information; in the other link, it is /RatingsForm.

See all Analysts
See all Ratings

So, although /StockList/AnalystForm looks as though it should reference the AnalystForm
JSP directly, it does not. The deployment descriptor creates a mapping that tells the Servlet
container that any URL of the form StockList/* should be sent to the StockList Servlet. This
Servlet reads the extra path information and forwards the request to the appropriate JSP page.

When StockListServlet is initialized, it populates the various ArrayLists and Vectors that
are being used as the model in this MVC application. When it gets a request, it parses the extra
path information using the request.getPathInfo() method. It uses this information to deter-
mine what model data to add to the request using the setAttribute() method. Then it uses the
extra path information to forward the request to the appropriate view or other controller Servlet:

String name = request.getPathInfo();
//.....some code not shown
dispatcher = context.getNamedDispatcher(name);
//.....some code not shown
dispatcher.forward(request, response);

The dispatcher is obtained with a getNamedDispatcher() call. The name used to obtain the
dispatcher is the same name assigned to the component in the deployment descriptor. Notice
also that the doPost() method in this Servlet simply calls doGet(). This is a common technique
when you want to support both GET and POST with the same processing. You could also have
doGet() call doPost().

The AnalystForm.jsp view component reads the data from the model and displays it to the
user. The controller Servlet (StockListServlet) added the model data to the request with
setAttribute(). The data is obtained in the JSP page by calling the getAttribute() method.
The JSP page creates a form, and when the user clicks one of the buttons on the page, the
controller Servlet sends the request to ProcessAnalyst.jsp (which does nothing in this example).

The RatingsForm.jsp view component displays the analyst, stock ticker, and rating for
all stocks that currently have ratings. It gets the model data from the request by calling the
getAttribute() method of the request object. Then it lists all the analysts, all unrated stocks,
and the valid ratings. This allows the user to select a stock and assign it a rating. Clicking the
Submit button sends the request to StockListServlet, which forwards the request to the
AddRating Servlet.

AddRating is the controller Servlet that adds a rating to the model. The Servlet gets the
model components from the request and calls a method to change their data. Notice that it
does not need to add the model components back to the request. The request already holds a
reference to the model; calling the add() or remove() methods of ArrayList does not change the
reference held by the request—it changes only the state of the object. After changing the model,
this Servlet forwards the request back to RatingsForm.jsp, so that it can display the new model.

You should now understand the basics of a simple MVC application. You would not want
to use this example directly, though. For one thing, because the data is held in member variables
in the Servlet, there is no persistence. As soon as the Servlet is destroyed, any changes to the
model are lost. In later chapters, we will extend this example with a more robust model.

Mukhar_470-3.book Page 305 Saturday, October 1, 2005 6:14 AM

306 C H A P T E R 6 ■ S E R V L E T S

Summary
We’ve covered quite a lot of information in this chapter. After reading this chapter, you
should know:

• Servers respond to requests, and specifically, web servers respond to HTTP requests
such as GET and POST.

• Servlets extend a server’s functionality by providing a server-side program that can
respond to HTTP requests. HttpServlets live inside Servlet containers.

• A Servlet lifecycle consists of four phases: loading and creating, initialization, request
handling, and end of life. For each of those phases, specific Servlet methods realize those
phases. The Servlet will spend most of its lifecycle in the request-handling phase.

• You can make your Servlet thread-safe by using local variables for request data and
using instance variables for constant data. If you need to change instance variables
or outside resources, synchronize access to them. Making your Servlet implement
SingleThreadModel does not guarantee that your server is thread-safe. Synchronizing
service(), doGet(), or doPost() will make your Servlet thread-safe, but doing this is very
impractical.

• You should always handle exceptions and never allow an exception to bypass the
Servlet’s response (unless it is an IOException that occurs during the response).

• The Servlet API facilitates session tracking, which allows you to create a web application
that can keep track of a client’s interactions with the application.

• Filters provide a pluggable architecture for processing requests and responses. They
encapsulate processing that is outside the scope of the Servlet.

• The Model-View-Control (MVC) architecture can help create applications that are easier
to maintain than Model 1 applications. Code is kept away from JSP pages; HTML is kept
away from Servlets.

You should now be able to tackle most of the Servlet challenges that you will face as you
begin to develop web applications. As usual, though, there is so much more that just could not
be covered within the chapter. If you will be doing extensive work with Servlets, you may want
to obtain a copy of Java Servlet Programming, Second Edition, by Jason Hunter (O’Reilly, 2001;
ISBN 0-59600-040-5). In addition, there are several online forums that cover Servlet tech-
nology. Sun’s developer forum hosts a Servlet forum at http://forum.java.sun.com/.

Mukhar_470-3.book Page 306 Saturday, October 1, 2005 6:14 AM

C H A P T E R 6 ■ S E R V LE T S 307

Exercises
1. In the “The response Object” section in this chapter, we very briefly outline the basic

steps for using a Servlet to send binary data to a client. Create a Servlet that accepts a
request from a client for an image file. The name of the image file can be passed as a
form parameter, part of the URL, or as extra path information. Write the Servlet to load
the named image into a byte array, set the content type for an image, set the content
length (the number of bytes in the array), and write the image to the response.

2. Write a Servlet class with a synchronized doGet() or doPost() method. Put a sleep()
method in the class. Open several browser windows and use them to submit several
simultaneous requests to the Servlet. Record the response time for each request. Now
remove the synchronization keyword from the doGet() or doPost() method. Submit the
same number of simultaneous requests, and compare the response time of the unsyn-
chronized Servlet to that of the synchronized Servlet.

3. In the session-tracking example (Listings 6-10 and 6-11), remove the code that performs
the URL rewriting, set your browser to reject cookies, and experiment with the example
to see how it behaves in this situation.

4. Expand the session-tracking example (Listings 6-10 and 6-11) to write a cookie with the
user ID to the client browser. Use this cookie to “recognize” the user and initialize some
session data.

5. If you have read Chapters 3 and 4, rewrite the final example in this chapter to use custom
actions in the JSP pages.

6. Implement ProcessAnalyst.jsp (Listing 6-20) so that it can be used to add or delete
an analyst.

Mukhar_470-3.book Page 307 Saturday, October 1, 2005 6:14 AM

Mukhar_470-3.book Page 308 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

309

■ ■ ■

C H A P T E R 7

Working with Databases

Many Java EE applications that you work on will be dependent on a database. Search engines
use databases to store information about web pages; e-commerce sites use databases to store
information about products, customers, and orders; geo-imaging sites that provide photographic
images of the world from space use databases to store images and information about those
images; and the list goes on and on. Since your Java EE application, regardless of what service
it performs, will likely use a database, we are going to spend the next two chapters looking at
how to use databases with other Java EE components.

In this chapter, we will be using the PointBase database that comes with the Java EE SDK
as our sample database. PointBase is an example of a relational database. Data in a relational
database is stored in a set of tables. Each table consists of rows and columns. Each row is a set
of data; each column in the row is a piece of data in that set. For example, you could use a table
to store information about customers of an e-commerce web application. Each row in the table
would represent a customer, and each column in the row would represent a particular piece of
data about that customer, such as name or address. You might also have a separate table that
records data about customer orders. Rather than repeating customer information in the orders
table, the orders table would have a column that identifies the customer from the customer
table. This creates a relationship between the two tables, and thus is why the database is called
a relational database.

■Note Don’t worry if you are using some other database, such as Oracle, MySQL, or Sybase. Even though
we use PointBase in this chapter, you should be able to easily modify the examples to work with your data-
base. We will usually point out where you need to adapt the examples to your particular system or database.

Java has an API for working with databases, and this technology is known as JDBC. JDBC
provides the developer with tools that allow clients to connect to databases and send commands
to the database. These commands are written in the Structured Query Language, or SQL. (For
more on SQL, see Appendix B.) Relational databases are not the only kind of database, although
they are the most common. JDBC can be used with any kind of database. That is because JDBC
abstracts common database functions into a set of common classes and methods, and database-
specific code is contained in a code library, commonly called a driver library. If there is a driver
library for a database, you can use the JDBC API to send commands to the database and extract
data from the database.

Mukhar_470-3.book Page 309 Saturday, October 1, 2005 6:14 AM

310 C H A P T E R 7 ■ W O R K I N G W I T H D A T A B A S E S

This chapter will get you started connecting and using databases in the Java EE world. In
the next chapter, we will look at some advanced topics that you will find useful as you begin to
develop Java EE applications.

Here are the topics covered in this chapter:

• How to create a DataSource in the application server

• How to get a Connection in your client application from the DataSource

• How to use a Statement object to insert, update, and delete data from a database

• How to read the results of a query from a ResultSet

Connecting to Databases
The first step in being able to work with a database is to connect to that database. It’s a process
that’s analogous to a web browser making a connection to a web server. The browser makes a
network connection to a server, uses a specific protocol (HTTP) to send a specially formatted
message to the server, and receives a formatted response (HTML) back from the server. When
working with a database, your code will use the JDBC API to get a network connection to a
database server, send a specially formatted message to the server, and receive a formatted
response back from the server. As mentioned at the beginning of this chapter, the JDBC API is
an abstraction, and it uses a database-specific code library to communicate with a particular
database. A high-level diagram of that process is shown in Figure 7-1.

Figure 7-1. A logical view of the connection between a client and a database

To make a database connection, your code does not need to open any sockets or use any
classes of the java.net package. As you may recall from Chapter 1, database connections are
part of the “plumbing and wiring” infrastructure that is provided by the application server. In
a Java EE environment, all the details of creating a connection are handled by the application
server. The application server provides this connection through a class known as DataSource,
which is part of the database-specific library shown in Figure 7-1.

Mukhar_470-3.book Page 310 Saturday, October 1, 2005 6:14 AM

C H A P T E R 7 ■ W O R K I N G W I T H D A T A B A S E S 311

Using Data Sources for Connections
Data sources were introduced as part of JDBC 2.0 and are currently the preferred means of
getting a connection to persistent storage in Java EE applications. The DataSource interface
provides a flexible architecture for creating and using database connections. As you will see, by
using a DataSource object to obtain a connection, the database accessed by client code can be
changed without impacting the client code. The DataSource hides the connection details so
that you, as the client programmer, never need to worry about the connection parameters.

DataSource objects usually provide connections from a connection pool, which is a set of
predefined database connections. This avoids the time-consuming activity of creating a new
connection to a database each time a connection is requested. On the client side, there is no
difference in how the connection is used. The difference lies in how the application server
creates connections, hands out connections, and returns connections to the pool.

A DataSource is usually obtained by performing a lookup in a context. A very simple definition
of a context is that it is just a means to associate a name with a resource. Within the application
server, someone will create a DataSource instance, and then bind that instance to a name.
Binding is the action that associates a resource to a name. For example, when you create a Java
source code file in an editor and save that file to disk, you cause a collection of bytes to be
written to the hard drive; at the same time, you tell the operating system to associate (or bind)
that collection of bytes with some name. Thus, anyone who has access to the hard drive can get
the collection of bytes by giving the correct name to the operating system. Similarly, a client
can get a reference to a DataSource by giving the correct name to the application server.

Configuring a DataSource and Connection with Java EE
Before you, as the client programmer, can use a DataSource, someone needs to configure the
DataSource in the application server. If you’re lucky, that someone is a separate system admin-
istrator or database administrator. If you’re on a small team, or learning Java EE on your own,
that someone is you. So let’s look at how to configure a DataSource and database connection in
a Java EE application server. First, you’ll see how to configure the DataSource in the Java EE
reference implementation from Sun, and then in Tomcat. If you are using some other applica-
tion server, you should be able to follow the same general procedure for your system (check
your system documentation for specific procedures for your system).

1. Ensure that your Java EE application server is running, and then open a browser to the
administration page. One way to get to the administration web page on Windows is to
select Start menu ➤ All Programs ➤ Sun Microsystems ➤ Application Server ➤ Admin
Console. On either Windows or Solaris, you can also open a web browser and manually
enter the address http://localhost:4848/ into your browser. (If the server is on a different
machine or port, change localhost or 4848 to the appropriate value for your setup.)
After entering the admin username and password, you will see the Sun Application
Server administration web page, as shown in Figure 7-2.

Mukhar_470-3.book Page 311 Saturday, October 1, 2005 6:14 AM

312 C H A P T E R 7 ■ W O R K I N G W I T H D A T A B A S E S

Figure 7-2. The Sun Application Server administration web page

2. On the left side of the page is a tree view of various configurable items. There are nodes
for applications, resources, and configuration. Under the Resources node, expand the
JDBC node. You will see two nodes, labeled JDBC Resources and Connection Pools.
With the Sun Application Server, the connection pool resource holds all the parameters
for the database connection. Click the Connection Pools label, and a page that shows
the connection pools will be loaded into a frame to the right side of the page, as shown in
Figure 7-3. If you’ve just installed the Java EE server, or have never configured any
connection pools, you will see that the server comes preconfigured with two connection
pools. (You can see three connection pools in Figure 7-3. The one named PointBaseExample
is the one we are adding in this set of steps.)

Mukhar_470-3.book Page 312 Saturday, October 1, 2005 6:14 AM

C H A P T E R 7 ■ W O R K I N G W I T H D A T A B A S E S 313

Figure 7-3. The Connection Pools page shows the connection pools that are configured in
the server.

3. To create a new connection pool, click the New button on the page. This starts a wizard
that collects information from you about the connection parameters.

4. On the first page of the Create Connection Pool wizard, enter the following information,
and then click Next:

• Name: DataSourceExample

• Resource Type: javax.sql.ConnectionPoolDataSource

• Database Vendor: PointBase

5. On the second page of the wizard, for the Datasource Classname, enter
com.pointbase.jdbc.jdbcPooledDataSource. Then click Next.

Mukhar_470-3.book Page 313 Saturday, October 1, 2005 6:14 AM

314 C H A P T E R 7 ■ W O R K I N G W I T H D A T A B A S E S

6. On the third page of the wizard, scroll to bottom of page and enter the following. Then
click Next:

• Password: PBPUBLIC

• ServerName: localhost

• PortNumber: 9092

• DatabaseName: sample

• User: PBPUBLIC

■Note The parameters on the last page of the Create Connection Pool wizard assume you have installed
the Java EE reference implementation on your local machine. If the application server or database is installed
on a different workstation or server, you will need to change localhost to the host name or IP address of
the machine where the database is installed. If you are using a different database, you will need to change
the parameters for your database. The various parameters are discussed in the “Reviewing the DataSource
and Connection Parameters” section later in this chapter.

7. On the final page of the wizard, click the Finish button. A page listing all the connection
pools, including the one you just created, will be displayed.

8. You can now test the connection pool you just created. Click the name of the new con-
nection pool. This loads the Edit Connection Pool page. With your database running
(select Start ➤ All Programs ➤ Sun Microsystems ➤ Application Server ➤ Start
PointBase), click the Ping button. If the connection works, the page will reload with a
message at the top that says, “Ping was Successful!” If the ping is not successful, you will
need to do some troubleshooting. Check that the database is running, and also check
that you entered the parameters correctly.

9. When the connection is working correctly, you now need to create a JDBC resource to
use the connection pool. Click the JDBC Resources label on the left side of the adminis-
tration page to load the JDBC Resources page. Click the New button to create a new
resource. On the page that loads next, enter the JNDI Name as jdbc/DataSourceExample.
For the Pool Name, enter PointBaseExample. Click the OK button to create the resource.

■Note While not required, a common practice is to prefix the JNDI resource name with a short word that
describes the resource. Database resources use the prefix jdbc. In the EJB chapters later in the book, you’ll
see that EJB resources use the prefix ejb.

Mukhar_470-3.book Page 314 Saturday, October 1, 2005 6:14 AM

C H A P T E R 7 ■ W O R K I N G W I T H D A T A B A S E S 315

WHAT IS JNDI?

On the JDBC Resources page of the Sun Application Server administration web page, you entered a value for
JNDI Name. Just what is JNDI?

Directories, like databases, can be used to hold information. A phone book is a directory that binds
names to phone numbers. A hard disk directory binds names to files. A domain name server binds domain
names to an Internet address. If you have access to the directory, and you know a name, you can look up the
resource that is bound to the name.

Just as JDBC provides a vendor-neutral interface to numerous databases, Java has provided a vendor-
neutral interface to directory services: the Java Naming and Directory Interface (JNDI). This API provides a
common set of functions for accessing directories. Your code uses the JNDI API to communicate with a directory.
The details of talking to a particular directory are provided by directory-specific libraries, in a similar fashion
to JDBC drivers. The JNDI API is provided by the javax.naming package.

With JNDI, a Context object provides the interface to the directory. When a resource is created, it is
bound to a name using the bind() method call. When a resource is acquired, it is acquired using the
lookup() method call.

Using a DataSource and Connection with a JSP

Now that a DataSource has been created in the application, components within the server can
access the DataSource to get a connection to the database. In this section, we will create a JSP
to act as the client to the database (see Listing 7-1). The JSP will perform a lookup of the
DataSource using a coded name. The coded name that the JSP uses is jdbc/DataSourceExample.
That name is the same name we used to bind the connection pool in the application server.
However, with Sun’s Application Server, you can use any name you wish as the coded name.

Listing 7-1. DataSourceExample.jsp

<%@ page import="java.sql.*, javax.sql.*, java.io.*, javax.naming.*" %>
<html>
 <head>
 <title>DataSource Example</title>
 </head>
 <body>
 <h1>DataSource Example</h1>
<%
 InitialContext context = new InitialContext();
 DataSource dataSource =
 (DataSource) context.lookup("java:comp/env/jdbc/DataSourceExample");
 Connection conn = null;
 Statement stmt = null;
 ResultSet rset = null;

Mukhar_470-3.book Page 315 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

316 C H A P T E R 7 ■ W O R K I N G W I T H D A T A B A S E S

 try {
 conn = dataSource.getConnection();
 stmt = conn.createStatement();
 rset = stmt.executeQuery("select * from CUSTOMER_TBL");
 if (rset.next()) {
%>
 <table width="100%" border="1">
 <tr align="left">
 <th>Customer Num</th><th>Name</th><th>email</th>
 </tr>
<%
 do {
%>
 <tr>
 <td><%= rset.getString("CUSTOMER_NUM") %></td>
 <td><%= rset.getString("NAME") %></td>
 <td><%= rset.getString("EMAIL") %></td>
 </tr>
<%
 } while (rset.next());
%>
 </table>
<%
 } else {
%>
 No results from query
<%
 }
 } catch (SQLException e) {
%>
 <%= e.getMessage() %>
<%
 e.printStackTrace();
 } finally {
 if (rset != null) { rset.close(); }
 if (stmt != null) { stmt.close(); }
 if (conn != null) { conn.close(); }
 if (context != null) { context.close(); }
 }
%>
 </body>
</html>

You use the Deployment Tool to create this JSP, just as you did for the JSPs we have deployed
in previous chapters. However, there is one additional step you need to perform to ensure the
DataSource is available to the JSP before deploying the web application. After creating the WAR,
you must set up a Resource Reference for the web component. Here are the steps:

Mukhar_470-3.book Page 316 Saturday, October 1, 2005 6:14 AM

C H A P T E R 7 ■ W O R K I N G W I T H D A T A B A S E S 317

1. Create the JSP in Listing 7-1 and deploy it in a WAR file to the Sun Application Server.

2. Select the Resource Ref’s tab in the web application, as shown in Figure 7-4. Click the
Add button to add a Resource Reference.

Figure 7-4. Click the Add button on the Resource Ref’s tab to configure a resource for the
web component.

3. Click in the Coded Name field and enter the coded name for the resource. The coded
name of the resource must match the name used in the JSP source, which is jdbc/
DataSourceExample. Select javax.sql.DataSource for the Type. You can use the default
entries for the columns labeled Authentication and Sharable.

4. Next, you must relate the coded name to the JNDI name. In the JNDI Name field at the
bottom of the screen, enter the JNDI name for the JDBC resource. That name should
also be jdbc/DataSourceExample, which is the JNDI name you used when you created
the JDBC resource in the application server.

Mukhar_470-3.book Page 317 Saturday, October 1, 2005 6:14 AM

318 C H A P T E R 7 ■ W O R K I N G W I T H D A T A B A S E S

■Note Even though the example uses the same string in the JSP and for the JNDI name, you can use any
name you desire in the JSP; it does not need to match the JNDI name. Because Sun provides a mapping
between the coded name and the JNDI name, you can use any name in your code to access the JDBC resource.

5. Save and deploy the application to the Java EE server.

Assuming the database server is running, and your code is correctly deployed, you should
see something similar to Figure 7-5 when you open the JSP in a browser.

Figure 7-5. The output of the DataSourceExample.jsp

The code for DataSourceExample.jsp (Listing 7-1) actually demonstrates a number of JDBC
method calls. For the moment, you need to look at only the DataSource and Connection code.
At the top of the JSP, you imported the packages needed for this example:

• java.sql.* is the java package for the Connection, Statement, and ResultSet objects. We
will discuss these objects later in this chapter and in the next chapter.

• javax.sql is the java package for the DataSource object.

• javax.naming is the package for the InitialContext object.

Mukhar_470-3.book Page 318 Saturday, October 1, 2005 6:14 AM

C H A P T E R 7 ■ W O R K I N G W I T H D A T A B A S E S 319

The process of getting a connection starts when you create an instance of InitialContext:

 InitialContext context = new InitialContext();

By using the default constructor, you get a reference to the default context for the application
server.

Next, the context is used to perform a lookup:

DataSource dataSource =
 (DataSource) context.lookup("java:comp/env/jdbc/DataSourceExample");

Notice that in this example, the lookup name jdbc/DataSourceExample has additional informa-
tion prefixed to it. The prefix java:comp/env is used when you are performing a lookup of
resources provided by the server on which your component is running. Notice also that the
lookup() method call returns a reference of type Object, so the Object reference is cast to the
correct reference type of DataSource.

Also, for this example to work, you needed to map the coded name jdbc/DataSourceExample to
the JNDI name jdbc/DataSourceExample in the Sun Application Server. This allows you to use
any name in the JSP, as long as you map it to the correct JNDI name. Note that this won’t neces-
sarily work for other Java EE servers.

Using the DataSource, the JSP is then able to get a connection to the database:

 conn = dataSource.getConnection();

Using this connection, the JSP was able to query the database for information in a table and
receive the data returned by the database. We will look at how the JSP does this later in the chapter.

Reviewing the DataSource and Connection Parameters

Notice that the JSP did not use any database-specific information or parameters to get the
connection. The only parameter you (as the client programmer) needed to know to connect to
the database was the JNDI name of the database. This allows an almost total isolation between
the presentation layer of your web application (the JSP) and the data layer (the database).

Any of the parameters for connecting to the database can change, and your JSP code is
completely unaffected. If the database analysts in your company move the database to a different
server, your code is unaffected. If the database analysts in your company use a different port,
your code is unaffected. If the… well, you get the picture.

This is particularly useful when moving between development, test, and production envi-
ronments. Rather than having different versions of the code or different configuration files for
each environment, your code is always the same. When your code is deployed, it automatically
gets whichever DataSource and Connection have been configured.

On the other hand, if you are responsible for configuring the DataSource and the Connection,
as you did for the previous example, you do need to know the database connection parameters.
Let’s start with the easy ones first. Here are the parameters that were set through the Create
Connection Pool wizard of the Sun Application Server:

• ServerName: The host name or IP address of the server where the database is running.

• PortNumber: The port that the database server listens to for connections. Different
databases use different ports. In addition, this port is usually configurable. The default
port for PointBase is 9092.

Mukhar_470-3.book Page 319 Saturday, October 1, 2005 6:14 AM

320 C H A P T E R 7 ■ W O R K I N G W I T H D A T A B A S E S

• DatabaseName: The name of the database used to access a set of tables and other resources.
It is the name used when someone executed the SQL command CREATE DATABASE name. The
Java EE server comes with two predefined databases (sample, and sun-appserv-samples); we
used the one named sample.

• User and Password: The username and password of a user account in the database
server. This user should also have the correct permissions to access the database. The
Java EE server comes with a predefined user named PBPUBLIC.

• Resource Type: There are three different resource types that can be defined. The three
types are identified by the fully qualified class name of a DataSource interface from
the JDBC API. You use javax.sql.XADataSource when you need to have distributed
transactions. We will look at distributed transactions in the next chapter. You use
javax.sql.ConnectionPoolDataSource when you want connections to be pooled, as
we did in the example. Pooled connections allow connections to be predefined and
reused. Finally, you use javax.sql.DataSource when you don’t need pooled connections or
distributed transactions.

• Datasource Classname: This is the fully qualified class name of the database-specific
class that provides and manages connections to the database. The best way to determine
this class is to consult the database documentation for your database. The DataSource class
name needs to be a class that implements the javax.sql.DataSource interface. PointBase’s
documentation lists three classes that implement the DataSource interface:
com.pointbase.jdbc.jdbcDataSource, com.pointbase.jdbc.jdbcPooledDataSource, and
com.pointbase.xa.xaDataSource. Since we wanted to use a connection pool, we chose
the jdbcPooledDataSource class. In the next chapter, you’ll see how to use the xaDataSource
with distributed transactions.

■Note Unfortunately, no PointBase documentation comes with the Java EE reference implementation, and
the PointBase web site does not provide direct access to the documentation. To get access to the documen-
tation from PointBase, you will need to register with PointBase (www.pointbase.com) and request access
to the documentation. Alternatively, you can download an evaluation copy of the PointBase database server,
which includes the documentation.

The class will be contained in a JAR file that is made available to the application server.
When using the PointBase server with the Sun Application Server, the classpath of the server
already includes the PointBase driver library. If you want to use a different database, you will
need to provide the driver library to the server. This is done by copying the driver library (the
JAR file that contains the driver) to the lib directory of the application server installation. If you
are using a different application server, you will need to look at your documentation to deter-
mine the correct location for the library or the correct way to adjust the classpath to include the
driver library.

Mukhar_470-3.book Page 320 Saturday, October 1, 2005 6:14 AM

C H A P T E R 7 ■ W O R K I N G W I T H D A T A B A S E S 321

Configuring a DataSource and Connection with Tomcat
Tomcat also provides a facility for defining DataSource objects that can be used by Java EE
components. As with the Sun Application Server, Tomcat provides a web-based GUI for config-
uring the DataSource. As mentioned in the previous section, the database driver files need to be
made available to the application server. With Tomcat, this is done by copying the JAR file to
the Tomcat common/lib directory.

1. If you’ve installed the Sun Application Server, navigate to the PointBase lib directory
(C:\Sun\AppServer\pointbase\lib is the default location for Windows) and copy the
pbclient.jar file to the Tomcat \common\lib directory (for Windows, that will be a path
similar to C:\Program Files\Apache Software Foundation\Tomcat 5.028\common\lib).
Note that Tomcat imports only JAR files automatically, so the library must be a JAR file.

■Tip If you don’t have the Sun Application Server, your other option for obtaining the driver library is to
download an evaluation copy of PointBase from www.pointbase.com. Not all driver libraries are this hard
to obtain, however. Most database vendors make the driver libraries easily available to developers.

2. If Tomcat is already running, you need to restart it so that it can load the driver library. If
Tomcat is not running, you can start it now.

3. If you created the JSP in Listing 7-1 and deployed it in a WAR file to the Sun Application
Server, take that same WAR file and drop it into the Tomcat webapps directory. This
causes the Tomcat server to deploy the web application in the WAR. If you did not
create the JSP earlier, now is the time to enter and save the source code in Listing 7-1.
In addition, if you did not use the Sun Deployment Tool earlier, you need to create the
web.xml file shown in Listing 7-2. Then create a WAR file to hold the JSP and web.xml
files. (Refer to Chapter 3 if you need to be refreshed on the structure of a WAR file.) After
the WAR file is created, drop it into the Tomcat webapps directory.

Listing 7-2. web.xml File for the Tomcat DataSource Example

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5" xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">
 <display-name>DataSourceExample</display-name>
 <servlet>
 <display-name>DataSourceExample</display-name>
 <servlet-name>DataSourceExample</servlet-name>
 <jsp-file>/DataSourceExample.jsp</jsp-file>
 </servlet>

Mukhar_470-3.book Page 321 Saturday, October 1, 2005 6:14 AM

322 C H A P T E R 7 ■ W O R K I N G W I T H D A T A B A S E S

 <resource-ref>
 <res-ref-name>jdbc/DataSourceExample</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
 </resource-ref>
</web-app>

4. Open a web browser to the Tomcat administration page, either by opening the web
browser to the Tomcat home page at http://localhost:8080 and clicking the Tomcat
Administration link or by going directly, using the address http://localhost:8080/
admin/. If necessary, replace localhost and 8080 with the proper host name and port
number for your system. At the administration home page, you will need to enter the
admin username and password for your system.

5. After logging into the administration tool, you will see a web page similar to that shown
in Figure 7-6. As with the Sun Application Server administration tool, the page shows a
tree view of resources in the left frame. Clicking a node in the tree will either expand the
node or load the details of a node into the right frame.

Figure 7-6. The Tomcat administration web interface after selecting the DataSources node

Tomcat allows you to configure a DataSource that is local to a web application or a global
DataSource that can be used by all web applications. We’ll first show you how to create a global
DataSource, because the procedure for creating a local DataSource is simply a subset of the
procedure for creating a global DataSource.

Mukhar_470-3.book Page 322 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

C H A P T E R 7 ■ W O R K I N G W I T H D A T A B A S E S 323

Creating a Global DataSource in Tomcat

Here is the procedure to create a global DataSource, continuing from the previous section:

1. Click the Data Sources node under the Resources node. In the right frame, select Create
New Data Source from the Data Source Actions drop-down list. This loads the form
shown in Figure 7-7.

Figure 7-7. The Create New Data Source form

2. In the form, enter the following values for these fields:

• JNDI Name: jdbc/DataSourceExample

• Data Source URL: jdbc:pointbase:server://localhost:9092/sample

• JDBC Driver Class: com.pointbase.jdbc.jdbcUniversalDriver

• User Name: PBPUBLIC

• Password: PBPUBLIC

You can leave the other fields in the form with their default values. We’ll review these
parameters shortly.

3. Click the Save button to save the Data Source.

Mukhar_470-3.book Page 323 Saturday, October 1, 2005 6:14 AM

324 C H A P T E R 7 ■ W O R K I N G W I T H D A T A B A S E S

4. Now you need to make the DataSource available to the web application. Even though it
is a global resource, it is not globally available until you create a link to the resource
from each web application. In the left frame, expand the Service, Host, then Context
nodes, as shown in Figure 7-8. If you’ve correctly deployed the WAR file, there will be a
Context node for DataSourceExample JSP. Select the Resources, then Data Sources node
for the DataSourceExample Context.

Figure 7-8. The Data Sources page

5. There will likely already be a JNDI entry for the Context Data Source. This is because
Tomcat reads the web.xml file and automatically starts an entry for the DataSource.
However, at the moment, we do not want to create an application DataSource, so select
the Delete Data Sources action from the Data Source Action drop-down list in the right
frame. Select the check box next to the JNDI name and click the Save button.

6. In the left frame, select the Resources node, then Resource Link node. This loads the
Resource Link page in the right frame. Select the Create New Resource Link action in
the Resource Link Actions drop-down list. This loads the page shown in Figure 7-9.

Mukhar_470-3.book Page 324 Saturday, October 1, 2005 6:14 AM

C H A P T E R 7 ■ W O R K I N G W I T H D A T A B A S E S 325

Figure 7-9. The Create New Resource Link form

7. Enter the following values in each field:

• Name: jdbc/DataSourceExample (or whatever name you used in the JSP)

• Global: jdbc/DataSourceExample (the name of the global resource)

• Type: javax.sql.DataSource

■Note When using a global DataSource resource and a web application with a link to the global resource,
you can use any name you want for the JNDI name and any coded name in your JSP. That is because the
Resource Link provides a mapping between the JSP coded name and the JNDI name.

8. Click the Save button to save the Resource Link.

9. Since your web application has already been loaded, it is still running in the old envi-
ronment, which does not include the new DataSource. There are a couple of ways to get
your web application executing with the new resources:

• Click the Commit button at the top of the Tomcat administration interface. This
causes the web application environment to be restarted, and it also makes any
changes to the web resources permanent. The next time you restart Tomcat, the
DataSource and Resource Link values will be reloaded.

• Alternatively, go to the Tomcat Management page (http://localhost:8080/manager/
html) and click the Reload link for the application. This causes the web application to
be reloaded with the new environment. However, this does not make the DataSource
and resource link permanent.

After the changes have been committed, or the application reloaded, you can load the JSP
into your browser, and you should see the same page as shown earlier in Figure 7-5.

Mukhar_470-3.book Page 325 Saturday, October 1, 2005 6:14 AM

326 C H A P T E R 7 ■ W O R K I N G W I T H D A T A B A S E S

Creating a Local DataSource in Tomcat

Creating a DataSource that is local to a web application is almost exactly the same as creating a
global data source. The only difference is that you do not need to create a resource link. Here
are the steps, continuing from the last step in the “Configuring a DataSource and Connection
with Tomcat” section.

1. In the left frame of the Tomcat administration tool, expand the Service, Host, then
Context nodes, as shown earlier in Figure 7-8. If you’ve correctly deployed the WAR file,
there will be a Context node for the DataSourceExample JSP. Select the Resources node,
then Data Sources node for the DataSourceExample Context.

2. In the right frame, click the link in the table for the JNDI Name jdbc/DataSourceExample.
This loads a form similar to the one shown earlier in Figure 7-7. The difference is that in
this form, you cannot enter a value for the JNDI name, since it is already set.

3. In the form, enter the following values for these fields:

• Data Source URL: jdbc:pointbase:server://localhost:9092/sample

• JDBC Driver Class: com.pointbase.jdbc.jdbcUniversalDriver

• User Name: PBPUBLIC

• Password: PBPUBLIC

You can leave the other fields in the form with their default values.

4. Click the Save button, and then click the Commit Changes button to save the
DataSource.

When you next run the web component, it will have access to the DataSource local to the
web application.

Reviewing the DataSource and Connection Parameters

Here are the parameters that were set through the GUI of the Tomcat administration tool:

• JNDI Name: This is the name used by the application server to identify the DataSource.
We used jdbc/DataSourceExample in this example. This name can be anything you want
it to be. You map the coded name used by the JSP to the name used by the application
server.

• Data Source URL: The URL is a string that tells the driver how to access the database.
The URL for each database will vary depending on the database and the driver.
However, all URLs will have the general form jdbc:<subprotocol>:<subname>, with the
<subprotocol> usually identifying the vendor, and <subname> identifying the database
and providing additional information needed to make the connection. We used the
URL jdbc:pointbase:server://localhost:9092/sample, where the subprotocol is
pointbase:server and the subname is //localhost:9092/sample.

Mukhar_470-3.book Page 326 Saturday, October 1, 2005 6:14 AM

C H A P T E R 7 ■ W O R K I N G W I T H D A T A B A S E S 327

■Note If you read the earlier section about configuring a DataSource with Java EE, the subname portion
of the URL used with Tomcat may look somewhat familiar. These values are the same as those for the ServerName,
PortNumber, and DatabaseName fields in the Sun Application Server configuration. However, different databases
use different URLs. For example, the MySQL driver uses a URL that is similar to PointBase: jdbc:mysql://
locahost:3306/sample. Oracle’s is not so similar: jdbc:oracle:thin:@localhost:1521:orcl. If
you are using a database other than PointBase, consult your JDBC driver documentation for the correct format
for the URL.

• JDBC Driver Class: The Driver Class is the fully qualified class name of the database-
specific class that provides and manages the database connections. We used
com.pointbase.jdbc.jdbcUniversalDriver. Notice that for Tomcat, we are not
using a class that implements the DataSource interface, but a class that implements
the java.sql.Driver interface.

• User Name and Password: These are the username and password for the database user.
We used PBPUBLIC.

JDBC DRIVERS

JDBC provides a database-neutral set of classes and interfaces that can be used by your Java class. The
database-specific code is included in a driver library that is developed by the database vendor or third parties.
The JDBC specification identifies four types of drivers that can be used to communicate with databases:

• Type 1 Driver: This driver provides a mapping between JDBC and a data access API known as ODBC.
The ODBC API then calls a native ODBC library to complete the communication with the database.

• Type 2 Driver: This type of driver is similar to the Type 1 driver because it communicates with the data-
base through a native API. However, because it makes calls directly to the native API and bypasses the
additional data access layer, this type of driver tends to be more efficient than Type 1. Since they require
a native API, you can use these drivers only where the API exists on all platforms, and you have the
ability to install the API on all platforms.

• Type 3 Driver: This type of driver sends database calls to a middleware component running on another
server. The middleware server then communicates with the database using a database-specific protocol.

• Type 4 Driver: This type of driver, also commonly known as a thin driver, is written completely in Java.
It communicates directly with a database using the database’s native protocol. The PointBase driver is a
Type 4 driver. Since Type 4 drivers are Java-based, you can use them on any platform that supports Java.

For the most part, you do not need to worry about the driver type. Most drivers are Type 4 drivers. You
will usually just use the default vendor driver without worrying which type it is. If you must choose, you will
most often be making a choice between a Type 2 and a Type 4 driver. You might think that Type 2 drivers are
faster because they use native code, or you might think Type 4 drivers are faster because they do not need to
communicate through another layer. In fact, which driver is faster depends on many factors. Either may be a
good choice for your system, and you should run tests with your production code to determine which driver
is better.

Mukhar_470-3.book Page 327 Saturday, October 1, 2005 6:14 AM

328 C H A P T E R 7 ■ W O R K I N G W I T H D A T A B A S E S

Closing Connections
In the previous section, you saw how to get a database connection from a DataSource. Primarily,
though, we showed you how to configure the DataSource, and then obtained the connection
with this line of code:

conn = dataSource.getConnection();

and used the connection with this line of code:

stmt = conn.createStatement();

For now, this is about all that you need to know about connections. We will cover more
methods of the Connection object when we discuss Statement objects later in this chapter and
in the next chapter. We will also use the Connection object when we look at transactions in the
next chapter. However, there is one aspect of connections that we need to cover here: they
need to be closed properly.

The Connection class has a method for releasing the connection:

public void close() throws SQLException

Many beginners will try to use it like this:

Connection conn = dataSource.getConnection();
// Then some JDBC code that works with the database
conn.close();

This is a mistake! Almost all JDBC methods throw SQLExceptions (which are discussed
in the “Handling Exceptions” section later in this chapter). If the JDBC code between the
getConnection() method call and the close() method call throws a SQLException, the call to
close() is completely skipped.

The correct way to use close(), is to put it inside the finally block of a try-catch-finally
exception handler, as in Listing 7-1. Here it is again:

 try {
 conn = dataSource.getConnection();
 //…a lot of JSP code
 } catch (SQLException e) {
 //…
 } finally {
 if (rset != null) { rset.close(); }
 if (stmt != null) { stmt.close(); }
 if (conn != null) { conn.close(); }
 if (context != null) { context.close(); }
 }

Thus, you are assured that close() will be called, no matter what happens with the JDBC
code. However, there’s still a problem in the code in Listing 7-1, which we ignored for the
example, but which you do need to know about. The close() method also throws a SQLException.
So, in the first statement of the finally block, the rset.close() method call can throw a
SQLException. If this occurs, the following statements in the finally block will be skipped.

Mukhar_470-3.book Page 328 Saturday, October 1, 2005 6:14 AM

C H A P T E R 7 ■ W O R K I N G W I T H D A T A B A S E S 329

To be safe, each call to close() should also be in a try-catch-finally handler. So, the JDBC
code begins to look something like this:

try {
 conn = dataSource.getConnection();
 // Then some JDBC code that works with the database
} catch (SQLEXception e) {
 // Handle the exception
} finally {
 try {
 rset.close();
 } catch (SQLException e2) {
 // Usually this is ignored
 }
 try {
 stmt.close();
 } catch (SQLException e2) {
 // Usually this is ignored
 }
 try {
 conn.close();
 } catch (SQLException e2) {
 // Usually this is ignored
 }
}

And of course, this needs to be in every class that uses a connection. Pretty soon, you have
finally blocks with enclosed try-catch-finally blocks all over the place, and things are starting to
look pretty cluttered! Later in this chapter, in the “Using Statements to Insert Data into a Database”
section, we’ll look at a better way to close and release resources.

WHAT CAN GO WRONG WITH CONNECTIONS

I once worked on team developing a web application that locked up every time we stress-tested it with thousands
of database transactions. We were getting very frustrated because we couldn’t release the application to
production until it could reliably handle thousands of transactions per hour.

The database vendor included a management utility for the system that showed how many database
connections had been opened and how many had been released. Whenever we tested our application, the
utility would show that the number of opened connections slowly but steadily diverged from the number of
released connections. While the number of opened connections steadily increased, the number of closed
connections increased faster. For various unrelated reasons, we didn’t trust that the vendor’s software was
error-free, so even though the number seemed to be wrong, we figured as long as more connections were
closed than were opened, we were okay. Still, we couldn’t understand why the application always appeared
to lock up.

Continued

Mukhar_470-3.book Page 329 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

330 C H A P T E R 7 ■ W O R K I N G W I T H D A T A B A S E S

Although I had the most JDBC experience on the team, I had not written the JDBC code. And because the
JDBC code worked with small numbers of transactions, I had been concerned about the components I was
working on, rather than the JDBC section of the application. Finally, the lockup problem became important
enough that I decided I had to investigate the JDBC code.

When I inspected the JDBC code line by line, I discovered that the vendor’s utility had been correct all
along. It turned out that the developer who had written the JDBC code hadn’t understood how to close connec-
tions properly. He had written many long methods inside a gigantic class (which wasn’t a JSP, by the way),
and all of these methods were opening connections at the top of a try block, and many hundreds of lines later
closing them inside their own try...catch blocks. Sometimes the same connection would be closed several
times, and sometimes connections were not being closed at all. The count of closed connections was greater
than the count of opened connections because connections were being closed multiple times. But it was the
connections that were not closed that were the bigger problem.

Connections that are not closed are not available to be reused from the pool. Whenever we tested the
code, it didn’t take long for the defects in the code to cause the system to be starved for connections. After
enough time, the application just locked up, waiting for connections that were no longer available.

To fix this code, I went through the class line by line and made sure that every time a connection was
opened inside a try block, there was a corresponding finally block that called the close method to close
the connection. When we tested the new code, I paid a lot more attention to that system diagnostic that
compared open and released connections. When the code was finally correct, the two numbers were always
equal when all the transactions were completed. Next time we sent the code to test, the system did not lock
up. Mission successful!

One other way we might have narrowed down the problem is by setting a login timeout. Our application
appeared to lock up because the code was waiting for a connection that never became available. It waited and
it waited... and it would have waited forever if we let it.

Setting the Login Timeout
There is a way to tell the DataSource to wait only a certain amount of time for a connection.
To do this, the DataSource class provides the following method:

public static void setLoginTimeout(int)

The int parameter indicates the number of seconds that the driver manager should wait
for a connection. If the driver does not return a connection in that amount of time, the
manager throws a SQLException.

Handling Exceptions
Earlier, we mentioned that almost all JDBC methods declare that they throw SQLExceptions.
In most respects, SQLException objects are the same as the other exception objects that you
encounter in your Java code. Your web components that use JDBC code will need to either
handle these exceptions in try-catch-finally blocks or let the SQLException be handled higher
in the call chain.

Usually in web components, letting the exception pass out of the web component is a bad
idea. While application servers are designed to handle exceptions thrown by web components,
this usually results in an ugly error message being sent to the client, such as the one shown in

Mukhar_470-3.book Page 330 Saturday, October 1, 2005 6:14 AM

C H A P T E R 7 ■ W O R K I N G W I T H D A T A B A S E S 331

Figure 7-10. It won’t take too many of these kinds of bad user experiences before your traffic
drops to zero.

Figure 7-10. This is the kind of error message you don’t want your users to see.

There are some ways, however, in which SQLExceptions are different from other exceptions.
To enable you to better handle exceptions from the database, SQLExceptions add additional
behavior to the Exception class. One additional feature is that they can be chained. What this
means is that the SQLException you catch in your code may contain a reference to another
SQLException, which, in turn, may contain a reference to another SQLException, and so on. It’s
a linked list of exceptions. The SQLException class adds a method for dealing with chained
exceptions:

public SQLException getNextException()

Another difference is that the SQLException can contain additional information about the
error that occurred inside the database. Databases have their own error codes that identify the
problem that occurred. These error codes are returned inside the SQLException object, and you
can get the error code with a call to this method:

public int getErrorCode()

Here is a small snippet of code showing these two methods:

Mukhar_470-3.book Page 331 Saturday, October 1, 2005 6:14 AM

332 C H A P T E R 7 ■ W O R K I N G W I T H D A T A B A S E S

try {
 // Some JDBC code
} catch (SQLException e) {
 while (e != null) {
 System.out.println("The error code is " + e.getErrorCode();
 e = e.getNextException();
 }
}

Inside the while loop, the error code from the database is printed, and then
getNextException() is called. The reference returned by getNextException() is assigned back
to the variable e. When the last exception is reached, getNextException() returns null and the
while loop will terminate.

Logging with a DataSource
If you’ve done much Java coding, you’ve probably had many opportunities to use the poor man’s
debugging tool: System.out.println(). This prints directly to the console. You also probably know
the problem that can happen with this. You’ll have so many System.out.println() commands that
what is printed scrolls right off the screen or is lost among the hundreds of lines of debugging
information.

The DataSource class provides a method that can be used to redirect debug output and a
method to get a PrintWriter for logging:

public static void setLogWriter(PrintWriter)
public static PrintWriter getLogWriter()

Using setLogWriter(PrintWriter), you can direct the DataSource object’s debug state-
ments to an instance of PrintWriter. The PrintWriter can be a wrapper for any Writer or
OutputStream (such as a file or a stream), or a PipedWriter. When the DataSource is first created,
its PrintWriter reference is null, meaning that nothing is logged. Here is a snippet of code
showing how we could have used this feature in the example shown earlier in Listing 7-1:

// At the top of the JSP
FileWriter fw = new FileWriter("mydebug.log");
PrintWriter pw = new PrintWriter(fw);
DriverManager.setLogWriter(pw);
// After getting the Connection
dataSource.write.("connection is " + conn);

Note that you would want to use this for database-specific logging. For general web
component logging messages, you would want to use the normal logging provided by the
web component. Recall that for JSPs and servlets, that would be a call to the log() method.

Mukhar_470-3.book Page 332 Saturday, October 1, 2005 6:14 AM

C H A P T E R 7 ■ W O R K I N G W I T H D A T A B A S E S 333

Creating and Using Statement Objects
Earlier in this chapter, you saw how to get a connection to a database. However, the connec-
tion does not provide any methods that allow you to do anything to the database. To actually
create, retrieve, update, or delete data from the database, you need to use the Statement class.

Statement objects are your primary interface to the tables in a database. We will look at
using statements to insert new rows into a table, update a row in a table, and delete a row from
a table. In the next section on resultsets, you will see how to use a statement to query tables in
a database.

Statement objects are created by calling the following methods of the Connection class:

• public Statement createStatement(): Creates a Statement object. If the statement is
used for a query, the ResultSet returned by the executeQuery() method is a nonupdatable,
nonscrollable ResultSet.

• public Statement createStatement(int,int): Creates a Statement object. If the statement is
used for a query, the two parameters determine whether the ResultSet returned by the
executeQuery() method is updatable or scrollable.

• public Statement createStatement(int,int,int): In JDBC 3.0, creates a Statement
object. If the statement is used for a query, the first two parameters determine whether
the ResultSet returned by the executeQuery() method is updatable or scrollable, and the
third parameter determines holdability.

For now, don’t worry what updatable, scrollable, and holdable mean. These apply to state-
ments used to execute a SQL SELECT command. We will cover those topics in the section about
resultsets. When executing any other SQL command, you only need a statement created with
the createStatement() method that takes no parameters.

Once you have a Statement object, you use it to send SQL commands to the database. You
can use the following methods to send SQL commands to the database:

• public int executeUpdate(String): Used to any execute SQL that is not a query. Those
will primarily be create, insert, update, and delete SQL operations.

• public ResultSet executeQuery(String): Used for querying database tables.

• public int[] executeBatch(): Used for sending multiple SQL commands in a single
operation.

• public boolean execute(String): Used for executing unknown SQL or SQL that could
return either an int value or a ResultSet object.

Here, we will look at the executeUpdate(String) and executeBatch() methods. We will
look at executeQuery(String) in the section on ResultSet objects. The execute(String) method is
used only in the rare situation when the SQL could return a ResultSet (as from a query), an int
(as from some kind of update), or both, and you don’t know which it will return. Since you are
not likely to encounter this situation too often, we won’t cover it in detail in this book. If you’re
interested in learning more, consider reading JDBC API Tutorial and Reference, Third Edition,
by Maydene Fisher, et al (Addison-Wesley; ISBN: 0-32117-384-8).

Mukhar_470-3.book Page 333 Saturday, October 1, 2005 6:14 AM

334 C H A P T E R 7 ■ W O R K I N G W I T H D A T A B A S E S

Executing Single Statements
The executeUpdate(String) method is fairly straightforward. It is used to execute a single SQL
command. The String parameter is the SQL command that you want to execute in the database. It
can be any SQL command except for a query. The return value of the method is the number of
rows affected by the SQL command. This value can range from 0 to the number of rows in the
database table. The number of rows returned by various types of SQL commands is shown in
Table 7-1.

If you attempt to execute a SQL query through the executeUpdate(String) method, a
SQLException will be thrown.

Performing Batch Updates
One way that you can improve the performance of your JDBC application is to execute a number of
SQL commands in a batch. With batch execution, you add any number of SQL commands to
the statement. The statement holds these SQL commands in memory until you tell it that you
are ready for the database to execute the SQL. When you call executeBatch(), the statement
sends the entire batch of SQL in one network communication. In addition to the executeBatch()
method, two other methods are needed for batch execution:

• public void addBatch(String): Adds a SQL command to the current batch of
commands for the Statement object.

• public void clearBatch(): Makes the set of commands in the current batch empty.

The use of batch updating is straightforward. You add SQL commands to the statement
with the addBatch(String) command. When you are ready for the commands to be executed,
you call the executeBatch() method. This causes the statement to send all the SQL commands
to the database for execution. In code, it looks like this:

// The variable someSqlCommand in the method calls is a SQL command
stmt.addBatch(someSqlCommand);
stmt.addBatch(someSqlCommand);
stmt.addBatch(someSqlCommand);
stmt.addBatch(someSqlCommand);
int[] results = stmt.executeBatch();

Table 7-1. Possible Return Values for executeUpdate(String)

SQL Type Number of Rows Affected

CREATE, ALTER, DROP, and other statements
that affect tables, indexes, and so on

0

INSERT statements 1 to n, where n is any number

DELETE statements 0 to n, where n is the number of rows in the table

UPDATE statements 0 to n, where n is the number of rows in the table

Mukhar_470-3.book Page 334 Saturday, October 1, 2005 6:14 AM

C H A P T E R 7 ■ W O R K I N G W I T H D A T A B A S E S 335

As you can see in this snippet, the executeBatch() method returns an int array that
contains the number of rows affected by each of the commands. The result of the first SQL
command that was added to the statement is returned in the first element of the array, the result
of the second SQL command is in the second element, and so on. Since the executeBatch()
method returns an int array, the one type of SQL command that cannot be executed by batching is
a SQL SELECT command, which returns a ResultSet object, not an int.

Releasing Statements
Just as with Connection objects, it is important to release Statement objects when you are
finished with them. This does not mean that you must immediately release the statement after
executing a SQL command; you can use the same Statement object to execute multiple SQL
commands. However, when you no longer need the statement to execute SQL, you should
release it. The Statement class has its own close() method.

If you’re near a computer, take a moment to read the Javadoc for the Statement class
(http://java.sun.com/j2se/1.4.2/docs/api/). You’ll see that for the close() method, the
Javadoc states, “Releases this Statement object’s database and JDBC resources immediately
instead of waiting for this to happen when it is automatically closed.”

The reference to automatically closing the Statement object refers to the automatic
closing of the object when it is garbage-collected or when the Connection used to create the
Statement is closed. Garbage collection can occur when the Statement object goes out of
scope or is otherwise no longer reachable and thus is eligible for garbage collection. When
the object is garbage-collected, its resources can be released. However, there’s always the
possibility that objects that you think are out of scope are still reachable. In addition, even if an
object is eligible for garbage collection, it may not be collected immediately.

■Note Garbage collection of objects relies on the reachability of objects. An object is reachable if there
is a chain of references that reach the object from some root reference. More information can be found at
http://java.sun.com/docs/books/performance/1st_edition/html/JPAppGC.fm.html.

Similarly, even though closing a Connection will close any open Statement objects, you
should not leave the Statement open, intending to let it be closed when the Connection is
closed. Database resources are limited, and it’s never a good idea to hold onto them longer
than you need. That is why the Javadoc for close() also states, “It is generally good practice to
release resources as soon as you are finished with them to avoid tying up database resources.”

Just as with the Connection objects, the close() method call for Statement objects should
be in a finally block, and since it also throws a SQLException, it needs to be wrapped inside a
try-catch block. And since developers usually close the connection right after the statement,
this usually leads to code that looks something like this:

Mukhar_470-3.book Page 335 Saturday, October 1, 2005 6:14 AM

336 C H A P T E R 7 ■ W O R K I N G W I T H D A T A B A S E S

try {
 //Some JDBC code
} finally {
 try {
 stmt.close();
 conn.close();
 } catch (Exception e) {
 //Recover from the exception
 }
}

If the stmt.close() method call does happen to throw a SQLException, the call to
conn.close() will be skipped, and now your application has unclosed connections lying
around. You can avoid that problem by wrapping each call in its own try-catch block:

try {
 //Some JDBC code
} finally {
 try {
 stmt.close();
 } catch (Exception e) {
 //Recover from the exception
 }
 try {
 conn.close();
 } catch (Exception e) {
 //Recover from the exception
 }
}

This is better from the point of view that an exception from stmt.close() will not cause the
conn.close() method to be skipped. However, it’s worse because you now have this code
duplicated in every web component that uses the database. It also makes your code harder to
understand because of the nested try-catch blocks. Code that is not easy to understand is not
easy to maintain. In the next section, we’ll look at one way to close statements and connections
without cluttering your code with nested try-catch blocks.

Using Statements to Insert Data into a Database
The next example demonstrates one solution to the problem presented in the previous section. The
solution is to create a separate class to manage Connections and Statements, as shown in
Listing 7-3.

Mukhar_470-3.book Page 336 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

C H A P T E R 7 ■ W O R K I N G W I T H D A T A B A S E S 337

Listing 7-3. JdbcManager.java

package com.apress.jdbc;

import java.sql.*;
import javax.sql.*;
import javax.naming.*;

public class JdbcManager {
 private static InitialContext context = null;
 public static Connection getConnection()
 throws SQLException, NamingException {
 if (context == null) {
 context = new InitialContext();
 }
 DataSource dataSource =
 (DataSource) context.lookup("java:comp/env/jdbc/DataSourceExample");
 return dataSource.getConnection();
 }
 public static void close(Connection conn) {
 if (conn != null) {
 try {
 conn.close();
 } catch (Exception ignored) {}
 }
 }
 public static void close(Statement stmt) {
 if (stmt != null) {
 try {
 stmt.close();
 } catch (Exception ignored) {}
 }
 }
}

The JdbcManager class shown in Listing 7-3 does two things:

• It moves the lookup code out of the JSP and into this helper class. It is the same lookup
code as in the first example of the chapter (DataSourceExample.jsp, shown in Listing 7-1),
but now it’s in one location that can be used by multiple components in your application.
If you are going to have multiple web components in your application all accessing database
resources, you don’t need to duplicate the lookup code in every component.

• It provides a centralized location for closing database resources. Again, this is code that
does not need to be duplicated in every web component that accesses the database. In
addition, by putting the code here, you can wrap every close() method call in a try-catch
block and avoid ugly try-catch blocks littering your web component code.

Mukhar_470-3.book Page 337 Saturday, October 1, 2005 6:14 AM

338 C H A P T E R 7 ■ W O R K I N G W I T H D A T A B A S E S

■Note The JdbcManager code in Listing 7-3 catches the SQLExceptions, but then ignores them. This
is fine for a sample program such as this one. However, in a production environment, you should never ignore
exceptions. Admittedly, there is not much you can do if closing a connection causes an exception, but you
should at least log this event, so you can be aware of problems in your system.

Listing 7-4 shows a JSP that uses the JdbcManager class.

Listing 7-4. StatementExample.jsp

<%@ page import="java.sql.*, com.apress.jdbc.*" %>
<html>
 <head>
 <title>Statement Example</title>
 </head>
 <body>
 <h1>Statement Example</h1>
<%
 Connection conn = null;
 Statement stmt = null;
 try {
 conn = JdbcManager.getConnection();
 stmt = conn.createStatement();
 String sqlcmd = "insert into stock_tbl values ('" +
 request.getParameter("symbol") + "', '" +
 request.getParameter("name") + "')";
 int result = stmt.executeUpdate(sqlcmd);

 if (result == 1) {
%>
Data sucessfully inserted into database
<%
 } else {
%>
Data was not inserted into database. Reason for failure is unknown
<%
 }
 } catch (SQLException e) {
%>
 <%= e.getMessage() %>

Mukhar_470-3.book Page 338 Saturday, October 1, 2005 6:14 AM

C H A P T E R 7 ■ W O R K I N G W I T H D A T A B A S E S 339

<%
 e.printStackTrace();
 } finally {
 JdbcManager.close(stmt);
 JdbcManager.close(conn);
 }
%>
 </body>
</html>

This JSP accepts an HTML request to insert data into the database. The data is entered into
a web form, and then submitted to the JSP. The JSP gets a Connection object from the JdbcManager
class and uses the Connection object to create a Statement object. It then constructs a SQL
command using the parameters passed in the web request. This is a SQL INSERT command to
insert a row of data into a database table. The JSP uses the executeUpdate(String) method to
send the command to the database. If the method returns a 1, which is the expected value, the
INSERT was successful. If the method returns a 0, the INSERT failed, although there is no infor-
mation about why it failed. In the finally block at the end of the JSP, we use the new JdbcManager
class to close the Connection and Statement objects.

Listing 7-5 shows the first piece of a stock market application. In this application, we want
a table to hold information about a public company. In a real-world application, we would be
storing a lot of information about companies. In this example, though, we’re storing only two
pieces of data: the stock symbol and the company name. The web page in Listing 7-5 collects
those two pieces of information, as shown in Figure 7-11, and submits the data to the JSP in
Listing 7-4. The JSP inserts the data into the database.

Listing 7-5. StockEntryForm.html

<html>
 <head>
 <title>Stock Entry Form</title>
 </head>
 <body>
 <h1>Enter a stock symbol and name</h1>
 <form action="PersistStock.jsp">
 <table>
 <tr><td>Symbol: </td>
 <td><input type="text" name="symbol"></td>
 </tr>
 <tr><td>Name: </td>
 <td><input type="text" name="name"></td>
 </tr>
 <tr><td><input type="submit" value="Submit"></td></tr>
 </table>
 </form>
 </body>
</html>

Mukhar_470-3.book Page 339 Saturday, October 1, 2005 6:14 AM

340 C H A P T E R 7 ■ W O R K I N G W I T H D A T A B A S E S

Figure 7-11. The HTML form for collecting the stock symbol and stock name

Creating a Table to Hold the Information

Before you deploy the sample application, you need to create a table in the PointBase server to
hold the company information. PointBase provides two different tools for accessing the data-
base: a command-line tool and a GUI tool.

Using the Command-Line Tool

You can start the command-line tool by running the startcommander script in the \pointbase\
tools\serveroption directory within the Sun Application Server directory on your system
(assuming you installed the application server on a Windows machine using the default
settings, that location is C:\Sun\AppServer\pointbase\tools\serveroption). When you first
start the tool, you will need to log in to the database.

The command-line tool presents the following prompts:

Do you wish to create a "New/Overwrite" Database? [default: N]:
Select product to connect with: Embedded (E), or Server (S)? [default: E]: S
Please enter the driver to use: [default: [com.pointbase.jdbc.jdbcUniversalDriver]:
Please enter the database URL to use: ➥

 [default: [jdbc:pointbase:server://localhost/sample]:
Username: [default: PBPUBLIC]:
Password: [default: PBPUBLIC]:

In each case, you can just press Enter to select the default value, except for the prompt for
product, for which you want to enter S for server.

Mukhar_470-3.book Page 340 Saturday, October 1, 2005 6:14 AM

C H A P T E R 7 ■ W O R K I N G W I T H D A T A B A S E S 341

The tool then connects to the database and displays a SQL> prompt. Enter the following
command at the command prompt:

SQL> create table stock_tbl (symbol varchar(10), name varchar(30));

Press Enter, and if you entered the command properly, the tool responds with this:

SQL>
OK

Using the GUI Tool

You can start the GUI tool by running the startconsole script in the \pointbase\tools\
serveroption directory within the Sun Application Server directory on your system (assuming
you installed the application server on a Windows machine using the default settings, that
location is C:\Sun\AppServer\pointbase\tools\serveroption). When you first start the tool,
you will see a form to enter login parameters, as shown in Figure 7-12.

Figure 7-12. The PointBase Console login form

The form will have some default values already entered. Simply enter the password
PBPUBLIC in the Password field and click the OK button to log in. If the login is successful, the
status pane at the bottom of the tool will display this message:

Connecting to Database, jdbc:pointbase:server://localhost:9092/sample ➥

 *** PLEASE WAIT ***
OK Connected to Database: jdbc:pointbase:server://localhost:9092/sample, Ready

As shown in Figure 7-13, the PointBase Console tool has the standard menu and toolbar
features found in many GUI applications. Three panes fill the center of the tool’s window. To
the left is a tree view of the database and its properties and objects. On the lower right is a pane
where query results are displayed. On the upper right is a pane labeled Enter SQL Commands.

Mukhar_470-3.book Page 341 Saturday, October 1, 2005 6:14 AM

342 C H A P T E R 7 ■ W O R K I N G W I T H D A T A B A S E S

Figure 7-13. The PointBase Console tool

In the upper-right pane, enter the following command (see Figure 7-13):

create table stock_tbl (symbol varchar(10), name varchar(30));

Then click the Execute button in the toolbar. If the command executes correctly, you will see
the following messages in the status pane at the bottom of the window:

Executing...
OK row(s) affected (Time: 0.172 seconds, Compile Time: 0.172 seconds)

You’re now ready to deploy the application.

Deploying the Application to the Sun Application Server

If you are using the Sun Application Server Deployment Tool, create a new web component.
Add the three files shown in Listings 7-3, 7-4, and 7-5 to the web component in the correct
locations. The HTML and JSP files should be located in the root directory of the web component.
The JdbcManager class file should be located in the correct package in the WEB-INF\classes
directory of the web component.

Using the Deployment Tool, create a JDBC resource using the Resource Ref’s tab, as described
earlier in the chapter. If you did not work through that example, refer to the “Configuring a
DataSource and Connection with Java EE” section to see how to set up a JDBC resource in the
application server and how to configure the resource in the web component. Save the compo-
nent and then deploy it to the application server.

Mukhar_470-3.book Page 342 Saturday, October 1, 2005 6:14 AM

C H A P T E R 7 ■ W O R K I N G W I T H D A T A B A S E S 343

Deploying the Application with Tomcat

If you are using Tomcat, you will need to create the web.xml file shown in Listing 7-6.

Listing 7-6. web.xml file for the Tomcat Statement Example

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5" xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">
 <display-name>StatementExample</display-name>
 <servlet>
 <display-name>PersistStock</display-name>
 <servlet-name>PersistStock</servlet-name>
 <jsp-file>/PersistStock.jsp</jsp-file>
 </servlet>
 <resource-ref>
 <res-ref-name>jdbc/DataSourceExample</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
 </resource-ref>
</web-app>

Package the files shown in Listings 7-3, 7-4, 7-5, and 7-6 into a WAR file and deploy it to
Tomcat. Then, using the Tomcat administration tool, create either a global JDBC resource and
a resource link or a local JDBC resource, as described in the “Configuring a DataSource and
Connection with Tomcat” section earlier in this chapter.

Running the Application

With the database and the application server running, start the application by loading the
HTML form into your web browser (see Figure 7-11). Enter a stock symbol (it doesn’t need to
be a real one) into the first field and a stock name into the second field. Click the Submit button
to call the JSP. If your application works correctly, you will see a web page that says the data was
successfully inserted into the database. If the executeUpdate(String) method call returns a 0,
the web page will say that the data was not inserted into the database. If an exception is thrown, the
web page will print the error message from the SQLException object.

You can also check if the JSP worked by using either the PointBase command-line or GUI
tool. Enter and execute the following SQL command:

select * from stock_tbl;

The tool will display the results of the query, as shown in Figure 7-14. If the JSP worked
correctly, the results should include the data you entered in the web form.

Mukhar_470-3.book Page 343 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

344 C H A P T E R 7 ■ W O R K I N G W I T H D A T A B A S E S

Figure 7-14. A table showing data inserted by the StockEntry.jsp

Using the ResultSet Class
When you perform a query of a table in a database, the results of the query are returned in a
ResultSet object. The ResultSet object allows you to scroll through each row of the results and
read the data from each column in the row. The first example in this chapter (Listing 7-1) used
a ResultSet object to display data from the customer_tbl table in the PointBase sample data-
base. In this section, we will look at the ResultSet in more detail.

Moving Through the ResultSet
The ResultSet interface defines a number of methods that can be used for moving through the
results returned from a query (resultsets). However, not all methods are available for every
ResultSet. Earlier in the chapter, you saw the methods of the Connection object that are used
to create Statement objects. Here again are the three methods:

• public Statement createStatement()

• public Statement createStatement(int, int)

• public Statement createStatement(int, int, int)

Nonscrollable Resultsets

When you use the first method to create a Statement object (createStatement()), the ResultSet
object that is returned by executeQuery() is a nonscrollable resultset, or one that is of type
forward-only. This means that you can only move from the first row to the last row, and cannot
scroll backward through the results. The following is the only method that you can use for
moving through the ResultSet object:

public boolean next()

Mukhar_470-3.book Page 344 Saturday, October 1, 2005 6:14 AM

C H A P T E R 7 ■ W O R K I N G W I T H D A T A B A S E S 345

When you call the executeQuery(String) method, the method will always return a non-
null ResultSet. It may or may not have any data, but it will always be non-null. When the
executeQuery() method returns the ResultSet, the cursor is positioned prior to the first row
of data.

■Note Cursor is a database term. It generally refers to the set of rows returned by a query. When a cursor
is positioned at a row, you are accessing a particular row in the set.

To get to the first row of data, you must call the next() method. Each time you need to get
the following row of data, you call next() again. The next() method returns a boolean value. If
there is another row of data, the cursor is positioned at that row, and the method returns true;
if there are no more rows of data, the cursor is positioned after the last row, and the next()
method returns false. If there are no results at all in the resultset, then next() will return false
the first time it is called. If you use any of the other movement methods (which we will see
shortly) with a nonscrollable resultset, the ResultSet class will throw a SQLException.

In Listing 7-1, the JSP called the next() method first to determine if any rows were in the
ResultSet. When next() returns true to the JSP, the JSP reads and displays the rows in a do-while
loop. The condition on the while statement is also a call to next(); as long as next() returns
true, the loop continues to read rows from the ResultSet.

Scrollable Resultsets

Now, let’s take a look at the other two forms of createStatement(). These two forms have method
parameters. The first parameter sets the scrollability. The scrollability refers to whether you
can move backward through the resultset. The second parameter defines whether you can
update the table through the resultset. We’ll talk about updatable ResultSet objects later in the
chapter, in the “Using Updatable Resultsets” section. For the first parameter, you can pass one
of these three arguments:

• ResultSet.TYPE_SCROLL_SENSITIVE

• ResultSet.TYPE_SCROLL_INSENSITIVE

• ResultSet.TYPE_FORWARD_ONLY

The arguments are constant values defined in the ResultSet class. The first two values
create a scrollable resultset through which you can move forward or backward. If changes
occur to the database while you are going through a resultset, TYPE_SCROLL_SENSITIVE means
you will see those changes; TYPE_SCROLL_INSENSITIVE means you will not see the changes. The
third value creates a nonscrollable resultset that does not see updates.

For scrollable resultsets, the ResultSet class provides the following methods for moving
through the resultset:

Mukhar_470-3.book Page 345 Saturday, October 1, 2005 6:14 AM

346 C H A P T E R 7 ■ W O R K I N G W I T H D A T A B A S E S

boolean next() boolean previous()

boolean first() boolean last()

void beforeFirst() void afterLast()

boolean absolute(int) boolean relative(int)

boolean isFirst() boolean isBeforeFirst()

boolean isLast() boolean isAfterLast()

void moveToInsertRow() void moveToCurrentRow()

int getRow()

Because these methods are fairly self-explanatory, and since the use of these methods is
documented in the Javadoc (http://java.sun.com/j2se/1.4.2/docs/api/), we will not cover
them here. However, we will use them in the example shown later in Listing 7-7.

COUNTING THE ROWS IN A RESULTSET

A common problem when dealing with ResultSet objects is determining the number of rows in a resultset.
Imagine that you are building some kind of search function into your web application. After performing a
search, you want to tell the user how many results were returned by the search. In addition, you may want to
page the results if there are a lot of results. Unfortunately, many developers pick the wrong way to determine
the row count.

With JDBC 1.0, most developers did something like this:

1. Execute the query.

2. Execute ResultSet next(), add 1 to the count, and repeat until next() returns false.

3. Reexecute the query and present the result to the user.

It should be obvious why this is bad. First, you need to execute your query twice to present results to the
user. Not only is it a waste to execute the same query twice, the results may change between the first and
second queries, so you need to wrap both queries in a transaction. (Transactions are covered in the next
chapter.) Second, if you have a very large ResultSet, it could take a long time to scroll through the results.
Too much time means the user will not be visiting your web site anymore.

So, many developers rejoiced when JDBC 2.0 introduced scrollable ResultSet objects and the getRow()
method. Now they could do this to get the row count and display results:

1. Execute the query.

2. Execute last() to move to the last row.

3. Execute getRow() to get the row number.

4. Execute first() to move to the first row.

5. Display the results to the user.

Continued

Mukhar_470-3.book Page 346 Saturday, October 1, 2005 6:14 AM

C H A P T E R 7 ■ W O R K I N G W I T H D A T A B A S E S 347

Unfortunately, this is not much better than the first solution. Sure, you are now executing the query only
a single time, so you’ve eliminated that inefficiency. If you translate these steps into real code and test it with
either of the sample databases that come with Sun’s Java EE server (the sample or sun-appserv-samples
database) in PointBase, the code should do what you want. The problem is that sun-appserv-samples is a
toy database. Someday, you may be working with a real enterprise database, with tables that contain thousands
or even millions of rows. If you try these steps with an enterprise database, your code will likely fail. Why?
Because most drivers cache the rows in memory to provide scrollability. So, if you call last() on a ResultSet
with a million rows of data, the driver is going to try to cache all those rows in memory as it scrolls to the last
row. Guess who is going to run out of memory and crash the application.

So, what is the right way to determine the number of rows in a resultset. Here are two solutions (you may
be able to think of others):

• Execute a query that counts the number of rows. Most databases support a syntax such as count (*)
from table where conditions. If you are querying from multiple tables, and your database
supports nested queries, you may need to count (*) from select columns from tables
where conditions. This will return a ResultSet object with a single row and a single column
containing the row count of the query. Then you can execute the real query and present the results to
the user. To ensure that both queries are consistent, you should wrap them in a single transaction.

• Build your database so that most queries are precomputed. For example, suppose you have an address
table that users can search by last name. You have a second table with a column for last name and
count. For every unique last name in the first table, you have a row in the second table with the
frequency count. When a user queries for last name, you can fetch the frequency count in the same query.

Obviously, this is a very simple example. If you are working with a real system, the queries can be much
more complex than searching for a single column. In that case, you will need to consult with some real database
experts to determine the best way to build the database to do what you need. This is just one example of why
it is important to have experienced database analysts on your team if you are dealing with large amounts of
data in enterprise databases.

Reading Data from Resultsets
The ResultSet class also contains a number of methods for reading the data in a query result.
These methods allow you to reference the column by number or by name, and to retrieve just
about any data type. Here are two examples:

double getDouble(int)
double getDouble(String)

These methods allow you to read a double from the current row of the ResultSet. The
first method gets a double from the column with the index given by the int parameter. The
second method gets the double from the column with the name given by the String parameter.
There are getXXX() methods for every Java primitive and for numerous kinds of Java objects.
These methods retrieve the column values from the current row in the ResultSet. (Consult the
Javadoc for ResultSet for the complete list of available methods.)

Mukhar_470-3.book Page 347 Saturday, October 1, 2005 6:14 AM

348 C H A P T E R 7 ■ W O R K I N G W I T H D A T A B A S E S

Like the getDouble() methods, each getXXX() method comes in two overloaded forms:

• One form takes an int argument. The parameter you pass to the method is the column
number of the column you wish to retrieve. Note that columns returned from a table are
numbered starting from one, not zero. If you call one of these methods, and pass a zero
as the argument or pass a column number that is too great, a SQLException is thrown.

• The second form takes a String parameter. The argument you pass the name of the
column you wish to retrieve. If you pass an invalid name, a SQLException will be thrown.

Whether you use the int parameter or the String parameter depends on your application.
Using the int parameter is more efficient. However, the String parameter is more flexible. This
is because column indexes sometimes change, but column names rarely do. If you hard-code
the column number into your code, you’ll have problems as soon as the database analysts
change the schema of the database tables so that the column numbers change.

Listing 7-7 shows a JSP that uses a few of the methods for moving through a ResultSet and
reading data from a ResultSet. This JSP again connects to the PointBase sample database that
comes with the Java EE reference implementation. It performs a query of the customer_tbl in
the sample database, and then moves back and forth through the results.

Listing 7-7. ResultSetExample.jsp

<%@ page import="java.sql.*, com.apress.jdbc.*" %>
<html>
 <head>
 <title>ResultSet Example</title>
 </head>
 <body>
 <h1>ResultSet Example</h1>
<%
 Connection conn = null;
 Statement stmt = null;
 ResultSet rset = null;
 try {
 conn = JdbcManager.getConnection();
 stmt = conn.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
 ResultSet.CONCUR_READ_ONLY);
 String sqlcmd = "select * from customer_tbl";
 rset = stmt.executeQuery(sqlcmd);
 if (rset.next()) {
%>
<p>On first row, expected value of isFirst() is true
<p>isFirst() = <%= rset.isFirst()%>
<p>Now calling next() twice, expected value of getRow() is 3
<% rset.next(); rset.next(); %>
<p>getRow() = <%= rset.getRow() %>

Mukhar_470-3.book Page 348 Saturday, October 1, 2005 6:14 AM

C H A P T E R 7 ■ W O R K I N G W I T H D A T A B A S E S 349

<p>Moving to row 4, customer num, name, and email are
<% rset.next(); %>
<p>Row <%= rset.getRow() %>:
<%= rset.getString("CUSTOMER_NUM") %>,
<%= rset.getString("NAME") %>,
<%= rset.getString("EMAIL") %>
<p>Now calling last() to move to last row, expected value of isLast() is true
<% rset.last(); %>
<p>isLast() = <%= rset.isLast() %>, row number is <%= rset.getRow() %>
<p>Now calling previous(), expected value of isLast() is false
<% rset.previous(); %>
<p>isLast() = <%= rset.isLast() %>, row number is <%= rset.getRow() %>
<p>Now calling beforeFirst()
<% rset.beforeFirst(); %>
<p>isBeforeFirst() = <%= rset.isBeforeFirst() %>,
 isFirst() = <%= rset.isFirst() %>
<%
 } else {
%>
No rows found by query
<%
 }
 } catch (SQLException e) {
%>
 <%= e.getMessage() %>
<%
 e.printStackTrace();
 } finally {
 JdbcManager.close(rset);
 JdbcManager.close(stmt);
 JdbcManager.close(conn);
 }
%>
 </body>
</html>

As with other JDBC resources, it is important that you close the ResultSet object when it is
no longer needed. One important point to remember is that you must not close the Statement
or Connection objects until after you are finished with the ResultSet object, since closing the
Statement or Connection objects automatically closes the ResultSet object. Just as with Statement
objects, though, you shouldn’t rely on closing the Connection to close the ResultSet. You should
close resources as soon as you are finished with them. This JSP closes the ResultSet in the
finally block near the bottom of the listing. For this to work, you will need to add the appro-
priate method to the JdbcManager class from Listing 7-3. Listing 7-8 shows the method to be
added to JdbcManager.

Mukhar_470-3.book Page 349 Saturday, October 1, 2005 6:14 AM

350 C H A P T E R 7 ■ W O R K I N G W I T H D A T A B A S E S

Listing 7-8. close (ResultSet) Method to Add to JdbcManager.java

 public static void close(ResultSet rset) {
 if (rset != null) {
 try {
 rset.close();
 } catch (Exception ignored) {}
 }
 }

If you are using the Sun Application Server, deploy this JSP using the Deployment Tool in
the same manner as the previous examples in this chapter. Add the ResultSetExample.jsp and
JdbcManager.class files (JdbcManager.java is shown in Listing 7-3, with the addition shown in
Listing 7-8, and ResultSetExample.jsp is shown in Listing 7-7) to a web component, create a
resource reference for the JDBC resource, and deploy the component to the server.

If you are using Tomcat, you will need to manually create a web.xml file similar to the one in
Listing 7-6, changing it as needed for this JSP. Create a WAR file with the ResultSetExample.jsp
(Listing 7-7), JdbcManager.class (Listing 7-3 with the addition shown in Listing 7-8), and
web.xml files, and then deploy the WAR file to Tomcat. Using the Tomcat administration tool,
create a JDBC resource for the web component.

Ensure that the application server and the database server are running, and then load the
JSP into a browser. Your browser should display a page similar to that shown in Figure 7-15.

Figure 7-15. The ResultSetExample.jsp

Mukhar_470-3.book Page 350 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

C H A P T E R 7 ■ W O R K I N G W I T H D A T A B A S E S 351

Working with Null Values
NULL is a special value in the world of SQL. NULL is not the same thing as an empty string for
text columns, nor is it the same thing as zero for a numeric field. NULL means that no data is
defined for a column value within a relation. However, for primitive types and for Booleans, the
JDBC driver cannot return a null. When the column data for a row is a primitive or Boolean type
and the value is a SQL NULL, the getXXX() method returns a value that is appropriate for the
return type. For getXXX() methods that return a Java primitive, a SQL NULL is returned as a 0.
For the getBoolean() method, a SQL NULL is returned as a false.

This creates a potential problem. Suppose you call the getDouble(int) method and the
return value is 0. How do you know if the column value is really 0 or NULL?

int result = rset.getDouble(1);
if (result == 0) {
 //is the result really 0 or is it NULL?
}

The ResultSet class provides a method that can give you this information. Here is its
signature:

public boolean wasNull()

It does not take a column number or a column name. It provides its answer based on the
most recently read column.

int result = rset.getDouble(1);
if (result == 0) {
 if (rset.wasNull()) {
 //double was really null
 } else {
 //double was really 0
 }
}

Note that this is not a problem for any method that returns an object. For example, the
ResultSet class has a method that can return a java.sql.Date object for a database column of
SQL Date type.

public Date getDate(int)
public Date getDate(String)

Since the reference to an object can be a Java null, the method will return a Java null when
the column value is a SQL NULL.

Using Updatable Resultsets
The second parameter in the createStatement(int, int) and createStatement(int, int,
int) methods determines whether you can update the database through the ResultSet object.
Prior to JDBC 2.0, ResultSet objects could be used only to select data, move forward through
the data, and read the data in each column. To update the data, you needed to execute another
SQL command through a Statement object. JDBC 2.0 introduced the ability to update the data

Mukhar_470-3.book Page 351 Saturday, October 1, 2005 6:14 AM

352 C H A P T E R 7 ■ W O R K I N G W I T H D A T A B A S E S

in the table directly through the ResultSet, so as you move through the data, you can call methods
that insert, update, or delete the data.

To control the updatability of a ResultSet, you pass one of these two arguments as the
second parameter in the createStatement() method call:

• ResultSet.CONCUR_READ_ONLY

• ResultSet.CONCUR_UPDATABLE

The arguments are constant values defined in the ResultSet class. The first value creates a
ResultSet that can be used to read the column values but cannot be used to update the table.
The second value creates a ResultSet that can be used to update the table. The following are
the commonly used methods for updating a table through a ResultSet:

void updateRow() void cancelRowUpdates()

void moveToInsertRow() void moveToCurrentRow()

void insertRow() void deleteRow()

void updateBoolean(int, boolean) void updateBoolean(String, boolean)

void updateByte(int, byte) void updateByte(String, byte)

void updateDate(int, Date) void updateDate(String, Date)

void updateDouble(int, double) void updateDouble(String, double)

void updateFloat(int, float) void updateFloat(String, float)

void updateInt(int, int) void updateInt(String, int)

void updateLong(int, long) void updateLong(String, long)

void updateNull(int) void updateNull(String)

void updateString(int, String) void updateString(String, String)

When you move through a resultset using the methods described in the previous sections,
you can update whichever row you are currently positioned at. You update the data in the
current row with the updateXXX() methods. There is an updateXXX() method for every data type
supported by JDBC. (Consult the Javadoc for the full list of update methods.)

Each method comes in two overloaded versions. The first parameter of one version takes
a String argument that gives the name of the column to be updated; the other version uses the
column number of the column to be updated. The column number refers to the index of the
column in the ResultSet, not the table. The column that is named first in the SELECT command
is column 1, and so on. The second parameter in each method is the new value for the column.

■Note Check your driver documentation for the requirements for updating a ResultSet. Some databases
do not allow you to use SELECT * FROM table for an updatable ResultSet. You may need to explicitly
name each column in the SELECT command.

After you have updated all the columns that you want to update, you call the updateRow()
method to write the updated row to the table. The following code snippet shows how this could

Mukhar_470-3.book Page 352 Saturday, October 1, 2005 6:14 AM

C H A P T E R 7 ■ W O R K I N G W I T H D A T A B A S E S 353

be accomplished for a fictional stock in the stock_tbl we created in the “Using Statements to
Insert Data into a Database” section earlier in this chapter:

static String sqlQuery = "select SYMBOL, NAME from STOCK_TBL " +
 "where SYMBOL='ABED' ";
rset = stmt.executeQuery(sqlQuery);
rset.next();

rset.updateString(2, 'Absolute Education');
rset.updateRow();

If, before you call updateRow(), you decide that you don’t want to update the row, you can
call cancelRowUpdates().

You can also insert a new row of data through the ResultSet. This is accomplished by
moving to a special row in the ResultSet, known as the insert row. You move to the insert row
by calling the following method:

rset.moveToInsertRow();

When you move to the insert row, the ResultSet remembers the position you were at, and
this remembered position is known as the current row. Then, you update each column with the
appropriate value using the updateXXX() methods. When you are finished entering data for the
new row, you call this method:

rset.insertRow();

After you have called insertRow(), the ResultSet is still positioned at the insert row. You
can insert another row of data, or move back to the remembered position (the current row) in
the ResultSet. You can move back to the current row by calling moveToCurrentRow(). You can
also cancel an insert by calling moveToCurrentRow() before you call insertRow().

Finally, you can delete a row from the table and the ResultSet by calling the following method:

rset.deleteRow();

Keeping the ResultSet Open: ResultSet Holdability
When you execute another SQL command with a statement, any previously opened ResultSet
objects are closed. Also, when commit() is called with a JDBC 2.0 or 1.0 driver, the ResultSet is
closed. JDBC 3.0 adds a new ResultSet object feature called holdability, which refers to whether or
not a ResultSet is closed when a new SQL command is executed by a statement or when commit()
is called. JDBC 3.0 gives you the capability to keep the ResultSet open.

Two class constants were added to the ResultSet interface to provide parameters for the
createStatement() method:

• ResultSet.HOLD_CURSORS_OVER_COMMIT specifies that the ResultSet object should not be
closed when changes are committed.

• ResultSet.CLOSE_CURSORS_AT_COMMIT specifies that the driver can close the ResultSet
object when changes are committed.

Mukhar_470-3.book Page 353 Saturday, October 1, 2005 6:14 AM

354 C H A P T E R 7 ■ W O R K I N G W I T H D A T A B A S E S

A new createStatement() method was added to the Connection class to support this feature:

createStatement(int resultSetType, int resultSetConcurrency, ➥

 int resultSetHoldability)

As of the time this chapter was written, Sun listed almost three dozen drivers that support
JDBC 3.0. Check your database documentation to see if it supports holdability functionality.
PointBase does support holdability if you are using a JVM version 1.4 or later.

Summary
In this chapter, we looked at some of the ways you can communicate with databases. After
finishing this chapter, you should know:

• How to create a DataSource in the Sun Application Server and the Tomcat server. You
should also know how to get a connection from a DataSource.

• Statement objects are used to send SQL commands to the database. Statement
objects are created by Connection objects. SQL commands are sent using either
executeUpdate(String) or executeQuery(String).

• ResultSet objects are used to read the data returned by a SQL query. ResultSet objects
can be scrollable, updatable, and holdable. You move through a ResultSet using methods
such as next(), previous(), first(), and last(). You read results using methods such as
getString(int) and getDouble(String).

This chapter has been an introduction to the basics of JDBC. If you are new to JDBC
programming, this chapter provided you with enough information to get you started. However,
this book is about Java EE applications. As a Java EE developer, you are going to quickly encounter
some more complex situations. In the next chapter, we will look at some of the more advanced
topics that you will need to know as a Java EE developer.

Exercises
1. All the examples in this chapter used the JDBC API and JDBC code statements in the

JSPs to talk to the database. However, in the JSP chapters, we looked at ways to use
standard actions and tag libraries to abstract code out of the JSP. The Java Standard Tag
Library (JSTL) includes tags for adding SQL commands to a JSP. Using the JSTL, rewrite
one or more JSP examples in this chapter to use the SQL tags rather than the JDBC API
methods.

2. Update the StatementExample (Listing 7-4) presented in this chapter. Change the JSP so
that after the symbol and name are submitted from the HTML page, the JSP queries the
stock_tbl table for the symbol using an updatable ResultSet. If the symbol is found,
the JSP uses the ResultSet to update the row with the submitted name; if the symbol is
not found, the JSP uses the ResultSet to insert a new row. Display both the old row (if
found) and the new row.

Mukhar_470-3.book Page 354 Saturday, October 1, 2005 6:14 AM

C H A P T E R 7 ■ W O R K I N G W I T H D A T A B A S E S 355

3. In the sidebar titled “Counting the Rows in a Resultset,” we discussed various ways to
count the rows in a resultset. Find or create a table with at least 100,000 rows. Attempt to
cause an OutOfMemoryError using a scrollable resultset to query the table. Document
the row number at which the error occurs.

4. Create a DataSource that provides a pooled connection. Define another that creates and
provides a regular, nonpooled connection. Run tests to measure the time it takes to
obtain a pooled connection versus a nonpooled connection. Which is faster?

5. With a Connection object, you can obtain a reference to an object named DatabaseMetaData.
Write a JSP that uses a DatabaseMetaData object to display information about your
database. Details about how to use DatabaseMetaData can be found in the Javadoc.

6. With a ResultSet object, you can obtain a reference to an object named ResultSetMetaData.
Write a JSP that uses a ResultSetMetaData object to display information about a table
and the results in the ResultSet. Details about how to use ResultSetMetaData can be
found in the Javadoc.

Mukhar_470-3.book Page 355 Saturday, October 1, 2005 6:14 AM

Mukhar_470-3.book Page 356 Saturday, October 1, 2005 6:14 AM

357

■ ■ ■

C H A P T E R 8

Advanced Topics in JDBC

In the previous chapter, we looked at some basic features of JDBC: how to get a connection,
how to query and update a database using Statement objects, and how to read the results of a
query using a ResultSet object. Once you’ve gained an understanding of these fundamentals,
you’ll be able to write simple JDBC programs.

However, in the fast-paced world of web applications, you will soon find that you need
more skills than those presented in the previous chapter. In this chapter, we will cover some
advanced JDBC topics that you will find invaluable as a Java EE developer. We will also look at
some problems you might encounter in a Java EE application and how to avoid them with well-
designed JDBC code.

In this chapter, you will learn the following:

• How to use PreparedStatement objects to make your JDBC more efficient and to insert
nonprimitive data types into a database

• What stored procedures are, why they are useful, and how you can call them with
JDBC code

• How to ensure that your JDBC code takes the database from one valid and consistent
state to another, so that the database does not contain corrupted data

• How to deal with the problem of multiple users trying to change data in the database at
the same time

Prepared Statements
PreparedStatement objects are used to send SQL commands to the database. As you may recall
from the previous chapter, Statement objects are also used to send SQL commands to the data-
base. If both Statement and PreparedStatement objects are used to send commands to a database,
how are they different? Let’s first consider the situations where you would want to bother with
prepared statements.

Mukhar_470-3.book Page 357 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

358 C H A P T E R 8 ■ A D V A N C E D T O P I C S I N J D B C

Reasons for Using Prepared Statements
PreparedStatement objects are useful in several situations:

• When you are working with different database systems

• When you are sending many SQL commands to the database, and only the data values
are changing

• When you need to insert nonprimitive data into a table

Dealing with Database Differences

To demonstrate a common problem when you’re dealing with different database systems, let’s
work through an example with PointBase, using its console (or command-line) tool. Navigate
to the PointBase \tools\serveroption directory of your Java EE installation and run the
startconsole or startcommander script file. When you first start either tool, you will need to log
in to the database named sample (see Chapter 2 or Chapter 8 for details on how to do this).

After the tool starts up, enter the following SQL command at the SQL> prompt. If you are
using the console tool, enter the SQL command in the SQL Command field and click the
Execute button.

update customer_tbl set name="No Name";

If you are using the command-line tool, this is what you will see:

SQL> update customer_tbl set name="No Name";
SQL> ^
SQL>
SQL> Error Message: Column "No Name" not found in table at position 29.
SQL> Error SQLState: ZD002
SQL> Error Code: 15004

If you are using the console tool, you will see the same error message, but it will be in an error
dialog box.

The error message says that “No Name” is not a column in the table. That is quite obvious.
Run describe customer_tbl at the command line, or expand the customer_tbl node in the
console tool, as shown in Figure 8-1. You will see a description of all the columns, and none of
them are named No Name. But the column you tried to update was the name column, and that
is certainly one of the columns in the table.

Mukhar_470-3.book Page 358 Saturday, October 1, 2005 6:14 AM

C H A P T E R 8 ■ A D V A N C E D T O P I C S I N J D B C 359

Figure 8-1. Using the console tool, you can expand the tree in the left pane to see information
about the database.

So, the column name you are trying to use is correct, but PointBase is complaining about
a column that doesn’t exist. The SQL appears to be correct. It certainly follows the syntax for an
UPDATE command. It has the following elements:

• update: The command itself

• customer_tbl: The table name

• set: Part of the syntax for an UPDATE command

• name: The correct column name

• "No Name": The new String value for the column

Mukhar_470-3.book Page 359 Saturday, October 1, 2005 6:14 AM

360 C H A P T E R 8 ■ A D V A N C E D T O P I C S I N J D B C

Perhaps reviewing some code you executed earlier can help explain what is happening.
You inserted string data into the database in the previous chapter in the StatementExample.jsp
(Listing 7-4). Here are the lines of code where the SQL command is constructed:

 String sqlcmd = "insert into stock_tbl values ('" +
 request.getParameter("symbol") + "', '" +
 request.getParameter("name") + "')";

Beyond the obvious difference that this is an INSERT command, and the command that
failed was an UPDATE command, there is one other important difference between the commands.
In Listing 7-4, you used single quotes to delimit string data. Most databases accept only single
quotes to delimit strings, but a few, such as MySQL, accept single or double quotes.

The obvious solution is to replace the double quotes with single quotes. That would solve
the problem that we just looked at with PointBase. But before you rush out and ensure that all
your strings are delimited with single quotes, let’s look at another problem you might see when
working with JDBC.

A common question in JDBC discussion forums is, “How do I insert a name such as O’Grady
into my database, since the apostrophe in the name acts as a delimiter?” The common answer
to that question is to change the single quote in the name to two single quotes. Thus O'Grady
becomes O''Grady (notice that it’s not a double quote—it’s two single quotes in a row). With
MySQL, you can escape the single quotes, so O'Grady becomes O\'Grady. (Unfortunately,
escaping the apostrophe does not work with other databases.) Another common solution that
is recommended for this problem is to write a little method that searches for single quotes in
the strings and changes them to whatever works for the database in question.

There is a better solution though. Rather than worrying about how to delimit strings, or
how to change single quotes into pairs of single quotes, JDBC provides a class that can do all
this work for you. That class is the PreparedStatement class. The PreparedStatement class (or
more specifically, the database-specific class that implements the PreparedStatement interface)
can insert strings into a database, and it will automatically use the correct delimiter and handle
a string with embedded delimiters.

CHALLENGES OF INTEGRATING SYSTEMS

One of the projects I recently worked on involved three geographically separated teams. Each team was
responsible for a system, and the three systems were supposed to work together to solve the user’s problem.
The team I was on was developing one of the systems, and we were also responsible for integrating the whole
mess together. The project provides an excellent example of the platform-independence notion of Java and
JDBC, but it also points out that there are differences between databases.

One of the teams was using MySQL (http://www.mysql.com) as its development database, but the
final system was using Sybase as the production database. As soon as I tried integrating their code, their
system threw a SQLException. The SQLException indicated that the problem was in one of the SQL
commands in the JDBC code, but the code appeared to be correct. What made it even more frustrating is that
the error message did not seem to have any relation to the problem.

It turned out that the code I got from the other team used double quotes to delimit strings, and as soon
as I ran the code against Sybase, Sybase threw a SQLException. MySQL accepts double quotes to delimit
strings, but Sybase does not. The problem was that JDBC is platform-independent, but the SQL command was
not platform-independent.

Mukhar_470-3.book Page 360 Saturday, October 1, 2005 6:14 AM

C H A P T E R 8 ■ A D V A N C E D T O P I C S I N J D B C 361

Reusing SQL Commands

There is another often-mentioned reason for using a PreparedStatement object. Most databases
keep previously executed SQL in a cache. If you send a SQL command that matches one in the
cache, the database reuses the SQL from the cache because it has already been compiled and
optimized. This improves performance. To reuse a command, the SQL command you send
must match one in the cache exactly. Suppose you send these two SQL commands to a database:

insert into customer_tbl (name, state, zip) ➥

values ('Giordanos Pizza', 'Illinois;, '60611')
insert into customer_tbl (name, state, zip) ➥

values ('Independent Records', 'Illinois', '60611')

These commands enter values into three columns (name, state, and zip) in the customer_tbl
table. You can easily see that these two SQL commands are essentially the same, except for the
literal values for the customer data. For the database, however, these two SQL commands are
entirely different. It cannot reuse the first SQL command when you send the second SQL
command.

Suppose, however, you could pass the database a SQL command that had variables in it.
Then the database could reuse the same SQL command any time you passed it new values for
the variables. This is what the prepared statement does. A PreparedStatement object allows you
to create a SQL command with variables that the database server can precompile. Then you
just pass it the values, and the database executes the precompiled command with the values
you passed. Pass another set of new values, and the command is executed again with the new
values. This is why, for SQL commands that you execute many times, the PreparedStatement
object provides a performance enhancement over SQL commands executed with a Statement
object.

Inserting Nonprimitive Data

The third situation where PreparedStatement objects are useful is when you need to insert
nonprimitive data into a database table.

When you need to insert a simple literal value into a table, it is quite easy. You just write the
SQL command to include the literal. For example, the SQL command for inserting a string
value is

INSERT INTO mytable (myStringColumn) VALUES ('This is a string literal');

Inserting a number into a table is just as simple:

INSERT INTO mytable (myNumberColumn) VALUES (42);

But Java is an object-based language, and inserting objects into a database table is a bit
more tricky. How do you write a SQL command to insert an array? How do you write a SQL
command to insert a binary object? The answer is by using the PreparedStatement object. A
PreparedStatement object can accept Java objects of any type, and correctly insert them into a
database table for you (assuming the database table has a column of the correct type for the object).

Now that we’ve seen some of the situations in which PreparedStatement objects are useful,
the next section will demonstrate how to use a PreparedStatement object in these situations.

Mukhar_470-3.book Page 361 Saturday, October 1, 2005 6:14 AM

362 C H A P T E R 8 ■ A D V A N C E D T O P I C S I N J D B C

Creating a PreparedStatement
Creating a PreparedStatement object is similar to creating a Statement object. One difference is
that with a prepared statement, you need to tell the database what SQL you intend to execute.
You pass the SQL in the creation method, rather than in the execute method. You can use the
following methods of the Connection class to create a PreparedStatement object:

• prepareStatement(String sql): Creates a prepared statement for the given SQL. If the
prepared statement returns a ResultSet, the ResultSet has a type forward-only, is not
updatable, and is not holdable.

• prepareStatement(String sql, int resultSetType, int resultSetConcurrency):
Creates a prepared statement for the given SQL. If the prepared statement returns a
ResultSet, the ResultSet has the given ResultSet type and concurrency and is not holdable.

• prepareStatement(String sql, int resultSetType, int resultSetConcurrency, int
resultSetHoldability): In JDBC 3.0, creates a prepared statement for the given SQL. If
the prepared statement returns a ResultSet, the ResultSet has the given ResultSet type,
concurrency, and holdability.

The resultSetType parameter refers to whether a ResultSet is scrollable. The
resultSetConcurrency parameter is the ability to update a ResultSet. The resultSetHoldability
parameter refers to whether a ResultSet is closed when changes are committed. Refer to
Chapter 7 for more information about these concepts.

The first argument in each method is a SQL string. The SQL string can have placeholders
(variables) that represent data that will be set at a later time. The placeholder is represented by
the question mark symbol (?).

Let’s take the SQL command presented earlier and change it so that it could be used as
part of a prepared statement. Earlier, in the “Reusing SQL Commands” section, we presented
two commands that inserted some literal data into a customer table. By replacing the literal
data with placeholders, we can create a SQL command that can be reused with different data
values:

insert into customer_tbl (name, state, zip) values (?, ?, ?)

Placeholders are referred to by their index in the SQL command. Placeholders are consec-
utively indexed, starting with index 1 at the beginning of the SQL string. When the SQL in the
prepared statement is sent to the database, the database compiles the SQL command. Before
you execute a prepared statement, you must set the placeholders with data. The driver sends
the data to the database when the prepared statement is executed, and the database executes
the SQL command with the data.

■Note A PreparedStatement object can be used with any SQL command, regardless of whether it has
placeholders or not. Placeholders make it easy to reuse the command with different data values and to use
the command with complex data. However, the PreparedStatement object can be used to execute any
SQL command.

Mukhar_470-3.book Page 362 Saturday, October 1, 2005 6:14 AM

C H A P T E R 8 ■ A D V A N C E D T O P I C S I N J D B C 363

Using a Prepared Statement
After creating the PreparedStatement object, but before the SQL command can be executed, the
placeholders in the command must be set. The PreparedStatement interface defines various
methods for doing this. You can also use the PreparedStatement object for setting null values in
a table. The other advantage of using a prepared statement is that the values you set do not
need to be reset every time you want to execute the SQL command; that is, the values you set
are persistent. Finally, you can perform batch updating with a prepared statement.

Setting Placeholders

The methods for setting placeholders take the form of setXXX(), where XXX is a string that identifies
the kind of data being set. Here is the method for setting a String:

void setString(int parameterIndex, String x)

There are other setXXX() methods available, one for each Java primitive, and methods for
many object types, such as Date and BigDecimal. You should consult the Javadoc for informa-
tion about all the available methods.

The first argument in the setXXX() method will be the index of the placeholder in the SQL
command. Each placeholder is referenced by its position in the SQL string. Starting from the
beginning of the string, the first placeholder is at index 1, the second at 2, and so on.

The second argument is the data value that replaces the placeholder. So, using the same
SQL INSERT statement from the previous example, here’s how the data values would be set:

String sql = "insert into customer_tbl (name, state, zip) values (?, ?, ?)"
// Placeholder index: 1 2 3
PreparedStatement ps = conn.prepareStatement(sql);
ps.setString(1, "Giordano's Pizza");
ps.setString(2, "IL");
ps.setString(3, "60611");
ps.executeUpdate();

■Caution If you do not set all the parameters before executing the SQL, the driver will throw a SQLException.

When the values have all been set, you execute the SQL command by calling the
executeUpdate() method as shown here. If you call the executeQuery(String),
executeUpdate(String), or execute(String) method, the driver will throw a SQLException.
You must call the no-parameter versions of those methods with a prepared statement.

Setting Placeholders with Complex Data

Another advantage of PreparedStatement objects is that they can be used to insert and update
complex data in the database. As you saw earlier, when you insert a string into a database table
using a statement, you can simply delimit the string with single quotes, and the table accepts
the string. What happens, however, when the table column is a date or timestamp type? Unless

Mukhar_470-3.book Page 363 Saturday, October 1, 2005 6:14 AM

364 C H A P T E R 8 ■ A D V A N C E D T O P I C S I N J D B C

you work with that column type on a frequent basis, you’ll always need to consult the docu-
mentation for the correct format: is it 2005/07/23, 23-Jul-05, or some other format? With a
prepared statement, you never need to remember the correct format for complex types.

With a prepared statement, the PreparedStatement object handles any formatting to
prepare the data for insertion into the database. In the case of dates, times, and timestamps,
you simply create the correct java.sql object and pass it to the setDate() method, as shown here:

//Assume getSqlDate() returns a Date with the given date
java.sql.Date d = getSqlDate("23-Jul-05");
pstmt.setDate(1, d);

Now it doesn’t matter what the correct database date format is, because the
PreparedStatement object will take the Date object and perform the formatting for you.

If you look at the Javadoc for PreparedStatement, you will see that there are setXXX()
methods for various types of complex data such as arrays, streams, dates, times, and so on.
There is even a method for setting an arbitrary object: setObject(). In some enterprise databases,
you can create complex column types. For example, you could create a column type called
address, which contains street, city, state, and zip code data. You can then write a Java class
that corresponds to these complex column types. The setObject() method is used to set the
parameter data for a column with a complex type.

Setting Null Values

You might think that you can insert a null into a database table by not setting the placeholder
that corresponds to the column that will have the null value. However, if you do not set all the
parameters, the driver will throw a SQLException. Null values are inserted into the database by
using one of the two setNull() methods:

void setNull(int parameterIndex, int sqlType)
void setNull(int parameterIndex, int sqlType, String typeName)

As with the other setXXX() methods, the first parameter is the index of the placeholder.
The second parameter is defined in the Java class java.sql.Types. The java.sql.Types class
contains int constants that correspond to every JDBC type. Thus, if you want to set a String
column to null, you would pass java.sql.Types.VARCHAR (VARCHAR is the SQL equivalent to a
string). If you want to set a Date column to null, you would pass java.sql.Types.DATE. You
would pass the appropriate constant for the column you are setting to null.

The second form of the setNull() method has a third parameter. The java.sql.Types class
defines a constant with the name OBJECT. When you use java.sql.Types.OBJECT as the second
argument, the typeName parameter must be the fully qualified type name of the type being set
to null. This method can be used for any type, but is provided primarily for user-named types
and REF type parameters. Some databases support user-defined types. Inside the database, you
can create a custom column type. You can then create a table with a column of that type. In
your Java code, you create a class that corresponds to that type. In the setNull(int, int, String)
method, you pass java.sql.Types.OBJECT as the sqlType parameter, and the fully qualified
class name of the class as the typeName parameter.

Mukhar_470-3.book Page 364 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

C H A P T E R 8 ■ A D V A N C E D T O P I C S I N J D B C 365

■Tip For more information about creating and mapping Java classes to database column types, see
Section 3.6 of the advanced JDBC tutorial, at http://developer.java.sun.com/developer/
Books/JDBCTutorial/index.html.

Reusing a Prepared Statement Object

Once a placeholder has been set with data, the data remains set for that placeholder until the
code explicitly changes the value for the placeholder. In other words, you are not required to
set every placeholder every time you want to execute some SQL using the same prepared state-
ment. If you set the placeholder at some point in the code, and that value is reused in multiple
rows, you need to set the placeholder only the first time.

For example, let’s use the code snippets shown earlier where customer data was inserted
into the customer_tbl table. You could create a JSP that accepts a state and zip code, and passes
these values to a JSP that allows a user to enter customer names for that state and zip code.
Here’s a code snippet that shows how the Java code in that second JSP might look:

String sql = "insert into customer_tbl (name, state, zip) values (?, ?, ?)"
PreparedStatement ps = conn.prepareStatement(sql);
ps.setString(2, req.getParameter("state"));
ps.setString(3, req.getParameter("zip"));
String[] names = req.getParameterValues("names");
for (int i = 0; i < names.length; i++) {
 ps.setString(1, names[i]);
 int result = ps.executeUpdate();
}

Before the loop is entered, setString() is called to set the value for the second and third
arguments. Inside the loop, you need to set the value of only the first argument. Since the loop
never resets the values of the second and third arguments, the values are reused for every
executeUpdate() method call.

As shown in this example, you can reset the value of a placeholder simply by calling one of
the setXXX() methods with a new value. If you need to clear all the values in a prepared state-
ment, that can be done by calling the PreparedStatement class’s clearParameters() method.

Reusing a SQL Command

Earlier, we mentioned that using a prepared statement can provide a performance enhancement
over using a statement. This enhancement occurs even if you use a new PreparedStatement object.
In other words, if a component in your application uses a PreparedStatement object to execute
a SQL command, some other component will get the advantage of the compiled SQL command
on the database side. It doesn’t matter whether the PreparedStatement object is the same; it
only matters whether the SQL command is the same. This occurs because it is the database
that stores the compiled SQL command in its cache. If the same SQL command is sent by any
other client, the database can reuse the compiled SQL command.

Mukhar_470-3.book Page 365 Saturday, October 1, 2005 6:14 AM

366 C H A P T E R 8 ■ A D V A N C E D T O P I C S I N J D B C

Performing Batch Updates

Just as with a statement, you can use a prepared statement to perform batch updating. The
difference is that before calling addBatch(), you must set each placeholder with the setXXX()
methods as shown earlier. After you have set the placeholders, you call addBatch(). This adds
the data values to the batch. After you have added all the rows you want, you call executeBatch().
This sends all the data values to the database for execution with the already stored SQL command.
Rewriting the code snippet shown earlier to use batching looks like this:

String sql = "insert into customer_tbl (name, state, zip) values (?, ?, ?)"
PreparedStatement ps = conn.prepareStatement(sql);
ps.setString(2, req.getParameter("state"));
ps.setString(3, req.getParameter("zip"));
String[] names = req.getParameterValues("names");
for (int i = 0; i < names.length; i++) {
 ps.setString(1, names[i]);
 ps.addBatch();
}
int results[] = ps.executeBatch();

Listing 8-1 shows a JSP that uses some of the features of the PreparedStatement class. This
JSP reuses the JdbcManager class from the previous chapter (see Listing 7-3 and Listing 7-8). The
SaveRatings JSP is part of a hypothetical brokerage firm application. On a periodic basis, stock
analysts in the firm will submit a rating for some set of stocks. The SaveRatings JSP reads data
about stock ratings from a request (see Listing 8-2), and then inserts that data into a database
table named stock (see Listing 8-3). It inserts the data using a PreparedStatement object. The
request contains a parameter for stock analyst name, a list of stocks being rated, and a rating
for each stock.

Listing 8-1. SaveRatings.jsp

<%@ page import="java.sql.*, com.apress.jdbc.*" %>
<html>
 <head>
 <title>Easy Street - Save Ratings</title>
 </head>
 <body>
 <h1>Save Ratings</h1>
<%
 Connection conn = null;
 PreparedStatement stmt = null;
 try {
 conn = JdbcManager.getConnection();
 String sqlcmd = "insert into stock (tickerSymbol, analyst, rating) " +
 "values (?,?,?)";
 stmt = conn.prepareStatement(sqlcmd);
 String analystName = request.getParameter("AnalystName");
 stmt.setString(2, analystName);
 String[] stockNames = request.getParameterValues("stockNames");

Mukhar_470-3.book Page 366 Saturday, October 1, 2005 6:14 AM

C H A P T E R 8 ■ A D V A N C E D T O P I C S I N J D B C 367

 for (int i = 0; i < stockNames.length; i++) {
 stmt.setString(1, stockNames[i]);
 String rating = request.getParameter(stockNames[i]);
 if (rating.equals("No Rating")) {
 stmt.setNull(3, java.sql.Types.VARCHAR);
 } else {
 stmt.setString(3, request.getParameter(stockNames[i]));
 }
 stmt.addBatch();
 }
 int results[] = stmt.executeBatch();
 for (int i = 0; i < results.length; i++) {
 if (results[i] == 1) {
%>
 <p>Rating of "<%=request.getParameter(stockNames[i])%>"
 for <%= stockNames[i] %> was inserted successfully</p>
<%
 } else {
%>
 <p>Rating for <%= stockNames[i] %> was not inserted successfully</p>
<%
 }
 }
 } catch (SQLException e) {
%>
 <%= e.getMessage() %>
<%
 e.printStackTrace();
 } finally {
 JdbcManager.close(stmt);
 JdbcManager.close(conn);
 }
%>
 </body>
</html>

This JSP uses the JdbcManager class to get a connection. (Don’t forget to create the JDBC
resource when you deploy the application.) After the PreparedStatement object is created by
the connection, the JSP reads the analyst name from the request, and sets the second parameter in
the PreparedStatement with that value. Notice that this is the only time that the second parameter
is set. The value is reused for every SQL command. Notice also that the second parameter is set
before any other; the parameters can be set in any order, as long as they are all set.

Next, the JSP gets a String array from the request that contains the stock symbols. It uses
this array in a loop. Inside the loop, the stock symbol becomes the name used to retrieve the
request parameter that holds the rating for the stock. The JSP sets the stock symbol and rating
parameters in the PreparedStatement; if the request contains a value of "No Rating" for a stock,
the JSP sets the column to null (for no other reason than to demonstrate using the setNull()
method). The JSP then calls addBatch() to add the values to the batch. After the loop completes,

Mukhar_470-3.book Page 367 Saturday, October 1, 2005 6:14 AM

368 C H A P T E R 8 ■ A D V A N C E D T O P I C S I N J D B C

the code calls the executeBatch() method to send all the batched commands to the database
for execution. It then runs through the result array to determine which commands succeeded.

Listing 8-2, EnterRatings.jsp, shows the JSP that submits the stock ratings to the SaveRatings
JSP. This JSP uses an input field with the name “AnalystName” to accept an analyst name. It
then creates a table consisting of the stock symbols and radio buttons for six possible ratings.
In this JSP, we’ve hard-coded the symbol names. In a real application, you would probably
read the symbols to be rated from a database. The JSP uses the String array of stock names to
create the table. Each row in the table contains a field named stockSymbols with the symbol of
one stock. When the form is submitted, the five symbols will be submitted together with the
same name. This is what allows the SaveRatings JSP to get the symbols as a String array.
Finally, each row contains a radio button. The name used for all radio button input tags in a
row is the stock symbol.

Listing 8-2. EnterRatings.jsp

<%@ page import="java.sql.*, com.apress.jdbc.*" %>
<html>
 <head>
 <title>Easy Street - Enter Ratings</title>
 </head>
 <body>
 <h1>Stock Ratings</h1>
 <form action="SaveRatings.jsp">
 Enter your name:
 <input type="text"
 name="AnalystName"
 value=""/>
 <p>Here are the stocks to rate for this week:</p>
<%
 String[] stocks = new String[] {
 "DDC", "SRU", "SRI", "UDE", "ZAP"
 };
%>
 <table border="1">
<%
 for (int i = 0; i < stocks.length; i++) {
%>
 <tr>
 <td><input type="hidden" name="stockNames"
 value="<%= stocks[i] %>"><%= stocks[i] %></td>
 <td><input type="radio" name="<%= stocks[i] %>"
 value="Smashing">Smashing</td>
 <td><input type="radio" name="<%= stocks[i] %>"
 value="Take a chance">Take a chance</td>
 <td><input type="radio" name="<%= stocks[i] %>"
 value="It's OK">It's OK</td>

Mukhar_470-3.book Page 368 Saturday, October 1, 2005 6:14 AM

C H A P T E R 8 ■ A D V A N C E D T O P I C S I N J D B C 369

 <td><input type="radio" name="<%= stocks[i] %>"
 value="Could be worse">Could be worse</td>
 <td><input type="radio" name="<%= stocks[i] %>"
 value="Run away">Run away</td>
 <td><input type="radio" name="<%= stocks[i] %>"
 value="No Rating">No Rating</td>
 </tr>
<%
 }
%>
 </table>
 <input type="submit" name="submit" value="Submit Ratings"/>
 </form>
 </body>
</html>

After creating the stock table (Listing 8-3) and deploying the application (remember to
create a JDBC resource), you will start by loading the EnterRatings JSP into your browser. You
should see a web page that looks like Figure 8-2. You can then enter a name and select ratings
for each stock. Notice that in Figure 8-2, we’ve entered a name that includes embedded double
quotes. Also, one of the ratings uses an embedded single quote. If you tried to insert this data
using a Statement object, you would certainly have problems. However, as you will see in a
moment, the PreparedStatement object handles this data without any problems.

Figure 8-2. The EnterRatings web page accepts an analyst name and ratings for each stock.

Mukhar_470-3.book Page 369 Saturday, October 1, 2005 6:14 AM

370 C H A P T E R 8 ■ A D V A N C E D T O P I C S I N J D B C

Before you can run the application, however, you need to create a database table to hold
the ratings. Using either the console or command tool, log in to the sample database using the
PBPUBLIC username and password. Execute the command shown in Listing 8-3 to create the
database table.

Listing 8-3. SQL Command to Create the stock Table

create table stock (
 tickerSymbol varchar(10),
 analyst varchar(30),
 rating varchar(30));

After you create the table, it will be empty. Load the EnterRatings JSP, enter some values,
and submit the form. The SaveRatings JSP will read the data and insert it into the database.
Assuming that there are no problems, you should see a web page similar to Figure 8-3.

Figure 8-3. The SaveRatings web page shows the result for each row of data inserted.

You can also view the data that is stored in the database by executing the following
command using one of the PointBase tools:

select * from stock;

You can see the data stored by the application in Figure 8-4. Notice that the double quote
in the analyst name and the single quote in the rating “It’s Okay” were both saved successfully.

Mukhar_470-3.book Page 370 Saturday, October 1, 2005 6:14 AM

C H A P T E R 8 ■ A D V A N C E D T O P I C S I N J D B C 371

Figure 8-4. The PreparedStatement correctly handled single quotes and double quotes submitted
by the web application.

Callable Statements
In many enterprise applications, the business logic for the application will be encapsulated in
stored procedures, or sprocs for short, inside the database. Stored procedures are just like methods
in your Java code. They have names, they can have parameter lists, they have a body (containing
SQL and procedural commands) that performs some work, and they can return values. Your code
can execute stored procedures in a database through the use of java.sql.CallableStatement
objects.

In this section, the term stored procedure is used generically to refer to both procedures
and functions. The main difference between the two is that a function can return one or more
values and a procedure does not return a value. If your database supports storing procedural
and SQL statements in the database for execution, but uses a different term, you should
consider stored procedure to be a synonym for the term used by your database. For example,
Sybase has different definitions for procedures and functions. In Sybase, a function can return
only a single value (similar to a Java method), while a procedure can return any number of
output parameters.

Reasons for Using Stored Procedures
There are many reasons why you would use stored procedures. Here are some of the benefits
of stored procedures:

• A stored procedure can encapsulate a common set of SQL commands. A client can
access this functionality without needing to make many different JDBC calls.

• You can reuse stored procedures that are already developed, rather than re-creating
their functionality from scratch in JDBC.

• The stored procedure makes transaction control easier. We will look at transactions and
transaction control in greater detail later in this chapter.

• Providing a given functionality in a stored procedure ensures that every part of the appli-
cation that uses the functionality does so in the same way. If requirements change, only
the procedure may need to be changed, and everyone who uses the procedure automat-
ically gets the change.

• By having a procedure in a database, the code exists in one place only, yet is accessible
to any client, Java or not, that can connect to the database.

Mukhar_470-3.book Page 371 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

372 C H A P T E R 8 ■ A D V A N C E D T O P I C S I N J D B C

Creating a CallableStatement
Even though they provide useful features, not all databases implement stored procedures. For
example, MySQL does not support stored procedures. Other databases may provide similar
functionality in a different manner. Cloudscape, for example, doesn’t support storing SQL
statements, but does support storing and executing Java classes. PointBase provides a hybrid
solution: you can create stored procedures and functions, but the stored procedures and functions
call external Java methods that you write.

JDBC code can call stored procedures using a CallableStatement object. A CallableStatement
object is created in much the same way as the PreparedStatement object, by calling a method of
the Connection object. The following are the Connection interface methods for creating a
CallableStatement object:

• prepareCall(String sql): Creates a CallableStatement object for the given SQL. If the
CallableStatement returns a ResultSet object, the ResultSet has a type of forward-only,
is not updatable, and is not holdable.

• prepareCall(String sql, int resultSetType, int resultSetConcurrency): Creates a
CallableStatement object for the given SQL. If the CallableStatement returns a ResultSet,
the ResultSet has the given ResultSet type and concurrency, and is not holdable.

• prepareCall(String sql, int resultSetType, int resultSetConcurrency, int
resultSetHoldability): In JDBC 3.0, creates a CallableStatement object for the given
SQL. If the CallableStatement returns a ResultSet, the ResultSet has the given ResultSet
type, concurrency, and holdability.

The resultSetType parameter refers to whether a ResultSet is scrollable. The
resultSetConcurrency parameter is the ability to update a ResultSet. The resultSetHoldability
parameter refers to whether a ResultSet is closed when changes are committed. Refer to the
previous chapter for more information about these concepts.

The first argument in each prepareCall() method is a SQL string. The SQL string for calling a
stored procedure can take one of several forms. The most basic form is the SQL for calling a stored
procedure that takes no parameters. The SQL string looks like this:

{ call procedure_name }

Common among all the forms is the SQL keyword CALL that appears before the procedure
name, and the curly braces that surround the SQL. This syntax is known as JDBC escape syntax.
This signals the JDBC driver that the SQL is not an ordinary SQL command and that the SQL
must be converted into the correct form for calling a procedure in the target database.

For example, suppose the database had a stored procedure named adjust_prices, which
took no parameters and returned no value. The code to create a CallableStatement object for
this stored procedure would look like this:

String sql = "{ call adjust_prices }";
CallableStatement cs = connection.prepareCall(sql);

Setting Placeholders

When a procedure or function takes parameters, the SQL uses placeholders, just as with a
prepared statement. Suppose the database had a stored procedure named set_price that took

Mukhar_470-3.book Page 372 Saturday, October 1, 2005 6:14 AM

C H A P T E R 8 ■ A D V A N C E D T O P I C S I N J D B C 373

two parameters. The code to create a CallableStatement object for this stored procedure would
look like this:

String sql = "{ call set_price(?, ?) }";
CallableStatement cs = connection.prepareCall(sql);

The set_price procedure takes two parameters and returns no value. Placeholders mark
each parameter in the procedure call. The placeholders in a CallableStatement are set in the
same way as placeholders in a PreparedStatement, as described earlier in this chapter.

Placeholders are also used when a function returns a value. If the database had a stored
function named get_price that took one parameter and returned a value, the code to create a
CallableStatement object for this stored function would look like this:

String sql = "{ ? = call get_price(?) }";
CallableStatement cs = connection.prepareCall(sql);

The return value of the function is marked by a placeholder, as is the parameter sent to the
function. In the case of the return value, however, the CallableStatement provides additional
methods for reading the return value.

As with the PreparedStatement object, the placeholders are numbered consecutively,
starting with number 1 for the placeholder that appears in the leftmost position in the string.
Moving from left to right, each placeholder is given the next number in sequence.

If a placeholder is used to pass an argument to a stored procedure, this parameter is
known as an IN parameter. Its value must be set before the statement can be executed. If you
fail to set one of the placeholders, the driver will throw a SQLException when you attempt
to execute the SQL. The CallableStatement interface inherits the setXXX() methods of the
PreparedStatement interface for doing this. In addition to the setXXX() methods inherited from
PreparedStatement, CallableStatement adds some setXXX() methods that look similar to this
method for setting a double:

void setDouble(String, double)

In the method call, the first parameter allows you to use a name to identify the parameter
when a name has been set by the stored procedure.

■Tip If you did not create the stored procedure yourself, you can determine if it has named parameters by
calling the DatabaseMetaData.getProcedureColumns() method. This returns a ResultSet in which
each row of the ResultSet describes a parameter of the procedure. One of the columns is the name of the
parameter.

Registering Output Parameters

A stored procedure can also set an input parameter to a new value, and that value is passed
back to the caller through the parameter list. For example, this SQL command has two parameters
in the parameter list:

call set_price(?, ?)

Mukhar_470-3.book Page 373 Saturday, October 1, 2005 6:14 AM

374 C H A P T E R 8 ■ A D V A N C E D T O P I C S I N J D B C

If this were a Java method call, the method could set the value of either parameter inside
the method, and that value would not be visible to the caller. However, if the argument in the
Java method is an object reference, the state of the Java object could be changed inside the
method, and that change would be visible to the caller.

With a SQL stored procedure, the parameters can be set or changed inside the procedure,
and the new values are visible to the caller. If the placeholder is used to pass data to the stored
procedure, and the stored procedure passes data back through the parameter, this is an
INOUT parameter. A placeholder that is used only to pass data back, or that is a return value,
is an OUT parameter.

If any of the parameters in the SQL command are INOUT or OUT parameters, the JDBC
type of the placeholder must be registered before the call can be executed, or you will get a
SQLException. To register parameters, use the following methods:

void registerOutParameter(int parameterIndex, int jdbcType)
void registerOutParameter(int parameterIndex, int jdbcType, int scale)

Unlike the setXXX() methods, the registerOutParameter() method has only two forms.
The first parameter in the method is the position of the placeholder in the SQL string. The
second parameter is one of the constants defined in the java.sql.Types class. The Types class
defines a constant for each SQL type.

So, for example, if you were calling a stored procedure that passed a value through the
second parameter in a parameter list, and the SQL type returned was a varchar (essentially a
string), you would register the parameter like this:

cs.registerOutParameter(2, java.sql.Types.VARCHAR);

If the return value of a function were a double, you could use this:

cs.registerOutParameter(1, java.sql.Types.DOUBLE);

For the complete list of the available java.sql.Types constants, consult the Javadocs.
When registering a parameter that is one of the numeric types such as float, double, numeric,

or decimal, you could also use the second form of the registerOutParameter() method. This
method takes a third parameter that defines the scale of the returned value. For example, to
register a return type that returned a number with two digits to the right of the decimal point,
you could use this:

cs.registerOutParameter(1, java.sql.Types.DOUBLE, 2);

Note that if any of the placeholders is an INOUT parameter, the JDBC code must call both
a setXXX() method and a registerOutParameter() method prior to executing the callable state-
ment. If you fail to set the value or register the parameter, the driver will throw a SQLException.

As with the PreparedStatement object, once a placeholder has been set with data, that
placeholder remains set until the code explicitly changes the placeholder. All the placeholders
can be cleared by calling the method clearParameters(). The value of a placeholder is changed
by calling one of the setXXX() or registerOutParameter() methods, again with the appropriate
index.

Mukhar_470-3.book Page 374 Saturday, October 1, 2005 6:14 AM

C H A P T E R 8 ■ A D V A N C E D T O P I C S I N J D B C 375

Calling a Stored Procedure
After the data values are set, the code calls one of the execute methods—executeUpdate(),
executeQuery(), or execute()—to tell the database to execute the stored procedure. Most often,
you will call the execute() method. However, stored procedures can also return a ResultSet; in
that case, you could use executeQuery(). If the stored procedure returned a row update count,
you could use executeUpdate(). You should use executeUpdate() or executeQuery() only if you
know the stored procedure returns a ResultSet or update count. For any other return value, or
for procedures that do not return a value, call the stored procedure using the execute() method.

■Caution If you call the executeQuery(String), executeUpdate(String), or execute(String)
method, the driver will throw a SQLException. You must call the no-parameter versions of those methods
with a CallableStatement.

After executing the stored procedure, the return values of any placeholders are retrieved
with getXXX() methods of the CallableStatement, similar to those used to retrieve the column
values from a row in a ResultSet. The getXXX() methods of CallableStatement have two forms:
one that takes an int parameter and one that takes a String parameter.

returnType getXXX(int)
returnType getXXX(String)

The int parameter is the index of the placeholder in the callable statement. If the stored
procedure has named parameters, you can use the String parameter to retrieve the value of
the named parameter.

Listing 8-4 shows a code snippet that highlights some of the features discussed in this
section. The code snippet extends the example shown in Listing 8-1. In this example, a hypo-
thetical stored function named save_rating is called. This hypothetical function takes three
parameters: a stock symbol, an analyst name, and a numerical stock rating from 1 to 5. The
function has a return value that is the number of analysts who have rated the stock. It also uses
the rating parameter to return the average rating for the stock.

Listing 8-4. Code Snippet Illustrating CallableStatement

String sql = "{ ? = save_rating(?, ?, ?) };
CallableStatement cs = connection.prepareCall(sql);

//Set the input parameters
cs.setString(2, "ZAP"); //the stock symbol is the second parameter
cs.setString(3, "Fred Smith"); //the analyst name is the third parameter
cs.setInt(4, 3); //the numerical rating is the fourth parameter

//Register the out parameters
//the return value is the first placeholder
cs.registerOutParameter(1, java.sql.Types.INTEGER);

Mukhar_470-3.book Page 375 Saturday, October 1, 2005 6:14 AM

376 C H A P T E R 8 ■ A D V A N C E D T O P I C S I N J D B C

//and the fourth parameter is used as an INOUT parameter to return another value
cs.registerOutParameter(4, java.sql.Types.INTEGER);

//Execute the procedure and get the return values
cs.execute();
int ratingsCount = cs.getInt(1);
int avgRating = cs.getInt(4);

Transactions
So far in the examples in this chapter, every SQL command sent to the database was immedi-
ately executed, and the change was automatically made permanent in the database. In database
terms, when the change is made permanent, we say that we commit the change, or that the
change was committed. In an earlier example, you inserted a row into a table in the PointBase
database, and as soon as the SQL was sent to the database, the change was committed. This
commit is performed automatically by the JDBC driver. If you had done a query on the table,
the new data would be returned by the query.

Suppose you were inserting 50 rows into that table, and each insertion was being automat-
ically committed by the driver. Halfway through the 50 insertions, your workstation suffered a
power failure. Rather than having a total failure, with no changes made to the database, the half
of the rows that had been sent to the table before the power failure would be in the table. Only
half of the work would be incomplete. There are times when this might be okay. Most times,
however, a partial success would be bad and would make the table invalid.

Let’s look at the canonical bank account transfer problem. In this example, a user wants to
transfer money between accounts. The process debits one account and credits the second
account (or vice versa: credit then debit) by some amount. If the database fails halfway through
the transfer, the amount would be deducted from one account and not added to the other (or
vice versa). The database is in an invalid state where it does not reflect the correct balances in
either account. This is not a good situation for the customer (or the bank).

Or suppose you were working on an Internet stock trading application, and the “sell stock”
process failed halfway through. The software may have deposited the funds, but not moved the
stock, or vice versa. In either case, the database is in an invalid state: the client’s account has
both the proceeds and the stock, or neither the proceeds nor the stock.

In both examples, you want all the changes to be made to a database or none of the changes
to be made.

This is the main purpose of transactions in the database: they take the database from one
consistent state to the next. That is their job. When you commit work in the database, you are
assured that all of your changes have been saved; if you roll back the work, none of the changes
are saved.

Ending Transactions
In some SQL dialects, the code must explicitly tell the database that a transaction is beginning
before it executes SQL commands. In Microsoft SQL Server, for example, the BEGIN TRAN
command starts a transaction. JDBC does not require you to explicitly begin a transaction (and
thus, does not provide any class or methods for you, the application programmer, to perform

Mukhar_470-3.book Page 376 Saturday, October 1, 2005 6:14 AM

C H A P T E R 8 ■ A D V A N C E D T O P I C S I N J D B C 377

this action). The JDBC driver you are using will start a transaction for you automatically. The
transaction can be ended automatically or manually.

Whether the transaction is ended automatically or manually is determined by the auto-
commit status of the connection. For JDBC, the default autocommit status is true; that is,
transactions are automatically committed by the driver. That is why, in all the examples thus
far, the SQL commands were automatically committed by the driver.

The point at which the transaction ends depends on what type of statement is being
executed, as shown in Table 8-1.

With autocommit enabled, the driver ends the transaction by automatically calling the
commit method. Even with a SQL query, which has no changes to be saved, there is still a trans-
action. The driver still must signal the database that the transaction has ended.

When the autocommit status is false, it is the responsibility of the client to explicitly
manage and end transactions.

Managing Transactions
When your code gets a connection from a data source, JDBC requires that the connection be in
autocommit mode (autocommit enabled). When autocommit is enabled, each SQL command
is treated as a transaction and the transaction is committed when the statement is complete, as
shown in Table 8-1.

Having the driver in autocommit mode may be acceptable when you are learning JDBC or
when you are using a single-user database. However, the fact that the JDBC API defaults to
autocommit enabled is problematic for most real-world applications. Real-world database
applications are almost always multiuser applications or applications that touch more than a
single table to complete a given task. Thus, for almost any type of real-world application, the
next method call after obtaining a connection should be a call to setAutoCommit(boolean), as
shown here:

Connection conn = dataSource.getConnection();
conn.setAutoCommit (false); // Autocommit disabled

Now, all the control of the transaction resides with the client, which is where it belongs.
The developer can code the transaction so that it includes all the queries, insertions, updates,
and deletions to take the database from one consistent state to another, and commit only after
all the statements have succeeded (or roll back if there are problems).

Table 8-1. Transaction Autocommit Rules

Statement Type When the Transaction Is Committed

SQL INSERT, UPDATE, or DELETE The statement has finished executing, from the client’s
view, as soon as executeUpdate() or execute() returns.

SQL SELECT All the rows in the ResultSet object have been retrieved, or
a Statement object is used to execute a new SQL command
on the same connection.

Mukhar_470-3.book Page 377 Saturday, October 1, 2005 6:14 AM

378 C H A P T E R 8 ■ A D V A N C E D T O P I C S I N J D B C

The Connection class provides several methods for managing transactions:

• void setAutoCommit(boolean): Sets the autocommit mode to true (commit transaction
automatically, the default setting) or false (require explicit transaction commit).

• void commit(): Commits the current transaction. All changes made since the last
commit or rollback are made permanent. Any database locks are released.

• void close(): Not explicitly part of transaction management. However, closing the
Connection may cause a transaction to be committed. The exact behavior depends on
the database; the JDBC specification does not require a particular behavior.

• void rollback(): Returns the database to the state that existed at the start of the current
transaction.

• Savepoint setSavepoint(): Creates an unnamed savepoint in the current transaction
and returns that Savepoint object.

• Savepoint setSavepoint(String): Creates a named savepoint in the current transaction
and returns that Savepoint object.

• void releaseSavepoint(Savepoint): Removes the given savepoint from the current
transaction.

• void rollback(Savepoint): Undoes all the changes that were performed after the given
savepoint was created.

Committing and Rolling Back Transactions

When the autocommit mode is set to false, transaction management must now be performed
explicitly by the code. SQL commands sent to the database will still be executed, but the trans-
action is not committed when the statement is complete. The transaction will be committed
when the code calls the commit() method of the Connection object. Alternatively, the transaction
could be rolled back if the code calls the rollback() method. Here is an example of code that
shows how you might do this:

try {
 stmt = conn.createStatement();
 stmt.executeUpdate("delete from customer_tbl");
 conn.commit();
} catch (Exception e) {
 conn.rollback();
} finally {
 JdbcManager.close(stmt);
 JdbcManager.close(conn);
}

One example of when you would need to perform manual transaction management is
where your application updates more than one table. If both updates need to occur for the
database to remain consistent, you do not want to use autocommit. With autocommit, a failure
that occurs between table updates would leave the database in an inconsistent state.

Mukhar_470-3.book Page 378 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

C H A P T E R 8 ■ A D V A N C E D T O P I C S I N J D B C 379

Listing 8-5 shows the SaveRatings.jsp file revised to update two tables as part of a single
transaction. In this case, along with a rating, the analyst also submits a price target for the
stock. For the purposes of this example, price targets will be stored in a separate table (see
Listing 8-6). This JSP works much as it did in the earlier example (Listing 8-1). The main differ-
ence is that after using batch updating to insert all the ratings, another loop is executed that
gets the price targets from the EnterRatings.jsp and inserts that data into the target table.

Listing 8-5. SaveRatings.jsp

<%@ page import="java.sql.*, com.apress.jdbc.*" %>
<html>
 <head>
 <title>Easy Street - Save Ratings</title>
 </head>
 <body>
 <h1>Save Ratings</h1>
<%
 Connection conn = null;
 PreparedStatement stmt1 = null;
 Statement stmt2 = null;
 try {
 conn = JdbcManager.getConnection();
 conn.setAutoCommit(false);
 String sqlcmd1 = "insert into stock (tickerSymbol, analyst, rating) " +
 "values (?,?,?)";
 stmt1 = conn.prepareStatement(sqlcmd1);
 String analystName = request.getParameter("AnalystName");
 stmt1.setString(2, analystName);
 String[] stockNames = request.getParameterValues("stockNames");
 for (int i = 0; i < stockNames.length; i++) {
 stmt1.setString(1, stockNames[i]);
 String rating = request.getParameter(stockNames[i]);
 if (rating.equals("No Rating")) {
 stmt1.setNull(3, java.sql.Types.VARCHAR);
 } else {
 stmt1.setString(3, request.getParameter(stockNames[i]));
 }
 stmt1.addBatch();
 }
 int results[] = stmt1.executeBatch();

 boolean batchSucceeded = true;
 for (int i = 0; i < results.length; i++) {
 if (results[i] == 1) {

Mukhar_470-3.book Page 379 Saturday, October 1, 2005 6:14 AM

380 C H A P T E R 8 ■ A D V A N C E D T O P I C S I N J D B C

%>
 <p>Rating of "<%=request.getParameter(stockNames[i])%>"
 for <%= stockNames[i] %> was inserted successfully</p>
<%
 } else {
 batchSucceeded = false;
%>
 <p>Rating for <%= stockNames[i] %> was not inserted successfully</p>
<%
 }
 }

 for (int i = 0; i < stockNames.length; i++) {
 String sqlcmd2 = "insert into target (tickerSymbol, priceTarget) " +
 "values ('" + stockNames[i] + "', " +
 request.getParameter(stockNames[i] + "_target") + ")";
 stmt2 = conn.createStatement();
 stmt2.executeUpdate(sqlcmd2);
 }

 if (batchSucceeded) {
 out.write("<p>Batch succeeded, and all targets inserted, " +
 "committing data");
 conn.commit();
 } else {
 out.write("<p>Batch failed rolling back data");
 conn.rollback();
 }
 } catch (SQLException e) {
%>
 <%= e.getMessage() %>
<%
 e.printStackTrace();
 out.write("<p>Exception thrown, rolling back data");
 conn.rollback();
 } finally {
 JdbcManager.close(stmt2);
 JdbcManager.close(stmt1);
 JdbcManager.close(conn);
 }
%>
 </body>
</html>

Mukhar_470-3.book Page 380 Saturday, October 1, 2005 6:14 AM

C H A P T E R 8 ■ A D V A N C E D T O P I C S I N J D B C 381

After performing the batch update, the JSP checks the return value from the batch update.
If any update row returned a value of zero, a Boolean is set to indicate that one of the batch
updates failed. Later in the JSP, this value is checked to determine whether to roll back the
transaction.

Additionally, after the batch update, the price targets are inserted into the target table. If
any insertion fails here and a SQLException is thrown, the transaction is rolled back in the catch
clause.

Before running this JSP, you need to create another table in the database in addition to the
stock table created by the command in Listing 8-3. Using either the console or command tool,
log in to the sample database using the PBPUBLIC username and password. Execute the command
shown in Listing 8-6 to create the target table.

Listing 8-6. SQL Command to Create the Target Table

create table target (
 tickersymbol varchar(10),
 pricetarget decimal (10,2)
);

Finally, EnterRatings.jsp needs one additional input field in the table for the analyst to
enter price targets. Listing 8-7 shows the JSP code for this additional column in the table.

Listing 8-7. Additional Form Code in EnterRatings.jsp for the Price Target Field

 <td><input type="radio" name="<%= stocks[i] %>"
 value="No Rating">No Rating</td>
 <td><input type="text" name="<%= stocks[i] %>_target"></td>
 </tr>

This input field creates a text box for entering the price target. The name of the field is
stockSymbol_target. For example, in the row of the table for the stock ZAP, the price target field
will be named ZAP_target. This allows the SaveRatings.jsp to get the price target.

Deploy these components and the JdbcManager class to your application server. Remember
to create or configure the DataSource for the application, as described in Chapter 7. When your
code is deployed and configured, load the EnterRatings.jsp into the browser. Figure 8-5 shows
this page with some ratings and price targets entered in the form.

When you click the Submit Ratings button, the SaveRatings.jsp will insert the ratings and
price targets into the appropriate tables. If all the insertions are successful, the transaction will
be committed. You should see a page similar to Figure 8-6. Using the console or command tool,
you can log in to the database and verify that all the data was inserted and saved.

Mukhar_470-3.book Page 381 Saturday, October 1, 2005 6:14 AM

382 C H A P T E R 8 ■ A D V A N C E D T O P I C S I N J D B C

Figure 8-5. The new EnterRatings.jsp with a price target field

Figure 8-6. The new SaveRatings.jsp tells you that all data was inserted and committed.

Mukhar_470-3.book Page 382 Saturday, October 1, 2005 6:14 AM

C H A P T E R 8 ■ A D V A N C E D T O P I C S I N J D B C 383

Now, set one of the price target fields in the EnterRatings.jsp to be an invalid price. One
way to do this is to enter a string instead of a number. For example, Figure 8-7 shows the result
of setting one of the price targets to “six,” and then submitting the page.

Figure 8-7. The new SaveRatings.jsp tells you that there was a problem and the transaction was
rolled back. None of the changes were saved.

Every rating is properly inserted into the database. The return value of the batch update
indicates that all the rows were inserted correctly into the stock table. But because autocommit
is disabled, none of these insertions are made permanent yet. Then the JSP attempts to insert
the price targets into the target table. Because “six” is not a valid decimal number, the state-
ment throws an exception. In the catch block, the transaction is rolled back, and all of the
changes to the stock and target tables are discarded.

Using Savepoints

In addition to commit() and rollback(), you might be able to control transactions with a feature
known as a savepoint. Savepoints have been available in databases for some time, but they are
a new feature for JDBC. They are part of the JDBC 3.0 specification, so they are not widely
supported by drivers yet. Check your driver documentation to see if savepoints are supported.

Let’s look at an example that shows how savepoints might be used. Suppose you have a
transaction that manipulates data in two tables, A and B. If the changes to table A succeed, the
database will be left in a consistent state, and the transaction could be committed at that point.
However, for business reasons, the changes to table B are required to be part of the transaction.
If the SQL for table A succeeds, but some or all of the SQL for table B fails, the database will be

Mukhar_470-3.book Page 383 Saturday, October 1, 2005 6:14 AM

384 C H A P T E R 8 ■ A D V A N C E D T O P I C S I N J D B C

in an inconsistent state; if the transaction were committed, the database would contain bad
data. Table 8-2 shows what this scenario might look like.

Without savepoints, all the changes in the transaction must be rolled back because there
is no way to perform a partial rollback. Also, there is no easy way to know which parts of table B
need to be fixed, so there is no way to recover from the table B failure and commit the changes
to table A.

Table 8-3 shows the same example, but with savepoints.

With savepoints, the client is able to perform a partial rollback of data, do some additional
work if needed to put the database into a consistent state, and then commit the transaction.
Thus, some of the work performed in a transaction is not lost. Listing 8-8 shows an example of
what this might look like in code. In Listing 8-8, insertIntoTable1() and insertIntoTable2()
are methods that perform some database actions. If there is a problem, the methods will throw
a SQLException. Based on whether or not an exception is thrown, and whether or not the save-
point is set, the code commits all the data, performs a partial rollback and commit, or does a
complete rollback.

Table 8-2. A Hypothetical Transaction Without Savepoints

Time Transaction Without Savepoint

T0 Transaction begins.

T1 SQL insert, update, or delete data into table A. SQL succeeds.

T2 SQL insert, update, or delete data into table B. Some SQL succeeds and some fails.

T3 Client must roll back. All changes to tables A and B are lost.

Table 8-3. A Hypothetical Transaction with Savepoints

Time Transaction with Savepoint

T0 Transaction begins.

T1 SQL insert, update, or delete data into table A. SQL succeeds.

T2 Savepoint s1 created.

T3 SQL insert, update, or delete data into table B. SQL fails.

T4 Client calls rollback to savepoint s1.

T5 Client performs additional SQL.

T6 Client commits transaction. Changes to table A are committed, but changes to table
B are not committed.

Mukhar_470-3.book Page 384 Saturday, October 1, 2005 6:14 AM

C H A P T E R 8 ■ A D V A N C E D T O P I C S I N J D B C 385

Listing 8-8. Using Savepoints to Perform a Partial Rollback

Savepoint sp1 = null;
try {
 insertIntoTable1();
 sp1 = conn.setSavepoint();
 insertIntoTable2();
 // No exceptions, so commit the changes
 conn.commit();
} catch (SQLException e) {
 // This exception means either insertIntoTable1()
 // or insertIntoTable2() failed
 try {
 // If Savepoint is NOT null, then insertIntoTable1() was good
 // but insertIntoTable2() failed, do partial rollback, then commit
 if (sp1 != null) {
 conn.rollback(sp1); conn.commit();
 } else {
 // insertIntoTable1() failed, do complete rollback
 connection.rollback();
 }
 } catch (SQLException e2) {
 e2.printStackTrace();
 }
} finally {
 JdbcManager.close(conn);
}

Here are some additional points that you need to be aware of when using savepoints:

• Calling commit() or rollback() invalidates all savepoints created since the transaction
started.

• Calling releaseSavepoint(Savepoint) invalidates the given savepoint.

• Calling rollback(Savepoint) invalidates any savepoints that had been created after the
given savepoint.

Using Transactions with Stored Procedures
As you’ve seen, transaction control belongs in the hands of the developer. The system require-
ments should provide information on the business rules for the application, and the developer
can use those requirements to make the best decision on what sequence of SQL constitutes the
transactions for the system, and when those transactions should be committed. Another way
to provide this control is to put all the statements that constitute a transaction into a stored
procedure.

Stored procedures are perhaps the easiest and most accessible method to ensure correct
transactions. If you follow a programming paradigm that says, “A stored procedure call is a
transaction,” you’ll have an easier time controlling your transactions and building new ones.

Mukhar_470-3.book Page 385 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

386 C H A P T E R 8 ■ A D V A N C E D T O P I C S I N J D B C

You could code stored procedures that receive all of the necessary inputs to perform the work,
to take the database from one consistent state to the next. When you invoke this procedure,
you wrap the procedure call in transaction-control statements, like this:

// Disable autocommit
connection.setAutoCommit(false);
String sql = "{ call MyProcedure }";
CallableStatement cs = connection.prepareCall(sql);
// Call procedure
cs.execute();
connection.commit();

Now, if MyProcedure completes successfully, you will commit all of the work it did. If it fails,
you’ll roll back the work (although that is not shown in the snippet). The reason you would not
put the commit directly into MyProcedure itself is because, at some later date, you might need
to combine two or three procedures into one transaction. By leaving transaction control to the
client (which is where the choice belongs), you can assemble larger transactions as a collection
of stored procedures.

Using Distributed Transactions
So far, we’ve been looking at transactions involving a single connection to a single database. In
your work with Java EE applications, you may be faced with a situation where you need to use
distributed transactions. Distributed transactions can include two or more databases, as illus-
trated in Figure 8-8, or can span multiple connections to the same data source, as shown in
Figure 8-9. Just as for single connection transactions, all the changes made by each connection
in the distributed transaction must be successful for the transaction to be committed.

Figure 8-8. A distributed transaction can be formed by two or more clients accessing one or
more databases.

Mukhar_470-3.book Page 386 Saturday, October 1, 2005 6:14 AM

C H A P T E R 8 ■ A D V A N C E D T O P I C S I N J D B C 387

Figure 8-9. A distributed transaction can be formed from a single client accessing databases over
multiple connections.

From the client’s point of view, coding a distributed transaction is almost the same as
coding for a single-connection transaction. Here, we will look at distributed transactions
primarily from the client’s perspective.

While you can use multiple data sources or connections within your JDBC application, the
term distributed transactions usually applies to applications or classes that have distributed
components. One place where you are likely to run into distributed applications is a Java EE
application, where various Java EE components are combined to create an application and
may execute on the same or different servers. You’ve seen some of these components already:
JSPs, and Servlets. In the following chapters, we’ll look at other Java EE components such as
Enterprise JavaBeans (EJBs). Distributed transactions in EJBs are different from those in other Java
EE components, so in this section, we will look at only distributed transactions in JSPs and Servlets.

When separate components provide part of a transaction, no single component can
determine when or how to commit or roll back changes. This then becomes the responsibility
of the transaction manager. Since we’re working in the Java world, that manager will be an
implementation of the Java Transaction API (JTA).

Major interfaces of the JTA include javax.transaction.UserTransaction and
javax.transaction.TransactionManager. The UserTransaction is exposed to application
components, while the underlying interaction between the Java EE server and the JTA
TransactionManager is transparent to the application components. The TransactionManager
implementation supports the server’s control of container-demarcated transaction boundaries.
The JTA UserTransaction and JDBC’s transactional support are both available to Java EE applica-
tion components. You can learn more about the JTA at http://java.sun.com/products/jta.

Mukhar_470-3.book Page 387 Saturday, October 1, 2005 6:14 AM

388 C H A P T E R 8 ■ A D V A N C E D T O P I C S I N J D B C

Getting a Connection for a Distributed Transaction

The application server will use a transaction manager to provide distributed transaction
support to the components in a Java EE application. As part of providing transaction support,
the application server will use special JDBC classes. Those classes will implement the XADataSource,
XAConnection, and XAResource interfaces. The application server vendor or the database vendor
will provide these classes. At least one of these classes might look vaguely familiar: the
XAConnection. Its name is similar to Connection, but it has that XA bit on the front. As its name
suggests, the XAConnection interface represents connections. However, in this case, it repre-
sents a connection that can be used in a distributed transaction. Similarly, XADataSource and
XAResource represent data sources and resources used in distributed transactions.

However, the client does not need to use or be aware of these classes. At the client level,
the code will use the same interfaces that you have seen throughout this and the previous
chapter: Connection, Statement, and ResultSet. In earlier examples, the code created a refer-
ence of type java.sql.Connection. However, since java.sql.Connection is an interface, the
underlying object returned by the DataSource was a concrete class that implements the inter-
face. It was probably an object of type com.pointbase.jdbc.jdbcConnection, but the client
simply used a reference of type java.sql.Connection. Similarly, even though the underlying
object may be some object that implements javax.sql.XAConnection, the client will still use a
reference of type Connection. The client code used to communicate with the database will not
look very different from code you have seen previously in this chapter. For example, the code
to get a connection might look like this:

Context context = new InitialContext();
DataSource dataSource = context.lookup("jdbc/DataSource");
Connection connection = dataSource.getConnection();

If you look at the examples earlier in this chapter and in the previous chapter, you will see
that the code used to get a regular data source is essentially the same code used by an application
involved in a distributed transaction. Under the covers, the application server will likely use an
XAConnection implementation to get the connection that is passed to the client, but in the client,
the object will be referenced as a Connection. After getting the Connection, the code would use
one of the Statement objects to send SQL to the data source. The difference between a nondis-
tributed and a distributed transaction is in how the transaction is committed or rolled back.

Committing or Rolling Back Distributed Transactions

Since the transaction is being controlled by a transaction manager outside the client, any class
involved in a distributed transaction is prohibited from calling any of these methods:

• commit()

• rollback()

• setSavepoint()

• setAutoCommit(true)

Mukhar_470-3.book Page 388 Saturday, October 1, 2005 6:14 AM

C H A P T E R 8 ■ A D V A N C E D T O P I C S I N J D B C 389

Committing or rolling back a transaction is entirely under the control of the transaction
manager. All the client needs to do is start the transaction and end the transaction. After all the
components involved in the transaction have completed and the client ends the transaction,
the transaction manager will commit or roll back the transaction.

This commit (or rollback) is called a two-phase commit. It has two phases because the
transaction manager must poll all the data sources (phase 1) before deciding to commit or roll
back (phase 2). As each data source is polled, it throws an exception if it cannot commit its
changes. If no data source throws an exception in the polling phase, the transaction manager
instructs the data sources to commit their changes. Suppose you have two clients involved in a
distributed transaction. Table 8-4 shows a timeline of the actions in the two-phase commit process.

Note that all the tasks in Table 8-4 would occur outside the client code. It is entirely
handled by the transaction manager. If no data sources throw an exception in the polling
phase, the transaction manager tells all the data sources to commit their changes. If any data
source throws an exception, all the data sources are notified to roll back the changes.

Using the UserTransaction Interface

So, the client needs to start and end the transaction, and the transaction manager
handles the commit or rollback. The client starts and ends the transaction using the
javax.transaction.UserTransaction interface. The following are some of methods of this
interface:

• void begin(): Signals the start of a transaction.

• void commit(): Tells the transaction manager to commit the transaction.

• void rollback(): Tells the transaction manager to roll back the transaction.

• void setRollbackOnly(): Tells the transaction manager that the only valid action for the
transaction is rolled back.

Listing 8-9 shows a code snippet demonstrating how you would use UserTransaction in a
JSP or Servlet.

Table 8-4. The Two-Phase Commit Process

Time Description

T0 Both clients have called close() to signal that they have completed their work.

T1 Transaction manager calls the prepare() method of XAResource. There is an
XAResource for each data source.

T2 If neither XAResource throws an exception, then each is ready to commit.

T3 Transaction manager calls the commit() method of each XAResource. This
message is passed to each data source, which then commits.

Mukhar_470-3.book Page 389 Saturday, October 1, 2005 6:14 AM

390 C H A P T E R 8 ■ A D V A N C E D T O P I C S I N J D B C

Listing 8-9. Distributed Transaction in a JSP or Servlet

Context context = new InitialContext();
UserTransaction utx = (UserTransaction) ctx.lookup("tnx/SampleUserTransaction");
utx.begin();

DataSource dataSource = (DataSource) context.lookup("jdbc/SampleDataSource");
Connection conn = dataSource.getConnection();
Statement stmt = conn.createStatement();
//… perform inserts, updates, or deletes to database
conn.close();

utx.commit();

This code snippet is very minimal. It doesn’t show the try-catch-finally blocks and does
not have any error checking. However, the intent is to show the important steps for the client
to perform in a distributed transaction.

You can see that the code starts by performing a lookup to get a UserTransaction method.
Just as with the DataSource that we’ve been using in this chapter and the previous chapter, a
UserTransaction object must be configured in the application server. Once it is configured, any
client can access the UserTransaction by performing a lookup with the correct name. In the code
snippet shown here, the name is tnx/SampleUserTransaction. After obtaining a UserTransaction,
the client begins the transaction by calling the begin() method.

Following this is the JDBC code. You can see that it looks exactly like JDBC code in a
normal transaction. The client looks up a DataSource and gets a connection from that. It then
performs its work and closes the connection. Notice that the client does not call the connection
commit() or rollback() methods. It simply closes the connection when all the work is complete.

To actually commit the work, the client calls the UserTransaction commit() method. If
there had been some error, the client would call the UserTransaction rollback() method or
setRollbackOnly() method to roll back the transaction.

In this section, you’ve seen how to deal with situations where you are updating more than
a single table. These are situations where you might be making numerous changes to a data-
base, and all the changes must succeed for the database to be in a consistent state at the end of
the transaction.

Often, though, in a web application, your client application will be only one of many that
are trying to perform a transaction simultaneously. In the few minutes it took to write this
paragraph, during the busy shopping season of December, Amazon.com just processed 1,324
transactions. That’s 1,324 transactions potentially touching the same rows in the database.
(Well, that’s more likely for the top-ranked sellers.) Using transaction control will ensure that
all of the changes in a transaction are committed or rolled back, but it says nothing about
what happens when two or more transactions are dealing with the same data. That situation
requires locking.

Locking and Isolation
In any application where you must be concerned with two or more clients interacting with the
database (and that includes almost every Java EE application with a database), you need to be

Mukhar_470-3.book Page 390 Saturday, October 1, 2005 6:14 AM

C H A P T E R 8 ■ A D V A N C E D T O P I C S I N J D B C 391

concerned with the problem of concurrency—how do you allow multiple users to interact with
the database and yet prevent their actions from interfering with each other?

Databases handle this problem through isolation and some type of concurrency control
that usually involves locking the data in the database. However, different databases handle
isolation and locking differently. You can tell the database what level of isolation to use, and
thus have some control over isolation. Locking, however, is totally under the control of the
database. There is no way for you, as a JDBC developer, to tell the database how to lock the
data. The database chooses to lock or not, based on the SQL commands you are executing. For
this reason, we will not discuss the locking behavior of any particular database.

■Note Locking is highly database-dependent. You must check the database documentation to determine
how your database handles concurrency control and locking.

Setting Isolation Levels
Isolation refers to the degree to which actions taken in one transaction can be seen by other
transactions. At the highest level of isolation, any actions taken in a transaction cannot be seen
by any other transaction. This applies to both reads and writes; that is, if one transaction reads
or writes a row or rows of data, no other transaction is impacted by the first transaction. At the
lowest level of isolation (as defined by the SQL specification), everything done in any transaction
whether committed or not, can be seen by any other transaction.

The ANSI/ISO SQL92 standard identifies three different types of interactions between
transactions, listed here from the lowest to the highest level of isolation:

• Dirty reads: Changes made in one transaction can be seen in other transactions,
whether or not they are committed.

• Nonrepeatable reads: Updates to existing rows, deletions, and insertions made in one
transaction are seen by other transactions as soon as they are committed. Thus, multiple
queries that are the same may retrieve different data within a single transaction.

• Phantom reads: Insertions to tables made in one transaction are seen by other transac-
tions as soon as they are committed.

The transaction level you select will depend on the business requirements of your application.
The SQL specification identifies the following four isolation levels that indicate which interactions
are allowed or prevented:

• Read uncommitted: Lowest level, allows all interactions

• Read committed: Prevents dirty reads

• Repeatable read: Prevents nonrepeatable reads and dirty reads

• Serializable: Highest level, which prevents all interactions

Mukhar_470-3.book Page 391 Saturday, October 1, 2005 6:14 AM

392 C H A P T E R 8 ■ A D V A N C E D T O P I C S I N J D B C

Most databases have a default level of read committed, and this will be sufficient for most
applications. You can select a higher level with the setTransactionIsolation() method from
the Connection interface:

void setTransactionIsolation(int level)

This method is called before a transaction begins. You pass it one of the following four
arguments, which are defined as constants in the Connection interface:

• TRANSACTION_READ_UNCOMMITTED

• TRANSACTION_READ_COMMITTED

• TRANSACTION_REPEATABLE_READ

• TRANSACTION_SERIALIZABLE

Listing 8-10 shows an example of how you might set the transaction isolation level for a
transaction that temporarily needs a higher level of transaction isolation.

Listing 8-10. Changing the Transaction Level for a Transaction

Connection conn = JdbcManager.getConnection();
//Save the current isolation level
int transactionLevel = conn.getTransactionIsolation();
//Assume that for business reasons, this transaction must occur at highest level
conn.setTransactionIsolation(Connection.TRANSACTION_SERIALIZABLE);
conn.setAutocommit(false);
//…now the code executes some SQL commands
conn.commit();
//Now reset to the default isolation level
conn.setTransactionIsolation(transactionLevel);

A database may not support all levels of isolation. Check your database documentation to
see which levels are supported.

Using Pessimistic and Optimistic Locking
Even though you cannot control how the database locks data, the SQL commands you execute
and how you execute them can have a big impact on how separate concurrent transactions in
a database interfere, or don’t interfere, with each other.

Let’s look at what might happen if two transactions attempt to modify the same data when
the application is not properly designed for concurrency and isolation. Suppose that you are
working on an online reservation system for a small bed-and-breakfast. A guest can log on to
the site, see which rooms are available, and make reservations for an available room. Table 8-5
shows a sequence of SQL commands that might occur.

Mukhar_470-3.book Page 392 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

C H A P T E R 8 ■ A D V A N C E D T O P I C S I N J D B C 393

You can see that at T1, the database has been placed into a particular state. In this state, a
table has been updated to show certain information. However, because transaction A was
operating on the database based on its original view of the data, when it updates the same
table, the updates from transaction B are overwritten or lost. This is known as a lost update.

Either transaction could have prevented this problem by the proper use of locking. If
pessimistic locking had been used, then the first transaction to perform the original query
would have locked that data, preventing the other transaction from modifying the data. If opti-
mistic locking had been used, then the second transaction to attempt to update the table
would have been prevented from doing so because it would have found that the table had
changed since the original query. In the next two sections, we’ll look at each type of locking in
more detail.

Pessimistic Locking

Pessimistic locking is usually used when there is a high likelihood that other transactions might
want to change the table between a query and an update. For example, in an online concert
ticketing system, if the user selects a particular seat, there is an implicit promise that the user
can buy that seat before any other user can purchase it. The application should give that user
the option of completing the purchase; only if the user declines to purchase the ticket should it
be offered to anyone else. Thus, the application should somehow lock that data at the time the
seat is selected. This is called pessimistic locking because we are pessimistic about the chances
of no one wanting to buy the same tickets (or access the same data) between the times the user
checks the availability of seats and purchases the tickets. To use pessimistic locking, you must
tell the database that you intend to update some data.

In SQL, you indicate that you intend to update some data using the FOR UPDATE clause of
your SELECT statement. When you use FOR UPDATE with SELECT, it signals to the database that it
should lock the data against other updates until your transaction is complete. Remember,
however, that every database will do this differently.

Table 8-5. A Sequence of SQL Commands for Reserving a Room

Time Transaction A Transaction B

T0 Beth logs on to the web site and queries
the application for available rooms. The
system reads from the database and
shows that the Pikes Peak room is
available.

Jennifer logs on to the web site and
performs the same query. Again, the
Pikes Peak room is shown as available.

T1 Jennifer makes a reservation for the
Pikes Peak room. The application
updates the database to show that the
Pikes Peak room is reserved for Jennifer.

T2 Beth makes a reservation for the Pikes
Peak room. The application updates the
database, this time setting the data to
show that the room is reserved for Beth.

Mukhar_470-3.book Page 393 Saturday, October 1, 2005 6:14 AM

394 C H A P T E R 8 ■ A D V A N C E D T O P I C S I N J D B C

Let’s look at an example based on the sequence of actions in Table 8-5. Recall that this
involved a hypothetical bed-and-breakfast reservation system. For this example to work, you
need a database table to hold room information. The SQL command to create this table and fill
it with one row of data is shown in Listing 8-11.

Listing 8-11. SQL Command to Create the Reserve Table

create table reserve (
 roomid varchar(5),
 res_date date,
 res_flag boolean,
 res_name varchar(30));
insert into reserve (roomid, res_date, res_flag)
 values ('PIKE', '2005-04-15', false);

Start up and log in to the Sybase database (or whichever database you are using) and
execute the commands in Listing 8-11. If you are using Sybase, log in to the sample database.
Note that if you use another database, you may need to change the syntax of the INSERT command
so that the date and Boolean data are properly inserted.

The res_flag field in the table indicates whether a room is reserved. A value of false
means the room is not reserved. Listing 8-12 shows an HTML page that is used to start the
example. In a real application, there would be web components to search for available rooms
and display those rooms to the user. In this example, there is only one row of data in the table,
so all the page does is accept the username, and then call a JSP to reserve the one available room.

Listing 8-12. The SearchRooms HTML Page

<html>
 <head>
 <title>Search For Available Rooms</title>
 </head>
 <body>
 <h1>Available Rooms</h1>
 <form method="POST" action="ReserveRoom.jsp">
 <p>User name: <input type="text" name="UserName" /></p>
 <p><input type="Submit" value="Reserve Room"/></p>
 </form>
 </body>
</html>

The HTML page in Listing 8-12 submits to the ReserveRoom.jsp shown in Listing 8-13. The
JSP selects the one row from the database using the FOR UPDATE syntax mentioned earlier. This
tells the database that it should lock the row. After that, the JSP updates the row with the user-
name and sets the reservation flag to true.

Mukhar_470-3.book Page 394 Saturday, October 1, 2005 6:14 AM

C H A P T E R 8 ■ A D V A N C E D T O P I C S I N J D B C 395

Listing 8-13. ReserveRoom.jsp

<%@ page import="java.sql.*, com.apress.jdbc.*" %>
<html>
 <head>
 <title>Reserve Room</title>
 </head>
 <body>
 <h1>Reserve Room</h1>
<%
 Connection conn = null;
 PreparedStatement stmt = null;
 ResultSet rset = null;
 try {
 conn = JdbcManager.getConnection();
 conn.setAutoCommit(false);

 //Select the row for update
 String sqlsel = "select roomid, res_date, res_flag, res_name " +
 "from reserve where res_flag=false for update";
 stmt = conn.prepareStatement(sqlsel);

 rset = stmt.executeQuery();
 if (rset.next()) {
 String roomId = rset.getString("roomid");
 Date date = rset.getDate("res_date");
 String name = request.getParameter("UserName");

 String sqlupd = "update reserve set res_flag=true, res_name=? " +
 "where roomid=? and res_date=?";
 stmt = conn.prepareStatement(sqlupd);
 stmt.setString(1, name);
 stmt.setString(2, roomId);
 stmt.setDate(3, date);

 try { Thread.sleep(5000); } catch (Exception ignored) {}
 int result = stmt.executeUpdate();
 conn.commit();
 out.write("Room reserved");
 } else {
 out.write("No available rooms");
 }
 } catch (SQLException e) {
%>
 <%= e.getMessage() %>

Mukhar_470-3.book Page 395 Saturday, October 1, 2005 6:14 AM

396 C H A P T E R 8 ■ A D V A N C E D T O P I C S I N J D B C

<%
 e.printStackTrace();
 conn.rollback();
 } finally {
 JdbcManager.close(rset);
 JdbcManager.close(stmt);
 JdbcManager.close(conn);
 }
%>
 </body>
</html>

This JSP uses the JdbcManager class to get a connection to the database, so when you
deploy the application, you will need to create the DataSource as you have done for the other
JDBC examples. The connection is set to autocommit disabled so that you can control the
transaction.

After deploying the application, open two browser windows and navigate to the
SearchRooms.html page (see Figure 8-10 for one such window). In each window, enter a
different name, but do not click the Reserve Room button. After you have entered a name in
both windows, click the Reserve Room button in each window.

Figure 8-10. The SearchRooms.html page with a username entered

When you click each Reserve Room button, a thread is created in the application server to
service each request. When you click the first button, that page submits the username to the
ReserveRoom.jsp, which queries the database for the row of data with the reserve flag set to false.

The FOR UPDATE clause tells the database that the transaction intends to update the table,
and that the database should perform locking to ensure that no other transaction can modify
the data until the first transaction is complete. However, notice that there is no way to tell the
database how to lock the data. This is one of the features of a declarative language like SQL. You
instruct the database to execute a command, such as SELECT, INSERT, or UPDATE, and the data-
base determines how to execute the command.

Mukhar_470-3.book Page 396 Saturday, October 1, 2005 6:14 AM

C H A P T E R 8 ■ A D V A N C E D T O P I C S I N J D B C 397

After the first thread queries the table, the code saves the value of the roomid and res_date
columns. Before executing the update, the code executes a Thread.sleep() method. This simulates
the real-world behavior of some lag in time between when a user queries some data and
submits new data for updating the database. It also provides a time gap in which the second
thread can execute.

Like the first thread, the second thread executes a query that looks for rooms in the data-
base that have not yet been reserved. If a row is found, the second thread attempts to reserve
the room. However, the second thread’s query is blocked, apparently because the database has
locked the reserve table for update by the first thread.

After five seconds, the first thread wakes, and continues executing. The code performs a
SQL UPDATE to reserve the room, and then commits the transaction. As Figure 8-11 shows, when
the first thread completes, the row has been updated and the room reserved.

Figure 8-11. The room has been reserved by the first thread to query the database.

When the row is unlocked, the second thread’s query then finds no rooms available.
Figure 8-12 shows the page displayed for this thread. Thus, by using the FOR UPDATE syntax of
the SELECT command, the first thread was able to ensure that its update to the database was not
overwritten by some other thread. Using pessimistic locking has prevented a lost update.

To show that this really does prevent a lost update, you could modify the JSP to remove FOR
UPDATE from the SQL SELECT command. After making this change and redeploying the JSP,
submit two different usernames as you did previously. You will find that both submissions are
able to reserve the room. After the first thread updates the table, the second thread overwrites
the changes, causing a lost update.

However, there is one big disadvantage to pessimistic locking: because of the way Sybase
locks the database, the second query thread is blocked until the first thread completes the
update. For example, if it took two minutes to complete the update, the second thread would
not complete for the same two minutes. This means that the user would be looking at an empty
web browser with the progress icon spinning around for two minutes.

Mukhar_470-3.book Page 397 Saturday, October 1, 2005 6:14 AM

398 C H A P T E R 8 ■ A D V A N C E D T O P I C S I N J D B C

Figure 8-12. No unreserved rooms are found by the second thread.

As you can guess, this does not make for a very good user experience. In this example, we
allowed one transaction to get access to and update data from the database. With the proper
use of pessimistic locking, the first user to access the data was the user that got to update the
data. However, that came at a cost. With the particular way this example was structured, any
other user would be completely prevented from any access to the table. Suppose user A had
walked away from her computer for 15 minutes, or even 15 hours. User B’s application may
have been frozen for that entire length of time. That’s a heavy price to pay to ensure a good user
experience (for user A, not user B). Thus, if you are going to use pessimistic locking to prevent
lost updates, you need to be certain that there will be a minimal delay between the query and
the update, so that the database does not hold a lock for too long. It’s very important to stress,
though, that other situations or other databases may not have prevented user B from querying
the table. That’s why it’s so important for you to understand how your database handles this
situation.

■Note Locking is very dependent on the database. This example may or may not work with other data-
bases. Even if it does work with different databases, the behavior you see may be different. Consult the
database documentation to find out how locking works, so that you understand how the database deals with
multiple users in the database and how to control their interactions

Optimistic Locking

Optimistic locking is usually used when there is a low likelihood that other transactions might
want to change the table between a query and an update. In fact, unlike pessimistic locking, it
really does not involve locking at all, but it still prevents the problem of lost updates. It is called
optimistic because we are optimistic about the chances of no one wanting to access the same
data (or reserve the same room) between the time the user queries the data and attempts to
update the data.

Mukhar_470-3.book Page 398 Saturday, October 1, 2005 6:14 AM

C H A P T E R 8 ■ A D V A N C E D T O P I C S I N J D B C 399

To implement optimistic locking in your code, when your code performs a query, it keeps
a local copy of all the data it retrieved. It then presents this data to the user for him to modify.
Then when your code issues the UPDATE statement, it includes a WHERE clause in the SQL command,
which checks that the data in the table still matches the data originally retrieved. If it does not,
that means some other user has modified the data between your query and your update. Your
UPDATE command fails, but the other user’s update is not lost.

Listing 8-14 shows a modified version of the ReserveRoom.jsp that uses optimistic locking.
This code is almost identical to the code in Listing 8-13. There are only two significant changes
to the JSP, and two minor changes:

• The SQL SELECT command has been modified to remove FOR UPDATE:

String sqlsel = "select roomid, res_date, res_flag, res_name " +
 "from reserve where res_flag=false";

• The SQL UPDATE command has been modified to include another condition in the
WHERE clause:

String sqlupd = "update reserve set res_flag=true, res_name=? " +
 "where roomid=? and res_date=? and res_flag=false";

• There is an additional line of code after the query to show that both queries do find the
row of data for the available room:

out.write("Found a room");

• There is the addition of code after the UPDATE command to check the return value of the
executeUpdate() method:

if (result == 1) {
 out.write("Room reserved");
} else {
 out.write("Could not reserve room");
}

Listing 8-14. ReserveRoom.jsp Using Optimistic Locking

<%@ page import="java.sql.*, com.apress.jdbc.*" %>
<html>
 <head>
 <title>Reserve Room</title>
 </head>
 <body>
 <h1>Reserve Room</h1>
<%
 Connection conn = null;
 PreparedStatement stmt = null;
 ResultSet rset = null;
 try {
 conn = JdbcManager.getConnection();
 conn.setAutoCommit(false);

Mukhar_470-3.book Page 399 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

400 C H A P T E R 8 ■ A D V A N C E D T O P I C S I N J D B C

 //Select the row for update
 String sqlsel = "select roomid, res_date, res_flag, res_name " +
 "from reserve where res_flag=false";
 stmt = conn.prepareStatement(sqlsel);

 rset = stmt.executeQuery();
 if (rset.next()) {
 out.write("Found a room");
 String roomId = rset.getString("roomid");
 Date date = rset.getDate("res_date");
 String name = request.getParameter("UserName");

 String sqlupd = "update reserve set res_flag=true, res_name=? " +
 "where roomid=? and res_date=? and res_flag=false";
 stmt = conn.prepareStatement(sqlupd);
 stmt.setString(1, name);
 stmt.setString(2, roomId);
 stmt.setDate(3, date);

 try { Thread.sleep(5000); } catch (Exception ignored) {}
 int result = stmt.executeUpdate();
 conn.commit();
 if (result == 1) {
 out.write("Room reserved");
 } else {
 out.write("Could not reserve room");
 }
 } else {
 out.write("No available rooms");
 }
 } catch (SQLException e) {
%>
 <%= e.getMessage() %>
<%
 e.printStackTrace();
 conn.rollback();
 } finally {
 JdbcManager.close(rset);
 JdbcManager.close(stmt);
 JdbcManager.close(conn);
 }
%>
 </body>
</html>

Mukhar_470-3.book Page 400 Saturday, October 1, 2005 6:14 AM

C H A P T E R 8 ■ A D V A N C E D T O P I C S I N J D B C 401

In this code, the JSP performs a query on the table, but does not use the FOR UPDATE syntax.
This means that when each thread enters the JSP, both threads will find a room available for
reservation. This is demonstrated by the line of code that prints “Found a room” after the
SELECT query.

However, even though the SELECT command found a room for both threads, both threads
will not be able to reserve the room. The additional condition in the UPDATE command means
that the update will check the data in the table before attempting to update it. If the data is still
the same as retrieved earlier by the SELECT command, then the data has not been updated and the
thread can complete its update. If, however, another thread has updated the row, the second
thread’s UPDATE command will fail because the command will not be able to find a row that
matches all the conditions in the WHERE clause.

This JSP accesses the same table as in the pessimistic locking example. You can find the
code to create and populate the table in Listing 8-11. If you already ran the pessimistic locking
example, all you need do is delete the old data from the table using this command:

delete from reserve;

Then you can repopulate the table using the INSERT command shown in Listing 8-11.
Deploy this JSP along with the SearchRooms.html page (Listing 8-12) and the JdbcManager

class (Listing 7-3 and Listing 7-8). After deploying, remember to create a DataSource for the
database connection, as described in Chapter 7.

Then, just as in the pessimistic locking example, open two browser windows to the
SearchRoom.html page and enter a different name in each form. After you have entered names
in both forms, click the Reserve Room button in each window. You will see that the first thread
will find a room, and be able to reserve the room. The second thread will also find an available
room, but it will not be able to reserve the room, as shown in Figure 8-13. This occurs because
after the first thread has updated the row, the UPDATE command can no longer find a row that
matches the row found by the SELECT command.

Figure 8-13. The second thread is unable to reserve the room, even though it found the
available room.

Mukhar_470-3.book Page 401 Saturday, October 1, 2005 6:14 AM

402 C H A P T E R 8 ■ A D V A N C E D T O P I C S I N J D B C

This shows how proper use of optimistic locking can prevent lost updates. The first thread
was able to update the table, and the second thread was prevented from overwriting the changes.

In this example, a single JSP handled both requests. Because both threads executed the
same sleep, the first thread was able to execute the UPDATE before the second thread. However,
in the real world, this is not always the case. In a real-world application, the query will most
likely execute in a different request than the UPDATE. Then it will not be the order of queries that
determines who gets to make the update; rather, it will be the client that makes the update
request first that gets to update the table.

For a lost update to occur, all that needs to happen is for two or more users to query and
attempt to change the same data: one user reads the data, a second user updates the data, the
first user then attempts to update his view of the data, which no longer matches what is in the
database. Without optimistic locking, the first update would be overwritten by the second update.

Notice also the differences between pessimistic locking and optimistic locking. With
pessimistic locking, the first user to query the data gets to commit his changes. With optimistic
locking, the first user to update the table gets to commit his changes. Pessimistic locking works
better from the user’s point of view. With optimistic locking, the user may expend significant
effort to input all the changes he wants, only to be told that the update failed when he tries to
submit the data. On the other hand, pessimistic locking ties up a database resource, and
depending on the database, can prevent other users from working with the database. Which
method you choose will depend on the business rules of your application and the type of
locking supported by your database.

Summary
In this chapter, we’ve looked at some advanced topics in JDBC and how to use JDBC in a Java EE
environment. If you are working in a real-world Java EE application, you will almost certainly
find that you will be using at least some of the concepts covered in this chapter.

After finishing this chapter, you should know:

• PreparedStatement objects are used to send SQL commands to the database.
PreparedStatement objects are useful when you are sending many SQL commands to
the database, and only the data values are changing. Because the database caches the
SQL command, PreparedStatement objects can be more efficient that Statement objects.
Prepared statements are also useful when you need to insert nonprimitive data into a
table. Prepared statements make it easy to insert dates, nulls, strings, and other objects,
because the driver formats the data for you.

• CallableStatement objects are used to call stored procedures and functions (also called
sprocs) in a database. Stored procedures have many advantages, so if your system
contains sprocs, you should consider using them rather than re-creating their behavior
in JDBC.

• Transactions are used to ensure that databases move from one consistent state to
another. Properly using transactions can ensure that all the changes your code makes
succeed or are all rolled back.

Mukhar_470-3.book Page 402 Saturday, October 1, 2005 6:14 AM

C H A P T E R 8 ■ A D V A N C E D T O P I C S I N J D B C 403

• A Java EE application needs to deal with problems of isolation and locking. Setting the
proper isolation level can prevent one transaction from seeing changes made to the
database by other transactions. Preventing two users from changing the same data such
that one update is lost is usually done through pessimistic or optimistic locking.

If you find yourself deeply into database programming, you should explore some of the
more advanced books that focus on the subject of databases and JDBC programming. Consider
reading Java Persistence for Relational Databases, by Richard Sperko (Apress, 2003; ISBN
1-59059-071-6).

Exercises
1. If your database does support stored procedures, find an existing stored procedure, or

create one of your own, and write JDBC code that calls the stored procedures.

2. Create a database table containing some number of columns of various types. Create a
program that inserts to the table using a Statement and a PreparedStatement. Make
timing measurements to determine the performance difference between the two.

3. If your database has multiple driver types (for example, you can use either a Type 2 or a
Type 4), create a database table and perform various insertions, deletions, and updates
to the rows. Make timing measurements to determine if one driver has a performance
advantage.

4. Create a program that makes multiple insertions into a database table. Use the default
autocommit setting and measure the performance of inserting data this way. Now set
the autocommit setting to false and commit only after all data has been inserted.
Measure the performance of this and compare it to autocommitting every insertion.

Mukhar_470-3.book Page 403 Saturday, October 1, 2005 6:14 AM

Mukhar_470-3.book Page 404 Saturday, October 1, 2005 6:14 AM

405

■ ■ ■

C H A P T E R 9

EJB Fundamentals and
Session Beans

So far, we’ve discussed the user interface, business logic, and database connection aspects of
developing Java EE applications. The primary mechanism discussed to this point for expressing
business logic has been JavaBeans accessed from JSP and Servlet code. Java EE has a powerful
facility dedicated to expressing the business logic of an application and for accessing a data-
base using a JavaBeans-like concept. That facility is Enterprise JavaBeans, known as EJBs for short.

In this chapter, we’ll begin exploring the world of EJBs, which is a very important capability of
the Java EE platform. EJBs provide infrastructure for developing and deploying mission-critical,
enterprise applications. We’ll first look at some EJB fundamentals, and then focus on one type
of EJB: the session bean.

In this chapter, you will learn the following:

• The benefits of using EJBs

• The three kinds of EJBs: session, entity, and message-driven beans

• The makeup of session beans

• How to develop session beans

• Differences between stateful and stateless session beans

Understanding EJBs
Application architectures often consist of several tiers that each has its own responsibilities.
One such architecture that consists of three tiers is illustrated in the Unified Modeling Language
(UML) diagram shown in Figure 9-1.

Figure 9-1. The classic model of a multitiered, or layered, architecture

Mukhar_470-3.book Page 405 Saturday, October 1, 2005 6:14 AM

406 C H A P T E R 9 ■ E J B F U N D A M E N T A LS A N D S E S S I O N B E A N S

The two elements on the left side of the diagram in Figure 9-1 are called components in the
UML notation. Components represent software modules. The diagram describes what is called
a multitiered, or layered, architecture. Multitiered architectures have many advantages, not the
least of which is the ability to change any one of the layers without affecting all of the other
layers. This is in contrast to a single-tier architecture, within which all aspects of the program
design coexist in a single element. Changes or actions that affect one portion of the single-tier
element also potentially affect the other members of that element.

Consider the three-layer architecture shown in Figure 9-1, consisting of user interface,
application logic, and database layers. If the database layer is changed, only the application
logic layer is affected. The application logic layer shields the user interface layer from changes
to the database layer. This facilitates ongoing maintenance of the application, and also increases
the application’s ability to incorporate new technologies in its layers.

These layers provide an excellent model of how EJBs fit into your overall program design.
EJBs provide an application logic layer and a JavaBeans-like abstraction of the database layer.
The application logic layer is also known as the middle tier.

■Note JavaBeans and Enterprise JavaBeans are two different things, but because of their similarities (and
for marketing reasons), they share a common name. JavaBeans are components built in Java that can be
used on any tier in an application. They are often thought of in relationship to Servlets, and as GUI components.
Enterprise JavaBeans are special, server-based components, used for building the business logic and data-
access functionality of an application.

Why Use EJBs?
Not too long ago, when system developers wanted to create an enterprise application, they
would often start by “rolling their own” (or purchasing a proprietary) application server to
support the functionality of the application logic layer. Some of the features of an application
server include the following:

• Client communication: The client, which is often a user interface, must be able to call
the methods of objects on the application server via agreed-upon protocols.

• Session state management: You’ll recall our discussions on this topic in the context of
JSP and Servlet development back in Chapter 6.

• Transaction management: Some operations, for example when updating data, must
occur as a unit of work. If one update fails, they all should fail. Transactions were
discussed in Chapter 8.

• Database connection management: An application server must connect to a database,
often using pools of database connections for optimizing resources.

• User authentication and role-based authorization: Users of an application must often
log in for security purposes. The functionality of an application to which a user is
allowed access is often based on the role associated with a user ID.

Mukhar_470-3.book Page 406 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

C H A P T E R 9 ■ E JB F U N D A M E N T A L S A N D S E S S I O N B E A N S 407

• Asynchronous messaging: Applications often need to communicate with other systems
in an asynchronous manner; that is, without waiting for the other system to respond.
This requires an underlying messaging system that provides guaranteed delivery of
these asynchronous messages.

• Application server administration: Application servers must be administered. For
example, they need to be monitored and tuned.

The EJB Specification
The EJB specification defines a common architecture, which has prompted several vendors to
build application servers that comply with this specification. Now developers can get off-the-
shelf application servers that comply with a common standard, benefiting from the competi-
tion (in areas such as price, features, and performance) among those vendors.

Some of the more common commercial EJB application servers are WebLogic (BEA), Sun
ONE (Sun), OC4J containers for Oracle Database 10g, and WebSphere (IBM). There are also
some very good open-source entries in this market such as JBoss and JOnAS. The JBoss appli-
cation server was used to develop, deploy, and test all the examples throughout the book. Sun
also provides an open source Reference Implementation (Java EE SDK) of the Java EE 5 and EJB 3.0
specifications that developers can use to develop and test applications for compliance with those
specifications. (The Reference Implementation may not, however, be used to deploy production
systems.) Currently under development, the reference implementation is codenamed "Glassfish"
and is available at https://glassfish.dev.java.net/. The platform provides a basic EJB 3.0
test platform; more details can be found on the website and in the related discussion forums.
These application servers, in conjunction with the capabilities defined in the EJB specification,
support all of the features listed here and many more.

The EJB specification was created by experienced members of the development community;
such a body is called an expert group. In the EJB specification’s expert group are members
from such organizations as the JBoss group, Oracle, and Google. Thanks to them, we now have
a standard, specifications-based way to develop and deploy enterprise-class systems. We are
approaching the Java dream of developing an application that can run on any vendor platform
as-is. This is in contrast to the vendor-specific way we used to develop, where each server had
its own way of doing things, and where the developer was locked into the chosen platform once
the first line of code was written!

The version of the EJB specification that is included with the Java EE 5.0 recommendation
is 3.0, and this is the version we refer to in this book when discussing EJBs. The EJB 3.0 specifi-
cation has added many improvements to its predecessor (version 2.1, which was a part of the
J2EE 1.4 recommendation), including metadata annotations to simplify deployment concerns, a
higher degree of control over bean persistence, and a much more simplified (but no less
powerful) programming model for developing EJBs. For more information about the EJB spec-
ification, visit the http://java.sun.com/products/ejb/docs.html web site.

If your eyes glazed over when reading all this, don’t worry. The next few chapters will tell
you how to use all those cool features!

The Three Kinds of EJBs
There are actually three kinds of EJBs: session beans, entity beans, and message-driven beans.
Here, we will present a brief introduction to each type of bean. The balance of this chapter will
then focus on session beans.

Mukhar_470-3.book Page 407 Saturday, October 1, 2005 6:14 AM

408 C H A P T E R 9 ■ E J B F U N D A M E N T A LS A N D S E S S I O N B E A N S

■Note When referring to EJBs in the general sense in this book, we’ll use the term EJBs, enterprise beans,
or simply beans.

Session Beans

One way to think about the application logic layer (middle tier) in the sample architecture
shown in Figure 9-1 is as a set of objects that, together, implement the business logic of an
application. Session beans are the construct in EJBs designed for this purpose. As shown in
Figure 9-2, there may be multiple session beans in an application. Each handles a subset of the
application’s business logic.

A session bean tends to be responsible for a group of related functionality. For example, an
application for an educational institution might have a session bean whose methods contain
logic for handling student records. Another session bean might contain logic that maintains
the lists of courses and programs available at that institution.

There are two types of session bean, which are defined by their use in a client interaction:

• Stateless: These beans do not declare any instance (class-level) variables, so that the
methods contained within can act only on any local parameters. There is no way to
maintain state across method calls.

• Stateful: These beans can hold client state across method invocations. This is possible
with the use of instance variables declared in the class definition. The client will then set
the values for these variables and use these values in other method calls.

There may be more work involved for the server to share stateful session beans than is
required to share stateless beans. Storing the state of an EJB is a very resource-intensive process, so
an application that uses stateful beans may not be easily scalable. Stateless session beans
provide excellent scalability, because the EJB container does not need to keep track of their
state across method calls. You’ll see how to develop both stateless and stateful session beans
later in this chapter.

All EJBs, session beans included, operate within the context of an EJB server, as shown in
Figure 9-2. An EJB server contains constructs known as EJB containers, which are responsible
for providing an operating environment for managing and providing services to the EJBs that
are running within it.

In a typical scenario, the user interface (UI) of an application calls the methods of the session
beans as it requires the functionality that they provide. Session beans can call other session beans
and entity beans. Figure 9-2 illustrates typical interactions between the user interface, session
beans, entity beans, and the database.

Mukhar_470-3.book Page 408 Saturday, October 1, 2005 6:14 AM

C H A P T E R 9 ■ E JB F U N D A M E N T A L S A N D S E S S I O N B E A N S 409

Figure 9-2. Session and entity beans in an application

Entity Beans

Before object orientation became popular, programs were usually written in procedural
languages and often employed relational databases to hold the data. Because of the strengths
and maturity of relational database technology, it is now often advantageous to develop
object-oriented applications that use relational databases. The problem with this approach is
that there is an inherent difference between object-oriented and relational database technolo-
gies, making it less than natural for them to coexist in one application. The use of entity beans
is one way to get the best of both of these worlds, for the following reasons:

• Entity beans are objects, and they can be designed using object-oriented principles and
used in applications as objects.

• The data in these entity bean objects are persisted in some data store, usually relational
databases. All of the benefits of relational technologies—including maturity of products,
speed, reliability, ability to recover, and ease of querying—can be leveraged.

In a typical EJB scenario, when a session bean needs to access data, it calls the methods of
an entity bean. Entity beans represent the persistent data in an EJB application. For example,
an application for an educational institution might have an entity bean named Student that
has one instance for every student that is enrolled in an institution. Entity beans, often backed
by a relational database, read and write to tables in the database. Because of this, they provide
an object-oriented abstraction to some information store.

As shown in Figure 9-2, it is a good practice to call only session beans directly from the
client, and to let the session beans call the entity beans. Here are some reasons for this:

• This practice doesn’t circumvent the business logic contained in the session beans.
Calling entity beans directly tends to push the business logic into the UI logic, which is
usually a bad thing.

Mukhar_470-3.book Page 409 Saturday, October 1, 2005 6:14 AM

410 C H A P T E R 9 ■ E J B F U N D A M E N T A LS A N D S E S S I O N B E A N S

• The UI doesn’t need to be as dependent on changes to the entity beans. The UI is
shielded from these changes by the session beans.

• In order for a client to interact with a bean on the EJB server, there must be a remote
reference to the bean, which takes resources. There tends to be far more (orders of
magnitude) entity bean instances in an application than session bean instances.
Restricting client access to session beans conserves server and network resources
considerably.

We will cover entity beans in detail in the next chapter.

■Note Developing entity beans does not require a business interface; in fact, message-driven beans are
the only EJBs that must implement some business interface.

Message-Driven Beans

When an EJB-based application needs to receive asynchronous messages from other systems,
it can leverage the power and convenience of message-driven beans. Asynchronous messages
between systems can be analogous to the events that are fired from a UI component to an
event handler in the same JVM. For example, in the business-to-business (B2B) domain, a
wholesaler could have an EJB application that uses message-driven beans to listen for purchase
orders issued electronically from retailers. We’ll discuss message-driven beans in more detail
in Chapter 13.

Which Type of EJB Should You Use?
So, how do you decide whether a given EJB should be a session bean, entity bean, or a message-
driven-bean? Here are some guidelines for deciding:

• Session beans are great at implementing business logic, processes, and workflow. For
example, a StockTrader bean with buy() and sell() methods, among others, would be a
good fit for a session bean.

• Entity beans are the persistent data objects in an EJB application. In a stock trading
application, a Stock bean with setPrice() and getPrice() methods would be an appropriate
use of an entity bean. The buy() method of the previously mentioned StockTrader session
bean would interact with instances of the Stock entity bean by calling their getPrice()
methods, for example.

• Message-driven beans are used for the special purpose of receiving asynchronous
messages from other systems, like a wholesaler application that listens for purchase orders.

Now that we’ve covered some basics concerning the three types of EJBs, we’ll use the rest
of this chapter to take a closer look at the first type mentioned: session beans.

Mukhar_470-3.book Page 410 Saturday, October 1, 2005 6:14 AM

C H A P T E R 9 ■ E JB F U N D A M E N T A L S A N D S E S S I O N B E A N S 411

The Anatomy of a Session Bean
Every session bean requires the presence of a bean interface and a bean class. A bean interface
is the mechanism by which client code will interact with the bean internals, while the bean
class is the implementation of those internals, as illustrated in Figure 9-3.

Figure 9-3. Elements of a session bean

The implementation of the business logic of a session bean is located in its bean class. The
bean class of the session bean must either implement the javax.ejb.SessionBean interface or
prefix its class definition with the metadata descriptor @Stateless.

■Note Metadata is a new addition to the Java language with the introduction of J2SE 5.0. It effectively
allows developers to elaborate on class definitions, adding further descriptive and behavioral information to
the generation of the class file. The EJB 3.0 specification has used this facility to describe the majority of its
workings. To learn more about this new addition to the Java language, read the official specification at
http://jcp.org/en/jsr/detail?id=175.

The bean interface (or business interface, as some refer to it) that exposes the internals of
the EJB to calling code may be implemented by the developer, or it can be generated automat-
ically. The compiler will create a bean interface for you that is a map of the public methods
available in the bean class.

As a naming convention for this book, we’ll append the word Bean to the name of a bean to
indicate that it is a bean class. For example, a session bean with the name StockTrader would
have a bean class named StockTraderBean.

Mukhar_470-3.book Page 411 Saturday, October 1, 2005 6:14 AM

412 C H A P T E R 9 ■ E J B F U N D A M E N T A LS A N D S E S S I O N B E A N S

Developing Session Beans
It is now time to put all this theory into practice. In this section, we’re going to develop our first
session bean in an example that’s on par with the traditional “Hello World!” sample program.

First, we’ll walk through the bean-creation code in a good bit of detail, reinforcing concepts
we just covered and introducing new ones. Then we’ll explain how to compile the example. For
this, we’ll use the Java compiler that comes with the Java 2 SDK Standard Edition 5.0 (J2SE SDK 1.5).
Finally, we’ll deploy the example in JBoss.

Using a Stateless Session Bean
Since this is the first EJB example, we’re going to walk through the code now and then run it later.
There are three Java source files for this example: SimpleSession.java, SimpleSessionBean.java,
and SimpleSessionClient.java.

Listing 9-1 shows the code for the remote business interface, SimpleSession.java.

■Note The term remote business interface signifies that this interface is accessed and called by “remote”
clients. Don’t jump to conclusions! We’ll define what exactly is meant by that statement when we explain this
code later on in the chapter.

Listing 9-1. SimpleSession.java

package beans;

import javax.ejb.Remote;

@Remote
public interface SimpleSession
{
 public String getEchoString(String clientString);
}

Listing 9-2 shows the code for the actual bean implementation, SimpleSessionBean.java.

Listing 9-2. SimpleSessionBean.java

package beans;

import javax.ejb.Stateless;

@Stateless
public class SimpleSessionBean implements SimpleSession {
 public String getEchoString(String clientString) {
 return clientString + " - from session bean";
 }
}

Mukhar_470-3.book Page 412 Saturday, October 1, 2005 6:14 AM

C H A P T E R 9 ■ E JB F U N D A M E N T A L S A N D S E S S I O N B E A N S 413

Finally, Listing 9-3 shows the client code to test the session bean.

Listing 9-3. SimpleSessionClient.java

package client;

import beans.SimpleSession;
import javax.naming.InitialContext;

public class SimpleSessionClient {
 public static void main(String[] args) throws Exception
 {
 InitialContext ctx = new InitialContext();
 SimpleSession simpleSession
 = (SimpleSession) ctx.lookup(SimpleSession.class.getName());
 for (int i = 0; i < args.length; i++) {
 String returnedString = simpleSession.getEchoString(args[i]);
 System.out.println("sent string: " + args[i] +
 ", received string: " + returnedString);
 }
 }
}

Organize the files in a directory called SimpleSessionApp, as shown in Figure 9-4.

Figure 9-4. The structure of the sample session bean files

Compiling the Simple Session Bean Application

After you’ve created and organized the sample session bean files as just described, follow these
steps to compile the application:

1. Open a command prompt in the SimpleSessionApp directory.

2. Compile the classes, ensuring that the CLASSPATH is set to contain all the necessary JBoss
libraries. These libraries contain all of the EJB functionality needed to make your code
interact with the application server, so it is extremely important that you get this step
right. At the command line, type the following (this should all be on one line!):

Mukhar_470-3.book Page 413 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

414 C H A P T E R 9 ■ E J B F U N D A M E N T A LS A N D S E S S I O N B E A N S

> set CLASSPATH=.;C:\jboss\lib\concurrent.jar; ➥

C:\jboss\lib\jboss-common.jar; ➥

c:\jboss\client\jboss-j2ee.jar;➥
c:\jboss\lib\commons-httpclient.jar;➥
C:\jboss\server\all\lib\jboss.jar; ➥

C:\jboss\server\all\lib\jboss-remoting.jar; ➥

C:\jboss\server\all\lib\jboss-transaction.jar;➥

C:\jboss\server\all\lib\jnpserver.jar; ➥

C:\jboss\server\all\deploy\ejb3.deployer\jboss-ejb3.jar; ➥

C:\jboss\server\all\deploy\ejb3.deployer\jboss-ejb3x.jar; ➥

C:\jboss\server\all\deploy\jboss-aop.deployer\➥

jboss-aop.jar; ➥

C:\jboss\server\all\deploy\jboss-aop.deployer\➥

jboss-aspect-library.jar

3. Within the SimpleSessionApp directory where the client and beans directories are
located, execute the following commands from the command prompt:

> javac -d . client/*.java
> javac -d . beans/*.java

The –d option tells the Java compiler to place the class files in subdirectories matching
their package structure, subordinate to the given directory. In this case, the given directory is
the current directory, signified by the period. As a result, the Java class files should end up in
the same directories as the source files.

Deploying the Simple Session Bean Application

Now we need to start the JBoss Server using the procedure described in Chapter 2. Once the
JBoss Server is up and running, you can deploy your class files. In order to deploy your class
files, you need to package your different application components together in a compressed JAR
file. Make the extension of this file .ejb3, so that JBoss can deploy it.

To create the application EJB3 file, open a command prompt in the same directory that
SimpleSessionApp resides in and type in the following command:

>jar cf SimpleSessionApp.ejb3 beans*.java

Now copy the resulting EJB3 file to the %JBOSS_HOME%/server/all/deploy directory. If your
JBoss installation is in C:\JBoss, for example, copy the file to C:\JBoss\server\all\deploy.

JBoss will automatically detect and deploy your code for you. The directory structure
should now have the files shown in Figure 9-5.

Now for the last step: running your new bean!

Mukhar_470-3.book Page 414 Saturday, October 1, 2005 6:14 AM

C H A P T E R 9 ■ E JB F U N D A M E N T A L S A N D S E S S I O N B E A N S 415

Figure 9-5. Structure of the deployed session bean application

Running the Simple Session Bean Application

To run the sample client, set the CLASSPATH to the same value you did earlier to compile the
application.

On a default Java EE 5 SDK Windows installation, ensure the CLASSPATH is set correctly by
using the following command:

> set CLASSPATH=.;C:\jboss\lib\concurrent.jar;➥

C:\jboss\lib\jboss-common.jar;➥

C:\jboss\server\all\lib\jboss.jar;➥

C:\jboss\server\all\lib\jboss-remoting.jar;➥

C:\jboss\server\all\lib\jboss-transaction.jar;➥

C:\jboss\server\all\lib\jnpserver.jar;➥

C:\jboss\server\all\deploy\ejb3.deployer\jboss-ejb3.jar;➥

C:\jboss\server\all\deploy\ejb3.deployer\jboss-ejb3x.jar;➥

C:\jboss\server\all\deploy\jboss-aop.deployer\jboss-aop.jar;➥

C:\jboss\server\all\deploy\jboss-aop.deployer\➥

jboss-aspect-library.jar

Next, with SimpleSessionApp as the current directory, execute the following command
from the command prompt (remember that this is all one line):

> java➥

-Djava.naming.factory.initial=➥

org.jnp.interfaces.NamingContextFactory➥

-Djava.naming.factory.url.pkgs=➥

org.jboss.naming:org.jnp.interfaces ➥

-Djava.naming.provider.url=➥

localhost client.SimpleSessionClient ➥

Now is the time for all good men

Mukhar_470-3.book Page 415 Saturday, October 1, 2005 6:14 AM

416 C H A P T E R 9 ■ E J B F U N D A M E N T A LS A N D S E S S I O N B E A N S

When you run the SimpleSession client program, it will produce the following output:

sent string: Now, received string: Now
sent string: is, received string: is
sent string: the, received string: the
sent string: time, received string: time
sent string: for, received string: for
sent string: all, received string: all
sent string: good, received string: good
sent string: men, received string: men

It may not seem very practical, but it makes you unbelievably popular at parties.

Reviewing the Stateless Session Bean Source Code

We have three Java source files to walk through here. We’ll start with the client and work our
way back up to the session bean interface and class.

The main() method of the SimpleSession class kicks things off by using the JNDI to help us
get a reference to the business interface of the session bean. JNDI provides a common interface
to directory services (This includes LDAP, CORBA providers, and in this case, your local file-
system). The directory that we’re dealing with here is internal to the EJB server and holds the
reference to the business interface of our session bean. That reference is accessed by providing
the JNDI lookup with the bean interface’s qualified name. We could also specify the bean’s
location by absolute JNDI pathname, passing the lookup() function the string literal ejb/
beans.SimpleSession.

Once the lookup() function has returned an object for our use, we immediately cast it to
the base interface SimpleSession. Pay special attention to our decision to acquire a JNDI refer-
ence by using the SimpleSession class name. By requesting a JNDI reference for an interface
annotated by the @Remote metadata descriptor, we have implicitly stated the method that we
wish to use to communicate with the bean—pretty cool, huh?

InitialContext ctx = new InitialContext();
 SimpleSession simpleSession
 = (SimpleSession) ctx.lookup(SimpleSession.class.getName());

The client code for this example, which follows, demonstrates that we can pass an argument
to a method of a session bean that exists on the server, operate on the argument in the method,
and return a different value to the client. More specifically, the code loops through the arguments
that were passed to the client’s main() method via the command line, and passes them one at
a time to the getEchoString() method of the session bean class. This is accomplished by calling
the getEchoString() method of the bean interface that exists on the client:

for (int i = 0; i < args.length; i++) {
 String returnedString = simpleSession.getEchoString(args[i]);
 System.out.println("sent string: " + args[i] +
 ", received string: " + returnedString);
}

Note that invoking the getEchoString() method of the bean interface on the client invokes
the getEchoString() method of the session bean class on the server. This is possible through

Mukhar_470-3.book Page 416 Saturday, October 1, 2005 6:14 AM

C H A P T E R 9 ■ E JB F U N D A M E N T A L S A N D S E S S I O N B E A N S 417

the use of remoting, the mechanism by which method calls present on the server hosting the
bean are remotely invocated.

The business method of our session bean that the client class calls takes a String argument
passed in and returns that same string with a status message appended to it back to the calling
client:

public String getEchoString(String clientString) {
 return clientString + " - from session bean";
}

This method is also defined in the bean interface specified in the SimpleSession.java code
listing:

 public String getEchoString(String clientString);

The bean interface deserves a second look for one very important reason: metadata.

import javax.ejb.Remote;

@Remote
public interface SimpleSession

While the @Remote may not look like much, its presence is extremely relevant to the devel-
opment of the session bean. This annotation tells the compiler and EJB container that the interface
in question is to be made available to remote clients. The compiler will provide the interface with
all the necessary functionality that is needed to let remote clients invoke methods from the EJB
container directly, and all you needed to do was add an extra argument to your interface decla-
ration. If it were any easier, the program would be coding itself.

Speaking of easy, take another look at the SimpleSessionBean.java file; take particular
note of the @Stateless annotation.

package beans;

import javax.ejb.Stateless;

@Stateless
public class SimpleSessionBean implements SimpleSession

The @Stateless descriptor is an instruction to the compiler and EJB container, indicating
that the class file in question should be deployed and managed as a stateless session bean. As
discussed earlier in the chapter, this annotation is the primary method you’ll use to develop
your EJBs. In the following chapters, you’ll learn how to extend bean annotations with extra
configuration directives to enrich your object definitions.

In this SimpleSessionApp example, you learned how to develop a session bean, including
how to deploy and start it in a Java EE application server. You also learned how to develop a
client application that uses session beans. Because the SimpleSessionApp was deployed as a
stateless session bean, it can’t be counted on to retain data between method invocations. The
next section will introduce the idea of a stateful session bean and compare these two types.

Mukhar_470-3.book Page 417 Saturday, October 1, 2005 6:14 AM

418 C H A P T E R 9 ■ E J B F U N D A M E N T A LS A N D S E S S I O N B E A N S

TROUBLESHOOTING THE DEPLOYMENT

We know that it’s hard to believe, but occasionally your application may not deploy successfully on the first try.
If you get an exception when placing your bean content in the deployment folder, obviously, you should first
go back and verify that all the instructions were followed.

If you are still getting exceptions when deploying, then open a command prompt and enter the following
command:

>%JBOSS_HOME%\bin\shutdown.bat -S

When you have done this, the JBoss Server window will close. Delete your bean file from the deployment
directory and start the server once more. After JBoss has finished its startup procedure, copy your bean file
into the deployment directory once again and monitor the JBoss Server output for any deployment exceptions.
If it still doesn’t deploy, then repeat the previous command, rebooting your machine after stopping the JBoss
Server.

If it still doesn’t deploy, then check your logs in %JBOSS_HOME%\server\all\log. You can find extra
messages and information about the server’s operation in these files.

Finally, if the application still won’t deploy, then it seems reasonable that a step has been missed or
incorrectly performed. Go back and check everything again.

Choosing Between Stateful and Stateless Session Beans
As mentioned previously, session beans are a great choice for implementing business logic,
processes, and workflow. When you choose to use a session bean to implement that logic, you
have yet another choice to make: whether to make that session bean stateful or stateless.

Consider a fictitious stock trading application where the client uses the buy() and
getTotalPrice() methods of a StockTrader session bean. If the user has several different stocks
to buy and wants to see the running total price on the tentative purchases, then that state
needs to be stored somewhere. One place to store that kind of transient information is in the
instance variables of the session bean itself. This requires that the session bean be defined as
stateful by usage of the @Stateful bean class metadata descriptor.

There are advantages and disadvantages to making a session bean stateful. The following
are some of the advantages:

• Transient information, such as that described in the stock trading scenario, can be
stored easily in the instance variables of the session bean, as opposed to defining and
using entity beans (or JDBC) to store it in a database.

• Since this transient information is stored in the session bean, the client doesn’t need to
store it and potentially waste bandwidth by sending the session bean the same informa-
tion repeatedly with each call to a session bean method. This bandwidth issue is a big
deal when the client is installed on a user’s machine that invokes the session bean
methods over a phone modem, for example. Bandwidth is also an issue when the data is
very large or needs to be sent many times repeatedly.

Mukhar_470-3.book Page 418 Saturday, October 1, 2005 6:14 AM

C H A P T E R 9 ■ E JB F U N D A M E N T A L S A N D S E S S I O N B E A N S 419

The main disadvantage is that stateful session beans don’t scale up as well on an EJB
server, because they require more system resources than stateless session beans do. Not only
do stateful session beans require memory to store the state, but they also can be swapped in
and out of memory (activated and deactivated) as the EJB container deems necessary to manage
server resources. The state gets stored in a more permanent form whenever a session bean is
deactivated, and that state is loaded back in when the bean is activated.

■Note The generic bean interface from which all EJBs derive defines several session bean lifecycle
methods, including ejbActivate() and ejbRemove(). A stateful session bean class can implement these
callback methods to cause special processing to occur when it is activated or removed (for that matter, so can
the other beans we review in the upcoming chapters).

Using a Stateful Session Bean
Let’s look at an example of using a stateful session bean in a generally familiar context: the
common calculator. This example mimics some very simple calculator operations: adding,
subtracting, and keeping a running total. (This may not be very impressive by today’s standards,
but you would have paid good money for a calculator with those functions in the early 1970s!)
That “keeping a running total” part is what demonstrates the use of a stateful session bean.
Figure 9-6 shows the GUI client for this example.

Figure 9-6. A simple calculator that uses a stateful session bean

There are three Java source files in this example: Calculator.java (in the beans package),
CalculatorBean.java (in the beans package), and CalculatorClient.java (in the client
package). Since CalculatorClient.java focuses primarily on presentation, we won’t list it here.
If you would like to examine the client code, you’ll find it included with the book’s downloadable
code (available available in the Downloads section the Downloads section of the Apress web
site, www.apress.com).

Listing 9-4 shows the code for the bean interface, Calculator.java. It defines the business
method of the calculator.

Mukhar_470-3.book Page 419 Saturday, October 1, 2005 6:14 AM

420 C H A P T E R 9 ■ E J B F U N D A M E N T A LS A N D S E S S I O N B E A N S

Listing 9-4. Calculator.java

package beans;

import javax.ejb.Remote;

@Remote
public interface Calculator {
 public void clearIt();
 public void calculate(String operation, int value);
 public int getValue();
}

Listing 9-5 shows the code for the bean class, CalculatorBean.java.

Listing 9-5. CalculatorBean.java

package beans;

import javax.ejb.Stateful;

@Stateful
public class CalculatorBean implements Calculator {
 private int _value = 0;
 public void clearIt() {
 _value = 0;
 }
 public void calculate(String operation, int value) {
 if (operation.equals("+")) {
 _value = _value + value;
 return;
 }
 if (operation.equals("-")) {
 _value = _value - value;
 return;
 }
 }
 public int getValue() {
 return _value;
 }
}

Add these code files to a new application directory called SimpleCalculatorApp. Within
the directory add beans and client subdirectories. Place Calculator.java and
CalculatorBean.java in the beans directory, and CalculatorClient.java in the client directory.

Now compile the .java files following the same instructions as in the previous example. At
the command-line, type the following (again, remember that this is all on one line):

Mukhar_470-3.book Page 420 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

C H A P T E R 9 ■ E JB F U N D A M E N T A L S A N D S E S S I O N B E A N S 421

> set CLASSPATH=.;C:\jboss\lib\concurrent.jar;C:\jboss\lib\jboss-common.jar; ➥

C:\jboss\server\all\lib\jboss.jar; ➥

C:\jboss\server\all\lib\jboss-remoting.jar; ➥

C:\jboss\server\all\lib\jboss-transaction.jar; ➥

C:\jboss\server\all\lib\jnpserver.jar; ➥

C:\jboss\server\all\deploy\ejb3.deployer\jboss-ejb3.jar; ➥

C:\jboss\server\all\deploy\ejb3.deployer\jboss-ejb3x.jar; ➥

C:\jboss\server\all\deploy\jboss-aop.deployer\ ➥

jboss-aop.jar; ➥

C:\jboss\server\all\deploy\jboss-aop.deployer\➥

jboss-aspect-library.jar

Next, within the SimpleCalculatorApp directory where the client and beans directories are
located, execute the following commands from the command prompt:

> javac -d . client/*.java
> javac -d . beans/*.java

Now enter the following command at the prompt:

>jar cf SimpleCalculatorApp.ejb3 SimpleCalculatorApp

Then copy the resulting EJB3 file to your JBoss deployment directory:

%JBOSS_HOME%\server\all\deploy.

Running the Stateful Session Bean Application

After deploying the application, you can now run it. On a default Java EE 5 SDK/JBoss Windows
installation, the CLASSPATH would be set correctly by using the following command:

> set CLASSPATH=.;C:\jboss\lib\concurrent.jar;➥

C:\jboss\lib\jboss-common.jar; ➥

C:\jboss\server\all\lib\jboss.jar;➥

C:\jboss\server\all\lib\jboss-remoting.jar;➥

C:\jboss\server\all\lib\jboss-transaction.jar;➥

C:\jboss\server\all\lib\jnpserver.jar;➥

C:\jboss\server\all\deploy\ejb3.deployer\jboss-ejb3.jar;➥

C:\jboss\server\all\deploy\ejb3.deployer\jboss-ejb3x.jar;➥

C:\jboss\server\all\deploy\jboss-aop.deployer\➥

jboss-aop.jar;➥

C:\jboss\server\all\deploy\jboss-aop.deployer\➥

jboss-aspect-library.jar

Next, with SimpleCalculatorApp as the current directory, execute the following command
from the operating system prompt:

Mukhar_470-3.book Page 421 Saturday, October 1, 2005 6:14 AM

422 C H A P T E R 9 ■ E J B F U N D A M E N T A LS A N D S E S S I O N B E A N S

> java ➥

-Djava.naming.factory.initial=➥

org.jnp.interfaces.NamingContextFactory ➥

-Djava.naming.factory.url.pkgs=➥

org.jboss.naming:org.jnp.interfaces ➥

-Djava.naming.provider.url=➥

localhost client.CalculatorClient

The GUI of the client should appear, as shown earlier in Figure 9-6.
To operate the calculator, type a number into the text box, select an operation (+ or -) from

the drop-down list, and click the = button. The running total will be displayed beside the Calculator
value label.

Reviewing the Stateful Session Bean Source Code

To understand how this example works, we’ll walk through some of the GUI client code contained
in the CalculatorClient.java source file, and then we’ll take a closer look at the EJB code.

■Note In the code examples, you’ll notice that some of the import statements are wildcards and some
explicitly name the class or interface. For instructional purposes, we’ve chosen to be explicit on the imports
that are relevant to Java EE, the subject of this book. We’ve chosen to be more frugal with lines of code by
using wildcards for the more familiar ones that are relevant to J2SE.

The client is a standard Java Swing application, complete with GUI components and
event-handler methods. The client needs to call methods of the stateful session bean, so as in
the previous example, it gets a reference to the bean’s remote interface and gets a reference to
the session bean on the server. The code that performs this is in the getCalculator() method
of the CalculatorClient class, which is called from the constructor:

 private Calculator getCalculator() {
 Calculator calculator = null;
 try {
 // Get a naming context
 InitialContext ctx = new InitialContext();

 // Get a Calculator
 calculator
 = (Calculator) ctx.lookup(Calculator.class.getName());
 } catch(Exception e) {
 e.printStackTrace();
 }

 return calculator;
 }

Mukhar_470-3.book Page 422 Saturday, October 1, 2005 6:14 AM

C H A P T E R 9 ■ E JB F U N D A M E N T A L S A N D S E S S I O N B E A N S 423

When the = button is clicked, two things are passed to the calculate() method of the
calculator session bean: the operator (either + or -) and the value to be added or subtracted
from the running total:

 _calculator.calculate(oper, operVal);

Since it is a stateful session bean, it is able to store the running total in an instance variable.
The client then calls the getValue() method of the calculator session bean to retrieve the
running total and subsequently display it:

 _topNumber.setText("" + _calculator.getValue());

When the user clicks the Clear button, the clearIt() method of the calculator session
bean is called, which sets the running total to 0.

The implementations of the three calculator business methods of the CalculatorBean class
follow. They manipulate the instance variable named _value, which holds the running total
between invocations of any of these calculator session bean methods.

 private int _value = 0;
 public void clearIt() {
 _value = 0;
 }
 public void calculate(String operation, int value) {
 if (operation.equals("+")) {
 _value = _value + value;
 return;
 }
 if (operation.equals("-")) {
 _value = _value - value;
 return;
 }
 }
 public int getValue() {
 return _value;
 }

The bean indicates its use by the presence of the @Stateful metadata descriptor, just as
our earlier bean indicated it was stateless by the use of the @Stateless descriptor. This pattern
will follow throughout much of Java EE 5. Much of the hard work present in earlier versions of
Java EE has been abstracted into the implementation behind the metadata descriptors.

Keep in mind that a session bean that holds values in instance variables should never be
configured as stateless, because the values of the instance variables are not predictable. This is
because the EJB container has complete control over managing stateless (and stateful) session
beans, including initializing the values of instance variables as the bean is shared among
various clients. This is a common trap because sometimes the values are retained, giving a false
indication that everything is okay, and then one day, you can’t figure out why the program isn’t
working correctly. From personal experience, that’s a fun one to diagnose!

Mukhar_470-3.book Page 423 Saturday, October 1, 2005 6:14 AM

424 C H A P T E R 9 ■ E J B F U N D A M E N T A LS A N D S E S S I O N B E A N S

Summary
In this chapter, we explained what EJBs are and built a case for using them. We touched on the
three types of EJBs: session beans, entity beans, and message-driven beans.

The balance of this chapter was then devoted to session beans, and we started that discussion
by explaining that session beans are made up of two parts: the bean interface and the bean class.
After finishing this chapter, you should know:

• What EJBs are, the different types of EJB, and their general behavior.

• How to create stateful and stateless session beans using the @Stateful and @Stateless
metadata descriptors. You should also know how to invoke your session bean from a
remote client by using a remote bean interface annotated by the @Remote descriptor.
Making your application accessible to client applications is best facilitated by using
session beans, and will allow you to better focus your application’s design by abstracting
away the client concerns.

• The difference between stateful and stateless session beans. Stateful session beans are
most suitable in situations where you must retain some information about the client’s
interaction with your application. Stateless session beans are best deployed when you
need a very simple, low-overhead interface for your application’s clients.

• How to deploy your EJB using the JBoss Server, and how to create a simple client appli-
cation that will use the application server to invoke your EJB’s functionality.

The topics we’ve covered thus far only brush the surface of using session beans powerfully
in your design. This is a pattern that will be repeated over the next few chapters as we discuss
the other types of EJBs. What you learn in this book will give you a strong grounding in the
basics, but this is just the beginning of a thorough EJB education. When you feel comfortable
with moving on to more advanced topics, check out J. Jeffrey Hanson’s Pro EJB 3 (Apress, 2005;
ISBN 1-59059-473-8).

Now that we’ve explored session beans, in the next chapter we’ll turn our attention to
another type of enterprise bean: the entity bean.

Exercises
1. Write a stateless session bean that takes a word and returns it spelled backwards.

2. Write a stateful session bean that takes one word at a time and appends it to the previous
words received to make a sentence. Return the entire sentence each time a word is added.

3. Modify the previous exercise, adding a stateless session bean with a method that counts
the number of letters in a word. Call this method from the builder bean to count the
number of letters in each word. Show this number in the returned string.

Mukhar_470-3.book Page 424 Saturday, October 1, 2005 6:14 AM

425

■ ■ ■

C H A P T E R 1 0

EJB Entity Beans

The previous chapter introduced EJBs and provided an overview of three different types
defined by the EJB specification: session beans, entity beans, and message-driven beans. We
then looked at session bean development in detail. In this chapter and the following one, we’ll
focus on developing entity beans, which are the persistent data objects in an EJB application.

In this chapter, you will learn the following:

• How entity beans and session beans work together to provide server-side functionality

• The makeup of entity beans

• How to find an entity bean via its primary key

• How to develop container-managed persistence (CMP) and bean-managed persistence
(BMP) entity beans

• How to find entity beans with the Enterprise JavaBeans Query Language (EJB QL)

How Entity Beans Work with Session Beans
As we mentioned in the previous chapter, entity beans can provide an object-oriented abstraction
of a relational database. They are essentially JavaBeans that are backed by a persistent data store.

■Note Throughout this chapter, you’ll see terms like persistent data storage and data store. These terms
are merely a fancy way to refer to a relational database, while remaining abstract enough to protect the
authors’ hides from the inevitable repurposing of EJB entity bean storage facilities that will arise in the future.

Entity beans work well with session beans in providing the server-side functionality of the
application. Figure 10-1 depicts how session and entity beans work together for this purpose
(this is the same diagram presented in Chapter 9, repeated here for easy reference).

Mukhar_470-3.book Page 425 Saturday, October 1, 2005 6:14 AM

426 C H A P T E R 1 0 ■ E J B E N T I T Y B E A N S

Figure 10-1. The interaction between the client, the bean logic, and the database

Session beans generally implement the business logic, processes, and workflow of an
application, and entity beans are the persistent data objects. The differences between the two
extend to the implementation as well. Session beans, which expose some functionality, are
composed of a plain old Java interface and an object. Entity beans, which must act only as a
data object, are composed of merely a plain old Java object. The two types are immediately
complementary.

For example, in this chapter, we will build an application that manipulates stocks. We will
create a session bean named StockList that implements the processes that a stockbroker
might use for manipulating stocks. We will also create an entity bean named Stock whose
instances represent individual stocks.

As noted in the previous chapter, it is good practice for the client to call session bean
methods, and for session beans to manipulate the entity beans, for the following reasons:

• Calling entity bean methods directly circumvents the business logic contained in
session beans and tends to push the business logic into the UI code.

• Session beans can protect the UI from changes to the entity beans.

• Restricting client access to session beans conserves server and network resources.

The Anatomy of an Entity Bean
As we noted in the previous section, entity beans are structurally dissimilar from session beans
because they are not constructed with a bean interface. The construction of an entity bean at
the most basic level is merely the creation of a serializable plain old Java object that is annotated
by the @Entity (javax.persistence.Entity) descriptor. All of the instance fields described in

Mukhar_470-3.book Page 426 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 0 ■ E J B E N T I T Y B E A N S 427

the annotated class are persisted to the entity store, except for those fields annotated by the
@Transient (javax.persistence.Transient) descriptor. Figure 10-2 illustrates the difference
between the entity bean and session bean construction.

Figure 10-2. Session beans accessing the information contained in entity beans

Session beans may create and remove entity beans in the store by using the appropriate
methods of the EntityManager. Entity beans are created in the store by passing them to the
persist() method, and they are removed by passing them to the remove() method. Strictly
speaking, other clients such as user interfaces and external systems could access entity beans
directly, although as we stated previously, this is not usually the best practice. Querying
the store to find, remove, and use an entity bean is facilitated through the use of the
javax.persistence.EntityManager interface.

The Entity Bean Class
The entity bean class contains several types of methods:

Getter and setter methods for all persistent fields: For example, a Stock class might have
a field named tickerSymbol, with a getter method named getTickerSymbol() and a setter
method named setTickerSymbol(). We sometimes call entity bean fields virtual fields,
because having a field in the entity bean actually named tickerSymbol is not required. The
getter and setter method names just imply the name of a field, similar to JavaBean properties.

Methods that contain business logic: These methods typically access and manipulate the
fields of the entity bean. For example, if you had an entity bean named StockTransactionBean
with a price field and a quantity field, a method named getTransactionAmount() could be
created to multiply the two fields and return the amount of the transaction.

Lifecycle methods that are called by the EJB container: For example, as with session
beans, the method annotated by the @PostConstruct descriptor is called after the entity
bean has finished its instantiation, but before any of its business methods are called. These
callback methods can be overridden to pass in initialization values.

Mukhar_470-3.book Page 427 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

428 C H A P T E R 1 0 ■ E J B E N T I T Y B E A N S

■Note Bean lifecycle methods are called for nearly every significant bean event that you can imagine. Entity
beans in particular receive a special set of lifecycle callback methods that are executed whenever an interaction
occurs with the EntityManager. These callback methods are invoked before and after before and after
persist, update, remove and load actions; the method annotations are @PrePersist (javax.persistence.
PrePersist), @PostPersist (javax.persistence.PostPersist), @PreRemove (javax.persistence.
PreRemove), @PostRemove (javax.persistence.PostRemove), @PreUpdate (javax.persistence.
PreUpdate), @PostUpdate (javax.persistence.PostUpdate) and @PostLoad (javax.persistence.
PostLoad). You can use these callbacks to more intelligently react to interactions with the persistent store.

The entity bean class is annotated by the @Entity metadata descriptor and must also
implement the java.io.Serializable interface if it is to be used by remote interfaces.

Container-Managed Persistence and the EntityManager
Interface
Entity beans are backed by some type of persistent data store, often a relational database. This
persistence can be managed automatically by the EJB container, which is called container-
managed persistence (CMP). Recall from the previous chapter that an EJB container is a facility
within an EJB server that manages, and provides services to, the EJBs running within it. With
CMP, an entity bean is mapped to a database table that is dedicated to the purpose of storing
instances of that entity bean. For example, an entity bean named Stock might have a table
named stock, stock_table, or perhaps StockBeanTable dedicated to it. Each record in the table
would represent an instance of the entity bean.

The EntityManager (javax.persistence.EntityManager) interface allows you to create,
remove, and find entity beans within the data store. This interface represents a program’s
abstracted view of the persistent data storage that facilitates an entity bean’s existence. The
EntityManager interface contains the following methods for querying and updating the data store:

• Calling the persist() method creates a new entity bean instance within the data store.
It is important to note that the persist() method does not create a new instance of an
entity bean; it creates an entity bean’s associated entry in the store based on the entity
bean instance you pass to it.

• Calling the remove() method deletes the specified entity bean from the data store.

• Calling the find() method finds the appropriate entity bean instances by their primary
key. Primary keys are discussed in the next section.

• Calling the createQuery() method allows you to access the store in a more generalized
manner, similar to using the SQL database query language.

Mukhar_470-3.book Page 428 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 0 ■ E J B E N T I T Y B E A N S 429

■Note The EJB Query Language (EJB QL) enables you to run queries against entity beans. EJB QL is, as the
name suggests, a very close relative of SQL. Just like SQL, EJB QL features advanced database querying
features such as aggregate functions and subqueries, as well as EJB-specific operations such as fetch
queries. These queries are encapsulated in entity bean methods so that developers that use an entity bean
can call methods instead of constructing SQL queries. EJB QL is described in the “The EJB Query Language”
section later in this chapter and in Appendix B.

• Calling the getter and setter methods corresponding to the fields of the entity bean causes
the fields of the database table to be read from and written to, respectively. These fields
are often called CMP fields, as they are managed by the container. In the class we’ll
create in this chapter, the Stock entity bean has two CMP fields: tickerSymbol and name,
as indicated by its getters and setters.

When using CMP, the schema of the database directly reflects the design of the entity
beans. Figure 10-3 shows the relationship for the example we will develop in this chapter.

Figure 10-3. The Stock entity bean instances with respect to their host table

Like a relational database, entity beans have an abstract schema that defines the CMP fields of
each entity bean and the container-managed relationships between entity beans. For each
relationship, there are corresponding methods in the related entity beans that refer to each
other. Container-managed relationships will be covered in more detail in the next chapter.

Mukhar_470-3.book Page 429 Saturday, October 1, 2005 6:14 AM

430 C H A P T E R 1 0 ■ E J B E N T I T Y B E A N S

■Note CMP fields are formally defined as those fields in your entity bean definition that are private members. You
are restricted to using Java primitive types, the Java string class, serializable Java types, and other entity
beans for single-valued persistent class members. Multivalued persistent class members (collections of
values, such as an array) are restricted to those classes that derive from java.util.Collection or
java.util.Set.

Primary Keys
A requirement of an entity bean is that one or more of its CMP fields must make it unique. This
field (or combination of fields) is known as the primary key, which is useful in finding a particular
entity bean. A primary key may be any serializable object, such as a String or an Integer. Primary
keys also enable another nice feature of entity beans: the ability of the EJB container to manage
the relationships between entity beans, which will be covered in the next chapter.

You can let the container do the work of maintaining your primary key for you by using the
@Id (javax.persistence.Id) metadata descriptor to indicate how the uniqueness of the key is
maintained:

@Id(generate=javax.persistence.GeneratorType.AUTO)
private int id;

This code alerts the container that the field in question requires some unique value generated
for it automatically when an instance of the entity is created in the data store.

Bean-Managed Persistence
The alternative to CMP is bean-managed persistence (BMP), in which you write all the persistence
logic yourself. This persistence logic goes inside the entity bean itself—all database connection,
query, and update mechanisms will be contained within the entity bean.

BMP beans are not provided for in the EJB 3.0 specification. However, you might consider
using BMP in the following situations:

• A database already exists in a legacy system, and you are building an EJB-based applica-
tion on top of that database. If the design of the entity beans does not match the existing
database schema, BMP will be required.

• There is no database, but rather, the entity beans are a wrapper for an external system.
For example, you might be persisting the entity data as flat XML files to some WebDAV
store, or mirroring the directory information provided by an LDAP server.

• The EJB server doesn’t support CMP with the database that you are using. This could be
in cases where the database in question lacks support for JDBC, or the means to interact
with the database are sufficiently complex to warrant a custom solution.

Mukhar_470-3.book Page 430 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 0 ■ E J B E N T I T Y B E A N S 431

Most of the entity bean discussions and examples in this book are of the CMP variety, and
are in accordance with the EJB 3.0 specification. This chapter does include one BMP example,
however, to give you an idea of how to develop this type of entity bean. Implementing BMP
requires you to use the 2.1 specification to deploy the entity beans. Fortunately, this isn’t difficult,
since one of the goals of the EJB 3.0 working group is backward-compatibility with older versions
of the specification.

Now that you have an idea of how entity beans work, let’s see how to use them in your
applications.

Developing CMP Entity Beans
CMP entity beans have their data persistence managed by the EJB container through the use of
a database. Consequently, designing the entity beans in an application can be very much like
designing the tables in a relational database, keeping in mind that entity beans are objects and
therefore can have business methods as well as data.

During analysis, the entities, which are often “nouns” in a problem domain, are consid-
ered candidates for being represented as entity beans. For example, an application that helps
students manage their education might have entity beans such as Student, Institution,
Counselor, Course, and Program. Another logical step is to discover which persistent fields each
entity bean should have. For example, the Course entity bean could have CMP fields for the
name of the course and the course abstract.

■Caution Plan carefully! The size of the information you decide to persist will dictate how much space is
occupied in your data store and how much time it takes for the container to populate your entity with its
persisted data.

Building the CMP Entity Bean Application
The example we’ll work through in this section is a simple application in which the user can
create, find, update, and delete stocks. This application uses two EJBs:

• An entity bean named Stock that holds information about stocks. There is one instance
of this entity bean per stock.

• A session bean named StockList that uses the Stock beans and provides business
methods to the UI that enables it to maintain the Stock beans.

Listing 10-1 shows the code for the entity bean, Stock.java.

Mukhar_470-3.book Page 431 Saturday, October 1, 2005 6:14 AM

432 C H A P T E R 1 0 ■ E J B E N T I T Y B E A N S

Listing 10-1. Stock.java

package beans;

import javax.persistence.Entity;
import java.io.Serializable;
import javax.persistence.Id;

@Entity
public class Stock implements Serializable {
 // The persistent fields
 private String tickerSymbol;
 private String name;

 // Constructors
 public Stock() { }
 public Stock(String tickerSymbol, String name) {
 this.tickerSymbol = tickerSymbol;
 this.name = name;
 }

 // The access methods for persistent fields
 // tickerSymbol is the id
 @Id
 public String getTickerSymbol() {
 return tickerSymbol;
 }

 public void setTickerSymbol(String tickerSymbol) {
 this.tickerSymbol = tickerSymbol;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }
}

Listings 10-2 and 10-3 show the source code files for the session bean, StockList.java and
StockListBean.java.

Mukhar_470-3.book Page 432 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 0 ■ E J B E N T I T Y B E A N S 433

Listing 10-2. StockList.java

package beans;

import javax.ejb.Remote;

@Remote
public interface StockList {
 // The public business methods on the StockList bean
 public String getStock(String ticker);
 public void addStock(String ticker, String name);
 public void updateStock(String ticker, String name);
 public void deleteStock(String ticker);
}

Listing 10-3. StockListBean.java

package beans;

import beans.Stock;
import javax.persistence.PersistenceContext;
import javax.ejb.Stateless;
import javax.persistence.EntityManager;

@Stateless
public class StockListBean implements StockList {

 // The reference to the entity manager
 @PersistenceContext
 private EntityManager _manager;

 // The public business methods. these must be coded in the
 // interface also.

 public String getStock(String ticker) {
 Stock stock = _manager.find(Stock.class, ticker);
 return stock.getName();
 }

 public void addStock(String ticker, String name) {
 _manager.persist(new Stock(ticker, name));
 }

 public void updateStock(String ticker, String name) {
 Stock stock = _manager.find(Stock.class, ticker);
 stock.setName(name);
 }

Mukhar_470-3.book Page 433 Saturday, October 1, 2005 6:14 AM

434 C H A P T E R 1 0 ■ E J B E N T I T Y B E A N S

 public void deleteStock(String ticker) {
 Stock stock = _manager.find(Stock.class, ticker);
 _manager.remove(stock);
 }
}

Finally, Listing 10-4 shows the source code file that defines the user interface,
StockClient.java.

Listing 10-4. StockClient.java

package client;

import beans.StockList;
import javax.naming.InitialContext;

// General imports
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class StockClient extends JFrame
implements ActionListener {
 private StockList _stockList;
 private JTextField _ticker = new JTextField();
 private JTextField _name = new JTextField();
 private JButton _get = new JButton("Get");
 private JButton _add = new JButton("Add");
 private JButton _update = new JButton("Update");
 private JButton _delete = new JButton("Delete");

 public StockClient() {
 // Get the stock lister
 _stockList = getStockList();

 // Add the title
 JLabel title = new JLabel("Stock List");
 title.setHorizontalAlignment(JLabel.CENTER);
 getContentPane().add(title, BorderLayout.NORTH);

 // Add the stock label panel
 JPanel stockLabelPanel = new JPanel(new GridLayout(2, 1));
 stockLabelPanel.add(new JLabel("Symbol"));
 stockLabelPanel.add(new JLabel("Name"));
 getContentPane().add(stockLabelPanel, BorderLayout.WEST);

Mukhar_470-3.book Page 434 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

C H A P T E R 1 0 ■ E J B E N T I T Y B E A N S 435

 // Add the stock field panel
 JPanel stockFieldPanel = new JPanel(new GridLayout(2, 1));
 stockFieldPanel.add(_ticker);
 stockFieldPanel.add(_name);
 getContentPane().add(stockFieldPanel, BorderLayout.CENTER);

 // Add the buttons
 JPanel buttonPanel = new JPanel(new GridLayout(1, 4));
 _get.addActionListener(this);
 buttonPanel.add(_get);
 _add.addActionListener(this);
 buttonPanel.add(_add);
 _update.addActionListener(this);
 buttonPanel.add(_update);
 _delete.addActionListener(this);
 buttonPanel.add(_delete);
 getContentPane().add(buttonPanel, BorderLayout.SOUTH);
 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 System.exit(0);
 }
 });

 setSize(330, 130);
 setVisible(true);
 }

 private StockList getStockList() {
 StockList stockList = null;
 try {
 // Get a naming context
 InitialContext ctx = new InitialContext();

 // Get a StockList object
 stockList
 = (StockList) ctx.lookup(StockList.class.getName());
 } catch(Exception e) {
 e.printStackTrace();
 }

 return stockList;
 }

Mukhar_470-3.book Page 435 Saturday, October 1, 2005 6:14 AM

436 C H A P T E R 1 0 ■ E J B E N T I T Y B E A N S

 public void actionPerformed(ActionEvent ae) {
 // If get was clicked, get the stock
 if (ae.getSource() == _get) {
 getStock();
 }

 // If add was clicked, add the stock
 if (ae.getSource() == _add) {
 addStock();
 }

 // If update was clicked, update the stock
 if (ae.getSource() == _update) {
 updateStock();
 }

 // If delete was clicked, delete the stock
 if (ae.getSource() == _delete) {
 deleteStock();
 }
 }

 private void getStock() {
 // Get the ticker
 String ticker = _ticker.getText();
 if (ticker == null || ticker.trim().length() == 0) {
 JOptionPane.showMessageDialog(this, "Ticker is required");
 return;
 }

 // Get the stock
 try {
 String name = _stockList.getStock(ticker.trim());
 _name.setText(name);
 }
 catch (Exception e) {
 e.printStackTrace();
 }

 }

 private void addStock() {
 // Get the ticker
 String ticker = _ticker.getText();
 if (ticker == null || ticker.trim().length() == 0) {
 JOptionPane.showMessageDialog(this, "Ticker is required");
 return;
 }

Mukhar_470-3.book Page 436 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 0 ■ E J B E N T I T Y B E A N S 437

 // Get the name
 String name = _name.getText();
 if (name == null || name.trim().length() == 0) {
 JOptionPane.showMessageDialog(this, "Name is required");
 return;
 }

 // Add the stock
 try {
 _stockList.addStock(ticker.trim(), name.trim());
 JOptionPane.showMessageDialog(this, "Stock added!");
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }

 private void updateStock() {
 // Get the ticker
 String ticker = _ticker.getText();
 if (ticker == null || ticker.trim().length() == 0) {
 JOptionPane.showMessageDialog(this, "Ticker is required");
 return;
 }

 // Get the name
 String name = _name.getText();
 if (name == null || name.trim().length() == 0) {
 JOptionPane.showMessageDialog(this, "Name is required");
 return;
 }

 // Update the stock
 try {
 _stockList.updateStock(ticker.trim(), name.trim());
 JOptionPane.showMessageDialog(this, "Stock updated!");
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }

Mukhar_470-3.book Page 437 Saturday, October 1, 2005 6:14 AM

438 C H A P T E R 1 0 ■ E J B E N T I T Y B E A N S

 private void deleteStock() {
 // Get the ticker
 String ticker = _ticker.getText();
 if (ticker == null || ticker.trim().length() == 0) {
 JOptionPane.showMessageDialog(this, "Ticker is required");
 return;
 }

 // Delete the stock
 try {
 _stockList.deleteStock(ticker.trim());
 JOptionPane.showMessageDialog(this, "Stock deleted!");
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }

 public static void main(String[] args) {
 StockClient stockClient = new StockClient();
 }
}

Organize the files in the StockListApp application directory. The Stock.java,
StockList.java, and StockListBean.java files (Listings 10-1, 10-2, and 10-3) go in the beans
subfolder. The source file that defines the user interface, StockClient.java (Listing 10-4), goes
in the client subfolder.

Compiling the CMP Entity Bean Application
To compile the source code for the application, open a command prompt in the StockListApp
directory, ensure that the CLASSPATH is set correctly (shown here for a default Java EE SDK 5
Windows installation), and compile the classes:

>set CLASSPATH=.;➥

 c:\jboss\lib\concurrent.jar;➥

 c:\jboss\client\jboss-j2ee.jar;➥

 c:\jboss\lib\commons-httpclient.jar;➥

 c:\jboss\client\jbossall-client.jar;➥

 c:\jboss\lib\jboss-common.jar;➥

 c:\jboss\server\all\lib\jboss.jar;➥

 c:\jboss\server\all\lib\jboss-remoting.jar;➥

 c:\jboss\server\all\lib\jboss-transaction.jar;➥

 c:\jboss\server\all\lib\jnpserver.jar;➥

 c:\jboss\server\all\lib\javax.servlet.jar;➥

 c:\jboss\server\all\deploy\ejb3.deployer\jboss-ejb3.jar;➥

 c:\jboss\server\all\deploy\ejb3.deployer\jboss-ejb3x.jar;➥

 c:\jboss\server\all\deploy\ejb3.deployer\ejb3-persistence.jar;➥

Mukhar_470-3.book Page 438 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 0 ■ E J B E N T I T Y B E A N S 439

 c:\jboss\server\all\deploy\jboss-aop-jdk50.deployer\➥

 jboss-aop-jdk50.jar;➥

 c:\jboss\server\all\deploy\jboss-aop-jdk50.deployer\➥

 jboss-aspect-library-jdk50.jar

Next, within the directory where the client and beans directories are located, execute the
following commands from the command prompt:

> javac -d . client/*.java
> javac -d . beans/*.java

Deploying the CMP Entity Bean Application
To deploy the application, start the JBoss Server using the procedure described in Chapter 2.

To create the application EJB3 file that contains the StockList session and entity bean
classes, open a command prompt in the same directory that StockListApp resides in, and then
type the following command:

>jar cf StockListApp.ejb3 beans/*.class

Before deploying the application, you should make sure that no other applications are
deployed. This is a good habit because some of these examples use the same JNDI name for a
session bean, and you want the correct session bean reference to be found. Also, you want
JBoss to be stable as long as possible. To verify that no other applications are deployed, open a
web browser, visit localhost:8080, click on the JMX console link in the tree in the left panel,
and click the Stop button for any listed applications that you deployed. Leave any applications
that you didn’t deploy alone.

Now you can deploy the application. Copy the EJB3 files for the StockList session bean to
the JBOSS_HOME\server\all\deploy directory. If your JBoss installation is in C:\JBoss, for example,
copy the file to C:\JBoss\server\all\deploy.

■Note You may be wondering why no extra work was required to make allowances for the database back-
end of your entity beans. Fortunately, the JBoss implementation of EJB 3.0 provides a lightweight Hypersonic
SQL (HSQL) database that will provide your entity bean with persistent data. For more information about
HSQL, visit http://sourceforge.net/projects/hsqldb/.

Running the CMP Entity Bean Application
To run the client that uses the beans you’ve built, enter the following command:

>java ➥

-Djava.naming.factory.initial=org.jnp.interfaces.NamingContextFactory➥

-Djava.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces ➥

-Djava.naming.provider.url=localhost client.StockClient

Figure 10-4 shows an example of adding an entry for Jukebox Sellers Incorporated stock to
the StockList application.

Mukhar_470-3.book Page 439 Saturday, October 1, 2005 6:14 AM

440 C H A P T E R 1 0 ■ E J B E N T I T Y B E A N S

Figure 10-4. The StockList client with user input

After at least one stock name has been added, you can enter a symbol and click the Get
button, which causes the desired entity bean to be found and its name displayed. Changing the
Name text field and clicking the Update button causes the CMP name field of the entity bean to
be updated. Clicking the Delete button results in the entity bean being deleted.

Now that we’ve built, deployed, and run the application, let’s see how it works. We’re
going to examine the code for this example from the inside out, beginning with the entity bean.
For a diagram of these entity bean classes, see Figure 10-3, shown earlier in the chapter.

Reviewing the CMP Entity Bean
Let’s first look at the entity bean class, Stock.java (Listing 10-1). Issues of rich object use aside,
why do we expend the effort to have two constructors? The EJB specification requires that all
entity beans provide at least one no-argument constructor to the EJB container. We provide
the second constructor purely for functional purposes on the part of calling clients.

The following are a few other points worth mentioning about this entity bean:

• We implement the java.io.Serializable interface for our entity bean. We do this
in order to make it available for use by remote interfaces (or more specifically, our
StockList interface).

• We do not provide a generator type for the @Id annotation. This is because we are relying
on a client-provided key to identify our Stock objects in the store, and we cannot easily
automate making this key a unique value based on past entries to the store.

• We do not initialize any variables in our no-argument constructor. This is to avoid
instantiating persistent variables with non-null (but not relevant) data that might be
mistakenly persisted to the store.

Reviewing the Session Bean
Let’s turn our attention to the session bean code. The StockList session bean (Listing 10-2)
uses our entity bean. The four methods in that interface will be used by the client to carry out
the get, add, update, and delete stock operations shown in the GUI client. The session bean
class, StockListBean.java (Listing 10-3), supports this functionality with the getStock(),
addStock(), updateStock(), and deleteStock() methods, respectively.

Each of these methods calls methods that belong to the EntityManager interface we
discussed earlier, but how did we instantiate the class that implements EntityManager? If
you’re a perceptive reader (of course you are!), you’ll notice the @PersistenceContext
(javax.persistence.PersistenceContext) annotation preceding our declaration of the
EntityManager member. What is @PersistenceContext?

Mukhar_470-3.book Page 440 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 0 ■ E J B E N T I T Y B E A N S 441

The @PersistenceContext annotation notifies the compiler that the variable or property it
annotates represents a value that will be assigned to it by the containing application—in this
case, our EJB container. When our session bean is instantiated, the manager variable will be
automatically set to the container’s EntityManager interface, saving us the tedious work of
writing a lot of housekeeping code to find and acquire the container’s EntityManager instance.

 public String getStock(String ticker) {
 Stock stock = _manager.find(Stock.class, ticker);
 return stock.getName();
 }

The getStock() method calls the find() method of the EntityManager interface, passing in
the class of the Stock entity bean and the desired ticker symbol. Why do we pass the class to the
EntityManager? Remember that each entity bean is associated with some specific location in
the store—in this case, a database table. Passing the class to the EntityManager is effectively
letting it know which table it should be searching for. If it finds the table, it asks the Stock entity
bean for the value held in its CMP name field, and returns the value as follows:

• The addStock() calls the EntityManager’s persist() method, passing it a newly instantiated
Stock entity.

• The updateStock() method uses the find() method to get the desired Stock entity bean
reference, and it uses a CMP method to update the name field.

• The deleteStock() method uses the find() method to get the desired Stock entity bean
reference. It then calls the remove() method of the EntityManager interface.

The StockClient class (Listing 10-4) gets a reference to a session bean:

 private StockList getStockList() {
 StockList stockList = null;
 try {
 // Get a naming context
 InitialContext ctx = new InitialContext();
 stockList ➥

 = (StockList) ctx.lookup(StockList.class.getName());
 } catch(Exception e) {
 e.printStackTrace();
 }

 return stockList;
 }

This example demonstrated the use of a CMP entity bean. In the next section, you’ll learn
how to develop entity beans that don’t rely on the EJB container to provide persistence.

Developing BMP Entity Beans
As you learned earlier in this chapter, BMP entity beans must supply their own persistence
mechanism. In this section, we’ll develop an example that demonstrates this technique by

Mukhar_470-3.book Page 441 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

442 C H A P T E R 1 0 ■ E J B E N T I T Y B E A N S

converting the Stock entity bean used in the previous example from a CMP entity bean to a
BMP entity bean.

As we noted earlier, the EJB 3.0 specification doesn’t make allowances for BMP. However,
it does require backward-compatibility with earlier versions of the EJB specification—earlier
versions that include support for BMP, for example.

The majority of the bean implementation will reside in an EJB 2.1 entity bean called
StockBean.java. StockBean.java will be accompanied by Stock.java and StockHome.java,
which are StockBean’s business interface and home interface, respectively. The client file,
StockClient.java, references an instance of the home interface to make use of the bean. The
resulting EJB 2.1 bean will be deployed separately from the EJB 3.0 session bean, and it will
require some additional files that we’ll discuss as we encounter them in the example.

■Note The home interface of an entity bean is a relic of the EJB 2.1 specification. It’s used by EJB clients
to acquire a reference to the entity bean through some mechanism. Since the home interface’s use has
largely been eclipsed by the advent of the EJB 3.0 specification, we will deal with it in a summary fashion in
this text. Should an older developer ever try to engage you in conversation about these relics, you are encour-
aged to make loud noises or mention something about an impending dinosaur stampede. If these ruses fail,
or if you would like to learn more about the subject, you’re encouraged to purchase a copy of the incredibly
well-written Beginning J2EE 1.4: From Novice to Professional (Apress, 2004; ISBN 1-59059-341-3). It even
looks attractive on a bookshelf.

Building the BMP Entity Bean Application
The process to build and run this example is almost the same as the previous example, and all
of the Java source filenames are the same.

StockList.java is shown in Listing 10-5.

Listing 10-5. StockList.java for the BMP Example

package beans;

import javax.ejb.CreateException;
import javax.ejb.FinderException;
import javax.ejb.Remote;

@Remote
public interface StockList {
 // The public business methods on the Stock List bean
 public String getStock(String ticker)
 throws FinderException;
 public void addStock(String ticker, String name)
 throws CreateException;
 public void updateStock(String ticker, String name)
 throws FinderException;

Mukhar_470-3.book Page 442 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 0 ■ E J B E N T I T Y B E A N S 443

 public void deleteStock(String ticker)
 throws FinderException;
}

Listing 10-6 shows StockListBean.java.

Listing 10-6. StockListBean.java for the BMP Example

package beans;

import beans_2x.Stock;
import beans_2x.StockHome;
import javax.ejb.CreateException;
import javax.ejb.FinderException;
import javax.ejb.SessionBean;
import javax.ejb.SessionContext;
import javax.ejb.Stateless;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.rmi.PortableRemoteObject;

@Stateless
public class StockListBean implements StockList {

 // The public business methods. these must be coded in the
 // remote interface also.

 public String getStock(String ticker)
 throws FinderException {
 try {
 StockHome stockHome = getStockHome();
 Stock stock = stockHome.findByPrimaryKey(ticker);
 return stock.getName();
 }
 catch (FinderException fe) {
 throw fe;
 }
 catch (Exception ex) {
 throw new RuntimeException(ex.getMessage());
 }
 }

 public void addStock(String ticker, String name)
 throws CreateException {
 try {
 StockHome stockHome = getStockHome();
 stockHome.create(ticker, name);
 }

Mukhar_470-3.book Page 443 Saturday, October 1, 2005 6:14 AM

444 C H A P T E R 1 0 ■ E J B E N T I T Y B E A N S

 catch (CreateException ce) {
 throw ce;
 }
 catch (Exception ex) {
 throw new RuntimeException(ex.getMessage());
 }
 }

 public void updateStock(String ticker, String name)
 throws FinderException {
 try {
 StockHome stockHome = getStockHome();
 Stock stock = stockHome.findByPrimaryKey(ticker);
 stock.setName(name);
 }
 catch (FinderException fe) {
 throw fe;
 }
 catch (Exception ex) {
 throw new RuntimeException(ex.getMessage());
 }
 }

 public void deleteStock(String ticker)
 throws FinderException {
 try {
 StockHome stockHome = getStockHome();
 Stock stock = stockHome.findByPrimaryKey(ticker);
 stock.remove();
 }
 catch (FinderException fe) {
 throw fe;
 }
 catch (Exception ex) {
 throw new RuntimeException(ex.getMessage());
 }
 }

 private StockHome getStockHome() throws NamingException {
 // Get the initial context
 InitialContext initial = new InitialContext();

 // Get the object reference
 Object objref = initial.lookup("beans_2x.Stock");
 StockHome home = (StockHome)
 PortableRemoteObject.narrow(objref, StockHome.class);
 return home;
 }

Mukhar_470-3.book Page 444 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 0 ■ E J B E N T I T Y B E A N S 445

 // Standard ejb methods
 public void ejbActivate() {}
 public void ejbPassivate() {}
 public void ejbRemove() {}
 public void ejbCreate() {}
 public void setSessionContext(SessionContext context) { }
}

The EJB 2.1 files are Stock.java, StockBean.java, and StockHome.java. Listing 10-7 shows
Stock.java.

Listing 10-7. Stock.java for the BMP Example

package beans_2x;

import java.rmi.RemoteException;
import javax.ejb.EJBObject;

public interface Stock extends EJBObject {
 // The public business methods on the Stock bean
 // these include the accessor methods from the bean

 // Get the ticker. Do not allow ticker to be set through the
 // interface because it is the primary key.
 public String getTickerSymbol() throws RemoteException;

 // Get and set the name
 public String getName() throws RemoteException;
 public void setName(String name) throws RemoteException;
}

Listing 10-8 shows StockBean.java.

Listing 10-8. StockBean.java for the BMP Example

package beans_2x;

import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import javax.ejb.CreateException;
import javax.ejb.EJBException;
import javax.ejb.EntityBean;
import javax.ejb.EntityContext;
import javax.ejb.FinderException;
import javax.ejb.NoSuchEntityException;
import javax.ejb.ObjectNotFoundException;

Mukhar_470-3.book Page 445 Saturday, October 1, 2005 6:14 AM

446 C H A P T E R 1 0 ■ E J B E N T I T Y B E A N S

import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.sql.DataSource;

public class StockBean implements EntityBean {

 // Persistent fields
 private String tickerSymbol;
 private String name;

 // Keeps the reference to the context
 private EntityContext context;

 // Keeps the reference to the db connection
 private Connection connection;

 // The access methods for persistent fields
 public String getTickerSymbol() {
 return tickerSymbol;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 // Standard entity bean methods

 public String ejbFindByPrimaryKey(String primaryKey)
 throws FinderException {

 boolean result;

 try {
 String stmt =
 "select tickerSymbol " +
 "from stock where tickerSymbol = ? ";
 PreparedStatement pstmt =
 connection.prepareStatement(stmt);
 pstmt.setString(1, primaryKey);

Mukhar_470-3.book Page 446 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 0 ■ E J B E N T I T Y B E A N S 447

 ResultSet rs = pstmt.executeQuery();
 result = rs.next();
 pstmt.close();
 }
 catch (SQLException ex) {
 throw new EJBException("ejbFindByPrimaryKey: " +
 ex.getMessage());
 }

 if (result) {
 return primaryKey;
 }
 else {
 throw new ObjectNotFoundException
 ("Ticker " + primaryKey + " not found.");
 }
 }

 public String ejbCreate(String tickerSymbol, String name)
 throws CreateException {

 try {
 String findstmt =
 "select tickerSymbol " +
 "from stock where tickerSymbol = ? ";
 PreparedStatement pfindstmt =
 connection.prepareStatement(findstmt);
 pfindstmt.setString(1, tickerSymbol);

 ResultSet rs = pfindstmt.executeQuery();
 boolean findresult = rs.next();
 if (findresult) {
 throw new CreateException("Ticker already exists!");
 }

 String stmt =
 "insert into stock values (? , ?)";
 PreparedStatement pstmt = connection.prepareStatement(stmt);

 pstmt.setString(1, tickerSymbol);
 pstmt.setString(2, name);

 pstmt.executeUpdate();
 pstmt.close();
 }
 catch (SQLException ex) {
 throw new EJBException("ejbCreate: " + ex.getMessage());
 }

Mukhar_470-3.book Page 447 Saturday, October 1, 2005 6:14 AM

448 C H A P T E R 1 0 ■ E J B E N T I T Y B E A N S

 this.tickerSymbol = tickerSymbol;
 this.name = name;

 return tickerSymbol;
 }

 public void ejbPostCreate(String tickerSymbol, String name)
 throws CreateException { }

 public void ejbRemove() {
 try {
 String stmt =
 "delete from stock where tickerSymbol = ? ";
 PreparedStatement pstmt =
 connection.prepareStatement(stmt);

 pstmt.setString(1, tickerSymbol);
 pstmt.executeUpdate();
 pstmt.close();
 }
 catch (SQLException ex) {
 throw new EJBException("ejbRemove: " + ex.getMessage());
 }
 }

 public void ejbLoad() {
 try {
 String stmt =
 "select name from stock where tickerSymbol = ? ";
 PreparedStatement pstmt =
 connection.prepareStatement(stmt);

 pstmt.setString(1, tickerSymbol);

 ResultSet rs = pstmt.executeQuery();

 if (rs.next()) {
 this.name = rs.getString(1);
 pstmt.close();
 }
 else {
 pstmt.close();
 throw new NoSuchEntityException("Ticker: " +
 tickerSymbol + " not in database.");
 }
 }

Mukhar_470-3.book Page 448 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

C H A P T E R 1 0 ■ E J B E N T I T Y B E A N S 449

 catch (SQLException ex) {
 throw new EJBException("ejbLoad: " + ex.getMessage());
 }
 }

 public void ejbStore() {
 try {
 String stmt =
 "update stock set name = ? " +
 "where tickerSymbol = ?";
 PreparedStatement pstmt =
 connection.prepareStatement(stmt);

 pstmt.setString(1, name);
 pstmt.setString(2, tickerSymbol);
 int rowCount = pstmt.executeUpdate();
 pstmt.close();

 if (rowCount == 0) {
 throw new EJBException("Store for " +
 tickerSymbol + " failed.");
 }
 }
 catch (SQLException ex) {
 throw new EJBException("ejbStore: " + ex.getMessage());
 }
 }

 public void ejbPassivate() { }

 public void ejbActivate() { }

 public void setEntityContext(EntityContext ctx) {
 context = ctx;

 try {
 getDatabaseConnection();
 }
 catch (Exception ex) {
 throw new EJBException("Unable to connect to database. " +
 ex.getMessage());
 }
 }

Mukhar_470-3.book Page 449 Saturday, October 1, 2005 6:14 AM

450 C H A P T E R 1 0 ■ E J B E N T I T Y B E A N S

 public void unsetEntityContext() {
 context = null;
 try {
 connection.close();
 }
 catch (SQLException ex) {
 throw new EJBException("unsetEntityContext: " +
 ex.getMessage());
 }
 }

 private void getDatabaseConnection()
 throws NamingException, SQLException {

 InitialContext ctx = new InitialContext();
 DataSource ds =
 (DataSource) ctx.lookup("java:comp/env/jdbc/StockDB");
 connection = ds.getConnection();
 }
}

Listing 10-9 shows StockHome.java.

Listing 10-9. StockHome.java

package beans_2x;

import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.EJBHome;
import javax.ejb.FinderException;

public interface StockHome extends EJBHome {
 // The create method for the Stock bean
 public Stock create(String ticker, String name)
 throws CreateException, RemoteException;

 // The find by primary key method for the Stock bean
 public Stock findByPrimaryKey(String ticker)
 throws FinderException, RemoteException;
}

Because we’re using EJB 2.1 beans, we’ll also need XML deployment descriptor files:
application.xml, ejb-jar.xml, and jboss.xml. These files describe the operation of the EJB 2.1
entity bean to the JBoss Server.

Mukhar_470-3.book Page 450 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 0 ■ E J B E N T I T Y B E A N S 451

■Note The EJB 3.0 specification also makes allowances for XML deployment descriptors for all EJBs;
however, much of the functionality provided in the XML deployment files has been appropriated to the
metadata descriptors used in this book.

Listing 10-10 shows Application.xml.

Listing 10-10. Application.xml

<?xml version="1.0" encoding="UTF-8"?>
<application xmlns="http://java.sun.com/xml/ns/javaee" version="5"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com /xml/ns/javaee ➥

http://java.sun.com/xml/ns/javaee/application_5.xsd">
 <display-name>StockListBmpApp</display-name>
 <description>Application description</description>
 <module>
 <ejb>StockList2xBmp.jar</ejb>
 </module>
</application>

Ejb-jar.xml is shown in Listing 10-11.

Listing 10-11. Ejb-jar.xml

<?xml version="1.0" encoding="UTF-8"?>
<ejb-jar xmlns="http://java.sun.com/xml/ns/javaee" version="3.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee ➥

http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd">
 <display-name>StockListBmpJar</display-name>
 <enterprise-beans>
 <entity>
 <ejb-name>StockEjb</ejb-name>
 <home>beans_2x.StockHome</home>
 <remote>beans_2x.Stock</remote>
 <ejb-class>beans_2x.StockBean</ejb-class>
 <persistence-type>Bean</persistence-type>
 <prim-key-class>java.lang.String</prim-key-class>
 <reentrant>false</reentrant>
 <resource-ref>
 <res-ref-name>jdbc/StockDB</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
 </resource-ref>

Mukhar_470-3.book Page 451 Saturday, October 1, 2005 6:14 AM

452 C H A P T E R 1 0 ■ E J B E N T I T Y B E A N S

 <security-identity>
 <use-caller-identity/>
 </security-identity>
 </entity>
 </enterprise-beans>
 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>StockEjb</ejb-name>
 <method-intf>Remote</method-intf>
 <method-name>setName</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 </method-params>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 <container-transaction>
 <method>
 <ejb-name>StockEjb</ejb-name>
 <method-intf>Remote</method-intf>
 <method-name>getName</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 <container-transaction>
 <method>
 <ejb-name>StockEjb</ejb-name>
 <method-intf>Remote</method-intf>
 <method-name>remove</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 <container-transaction>
 <method>
 <ejb-name>StockEjb</ejb-name>
 <method-intf>Remote</method-intf>
 <method-name>getTickerSymbol</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

Listing 10-12 shows Jboss.xml.

Mukhar_470-3.book Page 452 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 0 ■ E J B E N T I T Y B E A N S 453

Listing 10-12. Jboss.xml

<!DOCTYPE jboss PUBLIC
 "-//JBoss//DTD JBOSS 4.0//EN"
 "http://www.jboss.org/javaee/dtd/jboss_4_0.dtd">
<jboss>
 <enterprise-beans>
 <entity>
 <ejb-name>StockEjb</ejb-name>
 <jndi-name>beans_2x.Stock</jndi-name>
 <resource-ref>
 <res-ref-name>jdbc/StockDB</res-ref-name>
 <jndi-name>java:/DefaultDS</jndi-name>
 </resource-ref>
 </entity>
 </enterprise-beans>
</jboss>

Finally, Listing 10-13 shows the implementation behind StockClient.java.

Listing 10-13. StockClient.java for the BMP Example

package client;

import beans.StockList;
import javax.ejb.CreateException;
import javax.ejb.FinderException;
import javax.naming.InitialContext;

// General imports
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class StockClient extends JFrame
 implements ActionListener {
 private StockList _stockList;
 private JTextField _ticker = new JTextField();
 private JTextField _name = new JTextField();
 private JButton _get = new JButton("Get");
 private JButton _add = new JButton("Add");
 private JButton _update = new JButton("Update");
 private JButton _delete = new JButton("Delete");

 public StockClient() {
 // Get the stock lister
 _stockList = getStockList();

Mukhar_470-3.book Page 453 Saturday, October 1, 2005 6:14 AM

454 C H A P T E R 1 0 ■ E J B E N T I T Y B E A N S

 // Add the title
 JLabel title = new JLabel("Stock List");
 title.setHorizontalAlignment(JLabel.CENTER);
 getContentPane().add(title, BorderLayout.NORTH);

 // Add the stock label panel
 JPanel stockLabelPanel = new JPanel(new GridLayout(2, 1));
 stockLabelPanel.add(new JLabel("Symbol"));
 stockLabelPanel.add(new JLabel("Name"));
 getContentPane().add(stockLabelPanel, BorderLayout.WEST);

 // Add the stock field panel
 JPanel stockFieldPanel = new JPanel(new GridLayout(2, 1));
 stockFieldPanel.add(_ticker);
 stockFieldPanel.add(_name);
 getContentPane().add(stockFieldPanel, BorderLayout.CENTER);

 // Add the buttons
 JPanel buttonPanel = new JPanel(new GridLayout(1, 4));
 _get.addActionListener(this);
 buttonPanel.add(_get);
 _add.addActionListener(this);
 buttonPanel.add(_add);
 _update.addActionListener(this);
 buttonPanel.add(_update);
 _delete.addActionListener(this);
 buttonPanel.add(_delete);
 getContentPane().add(buttonPanel, BorderLayout.SOUTH);
 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 System.exit(0);
 }
 });

 setSize(330, 130);
 setVisible(true);
 }

 private StockList getStockList() {
 StockList stockList = null;
 try {
 // Get a naming context
 InitialContext ctx = new InitialContext();

Mukhar_470-3.book Page 454 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 0 ■ E J B E N T I T Y B E A N S 455

 // Get a StockList object
 stockList
 = (StockList) ctx.lookup(StockList.class.getName());
 } catch(Exception e) {
 e.printStackTrace();
 }

 return stockList;
 }

 public void actionPerformed(ActionEvent ae) {
 // If get was clicked, get the stock
 if (ae.getSource() == _get) {
 getStock();
 }

 // If add was clicked, add the stock
 if (ae.getSource() == _add) {
 addStock();
 }

 // If update was clicked, update the stock
 if (ae.getSource() == _update) {
 updateStock();
 }

 // If delete was clicked, delete the stock
 if (ae.getSource() == _delete) {
 deleteStock();
 }
 }

 private void getStock() {
 // Get the ticker
 String ticker = _ticker.getText();
 if (ticker == null || ticker.length() == 0) {
 JOptionPane.showMessageDialog(this, "Ticker is required");
 return;
 }

 // Get the stock
 try {
 String name = _stockList.getStock(ticker);
 _name.setText(name);
 }

Mukhar_470-3.book Page 455 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

456 C H A P T E R 1 0 ■ E J B E N T I T Y B E A N S

 catch (FinderException fe) {
 JOptionPane.showMessageDialog(this, "Not found!");
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }

 private void addStock() {
 // Get the ticker
 String ticker = _ticker.getText();
 if (ticker == null || ticker.length() == 0) {
 JOptionPane.showMessageDialog(this, "Ticker is required");
 return;
 }

 // Get the name
 String name = _name.getText();
 if (name == null || name.length() == 0) {
 JOptionPane.showMessageDialog(this, "Name is required");
 return;
 }

 // Add the stock
 try {
 _stockList.addStock(ticker, name);
 JOptionPane.showMessageDialog(this, "Stock added!");
 }
 catch (CreateException fe) {
 JOptionPane.showMessageDialog(this, "Already found!");
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }

 private void updateStock() {
 // Get the ticker
 String ticker = _ticker.getText();
 if (ticker == null || ticker.length() == 0) {
 JOptionPane.showMessageDialog(this, "Ticker is required");
 return;
 }

Mukhar_470-3.book Page 456 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 0 ■ E J B E N T I T Y B E A N S 457

 // Get the name
 String name = _name.getText();
 if (name == null || name.length() == 0) {
 JOptionPane.showMessageDialog(this, "Name is required");
 return;
 }

 // Update the stock
 try {
 _stockList.updateStock(ticker, name);
 JOptionPane.showMessageDialog(this, "Stock updated!");
 }
 catch (FinderException fe) {
 JOptionPane.showMessageDialog(this, "Not found!");
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }

 private void deleteStock() {
 // Get the ticker
 String ticker = _ticker.getText();
 if (ticker == null || ticker.length() == 0) {
 JOptionPane.showMessageDialog(this, "Ticker is required");
 return;
 }

 // Delete the stock
 try {
 _stockList.deleteStock(ticker);
 JOptionPane.showMessageDialog(this, "Stock deleted!");
 }
 catch (FinderException fe) {
 JOptionPane.showMessageDialog(this, "Not found!");
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }

 public static void main(String[] args) {
 StockClient stockClient = new StockClient();
 }
}

Mukhar_470-3.book Page 457 Saturday, October 1, 2005 6:14 AM

458 C H A P T E R 1 0 ■ E J B E N T I T Y B E A N S

Organize the files in a new application directory with beans, beans_2x, meta-inf and
client subfolders. The StockList.java and StockListBean.java files (Listings 10-5 and 10-6)
go in the beans subfolder. Stock.java, StockBean.java, and StockHome.java (Listings 10-7, 10-8,
and 10-9) go in the beans_2x directory. The XML deployment descriptor files application.xml,
ejb-jar.xml, and jboss.xml (Listings 10-10, 10-11, and 10-12) go in the meta-inf directory. The
source file that defines the user interface, StockClient.java (Listing 10-13), goes in the client
subfolder.

Deploying the BMP Entity Bean Application
To deploy the sample application, first change your CLASSPATH environment variable to reflect
the location of the required classes for compilation.

>set CLASSPATH=.;➥

 c:\jboss\lib\concurrent.jar;➥

 c:\jboss\client\jboss-j2ee.jar;➥

 c:\jboss\lib\commons-httpclient.jar;➥

 c:\jboss\client\jbossall-client.jar;➥

 c:\jboss\lib\jboss-common.jar;➥

 c:\jboss\server\all\lib\jboss.jar;➥

 c:\jboss\server\all\lib\jboss-remoting.jar;➥

 c:\jboss\server\all\lib\jboss-transaction.jar;➥

 c:\jboss\server\all\lib\jnpserver.jar;➥

 c:\jboss\server\all\lib\javax.servlet.jar;➥

 c:\jboss\server\all\deploy\ejb3.deployer\jboss-ejb3.jar;➥

 c:\jboss\server\all\deploy\ejb3.deployer\jboss-ejb3x.jar;➥

 c:\jboss\server\all\deploy\ejb3.deployer\ejb3-persistence.jar;➥

 c:\jboss\server\all\deploy\jboss-aop-jdk50.deployer\➥

 jboss-aop-jdk50.jar;➥

 c:\jboss\server\all\deploy\jboss-aop-jdk50.deployer\➥

 jboss-aspect-library-jdk50.jar

Within the directory where the client, beans_2x, and beans directories are located, execute
the following commands from the command prompt:

> javac -d . beans_2x/*.java
> javac -d . beans/*.java
> javac -d . client/*.java

Create and populate the EJB 2.1 bean JAR, using StockList2xBmp.jar as the JAR name.

>jar cf StockList2xBmp.jar META-INF/ejb-jar.xml ➥

META-INF/jboss.xml beans_2x/*.class

Next, package the EJB 2.1 bean JAR with its deployment files by creating an EAR file.

>jar cf StockListBmpApp.ear META-INF/application.xml ➥

StockList2xBmp.jar

Mukhar_470-3.book Page 458 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 0 ■ E J B E N T I T Y B E A N S 459

Create the EJB 3.0 file for the session bean that invokes the entity bean.

>jar cf StockListApp.ejb3 beans/*.class

Now you’ll need to populate the HSQL database that services the entity bean with a table
to hold your BMP data. (Remember that since the bean itself is managing the data persistence,
there is no guarantee that the table for the entity bean will be created automatically.) You can
use the jmx console to start the Hypersonic Database Manager to add the table. Open a browser
and go to http://localhost:8080/jmx-console. From there, find the link service=Hypersonic
and click it. On the next page, scroll down to the startDatabaseManager section and click the
Invoke button under the method name. The window for the database manager will appear
shortly thereafter. Enter the following SQL query into large text box:

DROP TABLE stock if exists;

create table stock
(
 tickerSymbol VARCHAR(10),
 name VARCHAR(50),
 CONSTRAINT pk_stock PRIMARY KEY (tickerSymbol)
);

Then click the Execute SQL Statement button. Once the query has executed, choose
Options ➤ Commit from the menu.

Deploy the application by first copying the EAR file, then the EJB3 file, to the JBoss deploy-
ment directory.

Running the BMP Entity Bean Application
Enter the following command to run the client that uses the beans we’ve built:

>java ➥

-Djava.naming.factory.initial=org.jnp.interfaces.NamingContextFactory ➥

-Djava.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces ➥

-Djava.naming.provider.url=localhost client.StockClient

The application will look the same as the CMP version.

Reviewing the BMP Entity Bean
Looking at the code for this BMP entity bean, you can begin to appreciate what the EJB container
does for you when using CMP. In this example, as with CMP, a table in the database is dedicated to
our BMP entity bean. Each row represents a bean instance.

The BMP entity bean must supply implementations for the persisted field’s getter and
setter methods. In our example, this consists of using instance variables to hold these values,
as seen in the getTickerSymbol(), getName(), and setName() methods:

Mukhar_470-3.book Page 459 Saturday, October 1, 2005 6:14 AM

460 C H A P T E R 1 0 ■ E J B E N T I T Y B E A N S

 public String getTickerSymbol() {
 return tickerSymbol;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

The implementation of the find() method declared in the home interface must be supplied.
This is seen in the ejbFindByPrimaryKey() method. Notice that JDBC is used to enable this
find() method.

 public String ejbFindByPrimaryKey(String primaryKey)
 throws FinderException {

 boolean result;

 try {
 String stmt =
 "select tickerSymbol " + "from stock where tickerSymbol = ? ";
 PreparedStatement pstmt = connection.prepareStatement(stmt);
 pstmt.setString(1, primaryKey);

 ResultSet rs = pstmt.executeQuery();
 result = rs.next();
 pstmt.close();
 }
 catch (SQLException ex) {
 throw new EJBException("ejbFindByPrimaryKey: " +➥

 ex.getMessage());
 }

 if (result) {
 return primaryKey;
 } else {
 throw new ObjectNotFoundException
 ("Ticker " + primaryKey + " not found.");
 }
 }

The ejbCreate() method, rather than simply tucking away arguments into instance
variables, uses JDBC to insert the corresponding row into the table.

Mukhar_470-3.book Page 460 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 0 ■ E J B E N T I T Y B E A N S 461

 public String ejbCreate(String tickerSymbol, String name)
 throws CreateException {

 try {
 String findstmt =
 "select tickerSymbol " +
 "from stock where tickerSymbol = ? ";
 PreparedStatement pfindstmt =
 connection.prepareStatement(findstmt);
 pfindstmt.setString(1, tickerSymbol);

 ResultSet rs = pfindstmt.executeQuery();
 boolean findresult = rs.next();
 if (findresult) {
 throw new CreateException("Ticker already exists!");
 }

 String stmt = "insert into stock values (? , ?)";
 PreparedStatement pstmt = connection.prepareStatement(stmt);

 pstmt.setString(1, tickerSymbol);
 pstmt.setString(2, name);

 pstmt.executeUpdate();
 pstmt.close();
 } catch (SQLException ex) {
 ex.printStackTrace();
 throw new EJBException("ejbCreate: " + ex.getMessage());
 }

 this.tickerSymbol = tickerSymbol;
 this.name = name;

 return tickerSymbol;
 }

The ejbRemove() method is responsible for deleting the row that represents the entity
bean’s instance from the table.

 public void ejbRemove() {
 try {
 String stmt = "delete from stock where tickerSymbol = ? ";
 PreparedStatement pstmt = connection.prepareStatement(stmt);

Mukhar_470-3.book Page 461 Saturday, October 1, 2005 6:14 AM

462 C H A P T E R 1 0 ■ E J B E N T I T Y B E A N S

 pstmt.setString(1, tickerSymbol);
 pstmt.executeUpdate();
 pstmt.close();
 } catch (SQLException ex) {
 throw new EJBException("ejbRemove: " + ex.getMessage());
 }
 }

In a bean’s lifecycle, the values of its fields are often changed by the application. For this
reason, the EJB 2.1 container calls the ejbLoad() and ejbStore() methods when appropriate to
keep the state of the entity bean in sync with the underlying data store. The BMP entity bean
performs SQL SELECT and UPDATE statements via JDBC to implement these methods.

 public void ejbLoad() {
 try {
 String stmt = "select name from stock where tickerSymbol = ? ";
 PreparedStatement pstmt = connection.prepareStatement(stmt);

 pstmt.setString(1, tickerSymbol);
 ResultSet rs = pstmt.executeQuery();

 if (rs.next()) {
 this.name = rs.getString(1);
 pstmt.close();
 } else {
 pstmt.close();
 throw new NoSuchEntityException("Ticker: " +
 tickerSymbol + " not in database.");
 }
 } catch (SQLException ex) {
 throw new EJBException("ejbLoad: " + ex.getMessage());
 }
 }

 public void ejbStore() {
 try {
 String stmt =
 "update stock set name = ? " +
 "where tickerSymbol = ?";
 PreparedStatement pstmt = connection.prepareStatement(stmt);

 pstmt.setString(1, name);
 pstmt.setString(2, tickerSymbol);
 int rowCount = pstmt.executeUpdate();
 pstmt.close();

Mukhar_470-3.book Page 462 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

C H A P T E R 1 0 ■ E J B E N T I T Y B E A N S 463

 if (rowCount == 0) {
 throw new EJBException("Store for " +
 tickerSymbol + " failed.");
 }
 } catch (SQLException ex) {
 throw new EJBException("ejbStore: " + ex.getMessage());
 }
 }

The setEntityContext() method is called by the EJB 2.1 container after an entity bean is
created. Since this entity bean uses JDBC to manage its persistence, we take this opportunity to
get a JDBC connection. This connection is obtained within the private getDatabaseConnection()
method. We close the JDBC connection when the unsetEntityContext() method is called by
the container.

 public void setEntityContext(EntityContext ctx) {
 context = ctx;

 try {
 getDatabaseConnection();
 } catch (Exception ex) {
 throw new EJBException("Unable to connect to database. " +
 ex.getMessage());
 }
 }

 public void unsetEntityContext() {
 context = null;
 try {
 connection.close();
 } catch (SQLException ex) {
 throw new EJBException("unsetEntityContext: " + ex.getMessage());
 }
 }

 private void getDatabaseConnection()
 throws NamingException, SQLException {

 InitialContext ctx = new InitialContext();
 DataSource ds =
 (DataSource) ctx.lookup("java:comp/env/jdbc/StockDB");
 connection = ds.getConnection();
 }
}

The deployment XML files we created specify a number of different items, including the
fully qualified names of the home and business interface classes. Pay special attention to the
ejb-jar.xml file, which contains blocks such as this:

Mukhar_470-3.book Page 463 Saturday, October 1, 2005 6:14 AM

464 C H A P T E R 1 0 ■ E J B E N T I T Y B E A N S

 <container-transaction>
 <method>
 <ejb-name>StockEjb</ejb-name>
 <method-intf>Remote</method-intf>
 <method-name>setName</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 </method-params>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 <container-transaction>
 <method>
 <ejb-name>StockEjb</ejb-name>
 <method-intf>Remote</method-intf>
 <method-name>getName</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 <container-transaction>
 <method>
 <ejb-name>StockEjb</ejb-name>
 <method-intf>Remote</method-intf>
 <method-name>remove</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>

Comparing this implementation with the CMP bean example, you can see how many of
the steps required in making the associations between the EJB and the application server are
done automatically for you when you’re using EJB 3.0. The EJB 3.0 specification saves you from
needing to manually define EJB entry points and semantics outside your code. You can do so if
you wish, but it is not required, as it is in the earlier versions of the EJB specification.

Now that you’ve experimented with both CMP and BMP entity beans, let’s turn to another
feature of entity beans: the use of the EJB Query Language (EJB QL).

The EJB Query Language
Entity beans provide an object-oriented abstraction to an underlying database, complete with
the ability to create business methods that operate on the data contained in the entity beans.
One problem with this is that the abstract schema can become quite complex, making it very
tedious and slow to use Java code to do query-like operations that span multiple entity beans.
EJB QL lets you embed queries with SQL-like syntax into entity beans that can be accessed via
methods of the entity beans. The results of EJB QL queries are often entity bean references,
which can be operated on directly, so you get the combined advantages of object orientation
and SQL.

Mukhar_470-3.book Page 464 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 0 ■ E J B E N T I T Y B E A N S 465

■Note If you need a quick start guide to EJB QL, see Appendix B of this book. For more details, refer to the
EJB QL chapter in the EJB specification, which provides a complete reference for EJB QL. To view it, download
the EJB 3.0 specification from http://java.sun.com/products/ejb/docs.html#specs.

EJB QL Queries
EJB QL queries are issued by the EntityManager interface, typically under the auspices of the
session beans that make use of the entity bean store in question. The EntityManager interface
provides a createQuery() method that returns a javax.persistence.Query object for your use.

■Note The javax.persistence.Query object is an abstraction of the EJB QL query you provided,
allowing you to alter certain specific aspects of the query after issuing the query string but before receiving
results. Its implementation provides you with the ability to set the maximum number of results returned, set
query parameters and hints, change certain aspects of the query’s execution behavior, and issue the command to
the database, as well as return the results.

Consider a fictional astronomy application that has an entity bean named Planet. Your
session beans that access Planet entities could query the EntityManager via EJB QL to return
only the planets with a given number of moons. The EJB QL query behind it could be some-
thing like this:

SELECT p
 FROM Planet p
 WHERE p.numMoons = :1

This query will do the following:

• Take the argument passed into the method (in this case 0), which is represented by the
:1 portion of the query. This is the same concept as using SQL parameters.

• Find all of the entity bean instances with the abstract schema name of Planet whose
numMoons field contains the value 0. This is indicated by the WHERE p.numMoons = :1 portion
of the code snippet.

• Return a javax.persistence.Query object that holds a collection of references to Planet
entity beans.

The SELECT portion of the query snippet indicates that the result will be an entity bean
reference or collection of references. The (p) indicates that the type of entity bean reference
returned will be one with an abstract schema name of Planet. That association was indicated
by the Planet p portion.

Queries can also return a single entity bean reference, rather than a Collection. In this
case, the singular entity bean would be returned by the fetchSingleResult() method of the
Query object, and the EJB QL query would be designed to return only one entity bean.

Mukhar_470-3.book Page 465 Saturday, October 1, 2005 6:14 AM

466 C H A P T E R 1 0 ■ E J B E N T I T Y B E A N S

Building and Deploying the EJB QL Queries Application
Our next example highlights the development of EJB QL queries by adding two such queries to
the StockList session bean from the CMP example. To demonstrate the functionality supplied
by the find methods, we will change the StockClient application quite a bit. Figure 10-5 shows
the user interface that we will be using for this modified application.

Figure 10-5. The StockList application showing find method functionality

When the client starts up, the scrolling panel is populated with radio buttons that represent
all of the stock entity beans. If you select one of the stocks and click the Get button, a message
dialog box appears with the ticker symbol and name of the stock. When you select the 3 Letter
Tickers Only check box, only the stocks with three-letter ticker symbols appear in the scrolling
panel.

For this example, the names of the source files are the same as in the CMP example (List-
ings 10-1 through 10-4), and the process of building, configuring, deploying, and running the
example is nearly the same as well. Here are the steps:

1. Create a new application directory, and create the beans and client subfolders within it.

2. Copy the code files into their respective folders, and then compile them.

■Note For this example, StockList.java, StockListBean.java, and StockClient.java are
modified from the CMP example. As for all the examples in this book, each of the files for this application is
available from the Downloads section of the Apress web site (www.apress.com). Because it’s very lengthy,
the StockClient.java file is not listed here, but we will look at its important changes.

3. Start the JBoss Server.

4. Create and deploy the entity beans as for the previous examples in this chapter.

When creating the entity bean, there are a couple of additional steps involved (as if there
weren’t enough already):

• Enter the EJB QL queries in your session bean.

• Load the database with CMP field data for the Stock entity beans.

Mukhar_470-3.book Page 466 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 0 ■ E J B E N T I T Y B E A N S 467

Adding New Queries to the Session Bean

Let’s add two methods to our session bean (and its interface) that demonstrate the functionality
provided by EJB QL. We’ll call the first method getAllStocks and the second getSizeStocks. The
getAllStocks() method will quite magically find all stocks in the stocks entity table. The
getSizeStocks() method will accept one parameter, which it uses to find only stocks whose
ticker symbol exceeds some arbitrary length. Add the methods to the StockListBean.java file,
as shown in Listing 10-14.

Listing 10-14. StockListBean.java for the EJB QL Queries Example

package beans;

import beans.Stock;
import javax.persistence.PersistenceContext;
import javax.ejb.Stateless;
import javax.persistence.EntityManager;
import javax.persistence.Query;
import java.util.*;

@Stateless
public class StockListBean implements StockList {
 // The reference to the entity manager
 @PersistenceContext
 private EntityManager _manager;

 // The public business methods. These must be coded in the
 // remote interface also.

 public String getStock(String ticker) {
 Stock stock = _manager.find(Stock.class, ticker);
 return stock.getName();
 }

 public void addStock(String ticker, String name) {
 _manager.persist(new Stock(ticker, name));
 }

 public void updateStock(String ticker, String name) {
 Stock stock = _manager.find(Stock.class, ticker);
 stock.setName(name);
 }

 public void deleteStock(String ticker) {
 Stock stock = _manager.find(Stock.class, ticker);
 _manager.remove(stock);
 }

Mukhar_470-3.book Page 467 Saturday, October 1, 2005 6:14 AM

468 C H A P T E R 1 0 ■ E J B E N T I T Y B E A N S

 // The finder methods
 public String[] getAllStocks() {
 Query query =
 _manager.createQuery("SELECT s FROM Stock s " +
 "ORDER BY s.tickerSymbol");
 List stockList = query.getResultList();
 String[] stocks = new String[stockList.size()];
 int j = 0;
 for (int i = 0; i < stockList.size(); i++) {
 Stock stock = (Stock) stockList.get(i);
 stocks[j++] = stock.getTickerSymbol();
 }
 return stocks;
 }

 public String[] getSizeStocks(int siz) {
 Query query =
 _manager.createQuery("SELECT s FROM Stock s " +
 "WHERE LENGTH(s.tickerSymbol) = :len " +
 "ORDER BY s.tickerSymbol");
 query.setParameter("len", siz);
 List stockList = query.getResultList();
 String[] stocks = new String[stockList.size()];
 int j = 0;
 for (int i = 0; i < stockList.size(); i++) {
 Stock stock = (Stock) stockList.get(i);
 stocks[j++] = stock.getTickerSymbol();
 }
 return stocks;
 }
}

Remember to add the associated method signatures to your StockList.java interface,
as shown in Listing 10-15; otherwise, clients won’t be able to use these tasty queries you’ve
cooked up for them!

Listing 10-15. StockList.java for the EJB QL Queries Example

@Remote
public interface StockList {
 // The public business methods on the Stock List bean
 public void addStock(String ticker, String name);
 public void updateStock(String ticker, String name);
 public void deleteStock(String ticker);
 public String[] getSizeStocks(int siz);
 public String[] getAllStocks();
 public String getStock(String ticker);
}

Mukhar_470-3.book Page 468 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 0 ■ E J B E N T I T Y B E A N S 469

Loading the Database with CMP Field Data for the Stock Entity Beans

To load the database, use the Hypersonic Database Manager as described earlier in this chapter,
in the “Deploying the BMP Entity Bean Application” section, to invoke the following SQL
commands:

insert into Stock values ('ABC', 'ABC Company');
insert into Stock values ('ZZZ', 'Zigby Zebras');
insert into Stock values ('ICS', 'Internet Corp of Slobovia');
insert into Stock values ('DDC', 'Digby Door Company');
insert into Stock values ('ZAP', 'Zelenarinski Ltd.');
insert into Stock values ('JIM', 'Jimco');
insert into Stock values ('SRU', 'Stocks R Us');
insert into Stock values ('SRI', 'Shelves and Radios Inc');
insert into Stock values ('FBC', 'Foo Bar Company');
insert into Stock values ('DDBC', 'Ding Dong Bell Company');
insert into Stock values ('UDE', 'Upn Down Elevator Company');

To run the client, set the CLASSPATH to use the client JAR. From the command prompt,
enter the following:

>set CLASSPATH=.;➥

 c:\jboss\lib\concurrent.jar;➥

 c:\jboss\client\jboss-j2ee.jar;➥

 c:\jboss\lib\commons-httpclient.jar;➥

 c:\jboss\client\jbossall-client.jar;➥

 c:\jboss\lib\jboss-common.jar;➥

 c:\jboss\server\all\lib\jboss.jar;➥

 c:\jboss\server\all\lib\jboss-remoting.jar;➥

 c:\jboss\server\all\lib\jboss-transaction.jar;➥

 c:\jboss\server\all\lib\jnpserver.jar;➥

 c:\jboss\server\all\lib\javax.servlet.jar;➥

 c:\jboss\server\all\deploy\ejb3.deployer\jboss-ejb3.jar;➥

 c:\jboss\server\all\deploy\ejb3.deployer\jboss-ejb3x.jar;➥

 c:\jboss\server\all\deploy\ejb3.deployer\ejb3-persistence.jar;➥

 c:\jboss\server\all\deploy\jboss-aop-jdk50.deployer\➥

 jboss-aop-jdk50.jar;➥

 c:\jboss\server\all\deploy\jboss-aop-jdk50.deployer\➥

 jboss-aspect-library-jdk50.jar

Running the EJB QL Queries Application
You can enter the following command to run the client that uses the beans you’ve built:

>java ➥

-Djava.naming.factory.initial=➥

org.jnp.interfaces.NamingContextFactory ➥

-Djava.naming.factory.url.pkgs=➥

org.jboss.naming:org.jnp.interfaces ➥

Mukhar_470-3.book Page 469 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

470 C H A P T E R 1 0 ■ E J B E N T I T Y B E A N S

-Djava.naming.provider.url=➥

localhost client.StockClient

Play with the client UI to see these EJB QL find methods in action.

Reviewing the Session Bean Find Methods
For this application, three Java source files changed from the last example: StockList.java,
StockListBean.java, and StockClient.java. Quite appropriately, the Stock entity beans didn’t
change. Why? Because the changes we made were concerned with the correct selection of Stock
entities, which has no effect on the actual composition of the Stock entity.

You’ll notice that our new find methods are declared in the StockList session bean remote
interface (Listing 10-15). The getAllStocks() method returns all of the Stock references. As
expected, this interface declares the methods that will be called by the client application.

In the bean class for the StockList session bean, StockListBean.java (Listing 10-14),
the getStock() method is the same as in the previous example. The getAllStocks() method
calls the newly created getAllStocks() method we declared in the remote interface. The
getAllStocks() method, you’ll recall, returns a collection of ticker strings for the Stock entity
beans. Calling clients can then iterate over those ticker names and access their data as necessary.

The getSizeStocks() method in StockListBean.java receives an integer value that it
populates the query with using the setParameter() method of the Query object. You don’t
remember making the query able to be parameterized? Sure you do! Remember that odd little
colon we put in the SQL query:

LENGTH(s.tickerSymbol) = :len

The :len indicates that we wish to make that particular segment of the query capable of being
parameterized, which we take advantage of immediately afterwards by calling the setParameter
method. Clients will then receive a String array of the results that match our conditional and
use them as needed.

■Note What if you returned an array of entity beans instead of strings? Should you worry about clients acciden-
tally modifying persistent data that will be irrevocably changed in the store? The short answer is no. The
entities that are returned are not considered managed. The concept of managed entities versus unmanaged
entities is one that has its roots strongly tied to the EntityManager interface we have used throughout this
chapter. When our remote interface passes the entities to a calling client, it detaches the entities from the
persistence context of the EntityManager. At this point in the application flow, the entity beans have become
snapshots of the data in the store; changing their fields will not change data in the store, and vice versa.

Let’s turn our attention to the client, in the StockClient class. When you deselect the 3 Letter
Tickers Only check box, the getAllStocks() method of the StockList session bean is called to
provide the ticker symbols of all the Stock entity beans. When you select the check box, the

Mukhar_470-3.book Page 470 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 0 ■ E J B E N T I T Y B E A N S 471

getSizeStocks() of the session bean is called, passing in a value of 3, which returns a subset of
the Stock entity bean’s ticker symbols. This is shown in the stateChanged() method:

 public void stateChanged(ChangeEvent ce) {
 try {
 if (_threeOnly.isSelected()) {
 String[] stocks = _stockList.getSizeStocks(3);
 populateStockPanel(stocks);
 } else {
 String[] stocks = _stockList.getAllStocks();
 populateStockPanel(stocks);
 }
 } catch (Exception e) {
 e.printStackTrace();
 }

Summary
This chapter was devoted to entity beans, which are the persistent data objects in an EJB appli-
cation. You discovered that entity beans share a common anatomy with session beans, but that
there are some basic differences between these EJB types.

After having read this chapter, you should know:

• By using CMP, an entity bean type is mapped to its own database table, and the data for
each individual entity bean is stored in a row of that table. The EJB container handles all
of the database persistence functionality for you. This saves a huge amount of time when
developing applications, thereby increasing a developer’s productivity.

• Each entity bean has a primary key that uniquely identifies it. The EntityManager has a
method named find() that uses this primary key to return the corresponding entity bean.

• EJB QL queries are encapsulated in entity bean methods so that their functionality is
available via a method call, using the createQuery() method of the EntityManager interface.

In the next chapter, we’ll demonstrate how to create relationships among entity beans
using container-managed relationships. In that context, you’ll learn more about EJB QL
queries. We’ll also cover more EJB topics, such as using JDBC with EJBs and EJB timers, and
implementing design patterns in EJB applications.

Exercises
1. Create an entity bean for a fictitious Audio CD Collection application named

CompactDiscTitle. Attributes should be name (String, and it will be the primary key) and
price (double). Write a stateless session bean that allows you to get, add, update, and
remove a CD title. Write a client application to test the beans.

2. Modify the previous exercise to use local references for the CompactDiscTitle entity bean.

Mukhar_470-3.book Page 471 Saturday, October 1, 2005 6:14 AM

472 C H A P T E R 1 0 ■ E J B E N T I T Y B E A N S

3. Modify the previous exercise to implement a finder that returns all CD titles in ascending
order by name, and a finder that returns all CD titles within a certain price range in
ascending order by name. Write a simple client application to test the new methods.

4. Modify the EJB QL stock list example presented at the end of this chapter to return a list
of stock tickers that start with a string entered by the user. Order the list as ascending by
ticker symbol.

Mukhar_470-3.book Page 472 Saturday, October 1, 2005 6:14 AM

473

■ ■ ■

C H A P T E R 1 1

EJB Relationships, EJB QL,
and JDBC

The previous chapter explored EJB entity beans, which are the persistent data objects in an
EJB application. In this chapter, we will continue with EJB-related topics, including entity bean
relationships, EJB QL queries, and JDBC with EJB applications.

In this chapter, you will learn the following:

• How to create relationships among entity beans

• How session beans can leverage EJB QL

• How to implement JDBC with EJBs

Entity Bean Relationships
As mentioned in the previous chapter, entity beans may have relationships to other entity
beans. These relationships are defined by metadata that describes the reference to the related
entity bean instance. The following are the entity bean relationship possibilities and their asso-
ciated metadata descriptors:

• One-to-one, which is annotated by @OneToOne (javax.persistence.OneToOne)

• One-to-many, which is annotated by @OneToMany (javax.persistence.OneToMany)

• Many-to-one, which is annotated by @ManyToOne (javax.persistence.ManyToOne)

• Many-to-many, which is annotated by @ManyToMany (javax.persistence.ManyToMany)

As you have no doubt guessed, each of these associated metadata descriptors will be used
to describe the point in an entity bean’s class definition where a field or getter method provides
some data that is related to the encapsulating entity. The relationship that results can (and
must, in the case of @OneToMany and @ManyToOne) be bidirectional or unidirectional.

Mukhar_470-3.book Page 473 Saturday, October 1, 2005 6:14 AM

474 C H A P T E R 1 1 ■ E J B R E L A T I O N S H I P S , E J B Q L , A N D J D B C

One-to-Many and Many-to-One Relationships
As an example, let’s consider a fictitious application that manages a personal audio CD collection.
In the music CD domain, the following might be some candidates for entity beans:

• CompactDiscTitle

• SongTrack

• MusicalGenre

• Artist

• RecordLabel

These entity beans have relationships with each other. For example, a CompactDiscTitle is
published by one RecordLabel, and a RecordLabel has many CompactDiscTitles. Therefore,
there is a one-to-many relationship from RecordLabel to CompactDiscTitle entity bean
instances, and a many-to-one relationship from CompactDiscTitle to RecordLabel.

The term navigate is used to describe the process wherein a reference to a related entity
bean is obtained from a given entity bean. To be able to navigate the relationships from one
entity bean to another in this example, the following methods would be useful:

• A method of the CompactDiscTitle entity bean that would return the RecordLabel entity
bean instance for a given CompactDiscTitle. A logical name for this would be
getRecordLabel().

• A method of the RecordLabel entity bean that would return all of the CompactDiscTitle
entity bean instances published by a given RecordLabel. A good name for this would be
getCompactDiscTitles().

As you will soon see, the primary key of each entity bean (the class field or getter method
annotated with @Id) helps establish these relationships with the other entity bean.

The crude beginning of an Audio CD Collection class diagram shown in Figure 11-1 illustrates
the entity bean concepts presented so far. Note the multiplicity notation on the relationships
in the diagram. For example, a RecordLabel can have 0 or more (0..n in the diagram)
CompactDiscTitles, while a CompactDiscTitle can have only 1 RecordLabel. The container-
managed relationship between the CompactDiscTitle and RecordLabel entity beans in the
diagram is bidirectional. This is because there is a getter method in both entity beans (annotated
by @ManyToOne in the case of CompactDiscTitle, and @OneToMany in the case of RecordLabel) that
accesses the entity bean on the other side of the relationship. In a unidirectional relationship,
only one of the entity beans would have an annotated getter method to access the other
entity bean.

Mukhar_470-3.book Page 474 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 1 ■ E J B R E L A T I O N S H I P S , E J B Q L , A N D J D B C 475

Figure 11-1. The Audio CD Collection relationship model

The persistent methods of the RecordLabel entity bean are getName(), setName(),
getMainCity(), and setMainCity(). The name field is the name of the record company, and the
mainCity field is where that record company is headquartered. The primary key of the RecordLabel
entity bean will be the name field, so that field will be unique among the RecordLabel entity bean
instances.

The methods of the RecordLabel entity bean that are affected by these entity bean relation-
ships are getCompactDiscTitles() and setCompactDiscTitles(). Entity bean methods that
interact with the many side of a relationship can use a java.util.Collection object to hold
the bean interface references. For example, the getCompactDiscTitles() method returns a
Collection of CompactDiscTitle bean interface references.

All relationships for entity beans are declared in the class definitions themselves. The
CompactDiscTitle definition would look like this:

@Id
private String sku;
// Other code…
@ManyToOne
@JoinColumn(name="LABEL_ID")
private RecordLabel publishingLabel

You’ll notice that we’ve annotated (with @Id) the string sku to be the primary key for
CompactDiscTitle, so each bean instance will have a unique stock-keeping unit (SKU) number.
The @ManyToOne annotation describes its relationship to RecordLabel.

* getName() : String
* setName(name:String)
* getPrice() : Double
* setPrice(price : double)
* getRecordLabel() : RecordLabel
* setRecordLabel(label : RecordLabel)

CompactDiscTitle

SongTrack Artist
MusicalGenre

* getName() : String
* setName(name:String)
* getMainCity() : String
* setMainCity(city : String)
* getCompactDiscTitles() : Collection
* setCompactDiscTitles(titles : Collection)

RecordLabel

1

1..n
0..n 1..n

1..n

1..n

0..n 1

Mukhar_470-3.book Page 475 Saturday, October 1, 2005 6:14 AM

476 C H A P T E R 1 1 ■ E J B R E L A T I O N S H I P S , E J B Q L , A N D J D B C

The @JoinColumn (javax.persistence.JoinColumn) annotation signifies our desire to place the
unique ID corresponding to the instance of RecordLabel in a database column named LABEL_ID.
Our entity bean will store its persistence data in a database (or other permanent store), and the
LABEL_ID column will be in the database table set aside for CompactDiscTitles. Its value will
correspond to the primary key of some RecordLabel instance that our CompactDiscTitle
belongs to.

Now, let’s look at our RecordLabel definition:

@Id
private String name;
// Other code…
@OneToMany
@JoinColumn(name="LABEL_ID")
private Collection<CompactDiscTitle> publishedCDs;

We’ve annotated the string name to be the primary key. This will be the value that exists in
the LABEL_ID column for all CompactDiscTitle instances that belong to the RecordLabel in question.
The @OneToMany annotation describes its relationship to CompactDiscTitle.

Note that the name specified in the @JoinColumn annotation, LABEL_ID, is the same name we
used in CompactDiscTitle. The nature of the relationship between the two objects (@OneToMany and
@ManyToOne) indicates that there will probably be far more CompactDiscTitles than there are
RecordLabels. The @JoinColumn used to further describe the @OneToMany inverts the relationship
that CompactDiscTitle ascribed to RecordLabel, a far more efficient method than storing an
indeterminate number of relation references for a single RecordLabel instance.

Assuming we were good Java programmers and made our respective getter and setter
methods for the CompactDiscTitle and RecordLabel objects, the relationship we’ve defined will
be persisted for us automatically. Creating a new RecordLabel object, populating its publishedCDs
collection with a few CompactDiscTitles, and passing it to the create() method of the
EntityManager will fill the tables for both RecordLabel and CompactDiscTitle.

Many-to-Many Relationships
With a many-to-many relationship, an additional database table exists that contains the
primary keys from both of the entity beans in the relationship.

To demonstrate a many-to-many relationship, we’ll alter the relationship in our example.
Now our CompactDiscTitle may belong to multiple RecordLabels, which themselves may be
related to any number of CompactDiscTitles—an orgiastic frenzy of CD publishing to be certain,
but this is the type of thing that entity bean relationships handle easily.

Let’s examine our revised CompactDiscTitle first:

@Id
private String sku;
// Other code…
@ManyToMany(cascade=CascadeType.CREATE,isInverse=true)
private Collection<RecordLabel> publishingLabels

Notice that we did not specify an @JoinColumn. The EJB implementation should automatically
create a column to hold our foreign key (which is what a @JoinColumn is, effectively) for us. Note
that some implementations may not honor this particular feature, so you will need to use the

Mukhar_470-3.book Page 476 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

C H A P T E R 1 1 ■ E J B R E L A T I O N S H I P S , E J B Q L , A N D J D B C 477

@JoinColumn descriptor, as in the example presented in the “Container-Managed Relationships
and EJB QL” section later in this chapter.

With the @ManyToMany tag, we used two attributes: cascade and isInverse. The cascade
annotation attribute notifies the EJB implementation how persistence for the related entity beans
should be affected when an object “above” them in the relationship hierarchy alters its persistence.
CascadeType.CREATE (javax.persistence.CascadeType) implies that we wish to alter persistence
only when the CompactDiscTitle in question is passed to the create() method of the
EntityManager. Other possible values of CascadeType are MERGE, DELETE, and ALL (the default value).
You may specify a particular cascade type for any relationship metadata descriptor (@ManyToOne,
@OneToOne, and so on).

The isInverse metadata attribute is a Boolean value that notifies the EJB implementation
that the relationship will be bidirectional. Any entity that is related to another may rely on the
fact that the entity it’s related to contains a relationship back to itself.

The RecordLabel definition looks much like the one for CompactDiscTitle:

@Id
private String name;
// Other code…
@ManyToMany(cascade=CascadeType.CREATE,isInverse=true)
private Collection<CompactDiscTitle> publishedCDs;

And you haven’t even written any database code yet—not bad, huh?

An EJB QL Query to Acquire a Subset of Data
In many cases, you’ll want to acquire some subset of related data from an entity bean. However,
acquiring a subset of data by merely iterating over the collection of related objects becomes a
costly exercise as the total number of related entity beans grows. This cost may be avoided by
using EJB QL, which we introduced in Chapter 10.

Continuing with our Audio CD Collection application example, let’s say that we want to
know the names of the CD titles on record labels that have headquarters in a given city. To
accomplish this, we could declare the following method in a MusicCollection session bean class:

public List<String> selectByRecordLabelCity(String city);

If this method were called with an argument having the value of Detroit, it would use the
query() method of the EntityManager to return a query object whose execution provided a List
of String values that contains titles such as Consume and White Blood Cells, by Plastikman
and The White Stripes, respectively.

■Note The Query (javax.persistence.Query) object returned by the query() method of
EntityManager may be considered an abstraction of the EJB QL query you provided to the implementation.
Once the Query has been returned, it may be executed by calling its method public List getResultList().
The Query object may also return only one result by calling the method public Object getSingleResult().
You can learn more about the Query object in Appendix B or in the official EJB 3.0 specification.

Mukhar_470-3.book Page 477 Saturday, October 1, 2005 6:14 AM

478 C H A P T E R 1 1 ■ E J B R E L A T I O N S H I P S , E J B Q L , A N D J D B C

The EJB QL query that provides the functionality for this method would be something like this:

SELECT c.name
 FROM CompactDiscTitle c
 WHERE c.recordLabel.mainCity = :city

This query will take the argument passed into the method (in this case, Detroit), which is
represented by the :city portion of the query. Then it will find all of the entity bean instances
of RecordLabel whose mainCity field contains the value of Detroit. This is indicated by the
WHERE c.recordLabel.mainCity = :city clause. The reason recordLabel.mainCity represents the
mainCity field of the RecordLabel entity bean is that c represents the CompactDiscTitle entity
bean, because of the FROM clause, and c.recordLabel represents the RecordLabel entity bean
instance that is related to the CompactDiscTitle entity bean. It is like calling the getRecordLabel()
method on the CompactDiscTitle bean. Finally, the query returns a collection of String values
containing the name field of the related CompactDiscTitle entity beans.

■Caution A caveat with using the dot operator to navigate between entity beans, as we do in this example,
is that you cannot navigate to the many side of a relationship using it. You can use operators like IN and
MEMBER OF for that kind of functionality. IN is a standard SQL operator, and MEMBER OF is an EJB QL operator.
Notice that we used the dot notation to navigate through the one side of the relationship.

Now let’s work through a more involved example that demonstrates both entity bean relation-
ships and some methods that rely on EJB QL.

Container-Managed Relationships and EJB QL
To demonstrate the use of container-managed relationships (CMR) and EJB QL queries, we’ll
expand the StockList example from the previous chapter by adding an entity bean named
Analyst. Each instance of the Analyst bean represents a stock analyst who assigns ratings to
stocks. The Analyst entity bean and the Stock entity bean have a CMR that represents the stocks
that a given analyst has rated. Figure 11-2 shows an example of the revised application after
Fred the analyst rated the stock for the imaginatively named “ABC Company” and “Jimco”.

Figure 11-3 shows a class diagram that depicts the enterprise beans involved in this appli-
cation. Notice that the Stock and Analyst entity beans in the diagram represent all of their
respective entity bean classes.

Mukhar_470-3.book Page 478 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 1 ■ E J B R E L A T I O N S H I P S , E J B Q L , A N D J D B C 479

Figure 11-2. The modified StockClient application

Figure 11-3. The StockListCmrApp object model and relationship hierarchy

Studying the diagram in Figure 11-3 in a bit more detail, you can see that the StockClient
GUI uses methods of the StockList session bean to access and manipulate the Stock and Analyst
entity beans. For example, to populate the drop-down list box that contains the analyst’s names,
it calls the getAllAnalysts() method of the session bean, which queries the entity store via EJB
QL. When the user clicks the Add Rating button, the addStockRating() method of the session
bean will be called on to create a relationship between the analyst and the stock being rated.
That method will also set the value of the rating (for example, “Could be worse!” or “Take a
chance!”) into the rating field of the Stock bean.

The Stock bean contains an analyst getter and setter pair annotated by a relationship
descriptor (@ManyToOne). These methods (named getAnalyst() and setAnalyst()) reflect the
relationship to the Analyst bean. This relationship is facilitated by the existence of a primary
key persistent field, private String tickerSymbol, whose public accessor is annotated by the

* getStockRatings() : List
* getAllAnalysts() : List
* getUnratedStocks() : List
* addStockRating(ticker : String, analystId : Integer, rating : String)
* addAnalyst(id : Integer, name : String)
* addStock(ticker : String, name : String)

StockList
StockClient

* getTickerSymbol() : String
* setTickerSymbol(tickerSymbol : String)
* getName() : String
* setName(name : String)
* getRating() : String
* setRating(rating : String)
* getAnalyst() : Analyst
* setAnalyst(analyst : Analyst)

Stock

0..n1

* getAnalystId() : Integer
* setAnalystId(analystId : Integer)
* getName() : String
* setName(name : String)
* getStocks() : Collection
* setStocks(stocks : Collection)
* assignStock(stock : Stock)

Analyst

Mukhar_470-3.book Page 479 Saturday, October 1, 2005 6:14 AM

480 C H A P T E R 1 1 ■ E J B R E L A T I O N S H I P S , E J B Q L , A N D J D B C

@Id descriptor. Also, the Stock bean has two other persistent fields (name and rating) made
available by four accessor methods.

The Analyst bean has a similar set of methods, but it denotes its relationship to the Stock
bean by the presence of the @OneToMany annotation. This annotation precedes the declaration
of the stocks collection getter, and is parameterized by the statement mappedBy="analyst". The
mappedBy attribute is used in two-way relationships, such as the one between the Analyst bean
and the Stock bean, to describe the field in the related class whose value will be used to fulfill
the relationship. In common database parlance, this sort of value is referred to as a foreign key.

Now we need to compile, configure, and deploy the application as we did in the previous
chapter. The steps are basically the same, but there will be some additional instructions that
pertain to CMR and EJB QL queries.

Building the Application with CMR
The names of the source files are the same as those used in the last example of the previous
chapter, with the addition of the Analyst bean. Also, we’ll add one Java program,
StockListAdder.java, to initially populate the entity beans.

Listing 11-1 shows the source code for the implementation of the Analyst entity bean,
Analyst.java.

Listing 11-1. Analyst.java

package beans;

import javax.persistence.Entity;
import javax.persistence.OneToMany;
import java.io.Serializable;
import javax.persistence.Id;

import java.util.*;

@Entity
public class Analyst implements Serializable {
 // The persistent fields
 private Integer analystId;
 private String name;
 // The cmr fields
 private Collection<Stock> stocks;

 // Constructors
 public Analyst() { }
 public Analyst(Integer analystId, String name) {
 this.analystId = analystId;
 this.name = name;
 }

Mukhar_470-3.book Page 480 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 1 ■ E J B R E L A T I O N S H I P S , E J B Q L , A N D J D B C 481

 // The access methods for persistent fields
 @Id
 public Integer getAnalystId() {
 return analystId;
 }

 public void setAnalystId(Integer analystId) {
 this.analystId = analystId;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 // The access methods for cmr fields
 @OneToMany(mappedBy="analyst")
 public Collection<Stock> getStocks()
 {
 return stocks;
 }

 public void setStocks(Collection<Stock> stocks)
 {
 this.stocks = stocks;
 }

 // Business methods
 public void assignStock(Stock stock) {
 if (stocks == null) {
 stocks = new ArrayList();
 }

 stock.setAnalyst(this);
 stocks.add(stock);
 }
}

Listing 11-2 shows the source code for the implementation of the Stock entity bean,
Stock.java.

Mukhar_470-3.book Page 481 Saturday, October 1, 2005 6:14 AM

482 C H A P T E R 1 1 ■ E J B R E L A T I O N S H I P S , E J B Q L , A N D J D B C

Listing 11-2. Stock.java

package beans;

import javax.persistence.Entity;
import javax.persistence.ManyToOne;
import java.io.Serializable;
import javax.persistence.Id;

@Entity
public class Stock implements Serializable {
 // The persistent fields
 private String tickerSymbol;
 private String name;
 private String rating;
 // The cmr fields
 private Analyst analyst;

 // Constructors
 public Stock() { }
 public Stock(String tickerSymbol, String name) {
 this.tickerSymbol = tickerSymbol;
 this.name = name;
 this.rating = null;
 }

 // The access methods for persistent fields
 // tickerSymbol is the id
 @Id
 public String getTickerSymbol() {
 return tickerSymbol;
 }

 public void setTickerSymbol(String tickerSymbol) {
 this.tickerSymbol = tickerSymbol;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

Mukhar_470-3.book Page 482 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 1 ■ E J B R E L A T I O N S H I P S , E J B Q L , A N D J D B C 483

 public String getRating() {
 return rating;
 }

 public void setRating(String rating) {
 this.rating = rating;
 }

 // The access methods for cmr fields
 @ManyToOne
 public Analyst getAnalyst() {
 return analyst;
 }

 public void setAnalyst(Analyst analyst) {
 this.analyst = analyst;
 }
}

Listing 11-3 shows the source code for the remote interface of the StockList session bean,
StockList.java.

Listing 11-3. StockList.java

package beans;

import javax.ejb.Remote;

// General imports
import java.util.*;

@Remote
public interface StockList {
 // The public business methods on the StockList bean
 public List getStockRatings();
 public List getAllAnalysts();
 public List getUnratedStocks();
 public void addStockRating(String ticker, Integer analystId,
 String rating);
 public void addAnalyst(Integer id, String name);
 public void addStock(String ticker, String name);
}

The StockList session bean, StockListBean.java, is shown in Listing 11-4.

Mukhar_470-3.book Page 483 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

484 C H A P T E R 1 1 ■ E J B R E L A T I O N S H I P S , E J B Q L , A N D J D B C

Listing 11-4. StockListBean.java

package beans;

import javax.persistence.PersistenceContext;
import javax.ejb.Stateless;
import javax.persistence.EntityManager;
import javax.persistence.Query;

// General imports
import java.util.*;

@Stateless
public class StockListBean implements StockList {
 // The reference to the entity manager
 @PersistenceContext
 private EntityManager _manager;

 // The public business methods. these must be coded in the
 // remote interface also.

 public List getStockRatings() {
 List stkList = new ArrayList();
 Query query =
 _manager.createQuery("SELECT DISTINCT OBJECT(s) " +
 "FROM Stock s " +
 "WHERE s.analyst IS NOT NULL " +
 "ORDER BY s.tickerSymbol");
 // Get the rated stocks
 List stocks = query.getResultList();
 for (int i = 0; i < stocks.size(); i++) {
 Stock stock = (Stock) stocks.get(i);
 String[] stockData = new String[4];
 stockData[0] = stock.getTickerSymbol();
 stockData[1] = stock.getName();
 stockData[2] = stock.getAnalyst().getName();
 stockData[3] = stock.getRating();
 stkList.add(stockData);
 }

 return stkList;
 }

 public List getAllAnalysts() {
 List analystList = new ArrayList();
 Query query =
 _manager.createQuery("SELECT Object(a) " +
 "FROM Analyst a " +
 "ORDER BY a.name");

Mukhar_470-3.book Page 484 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 1 ■ E J B R E L A T I O N S H I P S , E J B Q L , A N D J D B C 485

 // Get the analysts
 List analysts = query.getResultList();
 for (int i = 0; i < analysts.size(); i++) {
 Analyst analyst = (Analyst) analysts.get(i);
 Object[] analystData = new Object[2];
 analystData[0] = analyst.getAnalystId();
 analystData[1] = analyst.getName();
 analystList.add(analystData);
 }

 return analystList;
 }

 public List getUnratedStocks() {
 List stkList = new ArrayList();
 Query query =
 _manager.createQuery("SELECT DISTINCT OBJECT(s) " +
 "FROM Stock s " +
 "WHERE s.analyst IS NULL " +
 "ORDER BY s.tickerSymbol");
 // Get the unrated stocks
 List stocks = query.getResultList();
 for (int i = 0; i < stocks.size(); i++) {
 Stock stock = (Stock) stocks.get(i);
 stkList.add(stock.getTickerSymbol());
 }

 return stkList;
 }

 public void addStockRating(String ticker, Integer analystId,
 String rating) {
 Stock stock = _manager.find(Stock.class, ticker);
 Analyst analyst = _manager.find(Analyst.class, analystId);
 analyst.assignStock(stock);
 stock.setRating(rating);
 }

 public void addAnalyst(Integer id, String name) {
 _manager.persist(new Analyst(id, name));
 }

 public void addStock(String ticker, String name) {
 _manager.persist(new Stock(ticker, name));
 }
}

Mukhar_470-3.book Page 485 Saturday, October 1, 2005 6:14 AM

486 C H A P T E R 1 1 ■ E J B R E L A T I O N S H I P S , E J B Q L , A N D J D B C

The StockClient class, StockClient.java, used to interface with the application is shown
in Listing 11-5.

Listing 11-5. StockClient.java

package client;

import beans.StockList;
import javax.naming.InitialContext;

import java.util.*;

// General imports
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class StockClient extends JFrame
 implements ActionListener {
 private StockList _stockList;
 private Integer[] _analystIds;
 private JButton _get = new JButton("Add Rating");
 private JPanel _stockPanel = new JPanel();
 private JComboBox _analysts = new JComboBox();
 private JComboBox _tickers = new JComboBox();
 private JComboBox _ratings = new JComboBox();

 public StockClient() {
 // Get the stock lister
 _stockList = getStockList();

 // Add the title
 JLabel title = new JLabel("Stock Rating List");
 title.setHorizontalAlignment(JLabel.CENTER);
 getContentPane().add(title, BorderLayout.NORTH);

 JPanel activityPanel = new JPanel(new BorderLayout());
 try {
 // Add the stock list
 buildStockList();
 JScrollPane scroller = new JScrollPane(_stockPanel);
 activityPanel.add(scroller, BorderLayout.CENTER);

 // Add the rating panel
 JPanel ratingPanel = new JPanel(new GridLayout(1, 3));
 // add the analysts
 populateAnalysts();
 ratingPanel.add(_analysts);

Mukhar_470-3.book Page 486 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 1 ■ E J B R E L A T I O N S H I P S , E J B Q L , A N D J D B C 487

 // Add the unrated stocks
 populateTickers();
 ratingPanel.add(_tickers);
 // Add the ratings to pick from
 _ratings.addItem("Run away! Run away!");
 _ratings.addItem("Could be worse!");
 _ratings.addItem("A bit of OK!");
 _ratings.addItem("Take a chance!");
 _ratings.addItem("Smashing!");
 ratingPanel.add(_ratings);
 activityPanel.add(ratingPanel, BorderLayout.SOUTH);

 getContentPane().add(activityPanel, BorderLayout.CENTER);
 }
 catch (Exception e) {
 e.printStackTrace();
 }

 // Add the buttons panel
 JPanel buttons = new JPanel(new GridLayout(1, 1));
 _get.addActionListener(this);
 buttons.add(_get);
 getContentPane().add(buttons, BorderLayout.SOUTH);

 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 System.exit(0);
 }
 });

 setSize(480, 250);
 setVisible(true);
 }

 private void buildStockList() throws Exception {
 java.util.List stoks = _stockList.getStockRatings();
 _stockPanel.removeAll();
 _stockPanel.setLayout(new GridLayout(stoks.size(), 1));
 for (int i = 0; i < stoks.size(); i++) {
 String[] stokInfo = (String[]) stoks.get(i);
 Box stokLine = Box.createHorizontalBox();
 String stokDesc = stokInfo[0] + " : " + stokInfo[1]
 + " ==> " + stokInfo[2] + " rates it: " + stokInfo[3];
 stokLine.add(new JLabel(stokDesc));
 _stockPanel.add(stokLine);
 }

Mukhar_470-3.book Page 487 Saturday, October 1, 2005 6:14 AM

488 C H A P T E R 1 1 ■ E J B R E L A T I O N S H I P S , E J B Q L , A N D J D B C

 _stockPanel.invalidate();
 _stockPanel.validate();
 }

 private void populateAnalysts() throws Exception {
 java.util.List anlysts = _stockList.getAllAnalysts();
 _analystIds = new Integer[anlysts.size()];
 for (int i = 0; i < anlysts.size(); i++) {
 Object[] analystData = (Object[]) anlysts.get(i);
 _analystIds[i] = (Integer) analystData[0];
 _analysts.addItem((String) analystData[1]);
 }
 }

 private void populateTickers() throws Exception {
 _tickers.removeAllItems();
 java.util.List tkrs = _stockList.getUnratedStocks();
 for (int i = 0; i < tkrs.size(); i++) {
 String ticker = (String) tkrs.get(i);
 _tickers.addItem(ticker);
 }
 _tickers.invalidate();
 _tickers.validate();
 }

 private StockList getStockList() {
 StockList stockList = null;
 try {
 // Get a naming context
 InitialContext ctx = new InitialContext();

 // Get a StockList object
 stockList =
 (StockList) ctx.lookup(StockList.class.getName());
 } catch(Exception e) {
 e.printStackTrace();
 }

 return stockList;
 }

 public void actionPerformed(ActionEvent ae) {
 // get was clicked
 if (ae.getSource() == _get) {
 try {
 int anlystNo = _analysts.getSelectedIndex();
 if (anlystNo < 0) {

Mukhar_470-3.book Page 488 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 1 ■ E J B R E L A T I O N S H I P S , E J B Q L , A N D J D B C 489

 JOptionPane.showMessageDialog(this, "No analyst selected!");
 return;
 }
 Integer aId = _analystIds[anlystNo];
 if (_tickers.getSelectedIndex() < 0) {
 JOptionPane.showMessageDialog(this, "No ticker selected!");
 return;
 }
 String tkr = (String) _tickers.getSelectedItem();
 if (_ratings.getSelectedIndex() < 0) {
 JOptionPane.showMessageDialog(this, "No rating selected!");
 return;
 }
 String rtg = (String) _ratings.getSelectedItem();
 _stockList.addStockRating(tkr, aId, rtg);
 buildStockList();
 populateTickers();
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
 }

 public static void main(String[] args) {
 StockClient stockClient = new StockClient();
 }
}

Rather than using INSERT statements to populate the database, as we did in the previous
chapter, we’re going to use a Java program, StockListAdder.java. This program will use methods
of the StockList session bean to create some Analyst and Stock entity beans. It will also use
the StockList session bean to create a stock rating by associating a Stock entity bean with an
Analyst entity bean and setting the rating field of the Stock entity bean. Listing 11-6 shows the
source code for StockListAdder.java.

Listing 11-6. StockListAdder.java

package client;

import beans.StockList;
import javax.naming.InitialContext;

// General imports
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;

Mukhar_470-3.book Page 489 Saturday, October 1, 2005 6:14 AM

490 C H A P T E R 1 1 ■ E J B R E L A T I O N S H I P S , E J B Q L , A N D J D B C

public class StockListAdder {

 public static void main(String[] args) {
 try {
 InitialContext ctx = new InitialContext();

 // Get a StockList object
 StockList stockList =
 (StockList) ctx.lookup(StockList.class.getName());

 // Add analysts
 System.out.println("adding analysts");
 stockList.addAnalyst(new Integer(1), "Fred");
 stockList.addAnalyst(new Integer(2), "Leonard");
 stockList.addAnalyst(new Integer(3), "Sarah");
 stockList.addAnalyst(new Integer(4), "Nancy");
 System.out.println("analysts added");
 }
 catch (Exception e) {
 System.out.println("exception adding analysts");
 e.printStackTrace();
 }

 try {
 InitialContext ctx = new InitialContext();

 // Get a StockList object
 StockList stockList =
 (StockList) ctx.lookup(StockList.class.getName());

 // Add stocks
 System.out.println("adding stocks");
 stockList.addStock("ABC", "ABC Company");
 stockList.addStock("ZZZ", "Zigby Zebras");
 stockList.addStock("ICS", "Internet Corp of Slobovia");
 stockList.addStock("DDC", "Digby Door Company");
 stockList.addStock("ZAP", "Zapalopalorinski Ltd.");
 stockList.addStock("JIM", "Jimco");
 stockList.addStock("SRU", "Stocks R Us");
 stockList.addStock("SRI", "Shelves and Radios Inc");
 stockList.addStock("FBC", "Foo Bar Company");
 stockList.addStock("DDBC", "Ding Dong Bell Company");
 stockList.addStock("UDE", "Upn Down Elevator Company");
 System.out.println("stocks added");
 }

Mukhar_470-3.book Page 490 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

C H A P T E R 1 1 ■ E J B R E L A T I O N S H I P S , E J B Q L , A N D J D B C 491

 catch (Exception e) {
 System.out.println("exception adding stocks");
 e.printStackTrace();
 }

 try {
 InitialContext ctx = new InitialContext();

 // Get a StockList object
 StockList stockList =
 (StockList) ctx.lookup(StockList.class.getName());

 // Add ratings
 System.out.println("adding ratings");
 stockList.addStockRating("ZZZ", new Integer(2),
 "Take a chance!");
 System.out.println("ratings added");
 }
 catch (Exception e) {
 System.out.println("exception adding stocks");
 e.printStackTrace();
 }
 }
}

Organize the files in the StockListCmrApp application directory. The Analyst.java,
Stock.java, StockList.java, and StockListBean.java files (Listings 11-1 through 11-4) go in
the beans subfolder. The StockClient.java (Listing 11-5) and StockListAdder.java (Listing 11-6)
files go in the client subfolder.

Compiling the CMR Application
To compile the application, open a command prompt in the application directory
(StockListCmrApp), set the CLASSPATH (shown here for a default JBoss Windows installation),
and compile the classes:

> set CLASSPATH=.;➥

C:\jboss\lib\concurrent.jar; ➥

C:\jboss\lib\jboss-common.jar; ➥

c:\jboss\lib\commons-httpclient.jar;➥
C:\jboss\server\all\lib\jboss.jar; ➥

C:\jboss\server\all\lib\jboss-remoting.jar; ➥

C:\jboss\server\all\lib\jboss-transaction.jar; ➥

C:\jboss\server\all\lib\jnpserver.jar; ➥

C:\jboss\server\all\deploy\ejb3.deployer\jboss-ejb3.jar; ➥

C:\jboss\server\all\deploy\ejb3.deployer\jboss-ejb3x.jar; ➥

c:\jboss\client\jboss-j2ee.jar;➥

c:\jboss\server\all\deploy\ejb3.deployer\ejb3-persistence.jar;➥

C:\jboss\server\all\deploy\jboss-aop-jdk50.deployer\➥
jboss-aop-jdk50.jar; ➥

C:\jboss\server\all\deploy\jboss-aop-jdk50.deployer\➥

jboss-aspect-library-jdk50.jar

Mukhar_470-3.book Page 491 Saturday, October 1, 2005 6:14 AM

492 C H A P T E R 1 1 ■ E J B R E L A T I O N S H I P S , E J B Q L , A N D J D B C

Within the StockListCmrApp directory, execute the following commands from the
command prompt:

> javac -d . client/*.java
> javac -d . beans/*.java

Deploying the CMR Application
To deploy the application, start the JBoss Server (see Chapter 2 for details). Then create the
application EJB3 file by executing the following command from the command prompt:

>jar cf StockListCmrApp.ejb3 beans/*.class

Copy the EJB3 file to the server’s deployment directory, using a command like this:

>copy StockListCmrApp.ejb3 c:\jboss\server\all\deploy

Loading the Database
Run the StockListAdder.java application (Listing 11-6) to populate the beans by entering the
following on the command line:

>java ➥

-Djava.naming.factory.initial=➥
org.jnp.interfaces.NamingContextFactory ➥

-Djava.naming.factory.url.pkgs=➥

org.jboss.naming:org.jnp.interfaces ➥

-Djava.naming.provider.url=➥
localhost client.StockListAdder

After running this command, you will see the following output displayed:

adding analysts
analysts added
adding stocks
stocks added
adding ratings
ratings added

Running the CMR Application
Now that the database is populated, run the client that uses the beans we’ve built by using the
following command:

>java ➥

-Djava.naming.factory.initial=➥

org.jnp.interfaces.NamingContextFactory ➥

-Djava.naming.factory.url.pkgs=➥

org.jboss.naming:org.jnp.interfaces ➥

-Djava.naming.provider.url=➥

localhost client.StockClient

Mukhar_470-3.book Page 492 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 1 ■ E J B R E L A T I O N S H I P S , E J B Q L , A N D J D B C 493

You should see a screen like the one shown in Figure 11-4.

Figure 11-4. Running the StockClient application

Reviewing the CMR Application
Now, let’s look at the new elements of our beans that pertain to CMR and EJB QL queries.

Analyst Entity Bean

In the Analyst entity bean, Analyst.java (Listing 11-1), the stocks CMR field is defined by the
getStocks() and setStocks() methods. These methods return and take a Collection of Stock
entity beans, respectively. The getter method is annotated by the @OneToMany descriptor in
order to specify how the collection will be filled by the entity bean relationship. The import
java.util.* statement is there because the Collection interface is in that package.

We’ve created a convenience method named assignStock() that adds a Stock entity bean
to the many side of the relationship by performing the following steps:

• Check if the stocks object exists yet. If the field does not point to a valid object (one that
implements the java.util.Collection interface), populate it with a new ArrayList.

• Add a new stock to the stocks collection after ensuring that the stock analyst reference
points to this.

Since we’ve defined this relationship as bidirectional, the EJB container manages the other
side of this relationship by using the setAnalyst() method of the Stock bean. Recall that we
defined the relationship as bidirectional by annotating the fields that fulfilled this relationship
with the dependent metadata descriptors @OneToMany and @ManyToOne.

This assignStock() method is called by the StockList session bean when assigning a Stock
entity bean to an Analyst entity bean.

Stock Entity Bean

In our Stock entity bean, Stock.java (Listing 11-2), the analyst CMR field is defined by the
getAnalyst() and setAnalyst() methods. As you might have noted while building this example,
these methods return and take an Analyst bean reference, respectively. Recall that the relationship
specified by the @ManyToOne metadata descriptor dictates that a stock can be rated by only one
analyst, but an analyst can rate many stocks. Pay special attention to the fact that the relation-
ship between the two classes is fulfilled automatically. The JBoss EJB container is able to intuit

Mukhar_470-3.book Page 493 Saturday, October 1, 2005 6:14 AM

494 C H A P T E R 1 1 ■ E J B R E L A T I O N S H I P S , E J B Q L , A N D J D B C

the correct fields enabling the data relationship based on the target of the @Id annotation in the
related class. Other server containers may not fully provide such functionality; check your server
documentation to see if support for that feature is provided.

StockList Session Bean

In the Java source code for the remote interface of the StockList session bean, StockList.java
(Listing 11-3), the first four of these methods are used by the StockClient class, which provides
the client UI. The last three methods are used by the StockListAdder class, which populates the
entity beans initially.

In the source code for the implementation of the StockList session bean, StockListBean.java
(Listing 11-4), the first method of interest is getStockRatings():

 public List getStockRatings() {
 List stkList = new ArrayList();
 Query query =
 _manager.createQuery("SELECT DISTINCT OBJECT(s) " +
 "FROM Stock s " +
 "WHERE s.analyst IS NOT NULL " +
 "ORDER BY s.tickerSymbol");
 // Get the rated stocks
 List stocks = query.getResultList();
 for (int i = 0; i < stocks.size(); i++) {
 Stock stock = (Stock) stocks.get(i);
 String[] stockData = new String[4];
 stockData[0] = stock.getTickerSymbol();
 stockData[1] = stock.getName();
 stockData[2] = stock.getAnalyst().getName();
 stockData[3] = stock.getRating();
 stkList.add(stockData);
 }

 return stkList;
 }

This method creates a query object using the following EJB QL statement:

SELECT DISTINCT OBJECT(s)
 FROM Stock s
 WHERE s.analyst IS NOT NULL
 ORDER BY s.tickerSymbol

The execution of this Query object returns a collection of Stock beans that have been rated.
The getStockRatings() method then creates an ArrayList of String arrays. Each String array
has four elements that contain the stock’s ticker symbol, the stock’s name, the name of the analyst
that rated it, and the rating. The client UI uses the ArrayList returned from getStockRatings()
each time it needs to display a current list of the stocks that have been rated.

Mukhar_470-3.book Page 494 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 1 ■ E J B R E L A T I O N S H I P S , E J B Q L , A N D J D B C 495

■Note In Chapter 12, you’ll see how to move away from using String arrays to pass data between clients
and session beans in favor of using classes that are modeled after the Stock and Analyst entity beans.

The getAllAnalysts() method similarly creates a Query object using an unqualified EJB QL
query to get references to all of the Analyst beans:

 public List getAllAnalysts() {
 List analystList = new ArrayList();
 Query query =
 _manager.createQuery("SELECT Object(a) " +
 "FROM Analyst a " +
 "ORDER BY a.name");
 // Get the analysts
 List analysts = query.getResultList();
 for (int i = 0; i < analysts.size(); i++) {
 Analyst analyst = (Analyst) analysts.get(i);
 Object[] analystData = new Object[2];
 analystData[0] = analyst.getAnalystId();
 analystData[1] = analyst.getName();
 analystList.add(analystData);
 }

 return analystList;
 }

The getAllAnalysts() method returns the data contained in the Analyst beans via an
ArrayList of String arrays. The client UI uses this method when it needs to populate the drop-
down list that contains the names of the analysts.

The getUnratedStocks() method queries the entity store for all Stock objects whose relation
field to Analyst objects is null:

public List getUnratedStocks() {
 List stkList = new ArrayList();
 Query query =
 _manager.createQuery("SELECT DISTINCT OBJECT(s) " +
 "FROM Stock s " +
 "WHERE s.analyst IS NULL " +
 "ORDER BY s.tickerSymbol");
 // Get the unrated stocks
 List stocks = query.getResultList();
 for (int i = 0; i < stocks.size(); i++) {
 Stock stock = (Stock) stocks.get(i);
 stkList.add(stock.getTickerSymbol());
 }

 return stkList;
 }

Mukhar_470-3.book Page 495 Saturday, October 1, 2005 6:14 AM

496 C H A P T E R 1 1 ■ E J B R E L A T I O N S H I P S , E J B Q L , A N D J D B C

The getUnratedStocks() method uses the collections returned from this query to identify
the stocks that haven’t been rated, and it returns an ArrayList of String values containing
ticker symbols. The client UI uses this method when it needs to populate the drop-down list
that contains the ticker symbols for stocks that haven’t been rated.

Next is the addStockRating() method:

 public void addStockRating(String ticker, ➥

 Integer analystId,➥

 String rating) {
 Stock stock = _manager.find(Stock.class, ticker);
 Analyst analyst = _manager.find(Analyst.class, analystId);
 analyst.assignStock(stock);
 stock.setRating(rating);
 }

The addStockRating() method takes three arguments: the ticker symbol of the stock being
rated, the ID number of the analyst rating the stock, and the rating value string. The first two
arguments are the primary keys of the Stock and Analyst entity beans, respectively. This method
uses these values to get references to a Stock bean and an Analyst bean. It then calls the
assignStock() method of the Analyst bean, passing in the reference of the Stock bean being rated.
The client UI uses this method when the user clicks the Add Rating button. The StockListAdder
class uses this addStockRating() method as well to set up an initial stock rating.

Finally, let’s look at the addAnalyst() and addStock() methods:

 public void addAnalyst(Integer id, String name) {
 _manager.persist(new Analyst(id, name));
 }

 public void addStock(String ticker, String name) {
 _manager.persist(new Stock(ticker, name));
 }

These methods take as arguments the values required for creating Analyst and Stock beans,
respectively, after which they call the persist() method of the EntityManager interface. The
StockListAdder class uses these methods to create entity beans, and the client UI (the StockClient
class) does not use them at all.

Thus far in the chapter, our focus has been limited to EJB QL and CMR with entity beans.
Using those technologies in concert will typically suffice for most applications where ease of
development is of primary concern. However, there will be times when using JDBC as the
method of access to entity information is preferable.

JDBC with EJB Entity Beans
As we’ve noted in this and previous chapters regarding entity beans, CMP is a method of trans-
parently persisting data to some container-specified store. Enterprise application developers
will find it an invaluable tool, as it allows them to avoid writing leagues of redundant database-
access code. However, CMP is not a panacea for all data-aware object ills. Particularly, the use
of CMP and EJB QL raises several concerns for you as the developer:

Mukhar_470-3.book Page 496 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 1 ■ E J B R E L A T I O N S H I P S , E J B Q L , A N D J D B C 497

• CMP is another layer of abstraction between the application and the data, and must
always be slower than a native JDBC solution. Efficient EJB implementations may provide
a level of performance that operates imperceptibly slower than native access; a high level
of performance cannot be guaranteed for all possible usage scenarios, however.

• Requesting large sets of CMP objects can be an expensive undertaking, on an order
higher than retrieving a comparatively simple collection of data rows.

• Access to database-specific functionality is removed from the developer’s immediate
use. Special functions that perform operations such as XPath statements across an XML
column or geospatial computations become unavailable through a standard EntityManager
query. (Although you can issue native queries from EntityManager.)

Realize that even though there are pitfalls you should be aware of when using CMP in your
application, this doesn’t mean you must always adopt a custom JDBC-only object persistence
layer. The minds behind the EJB specification have spent a significant amount of time making
object persistence a near-painless task. However, when you need raw data fast and without
extra semantics, it might be time to integrate JDBC into your application.

GOING REASONABLY NATIVE

The EntityManager interface exposes a method public Query createNativeQuery(String
sqlString) that allows you to issue database queries directly to the underlying entity bean store. The method
returns a Query object for your use, just as the createQuery(String ejbqlString) method does.

A good example of use for the createNativeQuery() method is the execution of a stored procedure
in the database:

Query q = manager.createNativeQuery("exec sp_fetch_all_shoes()");
ArrayList<shoes> shoelist = q.getResultList();

It may seem as if there’s hardly anything to the example. That is, of course, the exact point: having
access to provider-specific stored procedures allows the application to gain the benefit of prepared rich data
queries, while still having the ease of use provided by the CMP layer.

While having some facility to issue SQL queries directly to the database solves the problem of isolation
from database-specific grammar, it does not concretely solve the problem of access efficiency. Passing the
SQL through the EntityManager still demands at least one extra layer of execution, the presence of which
may be unacceptable, depending on the query and application. Hard-coding SQL queries in code is a sure way
to lose your credibility with other Java developers. Relying on a schema and database that is only as correct
as of the last compilation is a practice directly in contrast with the “Java Philosophy,” something that can only
end in infamy, shame, and forced servitude in the spice mines.

Implementing JDBC with EJB Applications
Once you’ve decided to use JDBC in your EJB application, you need to address a bevy of questions
in regard to implementation. Will your application be doing any INSERT or UPDATE operations
using JDBC? Should all your queries be issued in transactions, or is the COMMIT/ROLLBACK

Mukhar_470-3.book Page 497 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

498 C H A P T E R 1 1 ■ E J B R E L A T I O N S H I P S , E J B Q L , A N D J D B C

approach unnecessary? These sorts of questions are necessary for the effective usage of JDBC
within an EJB application.

For example, consider a video rental inventory application that consists of three types of
entity beans—Renter, Video, and Rental—and one stateless session bean—InventoryViewBean.
Renter and Video represent the details regarding the persons who rent out videos and the videos
available in the store for rental, respectively. Rental is a representation of the transactions
between the two; each Rental entity bean represents an instance where a customer has rented
(and optionally, returned) a video from the store.

The previous sections in this chapter have shown how the relationships between the
different entity beans may be formed. Rental has a @OneToMany relationship to both Renter and
Video. Renter and Video, in turn, have a @ManyToOne relationship to Rental. However, suppose
some sort of data is required in multiple instances that is transitive in nature. An example
would be the likelihood of a particular individual returning her rented video on time. Such a
value would be poorly represented as a persistent field when its value is derived from the state
of its owner object and related objects at the time the value is requested. Furthermore, the
singular nature of the value (in this case, a floating-point number) and the potentially expensive
execution of the query seems to demand the low-overhead session with the database that you
can obtain with JDBC.

To take the JDBC approach, since the value returned by the method reflects on the behavior
of a Renter, it goes in the Renter class file. The method is declared static, to imply that the value
gains its meaning outside the instanced data of all members of the Renter hierarchy. All that
remains is the implementation:

 public static float getRenterReliability(Renter r) {
 try {
 // Make the command
 String cmd = "{CALL ? := sp_computeReliability(?)}"
 Connection conn;
 // Get the db connection, statement and result
 CallableStatement stmt = conn.prepareCall(cmd);
 stmt.registerOutParameter(1,Types.FLOAT);
 stmt.SetInt(2,r.getId());
 stmt.Execute();
 float f=stmt.getFloat(2)
 conn.close();
 return f;
 }
 catch (Exception ex) {
 throw new RuntimeException(ex.getMessage());
 }
 }

In short, all you’ve done is add a simple value fetcher to an EJB using JDBC. While this may
seem trivial, it’s important to note what you didn’t do: you didn’t use EJB QL to get your results,
nor did you incur any extra overhead by interfacing with the object persistence layer. EJB QL
and CMP are good enough to handle the tasks of persisting and iterating over the collection of
video rental objects. As any good programmer will tell you, there’s no sense reinventing the
wheel unless the new wheel is cool enough to merit the time spent.

Mukhar_470-3.book Page 498 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 1 ■ E J B R E L A T I O N S H I P S , E J B Q L , A N D J D B C 499

Using JDBC with the StockList Bean
To demonstrate using JDBC with an entity bean, we’ll modify the previous example in this
chapter to use JDBC to return a summary of analyst data. To accomplish this, we’ll modify the
getAllAnalysts() method of the StockListBean class that we walked through earlier in this
chapter. This modification will entail removing the EJB QL call and executing a JDBC query
instead. Other than this change to the StockListBean.java file, the rest of the previous example
will remain the same.

Listing 11-7 shows the modified version of StockListBean.java.

Listing 11-7. StockListBean.java for Use with JDBC

package beans;

import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.Statement;
import java.sql.SQLException;
import javax.persistence.PersistenceContext;
import javax.ejb.Stateless;
import javax.persistence.EntityManager;
import javax.persistence.Query;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.sql.DataSource;

// General imports
import java.util.*;

@Stateless
public class StockListBean implements StockList {
 // The reference to the entity manager
 @PersistenceContext
 private EntityManager _manager;

 // The public business methods. These must be coded in the
 // remote interface also.

 public List getStockRatings() {
 List stkList = new ArrayList();
 Query query =
 _manager.createQuery("SELECT DISTINCT OBJECT(s) " +
 "FROM Stock s " +
 "WHERE s.analyst IS NOT NULL " +
 "ORDER BY s.tickerSymbol");

Mukhar_470-3.book Page 499 Saturday, October 1, 2005 6:14 AM

500 C H A P T E R 1 1 ■ E J B R E L A T I O N S H I P S , E J B Q L , A N D J D B C

 // Get the rated stocks
 List stocks = query.getResultList();
 for (int i = 0; i < stocks.size(); i++) {
 Stock stock = (Stock) stocks.get(i);
 String[] stockData = new String[4];
 stockData[0] = stock.getTickerSymbol();
 stockData[1] = stock.getName();
 stockData[2] = stock.getAnalyst().getName();
 stockData[3] = stock.getRating();
 stkList.add(stockData);
 }

 return stkList;
 }

 public List getAllAnalysts() {
 try {
 // Make the sql
 StringBuffer sql = new StringBuffer();
 sql.append("SELECT analystId, name ");
 sql.append("FROM Analyst ");
 sql.append("ORDER BY name");

 // Get the db connection, statement and result set
 Connection conn = makeConnection();
 Statement stmt = conn.createStatement();
 ResultSet results = stmt.executeQuery(sql.toString());

 // Get the analysts
 List analystList = new ArrayList();
 while (results.next()) {
 Object[] analystData = new Object[2];
 analystData[0] = new Integer(results.getInt(1));
 analystData[1] = results.getString(2);
 analystList.add(analystData);
 }

 results.close();
 stmt.close();
 conn.close();

 return analystList;
 }
 catch (Exception ex) {
 throw new RuntimeException(ex.getMessage());
 }
 }

Mukhar_470-3.book Page 500 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 1 ■ E J B R E L A T I O N S H I P S , E J B Q L , A N D J D B C 501

 public List getUnratedStocks() {
 List stkList = new ArrayList();
 Query query =
 _manager.createQuery("SELECT DISTINCT OBJECT(s) " +
 "FROM Stock s " +
 "WHERE s.analyst IS NULL " +
 "ORDER BY s.tickerSymbol");
 // Get the unrated stocks
 List stocks = query.getResultList();
 for (int i = 0; i < stocks.size(); i++) {
 Stock stock = (Stock) stocks.get(i);
 stkList.add(stock.getTickerSymbol());
 }

 return stkList;
 }

 public void addStockRating(String ticker, Integer analystId,
 String rating) {
 Stock stock = _manager.find(Stock.class, ticker);
 Analyst analyst = _manager.find(Analyst.class, analystId);
 analyst.assignStock(stock);
 stock.setRating(rating);
 }

 public void addAnalyst(Integer id, String name) {
 _manager.persist(new Analyst(id, name));
 }

 public void addStock(String ticker, String name) {
 _manager.persist(new Stock(ticker, name));
 }

 private Connection makeConnection()
 throws NamingException, SQLException {

 InitialContext ic = new InitialContext();
 DataSource ds =
 (DataSource) ic.lookup("java:/DefaultDS");
 return ds.getConnection();
 }
}

StockListBean remains relatively unchanged, except for the presence of some JDBC connec-
tion code and the new getAllAnalysts() method. Examining the makeConnection() method, you
can see that the DataSource that provides database connections to the entity store is obtained
via the JNDI path java:/DefaultDS. This JNDI path refers to the default database maintained by

Mukhar_470-3.book Page 501 Saturday, October 1, 2005 6:14 AM

502 C H A P T E R 1 1 ■ E J B R E L A T I O N S H I P S , E J B Q L , A N D J D B C

JBoss for entity beans. The getAllAnalysts() method remains functionally identical to its EJB QL
predecessor, but now avoids the CMP overhead caused by issuing a query through EntityManager.

Organize the files in the StockListJDBCApp application directory. Put the
StockListBean.java file (Listing 11-6), along with the Analyst.java, Stock.java,
StockList.java, and StockListBean.java files (Listings 11-1 through 11-4) in the beans
subfolder. Put StockClient.java (Listing 11-5) and StockListAdder.java (Listing 11-6) in the
client subfolder.

To compile the application, open a command prompt in the StockListJDBCApp application
directory, set the CLASSPATH, and deploy the classes (shown here for a default JBoss Windows
installation):

> set CLASSPATH=.;➥

C:\jboss\lib\concurrent.jar; ➥

C:\jboss\lib\jboss-common.jar; ➥

c:\jboss\lib\commons-httpclient.jar;➥

c:\jboss\client\jboss-j2ee.jar;➥

c:\jboss\server\all\deploy\ejb3.deployer\ejb3-persistence.jar;➥

C:\jboss\server\all\lib\jboss.jar; ➥

C:\jboss\server\all\lib\jboss-remoting.jar; ➥

C:\jboss\server\all\lib\jboss-transaction.jar; ➥

C:\jboss\server\all\lib\jnpserver.jar; ➥

C:\jboss\server\all\deploy\ejb3.deployer\jboss-ejb3.jar; ➥

C:\jboss\server\all\deploy\ejb3.deployer\jboss-ejb3x.jar; ➥

C:\jboss\server\all\deploy\jboss-aop-jdk50.deployer\➥
jboss-aop-jdk50.jar; ➥

C:\jboss\server\all\deploy\jboss-aop-jdk50.deployer\➥

jboss-aspect-library-jdk50.jar

Next, within the StockListJDBCApp directory, execute the following commands from the
command prompt:

> javac -d . client/*.java
> javac -d . beans/*.java

Start the JBoss Server and create the application EJB3 file by executing the following
command from the command prompt:

>jar cf StockListJDBCApp.ejb3 beans/*.class

Copy the EJB3 file to the server’s deployment directory:

>copy StockListJDBCApp.ejb3 c:\jboss\server\all\deploy

Populate the entity beans by running the StockListAdder.java application, as described
in the “Loading the Database” section earlier in this last chapter.

Our better, faster, and 100 percent more JDBC Stock List application remains nearly iden-
tical to the implementation for the previous version. Although the speed and memory savings
we mentioned at the beginning of this section are difficult to gauge at as focused a level as this
example, you will find that in practice, such measures will prove a boon in resource-critical
scenarios.

Mukhar_470-3.book Page 502 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 1 ■ E J B R E L A T I O N S H I P S , E J B Q L , A N D J D B C 503

Summary
In this chapter, we continued the discussion of entity beans from the previous chapter, covering
concepts such as entity bean relationships and using EJB QL to augment session beans. We
also discussed the drawbacks of a CMP-only solution and the basic considerations that must
be examined when integrating JDBC into your EJB application.

After having read this chapter, you should know:

• Entity bean relationships are a huge convenience to the developer, because the work in
maintaining the relationships is performed by the EJB implementation. These relation-
ships can be one to one, one to many, many to one, and many to many. In addition, each
kind of relationship can be unidirectional or bidirectional.

• Associations do not need to be clumsily defined in some external table schema when
using entity beans. Through accurate use of metadata, almost any relationship can be
expressed.

• EJB QL shares the same basic pattern as SQL-92, and it’s easy to translate your under-
standing of the one to the other. It is up to the developer to judge where such functionality
might best be used, but with thoughtful deployment, the entity bean may provide a very
rich set of functions to its dependent clients.

• JDBC and EJBs are not mutually exclusive. JDBC can provide fast, primitive data quickly
to calling applications. EJBs can trivialize the task of maintaining an object schema
separate from your table schema, as well as help the developer cut out unnecessary
object mapping code. Learning the right instance to use either can be invaluable to your
application.

In the next chapter, we’ll cover implementing software design patterns in the context of EJBs.

Exercises
1. Using the class diagram of the fictitious Audio CD Collection application (Figure 11-1),

implement the CompactDiscTitle and RecordLabel entity beans using local references,
including the container-managed relationship. Implement a stateless session bean that
allows you to add record labels and CD titles. Write a simple client application to test
your beans.

2. Modify the previous exercise, adding a method to the session bean that uses JDBC to
find all CD titles ordered by name. Change the client application to execute this method.

Mukhar_470-3.book Page 503 Saturday, October 1, 2005 6:14 AM

Mukhar_470-3.book Page 504 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

505

■ ■ ■

C H A P T E R 1 2

Design Patterns and EJB

The previous chapter introduced EJB container-managed relationships (CMR) and the use of
JDBC in session beans. Now, we move on to using design patterns with EJB applications.

In this chapter, you will learn the following:

• What design patterns are, and how they can be applied in EJB applications

• How to combine JSP and EJB technologies in one application

We begin by introducing design patterns and explain how they can facilitate the develop-
ment and maintenance of EJB applications.

Better by Design
Back in Chapter 1, we talked about designing object-oriented software being analogous to
building a house. Software objects are like some of the construction materials, or components,
used to build the house. These components range in size and complexity, from a simple nail to
a complete gas furnace.

Continuing this analogy, software design patterns are analogous to some of the concepts
and styles used in house building. For example, when designing a house, an architect may
specify that it have a gable roof, as opposed to, say, a hip roof or a gambrel (barn-style) roof.
These well-known roofing styles, or patterns, can be used to facilitate the task of designing and
building a house. The architect doesn’t need to invent a roofing style each time she designs a
house, and the builder is familiar with implementing the design pattern of a gable roof. (Not so
coincidentally perhaps, roof trusses themselves are often built using a template, or pattern.)

Software design patterns describe solutions to specific software design problems. The
following are some tasks developers can accomplish using design patterns:

• Design an application in such a way that the client UI doesn’t need to worry about the
architecture or location of the application logic layer of an application. We’ll demon-
strate shortly how you can use the Data Access Object (DAO), Delegate, and Transfer
Object design patterns to address this design problem.

• Create an instance of a class that is vendor- or product-specific, in a generic way. We’ll
look at a very simple case of a pattern that enables this, known as the Factory pattern.

• Design a method in such a way that it will create and return the same instance of a class
to any method that calls it. You’ll see how the Singleton design pattern allows you to
create such a method.

Mukhar_470-3.book Page 505 Saturday, October 1, 2005 6:14 AM

506 C H A P T E R 1 2 ■ D E S I G N P A T T E R N S A N D E JB

■Note A given design pattern can be known by several names. For example, the Transfer Object pattern is
also known as the Value Object pattern and the Data Transfer Object pattern. The Delegate pattern is often
referred to as a the Façade pattern.

DESIGN PATTERN RESOURCES

The concept of software design patterns became well known as a result of a book published in 1994, titled
Design Patterns, Elements of Reusable Object-Oriented Software. It was written by Erich Gamma, Richard Helm,
Ralph Johnson, and John Vlissides (the “Gang of Four”), and it has a good starter set of software design patterns.

Other works have been created since then that offer additional design patterns for the general object-oriented
software domain, as well as for specific domains such as Java EE applications. One such work is Sun Micro-
systems’ Java BluePrints Patterns Catalog, which can be viewed from http://java.sun.com/blueprints/
patterns/catalog.html. Books you may want to refer to include Core J2EE Patterns: Best Practices and
Design Strategies, by Deepak Alur, John Crupi, and Dan Malks (Prentice Hall, 2003), EJB Design Patterns, by
Floyd Marinescu (John Wiley & Sons, 2002), and Holub on Patterns, by Allen Holub (Apress, 2004). The last is
notable in that it offers a running commentary on the implementation of the techniques presented in Design
Patterns, complementing the designs with advice and Java code.

Applying Design Patterns
To demonstrate using design patterns with EJB applications, we’ll build on the now familiar
StockList example we’ve been using in the previous chapters, adding the Delegate, DAO,
Transfer Object, Factory, and Singleton patterns.

Figure 12-1 shows the class diagram for the example. The dashed lines indicate dependen-
cies between classes in the direction of the arrow. For example, methods of the StockClient
class hold references to StockTO instances. We’ll use the DAO pattern with the
Ejb3StockListDAO class, which will provide an abstract means of fetching the entity data.
StockListDAO will provide the interface for this class, new instances of which will be provided
by the StockListDAOFactory class (appropriately using the Factory design pattern). Also, we’ll
implement a derivative of the DAO pattern to abstract the access to the StockList business
method provider with the help of the StockListDelegate class. We’ll employ the Singleton
pattern in that class as well. We’ll use the StockTO and AnalystTO classes to implement the
Transfer Object pattern.

Mukhar_470-3.book Page 506 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 2 ■ D E S I G N P A T T E R N S A N D E J B 507

Figure 12-1. The StockListAppPattern object model and relationship hierarchy

This example includes ten new Java source files, as shown in Figure 12-1:

• StockListDelegate.java

• StockListException.java

• AnalystTO.java

• StockTO.java

private tickerSymbol
private name
private rating
private analyst

StockTO()
getTickerSymbol()
getName()
setName()
getRating
setRating()
getAnalyst()
setAnalyst()

getInstance()
getStockRatings()
getAllAnalysts()
getUnratedStocks()
addStockRating()
addAnalyst()
addStock()

getStockRatings()
getAllAnalysts()
getUnratedStocks()
addStockRating()
addAnalyst()
addStock()

getStockListDAO()

StockListDAOFactory

StockListExceptionStockClient

StockListDelegate

StockList

StockListDAO

Stock

StockTO

Analyst

AnalystTO

getStockRatings()
getAllAnalysts()
getUnratedStocks()
addStockRating()
addAnalyst()
addStock()

private tickerSymbol
private name
private rating
private analyst

Stock()
getTickerSymbol()
getName()
setName()
getRating()
setRating()
getAnalyst()
setAnalyst()

private analystId
private name
private Stocks

Analyst()
getAnalystId()
getName()
setName()
getStocks()

private analystId
private name
private Stocks

AnalystTO()
getAnalystId()
getName()
setName()
getStocks()

Mukhar_470-3.book Page 507 Saturday, October 1, 2005 6:14 AM

508 C H A P T E R 1 2 ■ D E S I G N P A T T E R N S A N D E JB

• Ejb3StockListDAO.java

• Ejb3StockListDAOBean.java

• StockListDAO.java

• StockListDAOFactory.java

• Analyst.java and Stock.java in the dao package

In addition, four Java source files from the CMR example in Chapter 11 are modified:

• StockList.java

• StockListBean.java

• StockClient.java

• StockListAdder.java

To begin with, you’ll create the main application folder, called StockListPatternsApp. The
folder’s contents will be based off the CMR example from Chapter 11, which will necessitate
your copying the contents of that example to StockListPatternsApp.

You’ll create six folders for the different packages: business, client, dao, delegate, entity,
and transfer. The business package will hold your Session bean interface (StockList.java)
and implementation (StockListBean.java). As you can guess, the client package will hold the
client GUI (StockClient.java) and information entry class (StockListAdder.java). The dao
package will contain the data access objects, which help provide data source anonymity; the
classes you need to create in the package are AnalystDAO.java, Ejb3StockListDAO.java,
Ejb3StockListDAOBean.java, StockDAO.java, StockListDAO.java, StockListDAOFactory.java,
Analyst.java, and Stock.java. (Analyst.java and Stock.java are new files; they are not the
entity beans of the same name.) The delegate package will contain the files StockListDelegate.
java and StockListException.java, which are used by the client to make a connection to the
session bean. The entity package folder will contain the now-familiar Analyst.java and
Stock.java, which will act to provide data to the application. Finally, the transfer package will
hold the transfer objects, a software design technique that helps to minimize the amount of
data passed between objects.

Building the Application with Design Patterns
First, you need to type in the code (or download it from the Apress web site) for the
StockListDelegate.java source file, shown in Listing 12-1, in which you can see many of the
same method names and basic functionality that we’ve placed inside the session bean in
previous examples.

Listing 12-1. StockListDelegate.java

package delegate;

import business.StockList;
import transfer.AnalystTO;
import transfer.StockTO;

Mukhar_470-3.book Page 508 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 2 ■ D E S I G N P A T T E R N S A N D E J B 509

import javax.naming.InitialContext;
// General imports
import java.util.*;

public class StockListDelegate {
 // Reference to singleton delegate
 private static StockListDelegate stockListDelegate;

 // The reference to the stocklist bean
 private StockList stockList;

 // private constructor - makes connection to session bean
 private StockListDelegate() throws StockListException {
 try {
 // Get a naming context
 InitialContext ctx = new InitialContext();

 // Get a StockList object
 stockList =
 (StockList) ctx.lookup(StockList.class.getName());
 } catch(Exception e) {
 throw new StockListException(e.getMessage());
 }
 }

 // The business methods. No exposure to actual implementation
 // on the server , and the communication method between client and
 // server is hidden to the client.

 public List getStockRatings() throws StockListException {
 try {
 List ratings = stockList.getStockRatings();
 return ratings;
 }
 catch (Exception re) {
 throw new StockListException(re.getMessage());
 }
 }

 public List getAllAnalysts() throws StockListException {
 try {
 List analysts = stockList.getAllAnalysts();
 return analysts;
 }
 catch (Exception re) {
 throw new StockListException(re.getMessage());
 }
 }

Mukhar_470-3.book Page 509 Saturday, October 1, 2005 6:14 AM

510 C H A P T E R 1 2 ■ D E S I G N P A T T E R N S A N D E JB

 public List getUnratedStocks() throws StockListException {
 try {
 List stocks = stockList.getUnratedStocks();
 return stocks;
 }
 catch (Exception re) {
 throw new StockListException(re.getMessage());
 }
 }

 public void addStockRating(StockTO stock)
 throws StockListException {
 try {
 stockList.addStockRating(stock);
 }
 catch (Exception re) {
 throw new StockListException(re.getMessage());
 }
 }

 public void addAnalyst(AnalystTO analyst)
 throws StockListException {
 try {
 stockList.addAnalyst(analyst);
 }
 catch (Exception re) {
 throw new StockListException(re.getMessage());
 }
 }

 public void addStock(StockTO stock) throws StockListException {
 try {
 stockList.addStock(stock);
 }
 catch (Exception re) {
 throw new StockListException(re.getMessage());
 }
 }

 public static StockListDelegate getInstance()
 throws StockListException {
 if (stockListDelegate == null) {
 stockListDelegate = new StockListDelegate();
 }

 return stockListDelegate;
 }
}

Mukhar_470-3.book Page 510 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 2 ■ D E S I G N P A T T E R N S A N D E J B 511

Next, enter the code for StockListException.java, shown in Listing 12-2.

Listing 12-2. StockListException.java

package delegate;

public class StockListException extends Exception {

 public StockListException(String msg) {
 super(msg);
 }
}

Now add the code for AnalystTO.java, shown in Listing 12-3.

Listing 12-3. AnalystTO.java

package transfer;

import java.io.Serializable;
import java.util.*;

public class AnalystTO implements Serializable {

 // Holds references to the attribute data
 private Integer analystId;
 private String name;

 // Holds references to the relationships
 private List stocks;

 public AnalystTO(Integer analystId, String name) {
 this.analystId = analystId;
 this.name = name;
 stocks = new ArrayList();
 }

 // Get analyst id. No setter because primary key
 public Integer getAnalystId() {
 return analystId;
 }

 // Get, set name
 public String getName() {
 return name;
 }

Mukhar_470-3.book Page 511 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

512 C H A P T E R 1 2 ■ D E S I G N P A T T E R N S A N D E JB

 public void setName(String name) {
 this.name = name;
 }

 // Get stocks
 public List getStocks() {
 return stocks;
 }
}

And, finally, enter StockTO.java, shown in Listing 12-4.

Listing 12-4. StockTO.java

package transfer;

import java.io.Serializable;
import java.util.*;

public class StockTO implements Serializable {

 // Holds references to the attribute data
 private String tickerSymbol;
 private String name;
 private String rating;

 // Holds references to the relationships
 private AnalystTO analyst;

 public StockTO(String tickerSymbol, String name, String rating) {
 this.tickerSymbol = tickerSymbol;
 this.name = name;
 this.rating = rating;
 analyst = null;
 }

 // Get ticker symbol. No setter because primary key
 public String getTickerSymbol() {
 return tickerSymbol;
 }

 // Get, set name
 public String getName() {
 return name;
 }

Mukhar_470-3.book Page 512 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 2 ■ D E S I G N P A T T E R N S A N D E J B 513

 public void setName(String name) {
 this.name = name;
 }

 // Get, set rating
 public String getRating() {
 return rating;
 }

 public void setRating(String rating) {
 this.rating = rating;
 }

 // Get, set analyst
 public AnalystTO getAnalyst() {
 return analyst;
 }

 public void setAnalyst(AnalystTO analyst) {
 this.analyst = analyst;
 }
}

Adding DAO Functionality

Now, you’ll need to add the code that directly handles the entity beans (remember those?). This
functionality is a part of the dao (Data Access Object) package, and looks remarkably like the session
beans created in previous examples (because it is effectively identical to the session beans created
in previous chapters). First, add the public interface for the dao bean, StockListDAO.java, as shown
in Listing 12-5.

Listing 12-5. StockListDAO.java

package dao;

import java.util.List;

public interface StockListDAO {
 public List getRatedStocks();
 public List getAnalysts();
 public List getUnratedStocks();
 public void rateStock(String ticker, Integer analystId,
 String rating);
 public void addAnalyst(AnalystDAO analyst);
 public void addStock(StockDAO stock);
}

Mukhar_470-3.book Page 513 Saturday, October 1, 2005 6:14 AM

514 C H A P T E R 1 2 ■ D E S I G N P A T T E R N S A N D E JB

The implementation for the StockListDAO, as you might expect, is nearly identical to the
previous StockList session bean implementation as well. In this particular case, it is simply
named more appropriately for its function: Ejb3StockListDAO.java, shown in Listing 12-6, and
its implementation, Ejb3StockListDAOBean.java, shown in Listing 12-7.

Listing 12-6. Ejb3StockListDAO.java

package dao;

import javax.ejb.Remote;

@Remote
public interface Ejb3StockListDAO extends StockListDAO { }

Listing 12-7. Ejb3StockListDAOBean.java

package dao;

import entity.Analyst;
import entity.Stock;
import javax.ejb.Stateless;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import javax.persistence.Query;

import java.util.*;

@Stateless
public class Ejb3StockListDAOBean implements Ejb3StockListDAO {
 // the reference to the entity manager
 @PersistenceContext
 private EntityManager _manager;

 public List getRatedStocks() {
 Query query =
 _manager.createQuery("SELECT DISTINCT OBJECT(s) " +
 "FROM Stock s " +
 "WHERE s.analyst IS NOT NULL " +
 "ORDER BY s.tickerSymbol");
 // get the rated stocks
 List stocks = query.getResultList();
 List stockList = new ArrayList();
 for (int i = 0; i < stocks.size(); i++) {
 Stock stockBean = (Stock) stocks.get(i);
 StockDAO stock = new StockDAO();
 stock.setTickerSymbol(stockBean.getTickerSymbol());
 stock.setName(stockBean.getName());
 stock.setRating(stockBean.getRating());

Mukhar_470-3.book Page 514 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 2 ■ D E S I G N P A T T E R N S A N D E J B 515

 Analyst analystBean = stockBean.getAnalyst();
 AnalystDAO analyst = new AnalystDAO();
 analyst.setAnalystId(analystBean.getAnalystId());
 analyst.setName(analystBean.getName());
 stock.setAnalyst(analyst);
 stockList.add(stock);
 }

 return stockList;
 }

 public List getAnalysts() {
 Query query =
 _manager.createQuery("SELECT Object(a) " +
 "FROM Analyst a " +
 "ORDER BY a.name");
 // get the analysts
 List analysts = query.getResultList();
 List analystList = new ArrayList();
 for (int i = 0; i < analysts.size(); i++) {
 Analyst analystBean = (Analyst) analysts.get(i);
 AnalystDAO analyst = new AnalystDAO();
 analyst.setAnalystId(analystBean.getAnalystId());
 analyst.setName(analystBean.getName());
 analystList.add(analyst);
 }

 return analystList;
 }

 public List getUnratedStocks() {
 Query query =
 _manager.createQuery("SELECT DISTINCT OBJECT(s) " +
 "FROM Stock s " +
 "WHERE s.analyst IS NULL " +
 "ORDER BY s.tickerSymbol");
 // get the unrated stocks
 List stocks = query.getResultList();
 List stockList = new ArrayList();
 for (int i = 0; i < stocks.size(); i++) {
 Stock stockBean = (Stock) stocks.get(i);
 StockDAO stock = new StockDAO();
 stock.setTickerSymbol(stockBean.getTickerSymbol());
 stock.setName(stockBean.getName());
 stockList.add(stock);
 }

Mukhar_470-3.book Page 515 Saturday, October 1, 2005 6:14 AM

516 C H A P T E R 1 2 ■ D E S I G N P A T T E R N S A N D E JB

 return stockList;
 }

 public void rateStock(String ticker, Integer analystId,
 String rating) {
 Stock stock = _manager.find(Stock.class, ticker);
 Analyst analyst = _manager.find(Analyst.class, analystId);
 analyst.assignStock(stock);
 stock.setRating(rating);
 }

 public void addAnalyst(AnalystDAO analyst) {
 _manager.persist(
 new Analyst(analyst.getAnalystId(), analyst.getName()));
 }

 public void addStock(StockDAO stock) {
 _manager.persist(
 new Stock(stock.getTickerSymbol(), stock.getName()));
 }
}

In this version, StockDAO or AnalystDAO objects are used for the method parameters of the
business methods within the dao package, as opposed to the Stock and Analyst beans in the
entity package. That is because the StockDAO and AnalystDAO classes merely act as placeholders for
information immediately necessary in the creation of entity beans. Using entity beans as
parameters for these method invocations would rob the application of its generality and incur
a performance cost. We’ll explain how this works in greater detail later, when we review the
application, but for now, add the two files shown in Listings 12-8 and 12-9, AnalystDAO.java
and StockDAO.java, to your dao package.

Listing 12-8. AnalystDAO.java

package dao;

import java.io.Serializable;

public class AnalystDAO implements Serializable {
 private Integer analystId;
 private String name;

 public Integer getAnalystId() {
 return analystId;
 }

 public void setAnalystId(Integer analystId) {
 this.analystId = analystId;
 }

Mukhar_470-3.book Page 516 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 2 ■ D E S I G N P A T T E R N S A N D E J B 517

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }
}

Listing 12-9. StockDAO.java

package dao;

import java.io.Serializable;

public class StockDAO implements Serializable {
 private String tickerSymbol;
 private String name;
 private String rating;

 // Relationship attributes
 private Analyst analyst;

 public String getTickerSymbol() {
 return tickerSymbol;
 }

 public void setTickerSymbol(String tickerSymbol) {
 this.tickerSymbol = tickerSymbol;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getRating() {
 return rating;
 }

 public void setRating(String rating) {
 this.rating = rating;
 }

Mukhar_470-3.book Page 517 Saturday, October 1, 2005 6:14 AM

518 C H A P T E R 1 2 ■ D E S I G N P A T T E R N S A N D E JB

 public Analyst getAnalyst() {
 return analyst;
 }

 public void setAnalyst(Analyst analyst) {
 this.analyst = analyst;
 }
}

As a capstone for the DAO package, we’ll create a factory class that exposes a single static
method to obtain an instance of an initialized Ejb3StockListDAO. As shown in Listing 12-10,
this file is named StockListDAOFactory. It is used by the actual client interface to obtain a
specific data provider to the entity store. Again, we’ll explain this in more detail in the upcoming
review of the application.

Listing 12-10. StockListDAOFactory.java

package dao;

import javax.naming.InitialContext;

public class StockListDAOFactory {
 public static StockListDAO getStockListDAO() {
 // This is a simple implementation of a
 // factory. If other impementations of
 // the dao interface are needed, this
 // method can be changed to get the
 // appropriate implementation.
 try {
 // Get a naming context
 InitialContext ctx = new InitialContext();

 // Get a StockListDAO object
 StockListDAO stockListDAO =
 (StockListDAO) ctx.lookup(Ejb3StockListDAO.class.getName());
 return stockListDAO;
 } catch(Exception e) {
 throw new RuntimeException(e.getMessage());
 }
 }
}

Adding the Transfer Object Functionality

Next, we need to modify the source code for the StockList session bean so that it uses the transfer
objects. Listing 12-11 shows the StockList session bean’s remote interface, StockList.java.

Mukhar_470-3.book Page 518 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

C H A P T E R 1 2 ■ D E S I G N P A T T E R N S A N D E J B 519

Listing 12-11. StockList.java

package business;

import javax.ejb.Remote;
import transfer.AnalystTO;
import transfer.StockTO;

// General imports
import java.util.*;

@Remote
public interface StockList {
 // The public business methods on the StockList bean
 public List getStockRatings();
 public List getAllAnalysts();
 public List getUnratedStocks();
 public void addStockRating(StockTO stockTO);
 public void addAnalyst(AnalystTO analystTO);
 public void addStock(StockTO stockTO);
}

Every method in the interface shown in Listing 12-11 either takes transfer objects as an
argument or returns transfer objects (actually in these cases, an ArrayList of them). So let’s see
how they are used by the new, transfer object-enabled version of the session bean’s implemen-
tation class, StockListBean.java, shown in Listing 12-12.

Listing 12-12. StockListBean.java

package business;

import dao.AnalystDAO;
import dao.StockDAO;
import dao.StockListDAO;
import dao.StockListDAOFactory;
import transfer.AnalystTO;
import transfer.StockTO;
import javax.ejb.Stateless;

// general imports
import java.util.*;

@Stateless
public class StockListBean implements StockList {

 // the public business methods. these must be coded in the
 // interface also.

Mukhar_470-3.book Page 519 Saturday, October 1, 2005 6:14 AM

520 C H A P T E R 1 2 ■ D E S I G N P A T T E R N S A N D E JB

 public List getStockRatings() {
 List stockList = new ArrayList();

 // get the rated stocks
 StockListDAO dao = StockListDAOFactory.getStockListDAO();
 List stocks = dao.getRatedStocks();
 for (int i = 0; i < stocks.size(); i++) {
 StockDAO stock = (StockDAO) stocks.get(i);
 StockTO stockTO = new StockTO(stock.getTickerSymbol(),
 stock.getName(), stock.getRating());
 AnalystDAO analyst = stock.getAnalyst();
 AnalystTO analystTO = new AnalystTO(analyst.getAnalystId(),
 analyst.getName());
 stockTO.setAnalyst(analystTO);
 stockList.add(stockTO);
 }

 return stockList;
 }

 public List getAllAnalysts() {
 List analystList = new ArrayList();

 // get the analysts
 StockListDAO dao = StockListDAOFactory.getStockListDAO();
 List analysts = dao.getAnalysts();
 for (int i = 0; i < analysts.size(); i++) {
 AnalystDAO analyst = (AnalystDAO) analysts.get(i);
 AnalystTO analystTO = new AnalystTO(analyst.getAnalystId(),
 analyst.getName());
 analystList.add(analystTO);
 }

 return analystList;
 }

 public List getUnratedStocks() {
 List stockList = new ArrayList();

 // get the unrated stocks
 StockListDAO dao = StockListDAOFactory.getStockListDAO();
 List stocks = dao.getUnratedStocks();
 for (int i = 0; i < stocks.size(); i++) {
 StockDAO stock = (StockDAO) stocks.get(i);
 StockTO stockTO = new StockTO(stock.getTickerSymbol(),
 stock.getName(), stock.getRating());
 stockList.add(stockTO);

Mukhar_470-3.book Page 520 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 2 ■ D E S I G N P A T T E R N S A N D E J B 521

 }

 return stockList;
 }

 public void addStockRating(StockTO stockTO) {
 StockListDAO dao = StockListDAOFactory.getStockListDAO();
 dao.rateStock(stockTO.getTickerSymbol(),
 stockTO.getAnalyst().getAnalystId(),
 stockTO.getRating());
 }

 public void addAnalyst(AnalystTO analystTO) {
 StockListDAO dao = StockListDAOFactory.getStockListDAO();
 AnalystDAO analyst = new AnalystDAO();
 analyst.setAnalystId(analystTO.getAnalystId());
 analyst.setName(analystTO.getName());
 dao.addAnalyst(analyst);
 }

 public void addStock(StockTO stockTO) {
 StockListDAO dao = StockListDAOFactory.getStockListDAO();
 StockDAO stock = new StockDAO();
 stock.setTickerSymbol(stockTO.getTickerSymbol());
 stock.setName(stockTO.getName());
 dao.addStock(stock);
 }
}

Let’s take a look at the methods in this implementation class. In the getStockRatings()
method in Listing 12-12, the following occurs:

• A call is made to the getRatedStocks() method of the StockListDAO interface obtained
via the StockListDAOFactory. The method returns a List of StockDAO data access objects.

• We iterate over that List and create a StockTO instance from the fields of each data
access object, populating an ArrayList with the StockTO references.

• Since the client UI is going to display information from the related Analyst entity bean,
we use the getAnalyst() method of each Stock bean to get a reference to the Analyst
bean. An AnalystTO instance is created from the fields of the Analyst bean, which is then
associated with the StockTO instance via its setAnalyst() method.

• The ArrayList that contains StockTO references, each of which holds an AnalystTO refer-
ence, is serialized and streamed back to the caller. Recall that the caller in this case is the
StockListDelegate class.

Mukhar_470-3.book Page 521 Saturday, October 1, 2005 6:14 AM

522 C H A P T E R 1 2 ■ D E S I G N P A T T E R N S A N D E JB

■Caution If you decide to implement the idea of having methods in your value objects that mimic CMP
methods, be careful not to carry the idea too far. You probably don’t want to stream a graph of value objects
back to the client in one method invocation that contains the data from all of the entity beans in the applica-
tion, for example.

The other methods in Listing 12-12 that return an ArrayList—getAllAnalysts() and
getUnratedStocks()—are similar in nature to the getStockRatings() method.

Turning our attention to the addAnalyst() method in Listing 12-12, we see that it takes an
AnalystTO instance as its argument, which it passes to the DAO. In turn, the DAO handles the
translation to its particular storage implementation—in this case, an Analyst entity bean. The
addStock() method, at the end of the listing, is very similar in nature to the addAnalyst() method.

Notice how the flow of logic for the program implements the use of transfer objects. The
session bean deals strictly in transfer objects in terms of input, but transforms them to plain
placeholder objects when issuing them to the DAO. The DAO, in turn, accepts the presence of
those plain placeholder objects as input and manages the entity bean transformation. This all
happens in reverse as well, with entity beans being dealt with at the DAO level, plain object
placeholders in use at the session bean level, and transfer objects being dealt with at the
delegate level.

Next, we will take a brief look at the client classes, beginning with the StockListAdder class,
in Listing 12-13, which initially loads the data into the entity beans via these value objects.

Listing 12-13. StockListAdder.java

package client;

import delegate.StockListDelegate;
import transfer.AnalystTO;
import transfer.StockTO;

public class StockListAdder {

 public static void main(String[] args) {
 try {
 StockListDelegate delegate = StockListDelegate.getInstance();

 // Add analysts
 System.out.println("adding analysts");

 delegate.addAnalyst(new AnalystTO(new Integer(1), "Fred"));
 delegate.addAnalyst(new AnalystTO(new Integer(2), "Leonard"));
 delegate.addAnalyst(new AnalystTO(new Integer(3), "Sarah"));
 delegate.addAnalyst(new AnalystTO(new Integer(4), "Nancy"));
 System.out.println("analysts added");
 }

Mukhar_470-3.book Page 522 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 2 ■ D E S I G N P A T T E R N S A N D E J B 523

 catch (Exception e) {
 System.out.println("exception adding analysts");
 e.printStackTrace();
 }

 try {
 StockListDelegate delegate = StockListDelegate.getInstance();

 // Add stocks
 System.out.println("adding stocks");
 delegate.addStock(new StockTO("ABC", "ABC Company", null));
 delegate.addStock(new StockTO("ZZZ", "Zigby Zebras", null));
 delegate.addStock(new StockTO("ICS", "Internet Corp of Slobovia", null));
 delegate.addStock(new StockTO("DDC", "Digby Door Company", null));
 delegate.addStock(new StockTO("ZAP", "Zapalopalorinski Ltd.", null));
 delegate.addStock(new StockTO("JIM", "Jimco", null));
 delegate.addStock(new StockTO("SRU", "Stocks R Us", null));
 delegate.addStock(new StockTO("SRI", "Shelves and Radios Inc", null));
 delegate.addStock(new StockTO("FBC", "Foo Bar Company", null));
 delegate.addStock(new StockTO("DDBC", "Ding Dong Bell Company", null));
 delegate.addStock(new StockTO("UDE", "Upn Down Elevator Company", null));
 System.out.println("stocks added");
 }
 catch (Exception e) {
 System.out.println("exception adding stocks");
 e.printStackTrace();
 }

 try {
 StockListDelegate delegate = StockListDelegate.getInstance();

 // Add ratings
 System.out.println("adding ratings");
 StockTO stockTO = new StockTO("ZZZ", null, "Take a chance!");
 stockTO.setAnalyst(new AnalystTO(new Integer(2), null));
 delegate.addStockRating(stockTO);
 System.out.println("ratings added");
 }
 catch (Exception e) {
 System.out.println("exception adding stocks");
 e.printStackTrace();
 }
 }
}

Mukhar_470-3.book Page 523 Saturday, October 1, 2005 6:14 AM

524 C H A P T E R 1 2 ■ D E S I G N P A T T E R N S A N D E JB

To create and populate an Analyst entity bean, for example, the desired data is passed into
the constructor of the AnalystTO transfer object. The new AnalystTO object is then passed into
the addAnalyst() method of the StockListDelegate class (the method’s implementation is
discussed after Listing 12-12). This is all performed in one method:

delegate.addAnalyst(new AnalystTO(new Integer(1), "Fred"));

The way that this client method got a reference to the StockListDelegate instance is in the
statement shown here:

StockListDelegate delegate = StockListDelegate.getInstance();

Adding the Client

Finally, Listing 12-14 shows the Java source code for our new "transfer object-ized" version of
the GUI client, StockClient.java.

Listing 12-14. StockClient.java

package client;

import delegate.StockListDelegate;
import transfer.AnalystTO;
import transfer.StockTO;

import java.util.*;

// General imports
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class StockClient extends JFrame
 implements ActionListener {
 private Integer[] _analystIds;
 private JButton _get = new JButton("Add Rating");
 private JPanel _stockPanel = new JPanel();
 private JComboBox _analysts = new JComboBox();
 private JComboBox _tickers = new JComboBox();
 private JComboBox _ratings = new JComboBox();

 public StockClient() {
 // Add the title
 JLabel title = new JLabel("Stock Rating List");
 title.setHorizontalAlignment(JLabel.CENTER);
 getContentPane().add(title, BorderLayout.NORTH);

Mukhar_470-3.book Page 524 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 2 ■ D E S I G N P A T T E R N S A N D E J B 525

 JPanel activityPanel = new JPanel(new BorderLayout());
 try {
 // Add the stock list
 buildStockList();
 JScrollPane scroller = new JScrollPane(_stockPanel);
 activityPanel.add(scroller, BorderLayout.CENTER);

 // Add the rating panel
 JPanel ratingPanel = new JPanel(new GridLayout(1, 3));
 // Add the analysts
 populateAnalysts();
 ratingPanel.add(_analysts);
 // Add the unrated stocks
 populateTickers();
 ratingPanel.add(_tickers);
 // Add the ratings to pick from
 _ratings.addItem("Run away! Run away!");
 _ratings.addItem("Could be worse!");
 _ratings.addItem("A bit of OK!");
 _ratings.addItem("Take a chance!");
 _ratings.addItem("Smashing!");
 ratingPanel.add(_ratings);
 activityPanel.add(ratingPanel, BorderLayout.SOUTH);

 getContentPane().add(activityPanel, BorderLayout.CENTER);
 }
 catch (Exception e) {
 e.printStackTrace();
 }

 // Add the buttons panel
 JPanel buttons = new JPanel(new GridLayout(1, 1));
 _get.addActionListener(this);
 buttons.add(_get);
 getContentPane().add(buttons, BorderLayout.SOUTH);

 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 System.exit(0);
 }
 });

 setSize(480, 250);
 setVisible(true);
 }

Mukhar_470-3.book Page 525 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

526 C H A P T E R 1 2 ■ D E S I G N P A T T E R N S A N D E JB

 private void buildStockList() throws Exception {
 java.util.List stoks =
 StockListDelegate.getInstance().getStockRatings();
 _stockPanel.removeAll();
 _stockPanel.setLayout(new GridLayout(stoks.size(), 1));
 for (int i = 0; i < stoks.size(); i++) {
 StockTO stokInfo = (StockTO) stoks.get(i);
 Box stokLine = Box.createHorizontalBox();
 String stokDesc = stokInfo.getTickerSymbol() + " : " +
 stokInfo.getName() + " ==> " +
 stokInfo.getAnalyst().getName() + " rates it: " +
 stokInfo.getRating();
 stokLine.add(new JLabel(stokDesc));
 _stockPanel.add(stokLine);
 }
 _stockPanel.invalidate();
 _stockPanel.validate();
 }

 private void populateAnalysts() throws Exception {
 java.util.List anlysts =
 StockListDelegate.getInstance().getAllAnalysts();
 _analystIds = new Integer[anlysts.size()];
 for (int i = 0; i < anlysts.size(); i++) {
 AnalystTO analystData = (AnalystTO) anlysts.get(i);
 _analystIds[i] = analystData.getAnalystId();
 _analysts.addItem(analystData.getName());
 }
 }

 private void populateTickers() throws Exception {
 _tickers.removeAllItems();
 java.util.List tkrs =
 StockListDelegate.getInstance().getUnratedStocks();
 for (int i = 0; i < tkrs.size(); i++) {
 StockTO stockTO = (StockTO) tkrs.get(i);
 _tickers.addItem(stockTO.getTickerSymbol());
 }
 _tickers.invalidate();
 _tickers.validate();
 }

Mukhar_470-3.book Page 526 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 2 ■ D E S I G N P A T T E R N S A N D E J B 527

 public void actionPerformed(ActionEvent ae) {
 // Get what was clicked
 if (ae.getSource() == _get) {
 try {
 int anlystNo = _analysts.getSelectedIndex();
 if (anlystNo < 0) {
 JOptionPane.showMessageDialog(this, "No analyst selected!");
 return;
 }
 Integer aId = _analystIds[anlystNo];
 if (_tickers.getSelectedIndex() < 0) {
 JOptionPane.showMessageDialog(this, "No ticker selected!");
 return;
 }
 String tkr = (String) _tickers.getSelectedItem();
 if (_ratings.getSelectedIndex() < 0) {
 JOptionPane.showMessageDialog(this, "No rating selected!");
 return;
 }
 String rtg = (String) _ratings.getSelectedItem();
 StockTO stockTO = new StockTO(tkr, null, rtg);
 stockTO.setAnalyst(new AnalystTO(aId, null));
 StockListDelegate.getInstance().addStockRating(stockTO);
 buildStockList();
 populateTickers();
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
 }

 public static void main(String[] args) {
 StockClient stockClient = new StockClient();
 }
}

As you can see, the clients in an application that uses these design patterns can be well
shielded from the realities of the application logic tier. The client’s view of the rest of the appli-
cation is the abstraction provided by the delegate and transfer objects.

Compiling and Running the Application with Design Patterns
Now you can compile the application, load the database, and run the example. We used
StockListPatternsApp.ejb3 for the EJB filename. The build process is nearly identical to the
one that we have used for the examples in the previous chapters.

First, open a command window and change your directory to the location of the source
files you’ve created. Then set the classpath by typing the following:

Mukhar_470-3.book Page 527 Saturday, October 1, 2005 6:14 AM

528 C H A P T E R 1 2 ■ D E S I G N P A T T E R N S A N D E JB

>set CLASSPATH=.;➥

C:\jboss\lib\concurrent.jar;➥

C:\jboss\lib\jboss-common.jar;➥

C:\jboss\lib\commons-httpclient.jar;➥

C:\jboss\client\jboss-j2ee.jar;➥

C:\jboss\server\all\lib\jboss.jar;➥

C:\jboss\server\all\lib\jboss-remoting.jar;➥

C:\jboss\server\all\lib\jboss-transaction.jar;➥

C:\jboss\server\all\lib\jnpserver.jar;➥

C:\jboss\server\all\deploy\ejb3.deployer\jboss-ejb3.jar;➥

C:\jboss\server\all\deploy\ejb3.deployer\jboss-ejb3x.jar;➥

C:\jboss\server\all\deploy\ejb3.deployer\ejb3-persistence.jar;➥

C:\jboss\server\all\deploy\jboss-aop-jdk50.deployer\jboss-aop-jdk50.jar;➥

C:\jboss\server\all\deploy\jboss-aop-jdk50.deployer\jboss-aspect-library-jdk50.jar

Next, compile the source files for the different packages by executing the following series
of commands:

>javac -d . transfer/*.java

>javac -d . entity/*.java

>javac -d . dao/*.java

>javac -d . business/*.java

>javac -d . delegate/*.java

>javac -d . client/*.java

Create the application EJB3 file by typing the following in at the command line:

>jar cf StockListPatternsApp.ejb3➥

 transfer/*.class➥

 entity/*.class➥

 dao/*.class➥

 business/*.class

Copy the resultant EJB3 file to the JBoss deployment directory (for example, C:\jboss\
server\all\deploy).

Next, load the tables with analysts and stocks by running StockListAdder from the
command line:

>java ➥

-Djava.naming.factory.initial=➥

 org.jnp.interfaces.NamingContextFactory➥

-Djava.naming.factory.url.pkgs=➥

 org.jboss.naming:org.jnp.interfaces➥

-Djava.naming.provider.url=localhost➥

client.StockListAdder

Mukhar_470-3.book Page 528 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 2 ■ D E S I G N P A T T E R N S A N D E J B 529

Finally, just as in the previous chapters, run the application by executing the following at
the command line:

java ➥

-Djava.naming.factory.initial=➥

 org.jnp.interfaces.NamingContextFactory~➥

-Djava.naming.factory.url.pkgs=➥

 org.jboss.naming:org.jnp.interfaces➥

-Djava.naming.provider.url=localhost➥

client.StockClient

As you can see, the differences are in the build, database loading, and execution process.
The appearance and behavior of the client UI is the same as in both of the examples in the
previous chapter.

Reviewing the Application’s Design Patterns
Now that you’ve seen the design patterns in action, let’s take a look at how they work. As we
noted earlier, the application uses the Delegate, Singleton, Transfer Object, Factory, and DAO
design patterns.

The Delegate Pattern

The Delegate pattern hides the server side of an application from the client with a thin veneer,
or façade. As you can see in the class diagram shown earlier in Figure 12-1, the StockClient
class is no longer directly dependent on the StockList session bean, but instead only knows
about the StockListDelegate class. The client calls methods of the delegate class as if it were
the application logic layer, and the delegate class (as its name suggests) invokes methods of the
application logic layer (the StockList session bean in this case) as needed. This approach has
several advantages, including the following:

• The location of the application logic layer of the application is hidden behind the delegate,
so if its location changes, only the delegate needs to know about it.

• The client is insulated from changes to the application logic layer by the delegate. This
tends to reduce maintenance by localizing the necessary changes to delegate classes,
rather than scattered all over the UI.

• Data can be cached in the delegate. This is especially helpful in terms of optimization
when the client and application logic layers are separated by a network. In this way, the
delegate can maintain state for the UI.

• During development, the delegate methods can first be developed as stubs, mimicking
the eventual functionality of the application tier methods. This facilitates simultaneous
development of these tiers.

A disadvantage of using delegates is that by introducing a façade layer between the client
and the application logic, data is passed from the client to the delegate, and then from the dele-
gate to the application logic. Therefore, the data is passed one more time than necessary, but
in our opinion, the advantages far outweigh this disadvantage.

Mukhar_470-3.book Page 529 Saturday, October 1, 2005 6:14 AM

530 C H A P T E R 1 2 ■ D E S I G N P A T T E R N S A N D E JB

When the constructor for the StockListDelegate class is called, it does the same thing that
our client UIs have done in the past: gets a reference to a session bean. It stores that reference
in an instance variable so that methods of the façade, when invoked by the client, can use the
reference to call methods of the session bean. Of course, larger applications will typically
contain multiple façades and session beans.

Notice that each of the methods of the StockListDelegate class throws a StockListException.
The methods that call methods of the StockList session bean catch an exception and throw the
StockListException, with the message of the original exception passed into the constructor.
Using this technique allows the façade to further insulate the client from the implementation
details of the application logic tier, so the client never needs to know about a RemoteException,
for example.

The Singleton Pattern

The StockListDelegate class employs another design pattern as well: the Singleton pattern.
Take a look at the getInstance() method, and you’ll see that it is responsible for creating and
returning an instance of a class. Notice, however, that if an instance already exists, it returns
that instance. This is called the Singleton pattern because only a single instance of the returned
class exists. This is useful in cases such as this façade example because multiple client UI classes
may need a reference to a StockClientDelegate instance, but there is no need for more than
one to exist. In fact, you wouldn’t want more than one, because each instance would have a
remote reference to the session bean, which would consume resources.

Note that in the case where the client is a Servlet or JSP, if you wanted the delegate to hold
some state without having it shared by all the clients, you would use a modified Singleton
pattern in conjunction with an HttpSession object. The getInstance() method would return
the StockClientDelegate instance for a given session, creating one if it doesn’t exist.

In addition to implementing the Singleton pattern, the getInstance() method implements a
simple version of another design pattern known as the Factory pattern. This pattern is charac-
terized by a method, typically static, that creates and returns an instance of a class. The method
that creates the instance is called a factory method, and it returns an object that is guaranteed
to be of some type. This type is often either an interface that the object implements or an
abstract class of which the object’s class is a subclass. This is preferable to directly using a
constructor in some cases, because the returned class can be vendor-specific but created in a
generic way. We’ll look at the Factory pattern in more detail shortly, examining how it facilitates the
creation of StockListDAO objects. As you saw in the StockClient.java code (Listing 12-13), the
clients of this particular delegate class call StockListDelegate.getInstance() to obtain an
instance of the StockListDelegate class.

The Transfer Object Pattern

As mentioned in Chapter 9, it is usually not good practice to allow clients to have remote refer-
ences to entity beans, for the following reasons:

• Calling entity bean methods directly circumvents the business logic contained in
session beans, and tends to push the business logic into the UI code.

• Session beans can protect the UI from changes to the entity beans.

• Restricting client access to session beans conserves server and network resources.

Mukhar_470-3.book Page 530 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 2 ■ D E S I G N P A T T E R N S A N D E J B 531

However, in the CMP example in Chapter 11, we needed to employ awkward mechanisms
to compensate for the absence of these references. For example, ArrayLists of arrays of Strings
were used to pass entity bean data between the client and the application logic tier. The Transfer
Object design pattern addresses this problem by providing classes that are modeled after the
entity beans. These classes are mainly used to carry entity bean data between tiers. The example
employs two transfer object classes: the AnalystTO class represents the Analyst entity bean,
and the StockTO class represents the Stock entity bean. To keep them separate from other
classes, we’ve put them in their own package, named transfer.

The AnalystTO transfer object class contains an instance variable for each of the CMP fields
of the Analyst entity bean. Its constructor takes all of these fields as arguments (although some
value object implementations we’ve seen have only a no-argument constructor, and some
have both forms of constructors). The AnalystTO transfer object also contains a getter and
setter method for each of the nonprimary key fields. It has only a getter for the primary key
field, because that field won’t be changed.

Although not typical of Transfer Object pattern implementations, our transfer object also
models CMR. To do this, it contains an instance variable that is capable of referencing an
ArrayList of StockTO instances.

Since value objects are designed to carry data between tiers, they must implement the
Serializable interface of the java.io package.

All of the things that were said about the AnalystTO class apply to this StockTO class as well.
Due to the nature of the CMR in the Stock entity bean, the analogous methods in this transfer
object return and take a single instance. If you take another look at the StockListDelegate class
(Listing 12-1), you’ll notice that these transfer object classes are passed into and returned by
these methods, either as individual objects or inside ArrayList objects. The classes in this
example that manipulate them most, however, are the ones associated with the StockList
session bean and the client classes.

The Factory Pattern

Names like Transfer Object design pattern and Data Access Object design pattern may not
make sense immediately. The Factory pattern, on the other hand, acts just as its title suggests:
a developer may use methods of the factory class in order to “build” instances of some other
class. The getStockListDAO() method of StockListDAOFactory illustrates this functionality in as
direct a manner as possible: it simply returns objects inheriting the StockListDAO interface.
This particular application contains only one implementation of the StockListDAO interface,
but the strength of the Factory pattern lies in the flexibility with which implementations may
be substituted for one another.

Imagine that you have another class implementing the functionality described in the
StockListDAO interface. This class, which we’ll call XMLStockListDAO, implements all the
StockListDAO functions by accessing and searching XML documents on the filesystem. It still
returns valid List objects filled with AnalystDAO and StockDAO objects, yet the method by which
it acquires and alters them is radically different. All that is required on your part to make the
switch from an EJB-dependent data provider to an XML flat-file provider completely trans-
parent is changing the object’s instantiation within the getStockListDAO() method.

The benefits provided by the Factory pattern are not limited to implementation hiding.
The method that provides instances of the desired class can be used to perform certain initial-
ization tasks on the object before it’s returned to the invoker. Factory classes can also be used

Mukhar_470-3.book Page 531 Saturday, October 1, 2005 6:14 AM

532 C H A P T E R 1 2 ■ D E S I G N P A T T E R N S A N D E JB

to limit the number of instances of the class in existence. Since the acquisition of class instances is
done via the factory method, allocation tasks may be managed safely outside the definition of
the implementations themselves.

The DAO Pattern

Referring again to the class diagram shown earlier in Figure 12-1, you can see two different
points of business logic abstraction within the StockListAppPattern example. The first layer of
abstraction, StockListDelegate, hides the minutia surrounding the client’s access to the server-
side business logic. The second layer of abstraction is provided via the StockListDAO object,
which allows the server to abstract the method by which the StockList session bean obtains
its data.

To understand why such an abstraction would be useful to a software designer, notice the
different semantics attached to how the objects are received at each layer. The StockListDelegate,
while mimicking StockList in method signatures, implements those method signatures in
such a manner as to facilitate the client invoking methods from the StockList bean. The
StockListDAO object, on the other hand, is itself invoked by the StockList bean to acquire the
requested information from the necessary data store.

Do you recall the paragraph regarding the hypothetical XMLStockListDAO object in the
preceding section about the Factory pattern? The XMLStockListDAO object implements the
methods in the StockListDAO interface by accessing XML documents in the filesystem. You
could just as easily write a JDBCStockListDAO that works directly with JDBC drivers and a data-
base to return the required objects. You can see how you could write any number of classes
that act as low-level interfaces to the data store, simply by inheriting the StockListDAO interface
and returning their acquired data in StockDAO and AnalystDAO objects.

Applications that need to provide data from a variety of locations (such as document files,
databases, and web services) benefit most from deft implementation of the DAO pattern.

Using JSP and Servlets with EJBs
All of the EJB examples shown up until this point have had clients that were either a simple
command-line Java application or a Java Swing application. To tie things together, now we’re
going to demonstrate an example of an EJB application whose client UI consists of JSP pages
and Servlets. To facilitate this, we’ll use the patterns discussed in the previous section. In fact,
all the code in this example is exactly the same as in the previous example, with one exception:
instead of using the StockClient class as the client UI, we’ll use a modified version of the JSP-
and Servlets-based StockList example from Chapter 6.

Building the Modified JSP/Servlets Client
Since the EJB portion of the application is identical to the previous example in this chapter, you
can use the same process to build and configure it. You can use the same process to build the
JSP and Servlets portion of the application that you used to build it in Chapter 6. There is one
additional step, however, which is to add the delegate and transfer object classes to the WAR
file which is created in the deployment step of that example. These files are as follows:

Mukhar_470-3.book Page 532 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

C H A P T E R 1 2 ■ D E S I G N P A T T E R N S A N D E J B 533

• StockListDelegate.java

• StockListException.java

None of the source code changes for the session and entity beans, delegate, and transfer
objects. The only source code that does change is JSP and Servlet code. Those changes are for
the purpose of adapting the UI portion of the previous JSP- and Servlets-based StockList appli-
cation to use the delegate and transfer objects. The following are the modified source files:

• StockListServlet.java

• RatingsForm.jsp

• AddRating.java

• AnalystForm.jsp

To combine the two examples, copy your StockListPatternsApp directory to a new direc-
tory called StockListJspPatterns. Copy the contents of the JSP/Servlet StockList examples
from the JSP examples earlier in the book into this directory as well. Once you’ve done this, you
should have a directory called StockListJspPatterns that contains the following package
subdirectories: business, client, dao, delegate, entity, transfer, web, and web-deploy. The
entry point into the StockList web application is this HTML page in the web-deploy package
directory, index.html, shown in Listing 12-15.

Listing 12-15. index.html for the Revised StockList Application

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
 <head>
 <title>Stocks and Analysts</title>
 </head>

 <body>
 <h1>Stocks and Analysts</h1>
 <p>
 See all Analysts
 <p>
 See all Ratings
 <hr>
 </body>
</html>

When you click one of the links, index.html submits a request to a Servlet called StockList,
which is in StockListServlet.java (located in the web package), as shown in Listing 12-16.

Mukhar_470-3.book Page 533 Saturday, October 1, 2005 6:14 AM

534 C H A P T E R 1 2 ■ D E S I G N P A T T E R N S A N D E JB

Listing 12-16. StockListServlet.java

 package web;

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.util.*;
import delegate.*;

public class StockListServlet extends HttpServlet {
 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 {
 doGet(request, response);
 }

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 {
 try {
 List data = null;
 RequestDispatcher dispatcher;
 ServletContext context = getServletContext();
 StockListDelegate delegate = StockListDelegate.getInstance();
 String name = request.getPathInfo();
 name = name.substring(1);
 System.out.println("name="+name);
 if ("AnalystForm".equals(name)) {
 data = delegate.getAllAnalysts();
 request.setAttribute("data", data);
 } else if ("RatingsForm".equals(name)) {
 data = delegate.getStockRatings();
 request.setAttribute("data", data);
 request.setAttribute("analysts", delegate.getAllAnalysts());
 request.setAttribute("unrated", delegate.getUnratedStocks());
 } else if ("AddRating".equals(name)) {
 //nothing to do here, just forward request
 } else {
 name = "Error";
 }

 dispatcher = context.getNamedDispatcher(name);
 if (dispatcher == null) {
 dispatcher = context.getNamedDispatcher("Error");
 }
 dispatcher.forward(request, response);

Mukhar_470-3.book Page 534 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 2 ■ D E S I G N P A T T E R N S A N D E J B 535

 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Listing 12-17 shows the RatingsForm.jsp (located in web-deploy) source code.

Listing 12-17. RatingsForm.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
 <head>
 <title>Stock Ratings</title>
 </head>
 <body>
 <h1>Stock Ratings</h1>
 <%@ page import="java.util.*, transfer.*" %>
<%
 ArrayList stocks = (ArrayList) request.getAttribute("data");
 if (stocks != null && stocks.size() > 0) {
%>
 <form action="/stock/servlet/StockList/AddRating" method="post">
 <table border="1">
 <tr>
 <th>Ticker</th>
 <th>Analyst</th>
 <th>Rating</th>
 </tr>
<%
 for (int i = 0; i < stocks.size(); i++) {
 StockTO stockInfo = (StockTO) stocks.get(i);
 String ticker = stockInfo.getTickerSymbol();
 String analyst = stockInfo.getAnalyst().getName();
 String rating = stockInfo.getRating();
%>
 <tr>
 <td><%= ticker %></td>
 <td><%= analyst %></td>
 <td><%= rating %></td>
 </tr>
<%
 }

Mukhar_470-3.book Page 535 Saturday, October 1, 2005 6:14 AM

536 C H A P T E R 1 2 ■ D E S I G N P A T T E R N S A N D E JB

%>
 </table>
 <table>
 <tr>
 <td>
 <select name="analysts">
<%
 ArrayList analysts = (ArrayList) request.getAttribute("analysts");
 for (int i = 0; i < analysts.size(); i++) {
 AnalystTO analyst = (AnalystTO) analysts.get(i);
%>
 <option value="<%= analyst.getAnalystId() %>">
 <%= analyst.getName() %>
<%
 }
%>
 </select>
 </td>
 <td>
 <select name="stocks">
<%
 ArrayList unratedStocks =
 (ArrayList) request.getAttribute("unrated");
 for (int i = 0; i < unratedStocks.size(); i++) {
 StockTO stock = (StockTO) unratedStocks.get(i);
%>
 <option value="<%= stock.getTickerSymbol() %>">
 <%= stock.getTickerSymbol() %>
<%
 }
%>
 </select>
 </td>
 <td>
 <select name="ratings">
 <option value="Run away! Run away!">Run away! Run away!
 <option value="Could be worse!">Could be worse!
 <option value="A bit of OK!">A bit of OK!
 <option value="Take a chance!">Take a chance!
 <option value="Smashing!">Smashing!
 </select>
 </td>
 </tr>
 <tr>

Mukhar_470-3.book Page 536 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 2 ■ D E S I G N P A T T E R N S A N D E J B 537

 <td>
 <input type="submit" value="Submit Rating">
 </td>
 </tr>
 </table>
 </form>
<%
 } else {
%>
 No stock information found
<%
 }
%>
 <hr>
 <address></address>
 </body>
</html>

The AddRating.java source code (located in web) is shown in Listing 12-18.

Listing 12-18. AddRating.java

package web;

import javax.servlet.*;
import javax.servlet.http.*;
import delegate.*;
import transfer.*;

public class AddRating extends HttpServlet {
 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 {
 try {
 String analyst = request.getParameter("analysts");
 Integer id = new Integer(analyst);
 String ticker = request.getParameter("stocks");
 String rating = request.getParameter("ratings");
 StockTO stockTO = new StockTO(ticker, null, rating);
 stockTO.setAnalyst(new AnalystTO(id, null));
 StockListDelegate delegate = StockListDelegate.getInstance();
 delegate.addStockRating(stockTO);
 request.setAttribute("data", delegate.getStockRatings());
 request.setAttribute("analysts", delegate.getAllAnalysts());
 request.setAttribute("unrated", delegate.getUnratedStocks());
 ServletContext context = getServletContext();

Mukhar_470-3.book Page 537 Saturday, October 1, 2005 6:14 AM

538 C H A P T E R 1 2 ■ D E S I G N P A T T E R N S A N D E JB

 RequestDispatcher dispatcher =
 context.getNamedDispatcher("RatingsForm");
 dispatcher.forward(request, response);
 } catch (Exception e) {

 }
 }
}

Like the StockList Servlet, the AddRating Servlet shown in Listing 12-18 uses the methods
of the StockListDelegate class to access the services of the StockList session bean.

The other option available from the main page is the Analyst Management Form, whose
UI logic is in the AnalystForm.jsp file (located in web-deploy), shown in Listing 12-19. Again,
notice the use of the AnalystTO value object.

Listing 12-19. AnalystForm.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
 <head>
 <title>Analyst Management</title>
 </head>
 <body>
 <%@ page import="java.util.*,transfer.*" %>
 <h1>Analyst Management Form</h1>
 <form action="/stock/servlet/ProcessAnalyst" method="POST">
 <table>
 <%
 ArrayList anlysts = (ArrayList) request.getAttribute("data");
 if (anlysts == null) {
 %>
 <h2> Attribute is null </h2>
 <%
 } else {
 for (int i = 0; i < anlysts.size(); i++) {
 AnalystTO analystData = (AnalystTO) anlysts.get(i);
 %>
 <tr>
 <td>
 <input type="checkbox" name="checkbox"
 value="<%= analystData.getName() %>"
 </td>
 <td>
 <%= analystData.getName() %>
 </td>
 </tr>
 <%
 }

Mukhar_470-3.book Page 538 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 2 ■ D E S I G N P A T T E R N S A N D E J B 539

 }
 %>
 </table>
 <input type="submit" value="Delete Selected" name="delete">
 <p>
 <input type="text" size="40" name="addname">
 <input type="submit" value="Add New Analyst" name="add">
 </form>
 <hr>
 <address></address>
 </body>
</html>

And that’s all the code for this example. Once you’ve got all the code in the appropriate
package directories, all that’s left for you to do is compile and deploy. Open a command
window and change your directory to the StockListPatternsApp directory.

1. Set your CLASSPATH variable to the following value:

>set CLASSPATH=.;➥

C:\jboss\lib\concurrent.jar;➥

C:\jboss\lib\jboss-common.jar;➥

C:\jboss\server\all\lib\jboss.jar;➥

C:\jboss\server\all\lib\javax.servlet.jar;➥

C:\jboss\server\all\lib\jboss-j2ee.jar;➥

C:\jboss\server\all\lib\jboss-remoting.jar;➥

C:\jboss\server\all\lib\jboss-transaction.jar;➥

C:\jboss\server\all\lib\jnpserver.jar;➥

C:\jboss\server\all\deploy\ejb3.deployer\jboss-ejb3.jar;➥

C:\jboss\server\all\deploy\ejb3.deployer\jboss-ejb3x.jar;➥

C:\jboss\server\all\deploy\ejb3.deployer\ejb3-persistence.jar;➥

C:\jboss\server\all\deploy\jboss-aop-jdk50.deployer\jboss-aop-jdk50.jar;➥

C:\jboss\server\all\deploy\jboss-aop-jdk50.deployer\jboss-aspect-library-➥

jdk50.jar;

2. Build and deploy the first portion of the application (using the instructions for the code
taken from the first example in this chapter). You can just deploy the generated EJB3 file
from that example as well, if you do not care to repeat your steps.

3. As indicated in the previous example, populate the data for the entity beans by running
the StockListAdder application. You can run this application by executing the following
command:

>java -Djava.naming.factory.initial=➥

 org.jnp.interfaces.NamingContextFactory ➥

-Djava.naming.factory.url.pkgs=➥

 org.jboss.naming:org.jnp.interfaces ➥

-Djava.naming.provider.url=➥

 localhost client.StockListAdder

Mukhar_470-3.book Page 539 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

540 C H A P T E R 1 2 ■ D E S I G N P A T T E R N S A N D E JB

4. Compile the servlet classes in the web package.

>javac -d . web/*.java

5. Copy the delegate directory to the web-deploy\WEB-INF\classes directory.

6. Copy the web directory to web-deploy\WEB-INF\classes.

7. Change your directory to the web-deploy directory and create the WAR file.

>cd web-deploy
>jar cf stock.war *.html *.jsp WEB-INF/web.xml ➥

 WEB-INF/classes/delegate/*.class WEB-INF/classes/web/*.class

8. Deploy the WAR file by copying it to %JBOSS_HOME%\server\all\deploy.

9. That’s it! Test that the file is deployed correctly by visiting the URL http://
localhost:8080/stock.

Figure 12-2 shows a page from this web application after Fred the Analyst rated the stock
for the world’s smallest tricycle infomercial company, Zapalopalorinski Ltd.

Figure 12-2. Viewing stock ratings

Reviewing the Modified JSP/Servlets Client
The StockList Servlet uses the static StockListDelegate.getInstance() method to get the
singleton StockListDelegate instance, as shown in Listing 12-16. It uses that delegate refer-
ence to get the data, and then forwards the request to a JSP page for display. The request is
forwarded based on the extra path information passed with the request:

• If getPathInfo() returns "AnalystForm", the request is forwarded to AnalystForm.jsp.

• If getpathInfo() returns "RatingsForm", the request is forwarded to RatingsForm.jsp.

• If getpathInfo() returns "AddRating", the request is forwarded to the AddRating Servlet.

The RatingsForm JSP creates a form that posts a request to the StockList Servlet. This
request is forwarded to the AddRating Servlet. Take a moment to examine the use of value
objects in the RatingsForm JSP shown in Listing 12-17. After adding the rating, the AddRating
Servlet forwards the request to the RatingsForm JSP to display the new data.

Mukhar_470-3.book Page 540 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 2 ■ D E S I G N P A T T E R N S A N D E J B 541

This example again illustrates some of the advantages of using the Delegate and Transfer
Object design patterns in your web application. JSP pages are primarily designed to provide a
data visualization layer for a web application. Servlets are primarily designed to receive and
respond to requests. By encapsulating the data-access details in the delegate and transfer
objects, the JSP pages and Servlets don’t need to worry about which EJB to access or how to
access the EJBs. The JSP pages and Servlets don’t even need to know that the data came from
an EJB. The data could come directly from a database, from a flat file, or over the network.

Summary
In this chapter, we continued the discussion of EJBs from the previous chapter. After having
read this chapter, you should know:

• How Java EE applications may benefit from the application of formally defined software
designs to your code. Such patterns describe solutions to specific design problems and
improve developer productivity by leveraging these solutions. There are many design
patterns in use today, and new ones are continually being identified and documented by
developers. The five patterns that we discussed were Delegate, Transfer Object, DAO,
Factory, and Singleton.

• How to use JSP pages and Servlets with EJBs in an application. In this chapter, JSP pages
and Servlets were shown in tandem with an EJB application, acting in the place of the
rich GUI clients developed earlier in the book. The use of two different GUI methodologies
in consuming your EJB application without any significant change in business logic on
your part is both an incredible timesaver and a lofty application development goal.

In the next chapter, we’ll take a look at two more EJB concepts: message-driven beans and
EJB timers.

Exercises
1. Create a JSP/Servlet client for the StockList application detailed in this chapter. This

JSP client will output only XML results of the different method calls to the StockList
app, and can be consumed by other clients.

2. Modify the Ejb3StockListDAOBean to acquire Entity and Analyst beans from custom
objects you’ll create that obtain their data from XML files.

Mukhar_470-3.book Page 541 Saturday, October 1, 2005 6:14 AM

Mukhar_470-3.book Page 542 Saturday, October 1, 2005 6:14 AM

543

■ ■ ■

C H A P T E R 1 3

Message-Driven Beans

As discussed in Chapter 9, in addition to session beans and entity beans is an EJB type known
as message-driven beans. The question of accessing enterprise business logic was addressed by
session beans, and the need to model the data used in that logic was filled by entity beans.
So, what’s left for message-driven beans, you ask? Consider that many large-scale enterprise
applications must possess the ability to respond to some external event. Couple that with the
requirement that the mechanism enabling such responses is both extensible and efficient, and
you’ll find that there does exist some need for a capable enterprise application tool to handle
the task. Message-driven beans are the EJB 3.0 solution for such application scenarios.

In this chapter, you will learn the following:

• What message-driven beans are and what they’re used for

• How message-driven beans interact with the Java Messaging Service (JMS)

• How to automatically invoke your message-driven bean based on some interval using
the Timer service

Message-Driven Beans Overview
Message-driven beans (often abbreviated as MDBs, lest you find yourself wondering why a
discussion of Microsoft Access has suddenly bloomed in the midst of a Java EE conversation)
are the means by which EJB applications are able to respond to some external event (literally,
a JMS message) without any extensive plumbing or hooks into external components. As stated
previously, these messages are typically delivered via a JMS message producer; however, you
may also use MDBs with other messaging frameworks—or even develop your own, so long as
it delivers a JMS message.

MDBs exist for the purpose of receiving and processing asynchronous messages. These
messages could be from external systems or from components of the same application. They
are called asynchronous because they can arrive at any time, as opposed to being a direct result
of a remote method invocation. Similar to the way that UI event-handling works, message-driven
beans “listen” for asynchronous messages that have been sent to them. It is worth noting that,
unlike calling a remote method, the sender of the asynchronous message doesn’t block and
wait for a response. The process of “blocking” can be equivocated with the idea of waiting, in
this case: a process that blocked until a response was received would be similar to you pacing

Mukhar_470-3.book Page 543 Saturday, October 1, 2005 6:14 AM

544 C H A P T E R 1 3 ■ M E S S A G E - D R I V E N B E A N S

anxiously by the mailbox, waiting for a response to a letter you sent. In contrast, an asynchro-
nous process would be similar to you sending a letter and then doing any number of other
things until you receive a response to your letter.

So described generally, MDBs provide you with a simplified method to respond to asyn-
chronous events. Due to the nature of the EJB container that brokers these messages to the
MDB, you are saved from having to develop excessive thread-safety solutions or listener object
maintenance. Each MDB you develop need only facilitate an onMessage() method that handles
a message of the type you are expecting; the work of communicating that message through the
application framework is handled for you.

MDBs are not only enabled by the EJB container, but also by a facility in Java EE known as
the Java Message Service (JMS) API and external systems that are able to interact with a JMS
system. Figure 13-1 shows the context in which the next example will operate, and it will serve
as a basis for our discussion of the JMS API.

Figure 13-1. The basic application layout for the MessageTimerApp example

The functionality provided by MDBs—that is, responding to messages that arrive at some
uncertain date, or not at all—should indicate to you the fact that MDBs are stateless. This term
should not be new to you; you should have already encountered stateless session beans earlier,
and you are likely now familiar with the core functionality present in a stateless object. That is
to say, a stateless object does not maintain instance data across separate invocations. The MDB
does not naturally store data from one message received to the next; if you need to ensure that
repeated MDB invocations have access to data received from previous invocations, you’ll need
to store that data somewhere outside the bean.

Just like stateless session beans, MDBs are stateless, container-managed objects that
respond to requests. The similarity is short-lived, however, as MDBs respond to JMS messages
(javax.jms.Message) received from the container, whereas stateless session beans respond to
client requests through the appropriate interface. The split is continued in that an MDB does
not implement a local or remote interface, but instead implements the appropriate JMS
messaging interface to describe its behavior. For our purposes, we will be implementing the
MessageListener interface (javax.jms.MessageListener), which defines a very generic (and
usable) MDB listening behavior. Other packages may describe more specialized behavior, such
as the receipt of XML messages from clients.

MDBs are by no means just simple message response objects, however. MDBs have a rich
programming model that includes support for higher-level concepts like message transactions
(allowing message processing to be given a certain level of atomicity) and method interception.

Mukhar_470-3.book Page 544 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 3 ■ M E S S A G E - D R I V E N B E A N S 545

Taking advantage of these tools provides your enterprise application a high level of function-
ality at a significantly low cost. Read on to learn how they might best benefit you.

Describing MDBs
Just as with all other bean types presented in the EJB 3.0 specification, MDBs are initially described
by an annotation—in this case, @MessageDriven (javax.ejb.MessageDriven). This annotation is
used by the container to determine certain behavioral traits about the bean (just as with entity
beans and session beans), most notably the activation configuration. The activation configuration
for a message driven bean can instruct the container for the appropriate messaging method to
apply to the bean or what types of messages are allowed to be processed by the bean.

This excerpt from the code used later in this chapter will serve as an example of how an
MDB is defined:

@MessageDriven(activateConfig =
 {
 @ActivationConfigProperty(propertyName="destinationType",
 propertyValue="javax.jms.Queue"),
 @ActivationConfigProperty(propertyName="destination",
 propertyValue="queue/LogWriter")
 })
public class MessageWriter implements MessageListener {

You can see here how the MDB has its activation configuration specified by an array of
@ActivationConfigProperty (javax.ejb.ActivationConfigProperty) annotations. As you’ll see
later in the chapter, this particular segment alerts the EJB container as to where and how the
messages received by this bean should be treated.

The MDB Context
Thankfully, MDBs provide more than just a simple message/response mechanism. The EJB
specification has made provisions for MDBs to use transactions (whether provided by the EJB
container or facilitated by the bean itself), special interceptor methods that enrich message-
processing functionality, and access to a facility that allows for timed invocation of the
bean. Access to transaction functionality and the timer service is provided by the MDB’s
MessageDrivenContext (javax.ejb.MessageDrivenContext) interface. This interface may be
acquired through use of injection, a concept we originally discussed in Chapter 10.

Recall that injection is the means by which the container inserts a reference for the appro-
priate object automatically for the annotated member. Chapters 10 and 11 showed examples of
injection such as the following:

 @PersistenceContext
 private EntityManager _manager;

The @PersistenceContext annotation performed a special sort of injection that was rela-
tive to the EntityManager interface it injected. The type of injection discussed here is a much
more generic form of injection, called resource injection. Resource injection allows the container
to insert the appropriate object based on your request. Consider the following code, for example:

Mukhar_470-3.book Page 545 Saturday, October 1, 2005 6:14 AM

546 C H A P T E R 1 3 ■ M E S S A G E - D R I V E N B E A N S

@Resource
private MessageDrivenContext _context;

The EJB container will set the member _context to reference the MessageDrivenContext
valid for the currently loaded MDB. The member will be set automatically for you after the
container has initialized the bean and before any messages are processed. As is often the case
with the annotations described in the Java EE 5 specification, it’s handy, isn’t it?

MDB Transactions
As mentioned earlier, MDBs in EJB 3.0 are able to use transactions to allow a higher order of
control over message processing. By using transactions, you may “roll back” the processing of
a particular message if an action fails. This rollback feature cascades from the business method
that initially required the transaction to the methods it invoked that support transaction
processing. This functionality is semantically identical to the idea of transactions in databases,
where entire sets of database operations may be rolled back or committed based on the success
of individual instructions within the set.

In the sections that follow, we’ll look at container-managed and user-defined
transactions.

Container-Managed Transactions

As you might have guessed, the EJB specification has made provisions for containers to provide
their own transaction functionality. This functionality can be added to an MDB merely by
annotating the class name with the @TransactionManagement (javax.ejb.TransactionManagement)
descriptor. Once the class is annotated, the business methods of the class must be annotated to
specify how the container’s transaction functionality will interpret their invocation. You can
specify this behavior by using the @TransactionAttribute (javax.ejb.TransactionAttribute)
annotation on business methods with either of the following two attributes: REQUIRED or
NOT_SUPPORTED.

■Note @TransactionAttribute can actually hold several different values to imply the transaction
behavior: MANDATORY, REQUIRED, REQUIRES_NEW, SUPPORTS, NOT_SUPPORTED, and NEVER. MDBs may
have business methods annotated with only REQUIRED or NOT_SUPPORTED, however.

NOT_SUPPORTED as a transaction type merely alerts the container that any previously existing
transactions should be suspended as the MDB executes the method in question. Once the method
has finished executing, the transaction is resumed and business continues as usual.

REQUIRED transactions, on the other hand, cascade the transaction functionality to the
methods invoked within the original function. Therefore, if a simple SQL INSERT buried in the
application fails, all methods invoked up to that point that use transactions are alerted to roll
back, taking on their state before the error.

Thus, through some very simple-looking code such as the following:

Mukhar_470-3.book Page 546 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

C H A P T E R 1 3 ■ M E S S A G E - D R I V E N B E A N S 547

@TransactionManagement
@MessageDriven (...) // Simplified for this example
public class MyMDB {
 @TransactionAttribute(REQUIRED)
 public void onMessage(javax.jms.Message){
 ...
 }
}

some very functional logic may be achieved. Should a database operation triggered by a method in
the onMessage() method cause a rollback in the current transaction, that rollback will cascade
up to the MDB level. As you might guess, this is a handy way to make sure messages don’t get
processed until all the dependent logic executes successfully.

User-Defined Transactions

You are not required to stick with container-managed transactions. Simply add the parameter
BEAN to the @TransactionManagement class annotation and the container will assume your MDB
is handling all the finer details of transaction management. While the task of managing your
own transactions is not an incredibly hard one, it does require a certain degree of vigilance in
terms of adhering to coding standards.

The first step in managing the transactions manually for a particular class is obtaining it
via (you guessed it) resource injection. The following line of code shows how to accomplish this:

@Resource javax.transaction.UserTransaction customTransaction;

Once you’ve added this to your MDB class definition, all you need to do is add the correct
calls to the customTransaction object in your class. The following code presents a quick-and-
dirty example:

@TransactionManagement(BEAN)
@MessageDriven (...) // Simplified for this example
public class MyMDB {
 @Resource javax.transaction.UserTransaction customTransaction;
 public void onMessage(javax.jms.Message){
 customTransaction.update(); // Start the transaction
 ...
 customTransaction.commit(); // Assume transaction went well, commit
changes
 }
}

Invocation of an Interceptor
The aspect-oriented programming (AOP) model used in EJB 3.0 is a very simplistic form, wherein
MDB and session bean business methods may be preceded or followed automatically by some
“interceptor.” These interceptors are called only before or after the execution of a bean business
method; “true” AOP would allow you to actually attach to method calls within the business method
itself.

Mukhar_470-3.book Page 547 Saturday, October 1, 2005 6:14 AM

548 C H A P T E R 1 3 ■ M E S S A G E - D R I V E N B E A N S

■Note AOP is a programming model wherein the invocation of a particular method may be “wrapped”
by extra functionality automatically. Oft-quoted examples of AOP are adding caching or logging to existing
frameworks. Imagine you have developed an entire application without any logging mechanism (bad devel-
oper!). Using an AOP framework, you could add extra configuration directives and a logging class to your
application without changing existing code and log all calls to a particular method or any method at all.

You can indicate a particular method will “intercept” other business methods (such as
onMessage(), in the case of MDBs) in its own bean by annotating it with the @AroundInvoke
(javax.ejb.AroundInvoke) descriptor, for example:

 @AroundInvoke
 public Object messageFoo(InvocationContext ctx) throws Exception
 {
 System.out.println("Method intercepted!");
 return ctx.proceed();
 }

This particular method will be invoked prior to the execution of the business method.
Upon encountering the call to ctx.proceed(), the container will check for any other inter-
cepting methods. When it has exhausted its list of waiting interceptors, it will execute the
business method itself.

You may also indicate a set of external objects that will act as interceptors through the use
of the @Interceptors (javax.ejb.Interceptors) annotation:

@MessageDriven
@Interceptors({"util.logger","util.profiler","util.decompressor"})
public class GzipNetMessageActor{
// ...
}

The EJB container will wrap all business method calls to instances of GzipNetMessageActor
with invocations of the methods annotated by @AroundInvoke in util.logger, util.profiler,
and util.decompressor (in that order). This is a handy tool for quickly adding value to your
application without modifying existing code. (Remember, you can also use interceptors in
session beans.)

Java Message Service API
The JMS API is a Java API, located in the javax.jms package, that provides an interface for appli-
cations that require the services of a messaging system. A messaging system enables messages
containing text, objects, and other message types to be sent and received asynchronously. This
is in contrast with the remote procedure call (RPC) model that we’ve been using so far for EJBs,
where interactions between components occur synchronously.

An implementation of a messaging system that complies with the JMS API is called a JMS
provider. The JBoss application server has a JMS provider that we’ll be using to enable the
example in this section, and several vendors have commercial implementations available for
use in enabling messaging in enterprise applications.

Mukhar_470-3.book Page 548 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 3 ■ M E S S A G E - D R I V E N B E A N S 549

In Figure 13-1, the TimeIt session bean on the left sends asynchronous messages to the
MessageWriter MDB on the right. Both of these beans have been created for this example (they
aren’t Java library classes). These TimeIt and MessageWriter beans are known as JMS clients
because they are clients of the underlying messaging system.

Messaging systems enable asynchronous communication by providing a destination for
messages to be held until they can be delivered to the recipient. The circle in the middle,
LogWriterQueue, is the destination that holds messages from the TimeIt session bean that are
bound for the MessageWriter MDB. There are two types of destinations in JMS:

• A queue is used to hold messages that are sent from one JMS client to be delivered to
another. This model of messaging is known as point-to-point.

• A topic is used to hold messages that are sent from potentially many JMS clients to be
delivered to potentially multiple JMS clients. This model of messaging is known as
publish/subscribe.

The example we will look at later in this section uses a queue type destination, which is
reflected in Figure 13-1. Also in Figure 13-1 are boxes for a JMS message producer and a JMS
message consumer. These represent classes in a JMS provider that work on behalf of the JMS
clients to send and receive messages. You don’t have to create a JMS message consumer when
working with MDBs, because the EJB container does that on the MDBs’ behalf.

We’ll have more to say about the JMS API when we walk through the example code, so let’s
turn our attention to another technology that will be used in the example: the EJB Timer Service.

EJB Timer Service
The EJB 2.1 specification introduced provisions for a service known as the EJB Timer Service. Its
purpose in life is to register enterprise beans to receive timer callbacks after a specified elapsed
time, or at specific intervals. This is useful, for example, if you want a session bean to initiate a
process at 2:00 am every day to gather data from an external system.

■Note The EJB Timer Service is not intended to act as a real-time process scheduler. In other words, don’t
expect nanosecond precision and high reliability; its primary intent is to serve as a model for application-level
timing.

These events can be triggered as follows:

• At a particular time. Perhaps you could have your EJB notified at midnight on July 28, 2061
that it should do something special (to celebrate the next date that Haley’s Comet will be
closest to the sun).

• After a given elapsed time.

• On a recurring basis, after a given time interval.

Mukhar_470-3.book Page 549 Saturday, October 1, 2005 6:14 AM

550 C H A P T E R 1 3 ■ M E S S A G E - D R I V E N B E A N S

These timer services are provided by the EJB container and are able to be obtained through
much the same way as other container-level services. To obtain a TimerService object, you may

• Inject the TimerService into a class member using resource injection.

@Resource javax.ejb.TimerService myTimer

• Acquire an instance of the TimerService object through the getTimerService() method
of your MessageDrivenContext or SessionContext object.

@Resource javax.ejb.MessageDrivenContext initialContext;
...
public void onMessage(javax.jms.Message){
 javax.ejb.TimerService ts=initialContext.getTimerService();
}

• Acquire an instance of the TimerService object through JNDI.

As you might expect, TimerService provides your EJB with timer objects that perform
some action over a specified interval. To specify which action must take place, an EJB must
annotate one of its methods with the @Timeout annotation.

Using MDBs, JMS, and the EJB Timer Service:
Putting It All Together
In this section, we’ll look at an example that demonstrates the technologies mentioned earlier
in the chapter: MDBs, the JMS API, and the EJB Timer Service.

Figure 13-1 depicts the behavior of this example, which is as follows:

1. The TimeIt session bean uses the EJB Timer Service to be notified every ten seconds.

2. Each time the TimeIt bean is notified, it uses the JMS API to create a JMS message
producer.

3. The TimeIt bean uses the JMS message producer to create and send a message that it
wants delivered to the MessageWriter MDB. In our example, this is a text message that
contains the date and time that the message was sent.

4. The JMS message producer sends the message to the LogWriter, which is an arbitrarily
named JMS queue created for this example.

5. A JMS message consumer, which is created and managed by the EJB container, receives
the text message.

6. The EJB container calls the onMessage() method of the MessageWriter MDB, passing the
text message into the method.

7. The MessageWriter bean creates a String, concatenates the text message received, and
sends it to System.out. Note that System.out is managed by the application server, so
we’ll start it up in a special way to see the output.

Mukhar_470-3.book Page 550 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 3 ■ M E S S A G E - D R I V E N B E A N S 551

Creating the MessageTimerApp Example
To build the example, we’ll create the following new .java files in the MessageTimerApp directory:

• TimeIt.java in the timer package

• TimeItBean.java in the client package

• TimeItTester.java in the timer package

• MessageWriter.java in the msg package

• timer-message-service.xml in the JMS deployment directory
(c:\jboss\server\all\deploy\jms)

We’ll implement the code involved in this example according to the flow of the message
being sent. First, here’s the remote interface of the TimeIt session bean, TimeIt.java:

package timer;

import javax.ejb.Remote;

@Remote
public interface TimeIt {
 // the public business method on the timer bean
 public void startTimer();
}

The remote interface has only one business method, startTimer(). This method will be
invoked by the TimeItTester client application, seen in the following TimeItTester.java listing,
just to get things started up:

package client;

import timer.TimeIt;
import javax.naming.InitialContext;

public class TimeItTester {
 public static void main(String[] args) throws Exception {
 // Get a naming context
 InitialContext ctx = new InitialContext();

 // Create a TimeIt object
 TimeIt timeIt =
 (TimeIt) ctx.lookup(TimeIt.class.getName());

 timeIt.startTimer();
 }
}

Now we’ll get to the code at the heart of the example: using the EJB Timer Service. Here is
the implementation of the TimeIt session bean contained in TimeItBean.java:

Mukhar_470-3.book Page 551 Saturday, October 1, 2005 6:14 AM

552 C H A P T E R 1 3 ■ M E S S A G E - D R I V E N B E A N S

package timer;

import javax.annotation.Resource;
import javax.ejb.SessionContext;
import javax.ejb.Stateless;
import javax.ejb.Timeout;
import javax.ejb.Timer;
import javax.ejb.TimerService;
import javax.jms.Queue;
import javax.jms.Connection;
import javax.jms.ConnectionFactory;
import javax.jms.MessageProducer;
import javax.jms.Session;
import javax.jms.Session;
import javax.jms.TextMessage;

// General imports
import java.text.*;
import java.util.*;

@Stateless
public class TimeItBean implements TimeIt {
 private @Resource SessionContext ctx;
 private @Resource TimerService timer;
 private @Resource(name="ConnectionFactory")
 ConnectionFactory factory;
 private @Resource(name="queue/LogWriter")
 Queue queue;
 private SimpleDateFormat sdf =
 new SimpleDateFormat("yyyy.MM.dd 'at' HH:mm:ss.SSS");

 // Public business method to start the timer
 public void startTimer()
 {
 // After initial five seconds, then every ten seconds
 timer.createTimer(5000, 10000, "timer");
 }

 // Timer method - timer expires - send message to queue
 @Timeout
 public void timeoutHandler(Timer timer) {
 Connection connection = null;
 try {
 // Get a connection from the factory
 connection = factory.createConnection();

Mukhar_470-3.book Page 552 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 3 ■ M E S S A G E - D R I V E N B E A N S 553

 // Create a session
 Session session =
 connection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);
 // Create a sender for the session to the queue
 MessageProducer sender = session.createProducer(queue);
 // Create a text message
 TextMessage message = session.createTextMessage();
 // Set the text of the message
 message.setText
 ("log entry, the time is: " + sdf.format(new Date()));
 // Send the message
 sender.send(message);
 }
 catch (Exception e) {
 System.out.println("Exception in message: " + e.toString());
 e.printStackTrace();
 }
 finally {
 if (connection != null) {
 try {
 connection.close();
 }
 catch (Exception e) {}
 }
 }
 }
}

Here is the code for our MDB, MessageWriter.java. There aren’t any bean interface listings
to show because MDBs do not use them:

package msg;

import javax.ejb.ActivationConfigProperty;
import javax.ejb.MessageDriven;
import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.TextMessage;

@MessageDriven(activateConfig =
 {
 @ActivationConfigProperty(propertyName="destinationType",
 propertyValue="javax.jms.Queue"),
 @ActivationConfigProperty(propertyName="destination",
 propertyValue="queue/LogWriter")
 })

Mukhar_470-3.book Page 553 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

554 C H A P T E R 1 3 ■ M E S S A G E - D R I V E N B E A N S

public class MessageWriter implements MessageListener {
 // Must implement this method for MessageDriven
 public void onMessage(Message message) {
 TextMessage msg = null;

 try {
 if (message instanceof TextMessage) {
 msg = (TextMessage) message;
 System.out.println("Got message: " + msg.getText());
 }
 else {
 System.out.println("Got message of type: "
 + message.getClass().getName() + " ==> ignored!");
 }
 }
 catch (Throwable te) {
 te.printStackTrace();
 }
 }
}

Supporting the MDB is the JMS deployment XML file (timer-message-service.xml), which
tells the JMS subsystem to create a message queue to be used by the MDB. Save this XML file in
the JMS deployment directory of JBoss (c:\jboss\server\all\deploy\jms).

<?xml version="1.0" encoding="UTF-8" ?>
<server>
 <mbean code="org.jboss.mq.server.jmx.Queue"
 name="jboss.mq.destination:service=Queue,name=logQueue">
 <attribute name="JNDIName">queue/LogWriter</attribute>
 <depends optional-attribute-name="DestinationManager">
 jboss.mq:service=DestinationManager
 </depends>
 </mbean>
</server>

Building and Running MessageTimerApp
Now let’s build and run the example.

1. Set your classpath as follows:

>set CLASSPATH=.;➥

C:\jboss\lib\concurrent.jar; ➥

C:\jboss\client\jboss-j2ee.jar; ➥

C:\jboss\lib\jboss-common.jar; ➥

c:\jboss\lib\commons-httpclient.jar;➥

C:\jboss\server\all\lib\jboss.jar; ➥

C:\jboss\server\all\lib\jboss-remoting.jar; ➥

C:\jboss\server\all\lib\jboss-transaction.jar; ➥

Mukhar_470-3.book Page 554 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 3 ■ M E S S A G E - D R I V E N B E A N S 555

C:\jboss\server\all\lib\jnpserver.jar; ➥

C:\jboss\server\all\lib\javax.servlet.jar; ➥

C:\jboss\server\all\deploy\ejb3.deployer\jboss-ejb3.jar; ➥

C:\jboss\server\all\deploy\ejb3.deployer\jboss-ejb3x.jar; ➥

C:\jboss\server\all\deploy\jboss-aop-jdk50.deployer\jboss-aop-jdk50.jar; ➥

C:\jboss\server\all\deploy\jboss-aop-jdk50.deployer\➥

 jboss-aspect-library-jdk50.jar

2. You can use the following commands to compile these files:

>javac –d . msg/*.java
>javac –d . timer/*.java
>javac –d . client/*.java

3. Create a JAR file for the application named MessageTimerApp.ejb3 by executing the
following in the MessageTimerApp directory:

>jar cf MessageTimerApp.ejb3 msg/*.class timer/*.class

4. Copy the resulting EJB3 file to your JBoss deployment directory:

>copy MessageTimerApp.ejb3 c:\jboss\server\deploy

5. Now just start the client by typing the following from the command line:

>java -Djava.naming.factory.initial=org.jnp.interfaces.NamingContextFactory
-Djava.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces
-Djava.naming.provider.url=localhost client.TimeItTester

6. Once the application has started, you should see lines much like the following
repeatedly appearing in the server’s console output and any “info” logs.

05:54:25,672 INFO [STDOUT] Got message: log entry, ➥

 the time is: 2005.07.27 at 05:54:25.657
05:54:35,672 INFO [STDOUT] Got message: log entry, ➥

 the time is: 2005.07.27 at 05:54:35.657
05:54:45,672 INFO [STDOUT] Got message: log entry, ➥

 the time is: 2005.07.27 at 05:54:45.657
05:54:55,672 INFO [STDOUT] Got message: log entry, ➥

 the time is: 2005.07.27 at 05:54:55.672

Reviewing MessageTimerApp
Now that you’ve built and run the application, let’s look at how these technologies work
together (and why they’re useful to you!). You’ll first examine how the EJB Timer Service is
implemented in the TimeItBean class.

The @Resource SessionContext directive in the session bean is fulfilled by the EJB
container after the session bean is created:

 private @Resource SessionContext ctx;

Mukhar_470-3.book Page 555 Saturday, October 1, 2005 6:14 AM

556 C H A P T E R 1 3 ■ M E S S A G E - D R I V E N B E A N S

The container takes note of the @Resource directive (much like it did in Chapter 10, when
we used @PersistenceContext to acquire an EntityManager in the session bean) and sets the
value of the private member equal to the SessionContext object, which represents the EJB
container context in which the session bean is running. As mentioned earlier in this chapter,
such an act is called resource injection.

Resource injection is also used to acquire references to the JMS ConnectionFactory
(javax.jms.ConnectionFactory), JMS message Queue (javax.jms.Queue), and EJB TimerService
(javax.ejb.TimerService) objects. Note that by using the @Resource annotation to acquire
these objects, you’re saved any extra steps that might be required to use container services.

Once a reference to the TimerService object for the container has been obtained, you use
it in the startTimer() method to create a timer object that executes over specific intervals.
Specifically, the Timer (javax.ejb.Timer) object will expire, trigger, fire, go off—however you
want to say it—in five seconds, and then every ten seconds thereafter:

 public void startTimer()
 {
 // After initial five seconds, then every ten seconds
 timer.createTimer(5000, 10000, "timer");
 }

You might want to take a few moments at this point to examine the Java EE 5 SDK Java API
documentation for the overloaded createTimer() methods of the TimerService class. These
will familiarize you with how to create Timer objects with the different types of time-based logic
(expiring at a specific time, elapsed time, or interval) described previously. By the way, one of
the exercises at the end of this chapter specifies creating the different types of timers.

Whenever a timer fires, the method of the enterprise bean annotated with the descriptor
@Timeout (javax.ejb.Timeout) gets invoked. In our example, this method (public void
timeoutHandler(Timer timer)) uses the JMS API to send an asynchronous message to an MDB,
so let’s now turn our attention to that subject.

According to the diagram and description of this example’s behavior given earlier, one
thing that our method annotated by @Timeout needs to do is to create a JMS message producer
that can send messages to the LogWriter queue. To do that, it will use the ConnectionFactory
object acquired via the @Resource annotation to create a Session (javax.jms.Session) that
communicates with MessageWriter. Note that both the ConnectionFactory and the Queue that
the Session is connecting to are both considered to already be instantiated by the container.

 private @Resource(name="ConnectionFactory")
 ConnectionFactory factory;
 private @Resource(name="queue/LogWriter")
 Queue queue;

The name directive being passed to the @Resource annotation is instructing the container
that it should populate the variable in question (factory or queue) with a reference to the instance
that the container recognizes by that name. Remember the XML deployment file timer-message-
service.xml? That particular file instructed the JMS subsystem to create a queue named (not at
all coincidentally) queue/LogWriter. Here that JNDI name is referenced by the @Resource anno-
tation to acquire it, where it is subsequently used by timeoutHandler(Timer timer):

Mukhar_470-3.book Page 556 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 3 ■ M E S S A G E - D R I V E N B E A N S 557

 Connection connection = null;
 try {
 // Get a connection from the factory
 connection = factory.createConnection();
 // Create a session
 Session session =
 connection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);
 // Create a sender for the session to the queue
 MessageProducer sender = session.createProducer(queue);
 // Create a text message
 TextMessage message = session.createTextMessage();
 // Set the text of the message
 message.setText
 ("log entry, the time is: " + sdf.format(new Date()));
 // Send the message
 sender.send(message);
 }

The createProducer() method of the Session object is passed a reference to the Queue, and
it creates a MessageProducer (javax.jms.MessageProducer) object that can send messages to
that destination, as shown in the following code. The MessageProducer is represented by the
JMS message producer in Figure 13-1.

 // Create a sender for the session to the queue
 MessageProducer sender = session.createProducer(queue);

Since a MessageProducer is useless without a message to produce, a TextMessage object is
created by calling the createTextMessage() method of the Session object. This particular
message type is a TextMessage, but you can look at javax.jms.Message (its superinterface) in the
JMS API documentation to see a description of the other four message types available in JMS.

The String to be sent is built, placed into the TextMessage object, and sent to the destina-
tion (Queue):

 // Create a text message
 TextMessage message = session.createTextMessage();
 // Set the text of the message
 message.setText("log entry, the time is: " + sdf.format(new Date()));
 // Send the message
 sender.send(message);

You’re not going to send any more messages until the next time the @Timeout annotated
method is called, so you close the Connection, which closes the Session and MessageProducer
created earlier. This all happens in the code located in the finally block of the example:

Mukhar_470-3.book Page 557 Saturday, October 1, 2005 6:14 AM

558 C H A P T E R 1 3 ■ M E S S A G E - D R I V E N B E A N S

 finally {
 if (connection != null) {
 try {
 connection.close();
 }
 catch (Exception e) {}
 }
 }

Now it’s up to the JMS provider to deliver the message to the LogWriter queue and on to
the MessageWriter bean, which is an MDB. There aren’t any bean interface listings to show
because MDBs do not use them.

As shown in the listing for the MessageWriterBean class, MDBs must be annotated with the
@MessageDriven (javax.ejb.MessageDriven) descriptor and implement the MessageListener
interface. Take particular note of how the @MessageDriven declaration contains the relevant
configuration information regarding the LogWriter queue:

@MessageDriven(activateConfig =
 {
 @ActivationConfigProperty(propertyName="destinationType",
 propertyValue="javax.jms.Queue"),
 @ActivationConfigProperty(propertyName="destination",
 propertyValue="queue/LogWriter")
 })

Note how array notation is used to fill the activateConfig parameter of the @MessageDriven
annotation. The elements of this array are descriptors that inform the EJB container how
certain parameters of the MessageDriven bean are to be set when the bean is invoked. The
@ActivationConfigProperty (javax.ejb.ActivationConfigProperty) that sets the destination
property equal to queue/LogWriter is of particular interest, as the container will use this to connect
to the LogWriter queue specified in the JMS deployment XML for you. The destinationType prop-
erty is used by the container to inform what object type the message destination will be.

In turn, the MessageListener interface grants possession of the onMessage() method. This
method, called each time the MDB receives a message, is responsible for dispatching message
information to your other components or taking some immediate action.

The onMessage() method of this example is expecting a TextMessage and will use the getText()
method to obtain the String that was sent. Then, regardless of the message type received, you
print something to System.out. Of particular note is the lack of interaction shown here between
the onMessage() method and any other components within the EJB application. As you design
your EJB applications around MDBs, be aware of the fact that your components will be acting
upon response to messages and may be feasibly invoked at any time. While this may seem like
an obvious fact, program designs that fail to take this into account during the development
phase often add kludgy, inelegant constructs to help force their program execution to run correctly.
In other words, remember this: MDBs are asynchronous—they can execute at any time!

Mukhar_470-3.book Page 558 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 3 ■ M E S S A G E - D R I V E N B E A N S 559

MessageTimerApp Summary
Upon examining the previous application, although it may certainly seem like a nice trick to
write something to the console every ten seconds, it certainly seems difficult to apply such
usage to real-life scenarios. Applications for MDBs alone may seem obvious: objects receiving
asynchronous messages from any number of clients fit quite nicely into the client/server
model that most developers have become acclimated to in the past 20 years. Using message
receivers to act upon time-based events, however, seems to be (at first glance) far more in the
domain of a multithreaded application, where one or more threads execute at specific inter-
vals, looking for work to do.

Such an approach isn’t advised, however, for the shortsightedness it would show in respect to
the EJB container resources. To say that spawning threads inside your EJB is an ill-advised
practice is an understatement. Remember that all EJBs exist within the execution context of the
EJB container; EJBs that do not treat resources in a predictable manner (an inevitable state in a
multithreaded class) cannot be managed correctly by the container and may cause any number
of unforeseen errors.

Summary
This chapter focused on the benefits and application of message-driven beans (MDBs). You
saw how to use MDBs to initiate your application’s logic based upon certain events. You also
learned how MDBs integrate with the Java Message Service (JMS) API, a widely used messaging
framework.

After having read this chapter, you should know:

• MDBs are a quick and easy method to plug your application into some greater event
model. You can structure the internal business logic of your application without taking
great pains to register with system events, abstracting such concerns away to any number
of MDBs.

• The EJB 3.0 specification has provided for limited AOP functionality with the @Interceptors
and @AroundInvoke descriptors. Using these annotations, you can enrich your application
quickly without harming the overall application design.

• The JMS API provides you with a rich producer/consumer model that allows you to
extend your application to handle any number of messages with ease. Using facilities
already provided for your application, you can quickly register resources such as
message queues for your MDBs, without excessive concern as to their management.

In the next chapter, we’ll discuss the role of web services in Java EE 5.

Mukhar_470-3.book Page 559 Saturday, October 1, 2005 6:14 AM

560 C H A P T E R 1 3 ■ M E S S A G E - D R I V E N B E A N S

Exercises
1. Write an MDB that takes a word and writes it to System.out. Write a simple application

that writes to a message queue to test the message bean. Remember that System.out
messages will go to the server log file.

2. Write a stateless session bean that implements the EJB Timer Service. Try using several
of the different types of timers. Write an appropriate message to System.out to verify
the timer is working.

Mukhar_470-3.book Page 560 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

561

■ ■ ■

C H A P T E R 1 4

Web Services and JAX-WS

In the previous chapter we wrapped up the main part of our discussion about EJB. This
chapter and the next focus on another mechanism used to enable distributed applications:
web services.

In this chapter, you will learn the following:

• What web services are, why and when you should use them, and their fundamental
concepts, including the web services protocol stack

• How to enable web services using SOAP and JAX-WS

• How to describe web services using WSDL

• Three ways a client can invoke web service methods

■Note Before we continue, it is important to note that at the time of this writing, there are no full implementations
of JSR-181 (Web Services Metadata for Java EE 5) and JAX-WS 2.0 (the second version of the specification
formerly entitled JAX-RPC). The JBoss component that will provide JSR-181 functionality, JBossWS
(www.jboss.
org/wiki/Wiki.jsp?page=JBossWS), is still currently under development. This chapter provides instructions
on how to obtain an in-development version of the components you need, but that version is not yet “complete.”

Should you want to give other implementations of JSR-181 a shot, you can do so by downloading a simple
reference implementation of the specification from BEA at http://dev2dev.bea.com/webservices/
jwsm.html. You may choose to try out a more complex platform, Apache Beehive, which is an open source
project jointly developed by volunteers at the Apache Software Foundation and BEA Systems, Inc. You can
learn more about the Apache Beehive project from http://incubator.apache.org/beehive/
index.html and from the book Pro Apache Beehive, by Kunal Mittal and Srinivas Kanchanavally (Apress,
2005; ISBN: 1-59059-515-7). You can also try out JAX-WS 2.0 by downloading the early release reference
implementation from https://jax-rpc.dev.java.net. This reference implementation is currently valid
only for the Sun Java EE Application Server.

Mukhar_470-3.book Page 561 Saturday, October 1, 2005 6:14 AM

562 C H A P T E R 1 4 ■ W E B S E R V I C E S A N D J A X - W S

Understanding Web Services
A web service consists of functionality available to applications via protocols associated with
the Web. Example protocols commonly associated with the Web are HTTP (which, as you saw
previously, is used for transmitting requests and responses between web clients, such as browsers
and web servers), XML, and SOAP. (We’ll look at XML and SOAP a little later on in this chapter.)
Using these protocols, an application can make use of the functionality provided by a web service.
For example, a bookseller named Apress might have a web service running on its web server that
provides the ability to order books. We’ll call this web service ApressBookService. An application
could use this service when it needs to look up a price or order a book. This ApressBookService web
service would have operations, each of which performs some functionality, for example:

• A getPrice operation could take the ISBN number of a book as input and return the price
of the book.

• An orderBook operation could take an ISBN and a credit card number, and process an
order for a book, including shipping instructions.

In the same way as the ApressBookService web service, organizations and individuals can
offer services to applications over standard, ubiquitous protocols such as XML, SOAP, and
HTTP. The availability of web services over such protocols makes them an attractive choice for
developing distributed applications, which can be composed of web services offered by various
divisions within a company or by other organizations.

Not sure yet? The concept of web services is a difficult one to grasp for some; the benefit of
using them within your application may not seem readily apparent at first glance. By examining
their usage as explained throughout this chapter, you will come to find that they are a flexible
tool to be used by any developer. The act of making your business logic open and available to
any client supporting the different web service layers grants your application a much higher
overall value and functionality—all the more by virtue of the ease with which Java EE 5 allows
you to create web services. In the sections that follow, we’ll discuss the various web services
standards and models, why you should consider using web services, and the protocols used in
web services.

EXAMPLES OF WEB SERVICES

For examples of some of the web services currently available, check out www.xmethods.com. This site is one
of several that allow developers to post information about a web service that they have developed, including a
description of the service and instructions on how to use it. To give you a flavor of the kinds of web services
being developed, the table that follows lists some interesting examples listed on the XMethods site at the time
of this writing.

Mukhar_470-3.book Page 562 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 4 ■ W E B S E R V I C E S A N D JA X - W S 563

Web Services Standards and Models
The ability for parts of a distributed application to communicate with each other and call each
other’s methods, as web services do, should be familiar to you from the EJB-related chapters
earlier in this book. In fact, many standards have evolved that enable clients on one machine
to invoke the operations or methods of a server on another machine, for example:

• Remote Procedure Calls (RPCs): There are a few flavors of RPCs, including

• Distributed Computing Environment (DCE) RPCs

• Sun RPCs1

• Common Object Request Broker Architecture (CORBA): This specification, adopted by
Object Management Group (OMG), defines the interface and request model for a
distributed set of objects. CORBA was originally proposed by a multicorporation group
that included Sun Microsystems. It has compliant libraries and bindings for a multitude
of programming languages and environments.

Web Service Name Description

BibleWebservice Retrieves biblical text

Currency Exchange Rate Returns the exchange rate between two currencies

Delayed Stock Quote Provides stock quotes delayed by 20 minutes

DNS Server Provides name resolution services

Fax Service Offers a commercial web service for sending faxes
internationally

FedEx - USPS - DHL
Package Tracking

Provides access to FedEx, USPS, and DHL package-tracking
information

Generate Bar Codes Generates (interleaved 2 of 5) bar code images

Google Search API Provides the use of Google’s search service for your own
applications

Image Converter Converts from one type of image to another

Image Extractor Extracts the images from a given URL

Shakespeare Takes a phrase from a William Shakespeare play and returns
the associated speech, speaker, and play title

StrikeIron Zip Code
Information

Retrieves the city, state, county, latitude, and longitude
based on any U.S. zip code

Weather – Temperature Returns the current temperature in a given U.S. region (by
zip code)

1. Interestingly enough, Sun was a pioneer of RPCs in the early 1980s.

Mukhar_470-3.book Page 563 Saturday, October 1, 2005 6:14 AM

564 C H A P T E R 1 4 ■ W E B S E R V I C E S A N D J A X - W S

• Distributed Component Object Model (DCOM): This network-aware object acquisition
technology is the successor to Component Object Model (COM). The COM technology
was used widely throughout Microsoft Windows, but is gradually losing mindshare to
the comparatively newer .NET Framework.

• Java Remote Method Invocation (Java RMI): This technology enables EJBs.

All of these standards are excellent, but each is, to some degree, platform or programming-
language dependent. To enable a future in which any application can invoke the methods of
any other application (governed by security policies, of course), we need a standard that

• Is available with most of the popular programming languages

• Can be used on almost any hardware/operating system platform

• Uses communication protocols that are ubiquitous

• Encourages communication over ports that are not likely to have firewall issues

Web services promise to help us realize that future, as they meet all of the criteria just listed:

• Web services can be created in Java, C++, C#, Visual Basic, and many other programming
languages.

• Web services can be used on most—if not all—major hardware operating system platforms.
In addition, they typically run over TCP/IP and HTTP, both of which are ubiquitous.

• Because of the wide availability of web services, programmers can write applications
that offer method-based services and can expect to be able to call the methods of appli-
cations that others have written.

• Web services applications can be deployed within the confines of a company’s intranet
and/or extranet, or on the Internet.

The RPC model is one way of implementing web services. In this model, a web service
application makes an interface available to clients on the network; this is very similar to the EJB
session bean model. Client programs can then find and invoke methods of this interface as if it
were residing on the same machine. The data communicated between the client and the web
service is expressed using Simple Object Access Protocol (SOAP) and XML.

The other way of implementing web services is using a messaging model. Each application
can send SOAP messages to another, without expecting a return value as a caller of a method
would. The applications communicate asynchronously, as did the components of the MDB
example in the previous chapter. The web service will be initiated by a request call from the
client, but the server will need to initiate its own response process, whether by signaling the client
via some agreed-upon event interface or by attaching itself to an already known resource on
the client.

We’ll focus most of our attention in this book on the RPC model of web services.

Mukhar_470-3.book Page 564 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 4 ■ W E B S E R V I C E S A N D JA X - W S 565

Why Use Web Services?
The cross-platform nature of Java facilitates distributed applications running on multiple
hardware and operating system platforms. If all of the components of a distributed application
are written in Java, then using EJBs with Java RMI is a good choice. However, web services are
a great choice for integrating applications that are written in various languages, because most
major platforms have support for SOAP, which is the protocol used in web services for passing
object data from one application to another. This enables, for example, an application developed
in Java to use the web service operations of an application developed in Perl. Why should that
differ from the previously mentioned methods of RPC communication, such as CORBA or
RMI? Such mechanisms are considered “tightly bound” to the internals of your application,
because your program must include at compile time certain artifacts that describe how the
remote processes will behave. Should the remote process change its behavior, consuming
applications must regenerate the required artifacts and be recompiled. Note that nearly all of
the mechanisms mentioned provide runtime discovery and usage of data, but the method of
doing so is clumsy when compared with the simplicity provided by web services.

A subtler advantage to web services is that they typically use HTTP as an underlying
communication protocol. Because of this, they can easily and naturally be implemented over
the TCP/IP ports most commonly open in firewalls: 80, 8080, and 443. Ports 80 and 8080 are
used for standard browser-to-web server HTTP traffic, and port 443 is used for encrypted, secure
HTTP traffic.

Because web services are so conducive to interoperability, legacy system vendors can
expose functionality such that other systems can have access. For example, many banks provide
customers with web access to their accounts, including the ability to perform transactions
such as transferring money between accounts. But wouldn’t it be nice if customers were able
to use personal finance software to perform these transactions in real time, no matter what
institutions hold those accounts? If every bank had a common set of secure web services that
wrapped their account management systems, then that functionality could be a reality. Banks
could easily massage their own internal data into the format specified, ensuring that their
current customers would have access to the data, and also that they could use tools and soft-
ware developed by other individuals (or other banks adhering to the same service format) with
their own accounts. Banks wouldn’t even need to drastically alter their own current account
management software to gain these benefits; web services do not enforce a technology archi-
tecture change from current systems.

The use of web services in the area of personal finance brings up the important issue of
security. Applications that share sensitive information with each other need to do so securely.
This concern is addressed in web services in a similar manner to other web-based applications—
that is, through the use of network traffic encryption and user authentication.

Let’s now take a look at an architectural view of web services, in the form of a protocol stack.

Web Services Protocol Stack
Table 14-1 shows the protocols used in web services, from the highest to lowest level (reading
from top to bottom). Note that we’ve omitted mention of layers lower than HTTP, notably the
ones that employ TCP/IP and Ethernet technologies.

Mukhar_470-3.book Page 565 Saturday, October 1, 2005 6:14 AM

566 C H A P T E R 1 4 ■ W E B S E R V I C E S A N D J A X - W S

In the sections that follow, we’ll cover these protocols in the reverse order from that shown
in the table (i.e., from the bottom of the table up), and we’ll briefly look at emerging layers as well.

Transport Layer

The typical transport layer is Hypertext Transfer Protocol (HTTP), the protocol over which
most web traffic travels. As you may recall, HTTP was discussed in the context of Servlets and
JSP pages in Chapter 5. Web services can also be carried over e-mail messages, using Simple
Mail Transport Protocol (SMTP).

Encoding Layer

All web service traffic is expressed in Extensible Markup Language (XML). For information on
XML, check out the resources mentioned in the “Summary” section at the end of this chapter
or XML Programming: Web Applications and Web Services with JSP and ASP by Alexander
Nakhimovsky and Tom Myers (Apress, 2002; ISBN 1-59059-003-1).

Messaging Layer

All application data sent via web services is enclosed in SOAP messages. SOAP is based entirely
upon XML and contains structures such as the SOAP envelope, and within that, the SOAP
header and SOAP body. The SOAP body, for example, contains all of the instance data of the
objects that are being transported. The following example is a SOAP message for the getPrice
operation of the fictional ApressBookService:

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 <SOAP-ENV:Body>
 <m:getPrice xmlns:m="http://ws.apress.com">
 <isbn>1590593413</isbn>
 </m:getPrice>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

A Java application can use the API defined in SOAP with Attachments API for Java (SAAJ) to
create, send, and receive SOAP messages. This API is contained in the javax.xml.soap package,
which is included in the Java EE 5 SDK. As you’ll see a little later, we’ll use a facility known as

Table 14-1. Web Service Protocols and Their Associated Layers

Layer Technology

Service discovery UDDI

Service description WSDL

Messaging SOAP

Encoding XML

Transport HTTP

Mukhar_470-3.book Page 566 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 4 ■ W E B S E R V I C E S A N D JA X - W S 567

JAX-WS to develop a web service at a higher level of abstraction. JAX-WS uses the SAAJ API
under the covers to produce and consume the SOAP message. You can learn more about SAAJ
from the SAAJ 1.2 specification, which is available for download from http://java.sun.com/
xml/downloads/saaj.html.

Service Description Layer

The functionality provided by a given web service is described by the Web Service Description
Language (WSDL). When using JAX-WS (which we’ll cover in more detail later in this chapter),
web services are implemented in Java, with WSDL using XML to describe the interfaces, methods,
arguments, return values, and the URL of a web service. Here are some terms you’ll encounter
when discussing WSDL:

• A WSDL port element is analogous to a Java interface.

• A WSDL operation element is analogous to a Java method.

• WSDL part elements (contained inside message elements) are analogous to Java
arguments and return values.

You’ll see an example of a WSDL file a little later in this chapter.

Service Discovery Layer

Web services can be registered for use and then discovered at runtime. For example, a client
application seeking a web service that offers the functionality of a thesaurus could check to see
which applicable web services are registered. This is known as Universal Description, Discovery,
and Integration (UDDI). UDDI was originally a collaborative effort between Microsoft, IBM,
and Ariba; the UDDI consortium now includes hundreds of members.

UDDI registries hold information about businesses and the web services they offer. These
UDDI registries are hosted by various UDDI members and are available on the Internet, but
they could also be located within a corporate intranet. You can find a list of UDDI registries
available on the Internet and more information on UDDI at www.uddi.org.

There is also an API known as Java API for XML Registries (JAXR) that provides a uniform
interface to registries such as UDDI. To learn more about UDDI and the JAXR API, please visit
the URLs mentioned as resources in the “Summary” section of this chapter.

Emerging Layers

Some emerging layers of the web services stack deal with issues such as security, client identity,
transaction coordination, web service user interfaces, and business process workflow. You can
check out some of these emerging technologies with the Java Web Services Developer Pack
(WSDP), available from Sun at http://java.sun.com/webservices/index.jsp. These new tech-
nologies are very important when using web services in mission-critical applications.

Developing a Web Service in Java
So far, you’ve learned the basics of web services and when and where to use them. In this
section, you’ll actually develop a web service in Java. We’ll start off by introducing JAX-WS, the

Mukhar_470-3.book Page 567 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

568 C H A P T E R 1 4 ■ W E B S E R V I C E S A N D J A X - W S

toolkit you’ll use to develop the example, and then we’ll install an early release version of the
JBoss server that supports the Java EE 5 web service architecture. Once you’ve installed the
server, we’ll move on to create the example service.

Introducing JAX-WS
A number of toolkits may be used to develop web services in the Java programming language.
One such toolkit is the very popular open source implementation of SOAP called Apache AXIS.
AXIS is from the Apache Software Foundation (http://ws.apache.org/axis), an organization
that provides support for open source projects.

Another such toolkit is the Java API for XML-based Web Services (JAX-WS), which provides
a Java API for developing and implementing web services. JAX-WS handles all the details of the
SOAP layer, enabling development in terms of simple method calls. JAX-WS is available in an
early release reference implementation from https://jax-rpc.dev.java.net.

■Note The JAX-WS implementation is not yet complete in the version of JBossWS available at the time of
this writing. In this chapter, we’ll use syntax defined in the predecessor of JAX-WS, JAX-RPC. You can follow the
progress of the JAX-WS specification as it becomes finalized at http://jcp.org/en/jsr/detail?id=224.
The API will still be referred to as JAX-WS throughout this chapter, in order to avoid confusion.

JAX-WS is an RPC-based programming model introduced in the J2EE 1.4 platform as
JAX-RPC. The reasoning behind the name change from JAX-RPC to JAX-WS is to refocus the
library’s usage to a more web-service-centric model. Changing the name allowed the library
developers to discontinue certain artifacts that no longer served a purpose in a web service
model, and to more clearly define the purpose of the library. The drawback is that applications
developed using the old version of the library must be changed in order to compile against
the new version; the class hierarchy has changed drastically, removing any chance of binary
compatibility.

JAX-WS’s renewed purpose in life is to provide an API for Java applications to communi-
cate with each other using the SOAP protocol. The programming model of JAX-WS is unique in
that the client program will attempt to bind to a service (analogous to the WSDL <service>
node) through the loading of a WSDL file or through reflection upon a class that has been
annotated with the @WebService (javax.jws.WebService) descriptor. Upon acquiring a service,
the program will request the specific <port> and call the method desired.

To better illustrate how a web service may be acquired and used by client programs, let’s
take the most obvious route and actually create a web service. Your first web service is going to
be a very simple one (on par with a “Hello World!” application) named SimpleService. Unfor-
tunately, you can’t just jump into coding the service, due to the fact that the technology for the
JBossWS libraries (the JBoss implementation of Java EE 5 web services) is not yet available in
release form. You’ll need to acquire a copy of the JBoss server currently in development, as
described in the next section.

Mukhar_470-3.book Page 568 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 4 ■ W E B S E R V I C E S A N D JA X - W S 569

■Warning You’re about to download an in-development version of the JBoss Application Server. Although
you should not experience any problems in downloading and compiling the development code, there’s no
100-percent guarantee that it will all work. If you experience problems trying to run the server, are interested
in seeing the development process of a high-profile software project, or would even like to try contributing
your own time to the development of JBoss, you should visit the JBossWS forums at www.jboss.com/
?module=bb&op=viewforum&f=200.

Downloading the CVS Tool
Remember back in the old days, when you were reading Chapter 2 and we were still just getting
to know each other? Get ready to revisit those golden days of yore, as you’ll need to acquire an
entirely new version of the JBoss Server. This version features code still currently in develop-
ment, which you’ll acquire using a tool called Concurrent Versioning System (CVS). CVS is a
tool that allows developers to archive and manage collections of source files. The CVS server
tracks the changes made to files and allows developers to chart who made what changes to a
file, what the changes were, and when the changes were made. As you’ll see in just the next few
paragraphs, CVS also allows different branches of source code to exist; different dependencies
among source files may be registered to a particular branch, allowing you to obtain “snapshots” of
the source tree upon request.

Your first step is to download CVS tools for your particular platform. Users of Windows
NT/2000/XP and Red Hat Linux (or any RPM-aware system) will find CVS binaries at
www.march-hare.com/cvsnt. If you’re using a different system entirely, you can find the CVS
source at www.cvshome.org. Windows users who are accustomed to GUI front-ends for command-
line tools will be happy to know that both www.wincvs.org and www.tortoisecvs.org offer a
more streamlined method to access CVS repositories. (One of this book’s authors quite happily
uses Tortoise CVS for both personal and professional tasks.)

Once you’ve downloaded a copy of the CVS tools for your system, run the installer (if
you’ve downloaded a binary package), or compile the source and run the installation script.
Open a command window (if you haven’t done so already) and set the environmental variable
CVSROOT equal to the following path:

:pserver:anonymous@anoncvs.forge.jboss.com:/cvsroot/jboss

Windows users will do so by typing the following:

>set CVSROOT=:pserver:anonymous@anoncvs.forge.jboss.com:/cvsroot/jboss

Users of Linux and BSD systems will use a different syntax:

>export CVSROOT=:pserver:anonymous@anoncvs.forge.jboss.com:/cvsroot/jboss

Once you’ve set the CVSROOT variable, the CVS tools will intuit the correct authentication
protocol, username, CVS server, and initial path on the server to acquire source files from.

The following command tells the CVS tools that you wish to “check out” (co) the source
code collection labeled jboss-head:

>cvs co -r JBossWS_1_0EA jboss-head

Mukhar_470-3.book Page 569 Saturday, October 1, 2005 6:14 AM

570 C H A P T E R 1 4 ■ W E B S E R V I C E S A N D J A X - W S

The parameter -r JBossWS_1_0EA (note that the 0 in question is a zero, not a letter) tells the CVS
server you’re interested in the branch of code labeled under JBossWS_1_0EA. In short, the
branch of JBoss code that includes the JBossWS 1.0 “Early Access” libraries, allowing you to
take the Java EE 5 web service implementation for a test drive. Note that this command down-
loads a fairly sizable collection of code, so having access to a fast connection and about 400MB
of free space is a prerequisite to continue. (The directory will occupy about 355MB of space
once you’ve compiled all the source files.)

Once the files have finished downloading, you’ll need to compile them into a working
JBoss Server. Change your directory to the source directory you just downloaded:

>cd jboss-head

and execute the compile script for your particular system. Windows users will type the following:

>build/build.bat

Linux and BSD users will type this:

>build/build.sh

The script you executed will use Ant (a Java tool that assists in complex compilation tasks;
see http://ant.apache.org) to compile the entire package of source code you’ve downloaded.
Once the script has completed successfully, you’ll need to change your directory to the
webservices directory:

>cd webservices

and run the Ant build script necessary to enable the JBossWS early access release:

>../tools/bin/ant deploy-jbossws

You’ve now compiled a fresh copy of the JBoss Application Server, complete with JBossWS 1.0
preview. All that remains is to start your server, which you can do by navigating to the directory
jboss-head/build/output/jboss-5.0.0alpha/bin and executing the JBoss “run” script (as
you’ve done throughout the book). You can now copy the directory jboss-head/build/output/
jboss-5.0.0alpha to a more memorable location to ease the annoyance of working with unwieldy
directory paths. Throughout the rest of the chapter, the directory containing this code will be
referred to as c:\jboss_cvs to avoid any possible confusion.

Creating the Web Service
Because this is the first web services example, and you haven’t learned to build and deploy web
services yet, you’re going to create your code files now and run them later. Create a directory
called JBossWSTest for the project. You’ll now create three Java source files for this example.
These files are organized simply in two folders: one is named client, and the other is named
webservices.

The first Java source file that you need to create is the service endpoint interface for this
example. The filename is SimpleService.java, and it will be used by both the client and server:

Mukhar_470-3.book Page 570 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 4 ■ W E B S E R V I C E S A N D JA X - W S 571

package webservices;

import java.rmi.Remote;

public interface SimpleService extends Remote
{
String echo(String input);
}

The next file you need to create is the class that implements the web service interface,
SimpleServiceImpl.java:

package webservices;

import org.jboss.annotation.ejb.RemoteBinding;
import org.jboss.ws.annotation.PortComponent;

import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.ejb.Remote;
import javax.ejb.Stateless;

@WebService(name = "EndpointInterface", targetNamespace = "http://localhost",➥

 serviceName = "SimpleService")
@PortComponent(contextRoot="/jbosswstest ", urlPattern="/*")
@Remote(SimpleService.class)
@Stateless
public class SimpleServiceImpl implements SimpleService
{
 @WebMethod
 public String echo(String input)
 {
 return input;
 }
}

Now you need to create the file that will be the client you’ll use to test the web service,
SimpleServiceClient.java:

package client;

import webservices.SimpleService;
import javax.xml.rpc.ServiceFactory;
import javax.xml.rpc.Service;
import javax.xml.namespace.QName;
import java.net.URL;

Mukhar_470-3.book Page 571 Saturday, October 1, 2005 6:14 AM

572 C H A P T E R 1 4 ■ W E B S E R V I C E S A N D J A X - W S

public class SimpleServiceClient {
 private static final String _namespace="http://localhost";
 private static final String _service="SimpleService";
 private static final String _wsdl="http://localhost:8080/jbosswstest?wsdl";

 public static void main(String[] args) {
 try {
 URL defUrl=new URL(_wsdl);
 // Create the service factory
 ServiceFactory serviceFactory = ServiceFactory.newInstance();
 // Load the service implementation class
 Service remoteService=serviceFactory.createService(defUrl,➥

 new QName(_namespace,_service));
 // Load a proxy for our class
 SimpleService invoker = ➥

 (SimpleService)remoteService.getPort(SimpleService.class);
 // Invoke our interface for each argument
 for (int i = 0; i < args.length; i++) {
 String returnedString = invoker.echo(args[i]);
 System.out.println("sent string: " + args[i] ➥

 + ", received string: " + returnedString);
 }
 } catch(Exception e) {
 e.printStackTrace();
 }
 }
}

This web service has one method, which takes a String as input. It concatenates the
String "back at you!" to the input String and returns the resultant String. You’ll build and
run this example later in the chapter, but first you’ll examine how it all works.

To recap, you now have three Java source files, which we’ll walk through in the sections
that follow, starting with the service endpoint interface. After that, we’ll discuss the web service
implementation class, followed by the web service client.

The Service Endpoint Interface

The interface defined in SimpleService is the service endpoint interface, which is used by both
the client and server.

The server will use the interface as a remote interface to the stateless session
bean SimpleServiceImpl. This relationship is specified by the annotation
@Remote(SimpleService.class), which notifies the container that the type SimpleService is to
be used just as if the interface itself were annotated with the @Remote designation. The server
will also generate the WSDL document that describes SimpleService, based on the structure
defined in the service endpoint interface.

The client will use SimpleService to request a “proxy” class to be generated for it that will
transparently invoke the echo method on the server. You read that right: each invocation of
echo(String s) will cause JAX-WS to issue a request to the server and return its response.

Mukhar_470-3.book Page 572 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 4 ■ W E B S E R V I C E S A N D JA X - W S 573

Appropriately, the service endpoint interface only defines one method:

 String echo(String input);

This should be familiar enough to you by now. What may be new to you is the way in which the
interface is defined:

public interface SimpleService extends Remote

The Remote interface SimpleService extends is not the familiar javax.ejb.Remote annotation
used with session beans earlier in the book. This particular Remote interface, java.rmi.Remote, is
used by JAX-WS to generate the appropriate implementation code when a client requests an
instance of the interface to invoke methods on the server.

Notice that the String echo(String input) method takes a String as input and returns a
String. In the “old” days (when JAX-RPC was used), you would find that the entirety of web
service methods would receive and return primitive Java types. These web services arguments
and return values were described by WSDL, and only those Java types that could be represented by
WSDL were able to be used in the method signatures of a JAX-RPC–compliant application.

As noted at the beginning of this chapter, you’re still required to use JAX-RPC to access
your web services. Fortunately, the entirety of Java primitive types and their associated
wrapper classes are supported. Table 14-2 lists these types and classes.

Additionally, the Java classes shown in Table 14-3 are supported, as well as many of the
collection classes, such as ArrayList and HashMap.

Table 14-2. Supported Datatypes for JAX-RPC Parameters and Return Values

Primitive Type Wrapper Class (in java.lang)

Byte Byte

Short Short

Int Integer

Long Long

Float Float

Double Double

Boolean Boolean

Table 14-3. Supported Nonprimitive Java Classes

Package Supported Class

Java.lang String

java.math BigInteger
BigDecimal

java.util Date
Calendar

Mukhar_470-3.book Page 573 Saturday, October 1, 2005 6:14 AM

574 C H A P T E R 1 4 ■ W E B S E R V I C E S A N D J A X - W S

Arrays of the primitive types and classes listed in Table 14-2 are supported as well. Classes
whose fields are composed exclusively of JAX-RPC–supported data types can also be supported.
For more details on which types are supported by JAX-RPC, please consult the JAX-RPC speci-
fication, which you can download from http://java.sun.com/xml/downloads/jaxrpc.html.

Should the idea of adhering purely to primitive types push you to the edge, rest easy: as
JAX-WS becomes more widely implemented, the options available to developers in terms of
WSDL binding will increase. According to the current specification, JAX-WS will work in concert
with Java API for XML Binding (JAXB) 2.0 to provide a richer, less limited model.

The Web Service Implementation Class

The implementation of the example web service is contained in SimpleServiceImpl.java,
which implements the SimpleService interface. Take note of the bevy of annotations describing
the class:

@WebService(name = "EndpointInterface", targetNamespace =➥

 "http://localhost", serviceName = "SimpleService")
@PortComponent(contextRoot="/jbosswstest ", urlPattern="/*")
@Remote(SimpleService.class)
@Stateless
public class SimpleServiceImpl implements SimpleService

The @Stateless annotation simply describes this class as a stateless session bean to the
server container. You cannot simply annotate the class as a web service and expect the class to
function correctly—by designating a class as a web service, you are “merely” exposing function-
ality already available in an existing class. In this particular case, you want to make certain that
the class remains available to you and is managed by the server. Such functionality is best met
by session beans.

As mentioned earlier, the @Remote annotation alerts the server container that the remote
interface for this particular session bean is contained within a different class.

So far, so good, but of course there’s a catch. Are you wondering what the following line
means?

@PortComponent(contextRoot="/jbosswstest ", urlPattern="/*")

As you could probably intuit from the values given to the annotation parameters, this line
instructs the server container how to deploy and make available the web service to clients. The
web service will expose its functionality at a URL much like the following:

http://localhost:8080/jbosswstest

The urlPattern parameter simply instructs the JBossWS library to attempt to process any
(*) request received in the contextRoot (/jbosswstest). What you might not be able to guess is
the fact that this particular annotation is specific to the JBossWS library; users of other application
servers may have similar functionality provided to them, but that is by no means guaranteed.

The @WebService annotation finishes the functionality that will be imparted to this class by
identifying the names that this service will be available under. The value set to the name parameter
will be assigned to the service’s “port” (interface, remember!), while the serviceName parameter
will be the name (predictably) given to the service itself. The targetNamespace directive further
assists clients requesting your service, by assigning an arbitrary namespace to the WSDL that

Mukhar_470-3.book Page 574 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

C H A P T E R 1 4 ■ W E B S E R V I C E S A N D JA X - W S 575

acts as a service map. In the case of your service, you’ll assign it the suitably generic value
http://localhost. Developers not familiar with the vagaries of XML (you’ve made it this far?)
need not worry about placing some special code at localhost. The string will be used much like
a package declaration is used in Java: to prevent identically named elements from somehow
conflicting with each other.

Guess what—that’s nearly all you need to do to expose a session bean to web service
clients! The JAX-WS tools and server container do all the heavy lifting.

The Web Service Client

The client for your web service is the SimpleServiceClient.java code. The main() method
takes an array of String arguments and loops through these arguments, calling the echo() web
service method with each one.

As explained previously, a client communicates with a web service method via transparently
generated proxy classes. The sample code instantiates a new Service object that provides the
client with the needed methods to acquire a proxy instance of SimpleService. In order to do so,
it passes the serviceFactory object the address to the autogenerated WSDL document for your
web service and a QName object that will be used to search the WSDL document for the XML that
describes the particulars of your web service.

■Tip A QName is a “qualified name” used in specifying the exact name of a node within an XML document.
It can specify a node name (html, as per the venerable <html>), a node name associated with a particular
namespace (<html xmlns="http://www.w3.org/1999/xhtml"), and a node name with a namespace
tied to a particular prefix (<xhtml:html xmlns:xhtml="http://www.w3.org/1999/xhtml">). Why
are they being used here? The WSDL document is being autogenerated by the server container based off
parameters specified in SimpleServiceImpl; to create objects that interface with a web service, JAX-WS
will need to parse the WSDL document, searching for the nodes that match those same parameters. JAX-WS will
use the QName objects you pass in to accurately pinpoint what elements of the WSDL document contain the
information it needs to return a valid Service object to you.

“Wait a minute,” you may be thinking. “I don’t remember having autogenerated any
WSDL document yet.” You’re absolutely right: the WSDL document for your web service has
not been generated yet. Once you’ve compiled and successfully deployed the web service,
however, the WSDL document will be made available at a URL following this pattern:

http://server.address:port/contextRoot?wsdl

Recall how the contextRoot specified in the @WebService annotation of SimpleServiceImpl
was set to /jbosswstest; hence, the address to the WSDL document will be

http://localhost:8080/jbosswstest?wsdl

All that needs to be done once an instance of the web service is acquired is to request the
appropriate “port,” cast it to the SimpleService interface, and then process it as necessary:

Mukhar_470-3.book Page 575 Saturday, October 1, 2005 6:14 AM

576 C H A P T E R 1 4 ■ W E B S E R V I C E S A N D J A X - W S

 // Load the service implementation class
 Service remoteService=serviceFactory.createService(defUrl,➥

 new QName(_namespace,_service));
 // Load a proxy for our class
 SimpleService invoker =
 (SimpleService)remoteService.getPort(SimpleService.class);

Continuing on, the echo() method of the proxy class is then called, which communicates
the argument via SOAP to the endpoint. This calls the web service implementation, which
returns the value via the endpoint to the proxy, and then back to the client:

String returnedString = invoker.echo(args[i]);

The returned value ends up in the returnedString variable, which you print out just to
prove that the round-trip to the web service was achieved:

 System.out.println("sent string: " + args[i]
 + ", received string: " + returnedString);

Building, Testing, and Serving the Web Service
Now that you’ve gone through all those preparatory steps, it’s time to build, test, and serve this
application.

1. Open a command window and change your directory to the JBossWSTest folder you
created for this project.

2. Set your CLASSPATH variable to the following libraries:

>set CLASSPATH=.;➥

c:\jboss_cvs\server\all\deploy\jbossws.sar\jbossws.jar;➥

c:\jboss_cvs\server\all\deploy\jbossws.sar\wsdl4j.jar;➥

c:\jboss_cvs\server\all\deploy\ejb3.deployer\jboss-ejb3x.jar;➥

c:\jboss_cvs\server\all\deploy\ejb3.deployer\jboss-ejb3.jar;➥

c:\jboss_cvs\client\jboss-jaxrpc.jar

3. Compile the webservices and client directories:

>javac -d . webservices*.java
>javac -d . client*.java

4. Make an EJB3 JAR file with the compiled classes in the webservices directory:

>jar cf SimpleService.ejb3 webservices*.class

5. Copy SimpleService.ejb3 to your JBoss deployment directory:

>copy SimpleService.ejb3 c:\jboss_cvs\server\all\deploy\

6. You can now check to make certain that the service has been deployed correctly. Open
a web browser and go to the following URL: http://localhost:8080/jbossws. You will
see a page much like the one shown in Figure 14-1.

Mukhar_470-3.book Page 576 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 4 ■ W E B S E R V I C E S A N D JA X - W S 577

Figure 14-1. JBossWS deployment page

Click the View link to display a list of currently deployed JBossWS web services. Your
web service should appear much like the web service shown in Figure 14-2; if it does
not, repeat the deployment process and watch the messages JBoss prints to your console
screen as it attempts to deploy your web service. As mentioned earlier in the chapter, the
version of JBoss you’re using for this example is still in development, and isn’t guaranteed to
provide reliable results. Keep checking the JBoss website for more information regarding
updated releases from the JBossWS subproject.

Figure 14-2. List of deployed web services

Take note of the link under the Service Endpoint Address column. Recall that this link
was mentioned in the SimpleServiceClient class:

private static final String _wsdl="http://localhost:8080/jbosswstest?wsdl";

Clicking this link displays the server-generated WSDL document for the SimpleService
web service.

7. Once you’ve ensured that the web service has been deployed correctly, execute the
client from the command line like so:

>java -classpath .;➥

c:\jboss_cvs\client\jboss-jaxrpc.jar;➥

c:\jboss_cvs\client\log4j.jar;➥

c:\jboss_cvs\client\logkit.jar;➥

c:\jboss_cvs\client\jbossws-client.jar;➥

c:\jboss_cvs\client\activation.jar;➥

c:\jboss_cvs\client\jboss-saaj.jar;➥

c:\jboss_cvs\client\mail.jar;➥

c:\jboss_cvs\client\wsdl4j.jar;➥

c:\jboss_cvs\lib\endorsed\xercesImpl.jar;➥

c:\jboss_cvs\client\jbossall-client.jar;➥

c:\jboss_cvs\server\default\lib\jboss-remoting.jar;➥

c:\jboss_cvs\server\default\lib\javax.servlet.jar ➥

client.SimpleServiceClient this is a test

Mukhar_470-3.book Page 577 Saturday, October 1, 2005 6:14 AM

578 C H A P T E R 1 4 ■ W E B S E R V I C E S A N D J A X - W S

Upon doing so, you should see the following output:

sent string: this, received string: this
sent string: is, received string: is
sent string: a, received string: a
sent string: test, received string: test

Congratulations! Add another notch to your Java programming belt, because you’ve
written your first web service using Java EE 5.

Summary
In this chapter, you discovered that web services are a way to create distributed applications
whose components communicate with each other over protocols associated with the Web.
This application functionality can be offered via web services over the Internet or limited for
use within a corporate intranet or extranet.

After reading this chapter, you should know:

• Web services promote the development of distributed applications whose components
are written in various languages and deployed on various hardware and software plat-
forms. This independence is enhanced by web services’ ability to communicate over
protocols and ports used on the Web.

• The availability of web services over the Internet makes security, in the form of data
encryption and user authentication, an issue that developers should think about care-
fully before adopting them. Making business logic available online in any form requires
serious consideration on the part of the developer.

• Web services protocol layers employ technologies such as HTTP, XML, SOAP, WSDL,
and UDDI. You should also know that JAX-WS and its predecessor, JAX-RPC, are Java EE
enabling technologies that allow you to forgo the work of navigating the different web
service layers and concentrate on accessing the functionality you require.

Web services in Java EE 5 are still developing at the time of this writing. As the JSR-181
(Web Services Metadata for Java EE 5) and JAX-WS specifications become more fully imple-
mented by vendors and development groups, we encourage you to visit this book’s page on the
Apress web site (www.apress.com) for corrections and elaborations upon the information
provided here.

If you’d like to learn more about XML, we recommend visiting these web sites: http://
java.sun.com/xml/docs.html, www.xml.org, and www.xml.com.

You can learn more about JAX-RPC from the JAX-RPC specification, which you can down-
load from http://java.sun.com/xml/downloads/jaxrpc.html. You can read the JAX-WS
specification as it is developed from its JCP page at http://jcp.org/en/jsr/detail?id=224,
and you can download the SAAJ specification from http://java.sun.com/xml/downloads/
saaj.html.

You can learn more about UDDI and the JAXR API from these web sites, respectively:
www.uddi.org and http://java.sun.com/xml/jaxr.

Finally, the Java Web Services Developer Pack (WSDL) is available from Sun’s Java web site
at http://java.sun.com/webservices/webservicespack.html.

Mukhar_470-3.book Page 578 Saturday, October 1, 2005 6:14 AM

C H A P T E R 1 4 ■ W E B S E R V I C E S A N D JA X - W S 579

Exercises
1. Write a web service that takes a word and returns it spelled backward.

2. Write a web service that takes two numbers and a string operator value of + or -.
Apply this operator to the numbers.

Mukhar_470-3.book Page 579 Saturday, October 1, 2005 6:14 AM

Mukhar_470-3.book Page 580 Saturday, October 1, 2005 6:14 AM

581

■ ■ ■

A P P E N D I X A

Tomcat: Who Needs Java EE 5?

Astute readers may have noticed that certain sections of this book contain phrases such as
“this will be supported” or “pending final implementation of the specification.” This is not
merely an attempt to instill fear and uncertainty on the part of you, the enterprising reader.
At the time of this writing, the Java EE 5 specification has not been fully approved. Application
server providers are still in the process of developing compliant technology platforms for the
specification, and even Sun has yet to provide a compatible reference implementation (RI) for
public use.

Aside from JBoss, two other application server providers have made available “preview
versions” of their product for developers to begin working on. The first, Oracle’s 10g application
server, is available at www.oracle.com/technology/tech/java/ejb30.html in preview form. The
preview download focuses on the EJB 3.0 specification set down by the Java EE 5 specification.
The second application server making obvious strides forward in Java EE 5 compliance is Caucho
Resin (www.caucho.com). Resin also provides a rudimentary implementation of the EJB 3.0 section
of the Java EE 5 specification.

Which brings us to Tomcat. (Not really, but by the time you’ve reached the appendixes, all
the good segues have been used up.) Tomcat is an application server provided by the good
folks at the Apache Software Foundation that you can install to give you basic Servlet and JSP
support. Not at all coincidentally, JBoss itself uses Tomcat as a foundation.

What benefit does Tomcat give you, the application developer? Aside from running a lean,
mean base from which to deploy your Servlets, you are given the opportunity to deploy indi-
vidual components that meet the requirements set down by the component pieces of the Java
EE 5 specification. You may also find components that provide alternative functionality that
better serve your application domain. For example, the Hibernate (www.hibernate.org) library
is one of many toolsets that provide an excellent alternative to the persistence features of EJB 3.0.

In this appendix, we discuss how to obtain, install, and run Tomcat.

Obtaining and Installing Tomcat
Tomcat is a part of the Apache Jakarta Project. You can get a copy of Tomcat from the Apache
web site at http://jakarta.apache.org/tomcat/index.html. At the time of this writing, Tomcat
version 5.5.9 was stable and provided support for the Servlet 2.4 specification and JSP 2.0
specification.

Mukhar_470-3.book Page 581 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

582 A P P E N D I X A ■ T O M C A T : W H O N E E D S J A V A E E 5 ?

To download the Tomcat server, follow the Download links on the Tomcat web page to the
page that contains the Tomcat 5.x files. The download files for Tomcat 5 will appear listed by
version, then distribution format.

It is, of course, possible that these locations may have changed by the time you read this.
If so, you can still access the download directories using the links on the Apache Jakarta web
site. Whenever possible, make sure to use a mirror site to download your files.

If you are installing to Windows, you should download either the .exe or .zip files for the
version you want. If you are installing to Linux, you can download a .tar.gz or a .zip file. Other
Unix versions will use the .tar.gz file. We’ll cover each installation in further detail in the
sections that follow.

■Note You can install and compile the source files of Tomcat if you are so inclined. However, this is not
really necessary if all you want to do is use Tomcat as a server for JSP pages and Servlets. Since this book is
about developing web applications, not developing servers, we will not cover the steps in building a Tomcat
server from the source files. If you would like to explore this option, there are detailed instructions for Tomcat 5.5.x
at http://jakarta.apache.org/tomcat/tomcat-5.5-doc/building.html.

Also, note that you will need a version of the Java JDK for Tomcat. We recommend using
the Java 5 JDK. Check the Tomcat web page for the requirements for using earlier versions of
the JDK. Ensure you have an environment variable named JAVA_HOME that points to your JDK
installation on your machine.

Binary Installation to Windows
The simplest installation for Windows is to download the .exe distribution. This is an installa-
tion program that handles all of the installation tasks for you. Simply double-click the .exe, and
the installer will run. The installer runs as a wizard, and for the most part you can simply accept
the default options at each step. The installer will extract and copy all the files to their correct
locations, and configure the environment variables for you. It will also create Start menu short-
cuts for starting and stopping the server.

If you downloaded the zipped distribution file, start by extracting the files in the .zip
archive to a directory. We recommend unzipping the files using the default directory name,
jakarta-tomcat-5.5.xx, into the same location as your Java Standard and Enterprise develop-
ment kit directories. For example, you might have the directory structure shown in Figure A-1
in the root of your C drive.

Mukhar_470-3.book Page 582 Saturday, October 1, 2005 6:14 AM

A P P E N D I X A ■ T O M C A T : W H O N E E D S J A V A E E 5 ? 583

Figure A-1. Example filesystem contents

After unzipping the files, you will need to set the environment variables yourself. You need
to create an environment variable named CATALINA_HOME, which will point to the location of
Tomcat. For example, if you installed Tomcat to the default directory as suggested, you will set
CATALINA_HOME to C:\jakarta-tomcat-5.5.9. In Win9x and WinME, you will do this through the
autoexec.bat file. For WinNT and Win2000, you can do this in the System dialog box, which
you can access by selecting Start ➤ Settings ➤ Control Panel and choosing the System option.
Then select the Advanced tab and click the Environment Variables button. Installing Tomcat
this way does not create Start menu shortcuts, but you can access the startup.bat and
shutdown.bat files for starting and stopping the server in the Tomcat \bin directory.

One other thing you need to do for Win9x and WinME is ensure there is enough environ-
ment memory. Navigate to the Tomcat \bin directory and right-click the startup.bat and
shutdown.bat files, select Properties, click the Memory tab, and set the Initial Environment to 4096.

Binary Installation to Linux/Unix
If you downloaded the .tar.gz or .zip distribution file, start by creating a directory for the
installation and extracting the files to that directory.

After installing the files, you will need to set an environment variable. The variable is
named CATALINA_HOME and it will point to the location of Tomcat. For example, if you installed
Tomcat to /usr/local/tomcat, you would set the variable with this command in the bash shell:

> CATALINA_HOME=/usr/local/tomcat
> export CATALINA_HOME

If you are using a different shell, use the command that is appropriate for that shell. The
scripts for starting and stopping the server are in the Tomcat /bin directory.

Mukhar_470-3.book Page 583 Saturday, October 1, 2005 6:14 AM

584 A P P E N D I X A ■ T O M C A T : W H O N E E D S J A V A E E 5 ?

Running Tomcat
After installing Tomcat, start the server using the Start menu, batch file, or script file for
your system. When the server is running, you can open a browser to the Tomcat web page
at http://localhost:8080. If the Tomcat installation is successful, you should see a web page
like the one shown in Figure A-2.

Figure A-2. Tomcat startup page

For the most part, if you follow these directions, you should have no problems installing
Tomcat. If you do encounter any installation issues, check your Java installation and ensure
that the JAVA_HOME and CATALINA_HOME environment variables are set. If you are using
Win9x or WinME, ensure the environment memory space is set correctly, as explained earlier.
If that doesn’t help, check the Tomcat web page at http://jakarta.apache.org/tomcat/
index.html for further information on installing, running, and troubleshooting Tomcat. You
might also try posing a question with the specifics of your problem on one of the Tomcat
mailing lists. At the time of this book’s publication, subscription information for a couple of
lists could be found here: http://jakarta.apache.org/site/mail2.html#Tomcat.

Mukhar_470-3.book Page 584 Saturday, October 1, 2005 6:14 AM

585

■ ■ ■

A P P E N D I X B

SQL and EJB QL

This appendix provides a brief introduction to the Structured Query Language (SQL) and the
Enterprise JavaBeans Query Language (EJB QL), two techniques for accessing data that you can
use in Java EE programming. SQL is relevant to data-access techniques using JDBC, discussed
in Chapters 7, 8, and 11 of this book. EJB QL provides an alternative data-access methodology
specific to entity EJBs, as described in Chapters 10 and 11.

Introduction to SQL
SQL is a standardized query language for retrieving and updating data held in a relational data-
base management system (RDBMS). At the time of writing, the current version of SQL is SQL99,
sometimes referred to as SQL3.

The SQL language is merely meant as an interface to the native fetch and update mecha-
nisms of the RDBMS. To understand the SQL approach to an RDBMS, you need to know about
the objects and relationships that, conceptually, make up an RDBMS.

SQL Objects
A relational database provides a logical framework to allow the storage of pieces of data. The
relational model includes a hierarchy of the following objects:

• Clusters: A cluster, as described in the SQL99 specification, broadly corresponds to an
RDBMS product and is a named set of catalogs available in a SQL session. The SQL99
specification indicates that access permissions may be controlled at the cluster level, but
some database vendors implement permissions only at the catalog level and at lower
levels of the hierarchy.

• Catalogs: A catalog is a uniquely named set of schemas. Some database products, for
example Microsoft’s SQL Server and Oracle, use the term instance to broadly correspond
to a SQL99 catalog.

• Schemas: A schema is a uniquely named set of objects and data owned by an individual
user.

• Objects: Most usage of SQL takes place at the object level and below. Objects include
tables, views, modules, and routines.

Mukhar_470-3.book Page 585 Saturday, October 1, 2005 6:14 AM

586 A P P E N D I X B ■ S Q L A N D E J B Q L

• Columns: SQL objects consist of one or, usually, more columns. A typical database table
will consist of several columns, each of which contains, for each row, a piece of data of a
particular data type.

• Domain-defined data types and user-defined data types: Data types may be domain-
defined, which are standard SQL-recognized data types, or may be defined by a user,
which are user-defined data types. Each piece of data in a column must comply with the
constraints on its possible values imposed by the specified data type.

• Rules and assertions: Data must sometimes conform to a rigid standard. SQL provides
for the definition of those requirements, so that entered information is programmati-
cally enforced to whatever standard necessary.

In this appendix, we will look primarily at how to use SQL to work with table objects and
how to execute queries that select data from one or more columns in one or more tables. First,
let’s briefly look at the data types that are recognized in SQL99.

■Note Many database management systems had proprietary methods of data retrieval and manipulation
before SQL was disseminated, so database vendors provide somewhat variable support for SQL99. However,
all the big-name databases provide significant SQL99 support. It is important, nonetheless, that you check
which aspects of SQL99 are supported by the database management system that you plan to use.

CHARACTER CASE IN SQL CODE

RDBMS products differ in how they handle character case. Some products are case-sensitive; for example,
they consider tables with the same names but different letter case as different objects. This means that code
such as

SELECT * FROM presidents

and

SELECT * FROM Presidents

will work identically in a non-case-sensitive RDBMS but can cause difficult-to-diagnose problems in a case-
sensitive RDBMS.

If there is any likelihood that you or your client will want to transfer data to another product at a future
date, it is a good idea to have a consistent naming scheme for tables, columns, and so on. This will help you
to avoid having different cases in names in different parts of your code, and thus avoid problems, and much
wasted time, when you switch products.

Similarly, it is a good idea to adopt consistent use of case when writing SQL code. One convention is to
use uppercase for all SQL commands and lowercase for table and column names. This is the style we use in
this book. In addition, each clause of a SQL statement is expressed on a separate line, making the SQL code
easier to read.

In practice, when working for a client, you will likely need to adopt the case convention already used in
the existing databases and code.

Mukhar_470-3.book Page 586 Saturday, October 1, 2005 6:14 AM

A P P E N D I X B ■ S Q L A N D E J B Q L 587

SQL Data Types
SQL data types are essentially constraints on the types of data that may be stored in a column
and on how that data is actually stored in the RDBMS. Careful consideration of which data
types are appropriate is an important part of the analysis and design of a new database.

As with many aspects of RDBMS, the use of data types varies among RDBMS packages.
Check the documentation to determine which data types it supports. Data types vary among
vendors, but usually you will be able to identify their corresponding SQL99 data types.

String Data Types

String data is one of the most commonly used data types. String data of fixed length is specified
using the CHAR keyword. For example, to declare the last_name column as accepting text of exactly
20 characters in length, use this code:

last_name CHAR(20)

Such declarations are used when creating columns for tables, as described in the next
section. A CHAR declaration commonly is padded with spaces to the stated number of characters
if the user-supplied string is shorter.

Commonly, a character string is declared to be of variable length. For example, to declare
the last_name column as being a variable-length string up to 20 characters in length, use this code:

last_name VARCHAR(20)

A VARCHAR is stored more efficiently than a CHAR in terms of disk space, but performance
during sorts of VARCHAR data is likely to be slower. Some database systems don’t allow indexes
to be created on VARCHAR data types, which further impacts performance. Some database pack-
ages use LONG, TEXT, or MEMO in place of VARCHAR.

In addition, the NCHAR and NVARCHAR data types support multibyte, or Unicode, characters.

■Note All string data types, when referred to in SQL code, must be surrounded by paired apostrophes.

Numeric Data Types

At the risk of stating the obvious, numeric data types store numbers. Think carefully about the
likely extreme values that may need to be stored when deciding among the list of data types in
Table B-1.

In addition, many RDBMSs store a MONEY or CURRENCY data type.

Mukhar_470-3.book Page 587 Saturday, October 1, 2005 6:14 AM

588 A P P E N D I X B ■ S Q L A N D E J B Q L

Date and Time Data Types

Date and time data types vary among RDBMSs. Likely types include DATE, DATETIME, and
SMALLDATETIME, which represent data in human-readable date and combined date/time formats.
Each date type provides some different representation of the current time. For example, the
omnipresent TIMESTAMP representation presents a value recording the number of seconds from
the beginning of the Unix epoch (Midnight, January 1, 1970) to some arbitrary time. The more
esoteric TIMESPAN (the Postgres RDBMS) and INTERVAL (the Oracle RDBMS) data types represent
some interval of time.

Binary Data Types

Binary data types can be used to store data such as graphic images. Support may include
BINARY, LONG RAW, RAW, and VARBINARY data types. It’s a good idea to check the documentation of
your RDBMS to confirm the allowable byte length.

Creating Tables
Creating and manipulating tables is a relatively infrequent but essential use of SQL, since typically
a table will be created once, and then used with unchanged structure over extended periods of
time. Changes to table structure, assuming that the database design has been well thought out,
will be rare.

Since there are many objects in an RDBMS that “contain” some application value, the SQL
specification provides for a general-purpose CREATE query that instructs the database to create
some object. (A database object can be a table, a view, an index, a stored procedure and even a
new database.) In SQL, a table is created using the CREATE TABLE statement. The general format
for a simple CREATE TABLE statement is as follows:

CREATE TABLE tablename
(
 columnDefinitions
);

Table B-1. SQL Numeric Data Types

Data Type Description

BIT Single-bit value, which can be 0 or 1.

DECIMAL Floating-point values with specified level of precision. May also be DEC
(Oracle, Postgres), FLOAT8 (Postgres), NUMERIC (SQL Server), or NUMBER (Oracle).

FLOAT Floating-point values. May also be FLOAT4 (Postgres).

INT Four-byte integer value. May also be INT4 (Postgres) or NUMBER (Oracle).

REAL Four-byte floating-point value.

SMALLINT Two-byte integer value. May also be INT2 (Postgres) or NUMBER (Oracle).

TINYINT One-byte integer value.

Mukhar_470-3.book Page 588 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

A P P E N D I X B ■ S Q L A N D E J B Q L 589

For example, to create a table called presidents with four columns—last_name, first_name,
birth_date, and gender—use code like this:

CREATE TABLE presidents
(
 last_name VARCHAR(20) NOT NULL,
 first_name VARCHAR(20) NOT NULL,
 birth_date DATETIME NOT NULL,
 gender VARCHAR(6)
);

The CREATE TABLE statement causes an RDBMS to create a new table. The code in parentheses
defines the columns to be created in that table. For each column, you declare the column name
(note that we use the convention of all lowercase), its data type, the permitted number of char-
acters, and then include a set of modifiers that specify some distinct behavior that the column
will obey. The modifiers available to you depend on your RDBMS. The following are modifiers
available in most RDBMSs:

• AUTO_INCREMENT: The database will automatically increment the value of the column by 1
for each new insertion. This modifier is typically used for the unique ID of the row, and
it may be specified only in an integer column.

• PRIMARY KEY: The database will treat the column in question as the unique identifier for
each inserted row and alter its storage of the information contained therein accordingly.
This modifier is often used in conjunction with the AUTO_INCREMENT modifier, as it requires
that each inserted row have a unique value in its PRIMARY KEY specified column.

• INDEX: The database will create an index on the specified column. Indices are most widely
used to provide quick retrieval on those values that partially identify a row but are not
flagged as the PRIMARY KEY.

• NOT NULL: The database will not allow a null or empty value to be assigned to the column
in question.

• DEFAULT: The database will assign some default value to the column in question. DEFAULT
is specified in the format DEFAULT defaultvalue, where defaultvalue is some literal value
or function call.

There are many other common modifiers, as well as modifiers that are RDBMS-specific.
The function of each modifier may imply database storage specifics, data type constraints, or
relationships to other data.

Specifying Default Values

In some circumstances, you may find it useful to specify a default value for a column. For
example, in a presidents table, you might want to acknowledge the historical situation and
allow for future possibilities by including a gender column, with a default value of Male, as follows:

Mukhar_470-3.book Page 589 Saturday, October 1, 2005 6:14 AM

590 A P P E N D I X B ■ S Q L A N D E J B Q L

CREATE TABLE presidents
(
 last_name VARCHAR(20) NOT NULL,
 first_name VARCHAR(20) NOT NULL,
 birth_date DATETIME NOT NULL,
 gender VARCHAR(6)DEFAULT 'Male'
);

A default value can also be specified for columns that are marked as not accepting NULL
values:

 gender VARCHAR(6) NOT NULL DEFAULT 'Male'

Updating the Structure of a Table

If you have designed your tables with enough careful thought, the need to alter the structure of
a table should be an infrequent one. However, SQL provides an ALTER TABLE statement for
such situations. For example, to add a death_date column to the presidents table, use the
following code:

ALTER TABLE presidents
ADD death_date DATETIME
;

■Caution Be aware that RDBMS products differ significantly in what alterations in structure they will allow.
To avoid difficulties at a later date, it is good practice to take more care when designing the table structure
when the data store is created.

Similarly, if you had created a column for death_date, and later decided you wanted to
delete it, you could remove it using the following code:

ALTER TABLE presidents
DROP COLUMN death_date;

Deleting a column is not something you will do often, nor is it something to do lightly.
If you don’t have a backup, once you drop the column, that column and all of its data are gone
forever, so be careful!

■Note If you feel that you really want to carry out substantial restructuring of a table, it may be more appro-
priate to create a new table and use the INSERT SELECT statement to copy data from the existing table,
verify that the desired data has copied, rename the original table, and then rename the new table to the name
of the original table. You can expect to need to re-create any stored procedures, indexes, and so on.

Mukhar_470-3.book Page 590 Saturday, October 1, 2005 6:14 AM

A P P E N D I X B ■ S Q L A N D E J B Q L 591

Deleting Tables

Deleting, or dropping, a table is also not something to be done lightly, although it’s simple to
accomplish. The SQL syntax to drop the presidents table looks like this:

DROP TABLE presidents;

When you execute this statement, you probably won’t see any confirmation dialog boxes,
nor is there any way to undo the statement. Executing this statement will permanently remove
the table and all of its data.

Handling Null Values

In a relational database, a value in a particular field (the intersection of a row and column) may
contain a NULL value. A NULL value signifies an absent or unknown value. A NULL is not the same
as an empty string, a sequence of space characters, or a value containing numeric zero. Most
RDBMSs will set the value of a column to NULL by default when no other value has been specified.

When a column is created, it can be specified as allowing or disallowing NULL values. In a
table called presidents, you might want to specify that the death_date column is allowed to
contain a NULL value (the default situation), since not all United States presidents will have died
at any selected time. On the other hand, you would likely want to specify that a last_name
column and a first_name column are not allowed to contain NULL values (they should always
contain data for each row in the database). You could achieve both desired constraints using
the following code:

CREATE TABLE presidents
(
 last_name VARCHAR(20) NOT NULL,
 first_name VARCHAR(20) NOT NULL,
 birth_date DATETIME NOT NULL,
 death_date DATETIME
);

Selecting Data from Tables
Querying data in an existing table is likely to be the most common SQL task that you will perform.
Such SQL queries are based on the SELECT statement. The simplest form of the SELECT state-
ment is shown here:

SELECT * FROM presidents;

This selects all columns from the presidents table, as indicated by the * wildcard. Since there is
no WHERE clause, all rows contained in the presidents table are retrieved.

If, as is more usual, you wish to retrieve selected columns from the presidents table, you
use what is known as a projection. You simply replace the * wildcard with a comma-separated
list of the columns you want to retrieve. Specifying selected columns is also likely to be a more
efficient query than using the * wildcard. For example, to retrieve the last_name and first_name
columns of the presidents table, use the following code:

SELECT last_name, first_name FROM presidents;

Mukhar_470-3.book Page 591 Saturday, October 1, 2005 6:14 AM

592 A P P E N D I X B ■ S Q L A N D E J B Q L

Filtering Data in Queries

In practice, it is unlikely that you will want to retrieve all rows from a table. In SQL, you can
filter out unwanted rows by specifying those rows you do want to see using a WHERE clause in
conjunction with a SELECT statement. For example, if you wanted to retrieve the rows that
contained data concerning presidents Theodore Roosevelt and Franklin Roosevelt, you could
use the following SQL:

SELECT * FROM presidents
WHERE last_name='Roosevelt';

The * wildcard signifies that all columns are retrieved from each row of the presidents
table. The WHERE clause filters the results so that only those rows containing the value Roosevelt
in the last_name column are retrieved.

The WHERE clause can use a number of operators in filtering data in addition to the = operator
used in the preceding example. Table B-2 shows the operators that can be used in a WHERE clause.

You will most probably have noticed that there is some duplication in the available opera-
tors. For example, you can use the !> or <= operator to signify that values less than or equal to
a specified value are to be included. As you may have guessed, this is another area where vendors
may differ in which SQL syntax they support. Again, you will want to check your RDBMS docu-
mentation carefully.

If you wanted to select information about all United States presidents except the two
presidents named Roosevelt, you could use the following code:

SELECT last_name, first_name
FROM presidents
WHERE last_name <> 'Roosevelt'
;

Table B-2. SQL Comparison Operators

Operator Description

= Exact equality

<> Inequality

!= Inequality

< Less than

<= Less than or equal to

!< Not less than

> Greater than

>= Greater than or equal to

!> Not greater than

BETWEEN Between two stated values (inclusive)

IS NULL A NULL value

Mukhar_470-3.book Page 592 Saturday, October 1, 2005 6:14 AM

A P P E N D I X B ■ S Q L A N D E J B Q L 593

Since the content of the last_name column is character data, you need to use paired
apostrophes to delimit the value used in the WHERE clause. If the string value itself contains an
apostrophe, then that will need to be escaped. The escape character varies between RDBMSs;
for example, Microsoft SQL Server uses the apostrophe, and Oracle uses the backslash.

Similarly, if you wanted to retrieve information about presidents whose birth year was
between 1800 and 1900 inclusive, you could use code like the following:

SELECT last_name, first_name
FROM presidents
WHERE birth_year BETWEEN 1800 AND 1900
;

In this case, the value contained in the birth_year column is numeric, so no delimiters are
needed for the values to which the BETWEEN operator is applied. Notice the AND keyword, which
is used in a WHERE clause of this type.

Sorting Data from Queries

Rows of data retrieved by a SQL query cannot be assumed to be in any particular order. If you
want to sort the rows of data in a particular way, you must specify the criteria for ordering the
data by using an ORDER BY clause in conjunction with a SELECT statement.

For example, to select all columns of information about all United States presidents from
the presidents table and order them by last name, use the following code:

SELECT * FROM presidents
ORDER BY last_name

The ORDER BY clause can be used together with the WHERE clause. For example, if the year of
appointment were stored in an appointment_year column, you could display the surname and
first name with the year of appointment of all United States presidents whose surname begins
with the letter R or later using the following:

SELECT last_name, first_name, appointment_year FROM presidents
WHERE last_name>'R'
ORDER BY appointment_year;

The list of presidents returned would be in order of earliest appointment to latest appoint-
ment (ascending format), but they could just as easily be returned in reverse (descending format).
Simply add a DESC keyword to the end of the ORDER BY statement, like so:

ORDER BY appointment_year DESC

The list of presidents returned would be in series from latest appointment year to earliest. If
you want to specify that you want ascending format (which the RDBMS should do as default),
you can use the ASC keyword to do so.

If you want to sort the rows returned by a query by more than one criterion, you can do so
by combining the two columns in the order needed. In this example, the rows are ordered
alphabetically by last_name and then by the first_name:

SELECT last_name, first_name
FROM presidents
ORDER BY last_name, first_name;

Mukhar_470-3.book Page 593 Saturday, October 1, 2005 6:14 AM

594 A P P E N D I X B ■ S Q L A N D E J B Q L

Where there is more than one United States president with the same last name (the case for
Adams, Roosevelt, and Bush), the ordering would be strictly alphabetical.

Using Wildcards and Regular Expressions

In addition to using the comparison operators described earlier, SQL provides facilities to
allow you to retrieve data based on text patterns, similar to the pattern matching you can carry
out using the regular expression support in Java.

The LIKE keyword allows text pattern searches. The % pattern matches zero or more text
characters. (If your RDBMS supports it, you can also suffix the table name with * to indicate
descendant tables are to be included in the search as well.) So, to retrieve data from the
presidents table about presidents whose last name begins with the letter B, you could use the
following code:

SELECT last_name, first_name
FROM presidents
WHERE last_name LIKE 'B%'
;

Notice that the text pattern is contained in paired apostrophes. The pattern B% matches any
text string that begins with the uppercase B and that contains zero or more other characters.
Therefore, when that pattern is used to match the last_name column, which contains presidential
surnames, data on all presidents whose surname begins with B is retrieved.

If you did not want to retrieve data on President Buchanan, but only on those presidents
whose surname begins with the characters Bus, you could refine the search like this:

SELECT last_name, first_name
FROM presidents
WHERE last_name LIKE 'Bus%'
;

Data on both presidents named Bush would be retrieved.
The underscore character used in text patterns matches exactly one character. So, using

the following pattern retrieves the surname Bush:

SELECT last_name, first_name
FROM presidents
WHERE last_name LIKE 'Bu__'
;

If there were also a president named John Bull in the table, data on that fictional president
would also be retrieved, since the pattern Bu__ matches any string that is exactly four characters
long and begins with the characters Bu.

■Note If you plan to use the LIKE keyword, be aware that support for this keyword depends on the RDBMS
package you use.

Mukhar_470-3.book Page 594 Saturday, October 1, 2005 6:14 AM

A P P E N D I X B ■ S Q L A N D E J B Q L 595

Some database management systems also explore fuller regular expression syntax, some-
times associated with the LIKE keyword and sometimes using the REGEXP keyword (with MySQL).
For example, to retrieve data from a MySQL database on presidents whose surname begins
with the letters K or R, use the following SQL code:

SELECT last_name, first_name
FROM presidents
WHERE last_name REGEXP "^[KR]."
;

Notice the REGEXP keyword and the text pattern contained in paired double quotes. The ̂ character
at the beginning of the pattern indicates that the text pattern matches the beginning of the
data, and the square brackets indicate a character class. Any character in the character class
that occurs at the beginning of the data in the column will match. The . metacharacter serves
a similar function to the % character with the LIKE keyword.

■Note Regular expression support in your favorite database management system may not have the function-
ality that MySQL supports, or may use different metacharacters inside text patterns.

Adding Calculated Fields

Many pieces of data are reported exactly as they are held in the data store. However, sometimes
you will want to retrieve data that combines data from more than one column. SQL provides
calculated fields to achieve that functionality. Calculated fields can be created by combining
string or numeric values.

■Note A field often means the same as a column, and does so in this case. Occasionally, in discussions of
databases, field is used to refer to the intersection of a particular row and column. That is not the usage in the
term calculated field.

For example, you might store address data in separate columns but want to display a city,
regional code, and postal code together in an address. SQL code to achieve that might look like
the following:

SELECT city+ ', ' + regional_code + ', ' + postal_code
FROM address
;

The + operator in the SELECT statement concatenates the string values contained in the city,
regional_code, and postal_code columns.

Depending on the data type used to create the city, regional_code, and postal_code
columns, you may want to trim out space characters contained as padding in the named
columns, using the SQL RTRIM() function:

Mukhar_470-3.book Page 595 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

596 A P P E N D I X B ■ S Q L A N D E J B Q L

SELECT RTRIM(city)+ ', ' + RTRIM(regional_code) + ', ' + RTRIM(postal_code)
FROM address
;

If you declared the columns to be of type VARCHAR, there will be no padding space characters,
and the RTRIM() function will be unnecessary.

Calculated fields also allow you to perform simple mathematical calculations to produce
calculated fields. For example, you may want to display a product catalog with item price, tax
rate, and tax rate information. In that case, you would want to use an alias for the calculated
field. So, to fill the tax rate field, use code like this:

SELECT product_name, product_code,
item_price, tax_rate,
item_price * tax_rate AS taxed_price
FROM product_catalog
WHERE status = 'current'
;

Notice the AS keyword in the SELECT clause. In the third line of the SQL code, the value of
the item_price and tax_rate columns are multiplied together to produce a calculated field
with the alias of taxed_price.

Most database management systems will support standard mathematical operations of
addition, subtraction, multiplication, and division using the standard mathematical operators,
+, -, *, and /. Of course, Java provides the syntax to carry out these and more complex calcula-
tions. The choice of whether you use SQL or Java to achieve any desired calculations will depend on
your level of comfort with the two languages, whether or not you wish the resource cost incurred by
such calculations to be placed upon the database or the client, and the “correct” home of such
calculations with respect to overall application design.

Using SQL Functions

A number of SQL functions are available to manipulate character, numeric, or date/time data.
In the previous section, you saw the RTRIM() function, which can be used to remove padding
space characters from character data columns of fixed width.

SQL functions can be used to extract part of a string (that is, a substring), to convert data
types, return a number’s ceiling, retrieve the current date, and so on. Unfortunately, the implemen-
tation and syntax of SQL functions varies greatly among database packages. If you are familiar
with the corresponding Java functions, as you are likely to be if you are reading this book, it
may well be more convenient to ignore the SQL functions in many situations where you are
using JDBC. If you do decide to use SQL functions, be sure to carefully consult the documenta-
tion for the database management system in order to determine the appropriate syntax.

In practice, if you want your JDBC code to be portable, it is highly advisable to use the Java
functions rather than the SQL functions. One exception to that general advice is SQL’s aggregate
functions, listed in Table B-3, which are fairly uniformly supported by popular database
management systems. These SQL aggregate functions (defined officially in the SQL99 specifica-
tion) avoid the need to retrieve, perhaps across a slow network, all rows in a table and perform the
corresponding calculations in Java. The retrieval and calculation of data is likely to be much
more efficiently carried out by the database management system.

Mukhar_470-3.book Page 596 Saturday, October 1, 2005 6:14 AM

A P P E N D I X B ■ S Q L A N D E J B Q L 597

For example, to find the highest priced product in a product catalog, you might use code
like the following:

SELECT MAX(product_price)
FROM product_catalog
WHERE status = 'current'
;

Many other retrieval techniques are possible in SQL, but those mentioned in the preceding
sections will give you a start in how to use SQL syntax.

Modifying Table Data
As well as retrieving data, SQL can be used to insert new values in a database, update data, and
delete data.

Inserting New Rows into a Table

The most straightforward technique to insert data into a table is to insert a completely new row.
This is done using the INSERT statement. For example, to add information about the election of a
president to the presidents table, with data for the last_name, first_name, and election_year
columns, you might use the following code:

INSERT INTO presidents
(last_name, first_name, election_year)
VALUES ('Bush', 'George', 2000)
;

If you also wanted to store a middle name but weren’t (at the time) aware of the newly
elected president’s middle name, to avoid ambiguity, use an explicit NULL value, like so:

INSERT INTO presidents
(last_name, first_name, middle_name, election_year)
VALUES ('Bush', 'George', NULL, 2000)
;

In the two preceding examples, each column was named. If you are totally confident of the
ordering of column names, you can omit the column names, using code like the following:

Table B-3. SQL Aggregate Functions

Function Description

AVG() Returns the arithmetic mean value of a column

COUNT() Returns the number of rows which contain a value in a named column

MAX() Returns the largest value in a column

MIN() Returns the smallest value in a column

SUM() Returns the sum of the values in a named column

Mukhar_470-3.book Page 597 Saturday, October 1, 2005 6:14 AM

598 A P P E N D I X B ■ S Q L A N D E J B Q L

INSERT INTO presidents
VALUES ('Bush', 'George', NULL, 2000)
;

Be aware that if you make even a slight error in the ordering of column data, an error will
be generated unless all columns happen to have compatible data types. Omitting column
names increases the likelihood of data values being swapped around.

Updating Data in Tables

If you need to correct a mistake in an existing row, you can do so using the UPDATE statement.
When you use UPDATE statements, be very careful to include a WHERE clause, and also make sure
that the WHERE clause is appropriately tightly defined. If you omit the WHERE clause, then every
row in the chosen table will be updated in the way defined. For example, if you entered the
following:

UPDATE presidents
SET middle_name = 'Walker'
;

this code would assign the middle name Walker to every United States president in the table,
which is probably not what you intended. The existing data for middle name for all presidents,
whether NULL or an actual value, would be overwritten. You have been warned! Mistakes of this
type make you very glad that you have a recent backup of your valuable data. (You do have a
recent, full backup, don’t you?)

The WHERE clause is used to ensure that the UPDATE statement is appropriately applied. Thus,
you could change the middle name of the president elected in 2000 using the following code:

UPDATE presidents
SET middle_name = 'Walker'
WHERE election_year = 2000
;

The preceding code makes the reasonable assumption that only one president was elected
in the year 2000.

Deleting Data from a Table

You are unlikely to want to permanently delete information from a table like the presidents
table, because it is of historical interest. However, in an e-commerce setting, you might choose
to delete information about obsolete products. To achieve that, use the DELETE statement.

Be very, very careful not to omit the WHERE clause in a DELETE statement. Look at this
example:

DELETE
FROM product_catalog
;

This code has potentially just deleted all the data in every row in your product_catalog table.
If you don’t have a very recent, usable backup, you may want to start writing your resignation
letter.

Mukhar_470-3.book Page 598 Saturday, October 1, 2005 6:14 AM

A P P E N D I X B ■ S Q L A N D E J B Q L 599

Suppose you wanted to delete a product with product ID of ABC123. You could use the
following code:

DELETE
FROM product_catalog
WHERE product_ID = 'ABC123'
;

The WHERE clause confines the deletion to the specified row in the table.

Constructing Joins
A join is the combination of results from more than one table in a query. This is a crucial tech-
nique for RDBMS systems for all but simple queries. Let’s consider how this works by reviewing
the basics of relationships in an RDBMS.

Relational database tables each have a primary key, which uniquely identifies each row in
the table. Suppose you had several orders from one customer over a period of time. It would be
inefficient and error-prone to enter customer address data into each order individually. If
order data was held in an orders table, the corresponding customer data would be held in
a customers table. A mechanism is needed to express the fact that a particular customer in the
customers table is the customer for a particular order in the orders table. If the customers table
contains a customer_id column that is the table's primary key, you can create a customer_id
column in the orders table as a foreign key. This expresses the fact that a particular order is
linked to a particular customer.

Suppose that you want to retrieve all orders for a particular customer. Let’s assume that an
order can be made up of only a single type of product, and that the orders table contains the
following columns: order_id, product_id, product_quantity, customer_id, and order_date. Also,
assume that the customers table consists of customer_id, customer_name, and customer_address
columns (for simplicity). You can use a SELECT statement similar to the following to get the orders:

SELECT order_id, product_id, product_quantity, order_date, customer_name,
 customer_address
FROM orders, customers
WHERE orders.customer_id='ABC123'
AND orders.customer_id = customers.customer_id
;

This will retrieve all orders for the customer who has the ID of 'ABC123'.
The SELECT statement in the join is similar to several you have seen earlier in this appendix,

but notice that some of the columns are in the orders table, and some columns (customer_name
and customer_address) are in the customers table. This is indicated by the FROM clause, which
specifies both the orders and customers tables. You need to filter the retrieved rows, so you do
that using a two-part WHERE clause. The first part of the WHERE clause specifies that you want data
on the customer whose customer_id is 'ABC123'. The second part specifies that all retrieved
rows from the customers table must have a customer_id column equal to the customer_id
column in the orders table. This uses notation that should look familiar: a . separates the name
of the table object from the name of the column object:

orders.customer_id = customers.customers_id

Mukhar_470-3.book Page 599 Saturday, October 1, 2005 6:14 AM

600 A P P E N D I X B ■ S Q L A N D E J B Q L

Now suppose that you also want to retrieve price data, which is held in a separate prices
table. You need a join that retrieves data from three tables. The following code will achieve that:

SELECT order_id, product_id, product_price, product_quantity, order_date,
 customer_name, customer_address
FROM orders, customers, prices
WHERE orders.customer_id='ABC123'
AND orders.customer_id = customers.customer_id
AND orders.product_id = prices.product_id
;

Notice the additional AND clause:

AND orders.product_id = prices.product_id

This clause means that you want to retrieve only products relevant to your query.
SQL allows you to construct joins from arbitrary numbers of tables.
As you probably realize, SQL is a topic that many entire books are devoted to. This appendix

provided only a brief introduction. For more information, refer to a SQL reference, such as The
Programmer’s Guide to SQL, by Cristian Darie and Karli Watson (Apress; ISBN 1-59059-218-2).

Introduction to EJB QL
EJB QL is a relatively new method of data access, first introduced in the EJB 2.0 specification.
In EJB 1.1, vendors provided their own, nonstandard query language for finder methods of
entity EJBs, which meant that applications that used container-managed persistence needed
to be partly rewritten if they were moved from one vendor’s EJB container to another.

EJB QL is a query specification language for entity EJBs. EJB QL is used to define data queries
for entity EJBs in a portable way. EJB QL is specified in the EJB specification (from EJB version
2.0 on); therefore, all EJB 3.0 implementations must conform to that specification. In that respect,
EJB QL offers better portability than SQL, which, as mentioned in the preceding sections of this
appendix, is implemented in significantly varying ways on different database management
systems.

■Tip The EJB 3.0 specification notes that EJB implementations may compile EJB QL queries into native SQL
queries to fit their respective entity store. This type of transformation can provide a significant speed boost to
your queries. Check your provider’s documentation to see if this type of optimization is provided to your EJB
applications.

EJB QL is confined to queries against in-memory objects, and thus, differs from SQL in that
EJB QL cannot be used as a general-purpose query directly against a database.

Mukhar_470-3.book Page 600 Saturday, October 1, 2005 6:14 AM

A P P E N D I X B ■ S Q L A N D E J B Q L 601

Entity Bean References
An entity bean is a representation of data stored persistently in a database table. Data in an
RDBMS is held in tables, and data in those tables can have relationships expressed using
primary keys and foreign keys. Since entity beans represent data stored in database tables, it
shouldn’t be surprising that entity beans can similarly have corresponding relationships
between them.

The relationships between entity EJBs are expressed either in metadata annotations in the
class source file or in an XML deployment descriptor file. Typically, the EJB container will use
the information acquired about entity bean relationships to create queries in a language such
as SQL, which actually queries the data store. In the case of metadata annotations, this relation-
ship is inferred via usage of one of the relationship descriptors (such as @OneToMany).

An EJB QL query references an entity bean by its name in the appropriate abstract schema.
The mapping of abstract schema names to an entity bean is taken from the name acquired by
usage of the @Entity annotation descriptor. This name can be generated for you automatically
(in which case, it is the local name of the entity bean class), or it can be manually assigned in
the descriptor:

@Entity(name="ElPresidente")
Public class President {
...
}

This block of code ensures that the abstract schema name for the President entity bean
class is assigned to ElPresidente. Further queries against the entity store will then appear in
the form:

SELECT variable FROM ElPresidente variable [query errata]

The javax.ejb.Query Object
EJB QL queries are issued to the persistence layer through the use of the EntityManager inter-
face, which encapsulates them as Query objects. Query objects represent a high-level view of the
query’s execution and may be used to fine-tune the application’s interaction with the entity
bean store.

Assuming you’ve acquired a reference to the EntityManager in some session bean, an
example of an interaction with the entity bean store would look something like this:

public List getAllPresidents(){
Query q=manager.createQuery("SELECT p FROM President p");
return q.getResultList();
}

This extremely simple example compiles an EJB QL query into a Query object and executes
it, returning a List of President objects as a result.

The Query interface defines more than just the execution of a query. Its definition includes
methods that set the maximum number of results returned, “hints” that specify operational
parameters to the entity store, and parameter setting methods that allow you to generalize EJB QL
queries across an application.

Mukhar_470-3.book Page 601 Saturday, October 1, 2005 6:14 AM

602 A P P E N D I X B ■ S Q L A N D E J B Q L

You can acquire Query objects from the EntityManager in both session beans and message-
driven beans. EJB 3.0 entity beans will not be able to use Query objects, because EntityManager
is unavailable for use in that context.

■Note EJB QL functionality is made available to EJB 2.x entity beans through a feature called finder methods,
wherein EJB QL queries defined in external deployment files are associated with class methods. This functionality
is not available to EJB 3.0 annotated entity beans. For more information about the previous EJB specification,
see Beginning Java EE 1.4, by Jim Crume, Kevin Mukhar, and James L. Weaver (Apress; ISBN 1-59059-341-3).

Building EJB Queries
An EJB QL query consists of the following:

• A SELECT clause, which specifies the type or values of objects to be selected.

• A FROM clause, which specifies the domain (or table) from which objects are to be
selected.

• An optional WHERE clause, which is used to filter the results returned by the query.

• An optional GROUP BY clause, which is used to group the returned results so that aggre-
gate functions may operate on them. This may be further classified by a HAVING clause,
which further restricts the result groups based on some criterion.

• An optional ORDER BY clause, which is used to sort the data returned by the query.

If you have read through the section on SQL in this appendix, you will likely recognize that
EJB QL syntax is similar to SQL syntax.

A common form of an EJB QL query is as follows:

SELECT variable
FROM abstractSchemaName [AS] variable
[WHERE value comparison value]
[GROUP BY ...]
[HAVING ...]
[ORDER BY ...]

The SELECT Clause

The SELECT clause may contain an identification variable, which is used to indicate the entity
type requested. The SELECT clause can be filtered using a WHERE clause. For example, to retrieve
data only for presidents whose surname is Bush, use the following EJB QL query:

SELECT p
FROM MyPresidentsSchema p
WHERE p.last_name = 'Bush'

Mukhar_470-3.book Page 602 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

A P P E N D I X B ■ S Q L A N D E J B Q L 603

Notice that the FROM clause associates the identifier variable p with the abstract schema name
MyPresidentsSchema. The abstract schema name is specified in the deployment descriptor.

The WHERE clause filters the query results so that only those results that match the supplied
parameter are returned to the client.

Navigation Operator

In EJB QL, the . operator is termed the navigation operator, and works in a similar manner to
how objects are navigated in Java itself. The . operator allows you to navigate paths that are
expressed in path expressions.

Input Parameters

You may use named input parameters in an EJB QL query. Each input parameter is indicated
by a preceding literal :, followed by a string value naming the parameter. In other words, the
parameter named "lastname" is expressed as :lastname.

In an earlier EJB QL example, you saw that a literal query could be constructed like this:

SELECT p
FROM MyPresidentsSchema p
WHERE p.last_name = 'Bush'

Using a named parameter, you can more flexibly construct the query as follows:

SELECT p
FROM MyPresidentsSchema p
WHERE p.last_name = :lastname

When an appropriate parameter is supplied, you can retrieve records for presidents with
any specified surname using a method much like the following:

public List findPresidentBySurname(string surname){
Query q=manager.createQuery("SELECT p FROM~CCC
 MyPresidentsSchema p WHERE p.last_name=:surname");
q.setParameter("surname",surname);
return q.getResultList();
}

When there may be duplicate data, such as in the surnames of presidents, you can use
multiple parameters as appropriate. To retrieve data on the younger George Bush, for example,
use the following query (assuming appropriate declaration of a second parameter in the
deployment descriptor):

SELECT p
FROM MyPresidentsSchema p
WHERE p.last_name = :surname AND p.election_year=:electyear

Wildcards

You may use the LIKE keyword together with the % and _ characters, as described for SQL in the
“Using Wildcards and Regular Expressions” section earlier in this appendix. As a recap, the %
character stands for zero or more characters, and the _ character stands for any single character.

Mukhar_470-3.book Page 603 Saturday, October 1, 2005 6:14 AM

604 A P P E N D I X B ■ S Q L A N D E J B Q L

Functions

EJB QL has string and numeric functions, which all EJB 3.0-conformant EJB containers will
support. Table B-4 shows the EJB string functions, and Table B-5 shows the numeric functions.

Subqueries

EJB QL includes the ability to issue subqueries within a SELECT query. The subquery may be
present only in a WHERE or HAVING clause, and itself must be a simple SELECT query. For example,
you could use a subquery to obtain a list of presidents whose total number of electoral votes
exceeds the average of all electoral votes afforded to winning presidents, as follows:

SELECT p
FROM MyPresidentsSchema p
WHERE p.totalVotes > (SELECT avg(po.totalVotes) FROM MyPresidentsSchema po)

Keep in mind that when a subquery is used as a value in an equality test, it must return
some scalar value. Subqueries can return sets of values, but such scenarios are useful only
when subjecting the returned set to some function or operation that acts on sets of returned
values. If you wish to perform some equality test against a set of returned values, you must
prefix the subquery with the ALL or ANY keyword. These keywords indicate that the comparison
must hold true for ALL values returned by the query, or ANY of them.

Table B-4. EJB String Functions

Function Description

CONCAT(String, String) Concatenates two strings and returns a String

SUBSTRING(String, start, length) Returns a String

LOCATE(String, String [, start]) Returns an int

TRIM(String) Returns a string stripped of leading and trailing
whitespace

UPPER(String) Returns a string with all characters converted to
uppercase

LOWER(String) Returns a string with all characters converted to
lowercase

LENGTH(String) Returns an int

Table B-5. EJB Numeric Functions

Function Description

ABS(number) Returns an int, float, or double of the same data type as the argument to
the function

SQRT(double) Returns a double

MOD(int, int) Returns an int

Mukhar_470-3.book Page 604 Saturday, October 1, 2005 6:14 AM

A P P E N D I X B ■ S Q L A N D E J B Q L 605

Aggregate Functions

EJB QL has the following aggregate functions: AVG(), SUM(), COUNT(), MAX(), and MIN(). Refer to
Table B-3 from earlier in this appendix for a good idea of the utility you can expect from each
of these functions. The AVG() and SUM() functions must have a numeric argument. The other
aggregate functions have an argument corresponding to the data type of the corresponding
EJB field. These aggregate functions may be used only when grouping the returned results via
the GROUP BY clause.

Values that contain NULL are eliminated before the aggregate functions are applied. The
DISTINCT keyword can be used to eliminate duplicate values in conjunction with the EJB QL
aggregate functions.

Using Relationships
You can use EJB QL to exploit relationships that are specified in the deployment descriptor.
These relationships bear more than a striking resemblance to the JOIN syntax mentioned
earlier in this appendix, which, quite without coincidence, is why EJB QL uses the same verbiage
to indicate bean relationships.

For example, suppose you have an entity bean with the abstract schema name ActsSchema,
which contains information about all acts passed by the United States Congress, including
information about which president was in office at the time. You could construct the following
query:

SELECT p
FROM MyPresidentsSchema p INNER JOIN p.ActsSchema a
WHERE a.president_surname = :surname

Notice the INNER JOIN clause, which includes the syntax p.ActsSchema expressing that
there is a relationship between the MyPresidentsSchema, identified by the identifier variable p
and the abstract schema ActsSchema. Of course, if this is to work, the necessary annotations for
ActsSchema need to be present in the ActsSchema implementation.

Suppose that ActsSchema was itself related to another entity bean. Once you’ve acquired a
reference to the entity bean of MyPresidentsSchema, you know you have a valid persistence
reference to the ActsSchema object that it’s related to; however, you do not have a guarantee
that the persisted entity bean data in ActsSchema has been fetched. You can indicate to the
persistence layer that you wish the entire persistence hierarchy to be fulfilled by using a different
type of join syntax than what you’ve seen so far. This new join syntax adds the keyword FETCH
to the query, like so:

SELECT p
FROM MyPresidentsSchema p INNER JOIN FETCH p.ActsSchema a
WHERE a.president_surname = :surname

Be aware that this type of functionality can be computationally expensive when used with
complex entity relationship hierarchies.

There is much more to EJB QL than has been explained in this brief description. For further
details on EJB QL, see the EJB 3.0 specification, which can be downloaded from the Sun web
site at http://java.sun.com/products/ejb/docs.html.

Mukhar_470-3.book Page 605 Saturday, October 1, 2005 6:14 AM

Mukhar_470-3.book Page 606 Saturday, October 1, 2005 6:14 AM

607

■ ■ ■

A P P E N D I X C

Java EE Glossary

annotation
Definition: An addition to the Java language with the advent of J2SE 5. Annotations are used
heavily throughout Java EE 5 and allow developers to include compile-time information
with the different elements of an application. This information, termed metadata, allows a
cleaner design and overall semantic.

Where used: In all J2SE 5 applications. Java applications written prior to the introduction of
annotations may still take advantage of attributes by using a library called XDoclet (http://
xdoclet.sourceforge.net/xdoclet/index.html) to annotate J2EE 1.4 components.

aspect-oriented programming (AOP)
Definition: A programming model that puts forth the idea of aspects, or elements of function-
ality that may be “weaved” into existing code at compile time or runtime, allowing developers to
easily add functionality across the scope of an application without manually modifying all
the affected code.

Where used: In a limited fashion with session bean and message-driven bean interceptors.
The open source AspectJ compiler (http://eclipse.org/aspectj) provides a powerful AOP
framework.

component
Definition: The building blocks of a Java EE application. Components are specific software
units, supported by a container, and are configurable at deployment time. The four types of
components defined within Java EE are EJBs, web components, applets, and application clients.

Where used: In all Java EE applications.

container
Definition: A software entity that provides services to components, including lifecycle
management, security, deployment, and runtime services. A container of specific types of
components, such as EJB, web, JSP, Servlet, applet, or application client, will provide the
services its components need. For example, Servlet containers need to support HTTP as a
protocol for requests and responses, whereas JSP containers need to provide the same services
as Servlet containers, plus an engine to interpret and process JSP pages into Servlets.

Mukhar_470-3.book Page 607 Saturday, October 1, 2005 6:14 AM

608 A P P E N D I X C ■ J A V A E E G L O S S A R Y

Where used: In Java EE applications.

Common Object Request Broker Architecture (CORBA)
Definition: A standard architecture for distributed object systems, specified by the Object
Management Group (OMG). This model allows a distributed, heterogeneous collection of
objects to interoperate, regardless of platform or programming language.

Where used: In distributed object systems where language and platform independence
is critical.

distributed application
Definition: An application composed of a variety of components running in separate runtime
environments, often on different platforms, and connected over a network. Distributed
application types include two-tier (client/server), three-tier (client/middleware/server),
and multitier or n-tier (client/multiple middleware/multiple servers).

Where used: Wherever different components of an application need to be connected to
each other over a network.

Enterprise JavaBeans (EJB)
Definition: A server-side component model for Java. EJB is a component architecture designed
to enable developers to build and deploy scaleable, secure, multiplatform, business-critical
applications that are object-oriented, reusable, and distributed. It allows enterprise developers
to focus on writing business logic without the need to write code that handles such tasks as
transactional behavior, security, connection pooling, or threading, since the architecture
delegates these tasks to the server vendor.

Where used: In distributed business applications that will operate on any server that provides
the EJB APIs.

EJB container
Definition: A container for EJB components that provides a scaleable, secure, transactional
environment in which enterprise beans can operate. It is the container that handles the
object lifecycle, including creating and destroying an object, as well as handling the state
management of beans. When a bean is installed in a container, the container provides an
implementation of the bean’s remote interface. The container will also make the bean’s
interface available in the Java Naming and Directory Interface (JNDI). In addition, the container
services requests for resource injection on the part of the bean. An EJB container is provided
by an EJB or Java EE server.

Where used: In any distributed application that uses EJBs.

Mukhar_470-3.book Page 608 Saturday, October 1, 2005 6:14 AM

A P P E N D I X C ■ J A V A E E G L O S S A R Y 609

EJB server
Definition: A collection of services and resources needed to support an EJB installation.
These services include management of distributed transactions, management of distributed
objects, distributed invocations on these objects, and management of low-level system services.
Since the Java EE architecture assumes that an EJB container is hosted by an EJB server from
the same vendor, it does not specify the contract between these two entities. Each EJB server
may host one or more EJB containers.

Where used: In distributed applications that employ one or more EJB containers.

eXtensible Markup Language (XML)
Definition: A universal syntax that allows developers to describe and structure data, inde-
pendent of the application logic. Unlike HTML, which has fixed tags that deal mainly with
style or presentation, XML tags are defined as needed. XML can be used to define unlimited
languages for specific industries and applications. XML documents need to be transformed
into a language with style tags under the control of a stylesheet before they can be presented
by a browser or other presentation mechanism. Since XML and Java are both portable and
extensible, they are an ideal combination for web applications.

Where used: In conjunction with Java EE technology, whenever an enterprise application
needs to consume and generate information that is exchanged among different servers that
run on varied system platforms.

injection
Definition: The process wherein a particular resource is automatically “injected” into an
instance of an EJB by the EJB container. Injection can be specified on resources using the
@Resource annotation, and it may also be specified for the special case of the EntityManager
through use of the @PersistenceContext annotation.

Where used: In all EJB 3.0–compatible beans.

Java Enterprise Edition (Java EE)
Definition: A platform that creates an environment for developing and deploying multi-
tiered web-based enterprise applications. Java EE allows developers to create standardized,
modular components, and it provides those components with a complete set of services,
APIs, and protocols that automatically handle many of the details of application behavior,
without the need for complex programming. Java EE adds to the features of the Java Platform,
Standard Edition (J2SE) by including full support for EJB components, Java Servlets API,
JavaServer Pages (JSP), and XML. The library was previously known as “J2EE.”

Where used: In distributed transactional enterprise applications in which the developer
needs to reduce the costs and time of development, and use the speed, security, and reliability
of server-side technology.

Mukhar_470-3.book Page 609 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

610 A P P E N D I X C ■ J A V A E E G L O S S A R Y

Java Interface Definition Language (Java IDL)
Definition: A technology for distributed objects, providing CORBA interoperability and
connectivity capabilities for the Java EE platform. Similar to Remote Method Invocation
(RMI), which supports distributed objects written entirely in the Java programming language,
Java IDL enables objects to interact regardless of whether they’re written in Java or another
programming language. It uses CORBA’s IDL to map Java to all other languages supported
by CORBA.

Where used: In distributed applications in which objects written in Java will need to
interact with objects that may be written in other programming languages.

Java Naming and Directory Interface (JNDI)
Definition: An API that enables Java applications to acquire named resources from a directory
service. The resources in the directory service may be elaborated upon via attributes; these
attributes may be used to locate and identify the resources requested by client applications.
JNDI may work in concert with any number of directory service providers (LDAP, NDS, DNS,
etc.) to provide these resources.

Where used: In scenarios where shared access to resources is necessary; any distributed
application that must provide uniform access to a single store of resources.

JavaServer Pages (JSP)
Definition: A web technology that combines the tasks of page designing and programming.
JSP pages use template data, custom elements, scripting languages, and server-side Java
objects to return dynamic content to a client. Developers write the template data in HTML
or XML, adding inline Java code within special tags to provide the dynamic content. These
tags also allow JSP pages to interact with EJBs from a number of sources and display them.
The beans can also be filled by using the input parameters of HTTP requests. Application
servers compile JSP pages into Servlets.

Where used: In developing and maintaining dynamic web pages that leverage existing
business systems.

Java Database Connectivity (JDBC)
Definition: An API that allows connectivity between Java EE applications and virtually any
tabular data source. Typically, the data source is a SQL relational database management
system (RDBMS), but the JDBC API also provides access to such data sources as flat files and
spreadsheets.

Where used: Whenever a distributed application needs to access enterprise data.

Mukhar_470-3.book Page 610 Saturday, October 1, 2005 6:14 AM

A P P E N D I X C ■ J A V A E E G L O S S A R Y 611

Java Message Service (JMS)
Definition: An API for sending and receiving messages. JMS passes the received messages
into a message store for listening applications to process. JMS may be extended to create a
custom messaging API.

Where used: In message-driven beans.

module
Definition: A software unit that is the smallest deployable and usable unit of Java EE
components. It consists of one or more components of the same container type and one
deployment descriptor that contains meta-information about the components. The three
types of modules are EJB, web, and application client. Modules can be deployed as stand-
alone units, assembled as packages of related components, or assembled into a single appli-
cation module.

Where used: Throughout all Java EE applications.

object-relational mapping (ORM)
Definition: The process wherein an object hierarchy is “mapped” to an information store.
ORM is a technique used to persist object information beyond the lifetime of an application.
Most often this information is persisted in a SQL database.

Where used: In the entity bean persistence of EJB 3.0. Alternative ORM and persistence
frameworks include Hibernate (www.hibernate.org) and Java Data Objects (JDO) (http://
java.sun.com/products/jdo).

resource manager
Definition: A Java EE component that manages the lifecycle of a resource type. This prima-
rily involves providing access to a set of shared resources, including connection pooling,
transaction support, and network communication. A resource manager provides and enforces
the ACID (atomicity, consistency, isolation, durability) transaction properties for specific
data and operations. An example of a resource manager is a relational database, which
supports the persistent storage of relational data. The resource manager typically operates
in a different address space or on a different machine from the clients that access it.

Where used: In enterprise applications where data and other operational resources require
lifecycle management.

Mukhar_470-3.book Page 611 Saturday, October 1, 2005 6:14 AM

612 A P P E N D I X C ■ J A V A E E G L O S S A R Y

Remote Method Invocation (RMI)
Definition: A strictly Java-to-Java technology that allows an object running in one JVM to
invoke methods on an object running in a different JVM. The JVMs can be on the same or
different hosts. The object in the first program can make a call on a remote object in the
second program once it has obtained a reference to the remote object.

Where used: Wherever distributed applications will involve only Java technology from end
to end, or where provision is made, such as through RMI-IIOP, for Java technology to operate
seamlessly with other languages.

Servlet
Definition: A component-based Java program that provides a simple, consistent mecha-
nism for extending and enhancing the functionality of a web server and for accessing
existing business systems. Servlets generate dynamic content and interact with web clients
using a request/response paradigm. They have access to the entire family of Java APIs. Since
Servlets are server and platform independent, they allow developers to select servers, plat-
form, and tools of choice. Think of a Servlet as a GUI-less applet that runs on the server side.

Where used: In enhancing the functionality of a web server to access distributed enterprise
systems.

Servlet container
Definition: A container that provides network services for sending requests and responses,
as well as decoding requests, and formatting responses. Servlet containers are required to
support HTTP as a protocol for requests and responses, but may additionally support other
request/response protocols such as HTTPS.

Where used: Wherever Servlets are part of a distributed application.

Secure Sockets Layer (SSL)
Definition: A security protocol designed to enable private communications over a nonpri-
vate network such as the Internet. SSL uses public key encryption and digital certificates to
establish a secure connection between a client (such as a web browser) and a web server, to
prevent eavesdropping or tampering with communications within and between distributed
applications. Servers are always authenticated and clients are optionally authenticated. Web
pages that are secured with SSL will likely display a “closed padlock” icon or other symbol to
indicate that SSL has been enabled. By convention, such web site addresses will start with
https:// rather than the usual http://.

Where used: In virtually all distributed enterprise applications, especially those in which
communications include private or sensitive material.

Mukhar_470-3.book Page 612 Saturday, October 1, 2005 6:14 AM

A P P E N D I X C ■ J A V A E E G L O S S A R Y 613

transaction
Definition: An indivisible unit of work that modifies data while ensuring its integrity. A
transaction encloses one or more program statements, all of which must either complete (a
commit) or be rolled back, ensuring that the data always remains in a consistent state. When
a transaction commits, the data modifications made by its statements are saved. If any of the
statements within a transaction fail, the transaction rolls back, undoing the effects of all
statements in the transaction. Transactions control the concurrent access of data by multiple
users.

Where used: In any application in which data is modified.

web application
Definition: An application written to be deployed over the Internet. This includes not only
those built with Java technologies such as JSP and Servlets, but also those built with non-
Java technologies such as CGI and Perl. Distributable web applications use Java EE technology,
written to be deployed in web containers distributed across multiple JVMs running on the
same host or different hosts.

Where used: Whenever a distributed application will be deployed over the Internet.

web container
Definition: A container that provides a runtime environment for web components, including
security, concurrency, lifecycle management, transaction, deployment, and other services.
A web container provides the same services as a JSP container, plus a federated view of the
Java EE platform APIs. A web container is provided by a web or Java EE server. A distributed
web container is one that can run a web application tagged as distributable and that executes
across multiple JVMs running on the same host or on different hosts.

Where used: In any distributed application that includes web components.

web server
Definition: Software that provides a collection of services and resources for accessing the
Internet, an intranet, or an extranet. A web server hosts web sites, provides support for HTTP
and other protocols, and executes server-side programs. Within the Java EE architecture, a
web server provides services, such as HTTP message handling, to a web container. Since the
Java EE architecture assumes that a web container is hosted by a web server from the same
vendor, it does not specify the contract between these two entities. Each web server may
host one or more web containers.

Where used: Whenever web containers form part of an application—essentially, whenever
any part of the application involves a network.

Mukhar_470-3.book Page 613 Saturday, October 1, 2005 6:14 AM

Mukhar_470-3.book Page 614 Saturday, October 1, 2005 6:14 AM

615

Index

■Symbols
& symbol, 231

*.faces pattern, 181

_ (underscore character), 594

+ symbol, 231

<= operator, 592

!> operator, 592

? symbol, 231

/ symbol, 294

■A
ABS(number) function, EJB, 604

Abstract Windows Toolkit (AWT), 258

account management systems, 565

action attribute, 177, 202–203, 206, 245

action tag, 224

activateConfig parameter, @MessageDriven
annotation, 558

add() method, 305

addAnalyst() method

Analyst class, 496

ArrayList class, 522

StockListDelegate class, 524

addBatch() method, JDBC, 334

addCookie() method, HttpServletResponse
class, 280

AddRating Servlet, 538, 540

AddRating.java, 537

addStock() method, 440, 496, 522

addStockRating() method

Session class, 479

StockListAdder class, 496

aggregate functions, 597, 605

ALL keyword, 604

ALTER TABLE statement, 590

Analyst bean, 478, 521

Analyst entity bean, 493, 521, 524

AnalystBean.java, 480, 493

AnalystDAO object, 516

Analyst.java entity bean, 480, 508

AnalystTO class, 506, 521, 531

AnalystTO transfer object, 524

AnalystTO value object, 538

AnalystVo.java, 511

AND keyword, 593

ANY keyword, 604

AOP (aspect-oriented programming)
model, 547

Apache AXIS, 568

Apache Jakarta Project, 581

Apache Software Foundation, 581

Apache Struts project, 167

applet class, 12

application object, JSP implicit objects, 76

application scope, JSP, 72

application servers

description, 1

functions, 406–407

applicationScope, EL statement implicit
object, JSP, 114

application.xml file, 36, 450, 458

ApressBookService, 562

Array property type, 190–191

ArrayList class, 295, 305, 495

ArrayList instance, 531

AS keyword, 596

ASC keyword, 593

Mukhar_470-3.book Page 615 Saturday, October 1, 2005 6:14 AM

616 ■I N D E X

ASCII, 231

aspect-oriented programming (AOP)
model, 547

assertions, 586

assignStock() method, 493, 496

asynchronous messages, 543

AUTO_INCREMENT modifier, 589

AVG() function, 597, 605, SQL

AWT (Abstract Windows Toolkit), 258

■B
basename attribute, 225–226

batch updates, JDBC, 334–335

BEA WebLogic Portal JSP Tag Libraries for
JSP, 165

bean class, entity beans, 427–428

BEAN parameter, 547

Bean-Managed Persistence (BMP), 19–20,
425, 430–431

Bean-Managed Persistence (BMP) entity
bean development

building BMP entity bean application,
442–458

deploying BMP entity bean application,
458–459

overview, 441–442

running BMP entity bean application, 459

beans. See JavaBeans

BETWEEN operator, 593

BibleWebservice web service, 563

BigDecimal class, 214

BigInteger class, 214

bin directory, 240

binary data types, 588

binding database names and resources, 311

BIT data type, 588

BMP. See Bean-Managed Persistence (BMP)

BodyTag interface, JSP, 143

bracket notation, 189

■C
C programming language, 234

calculated fields, adding, 595–596

calculator example, EJB stateful bean

bean class code, 420

bean interface code, 419

compiling the code, 420–421

detailed explanation, 422–423

running the application, 421–422

calculator Servlet

deploying to Java EE, 260–261

deploying to Tomcat, 261–262

running, 262, 264

Calendar class, 223

callable statements, JDBC, 371–372

CallableStatement objects

INOUT parameter, 373–376

OUT parameter, 373–374

IN parameter, 373

prepareCall() method, 372–376

carriage return/line feed (CRLF), 233

cascade annotation attribute, 477

CascadeType.CREATE
(javax.ejb.CascadeType), 477

CATALINA_HOME environment variable,
583–584

catalogs, 585

catch block, 269

Caucho Resin, 581

CGI (Common Gateway Interface), 234–235

chain.doFilter() method, 291

chained exceptions, JDBC, 331–332

CHAR keyword, 587

.class files, 277

classic tag handler, JSP

BodyTag interface, 140–143

BodyTagSupport class, 140–143

FAQ questions example, 145–155

IterationTag interface, 140–143

Tag interface, 140–142

TagSupport class, 140–143

classic tag handlers, JSP, 129

Mukhar_470-3.book Page 616 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

617■I N D E X

CLASSPATH environment variable, 458,
469, 539

compiling EJB session bean
application, 413

creating entity bean using CMR and EJB
QL, 491, 502

creating session beans, 438

running EJB calculator stateful bean
application, 421–422

running EJB session bean application,
415–416

clearBatch() method, JDBC, 334

client/server architecture, 5, 10

components, 11

disadvantage of combined logic, 6

fat/thin clients, 11

Clonable interface, 265

close() method, Connection class, JDBC,
328–329, 378

clusters, 585

CMP. See Container-Managed
Persistence (CMP)

CMR. See Container-Managed
Relationships (CMR)

Coldbeans Bar Charts for JSP, 165

Collection class, 430, 465

Collection class, java.util package, 475

columns, 586

commandButton element, 177, 180, 206, 225

commandButton navigation rule, 203

commandLink element, 207, 211

commandLink navigation rule, 203

comments, JSP, 55

commit() method

Connection class, 378

ResultSet class, 353

Common Gateway Interface (CGI), 234–235

Common Object Request Broker
Architecture (CORBA), 563

common/lib directory, 182

commons-beanutils.jar file, 171

commons-collections.jar file, 171

commons-digester.jar file, 171

commons-logging.jar file, 171

comparison operators, 592

compatibility, Java EE and JSP, Tomcat,
107, 117

compilation error, 41

compiling EJB session bean application, 414

CONCAT() function, EJB, 604

concurrency, locking, and isolation, JDBC
transactions, 390–391

Concurrent Versioning System (CVS),
569–570

config object, JSP implicit objects, 75–76

CONFIG_FILES parameter, 185

connection pool for database connections,
311–314

Container-Managed Persistence (CMP), 19,
425, 428–431, 441–442, 459, 464, 466

Container-Managed Persistence (CMP)
entity bean development

building CMP entity bean application,
431–438

compiling CMP entity bean application,
438–439

deploying CMP entity bean
application, 439

overview, 431

running CMP entity bean application,
439–440

StockList.java, 432

Container-Managed Relationships (CMR)

developer convenience, 503

and EJB QL

building application with CMR, 480–491

compiling CMR application, 491–492

deploying CMR application, 492

loading the database, 492

overview, 478–480

reviewing CMR application, 493–496

running CMR application, 492–493

Mukhar_470-3.book Page 617 Saturday, October 1, 2005 6:14 AM

618 ■I N D E X

containers, 11–13

Content-length parameter, 234

contentType attribute, JSP Page directive, 47

Content-type parameter, 234

Content-type type, 246

context for database connections, 311

<context-param> element, 251–254

controller Servlet, 181–183

convertDateTime tag, 215–216

converter element, 219–220

Converter interface, 216–217

ConverterException class, 217–218

converter-id element, 219

converting data, JavaServer Faces (JSF)

using custom converters, 216–221

using standard converters, 215–216

convertNumber tag, 215–216

cookies

session tracking with, 272

using in place of sessions, 279–280

CORBA (Common Object Request Broker
Architecture), 563

COUNT() function, 597

create() method, EntityManager class, 476

CREATE query, 588

CREATE TABLE statement, 588, SQL

createProducer() method, Session
object, 557

createQuery() method, EntityManager
interface, 428, 465, 471

createStatement() method, JDBC, 333,
344–345

createTextMessage() method, Session
object, 557

createTimer() method, TimerService
class, 556

CRLF (carriage return/line feed), 233

CRLF character, 234

ctx.proceed() method, 548

Currency Exchange Rate web service, 563

custom actions, JSP, 126–127, 155

custom converters, 216–218, 220–221

custom validators, 222–223

customTransaction object, 547

CVS (Concurrent Versioning System),
569–570

CVSROOT environmental variable, 569

■D
d option, compiling EJB session bean

application, 414

Data Access Object (DAO), 513–518, 532

Data Source URL database connection
parameter, 326

data types, SQL

binary data types, 588

date and time data types, 588

numeric data types, 587

overview, 587

string data types, 587

database connection parameters

Data Source URL, 326

DatabaseName, 320

Datasource Classname, 320

JDBC Driver Class, 327

JNDI Name, 326

PortNumber, 319

Resource Type, 320

ServerName, 319

User and Password, 320

User Name and Password, 327

database programming

batch updates, 335

binding, 311

CallableStatement objects, 371–376

close() method, 328–329

closing connections, 328

connecting to databases, 310

counting rows in a resultset, 346–347

creating a database table, 340–342

Mukhar_470-3.book Page 618 Saturday, October 1, 2005 6:14 AM

619■I N D E X

database connection pool, 311–314

database connection using data
sources, 311

DataSource and connection
parameters, 319

Datasource configuration, Java EE,
311–320

Datasource configuration, Tomcat,
321–326

deploying, 342–343

exception handling, 330

Global DataSource in Tomcat, 323–325

inserting data, 336–339

Java Naming and Directory Interface
(JNDI), 315–317

JdbcManager class, JDBC, 338–339

Local DataSource in Tomcat, 326

logging, 332

login timeout, 330

moving through database results, 344

NULL values, 351

overview, 309

PointBase database in Java EE SDK, 309,
313, 320–321, 340, 358–360

Pointbase driver library, 321

PreparedStatement objects, 357

reading data from resultsets, 347, 349

relational database description, 309

releasing statements, 335–336

resultset holdability, 353–354

running the application, 343

SQL differences in databases, 358–360

statement objects, 333

stored procedures, 371

transactions, 376–377

updateable resultsets, 351–353

using database results, 344–345

using DataSource and connection with a
JSP, 315–318

DatabaseName database connection
parameter, 320

Datasource Classname database connection
parameter, 320

Datasource database connections, 311

Date class, 170, 214, 216

date data types, 588

DCOM (Distributed Component Object
Model), 564

DECIMAL data type, 588

DEFAULT modifier, 589

Delayed Stock Quote web service, 563

Delegate pattern, 529–530

DELETE method, 230

DELETE statement, 598

deleteRow() method, JDBC, 353

deleteStock method, session bean home
interface, 440

deleting

data from tables, 598–599

tables, 591

deploy directory, JBoss server, EJB, 414–415

deploying JSP web application, 59–64

classic tag handler, 140

deployment descriptor, 64–71, 109–110, 134

deployment descriptor for scriptless
pages, 108–110

new application wizard, 59–64

problem solutions, 68–71

simple tag handler, 135

Tomcat, 64–71

WAR file, 67–68

web address and port, 63

web.xml file, 64–67, 134

deployment descriptor, JSP, 108–110, 122,
134, 154

Deployment Tool, Sun Server, JDBC, 342

deployment tool utility, JSP, 162

deployment XML file, JMS, 554

deploytool script, 240

DESC keyword, 593

<description> element, 186, 251, 253

Mukhar_470-3.book Page 619 Saturday, October 1, 2005 6:14 AM

620 ■I N D E X

design patterns

building application with

adding DAO functionality, 513–518

adding the client, 524–527

adding transfer object functionality,
518–524

overview, 508–513

compiling and running application with,
527–529

DAO pattern, 532

Delegate pattern, 529–530

design problems, 541

Factory pattern, 531–532

implementing, 506

overview, 505

Singleton pattern, 530

Transfer Object pattern, 530–531

destinationType property, 558

destroy() method

Filter interface, 281

Servlet class, 236, 257–258, 281

dirty reads, JDBC transactions, 391

<display-name> element, 186, 197, 251, 253

DISTINCT keyword, 605

distributable element, 251

Distributed Component Object Model
(DCOM), 564

distributed transactions

commit and rollback, 388–389

getting a connection, 388

Java Transaction API (JTA) transaction
manager, 387

Java Transaction API (JTA) web link, 387

JDBC JSPs and Servlets, 387

two-phase commit, 389

UserTransaction interface, 389–390

XADataSource, XAConnection, and
XAResource interfaces, 388

distributed transactions, JDBC, 386

DNS Server web service, 563

doAfterBody() method, JSP, 142–145, 149

doEndTag() method, JSP, 142, 144–145, 149

doFilter() method, 291

Filter interface, 281–285

FilterConfig class, 281

doGet() method, HttpServlet class, 237, 257,
265–266, 305–307

doInitBody() method, JSP, 143, 154

domain-defined data types, 586

doOptions() method, 237

doPost() method, HttpServlet class, 237, 239,
245–246, 257–258, 264–266, 291,
305–307

doStartTag() method, JSP, 142–143, 149, 154

dot notation, 189

dot operator, EL statements, JSP, 113

doTag() method, JSP, 130–131, 139–140

doTrace() method, 237

dynamic page navigation, in JSF application,
202–204, 206–208, 210–212

■E
EAR file, 36, 458–459

echo() method, 572, 575–576

Edit Contents dialog, 528

EJB QL. See Enterprise JavaBeans Query
Language

Ejb3StockListDAO class, 506

Ejb3StockListDAOBean.java
implementation, 514

Ejb3StockListDAO.java function, 514

ejbActivate() method, Enterprise JavaBeans
(EJBs), 419

ejbCreate method

bean class, entity bean, 427

developing BMP entity beans, 460

ejbFindByPrimaryKey() method,
EntityManager interface, 460

ejb-jar.xml file, 450, 458, 463

ejbLoad method, 462

ejb-local-ref element, 251

Mukhar_470-3.book Page 620 Saturday, October 1, 2005 6:14 AM

621■I N D E X

ejb-ref element, 251

ejbRemove() method, 419, 461

EJBs. See Enterprise JavaBeans (EJBs)

ejbStore method, 462

EL (Expression Language), 178

empty operator, EL statements, JSP, 112

encodeRedirectURL() method,
HttpServletResponse class, 272

encodeURL() method, HttpServletResponse
class, 272, 279

encoding layer, web services protocol
stack, 566

enterprise applications, characteristics of, 1

Enterprise JavaBeans (EJBs), 2, 168–169, 229,
292. See also design patterns; entity
bean relationships; entity beans

calling beans from beans, 426

calling beans from client, 426

components in UML, 406

EJB application servers, 407

EJB specification, 407

entity beans, advantages, 409

introduction, 18

layered architecture in UML, 406

multitiered architecture in UML, 406

numeric functions, 604

overview, 405

reasons for using, 406–407

servers and containers, 408

session bean first example, 412

session beans, 408–411

specification, 407

string functions, 604

Timer Service, 549–550

types of EJBs, 407

Unified Modeling Language (UML),
405–406

using JSP and servlets with, 540

building modified JSP/Servlets client,
532–539

overview, 532

reviewing modified JSP/Servlets client,
540–541

version 2.1, 442, 450, 458, 462–463

version 3.0, 431, 439, 442, 451, 459, 464–465

Enterprise JavaBeans Query Language (EJB
QL), 425, 429, 464, 467, 471, 600

building and deploying EJB QL queries
application, 466

adding new queries to session bean,
467–468

loading database with CMP field data for
stock entity beans, 469

building EJB queries

aggregate functions, 605

functions, 604

input parameters, 603

navigation operator, 603

overview, 602

SELECT clause, 602–603

subqueries, 604

wildcards, 603

FROM clause, 602

and container-managed
relationships (CMR)

building application with CMR, 480–491

compiling CMR application, 491–492

deploying CMR application, 492

loading the database, 492

overview, 478–480

reviewing CMR application, 493–496

running CMR application, 492–493

entity bean references, 601

javax.ejb.Query object, 601–602

overview, 464–465, 600

queries, 465

query to acquire subset of data, 477–478

running EJB QL queries application,
469–470

SELECT clause, 602

using relationships, 605

WHERE clause, 602

Mukhar_470-3.book Page 621 Saturday, October 1, 2005 6:14 AM

622 ■I N D E X

entity bean references, 601

entity bean relationships. See also Enterprise
JavaBeans (EJBs); Enterprise
JavaBeans Query Language (EJB QL)

and JDBC

implementing JDBC with EJB
applications, 497–498

overview, 496–497

using JDBC with StockList bean,
499–502

many-to-many relationships, 476–477

one-to-many and many-to-one
relationships, 474–476

overview, 473

entity beans, 19, 409. See also Enterprise
JavaBeans (EJBs); Enterprise
JavaBeans Query Language (EJB QL);
entity bean relationships

anatomy of, 426

bean class, 427–428

bean-managed persistence (BMP),
430–431

BMP (bean-managed persistence), 430

BMP entity bean development

building BMP entity bean application,
442–458

deploying BMP entity bean application,
458–459

overview, 441–442

running BMP entity bean application, 459

calling beans from client, 409, 426

choosing type of bean to use, 410

CMP (container-managed persistence),
428

CMP entity bean development

building CMP entity bean application,
431–438

compiling CMP entity bean application,
438–439

deploying CMP entity bean
application, 439

overview, 431

running CMP entity bean application,
439–440

CMR (container-managed
relationships), 429

comparison, session beans, entity beans,
message beans, 410

container-managed persistence (CMP),
428–429

EJB QL, 429

EntityManager interface, 428–429

how work with session beans, 425–426

overview, 425

primary keys, 430

EntityManager interface, 427–429, 440–441,
465, 470–471, 545, 601

EntityManager query, 502

env-entry element, 251

Environment Variable descriptions, 32

Environment Variables button, 30

errorPage attribute, 47, 58

<error-page> element, 251–252, 269

errors. See exception handling

event logging, in Servlets, 258

exception handling

JDBC, 331–332

and Servlets

error pages, 269–270

exception handling problems, 266–269

overview, 266

exception object, JSP implicit objects, 76

execute() method, JDBC, 333

executeBatch() method, JDBC, 333

executeQuery() method, JDBC, 333

executeUpdate() method, JDBC, 333–334

Expression Language (EL), 178

Extensible Markup Language (XML), 251,
450–451, 458, 463, 566

overview, 21

processing, JSTL tags, 156

ExternalContext class, 212

Mukhar_470-3.book Page 622 Saturday, October 1, 2005 6:14 AM

623■I N D E X

■F
façade design pattern, 506, 508

Faces Servlet controller, 182, 184

faces-config.xml file, 179–180, 183, 185, 194,
197, 202–203, 208, 219–220, 223, 226

FacesContext class, 212, 218

FacesMessage class, 218, 222

FacesServlet class, 181

factory class, 518

factory method, 530

Factory pattern, 531–532

Fax Service web service, 563

fetchSingleResult() method, Query class, 465

fields, calculated, 595

<filter> element, 251–252, 282

FilterChain interface, 281–282

<filter-class> element, 283

FilterConfig interface, 281, 283

filtering data in queries, 592–593

<filter-mapping> element, 251–252, 283

<filter-name> element, 283

filters, and Servlets

implementing filter interface, 281–282

modifying deployment descriptor to use,
282–291

find() method, EntityManager interface, 428,
441, 460, 471

findAllAnalysts method, 495

findByPrimaryKey method, 460

findRatedStocks method, 521

findStockRatings method, 494

FLOAT data type, 588

Floating-point, 111

for attribute, 214

foreign key, 480, 599

form tag, 177, 183

forward() method, 294–295

forward action, JSP, 98–99

forwarding or including requests using
request dispatcher, 294

FROM clause, 602–603

from-action element, 204

from-outcome element, 180, 202–203

from-view-id element, 203, 210

f:selectItem element, 199

functions

EJB QL, 604

SQL, 596–597

■G
Generate Bar Codes web service, 563

GenericServlet class, 236, 255–258, 264, 294

get element, 186

get method, 184, 190–191, 211, 220

GET method, 230–235, 237, 245, 305–306

GET request, 177

getAllAnalysts() method

ArrayList class, 522

StockList class, 479, 495

StockListBean class, 499, 501

getAnalyst() method, Stock bean, 493, 521

getApplicationMap()method,
ExternalContext class, 213

getAsObject() method, String class, 217–218

getAsString() method, String class, 217–218

getAttribute() method, HttpSession
interface, 84, 272–273, 295, 305

getAttributeNames() method, HttpSession
interface, 273

getCookies() method, HttpServletRequest
class, 280

getCreationTime() method, HttpSession
interface, 273

getDatabaseConnection method, 463

getDateHeader() method, 249

getExternalContext() method,
ExternalContext class, 212

Mukhar_470-3.book Page 623 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

624 ■I N D E X

getHeader() method, 249

getId() method, HttpSession interface, 273

getInitParameter() method

ExternalContext class, 213

GenericServlet class, 264

getInitParameterMap()method,
ExternalContext class, 213

getInstance() method, StockListDelegate
delegate, 530, 540

getIntHeader() method, 249

getLastAccessedTime() method,
HttpSession interface, 273

getLogger() method, Logger class, 285

getLogWriter() method, PrintWriter class,
332

getMaxInactiveInterval() method,
HttpSession interface, 273

getName() method, Cookie class, 280

getNamedDispatcher() method, 294, 305

getParameter() method, 247–248

getParameterMap() method, 248

getParameterValues() method, 248

getPathInfo() method, 249, 305, 540

getPrice operation, 562, 566

getProperty action, JSP, 54

getProtocol() method, 248

getQueryString() method, 249

getRatedStocks() method, StockListDAO
interface, 521

getRemoteAddr() method, 248

getRemoteHost() method, 248

getRemoteUser()method, ExternalContext
class, 213

getRequestCookieMap()method,
ExternalContext class, 213

getRequestDispatcher() method, 294

getRequestedSessionId() method,
HttpServletRequest class, 271

getRequestHeaderMap()method,
ExternalContext class, 213

getRequestHeaderValuesMap()method,
ExternalContext class, 213

getRequestMap()method, ExternalContext
class, 213

getRequestParameterMap()method,
ExternalContext class, 213–214

getRequestParameterNames()method,
ExternalContext class, 213

getRequestParameterValuesMap() method,
ExternalContext class, 213–214

getServerName() method, 248

getServletConfig() method, Servlet
interface, 236

getServletInfo() method, Servlet
interface, 236

getSession() method, HttpServletRequest
class, 271

getSession() method, HttpSession
interface, 273

getSessionMap() method, ExternalContext
class, 213–214

getStock method, session bean home
interface

creating EJB using EJB QL find, 470

developing CMP entity beans, 440

getStockHome method, session bean home
interface, 441

getStockListDAO() method,
StockListDAOFactory, 531

getStockRatings() method, 521

ArrayList, 522

StockList session bean, 494

StockListBean.java, 494

getStocks() method, 493

getter methods

bean class, entity bean, 427

developing BMP entity beans, 459

getText() method, 558

getTimerService() method, 550

getUnratedStocks() method, ArrayList class,
495, 522

getValue() method, Cookie class, 280

Mukhar_470-3.book Page 624 Saturday, October 1, 2005 6:14 AM

625■I N D E X

Google Search API web service, 563

GROUP BY clause, 602, 605

GzipNetMessageActor instance, 548

■H
HAVING clause, 604

HEAD method, 230, 237

headerValues object, 114

h:inputText tag, 190

home interface, entity bean, 428

h:outputText tag, 178

HSQL (Hypersonic SQL), 439, 459

HTTP (Hypertext Transfer Protocol), 89,
229–230, 232–238, 246, 248–250, 258,
268–271, 291, 306, 566

and server programs

how server responds to requests, 234

overview, 230

request methods, 230–234

HttpServlet class, 230, 234, 236–237, 245,
257–258, 266, 306

HttpServletRequest class, 237–238, 246, 249,
271, 280

HttpServletResponse class, 237–238, 246,
272, 280

HttpServletResponse interface, 250

HttpServlets. See Servlet model and
HttpServlets

HttpSession interface, 272, 530

Hypersonic Database Manager, 459, 469

Hypersonic SQL (HSQL), 439, 459

Hypertext Transfer Protocol. See HTTP
(Hypertext Transfer Protocol)

■I
icon element, 186, 251

<icon> element, 253

id attribute, 214, 219, 223

IDE (Integrated Development Environment),
176, 239

Image Converter web service, 563

Image Extractor web service, 563

immediate attribute, 224

import attribute, JSP, 47, 58, 86

import java.util package, 493

IN parameter, JDBC CallableStatement
objects, 373

include() method, 295

include directive, JSP, 47–48, 56, 98–99

INDEX modifier, 589

Info attribute, JSP Page directive, 47

infrastructure, 2–3

init() method, 236, 255–258, 260–261, 264, 281

initParam, EL statement implicit object,
 JSP, 114

<init-param> element, 253–254, 256, 264, 283

INNER JOIN clause, 605

INOUT parameter, JDBC CallableStatement
objects, 373–376

input parameters, 603

input tag, 177–178, 221

inputText element, 178, 189, 214–216, 220, 223

INSERT statement, 489, 597, SQL

insertRow() method, JDBC, 353

installing

J2EE 1.4 SDK, 29, 35

JavaServer Faces (JSF), 171–172

JBoss, 29–34

Tomcat, 582–583

INT data type, 588

Integer class, 267, 269, 430

Integrated Development Environment (IDE),
176, 239

interceptor methods, 545

Internationalization-capable formatting, 156

Internet Explorer default error page bug, 98

invalidate() method, HttpSession
interface, 273

InventoryViewBean. Renter stateless session
bean, 498

invoke() method, JSP, 140

IOException class, 247, 269, 306

Mukhar_470-3.book Page 625 Saturday, October 1, 2005 6:14 AM

626 ■I N D E X

isELIgnored attribute, JSP Page directive, 109

isErrorPage attribute, JSP, 47, 59, 97

isInverse metadata attribute, 477

isNew() method, HttpSession interface, 273

isRequestedSessionIdFromCookie()
method, HttpServletRequest
class, 271

isRequestedSessionIdFromURL() method,
HttpServletRequest class, 271

isRequestedSessionIdValid() method,
HttpServletRequest class, 271

isThreadSave attribute, JSP Page directive, 47

itemValue attribute, 199

IterationTag interface, JSP, 142–143

■J
j2ee.jar library, 239

J2SE (Java Platform, Standard Edition), 29

Jakarta project, JSP Standard Tag Library
(JSTL), 156

Jakarta tag libraries for JSP, 164

JAR (Java Archive), 171–172, 182, 185, 458, 469

jar command, 182

jar tool, 244

Java, developing web services in

building, testing, and serving the web
service, 576–578

creating the web service, 570–576

downloading CVS tool, 569–570

JAX-WS, 568

overview, 567–568

Java 2 Platform, Enterprise Edition.
See Java EE

Java API for XML Binding (JAXB), 21, 574

Java API for XML Processing (JAXP), 21

Java API for XML Registries (JAXR), 21, 567

Java API for XML-based Web Services
(JAX-WS), 568

Java Archive (JAR), 171–172, 182, 185, 458, 469

Java Community Process, 1

Java Database Connectivity (JDBC), 229, 430,
460, 462–463, 471

description, 17

driver library, 309–310

drivers, 327

implementing with EJB applications,
497–498

using with StockList bean, 499–502

Java Development Kit (JDK), 29

Java EE 5 SDK, 566

Java EE application, 39

Java EE (Java 2 Platform, Enterprise Edition),
167, 192, 229–231, 233, 237, 239,
249–250, 260, 291–292, 302–303

benefits, 2–3

compared with Java 2 Standard Edition
(J2SE), 2

definition, 1–2

deployment, Java FAQ example, 122

installing J2EE 1.4 SDK, 29, 35

Java EE 5 SDK, 438

sample architectures, 23

applet client with JSP and database, 25

application client with EJB, 23

JSP client with EJB, 24–25

web services for application integration,
25–26

scalability, 10

vendor independence, 9–10

Java EE Software Development Kit (Java EE
SDK), 3

Java message service API, 548–549

Java Message Service (JMS), 544

Java Naming and Directory Interface (JNDI),
165, 326, 439

Java Platform, Standard Edition (J2SE), 29

Java Remote Method Invocation
(Java RMI), 564

Java RMI (Java Remote Method
Invocation), 564

Mukhar_470-3.book Page 626 Saturday, October 1, 2005 6:14 AM

627■I N D E X

Java Server Page (JSP) page, compiling and
deploying

application creation problems and
solutions, 41

creating example application, 35–36

overview, 35

Java Server Page (JSP) Standard Tag Library
(JSTL), 155, 171, 182

compatibility, 157, 163

FAQ example using, 159–163

using Tomcat, 162

web site, 156

Java Server Pages (JSP), 167–169, 176–180,
183–185, 187, 189, 206, 214, 219,
225–227, 229, 235, 240, 250–251, 253,
269–270, 291–293, 297–299, 303–307

Application scope, 71–72

attributes web reference, 46

classic tag handlers, 129

comments, 55

contentType attribute, 47

custom actions, 50, 126–127

declaration scripting element, 71

declarations, 48–49

deployment description error handling, 89

development process overview, 44

directive elements, 46

doTag() method, 130–131, 139–140

EL examples, 117–121

EL statements

applicationScope implicit object, 114

attribute values in standard actions,
115–116

cookie implicit object, 114

dot operator, 113

empty operator, 112–113

errors and default values, 116–117

header implicit object, 114

headerValues implicit object, 114

initParam implicit object, 114

literals, 111

object references, 113–115

operators, 111–113

pageContext implicit object, 114

pageScope implicit object, 114

param implicit object, 114

paramValues implicit object, 114

requestScope implicit object, 114

sessionScope implicit object, 114

EL syntax, 110–116

elements overview, 45–46

enabling EL statements, 109

end of life, 71

error and exception handling, 88–97

errorPage attribute, 47, 58

Expression Language (EL), introduction,
107–108

expressions, 50

FAQ example error handling, 89–94

forward action, 98–99

frequently used attributes, 46

getProperty action, 54

HTML similarity, 45–46

implicit objects, 72

application object, 76

config object, 75–76

exception object, 76

out object, 74, 88

request, form-encoded parameters, 73

request, URL-encoded parameters, 73

request object parameter, 73

response object, 74

session object, 74–75

import attribute, 47, 58, 86

include action, 98–99, 125

include and forward action example,
100–104

include directive, 47–48, 56

Info attribute, 47

initialization, 71

isELIgnored attribute, 109

Mukhar_470-3.book Page 627 Saturday, October 1, 2005 6:14 AM

628 ■I N D E X

isErrorPage attribute, 47, 59, 97

isThreadSave attribute, 47

JavaBean example, 76, 79–82, 84–85

JSP container role, 45

JspFragment, 131

lifecycle (processing), 44–45

object lifetime and accessibility, 71–72

overview, 43–44

page directive error handling, 88–89

page directives, 46

Page scope, 71–72

pageEncoding attribute, 47

registration page example, 79–82, 84–85

Request scope, 71–72

scope, 71–72

scripting elements, 48

scripting-enabled element, 110

scripting-invalid element, 108

scriptless, 108–110

scriptlets, 49–50

server source file location, 86

and Servlet class, 85–86

and Servlets, 14, 16, 532–541

Session attribute, 47

Session scope, 71–72

setProperty action, 53–54, 126, 128

simple tag handlers, 129

standard actions, 50

tag extension, 127

tag handler, 128, 130

Tag Library Descriptor (TLD), 131, 133,
136, 138, 140, 150–151

template data, 55

translation and compilation, 85

useBean action, 52–53, 84–85, 124–126, 128

version 1.2, 171

web site, 43

XML compatibility, 46

Java source file, 570

Java Swing, 168

Java Virtual Machine (JVM), 258, 266

Java Web Services Developer Pack
(WSDP), 567

JAVA_HOME environment variable, 32, 584

JavaBeans, 178–179

using managed beans

configuring managed beans, 185–189

expanding sample application, 192–201

overview, 184–185

using method binding expressions in
JSP pages, 191–192

using value binding expressions in JSP
pages, 189–191

javac command

creating entity bean using CMR and EJB
QL, 492, 502

developing CMP entity beans, 458

javac utility, 176, 239

Javadoc utility, 173

JAVAEE_HOME environment variable, 32, 239

java.io package, 428, 440

java.lang package, 176

java.net package, 233

java.rmi.Remote, 18

JavaScript, 16

JavaServer Faces (JSF)

accessing context data in beans, 212, 214

controlling page navigation

adding dynamic navigation to sample
JSF application, 204–212

navigation rules, 203–204

overview, 202

static and dynamic navigation, 202–203

converting data

overview, 214

using custom converters, 216–221

using standard converters, 215–216

creating simple application

deployment to Sun application
server, 181

deployment to Tomcat server, 181–182

Mukhar_470-3.book Page 628 Saturday, October 1, 2005 6:14 AM

629■I N D E X

directing traffic, 179–180

implementing view components,
176–179

lifecycle, 184

overview, 173–176

running the application, 182–183

description, 16

installing, 171–172

overview, 167–168

relationship with other Java EE
technologies, 168–169

request processing lifecycle, 169–170

using managed beans

configuring managed beans, 185–189

expanding sample application, 192–201

overview, 184–185

using method binding expressions in
JSP pages, 191–192

using value binding expressions in JSP
pages, 189–191

using message bundles, 224–226

using with JSP pages, 172–173

validating input

bypassing validation, 224

overview, 221

using custom validators, 222–223

using standard validators, 221

java.text package, 216

java.util package, 214, 285, 430

javax.ejb package, 427–428

javax.ejb.id package, 430

javax.ejb.Inject package, 440

javax.ejb.Query object, 601–602

javax.ejb.Remote annotation, 573

javax.faces package, 185, 193

javax.faces.convert package, 216–217

javax.faces.validator package, 222

javax.faces.webapp package, 181

javax.persistence package, 465

javax.servlet package, 235–236, 281

javax.servlet.http package, 236

JAXB (Java API for XML Binding), 21, 574

JAXP (Java API for XML Processing), 21

JAXR (Java API for XML Registries), 21, 567

JAX-RPC-compliant application, 573

JAX-WS (Java API for XML-based Web
Services), 568

JBoss Server, 239, 439, 450, 459, 466, 492,
568, 570

deploy directory, 414–415

deployment directory, 528

EJB3 files, 414

installing, 29–34

JBOSS_HOME environment variable, 30, 32

jboss-head source code collection, 569

JBossWS libraries, 568

JBossWS web services, 577

jboss.xml file, 450, 458

JDBC. See Java Database Connectivity (JDBC)

JDBC Driver Class database connection
parameter, 327

JDBC escape syntax, 372

JdbcManager class, JDBC, 338–339, 349

JDK (Java Development Kit), 29

JMS (Java Message Service), 544

JMS provider, 548

jmx console, 459

JNDI (Java Naming and Directory Interface),
165, 326, 439

joins, 599–600

JSF. See JavaServer Faces (JSF)

jsf-api.jar file, 171

jsf-impl.jar file, 171

JSP. See Java Server Pages (JSP)

jsp-config element, 251

<jsp-file> element, 253

<jsp:forward> action, 293

JspFragment, JSP, 131

jspService method, JSP, 87

JSPTags.com for JSP, 165

Mukhar_470-3.book Page 629 Saturday, October 1, 2005 6:14 AM

630 ■I N D E X

JSTL (JSP Standard Tag Library), 156

JSTL core tag library, 156–157

jstl.jar file, 171

JVM (Java Virtual Machine), 258, 266

■K
key element, 188

key-class element, 188

■L
last_name column, 587

Last-Modified header, 249

layered architecture, 406

LDAP, 430

:len syntax, 470

LENGTH(String) function, EJB, 604

lib directory, 171

LIKE keyword, 594–595, 603

Linux, 232, 583

List class, 187, 190

List property type, 190–191

listener element, 251

<list-entries> element, 186–187

loadBundle element, 225–226

<load-on-startup> element, 253–254, 258

locale-encoding-mapping-list element, 251

localhost command, 439

LOCATE() function, 604

Logger class, 285

logger.info() method, 291

logging, JDBC, DataSource class, 332

/Login alias, 241

login credentials, 274–275, 277, 279

login Servlet

deploying to Java EE, 240–245

how works, 245–247

overview, 238–239

login-config element, 251

/logs directory, 290

LogWriter queue, 556, 558

LOWER(String) function, EJB, 604

■M
main() method, 575

makeConnection() method, 501

managed-bean element, 179, 185–186, 197

managed-bean-class element, 186

managed-bean-name element, 186

managed-bean-scope element, 186

managed-property element, 186

many-to-many relationships, 476–477

Map class, 187–188, 190, 211, 248

Map property type, 190–191

<map-entries> element, 186

map-entry element, 188

mappedBy attribute, 480

MAX() function, 597

maximum attribute, 221

MDBs. See message-driven beans (MDBs)

message beans, 20–21, 410

message consumer, JMS, 549

message element, 214, 218, 221

message producer, JMS, 549

message transactions, 544

message-destination element, 251

message-destination-ref element, 251

message-driven beans (MDBs), 410

EJB Timer Service, 549–550

invocation of an interceptor, 547–548

Java message service API, 548–549

MessageTimerApp

building and running, 554–555

creating, 551–554

reviewing, 555–558

overview, 543–546

transactions, 546–547

MessageDrivenContext interface, 545

MessageListener interface, 544, 558

MessageProducer object, 557

messages_es.properties file, 225–226

messages.properties file, 225

Mukhar_470-3.book Page 630 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

631■I N D E X

MessageTimerApp

building and running, 554–555

creating, 551–554

reviewing, 555–558

MessageWriter bean, 549, 558

messaging layer, web services protocol stack,
566–567

messaging model, 564

META-INF directory, 185

meta-inf directory, 458

method attribute, 177, 245

method binding expressions, 191–192

middleware component Type 3 JDBC
driver, 327

mime-mapping element, 252

MIN() function, 597

minimum attribute, 221

MOD() function, EJB, 604

Model-View-Controller (MVC), 168–169, 179,
184, 230, 306

architecture

components of, 292

creating MVC application, 295–305

vs. Model 1, 291–292

overview, 291

Servlet chaining, 293–295

multithreading in Servlets

deploying calculator Servlet to Java EE,
260–261

deploying calculator Servlet to Tomcat,
261–262

making Servlets thread-safe, 264–265

not making Servlets thread-safe, 265–266

overview, 258–260

running calculator Servlet, 262, 264

multitier architecture, 3–4, 406

benefits, 8

business logic layer, separating, 6–7

business rules layer, 4

data access layer, 4

logical layers, 3–4

presentation layer, 4

separate computers, 9

MVC. See Model-View-Controller (MVC)

Myers, Tom, 566

■N
Nakhimovsky, Alexander, 566

name argument, 294

name directive, 556

name parameter, 574

native API Type 2 JDBC driver, 327

native2ascii utility, 226

navigation, in JSF application. See page
navigation, in JSF application

navigation operator, 603

navigation-case element, 203–204

navigation-rule element, 180, 203

NCHAR data types, 587

network traffic encryption, 565

New Application dialog, 439

next() method, processing JDBC
resultsets, 345

nonprimitive data, use in JDBC
PreparedStatement object, 361

nonrepeatable reads, JDBC transactions, 391

nonscrollable resultsets, JDBC, 344–345

NOT NULL modifier, 589

NOT_SUPPORTED attribute, 546

n-tier architecture, 3–4

benefits, 8

business logic layer, separating, 6–7

business rules layer, 4

data access layer, 4

logical layers, 3–4

presentation layer, 4

separate computers, 9

Null values, handling, 591

<null-value> element, 186–188

NumberFormatException class, 269

Mukhar_470-3.book Page 631 Saturday, October 1, 2005 6:14 AM

632 ■I N D E X

numeric data types, 587

NVARCHAR data types, 587

■O
object.property syntax, 189

ODBC Type 1 JDBC driver, 327

one-to-many relationships, 474–476

onMessage() method, 544, 547, 558

operation element, WSDL, 567

optimistic locking example, JDBC
transactions, 398–402

optimistic locking overview, JDBC
transactions, 392–393

OPTIONS method, 230

ORDER BY clause, 593, 602, SQL

orderBook operation, 562

origination property, 178, 190

Orion EJB for JSP, 165

otherwise elements, 158

forEach element, 158

forTokens element, 158

I18N (internationalization) library, 158

if element, 158

out element, 157

remove element, 157

set element, 157

out object, JSP implicit objects, 74, 88

OUT parameter, JDBC CallableStatement
objects, 373–374

output tag, 221

OutputStream class, 246, 250

outputText element, 178, 201, 207, 216, 225

■P
Page cannot be displayed error, 41

page navigation, in JSF application

adding dynamic navigation to sample JSF
application, 204–212

navigation rules, 203–204

overview, 202

static and dynamic navigation, 202–203

page scope, JSP, 71

pageContext, EL statement implicit object,
JSP, 114

pageEncoding attribute, JSP Page
directive, 47

pageScope, EL statement implicit object,
JSP, 114

param, EL statement implicit object, JSP, 114

param element, 207

<param-name> element, 264, 283

<param-value> element, 283

paramValues, EL statement implicit object,
JSP, 114

part elements, WSDL, 567

path argument, 293–294

PATH environment variable, 32

pattern attribute, 216

Perl programming language, 234

persist() method, EntityManager interface,
427–428, 441, 496

pessimistic locking example, JDBC
transactions, 393–394, 396–398

pessimistic locking, JDBC transactions

disadvantage, 397–398

overview, 392–393

phantom reads, JDBC transactions, 391

placeholder objects, 522

platform independence, advantages, 9–10

port element, WSDL, 567

PortNumber database connection
parameter, 319

POST method, 183, 230, 233–235, 237–239,
245–246, 254, 306

and Java Server Pages (JSP), 14–16

and MVC architecture

components of MVC, 292

creating MVC application, 295–305

Model 1 vs. MVC, 291–292

overview, 291

POST request, 177

Servlet that responds to

Mukhar_470-3.book Page 632 Saturday, October 1, 2005 6:14 AM

633■I N D E X

deploying login Servlet to Java EE,
240–245

how login Servlet works, 245–247

overview, 238–239

prepareCall() method, JDBC
CallableStatement objects, 372–376

PreparedStatement objects

calling execute methods, 363

compared with Statement objects, 357

creating, 362

nonprimitive data, 361

performance benefit, 361

performing batch updates, 366–369

prepareStatement() method, 362

reusing a prepared statement object, 365

reusing a SQL command, 365

setting placeholders, 363–364

SQL differences in databases, 358–360

SQL statements with variables, 361

uses, 358

using a prepared statement, 363

prepareStatement() method, JDBC
PreparedStatement objects, 362

primary key, 599

primary key, entity beans, 430, 474

PRIMARY KEY modifier, 589

print statement, 291

println() method, 258

println statement, 291–292

projection, 591

.properties extension, 225

property-class element, 186

property-name element, 186

PropertyNotFoundException class, 191

protocol stack, web services

emerging layers, 567

encoding layer, 566

messaging layer, 566–567

overview, 565–566

service description layer, 567

service discovery layer, 567

transport layer, 566

publish, 549

PUT method, 230

■Q
QName object, 575

queries

EJB, building

aggregate functions, 605

functions, 604

input parameters, 603

navigation operator, 603

overview, 602

SELECT clause, 602–603

subqueries, 604

wildcards, 603

filtering data in, 592–593

sorting data from, 593–594

query() method, 477

Query class, 465, 470, 494, 601

query references, EJB QL, 601

queue, 549, 556

■R
r JBossWS_1_0EA parameter, 570

RatingsForm.jsp, 535, 540

read committed isolation level, JDBC
transactions, 391

read uncommitted isolation level, JDBC
transactions, 391

REAL data type, 588

redirect element, 180, 204

reference implementation (RI), 581

REGEXP keyword, 595, SQL

registration page, using JavaBeans in JSP
pages, 82

regular expressions, 594–595

relational databases access, JSTL tags,
156, 159

relationships. See entity bean relationships

Mukhar_470-3.book Page 633 Saturday, October 1, 2005 6:14 AM

634 ■I N D E X

releaseSavepoint() method, Connection
class, JDBC, 378

releasing statements, JDBC, 335–336

Remote interface, 573

Remote Method Invocation (RMI), 18

Remote Procedure Calls (RPCs), 548, 563–564

remoting, EJBs, 416–417

remove() method

ArrayList class, 305

EntityManager interface, 427–428, 441

removeAttribute() method, HttpSession
interface, 273

Rental entity bean, 498

Renter class file, 498

Renter entity bean, 498

repeatable read isolation level, JDBC
transactions, 391

request methods

GET method, 231–233

overview, 230

POST method, 233–234

request object, 73, 237, 295, 305

accessing request headers, 248–249

accessing request metadata, 248

accessing the raw request data, 248

JSP implicit objects, 73

overview, 247–248

request scope, JSP, 71

RequestDispatcher class, 293

requestScope, EL statement implicit object,
JSP, 114

required attribute, 221

REQUIRED attribute, 546

resource injection, 545, 547

Resource Type database connection
parameter, 320

resource-env-ref element, 252

resource-ref element, 252

response object, 74, 235, 237, 246–247, 250

ResultSet class, 344, 347, 349

resultset holdability, JDBC, 353–354

returnedString variable, 576

RI (reference implementation), 581

RMI (Remote Method Invocation), 18

rollback() method, Connection class, 378,
380–381, 383

rows, inserting into SQL tables, 597–598

RPCs (Remote Procedure Calls), 548, 563–564

RTRIM() function, 595–596, SQL

rules, 586

<run-as> element, 253

■S
SAAJ (SOAP with Attachments API for

Java), 566

sandbox, 35

savepoints, JDBC, 384–385

scalability, 10, 408

schemas, 585

scripting-enabled element, JSP, 110

scripting-invalid element, JSP, 108

scriptlets, 14

scrollable resultsets, JDBC, 345

security, 23

security-constraint element, 252

security-role element, 252

<security-role-ref> element, 253

select attribute, 211

SELECT clause, 602–603

SELECT statement, 462, 465, 591, 593

SelectItem class, 193

selectItem element, 199

selectItems element, 199

Serializable interface, 265, 428, 440

serializable read isolation level, JDBC
transactions, 391

server programs, and HTTP

how server responds to requests, 234

overview, 230

request methods, 230–234

Mukhar_470-3.book Page 634 Saturday, October 1, 2005 6:14 AM

635■I N D E X

server.log file, 290

ServerName database connection
parameter, 319

service() method

HttpServlet class, 236–237, 246, 257–258,
265–266, 306

Servlet interface, 236

service description layer, web services
protocol stack, 567

service discovery layer, web services protocol
stack, 567

Service object, 575

serviceFactory object, 575

serviceName parameter, 574

service-ref element, 252

Servlet, 167, 169, 171, 180–182

Servlet class, 85–86, 236

servlet element, 252

Servlet interface, 236, 256, 281

Servlet model and HttpServlets

basic servlet design

doPost() and doGet() methods, 237

overview, 235–236

service() method, 236–237

deployment descriptors

<context-param> element, 252–253

<servlet> element, 253–254

<servlet-mapping> element, 254

overview, 250–252

event logging in Servlets, 258

multithreading in Servlets

deploying calculator Servlet to Java EE,
260–261

deploying calculator Servlet to Tomcat,
261–262

making Servlets thread-safe, 264–265

not making Servlets thread-safe,
265–266

overview, 258–260

running calculator Servlet, 262–264

overview, 234–235

request object

accessing request headers, 248–249

accessing request metadata, 248

accessing the raw request data, 248

overview, 247–248

response object, 250

Servlet lifecycle

end of life, 257–258

initialization, 255–257

lifecycle of the login Servlet, 258

loading and instantiation, 255

overview, 254–255

request handling, 257

Servlet that responds to POST requests

deploying login Servlet to Java EE,
240–245

how login Servlet works, 245–247

overview, 238–239

<servlet> element, 252–254, 261

servlet-api.jar file, 239

<servlet-class> element, 253–254

ServletConfig class, 256

ServletConfig interface, 236, 264, 281

ServletContext class, 293–294

ServletContext interface, 273

ServletException class, 256–257

<servlet-mapping> element, 246, 252–254,
261, 294

<servlet-name> element, 253, 294

ServletRequest class, 248, 293

ServletRequest interface, 235, 247, 295

ServletResponse interface, 235, 250

Servlets, 13. See also Servlet model and
HttpServlets

and filters, 280–281

deploying login Servlet using filters to
J2SEE, 288–290

deploying login Servlet using filters to
Tomcat, 286–287

Mukhar_470-3.book Page 635 Saturday, October 1, 2005 6:14 AM

636 ■I N D E X

implementing the filter interface,
281–282

modifying deployment descriptor to
use, 282–291

running login Servlet using, 290–291

and HTTP and server programs, 230, 234

Session attribute, JSP Page directive, 47

session beans, 19, 440–441

bean interface, 411

calling beans from client, 409

choosing type of bean to use, 410

compiling the application, 413

EJB servers and EJB containers, 408

first example, 412

how entity beans work with, 425–426

Java Naming and Directory Interface
(JNDI), 416

scalability, 408

SimpleSessionBean.java detailed
explanation, 416

SimpleSessionBean.java example code,
412–413

stateful beans, 408

stateless beans, 408

troubleshooting deployment, 418

session management

creating and managing session's
lifecycle, 273

overview, 270–271

session tracking with cookies, 272

session tracking with URL rewriting, 272

storing and managing session data,
272–273

storing login credentials in a session,
274–279

using cookies in place of sessions, 279–280

session object, 74–75, 279

session scope, JSP, 72

session-config element, 252

SessionContext object, 556

sessionScope, EL statement implicit object,
JSP, 114

set() method, Map class, 191

Set class, 430

set element, 186

set method, 184, 190, 194, 211, 220

setAnalyst() method, 493, 521

setAttribute() method, 272–273, 295, 305

setAutoCommit() method, Connection class,
JDBC, 378

setBodyContent() method, JSP, 143–145, 154

setEntityContext method, 463

setLoginTimeout() method, JDBC, 330

setLogWriter() method, JDBC, 332

setMaxAge() method, 280

setMaxInactiveInterval() method,
HttpSession interface, 273

setParameter() method, Query class, 470

setProperty action, JSP, 53, 126, 128

setProperty element, JSP, 84

setSavepoint() method, Connection class,
JDBC, 378

setStocks() method, 493

setter methods, 427, 459

setTransactionIsolation() method, JDBC
transactions, 392

setValue() method, 280

setVariables() method, JSP, 154

Shakespeare web service, 563

Simple Mail Transport Protocol (SMTP),
229, 566

Simple Object Access Protocol (SOAP), 564

simple tag handlers, JSP, 129, 135

SimpleDateFormat class, 216

SimpleService interface, 572, 575

SimpleServiceClient class, 577

SimpleServiceClient.java code, 575

SimpleServiceClient.java web service, 571

SimpleServiceImpl stateless session bean, 572

SimpleServiceImpl.java web service
interface, 571

Mukhar_470-3.book Page 636 Saturday, October 1, 2005 6:14 AM

637■I N D E X

SingleThreadModel interface, 265–266, 306

single-tier architecture, 4

singleton design pattern, using in EJB
applications, 506

Singleton pattern, 530

SKU (stock-keeping unit) number, 475

sleep() method, Thread class, 264, 307

SMALLINT data type, 588

SMTP (Simple Mail Transport Protocol),
229, 566

SOAP (Simple Object Access Protocol), 564

SOAP body, 566

SOAP header, 566

SOAP with Attachments API for Java
(SAAJ), 566

sorting data from queries, 593–594

SQL (Structured Query Language), 428, 459,
464, 469–470, 585

constructing joins, 599–600

creating tables

deleting tables, 591

handling Null values, 591

overview, 588–589

specifying default values, 589–590

updating structure of tables, 590

data types

binary, 588

date and time, 588

numeric, 587–588

string, 587

DELETE statement, 598

LIKE keyword, 594

modifying table data

deleting data from a table, 598–599

inserting new rows into a table, 597–598

overview, 597

updating data in tables, 598

objects, 585–586

overview, 585

regular expressions, 594

selecting data from tables

adding calculated fields, 595–596

filtering data in queries, 592–593

overview, 591

sorting data from queries, 593–594

using SQL functions, 596–597

using wildcards and regular expressions,
594–595

SQRT() function, EJB, 604

standard converters, 215–216

standard validators, 221

standard.jar file, 171

startcommander PointBase script, JDBC,
340–341

startconsole PointBase script, JDBC, 341–342

startTimer() method, 551, 556

stateChanged method, 471

stateful EJB beans, calculator example

bean class code, 420

bean interface code, 419

compiling the code, 420–421

detailed explanation, 422–423

running the application, 421–422

stateful EJB session beans, 408

stateful vs. stateless session beans,
Enterprise JavaBeans (EJBs), 418–419

stateless EJB session beans, 408

statement objects, JDBC, 333–334

static page navigation, in JSF application,
202–203

stdout.log file, 290

Stock entity bean, 478, 493–494

Stock objects, 495

StockBean.java, 481, 493

StockClient class, 494, 506, 529, 532

StockClientDelegate instance, 530

StockClient.java, 486, 530

StockDAO object, 516

Stock.java, 481, 508

stock-keeping unit (SKU) number, 475

Mukhar_470-3.book Page 637 Saturday, October 1, 2005 6:14 AM

afec2757f4bc1972c738927ed97bb77a

638 ■I N D E X

StockList bean, 499–502

StockList business method provider, 506

StockList Servlet, 540

StockList session bean, 494–496, 518, 538

StockList web application, 533

StockListAdder application, 539

StockListAdder class, 494, 496, 522

StockListAdder.java, 489, 492, 502

StockListAdder.java application, 480, 492, 502

StockListBean.java, 483, 499

create EJB using EJB QL find, 467, 470

implementing façade design pattern, 519

loading database with CMP Field Data, 494

StockListCmrApp application directory, 491

StockListDAO interface, 506, 530–532

StockListDAOFactory class, 506, 518

StockListDelegate class, 521, 529–532, 538, 540

StockListDelegate.java file, 508

StockListException.java, 508, 511

StockList.java

developing CMP entity beans, 432

implementing façade design pattern, 518

loading database with CMP Field Data,
483, 494

StockList.java session bean, 483

StockListJDBCApp directory, 502

StockListJspPatterns directory, 533

StockListPatternsApp main application
folder, 508

StockTO class, 506, 521, 531

StockTO.java, 512

StockVo.java, 512

stored procedures, JDBC

methods used to call, 375

reasons for using, 371

StrikeIron Zip Code Information web
service, 563

String array, 494

String class, 111, 170, 183–184, 186, 203, 214,
217–218, 246–247, 264, 272, 292,
430, 470

string data types, 587

String echo(String input) method, 573

String values, 477

Structured Query Language. See SQL
(Structured Query Language)

Struts tag library for JSP, 164

submit attribute, 180

subqueries, EJB QL, 604

subscribe model, 549

SUBSTRING(String, start, length) function,
EJB, 604

SUM() function, 597, 605, SQL

Sun Application Server, 181, 276–277, 288,
290, 303

Sun Java System Application Server, 232,
240, 244

supported-locale element, 226

Swing, 1

System dialog box, Win2000, 583

System Properties dialog box, 30

System.out stream, 258

■T
tables

creating

handling Null values, 591

overview, 588–589

specifying default values, 589–590

updating structure of tables, 590

deleting, 591

modifying data

deleting data from a table, 598–599

inserting new rows into a table, 597–598

overview, 597

updating data in tables, 598

selecting data from

adding calculated fields, 595–596

filtering data in queries, 592–593

overview, 591

sorting data from queries, 593–594

using SQL functions, 596–597

Mukhar_470-3.book Page 638 Saturday, October 1, 2005 6:14 AM

639■I N D E X

using wildcards and regular expressions,
594–595

tag element, TLD, JSP

attribute subelement, 133

body-content subelement, 133

name subelement, 132

tag-class subelement, 132

variable subelement, 133

tag extension, JSP, 127

tag handler, JSP, 128–130

Tag interface, JSP, 141–142

tag libraries, 164–165

Tag Library Descriptor (TLD), JSP, 131, 133,
136, 138, 140, 150–151

taglib directive, 177

<taglib element>, 131–132

targetNamespace directive, 574

TCP/IP, 231

telnet session, 231

template data, JSP, 55

TextMessage object, 557

thin Type 4 JDBC driver, 327

Thread class, 264

Time class, 216

time data types, 588

TimeIt session bean, 549

TimeItBean class, 555

TimeIt.java remote interface, 551

TimeItTester client application, 551

timeoutHandler method, 556

Timer object, 556

TimerService object, 556

TIMESTAMP, 588

TINYINT data type, 588

TLD (Tag Library Descriptor), JSP, 131, 133,
136, 138, 140, 150–151

Tomcat, 171–172, 181–182, 233, 239, 244–245,
267, 276, 290, 302, 304

deploying calculator Servlet to, 261–262

deploying JSP web applications, 64–71

deployment, 121–122

installing

binary installation to Linux/Unix, 583

binary installation to Windows, 582–583

obtaining, 581–582

overview, 581

running, 584

topic, defined, 549

Tortoise CVS, 569

toString() method, String class, 196, 218, 292

to-view-id element, 202

TRACE method, 230

transactions, 22–23

autocommit connection status, 376–377

close() method, 378

commit() method, 378

concurrency, locking, and isolation,
390–391

description, 376

dirty reads, 391

distributed, 386

commit and rollback, 388–389

getting a connection, 388

Java Transaction API (JTA) transaction
manager, 387

JSPs and Servlets, 387

two-phase commit, 389

UserTransaction interface, 389–390

XADataSource, XAConnection, and
XAResource interfaces, 388

ending, 376–377

nonrepeatable reads, 391

optimistic locking, 392–393, 398–402

pessimistic locking, 392–394, 396–398

phantom reads, 391

read committed isolation level, 391

read uncommitted isolation level, 391

releaseSavepoint() method, 378

repeatable read isolation level, 391

Mukhar_470-3.book Page 639 Saturday, October 1, 2005 6:14 AM

640 ■I N D E X

rollback() method, 378, 380–381, 383

savepoints, 384–385

serializable isolation level, 391

setAutoCommit() method, 377–378

setSavepoint() method, 378

setTransactionIsolation() method, 392

stored procedure example, 385–386

transfer object functionality, 518–524

Transfer Object pattern, 530–531

Transient class, 427

transport layer, web services protocol
stack, 566

TRIM() function, EJB, 604

troubleshooting session bean
deployment, 418

try.catch block, 247, 268–269

try-catch-finally

JDBC close() method, 328–329

releasting statements, 335–336

two-tier architecture, 5–6

■U
UDDI (Universal Description, Discovery, and

Integration), 567

UIComponent class, 218

UnavailableException class, 256–257

underscore character (_), 594

Uniform Resource Identifier (URI), 230–231,
233–235, 237, 254

Uniform Resource Locator. See URL
(Uniform Resource Locator)

Universal Description, Discovery, and
Integration (UDDI), 567

Unix, 232, 583

unsetEntityContext() method,
EntityManager interface, 463

UPDATE statement, 462, 598

updateable ResultSet objects, JDBC, 351–353

updateRow() method, JDBC, 352

updateStock method, session bean home
interface, 440

updating data in tables, 598

UPPER(String) function, EJB, 604

URI (Uniform Resource Identifier), 230–231,
233–235, 237, 254

URL (Uniform Resource Locator), 180–181,
183, 204, 231, 234, 242, 245–246, 249,
252–253, 261, 271, 277–279, 288,
304–305, 307

encoding, 231

rewriting, session tracking with, 272

urlPattern parameter, 574

useBean action, JSP, 52, 126, 128

user-defined data types, 586

■V
validateDoubleRange validator, 221

validateLength validator, 221

validateLongRange validator, 221

validating input, JavaServer Faces (JSF)

bypassing validation, 224

overview, 221

using custom validators, 222–223

using standard validators, 221

validator element, 223

Validator interface, 222

validator-class element, 223

ValidatorException class, 222–223

validator-id element, 223

value attribute, 178, 188, 199, 222, 225

value binding expressions, using in JSP
pages, 189–192

value object design pattern, using in EJB
applications, 506

<value> element, 186

value-class element, 187–188

var attribute, 225

VARCHAR data type, 587

Vector class, 295, 305

vendor independence, 9–10

Verifier reports error, 41

version command, 32

Mukhar_470-3.book Page 640 Saturday, October 1, 2005 6:14 AM

641■I N D E X

Video entity bean, 498

view components, JavaServer Faces (JSF),
176–179

view tag, 177

■W
W3C (World Wide Web Consortium), 21–22

WAP (Wireless Application Protocol), 168

WAR (Web Archive) file, 36, 182, 244–245,
261–262, 287–288, 303–304, 540

Weather-Temperature web service, 563

Web Archive (WAR) file, 36, 182, 244–245,
261–262, 287–288, 303–304, 540

Web Service Description Language (WSDL),
567

web services

creating client file for testing, 571

developing in Java

building, testing, and serving the web
service, 576–578

creating the web service, 570–576

downloading CVS tool, 569–570

JAX-WS, 568

overview, 567–568

ebXML, 22

overview, 21–22, 561–563

protocol stack

emerging layers, 567

encoding layer, 566

messaging layer, 566–567

overview, 565–566

service description layer, 567

service discovery layer, 567

transport layer, 566

protocols, 566

reasons to use, 565

Simple Object Access Protocol (SOAP), 22

standards and models, 563–564

Universal Description, Discovery, and
Integration (UDDI), 22

Web Service Description Language
(WSDL), 22

<web-app> element, 251–252

webapps directory, 182, 244–245, 262, 287, 304

web-deploy directory, 533, 540

web-deployWEB-INFclasses directory, 540

WEB-INF directory, 171, 182, 185, 218, 302

webservices directory, 570

web.xml file, 64–67, 117, 121–122, 134,
181–182, 185, 197, 203, 250, 253, 255,
261–262, 302, 343

taglib directive, 134–135

Tomcat Datasource, 321–322

welcome-file-list element, 252

WHERE clause, 598, 602, 604

wildcards, 594–595, 603

Windows, binary Tomcat installation to,
582–583

Wireless Application Protocol (WAP), 168

World Wide Web Consortium (W3C), 21–22

Writer class, 246, 250

WSDL (Web Service Description
Language), 567

WSDP (Java Web Services Developer
Pack), 567

■X
XML (Extensible Markup Language), 251,

450–451, 458, 463, 566

overview, 21

processing, JSTL tags, 156

Mukhar_470-3.book Page 641 Saturday, October 1, 2005 6:14 AM

Mukhar_470-3.book Page 642 Saturday, October 1, 2005 6:14 AM

Mukhar_470-3.book Page 643 Saturday, October 1, 2005 6:14 AM

forums.apress.com
FOR PROFESSIONALS BY PROFESSIONALS™

JOIN THE APRESS FORUMS AND BE PART OF OUR COMMUNITY. You’ll find discussions that cover topics

of interest to IT professionals, programmers, and enthusiasts just like you. If you post a query to one of our

forums, you can expect that some of the best minds in the business—especially Apress authors, who all write

with The Expert’s Voice™—will chime in to help you. Why not aim to become one of our most valuable partic-

ipants (MVPs) and win cool stuff? Here’s a sampling of what you’ll find:

DATABASES

Data drives everything.

Share information, exchange ideas, and discuss any database
programming or administration issues.

INTERNET TECHNOLOGIES AND NETWORKING

Try living without plumbing (and eventually IPv6).

Talk about networking topics including protocols, design,
administration, wireless, wired, storage, backup, certifications,
trends, and new technologies.

JAVA

We’ve come a long way from the old Oak tree.

Hang out and discuss Java in whatever flavor you choose:
J2SE, J2EE, J2ME, Jakarta, and so on.

MAC OS X

All about the Zen of OS X.

OS X is both the present and the future for Mac apps. Make
suggestions, offer up ideas, or boast about your new hardware.

OPEN SOURCE

Source code is good; understanding (open) source is better.

Discuss open source technologies and related topics such as
PHP, MySQL, Linux, Perl, Apache, Python, and more.

PROGRAMMING/BUSINESS

Unfortunately, it is.

Talk about the Apress line of books that cover software
methodology, best practices, and how programmers interact with
the “suits.”

WEB DEVELOPMENT/DESIGN

Ugly doesn’t cut it anymore, and CGI is absurd.

Help is in sight for your site. Find design solutions for your
projects and get ideas for building an interactive Web site.

SECURITY

Lots of bad guys out there—the good guys need help.

Discuss computer and network security issues here. Just don’t let
anyone else know the answers!

TECHNOLOGY IN ACTION

Cool things. Fun things.

It’s after hours. It’s time to play. Whether you’re into LEGO®

MINDSTORMS™ or turning an old PC into a DVR, this is where
technology turns into fun.

WINDOWS

No defenestration here.

Ask questions about all aspects of Windows programming, get
help on Microsoft technologies covered in Apress books, or
provide feedback on any Apress Windows book.

HOW TO PARTICIPATE:

Go to the Apress Forums site at http://forums.apress.com/.

Click the New User link.

BOB_Forums_7x9.25.qxd 8/18/03

Mukhar_470-3.book Page 644 Saturday, October 1, 2005 6:14 AM

	Beginning Java EE 5: From Novice to Professional
	Table of Content
	Chapter 1 Java EE Essentials
	Chapter 2 Getting Started
	Chapter 3 JavaServer Pages
	Chapter 4 Advanced JSP Topics
	Chapter 5 JavaServer Faces
	Chapter 6 Servlets
	Chapter 7 Working with Databases
	Chapter 8 Advanced Topics in JDBC
	Chapter 9 EJB Fundamentals and Session Beans
	Chapter 10 EJB Entity Beans
	Chapter 11 EJB Relationships, EJB QL, and JDBC
	Chapter 12 Design Patterns and EJB
	Chapter 13 Message-Driven Beans
	Chapter 14 Web Services and JAX-WS
	Appendix A Tomcat: Who Needs Java EE 5?
	Appendix B SQL and EJB QL
	Appendix C Java EE Glossary
	Index

