Bluetooth for Java

by Bruce Hopkins and Ranjith Antony ISBN:1590590783
Apress © 2003 (352 pages)

The authors of this text describe how to develop wireless Java
applications using Bluetooth for a variety of platforms. This

- includes an APl overview of the Java library, development of

Bluetooth-based services, highlights of security concerns, and
more.

Table of Contents

Bluetooth for Java

Introduction

Chapter 1 - Introducing Bluetooth

Chapter 2 - Bluetooth 1.1

Chapter 3 - Before You Get Started

Chapter 4 - Understanding the Java Bluetooth API

Chapter 5 - Bluetooth with J2ME MIDP

Chapter 6 - Creating a Bluetooth Print Server with JPS API

Chapter 7 - Java and OBEX

Chapter 8 - Using a Bluetooth Simulator

Chapter 9 - Bluetooth Security

Chapter 10 - Wireless Embedded Systems with the Micro BlueTarget
Chapter 11 - Enterprise Bluetooth Applications with the Ericsson BlipNet
Chapter 12 - Bluetooth and Jini

Appendix A - javax.bluetooth

Appendix B - javax.obex

Appendix C - Java Bluetooth Development on the PalmOS Platform
Appendix D - BlipNet 1.1 API

Index

List of Figures
List of Tables

List of Listings
List of Sidebars

Back Cover

Bluetooth is a technology for wireless communication. It is similar in functionality to the way laptops connect to the
Internet from home/office, but is typically used for short burst communications instead of a continuous connection.
Because of this difference, Bluetooth is more typically found supported in wireless phones and personal devices.
Bluetooth for Java is not an overview of Bluetooth. In the book, Bruce Hopkins and Ranjith Antony describe how to
develop wireless Java applications using Bluetooth for a variety of platforms. This includes an APl overview of the
Java library, development of Bluetooth-based services, highlights of security concerns, and walkthroughs for
development with some of the different tools available. Programs will not be just J2ME (micro devices) based, but
will also be for J2SE (client/desktop).

About the Authors
Bruce Hopkins is an early adopter of Java technology, and has used it in a wide variety of applications, ranging from
embedded systems to enterpise applications. He currently works as a technical architect at Redwood Solutions, an

IT services firm in Livonia, Michigan.

Ranjith Antony is the technical lead for Atinav, an early Bluetooth "provider"/adopter.

Bluetooth for Java

BRUCE HOPKINS AND
RANJITH ANTONY

a’l

Apress™
Copyright © 2003 by Bruce Hopkins and Ranjith Antony
All rights reserved. No part of thiswork may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval

system, without the prior written permission of the copyright owner and the publisher.
ISBN (pbk): 1-59059-078-3

Printed and bound in the United States of America 12345678910

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Technical Reviewer: Andrew Stringer

Editorial Directors: Dan Appleman, Gary Cornell, Simon Hayes, Karen Watterson, John Zukowski
Assistant Publisher: Grace Wong

Project Manager and Development Editor: Tracy Brown Collins

Copy Editor: Ami Knox

Compositor: Impressions Book and Journal Services, Inc.

Artist and Cover Designer: Kurt Krames

Indexer: Valerie Robbins

Production Manager: Kari Brooks

Manufacturing Manager: Tom Debolski

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 175 Fifth Avenue,
New York, NY, 10010 and outside the United States by Springer-Verlag GmbH & Co. KG, Tiergartenstr.
17, 69112 Heidelberg, Germany.

In the United States, phone 1-800-SPRINGER, email <or der s@pri nhger-ny. conp, or visit
http://ww.springer-ny.com

Qutside the United States, fax +49 6221 345229, email <or der s@pr.i nger . de>, or visit
http://ww. springer.de.

For information on translations, please contact Apress directly at 2560 9th Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax: 510-549-5939, email <i nf o@pr ess. conw, or visit
http://vww. apress. com

The information in this book is distributed on an "as is" basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author nor Apress shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by

http://www.springer-ny.com
http://www.springer.de
http://www.apress.com

the information contained in this work.

The source code for this book is available to readers at ht t p: / / ww. apr ess. comin the Downloads
section.

First and foremost, | dedicate this book to the Lord Jesus Christ, without whom | could not have written
this book. | also dedicate this book to my loving wife, Schrell, and my two wonderful children, Lydia and
Bruce Jr.

—Bruce Hopkins
Dedicated to my parents, Prof. Antony Mampilly and Prof. Kochurani Mampilly.
—Ranjith Antony

About the Authors

Bruce Hopkins is a 6-year Java veteran with experience in distributed computing and wireless networking.
He has an electrical and computer engineering degree from Wayne State University in Detroit and has
interest in robotics, microcomputing, and electronics. He has worked in Java since JDK 1.0a, and his
research studies include distributed computing, clustering, encryption, and pervasive computing. He
currently works as an independent consultant in the Metro Detroit area.

Ranjith Antony earned his bachelor of technology degree in computer engineering from the College of
Engineering, Chengannur, Kerala, India, an institute affiliated with Cochin University of Science and
Technology. He became a lecturer in the Department of Computer Engineering of the Government Model
Engineering College, an institute affiliated with Cochin University of Science and Technology. In June
1998, he joined Atinav as a software engineer. Presently, he is working as a senior technical manager and
is managing the Bluetooth-related Java products from Atinav.

About the Technical Reviewer

Andrew Stringer was educated at the Dublin Institute of Technology in computer science and software
engineering, receiving a bachelor of science degree. Andrew joined Rococo Software in 2001 as a trainer
and consultant in the field of wireless software development. Andrew has great experience in developing

http://www.apress.com

and delivering courses with J2ME and also with Java APIs for Bluetooth Wireless Technology (JABWT).
Andrew lives in Dublin, Ireland.

Acknowledgments

| personally want to thank all the people who helped me in writing the book that you're holding. Never in a
million years would | have thought that | would be working with Gary Cornell and John Zukowski, both of
whom are very respected Java authors. I'm very grateful that Gary and John accepted my proposal way
back in January of 2002. For that matter, | want to thank the rest of the team at Apress including Tracy
Brown, Ami Knox, Kari Brooks, and Wanshun Tam. More honor, however, goes to Tracy. Many thanks to
Andrew Stringer from Rococo for tech reviewing this book; | never knew that | could have been wrong so
many times. It's good to have an expert at your disposal.

Bluetooth equipment isn't cheap, so | also want to acknowledge all the great companies around the world
(literally) that gave Ranjith and me hardware loans and technical assistance. For instance, Jeff Day and
the rest of the team at 3Com (including Ken Morley, Brent Nixon, and Randy Rollins) were very helpful in
providing us with Bluetooth adapters and tech support. Mahendra Tailor from TDK Systems in the UK was
very helpful in providing us with equipment as well. Rococo was very kind to allow us to have an extended
evaluation period in order to write the chapter on Bluetooth simulation. Thanks to Geraldine, Karl, and the
rest of the team in Ireland. Lim Siong Huat from Mobiwave in Singapore was very helpful in allowing us to
use their protocol analyzer for the security chapter. Peter Duchemin from Smart Network Devices in
Germany was very helpful in getting me the inside scoop on their Micro BlueTarget. | also want to thank
Niels-Christian Gjerrild from Ericsson in Sweden for hardware and documentation on the Ericsson BlipNet
system. North of the border, in Canada, | also received assistance from Dr. Steven Knudsen regarding the
integration of Jini and Bluetooth.

This is my first book, so | definitely have to thank all the wonderful teachers at Grant, Cass Tech, and
WSU who helped me to get here. You'll never forget a good teacher, and I've had many in my lifetime. |
want to thank personally Mrs. Smith, Mrs. Parent, Mr. Walker, and Mrs. Cowan from Grant School. At
Cass Tech, | had the pleasure to study under Mr. Miller, Mr. Raymond, and Mrs. Ashford. Dr. Steve Kahn
was alittle disappointed that | didn't finish my degree with the Mathematics Department after | joined the
Emerging Scholars Program, but he deserves to be mentioned. | also want to thank Dr. Chaudhary for
giving me the opportunity to study and research with him in the Parallel and Distributed Computing Lab at
Wayne State. Very few students were eligible to work in the undergraduate research program, and I'm
grateful to Bill Hill for allowing me to be a part of it.

| wouldn't be the person that | am today without the spiritual guidance of my pastors at Bethlehem Temple
Church. Many thanks to the late Bishop Jackson, the late Bishop Porter, Elder Clark, and the whole
church family.

I'm the youngest of seven children, so each one of my siblings played a role in shaping my life and career.
Thanks to Theresa, Valerie, Darlene, Barbara, Mark, and Tyrone. | definitely have to give special thanks to
Mom and Dad, because they've dealt with me for 26 years of my life. They did an excellent job raising all
seven children with college educations. Thanks to Thaddeus Johnson for being a good friend. In order to
stay smart, you have to hang around smart people.

Finally, | want to thank my wonderfully sweet wife, Schrell. She was very patient and understanding while |
wrote this book. She is truly a virtuous woman.

—Bruce Hopkins

Numerous people have provided assistance, advice, and encouragement during the preparation of this
book. Major contributors of material, ideas, insights, solutions, and explanations that have found their way
into this book include James Jose, Salman Ali, Rajesh Rabindranath, Sudhin Latheef, Vaishali Patil, and
Sajith M Nair. Besides them, my teammates at Atinav, especially George Mathew, Cipson Jose, and
Dinkar Raj, have contributed suggestions, fixed program bugs, and made imperceptible contributions too
numerous to mention. | am also grateful to Mr. Lim Siong Huat and his colleagues at Mobiwave for
extending their support by providing timely advice and necessary equipment. Without him, the chapter on

Bluetooth security would not have materialized.

—Ranjith Antony

Introduction

In the near future, Bluetooth wireless technology will be embedded into nearly every consumer electronics
device. Devices like mobile phones, PDAs, laptops, desktops, calculators, watches, keyboards, mice,
printers, scanners, cameras, and video game consoles are just a sample of what device manufacturers
will be embedding with Bluetooth. Today, Bluetooth chipsets can be purchased (in mass quantities) for $5,
so it's only a matter of time before many of your personal devices become Bluetooth enabled.

With Java, you get the ability to create applications that are agnostic of their underlying hardware platform.
As you can see, this makes Java the perfect programming language for Bluetooth! Regardless of the
hardware or OS used for your PDA, mobile phone, watch, etc., you can use the same programming
language to create your Bluetooth applications. This book is all about how to create wireless applications
using Java and Bluetooth.

How This Book Is Organized

Here's an overview of what's covered in this book:

Chapter 1: Introducing Bluetooth: If you're completely new to Bluetooth, then this chapter is for you. In
Chapter 1, we give a brief introduction to Bluetooth, with a general explanation of what you can do with
the technology.

Chapter 2: Bluetooth 1.1: In this chapter, we dive right into the dirty details of the Bluetooth protocol.
Here we define the roles and relationships between the Bluetooth stack, Bluetooth profiles, and
Bluetooth hardware. If you've seen Bluetooth terminology before, but you don't know the difference
between SDP and SDAP for instance, then this chapter will help clear things up.

Chapter 3: Before You Get Started: Chapter 3 is very appropriately named because it covers all the
loose ends that need to be addressed before we show you how to integrate Bluetooth and Java.

Chapter 4: Understanding the Java Bluetooth API: This chapter covers the full life cycle of a Bluetooth
application (whether you're using Java or not). This chapter also shows you how to use the

j avax. bl uet oot h package of the official Java Bluetooth API (the JSR-82) in order to create
Bluetooth applications.

Chapter 5: Bluetooth with J2ME MIDP: The first complete example of a Java Bluetooth application is
explained in Chapter 5. Before we present the code, however, we provide a short review of the J2ME
MIDP.

Chapter 6: Creating a Bluetooth Print Server with JPS API: Now with a complete example under your
belt, things will start to get pretty exciting. In Chapter 6, we introduce you to the Java Printing APl and
show you how to create a Bluetooth print server.

Chapter 7: Java and OBEX:Chapter 7 covers the foundation of the OBEX protocol and provides an
example on how to transfer files using the j avax. obex package of the JSSR-82.

Chapter 8: Using a Bluetooth Simulator: As you might have guessed, this chapter is all about how to
create Java applications that interact with virtual Bluetooth devices. In this chapter, the entire Bluetooth
network is simulated in software.

Chapter 9: Bluetooth Security:Chapter 9 covers the security measures provided by the Bluetooth
specification in order to make wireless applications more secure.

Chapter 10: Wireless Embedded Systems with the Micro BlueTarget: The primary focus of Chapter 10
is the Micro BlueTarget by Smart Network Devices. In this chapter, we explore the possibilities of
creating applications with a fully functional computer that fits in your hand and includes an
implementation of the JSR-82.

Chapter 11: Enterprise Bluetooth Applications with the Ericsson BlipNet: In Chapter 11, we introduce
you to enterprise Bluetooth applications and show you how to construct them using Java and the
Ericsson BlipNet.

Chapter 12: Bluetooth and Jini: In the final chapter of the book, we provide an overview of Jini network
technology and describe how to implement Jini and Bluetooth together.

Appendix A: javax.bluetooth:Appendix A is a handy reference that contains all the method signatures
of thej avax. bl uet oot h API.

Appendix B: javax.obex:Appendix B is a handy reference that contains all the method sighatures of
thej avax. obex API.

Appendix C: Java Bluetooth Development on the PalImOS Platform: Appendix C provides a quick
overview of how to get started creating Java Bluetooth applications on the Palm OS platform.

Appendix D: BlipNet 1.1 API:Appendix D contains full descriptions of the classes, exceptions, and
interfaces that comprise the BlipNet API. This appendix will be really useful to have on hand when
developing BlipNet applications.

Intended Audience

So who are you? This book really has two audiences. If you're a Java developer, then this book assumes
that you're an intermediate Java developer with little or no experience with Bluetooth. You'll get the most
out of this book if you've written a few Java classes on your own (especially J2ME applications).

If you're a Bluetooth developer, then this book becomes useful to you after Chapter 2. If you've never used
Java before, then we'd suggest that you read the first few chapters of a J2ME book before you read this
book.

The Code

The source code for this book is available at ht t p: / / www. apr ess. comin the Downloads section. The
book's companion Web site, ht t p: / / ww. | avabl uet oot h. com also contains the source code, as
well as other useful resources such as a list of recommended Bluetooth hardware for running the
examples.

http://www.apress.com
http://www.javabluetooth.com

Chapter 1: Introducing Bluetooth

Simply stated, Bluetooth is a wireless communication protocol. As such, you would use Bluetooth to
communicate to two or more other Bluetooth-capable devices. In this sense, Bluetooth is like any other
communication protocol that you may use every day like HTTP, FTP, SMTP, or IMAP. Bluetooth is also
like these protocols in that it has a client-server architecture. In Bluetooth, the one who initiates the
connection (the client) is the master, and the one who receives the connection (the server) is the slave.

The purpose of this chapter is to give you an introduction to Bluetooth. We'll briefly compare it with
competing technologies like Infrared and 802.11b and explain where Bluetooth fills the gaps that these
other technologies leave open. Next, we'll show you what Bluetooth can do and where it is currently used
in applications today, just in case you're unfamiliar with the capabilities of the technology. Finally, we'll
wrap up this chapter with a few scenarios for how Bluetooth will be used in the near future.

Bluetooth vs. Infrared

Of course, wireless communication between two computers is not new. PDAs have been able to do that
for years using infrared technology. One drawback to infrared is that the devices involved must be a few
feet apart, and most importantly, the infrared transceivers must see each other "eye to eye." If either of
those conditions are not met, then the transmission will fail. Bluetooth overcomes the first limitation by
having a nominal range of about 10 meters (30 feet). Bluetooth overcomes the second limitation because
it works like a radio, so transmissions are omnidirectional. Consequently, there are no line-of-sight issues
when communication occurs between two Bluetooth devices.

Bluetooth vs. 802.11b

If you've heard of Bluetooth before, then you've certainly heard of 802.11b (the wireless LAN protocol),
another wireless communication protocol. Bluetooth and 802.11b were created to accomplish two
different goals, although both technologies operate in the same frequency band: 2.4 GHz.

Note Having both technologies operate at the same frequency range does not mean they'll interfere
when placed in range of each other, according to a Forrester Research study conducted in
2001. Go to http:/www.forrester.com/ for details on that report.

The goal of wireless LAN (802.11b) is to connect two relatively large devices that have lots of power at
high speeds. Typically, this technology is used to connect two laptops within 300 feet at 11 Mb/s. This
technology is also useful for network administrators who want to extend their LAN to places where it is
either expensive or inconvenient to run cables.

On the other hand, Bluetooth is intended to connect smaller devices like PDAs and mobile phones within a
range of 30 feet at a rate of 1 Mb/s. Slower data rates and shorter ranges allow Bluetooth to be a low-
power wireless technology. Compared to 802.11b devices, some Bluetooth devices can easily consume
500 times less power, which can make a huge difference in the battery life of many mobile devices.

Bluetooth is also intended to be used as a cable replacement technology. If you have multiple peripherals
connected to your computer using RS-232 or USB, then Bluetooth is the ideal solution if you want to use
those devices wirelessly. It's almost impossible to connect peripherals to your computer using 802.11b
technology (well, except for printers). Bluetooth even has a built-in capability for wireless audio
communication.

Can either technology replace the other? Hardly. Bluetooth will never replace 802.11b because it's bad at
handling the following:

m Large file transfers between devices
m Long-range communication (only Class 1 Bluetooth devices have a range of 300 feet)

CROSS- See "Bluetooth Device Power Classes" in Chapter 2 for details about power
REFERENCE classes.

On the other hand, 802.11b will never replace Bluetooth because

m 802.11b can't be used to communicate to peripherals.

802.11b requires too much power for communication.
m 802.11b is overkil for small data transfers.
m 802.11b wasn't designed for voice communication.

In the wireless communication arena, there is no technology that is best suited for every possible
application. Either Bluetooth or 802.11b can be used for wireless communication between computers.
Both have their place in the market and can perform in their niches well. Newer wireless LAN protocols
like 802.11a and 802.11g will further clear the distinction between Bluetooth and wireless LAN because
they extend 802.11b's bandwidth limitation to 54 Mb/s.

http://www.forrester.com/

Bluetooth Devices on the Market Today

Now, let's take a look at Bluetooth devices that you can get at any consumer electronics store today. We'll
highlight the problems that Bluetooth solves and give some scenarios for using this technology. If you're
already familiar with common usage scenarios of Bluetooth devices, then feel free to skip this section.

Wireless Data Transfer: PDA to Phone

Almost everyone owns a mobile phone nowadays. These devices are very convenient, compact, and cute
(well, at least some of them). However, they suffer from two major limitations:

m Mobile phones have limited memory for phone book entries.
m Data entry on mobile phones can be cumbersome.

We've all been there before. Entering data on a mobile phone is very tedious because you're dealing with
a nine-button keypad to type alphanumeric text. Also, mobile phones don't have a lot of memory for
storage, so you're limited to only 50 or 100 entries. On top of that, you'll also need to truncate some
names when adding phone entries, so "Aunt Clarissa Johnson" becomes "Ant Clrssa Jnsn."

If you own a PDA, then you probably agree that PDAs are also useful devices. They can store thousands
of contact entries, and they are a lot better for entering data compared to mobile phones. Since you can't
store your entire contact list on your mobile phone, you probably have it stored on your PDA.
Unfortunately, it's a little inconvenient to look up a phone number on the PDA and then manually dial the
number on the mobile phone.

With a Bluetooth-enabled PDA and a Bluetooth-enabled mobile phone, you can keep your entire contact
list on the PDA where it's far more convenient. Don't even bother to store phone numbers on your phone.
Whenever you are ready to dial a number, you just look up the number on the PDA and send the phone
number over to the phone; no wires, no hassle. Figure 1-1 is a picture of one of HP's advanced Bluetooth-
enabled PDAs.

) or.Ta
1

j 8 Active sk

i 4]

Py Pockat PC

Figure 1-1: The short antennae on HP iPAQ 5400 series Pocket PC allows it to communicate via

Bluetooth and 802.11b. For added security, this model also includes a fingerprint reader.

Connection Sharing: Laptop to Phone

If you're a programmer and you have a laptop, you know how cumbersome it is to get a dial-up Internet
connection on your mobile phone. You may have an Internet-ready phone, but you may not have the right
cable. Maybe you have the right cable (which isn't cheap), but you need additional software to establish
the dial-up connection. Sometimes, you need to connect two cables together to accomplish this feat.
Bluetooth eliminates all the hassle from this scenario by creating a standardized method for wireless dial-
up networking. You can even keep your wireless phone at your hip or in your purse while you surf the Web
on your laptop. The same applies for PCs or PDAs that want to use your phone to connect to the Internet.
This is really convenient whenever your broadband connections at home go down for servicing. You can
simply place your wireless phone in the vicinity of your PC and that's it, you're connected.

Personal Networks: PC to PC

Bluetooth is great for connecting two PCs together at a moderate speed. If you want higher speeds or if
you need to transfer large files, then you're better off using Wireless LAN technology. On the other hand,
Bluetooth is good at creating small, personal networks. So this is a great technology if you're having an
impromptu meeting with coworkers. Bluetooth also has the added capability to discover new devices when
they enter your network.

Cable Replacement: PC to Peripherals

You can imagine Bluetooth as functioning like any other protocol to connect to your peripherals, such as
serial (RS-232), parallel, USB, or Firewire. In the near future, your personal computer will be equipped
with a Bluetooth "port” in the same manner that it currently features a serial and USB port.

You can use Bluetooth to connect to your peripherals wirelessly and effortlessly. Have you ever been to a
remote location with a laptop and wanted to use a printer to print out some files? If you don't have the right
printer driver or the right cable, then you'll need to give your file to someone who does have it. If that
person doesn't have the right program to read your file, then you're out of luck; no printing for you. If you
had a Bluetooth laptop and that printer was a Bluetooth printer (regardless of the manufacturer), then
you'd have no problem. With Bluetooth, you can ask the printer for the right driver if you don't have it, and
then you can print your file with no problem.

The Power User

So what if you're a power user? You most likely have a PDA, a wireless phone, a printer or two, a scanner,
an MP3 player, a digital camera, and a DV camera. The back of your computer probably looks like a rat's
nest of wires and cables. Some devices you may leave disconnected until you really, really need them.
Bluetooth solves all this by allowing you to have virtually an unlimited number of peripherals wirelessly
connected to your computer. The only limitation is that you can only have seven active connections at the
same time. That should be fine because it would be quite rare for you to print, scan, upload pictures, and
sync your PDA all at the same time.

Interoperability: Any Device to Any Device

In the previous scenario, your non-Bluetooth-enabled devices are definitely not interoperable. In other
words, if you want to send a picture from the camera to the PDA, then you'll need to use the computer to
interconnect them. The same also goes if you want to scan adocument and send it to the printer (i.e., to
act like a copier) or send it to the PDA; you'll always need your PC to be the "man in the middle." Of
course, you can buy a cable or two to do some of those tasks, but those cables are rare and expensive.
Bluetooth solves all this by allowing your devices to communicate among themselves with no hassle and

with no cables. It's essentially the universal cable!

Bluetooth in the Small Office or Home Office

In the small office setting, how do you share peripherals like a printer among users? Let's say you have a
$300 printer that you want two users on your network to share. Your cheapest option is to buy a print
server—but that's another $300! You might as well buy another printer for that kind of money. With
Bluetooth, if both your users are in range, no print server is needed because both users can connect to the
printer as if it were a local printer. For that matter, the printer should be able to print for every Bluetooth
user within range; but remember that it can only handle seven active connections at the same time.

Bluetooth for Voice Applications

Now, Bluetooth is great at transferring data wirelessly, but it also has the capability to transmit voice and
sound as well. So if you had a Bluetooth headset, you could use the same headset to answer calls on your
Bluetooth-enabled wireless phone as well as answer calls on your Bluetooth-enabled home phone. You
could also use the same headset to listen to your Bluetooth-enabled portable radio.

Bluetooth can also be enabled in your car so that if you're driving and you receive a call on your wireless
phone, you can simply transfer the call to the hands-free system built right into the car. Your phone stays
on your hip, or in your briefcase. You can also use the same technology to initiate a call in your car without
touching your phone at all. In either case, if you've arrived at your destination and you want to continue the
conversation, you just transfer the call back to the phone.

Bluetooth for Wireless Gaming

Of course, you can use Bluetooth for wireless gaming. It's always a hassle when you want to connect two
handheld video game systems and play against a friend. Most cables were about 6 feet long, so if both
players were on a school bus, they needed to sit right next to each other to play. With Bluetooth, you just
have to come within range of your opponent to play.

Okay, we're grownups now. But what do you do if you're in a boring meeting and you have some time to
kill? With Bluetooth, you and your equally bored colleague can both get out your PDAs and play a game of
checkers. PDAs are business tools, so no one will ever know if you are taking down notes or getting
double jumped. Figure 1-2 shows a Bluetooth-enabled mobile gaming device that could revolutionize the
portable gaming industry: the Nokia N-Gage.

Figure 1-2: The Bluetooth-enabled Nokia N-Gage wireless gaming system

Devices of the Future

So, what kind of devices, applications, or innovations can we expect to see in the future that involve
Bluetooth? Well, here are just a few that we can think of:

m Bluetooth locator system
m Personalized family car
m The new arcade: a restaurant lobby

The following sections describe these in more detail.

Bluetooth Locator System

Let's start off with a Bluetooth-enabled home, which means that wherever you go in your home, you are
within range of the wireless network. With a Bluetooth-enabled home, you have the ultimate locator
system. All your Bluetooth-enabled devices can never be misplaced if they are within the bounds of your
home. If an item ever gets lost, all you need to do is go to your PC and start up the Bluetooth locator
system program. For basic systems, you tell the program what device you are looking for, and the device
will beep until it is found. For advanced systems, the Bluetooth locator system will display a map of your
house and show you which room has your lost item. This solution is ideal for people who always misplace
small but essential items like PDAs, wireless phones, keys, TV remotes, watches, and baby pacifiers!

Personalized Family Car

In this example, let's start off with a Bluetooth-enabled car. With a Bluetooth-enabled car, all you need to
do is to set the mirrors, seats, and radio stations just once and store your preferences on a Bluetooth-
enabled device that you carry with you all the time, like a wireless phone, PDA, or a watch. It wouldn't
matter if someone else used your car, because all your preferences are stored on the device you keep
with you. After someone uses your car, all you need to do is upload your preferences from your Bluetooth-
enabled device (like your watch—see Figure 1-3) and be on your merry way.

Figure 1-3: Although the Fossil Wrist PDA doesn't contain any Bluetooth hardware, it does come
preloaded with a Bluetooth-enabled OS— the Palm OS 4.1. Palm OS is a registered trademark of
Palm, Inc.

The New Arcade: A Restaurant Lobby

Finally, let's say that sometime in the near future, you (and several other people) are waiting for a seat at a
restaurant. While you are waiting for your table, the hostess gives you a little gaming device to help you kill
time. This Bluetooth-enabled device not only lets you play games against the computer, but you can also
play games with other people in the lobby! When your table is ready, your game unit vibrates
automatically, so the hostess doesn't even need to call you. When you turn your device in to the hostess,
your score is automatically uploaded to the high scores list. If your score is good enough, you may even
win a free meal.

Summary

Bluetooth is a great technology for wireless connections between power-conservative computer devices. It
is also a great cable replacement technology for PCs and laptops. It can function as a universal connector
between your peripherals and devices, and you may never again need a cable (some of which can be
expensive) to connect your devices together.

In the next chapter, we'll dig right in to the Bluetooth protocol. If you're new to Bluetooth, this will be your
first introduction to a lot of new terminology. We'll explain to you the components of the Bluetooth stack
and the purpose of Bluetooth profiles. When you create your wireless applications, you'll interact with the
stack and profiles to send and receive data.

Chapter 2: Bluetooth 1.1

Overview

The main focus of this chapter is to describe the inner workings of Bluetooth. The most current revision of
the protocol is version 1.1. Aimost every device on the market today is compliant with Bluetooth version
1.1, although you might be able to find some devices that use the 1.0B version of Bluetooth. The
differences between Bluetooth 1.0B and 1.1 are beyond the scope of this book. The differences are
minimal, and they really don't apply to Java programmers.

What can you expect for future versions of Bluetooth like 1.2 and 2.0? Whenever the Bluetooth SIG (the
group of companies that developed the Bluetooth spec) plans to release later revisions of the spec, you
can expect some things like higher speeds, more profiles, and backward com patibility with 1.1. We
wouldn't expect the newer versions to try to compete with 802.11 speeds, but you might see data rates of
4, 8, or even 12 Mb/s. Bluetooth's niche is as a low-power wireless communication protocol, so don't
expect Bluetooth 2.0 to be a power hog.

CROSS- SeeChapter 1 for a discussion of Bluetooth versus 802.11b.
REFERENCE

This chapter is all about Bluetooth. We'll give you brief history on how it began and how it got its name.
Next, we'll show you the radio spectrum and where Bluetooth fits in with devices that you probably already
know about. Afterwards, we'll describe the anatomy of a Bluetooth-enabled device by giving a description
of Bluetooth hardware, the Bluetooth stack, and Bluetooth profiles. For the remainder of this book, when
we refer to Bluetooth, we are referring to the 1.1 version of the spec. Now, let's dig in to Bluetooth!

A Brief History of Bluetooth

Bluetooth got its name from King Harald Blatand (Bluetooth) of Denmark. His most notable
accomplishment was that he united Denmark and Norway under Christianity in the 10th century. In 1994,
Ericsson conducted the first research studies of a wireless technology to link mobile phones and
accessories. Years later in 1997, Ericsson formed the Bluetooth Special Interest Group (Bluetooth SIG) so
that other companies could use and promote the technology. At that time, the Bluetooth SIG consisted of
the following promoter companies:

m Ericsson
= IBM
= Intel
= Nokia
m Toshiba
Later on, in 1999 after the 1.0 specification was released, the Bluetooth SIG added four more members:
= 3Com
m Agere
= Microsoft
= Motorola

Today, the Bluetooth SIG has well over 2,000 members that are all interested in promoting and improving
the Bluetooth standard.

The Radio Spectrum

Wireless communication between computers is either in the form of light or radio signals. Infrared
technology is the common way to conduct short range wireless communications and obviously uses light.
Conversely, Bluetooth technology uses radio sighals. Table 2-1 gives a list of common everyday items that
rely on radio sighals for communication. As you can see, Bluetooth, cordless phones, 802.11b, and
802.11g fallin the 2.4 GHz range. Hopefully, this will demystify the Bluetooth concept if you are new to all
this; it's just a radio.

Table 2-1: Common Radio Frequencies

‘ | TEM ‘ FREQUENCY RANGE
‘ AM radio ‘ 535 kHz-1.6 MHz

‘ Garage door openers ‘ 40 MHz

‘ Baby monitors ‘ 49 MHz

‘ TV channels 2-6 ‘ 54 MHz-88 MHz

\ FM radio \ 88 MHz-108 MHz

‘ TV channels 7-13 ‘ 174 MHz-216 MHz

‘ TV channels 14-83 ‘ 512 MHz-806 MHz

‘ CDMA cellular phone ‘ 824 MHz-894 MHz

‘ GSM cellular phone ‘ 880 MHz-960 MHz

‘ Cordless phones ‘ 900 MHz

‘ Global Positioning System ‘ 1.227 GHz-1.575 GHz
‘ PCS cellular phone ‘ 1.85 GHz-1.99 GHz

‘ 802.11b ‘ 2.4 GHz-2.483 GHz
‘ 802.11g ‘ 2.4 GHz-2.483 GHz
‘ Bluetooth ‘ 2.4 GHz-2.483 GHz
‘ Cordless phones ‘ 2.4 GHz

\ 802.11a \ 5.15-5.35 GHz

Bluetooth Devices

So, if a Bluetooth device isjust a radio, then what do these radios look like? Well, Figures 2-1,2-2, and 2-3
are just a sample of devices that are Bluetooth radios. Some of these items are used in development kits,
while others are meant to be used by consumers.

iyl .9
Figure 2-2: The CSR BlueCore 1. This single-chip solution includes a microprocessor, RAM, I/O
controller, and Bluetooth implementation in a single package! This is most likely the smallest radio
that you've ever seen.

Figure 2-3: The Palm SD Bluetooth card for Palm OS 4 devices. Palm OS is a registered trademark
of Palm, Inc.

The examples in this book will use a variety of Bluetooth devices from multiple vendors. The example in
Chapter 8, however, uses no Bluetooth devices at all! In that example, we simulate the entire Bluetooth
network in software using the Rococo Impronto Simulator.

Point-to-Point and Multipoint

One factor that distinguishes various Bluetooth devices is their connection capabilities. If a Bluetooth
device can only support point-to-point communication, then it can only communicate to a single Bluetooth
device at a time. Figure 2-4 demonstrates point-to-point communication in Bluetooth.

@ 1ol %

Figure 2-4: You can only connect to one Bluetooth device at a time if you have hardware that only
supports point-to-point communication.

Now, point-to-point communication isn't necessarily a bad thing. If you have a Bluetooth phone, you really
only need one connection to your Bluetooth phone. Frankly, it doesn't make sense to have multiple
headsets be able to connect to your phone while you are using it.

On the other hand, a multipoint device is able to communicate with up to seven other devices at the same

time.Figure 2-5 is a diagram of a multipoint device communicating to other devices within range using
Bluetooth technology.

Figure 2-5: You can connect to up to seven Bluetooth devices at atime if you have multipoint-capable
hardware.

Bluetooth Device Power Classes

Bluetooth hardware devices are broken up into three power classes. Table 2-2 describes the device
classes and their capabilities.

Table 2-2: Bluetooth Device Power Classes

‘ CLASS ‘ PONER RATI NG ‘ RANGE

‘ Class 1 ‘ 100 mw ‘ 100 meters
‘ Class 2 ‘ 2.5 mw ‘ 20 meters

‘ Class 3 ‘ 1mw ‘ 10 meters

So as we stated in Chapter 1, Bluetooth devices are not limited to 10 metersin range.

CROSS See "Bluetooth vs. 802.11b" in Chapter 1 for details on the initial discussion of
REFERENCE Bluetooth's range.

How can you determine a Bluetooth device's power class, and thereby know its range? The power class is
rarely printed on the unit, so here's a hint if you're trying to distinguish the power class of a device that
you've never seen before. If that device is powered by batteries, or if it fits in your hand (like a wireless
phone or a headset), then it is most likely a Class 2 or 3 device. If the Bluetooth device is built right into the
hardware of another unit, and that unit is plugged into AC power, then it is most likely a Class 1 device.

Don't worry about Bluetooth device classes too much; just be aware that Bluetooth can communicate at
greater distances than 10 meters.

The Bluetooth Protocol Stack

Your computer is a pretty powerful device. It has a processor, memory, bus, hard drive, and other neat
things. The unfortunate thing is that the computer doesn't have the ability to use peripherals by itself.
Common peripherals like CD/DVD drives, graphic displays, mice, keyboards, modems, printers, and
scanners all need drivers. Your computer needs a driver to instruct it how to use a peripheral. By itself, the
computer has no idea how to print to a printer or scan with a scanner. The computer is pretty powerful, but
also pretty helpless. The device driver is the controlling agent that helps the computer to communicate
with its peripherals.

The Bluetooth stack and Bluetooth hardware have a similar relationship. The Bluetooth stack is a
controlling agent (it could be software, firmware, hardware, or a combination of all three) that implements
the Bluetooth protocol and also allows you to control your Bluetooth device programmatically. The
Bluetooth stack allows you to do these two things:

= Communicate with other Bluetooth devices
m Control your own Bluetooth device

So, if you're familiar with the HTTP protocol stack and how it works, then you can relate to the Bluetooth
protocol stack. A Web browser uses an HTTP protocol stack so that it can receive Web content like HTML
pages, images, files, and best of all, Java applets. A Web server also uses an HT TP protocol stack to
send out Web content to Web browsers over the network. So, like the HTTP protocol stack, a Bluetooth
protocol stack will allow Bluetooth clients and servers to send and receive data over a wireless network.

So how do the Bluetooth device and the Bluetooth stack work together? What is their relationship? Well, a
Bluetooth device without a stack can be compared to a computer without an operating system. More
specifically, it's like a computer peripheral without a driver. Figure 2-6 illustrates this concept.

h% 18] |

i} iy
ar =

Figure 2-6: A) The computer may be attached to its peripherals, but it can't control them without a
driver. B) The computer may be attached to a Bluetooth device, but it can't control it without a stack.

So, in order to communicate with the Bluetooth protocol and to control a Bluetooth radio, your com puter
uses a Bluetooth stack. Now, let's break down the Bluetooth stack into its individual components and see
how they work. Each component of the stack is called a layer.

Layers of the Protocol Stack

For application developers, the Bluetooth protocol can be broken up into two main items: layers and
profiles. All the layers of the Bluetooth protocol form the protocol stack. Figure 2-7 shows how the
following layers of the Bluetooth protocol "stack up":

m Host Controller Interface (HCI)
m Logical Link Control and Adaptation Protocol (L2CAP)

m Service Discovery Protocol (SDP)

RFCOMM

Telephony Control Protocol Specification (TCS-BIN)

Wireless Access Protocol (WAP)

Object Exchange (OBEX)

Bluetooth Network Encapsulation Protocol (BNEP)

m Human Interface Device Protocol (HID)

| RFCOMM SoP HID BREF

| Logical Link Control and Adaptation Protocol (L20AR)

[Host Contreller Interface (HCT)

Ifigure 2-7: The Bluetooth protocol stack

Note Now, if you're familiar with the Java Collection Framework, then you've heard of
java. util. Stack. Please erase thatidea from your mind completely, or you'll be thoroughly
confused here. Bluetooth uses some terms like stack and profile, which unfortunately are used
in Java as well. This chapter is all about Bluetooth, so we'll clear up the confusion whenever
there is a clash of terminology here.

You may notice that some of these layers are called "protocols" as well. That's because these items are
subprotocols of the Bluetooth protocol stack. Others like TCP/IP, OBEX, and WAP were not originated by
the Bluetooth SIG, but they have been incorporated into the Bluetooth protocol. Those subprotocols are
known as adopted protocols.

Host Controller Interface (HCI)

The Host Controller Interface is a layer of software that passes all your data from your computer to your
attached Bluetooth device. For instance, if you are trying to communicate wirelessly from your PC (the
host) and you have a Bluetooth device (the controller) attached to your USB port, then you'll need a layer
that can understand the USB calls and send that information to the upper layers of the stack. Everything
(voice and data) passes though the Host Controller Interface.

Logical Link Control and Adaptation Protocol (L2CAP)

The Logical Link Control and Adaptation Protocol is the core layer of the stack through which all data must
pass. L2CAP boasts some powerful features like packet segmentation and reassembling of data, as well
as protocol multiplexing. If you are trying to pass a very large packet of data, L2CAP breaks up the packet
and sends smaller ones. Conversely, L2ZCAP also reassembles segmented packets when accepting data.
With protocol multiplexing, L2ZCAP can accept data from more than one upper protocol at the same time
(like SDP and RFCOMM). Only data passes through the L2CAP layer; audio links have direct access to
the Host Controller Interface.

Service Discovery Protocol (SDP)

A Bluetooth device uses Service Discovery Protocol in order to discover services. What's a Bluetooth
service? A good example would be a Bluetooth printer. A Bluetooth printer will publish itself with a
message such as, "l am a printer, how can | help you?" If you have a document, and you want to print it
then you would use the Service Discovery Protocol to find a printer that offers a printer service in your
range.

RFCOMM

RFCOMM is commonly known as the wireless serial port, or the cable replacement protocol. The name is
derived from the fact that your serial ports are called COMM1, COMM2, etc. RFCOMM simulates the
functionality of a standard serial port. For instance, a Bluetooth-enabled PDA would use the RFCOMM
layer to synchronize its data to a Bluetooth-enabled PC as if they were physically connected by a cable.

Telephony Control Protocol Specification (TCS, TCS Binary, TCS-
BIN)

Telephony Control Protocol Specification (TCS, TCS Binary, TCS-BIN) is used to send control signals to
devices that want to employ the audio capabilities within Bluetooth. For example, a Bluetooth cordless
phone would use this layer of the protocol to send signals to the base station indicating that the user has
requested to hang up the current call, or to use call waiting, or to place a three-way call, etc.

Wireless Access Protocol (WAP)

If you've used an Internet-enabled wireless phone before, then you've used WAP. In Bluetooth, this is an
adopted protocol, so the Bluetooth SIG has incorporated the existing WAP protocol into the Bluetooth
protocol to fit Bluetooth's needs. WAP requires that PPP, IP, and UDP be present in the stack.

Object Exchange (OBEX)

OBEX is a communication protocol initially defined by the Infrared Data Association (IrDA). Unless you've
worked with infrared, you've probably haven't heard of OBEX. Just like WAP, OBEX was defined by
another group, but it was adopted by the Bluetooth SIG. OBEX is pretty useful when you want to transfer
objects like files between Bluetooth devices. OBEX does not require that TCP and IP be present in the
stack, but the manufacturer is free to implement OBEX over TCP/IP.

Note A Bluetooth vendor does not need to implement all the Bluetooth protocol layers into its product
in order to be Bluetooth compliant. For instance, a Bluetooth cordless phone may very well only
have HCI, SDP, L2CAP, and TCS implemented into its stack. That's perfectly fine because a
cordless phone may not need any extra functionality.

Bluetooth Network Encapsulation Protocol (BNEP)

The Bluetooth Network Encapsulation Protocol is a layer in the Bluetooth stack that allows other
networking protocols to be transmitted over Bluetooth, namely Ethernet. A Bluetooth vendor has many
optionsif it wants to implement TCP/IP networking in its Bluetooth device. BNEP is a popular choice
because it encapsulates TCP/IP packets in L2CAP packets before handing off the data to the L2CAP layer
in the stack.

Human Interface Device Protocol (HID)

The Human Interface Device Protocol is another adopted protocol in the Bluetooth specification. It was
originally defined in the USB specification, and it lists the rules and guidelines for transmitting information
to and from human interface devices like keyboards, mice, remote controls, and video game controllers.

Table 2-3 is a handy guide that gives a brief description of the layers of the Bluetooth stack and their

purpose.

Table 2-3: Layers of the Bluetooth Protocol Stack

SHORT FULL NAME DESCRI PTI ON
NANME
HCI Host Controller Interface The layer that interfaces the host (i.e., the PC)
and the controller (the Bluetooth module)
L2CAP Logical Link Control and The layer that handles all data transmissions from
Adaptation Protocol upper layers
SDP Service Discovery Protocol The layer that discovers services on Bluetooth
devices in the area
RFCOMM RFCOMM The layer that allows you to create a virtual serial
port and to stream data
TCS-BIN Telephony Control The layer that allows you to create control signals
Protocol Specification for audio applications
WAP Wireless Access Protocol The adopted protocol that allows you to view
content in Wireless Markup Language (WML)
OBEX Object Exchange The adopted protocol that allows you to send and
receive objects
BNEP Bluetooth Network The layer that encapsulates other protocol data
Encapsulation Protocol packets into L2CAP packets
HID Human Interface The layer that traffics the controls signals and
Device Protocol data for input devices like keyboards and mice

Note For an exhaustive list of all the new and upcoming Bluetooth protocols, go to the Bluetooth
Member site at http://www.bluetooth.org.

http://www.bluetooth.org

Profiles

So, let's say that you own a Bluetooth-enabled PDA and a Bluetooth-enabled wireless phone. Both of the
devices have Bluetooth stacks. How can you tell if your devices will interact properly and allow you to
synchronize the phone lists between each other? How will you know if you can send a phone number from
the PDA to the phone? And most importantly, how can you determine if these devices will allow you to
browse the Internet on the PDA using the phone as a wireless modem?

That's why the Bluetooth SIG defined profiles. A Bluetooth profile is a designed set of functionality for
Bluetooth devices. For instance, using the examples just listed, the phone and the PDA must both support
the Synchronization Profile in order to synchronize data between themselves. In order to send object data
like a .vcf file from the PDA to the phone, both devices need to have the Object Push Profile implemented.
And finally, the PDA and the wireless phone must both support the Dial-Up Networking Profile in order for
the PDA to wirelessly browse the Internet from the phone. If you want your Bluetooth-enabled devices to
interact, having a Bluetooth stack is not good enough. Those devices also need to implement the same
profile.

Now, here's a list of many of the Bluetooth profiles and a description of what they do. For most of them,
you can basically guess what they do; the names are not cryptic.

Note For an exhaustive list of all the Bluetooth profiles, go to the Bluetooth Member site at
http:/www.bluetooth.org.

Generic Access Profile

The Generic Access Profile is the most common Bluetooth profile. All other profiles use this profile for
basic connection establishment. This is the j ava. | ang. Obj ect in the Bluetooth Profile realm; every

profile needs to use the functionality of the GAP.

Service Discovery Application Profile

The Service Discovery Application Profile is a profile that directly interacts with the Service Discovery
Protocol (SDP) layer in the Bluetooth protocol stack. This profile is used to find services on Bluetooth-
enabled devices in the area.

Serial Port Profile

The Serial Port Profile is a profile that interacts directly with the RFCOMM layer in the Bluetooth protocol
stack. This profile is used to create a virtual serial port on your Bluetooth-enabled device. For instance,
some Bluetooth kits come with a driver that will allow your operating system to communicate over the
virtual serial port as if it were an actual serial port. As far as the operating system is concerned, it's just
another serial port, as shown in Figure 2-8.

http://www.bluetooth.org

o £t !

Ll S Tborraann ks
S - P — :
oh, L >

LYo tanager | r
5l Srorage

1 il Mariag . m

—dhsvecas -1

;j-.a-. shin o A4

Figure 2-8: As you can see in Windows 2000, the operating system thinks that COMM10 and

COMML11 are actual serial ports!

Note Of course, if you want to connect to another device over the air using your virtual serial port, then
you'll need another Bluetooth-enabled device in the area that also supports the Serial Port
Profile.

Dial-Up Networking Profile

If you've used a modem before, then you should be familiar with the concept of dial-up networking. The
Dial-Up Networking Profile allows you to mimic the functionality of a modem. Just like the Serial Port
Profile, some Bluetooth kits come with a driver that will allow your operating system to communicate over
the virtual modem as if it were an actual modem (see Figure 2-8). As far as the operating system is
concerned, it's just another modem.

Note For such an example to work, you'll need another Bluetooth-enabled device in the area that also
supports the Dial-Up Networking Profile, like a network access point or a wireless phone.

FAX Profile

Using the FAX Profile, a Bluetooth-enabled computer can send a fax wirelessly to a Bluetooth-enabled fax
machine or to a Bluetooth-enabled wireless phone.

Headset Profile

The Headset Profile is primarily designed for connecting Bluetooth-enabled headsets to Bluetooth-
enabled wireless phones.

LAN Access Profile

A Bluetooth-enabled device such as a PC or laptop will use the LAN Access Profile to connect to a
network access point connected to a LAN.

Personal Area Networking Profile

The Personal Area Networking Profile is pretty much similar to the LAN Access Profile, except it also has
support for devices to form ad-hoc networks among themselves. The PAN Profile also has a requirement
that BNEP be present in the underlying protocol stack.

Cordless Telephony Profile

The Cordless Telephony Profile allows you to use a Bluetooth-enabled handset to connect to a Bluetooth-
enabled "landline" phone to place calls. For instance, through this profile, you continue to receive calls to
your home phone, but you have the convenience of answering that call on your Bluetooth wireless phone,
without using the minutes of the calling plan of your wireless phone.

Intercom Profile

If two Bluetooth-enabled devices are within range, and they support the Intercom Profile, then they can
function just like regular intercoms.

Generic Object Exchange Profile

The Generic Object Exchange Profile is the generic profile that all profiles use if they want to employ the
functionality of the OBEX protocol in the Bluetooth stack.

Object Push Profile

The Object Push Profile provides the functionality for a device to push and pull an object. Using this
profile, though, you are limited to a certain class of objects like vCards.

File Transfer Profile

The File Transfer Profile is a more robust profile for transferring objects. You can use the File Transfer
Profile to transfer files and folders from one Bluetooth-enabled device to another.

Synchronization Profile

You use the Synchronization Profile to synchronize data between two Bluetooth-enabled devices. The
most common applications for this profile would be to synchronize data between a PDA and a PC.

Basic Printing Profile

The Basic Printing Profile allows a Bluetooth-enabled device to send plain text to a Bluetooth-enabled
printer for printing.

Hard Copy Cable Replacement Profile

The Hard Copy Cable Replacement Profile is what we call the "Advanced Printing Profile.” With this
profile, you can print any printable document to a Bluetooth-enabled printer. If you don't already have the
driver for that printer, that's okay; the printer will give it to you.

Basic Imaging Profile

The Basic Imaging Profile is intended to be used by imaging devices like cameras for remote control,
image transfers, and downloading.

Hands Free Profile

The Bluetooth-enabled hands-free kits in automobiles use the Hands Free Profile to allow the driver to
place and receive calls from a Bluetooth-enabled phone.

Human Interface Device Profile

As you might have guessed, the Human Interface Device Profile has a requirement that the HID Protocol
must exist in the underlying Bluetooth stack. This profile defines the case scenarios for using Bluetooth-
enabled human interface devices like keyboards and mice. One of the goals of this profile is that a
Bluetooth-enabled device that conforms to the HID Profile should run for three months on three AAA

alkaline batteries.

Profile Interdependencies

The profiles are heavily dependent upon each other, and you should already know that every profile
depends upon the Generic Access Profile. The Bluetooth profiles were designed to be building blocks,
where a higher level profile is dependent upon the functionality of the lower profiles to exist. Take a look at
Figure 2-9 and see how the Bluetooth profiles are dependent upon each other for functionality.

Gerric Aooess Profile

Service Discover
application Profl

¥
Persoral Area]

tacricing Profile Cordless Phone Profile]

Rt

Hard Copy Cable
Replacesent Prefile

I

Heman Imterface
Device Profile

J | Intercom Profile

Serial Port Profile

Generic Dbject Exchange Profile

File Transfer Profile

Nlr"-

obhfect Push Profile

N, N—

Synchronization Profile

L&N &ccess Profile

(Dial -Up Networking Profile
h,

-

l Fax Profile

(Headset Profile

h,

Baslc Imaging Profile

Hands Free Profile

Basic Printing Profile

— T W—

Figure 2-9: Bluetooth profile interdependencies

For example, in order for a PDA vendor to say that it supports the Synchronization Profile for its new
Bluetooth-enabled BJL 200 PDA, it also must support the Generic Object Exchange Profile, Serial Port
Profile, and Generic Access Profile because the Synchronization Profile cannot function without them. If a
phone manufacturer claims that its new Bluetooth-enabled TLJ 50 headset supports the Headset Profile,
then it must also include the Serial Port Profile and the Generic Access Profile.

Bluetooth Profiles vs. J2ME Profiles

Do not get Bluetooth profiles confused with J2ME profiles. J2ME profiles are a set of Java classes that
extend the functionality of a J2ME Configuration. For instance, the PDA and MID Profiles are both a
set of Java classes that extend the functionality of the Connected Limited Device Configuration. On the
otherhand, a Bluetooth profile can be implemented in any language and on any platform, because it
refersto a defined set of functionality for a Bluetooth-enabled device. So, the Object Push Profile can
be implemented on a Palm OS PDA in C++, and it can also be implemented on a Bluetooth-enabled
printer in Assembler; it's just a defined set of functionality.

Personal Area Networks: Piconets and Scatternets

When two or more Bluetooth-enabled devices come within range and establish a connection, a personal
area network is formed. A personal area network can either be a piconet or a scatternet. Figure 2-10
shows Bluetooth devices in a piconet.

Slave

Figure 2-10: In a piconet, the slaves can only communicate to the master.

A Bluetooth piconet has a single master and up to seven slaves. No matter what kind of Bluetooth devices
are involved (they can be phones, access points, PDAs, laptops, headsets, etc.), the master of the piconet
is the one that initiates the connection. The device that accepts the connection automatically becomes the
slave. Master/slave roles are not predefined, so if a piconet exists between a laptop and a PDA, either
device could be the master or the slave.

Note In certain conditions, a role switch between the master and slave is allowed. These conditions
are explained in the Bluetooth specification.

So what happens to the piconet if a new Bluetooth device wants to join the piconet after the master has
acquired seven slaves? Does it shut down? Will older members of the piconet get kicked off? No, actually,
the master of the piconet will not invite new members to join until at least one the old members leaves (or
goes into an inactive state). Now, on the other hand, if one of the slaves in the Bluetooth piconet also
happens to be multipoint-capable, then the newcomer can create a piconet with that slave, thereby
creating a scatternet (as shown in Figure 2.11). A scatternet will also be created if the master of the
existing piconet becomes a slave to the newcomer.

\@Zﬁ-@

Slave

4
1w ster 7 6%,
" Yy
119 |

Slave

Slave/Master
Figure 2.11: A scatternet is formed when a slave in one piconet is the master in another piconet.

The Bluetooth Qualification Process

Okay, so what does it take to turn a product that uses Bluetooth technology into an official Bluetooth-
certified product? Well, you first need to join the Bluetooth SIG. How do you join? Just go to
http://ww. bl uet oot h. or g and fill out the membership form. After becoming a member, you need
to submit your product for testing by a Bluetooth Qualification Body. The Qualification Body will test your
device against the current Bluetooth specification as well as interoperability with other devices that use
your Bluetooth profiles.

Note Java developers really don't need to join the Bluetooth SIG or undergo the qualification process
if prequalified Bluetooth materials (i.e., stacks and radios) are used in their products. However, if
you want to use that really cool-looking Bluetooth logo on your products, then you need to join
the SIG.

Once testing has been completed, and if your device passes the tests, it will be listed on the Bluetooth
Qualification Web site (ht t p: / / qual web. bl uet oot hsi g. or g). Most companies will postpone
announcing their new Bluetooth-enabled product until it has been certified, so check that site often to see
"who's doing what" in Bluetooth.

http://www.bluetooth.org
http://qualweb.bluetoothsig.org

Summary

In this chapter you learned all about Bluetooth devices, and you found out what they look like. By now, you
should also know about the role of the Bluetooth protocol stack and how it interacts with your Bluetooth
hardware. You should take away from this chapter a finite knowledge of Bluetooth profiles, and you should
know the purpose that they serve. Finally, you should be aware of the difference between piconets and
scatternets, and you should know what it takes to get a Bluetooth device certified.

Great! You now should have a good understanding of how the Bluetooth protocol works. In the next
chapter, we'll see what happens when we throw in Java.

Chapter 3: Before You Get Started

Okay, now that you know the ins and outs of Bluetooth, you're probably eager to find out how to integrate
Bluetooth with Java. Well, this chapter is all about doing just that. But wait! Before you learn about how to
use Bluetooth and Java, you need to know when it is not a good idea to use the two technologies together.

When NOT to Use Bluetooth and Java

You should not use Bluetooth with Java for the following purposes:
m Signal strength indicator
m Voice applications
m Distance measuring

The next few sections explain why to avoid those scenarios.

Signal Strength Indicator

Let's say that you have two Bluetooth units, and you want to know what the signal strength is between
them. A good example is when you want to use the services of a network access point. A signal strength
indicator would let you know if you were within range. Well, Java is not the ideal language for that sort of
application because that kind of information is not exposed to the level where a JVM would have access to
it. The JVM will let you know if you are within range or not within range; there is no middle ground. In this
scenario, you're better off using a native language for your device such as C or C++.

Voice Applications

Now, you've already read Chapter 2, and you realize that Bluetooth is a really great technology because
you have the ability to transmit voice and data information wirelessly to other Bluetooth devices. Suddenly,
you get ideas bubbling in your head about how great it would be to create a speech-to-text application on
your Bluetooth-enabled phone. Unfortunately, Java (especially J2ME) is not well suited to this arena just
yet. Performance is a key factor in voice-based applications, and once again, in this case, you're better off
using a native language such as C. However, this application may be feasible to do in Java if the Java
Real-Time Technology can be incorporated.

Distance Measuring

The best wireless technology for accurately measuring distance is light waves and not radio signals. Light
waves are direct, and the calculations can be pretty simple because the speed of light (in various
mediums) is pretty well documented. Using radio signals to measure distance can be quite tricky, and one
of the best ways to do that is to use triangulation, like GPS transceivers do. Whether you are using Java or
C, Bluetooth might be a viable technology for triangulation, but definitely not for calculating or measuring
accurate distances.

Note The keyword here is accurate. You can definitely use Bluetooth for proximity measurement (i.e.,
where in the building is Bruce Hopkins?). In fact, the Ericsson BlipNet does exactly that! See
Chapter 11 for more information on the Ericsson BlipNet.

So, to put it succinctly, you can only do what is possible using the constraints of the Bluetooth technology
and what the JVM exposes to you. If the JVM only gives you access to the RFCOMM layer for
communication, then you're stuck with it. If the OBEX layer is not exposed to the JVM, then don't expect to
be able to send objects. To increase application portability, your Java Bluetooth vendor should implement
the Java Bluetooth specification created through the JCP.

Understanding the JCP

The JCP is the Java Community Process, and it is the formal procedure to get an idea from a simple
concept incorporated into the Java standard. This process allows developers and industry experts to
shape the future of the Java standard. Popular APIs like Java USB, Java Real-Time, Java Printing, Java
New /O, J2ME MIDP 1.0, J2ME MIDP 2.0, JDBC 3.0, EJB 2.0, and even JDK 1.4 all went through the
Java Community Process. If you want to add some new functionality to the Java language, or if you want
to suggest a new API, or if you think that some new classes should have a package name of j ava. * or
j avax. *, then you needto go through the JCP.

The Role of the JSR-82

A JSR is a Java Specification Request in the Java Community Process. The JSR-82 is the formal JCP
name for the Java APIs for Bluetooth. When a proposed JSR is approved, an Expert Group is formed by
the specification lead. The specification lead for the JSR-82 was Motorola, and together with the JSR-82
Expert Group, they created the official Java Bluetooth APIs. The following companies participated in the
JSR-82 Expert Group:

m Extended Systems

= IBM

m Mitsubishi

= Newbury Networks

= Nokia

m Parthus Technologies
m Research in Motion (RIM)
m Rococo Software

m Sharp Electronics

m Sony Ericsson

m Smart Fusion

m Smart Network Devices
= Sun Microsystems

m Symbian

m Telecordia

= Vaultus

m Zucotto

The JSR-82 Expert Group also had three individual experts: Peter Dawson, Steven Knudsen, and Brad
Threatt.

What Is the Rl and TCK?

According to the Java Community process, the specification lead company is responsible for creating a
Reference Implementation (RI) and also a Technology Compatibility Kit (T CK). The Reference
Implementation is basically a proof of concept to prove that the specification can be implemented. Other

companies are free to implement the JSR-82, and in order to certify that their vendor kit is compliant to the
JSR-82 standard, that vendor's product must pass the TCK.

The JSR-82 specification actually has two Reference Implementations and Technology Compatibility Kits.
Why did they do this? Recall in Chapter 2 that the Bluetooth SIG has adopted some preexisting protocols
in the Bluetooth specification, namely OBEX. The OBEX protocol was used with infrared technology for
object transmissions long before Bluetooth was even invented. The designers of the Java Bluetooth
specification decided not to tie OBEX to Bluetooth when creating the Java Bluetooth standard. Therefore,
the JSR-82 actually consists of two independent packages:

m j avax. bl uet oot h (the 13 classes and interfaces that are needed to perform wireless
communication with the Bluetooth protocol)

m j avax. obex (the 8 classes that are needed to send objects between devices, independent of the
transport mechanism between them)

So, to answer your next question, yes, you can use OBEX without Bluetooth. Bluetooth is simply one of
many transports with which OBEX can operate.

The classes and interfaces that comprise the Java Bluetooth specification are briefly described in Tables
3-1 and 3-2. These classes and their methods are covered as needed in the following chapters, and their
APIs are listed in detail in Appendix A and Appendix B.

Table 3-1: Classes in the javax.bluetooth Package

CLASS NAME DESCRI PTI ON

Di scoverylLi st ener TheDi scoveryLi st ener interface allows an
application to receive device discovery and service
discovery events.

L2CAPConnecti on TheL2CAPConnect i on interface represents a
connection-oriented L2CAP channel.
L2CAPConnecti onNoti fi er TheL2CAPConnecti onNoti fi er interface provides

an L2CAP connection notifier.

Servi ceRecord TheSer vi ceRecor d interface describes
characteristics of a Bluetooth service.

Dat aEl erment TheDat aEl enent class defines the various data
types that a Bluetooth service attribute value may have.

Devi ceCl ass TheDevi ceCl ass class represents the class of
device (CoD) record as defined by the Bluetooth
specification.

Di scover yAgent TheDi scover yAgent class provides methods to
perform device and service discovery.

Local Devi ce TheLocal Devi ce class represents the local
Bluetooth device.

Renot eDevi ce TheRenot eDevi ce class represents a remote
Bluetooth device.

uul D TheUUI D class defines universally unique identifiers.

Bl uet oot hConnecti onExcepti on | ThisBl uet oot hConnect i onExcepti on is thrown
when a Bluetooth connection (L2ZCAP, RFCOMM, or
OBEX) cannot be established successfully.

Bl uet oot hSt at eExcepti on

TheBl uet oot hSt at eExcepti on is thrown when a
request is made to the Bluetooth system that the
system cannot support in its present state.

Servi ceRegi strati onException |TheServi ceRegi strati onExcepti on isthrown

when there is a failure to add a service record to the
local Service Discovery Database (SDDB) or to modify
an existing service record in the SDDB.

Table 3-2: Classes in the javax.obex Package

CLASS NAME

DESCRI PTI ON

Aut hent i cat or

This interface provides a way to respond to authentication
challenge and authentication response headers.

Cli ent Sessi on

TheCl i ent Sessi on interface provides methods for OBEX
requests.

Header Set TheHeader Set interface defines the methods that set and get
the values of OBEX headers.
Oper ati on TheOper at i on interface provides ways to manipulate a single

OBEX PUT or GET operation.

SessionNotifier

TheSessi onNot i fi er interface defines a connection notifier
for server-side OBEX connections.

Passwor dAut henti cati on

This class holds user name and password combinations.

ResponseCodes

TheResponseCodes class contains the list of valid response
codes a server may send to a client.

Ser ver Request Handl er

TheSer ver Request Handl er class defines an event listener
that will respond to OBEX requests made to the server.

The Benefits of the Java Bluetooth API

There are two key advantages to using the official Java Bluetooth APIversus a C-based (or native) API:
m APl isindependent of the stack and radio

m Standardized Bluetooth API

APl Is Independent of Stack and Radio

So what makes the official Java Bluetooth API better than a C/C++ Bluetooth API? One of the principle
reasons is that the JSSR-82 APl is independent of the stack and the Bluetooth hardware. That gives you the
ability to write applications without any knowledge of the underlying Bluetooth hardware or stack. And
that's essentially what Java gives you today. If you write standard Java code (without any native methods),
you can run your code on basically any hardware platform and on any OS with little or no modification.
Whether it's an appli-cation, applet, midlet, servlet, or EJB, you can code your application on one platform
and deploy to another platform.

The Only Standardized Bluetooth API

If you have a C/Cbased Bluetooth SDK, then you are basically at the mercy of the vendor. There is no
standard for a C/Cbhased Bluetooth SDK, so each vendor is free to name functions and methods to
whatever they choose. Vendor A may have five profiles in its SDK, and Vendor B may only have three. If
you want to change Bluetooth hardware or stack libraries, then you'll need to rewrite your Bluetooth
application and/or change its functionality. Because the JSR-82 is the official Java APIfor Bluetooth, all
vendors who implement the standard must include a core set of layers and profiles in their Bluetooth SDK.

A JSR-82-compliant Bluetooth stack must include the following layers:
m Host Controller Interface (HCI)
m Logical Link Control and Adaptation Protocol (L2CAP)
m Service Discovery Protocol (SDP)
s RFCOMM
These profiles are also required:
m Generic Access Profile
m Service Discovery Application Profile
m Serial Port Profile
m Generic Object Exchange Profile

CROSS- See "The Bluetooth Protocol Stack" and "Profiles" in Chapter 2 for details on the
REFERENCE Bluetooth protocol stack and profiles just in case you forgot.

The first thing that may come to your mind is, "Hey, wait a minute, doesn't the Bluetooth specification
contain more profiles than that? Why did they implement only a few profiles in Java?" Well, here are two
major reasons:

First of all, the JSSR-82 team wanted to get the Java Bluetooth specification in the hands of developers as
quickly as possible. Recall in Chapter 2 that Bluetooth profiles are designed to be functional enough
where higher profiles extend the functionality of the lower, or base, profiles. Refer to Figure 2-9, which
shows a diagram of the relationship of the profiles of the Bluetooth specification.

Secondly, by implementing the base profiles (Generic Access Profile, Service Discovery Application
Profile, Serial Port Profile, and Generic Object Exchange Profile), the SDK vendor or the application
developer is free to implement the higher profiles of the Bluetooth specification.

What You Need to Get Started

We know that this question has been on your mind for a while. Well, here's a list of what you'll need:
m Bluetooth devices (at least two)
m Bluetooth host (at least one)
m Bluetooth stack
m Java Bluetooth API

Now let's cover all these componentsin detail and describe how they all work together.

Bluetooth Devices

Bluetooth devices were covered in Chapter 2, but just in case you forgot, take another look at Figures 2-1,
2-2,and 2-3. Remember, Bluetooth devices are simply radios, so getting a single device is just like getting
a single walkie talkie; it's pretty useless. If your Bluetooth device is point-to-point capable, then that means
it can only talk to a single Bluetooth device at a time. If it is multipoint capable, then it can talk to up to
seven devices at a time. The Bluetooth device is also known as the controller.

Bluetooth Host

The Bluetooth host is the computer that is physically connected to the Bluetooth device. For the most part,
this is your desktop PC, laptop, PDA, or smart phone. Usually, the connection is USB, RS-232, or UART.

Now, you are definitely going to need two Bluetooth devices, but you can get away with having only one
Bluetooth host. How does this work? Well, if you have a PC that has two serial ports or two USB ports (or
both), then you can connect both of your Bluetooth devices to your PC's ports. In order for this to work, you
need to start two instances of your JVM; each JVM will have its own Bluetooth device.

The Bluetooth host must meet the minimum requirements for the CLDC, so you need at least 512k total
memory for the JVM.

Bluetooth Stack

A Bluetooth stack is required in order for a Bluetooth host (the PC) to properly communicate to the
Bluetooth device (the controller). If you go back to Figure 2-6, which shows a diagram of the Bluetooth
stack, the bottom layer of the stack is the Host Controller Interface! See, it does make sense. The Host
Controller Interface is literally the software required to interface the Bluetooth host and the Bluetooth
device (the controller).

Since this book is all about Java and Bluetooth, you might think that the Bluetooth stack needsto be
written completely in the Java language. Well, not exactly. Some Bluetooth vendors have implemented a
completely all-Java stack, while others have implemented a Java interface (i.e., JNI or other means) to a
native stack. Either way, you need to access the stack through Java code, whether or not the stack is in
Java.

Java Bluetooth API

Finally, you're going to need a set of libraries to interface with your stack. For the most part, a company will
sell you a Java Bluetooth API and Bluetooth stack together in a kit. Just be sure to ask them what
Bluetooth devices their kit supports.

Another question to ask your Java Bluetooth kit vendor is if their product is JSR-82 compliant. Currently,
JSR-82 can only be implemented on the J2ME platform. JSR-82 cannot be implemented on the J2SE

platform because the J2SE does not support the Generic Connection Framework. Hopefully, the Generic
Connection Framework will be implemented by JDK 1.5.

Note The official JSR to implement the GCF in the JDK is JSR-197.

Does this mean that it is impossible to do Java and Bluetooth development on the J2SE platform? No, it
simply means that whatever Java Bluetooth kit that you obtain for J2SE will not be compliant with JSR-82
until the Generic Connection Framework is implemented in J2SE. The major ramification of this problem is
that your J2ME and J2SE code may be drastically different from each other, even if you are doing the
same thing.

Java Bluetooth Vendor SDKs

So, who's offering Java Bluetooth SDKs, and which are JSR-82 compliant? Fortunately, there is a plethora
of Java Bluetooth SDKs to fit the needs that your application requires. Vendor support is available for Java
Bluetooth development on a wide range of operating systems and JVM platforms. Table 3-3 displays
various attributes of many Java Bluetooth SDKs.

Table 3-3: Java Bluetooth SDK Vendors [J

COVPANY JSR- 82 JSR- 82 SUPPORTED SUPPORTED
NANE JAVAX. BLUETOOTH JAVAX. OBEX JAVA OPERATI NG
SUPPORT SUPPORT PLATFORNS SYSTEMS
Atinav Yes Yes J2ME, J2SE Win-32, Linux,
Pocket PC
‘ BlueGiga ‘ No ‘ No ‘ Waba JVM ‘ uClinux
‘ Ericsson ‘ No ‘ No ‘ J2SE ‘Win-32, Linux
Esmertec Yes No J2ME Win-32, Palm
OS, Pocket PC,
many others
Harald No No J2SE Win-32, Linux,
others
Possio Yes Yes J2ME Win-32, Linux
Rococo Yes Yes J2ME, J2SE Win-32, Linux,
Palm OS,
Pocket PC
Smart Yes No J2ME HyNetOS
Network
Devices
‘ SuperWaba ‘ No ‘ No ‘ Waba JVM ‘ Palm OS
‘ Zucotto ‘ No ‘ No ‘ J2ME, J2SE ‘Win-32

EIThe information in this table is subject to change, so check the companion Web site
http://ww. | avabl uet oot h. comfor up-to-date information. Palm OS is a registered
trademark of Palm, Inc.

http://www.javabluetooth.com

Summary

This chapter has only skimmed the surface of how to integrate Java Bluetooth. You learned about the
advantages of using Java versus C for application development. You also learned about JSR-82 as well
as what it takes to get things up and running.

In the next chapter, we'll focus more on integrating Java and Bluetooth, as well as introduce some
example code.

Chapter 4: Understanding the Java Bluetooth API

This chapter will be your formal introduction to the Java Bluetooth API. We'll cover a vast majority of the classe:
inthe j avax. bl uet oot h package and examine how to use them in your applications. Rather than looking at
every class and interface individually, we'll take a different approach by first looking at the basic components of
typical Bluetooth application (Java or otherwise). After we have identified these components, we'll explain how t
use the Java Bluetooth APl in order to create wireless applications.

The Basic Components of aBluetooth Application
The basic components of any Bluetooth application consist of the following items:

m Stack initialization

m Device management

m Device discovery

m Service discovery

m Service registration

= Communication

The Java Bluetooth specification adds a special component to the mix called the Bluetooth Control Center
(BCC). We'll talk about the BCC in the next section because in some vendor implementations, stack initializatio
is handled through the BCC.

The Bluetooth Control Center

The Bluetooth Control Center is an awkward beast due to its ambiguity. It is required to exist in a JSR-82
compliant implementation, but there are no guidelines in the official Java Bluetooth specification about how it
should be implemented. One vendor could implement the BCC as a set of Java classes, and another vendor
could implement it as a native application on the Bluetooth host. But no matter how it is implemented, itis an
integral part of your security architecture because the BCC defines device-wide security settings for your
Bluetooth device.

Now, for the most part, if you are working with a JSR-82-compliant Java Bluetooth development kit within your
development environment, then the BCC will probably be implemented as one or more Java classes. But
because the BCC is vendor specific, the classes that form the BCC will not have aj avax. bl uet oot h packac
name; they will be in the form of something like com vendor . bl uet oot h. bcc. Now, if you're working with a
device that comes with the Java Bluetooth standard (like a mobile phone or a PDA), then there is a high
probability that the BCC would be implemented as a native application on that device.

According to the Java Bluetooth specification, these are the requirements of the BCC:
= Include base security settings of the device.
m Provide a list of Bluetooth devices that are already known. The devices do not need to be within range.
m Provide a list of Bluetooth devices that are already trusted. The devices do not need to be within range.
m Provide a mechanism to pair two devices trying to connect for the first time.
m Provide a mechanism to provide for authorization of connection requests.
= Information contained in the BCC must not be modified or altered other than by the BCC itself.

Depending upon the JSR-82 implementation that you're using, the BCC may need to be packaged and deploye

with your application code.

Stack Initialization

Now before you can do anything, your stack needs to be initialized. Remember, a Bluetooth stack has direct
accessto the underlying Bluetooth device. Stack initialization can consist of a number of things, but its main
purpose is to get the Bluetooth device ready to start wireless communication. Stack initialization sequences car
vary, and it's heavily dependent upon the underlying OS and Bluetooth radio. In some cases (in particular, with
the Rococo Palm DK) no code is needed at all to initialize your stack. In other cases, you'll need to write a bit of
code to get your stack initialized because you need to specify baud rates for your RS-232 interface.

For instance, Listing 4-1 shows the snippet of code that you would need in order to initialize your stack if you we
using the Atinav SDK with a RS-232-based Bluetooth device.

Listing 4-1: Stack Initialization Code for the Atinav SDK

i nport com ati nav. bcc. *;

BCC. set Port Nanme(" COML") ;

BCC. set BaudRat e(57600) ;

BCC. set Connect abl e(true);

BCC. set Di scover abl e(Di scoveryAgent. d AC) ;

Esmertec takes a different approach for stack initialization. Their JSR-82 implementation and stack tends to be
used mostly by wireless device OEMSs. Listings 4-2 and 4-3 show the Java classes that would be part of a startu
sequence to initialize the stack for the entire device. After the device has started (which consequently means th
the stack is also initialized), other Java applications that reside on the device no longer need to include code to
initialize the stack.

Listing 4-2: BluetoothSetupl.java

i nport com j bed. bl uet oot h. *;
i nport java.io.|OException;

public class Bl uetoothSetupl {

private static int device;
private static BCC nyBCC;
static {
devi ce = Devi ceProperties. DEVI CE_1;
try {
myBCC = BCC. get | nstance();
myBCC. st art Up(devi ce) ;

myBCC.initDriver();
Systemout.println("Bluetooth Started");
} catch (1 Oexception exc) {
Systemout.println("I OException:
exc. printStackTrace();
Systemout.println("Bluetooth Probably NOT Started ");

+ exc. get Message());

Listing 4-3: DeviceProperties .java

i nport com j bed. bl uet oot h. *;
i nport com j bed. bl uet oot h. Hci Transport;
i mport java.util.Hashtabl e;

public final class DeviceProperties {

public static final int DEFAULT = O;

public static final int ERICSSON = 1;

public static final int CSR = 2;

public static final int SILIH COWAVE = 3;

public static final int NON_SECURE MODE 1 = 1;

public static final int SERVICE LEVEL MODE 2 = 2;
public static final int LINK LEVEL_MODE 3 = 3;

public static final int TRUSTED DEVI CE = O;

public static final int UNTRUSTED DEVI CE = 1;

public static final int UNKNOAN_DEVI CE = 2;

public static final int AUTHORI SATI ON_REQUI RED = 0x1;
public static final int AUTHENTI CATI ON_REQUI RED = 0x2;
public static final int ENCRYPTI ON REQUI RED = 0x4;
static int SERVI CE_TABLE SIZE = 32;

static int DEVICE TABLE SIZE = 8;

public static final int DEVICE_ 1 = O;

public static final int DEVICE 2 = 1;

static int NAP_GN MODE = DEVI CE_2;

static int PANU MODE = DEVI CE 1;

static int DATA MIU = 1691;

static int HEADER LENGTH = 14;

public static int maxinmnServi ceRecordCount = Oxffff;
public static int maxi numAttri buteByteCount = Oxffff;
static int SDP_SERVER THREADS = 4;

static int SDP_CLI ENT_THREADS = 4;

static int BNEP_CHANNELS = 4;

static int MAX I N L2CAP_BUFFERS = 32;

static int SDP_THREAD TI MEQUT = 120000;

static int BLUETOOTH EVENT_TI MEQUT = 180000;

public static String DEVICEL_NAME = "Little Devicel";
public static String DEVICE2_NAME = "Little Device2";
static int DEVICEL1 |IP = 0x0al10101; // 10.17.01.01
static int DEVICE2 |IP = 0x0al110102; // 10.17.01.02
static int NETMASK = OxFFFFFFOO; // 255.255.255.0
static int BROADCAST = 0x0allO01FF; // 10.17.01.255
static int DST_UU D = Sdp. UUl D_PANUY;

static int SRC UUID = Sdp. UUl D _GN,

Hasht abl e ht;

private External SecurityControl Entity nyEsce;
String pin = "123";
Hci Transport hci Transport;

String devicelSerial Port
String device2Seri al Port

:

int devicelBaudRate = 19200; // 38400; //57600; //9600; //115200;
int device2BaudRate = 19200; // 57600; //38400; //9600; //115200;
int roleSwitch = Hci Connecti onTabl e. REFUSE_ROLE_SW TCH;

int securityMde = SERVI CE_LEVEL MODE 2;

Dev

ceProperties(int device) {
ht = new Hasht abl e();
nyEsce = new ESCESanpl e(pi n);

/1 SeriallFHci Transport is a sinple UART connection
if (device == DEVICE 1) {
hci Transport = new Seri al | FHci Transport (devi celSeri al Port,
devi celBaudRat e) ;
/!l Human readabl e form of the device name
ht . put (" bl uet oot h. devi ce. nane", DEVI CE1_NANMNE)
} else {
hci Transport = new Seri al | FHci Transport (devi ce2Seri al Port,
devi ce2BaudRat e) ;
/1 Human readabl e form of the device name
ht . put (" bl uet oot h. devi ce. nane", DEVI CE2_NANE)

}

ht . put (" bl uet oot h. api . version", "1.0a");

ht. put (" bl uet oot h. security. node", Integer.toString(securityMde));
ht. put ("bl uetoot h. | 2cap.recei veMIU. max", Integer.toString(DATA MIU));
ht . put (" bl uet oot h. connect ed. devi ces. max", "7");

ht . put (" bl uet oot h. connected.inquiry", "true");

ht. put (" bl uet oot h. connect ed. page", "true");

ht . put (" bl uet oot h. connected. i nquiry.scan", "true");

ht . put (" bl uet oot h. connect ed. page. scan", "true");

ht . put (" bl uet oot h. master.swi tch", "true");

ht. put ("bl uetoot h. sd.trans. max", Integer.toString(SDP_CLI ENT_THREADS)) ;
ht.put("bluetooth.sd.attr.retrievable. max", "64");

testProperties();

External SecurityControl Entity getEsce() {
return myEsce;

}

private void testProperties() {

int i;
if (hciTransport == null) {
throw new Error("No connection to Host Controller defined");
}
i = getlnt("bluetooth.security.node");
if (i < NON_SECURE_MODE_1 || i > LINK LEVEL_ MODE_3)

throw new Error("bluetooth. security. nmde nust be NON_SECURE MODE 1,
SERVI CE_LEVEL_MODE_2, or LINK _LEVEL_MODE 3");
if (getlnt("bluetooth.|2cap.receiveMIU nmax") < 48)

t hrow new Error("bluetooth.| 2cap. recei veMIuU. max nust be at |east" +
" 48 bytes, default value is 672");
}
private int getlnt(String prop) {
return Integer.parselnt((String) ht.get(prop));

}

So, as we stated earlier, stack initialization must occur before you can do any real work in your Bluetooth
application (whether you invoke it directly in your code or not).

Device Management

Local Devi ce,Renot eDevi ce, and Devi ceCl ass are the classes in the Java Bluetooth specification that
form the Generic Access Profile and allow you to perform device management. These classes allow you to que
some statistical information about your own Bluetooth device (Local Devi ce) and also some information on th
devices in the area (Renot eDevi ce). The Devi ceCl ass object gives you information about the official class
device (CoD) as defined in the Bluetooth specification.

javax.bluetooth.LocalDevice

There is a famous quote that says, "Know thyself." Well, this class allows you to do exactly that. The
Local Devi ce class is the class that gives you information about yourself, the local Bluetooth device. Being a

singleton object, you can only have a single instance of this object in your JVM at a time. Its constructor is
pri vat e, so you can instantiate it by using the static get Local Devi ce() method:

Local Devi ce | ocal devi ce = Local Devi ce. get Local Devi ce();

public String getBluetoothAddress()

Bluetooth devices have unique addresses, which are quite similar to MAC addresses for network cards on your
PC. This class allows you to find out what your Bluetooth address is with the get Bl uet oot hAddr ess()
method. It returns a 12-character St ri ng in the form of something like 0OOFE3467B092. In most cases, your
Bluetooth radio shows what your address is somewhere externally, but it's nice to have a way to access it
programmatically.

public boolean setDiscoverable(int mode)

In order to allow remote Bluetooth devices to find your device, you need to set the discovery mode of your
Bluetooth device. Table 4-1 contains a list of valid modes and descriptions for the Bluetooth discovery modes.

Table 4-1: Bluetooth Discovery Modes

ACCESS MODE FULL NAME DESCRI PTI ON VALUE
NOT_DI SCOVERABLE | Not Discoverable Don't allow any devices to discover 0
your device.
G AC General/Unlimited Allow all devices to discover your 10390323
Inquiry Access Code device.
LI AC Limited Inquiry Access A temporary access mode that will 10390272
Code revert back to a previous state after
1 minute.

One question that might be on your mind is why the values for the access modes are 0, 10390272, and
10390323. Wouldn't it be simpler for the values to be something like 0, 1, and 2? Well, the codes for

NOT_DI SCOVERABLE,LI AC, and G AC are all defined in the Bluetooth Assigned Numbers document from

htt p: //waw. bl uet oot h. or g. Each entry in the document (which has more than just codes for Bluetooth
discovery modes) has a unique code in hexadecimal format. The actual codes for LI AC and Gl AC as describe:
in the Bluetooth Assigned Numbers document are 0OX9E8BOO (for LI AC) and O0Xx9E8B33 (for G AC). For your
convenience, these values are available to you as public constants in the Di scover yAgent class:

/'l javax. bl uetoot h. Di scoveryAgent.java

public static final int NOT_D SCOVERABLE = O;
public static final int LIAC = Ox9E8B0O0 // 10390272
public static final int G AC = Ox9E8B33 // 10390323;

public int getDiscoverable()

Call this method if you want to know the current discovery mode of your Bluetooth device. This will (obviously)
return an i nt that's either NOT_DI SCOVERABLE,LI AC, or Gl AC.

javax.bluetooth.RemoteDevice

TheRenot eDevi ce class gives you access to a single remote Bluetooth device in the area. The most commol
way to obtain a reference to a Renpt eDevi ce is through device discovery, which is covered in the next section
Here are two useful methods that pertain to device management.

public final String getBluetoothAddress()

As you probably have already assumed, this method returns to you the 12-character Bluetooth address of the
remote device.

public String getFriendlyName(boolean alwaysAsk)

Knowing the Bluetooth address of the Renot eDevi ce is fine, but it is even better to know the "friendly name" ¢
that device. The friendly name of a Bluetooth device is something like "Andrew's PDA", "Home Office Printer",
"Ranjith's MP3 Player".

javax.bluetooth.DeviceClass

This class represents the class of device in the Bluetooth specification. A device class is simply a classification
Bluetooth devices. Why is this class useful? Well, by simply calling the methods of this class, you can determin
what kind of devices are in the area, like computers, laptops, phones, PDAs, access points, etc. The methods
provided to accomplish this task are get M nor Devi ceCl ass() and get Maj or Devi ceCl ass(), both of
which return an i nt .Table 4-2 shows some common major and minor device classes.

*

Table 4-2: Bluetooth Major and Minor Device Classes [

MAJOR M NOR MAJOR CLASS M NOR CLASS DESCRI PTI ON
CLASS CLASS DESCRI PTI ON

‘ 0 ‘ ‘ Misc. major device ‘

‘ 256 ‘ 0 ‘ Computer ‘ Unassigned, misc.

‘ 256 ‘ 4 ‘ Computer ‘ Desktop

‘ 256 ‘ 8 ‘ Computer ‘ Server

http://www.bluetooth.org

‘ 256 ‘ 12 ‘ Computer ‘ Laptop

‘ 256 ‘ 16 ‘ Computer ‘ Sub-laptop

‘ 256 ‘ 20 ‘ Computer ‘ PDA

‘ 256 ‘ 24 ‘ Computer ‘ Watch size

‘ 512 ‘ 0 ‘ Phone ‘ Unassigned, misc.

‘ 512 ‘ 4 ‘ Phone ‘ Cellular

‘ 512 ‘ 8 ‘ Phone ‘ Household cordless

‘ 512 ‘ 12 ‘ Phone ‘ Smart phone

‘ 512 ‘ 16 ‘ Phone modem ‘

‘ 768 ‘ 0 ‘ LAN/network access point ‘ Fully available

‘ 768 ‘ 32 ‘ LAN/network access point ‘ 1-17% utilized

‘ 768 ‘ 64 ‘ LAN/network access point ‘ 17-33% utilized

‘ 768 ‘ 96 ‘ LAN/network access point ‘ 33-50% utilized

‘ 768 ‘ 128 ‘ LAN/network access point ‘ 50-76% utilized

‘ 768 ‘ 160 ‘ LAN/network access point ‘ 67-83% utilized

‘ 768 ‘ 192 ‘ LAN/network access point ‘ 83—99% utilized

‘ 768 ‘ 224 ‘ LAN/network access point ‘ 100% utilized, no service available

‘ 1024 ‘ 0 ‘ Audio/video device ‘ Unassigned, misc.

1024 4 Audio/video device Headset (must conform to the
Headset Profile)

‘ 1024 ‘ 8 ‘ Audio/video device ‘ Hands-free device

‘ 1024 ‘ 16 ‘ Audio/video device ‘ Microphone

‘ 1024 ‘ 44 ‘ Audio/video device ‘ VCR

‘ 1024 ‘ 72 ‘ Audio/video device ‘ Video game system

‘ 1280 ‘ 64 ‘ Computer peripheral ‘ Keyboard

‘ 1280 ‘ 128 ‘ Computer peripheral ‘ Mouse, trackball, etc.

‘ 1280 ‘ 12 ‘ Computer peripheral ‘ Remote control

‘ 1536 ‘ 16 ‘ Imaging device ‘ Display device

‘ 1536 ‘ 32 ‘ Imaging device ‘ Camera

‘ 1536 ‘ 64 ‘ Imaging device ‘ Scanner

‘ 1536 ‘ 128 ‘ Imaging device ‘ Printer

‘ 7936 ‘ ‘ Unclassified major device ‘

UThis table has a majority of the major and minor device classes listed in the Bluetooth Assigned Numbers
document on the Bluetooth Web site: ht t p: / / www. bl uet oot h. org.

So, that's about all it takes to perform device management with the Java Bluetooth APIs. Now, let's take a look
the concept in Bluetooth that allows you to discover other Bluetooth devices: device discovery.

http://www.bluetooth.org

Device Discovery

Your Bluetooth device has no idea of what other Bluetooth devices are in the area. Perhaps there are laptops,
desktops, printers, mobile phones, or PDAs in the area. Who knows? The possibilities are endless. In order to
find out, your Bluetooth device will use the device discovery classes that are provided in the Java Bluetooth API
see what's out there.

Which Bluetooth devices should use device discovery? Well, if you are planning to use a peer-to-peer applicatit
in Bluetooth, like two PDASs in a chat session, then either device would use device discovery to find the other
device. If you are planning to use a client-server type application, like printing from a lap-top to a printer, then th
client is most likely to perform device discovery. It doesn't make sense for the printer to constantly look for
devices that want to print something.

Now, let's take a look at the two classes needed in order for your Bluetooth device to discover remote Bluetoott
devices in the area: Di scover yAgent and Di scoveryLi st ener.

javax.bluetooth.DiscoveryAgent

After getting a Local Devi ce object, the most logical next step for device discovery is to instantiate the
Di scover yAgent object. You accomplish this task by calling Local Devi ce. get Di scover yAgent ().

Local Devi ce | ocal devi ce = Local Devi ce. get Local Devi ce();
Di scover yAgent di scoveryagent = | ocal device. get Di scoveryAgent ();

When you want to discover other Bluetooth devices in the area, Di scover yAgent gives you two methods to
work with: start 1 nquiry() andretri eveDevi ces().

public boolean startinquiry(int accessCode, DiscoveryListener listener)

After you have instantiated your Di scover yAgent , you use this method to make your Bluetooth device searct
for other devices in the area. The length of the inquiry is totally dependent upon the implementation of the Java
Bluetooth specification. The accessCode can be one of the following Di scover yAgent constants:

NOT_DI SCOVERABLE,LI AC, or Gl AC. You must also pass a reference to a class that implements the

Di scoveryLi st ener interface. When new devices are discovered, event callbacks are passed back to this
object. This method will return t r ueif the device successfully went into discovery mode. The

startl nquiry() method is the only way to perform device discovery without blocking the current thread.

public RemoteDevice[] retrieveDevices(int option)

UsetheretrieveDevi ces() method to get a list of Renot eDevi ce objects that were found by previous
inquiries. The opt i on field has either the value of 0 for CACHEDor1 for PREKNOAN. For your convenience,
CACHED and PREKNOWN are also defined as constants in the Di scover yAgent class. Unlike the

startl nquiry() method, this method blocks the calling thread until it returns. CACHED and PREKNOWN
devices are determined by the BCC.

Note For the most part, a CACHED device is simply a Blue-tooth device that was found from a recent inquin
Of course, the definition of "recent” is implementation dependent. A PREKNOWN device is a level abov
aCACHED device and is one that you frequently communicate with.

For example, let's say that you own a Bluetooth-enabled PDA. If you have exchanged business cards with
another PDA within an hour, an implementation may classify that PDA as CACHED. However, if you own a printe
at home, and you print to it often from the PDA, then animplementation may classify the printer as PREKNOAN.

Please note thatthe r et ri eveDevi ces() method does not perform a true inquiry for Bluetooth devices, and
subsequently, devices found from this method may not be in the area. However, this really isn't a problem,
because the purpose of this method is to quickly give you the references to the devices that you want to connec
to. Thestart |l nqui ry() method will guarantee that the device is in the area, but it may take a considerable

amount of time in order to find the device that you want.

javax.bluetooth.DiscoveryListener

If you've worked with event handling in Java, then the concept of listeners is not new to you. Like all listeners,
Di scoverylLi st ener is an interface that has a method that is called by the JVM when the desired event
occurs. If you want to be informed when a Bluetooth device is found by Di scover yAgent . start | nquiry()
then your class needs to implement the Di scover yLi st ener interface. Whenever a Bluetooth device is foun
the method devi ceDi scover ed() is called.

public void deviceDiscovered(RemoteDevice btDevice, DeviceClass cod)

As stated in the preceding section, this method is called by the JVM when a remote Bluetooth device is found
from an inquiry. The Renot eDevi ce objectis a reference to the Bluetooth device found from the inquiry. The
Devi ceCl ass object (which tells you if the remote device is a phone, a PC, a PDA, etc.) is also provided wher
this method is called. See Table 4-2 for common device classes and their numbers.

Note Thedevi ceDi scover ed() method may be called more than once for the same Bluetooth device ir
the vicinity.

Now that you know all the semantics about discovering devices, let's discuss how to find what services (if any)
that these devices offer.

Service Discovery

After you have located devices in the area, it would be really nice to see what services those devices offer. Of
course, you can always inspect the Devi ceCl ass object, but that may only reveal half the picture. Let's say th
you want to print a text file. Obviously, if the Devi ceCl ass indicates that the major device class of the

Renot eDevi ce is a printer, then you're all set. But what if the major device class is a computer? Would it com
to mind that you can also print to a computer that is acting as a print server?

CROSS- This is actually a good segue for Chapter 6. In Chapter 6, you'll learn how to convert yol
REFERENCE desktop computer into a wireless print server.

The service discovery-related classesin the Java Bluetooth specification implement the Service Discovery
Application Profile. The Service Discovery Application Profile, in turn, uses the Service Discovery Protocol (SDF
layer in your Bluetooth stack to find services on remote Bluetooth devices.

CROSS- SeeChapter 2 for detailed descriptions of profiles and layers in Bluetooth.
REFERENCE

The following classes are provided in the Java Bluetooth specification for service discovery: Di scover yAgent
Di scoverylLi stener,Servi ceRecor d,Dat aEl ement, and UUI D. You'll also interact (indirectly) with the
SDDB whenever you want to discover services on a remote Bluetooth device.

The Service Discovery Database

The Service Discovery Database (SDDB) is the central repository for all service records, but it's not a database
the sense of Oracle 9i, Sybase, or even MS Access. It's simply a collection of service records (and no, we don't
mean a Java Collections object). The JSR-82 implementation is free to implement the SDDB in any form, so
when a Ser vi ceRecor d object is stored inthe SDDB, it doesn't necessarily mean that the JVM serialized the
Ser vi ceRecor d object and stored it in a data store. If a particular JISR-82 implementation does not store
service records in the SDDB as Java objects, then it must convert them into Ser vi ceRecor d objects when a
client performs a search for services and a match is found.

Figures 4-1 through 4-4 present graphical depictions of the SDDB, Ser vi ceRecor d,Dat aEl enent , and UUI
objectsin regard to how they all work together for service discovery.

Service
Record

Service

SDDB Record

Figure 4-1: Service records in the SDDB
As you can seein Figure 4-1, a service record is an individual entry in the SDDB (Service Discovery Database).

Entries in service records are called attributes. Attributes consist of an ID and value. See Figure 4-2 for an
illustration.

0x0000 | Dataklement{int)
0x0001 | Dataklement{UUID)
0x0002 | DataBlement(int)
0x0003 | DataElement{boolean)

Attribute ID | Attribute Value
D000 | DataElenent(int)

Figure 4-2: An individual attribute of a service record

Attribute IDs are 16-bit unsigned integers (0x000-0XFFFF). In a Ser vi ceRecor d object, attribute values are
stored as Dat aEl emrent objects as shown in Figure 4-3.

Attributes

Attribute ID|Attribute Value

0x0000 |DataE1ement(int)
Figure 4-3: An illustration of a service record attribute

Dat aEl ement s can be created from the following Java types: i nt ,bool ean,UUl D, and Enuner at i on (see
Figure 4-4).

DataElements

DataElement(int)
DataElement(UUID)
DataElement(int)
DataElement(boolean)
Figure 4-4: DataElements

Figure 4-5 wraps it all up by showing the process of service discovery for a PDA that wants to use the services

a Bluetooth keyboard. A successful service discovery will occur only if there is a match in the UUID of a service
record in the SDDB of the Renpt eDevi ce.

= 1 e s&.::.-i:\; |

| % — | e

'a J iE} | [N *:::lé:?;}x"‘-": - y
N | W

& e ===
selectService{oni1124, 1, true)

Attribute ID) Attribute Value
0000 Dataf lement(int)

WID = ox1124

Figure 4-5: The service discovery process for a PDA that wants to use the services of a Bluetooth keyboar

Now, let's look at the service discovery-related classes in detalil.

javax.bluetooth.UUID

TheUUI D class is simply a class that uniquely identifies services in the Bluetooth protocol (UUID stands for
Universal Unique Identifier). Let's say that you have a Bluetooth client device that supports L2CAP connections.
you want to send a message to a Bluetooth server device, just perform service discovery with the UUID of
0x0100, which is the UUID for L2CAP. If you have a Bluetooth-enabled PDA, and you want to send your
business card (.vcf) to other Bluetooth-enabled devices, then you'll perform service discovery with a UUID of
0x1105, which is the UUID for the OBEX Object Push Profile. Table 4-3 lists a sample of UUIDs for Bluetooth
protocol layers and Table 4-4 lists UUIDs for Bluetooth services and their corresponding Bluetooth profile. For
instance, Headset and HeadsetAudioGateway are both distinct services that are a part of the Headset Profile.
Therefore, each service has its own UUID, 0x1108 and 0x1112, respectively. Some profiles, like the FAX
Profile, only have one service: FAX (which has a UUID of 0x1111). A more exhaustive list of UUID values for
protocols and profile services can be seen in the Bluetooth Assigned Numbers document.

Table 4-3: Common UUID Values for Bluetooth Protocol Layers

\ PROTOCOL \ UUI D (DECI MAL) \ UUI D (HEXADECI MAL)
\SDP \ 1 \0x0001
\ RFCOMM \ 3 \ 0x0003
\ L2CAP \ 256 \ 0x0100
\ HTTP \ 12 \ 0x000C
\ FTP \ 10 \ 0x000A
‘TCP ‘4 \0x0004
\ P \9 \0x0009
\ UDP \2 \0xoooz
\ BNEP \ 15 \ 0x000F
\ OBEX \ 8 \ 0x0008
\ TCS-BIN \ 5 \ 0x0005

Table 4-4: Common UUID Values for Bluetooth Profiles

PRCFI LE SERVI CE NAME uul D uul D
(DECI MAL) (HEXADECI VAL)

‘ Serial Port ‘ SerialPort ‘ 4353 ‘ 0x1101
‘ Dial-up Networking ‘ LANAccessUsingPPP ‘ 4354 ‘ 0x1102
‘ Dial-up Networking ‘ DialupNetworking ‘ 4355 ‘ 0x1103
‘ Object Push ‘ OBEXObjectPush ‘ 4357 ‘ 0x1105
‘ Object Push ‘ OBEXFileTransfer ‘ 4358 ‘ 0x1106
‘ Cordless Telephony ‘ CordlessTelephony ‘ 4361 ‘ 0x1109
Audio/Video Control AN_RemoteControl 4366 0x110E

Profile
‘ Intercom ‘ Intercom ‘ 4368 ‘ 0x1110
‘ Fax ‘ Fax ‘ 4369 ‘ 0x1111
‘ Generic Access ‘ Headset ‘ 4360 ‘ 0x1108
‘ Generic Access ‘ HeadsetAudioGateway ‘ 4370 ‘ 0x1112
‘ Handsfree ‘ Handsfree ‘ 4382 ‘ Ox111E
‘ Handsfree ‘ HandsfreeAudioGateway ‘ 4383 ‘ 0x111F
‘ Basic Printing ‘ BasicPrinting ‘ 4386 ‘ 0x1122
‘ Basic Printing ‘ Printing Status ‘ 4387 ‘ 0x1123

Hard Copy Cable HardCopyCableReplacement 4389 0x1125

Replacement

Hard Copy Cable HCR_Print 4390 0x1126

Replacement

Hard Copy Cable HCR_Scan 4391 0x1127

Replacement

Human Interface HumaninterfaceDeviceService | 4388 0x1124

Device

Generic Networking n/a 4609 0x1201

Now, let's take a look at the constructors for UUI D.

public UUID(long uuidValue)

This is pretty cut and dry—it constructs a UUI D object from a | ong.
public UUID(String uuidValue, boolean shortUUID)

This method allows you to construct a UUlI D from a St ri ng representation of a UUID. If short UUI Dis set to
t rue, then a short UUI Dis returned (one that is made up of 16 bits instead of 128 bits).

Note When using this method, be sure not to include the "0x' prefix in front of the St r i ng when constructil
this object.

javax.bluetooth.DiscoveryAgent

Hey, wait a minute, didn't we use this class for device discovery? Well, that's why the authors of the Java

Bluetooth specification named this class Di scover yAgent , because they intended this class to be used for bc
device and service discovery. In order to find services on remote devices, you'll use either sel ect Ser vi ce()
searchServi ces() .

public int searchServices(int[] attrSet, UUID[] uuidSet, RemoteDevice btDev, DiscoveryListener
discListener)

This method allows you to search for a list of services on a single remote Bluetooth device. The attr Set []
parameter must be populated with an array of integers that correspond to attributes that you want to see when
the services match the UUI Ds. The UUI D[] parameter is the list of UUI Ds of services that you want to look for.
Renot eDevi ce is the reference to the remote device that you want to search for services. You must also
provide an object that will implement the Di scover yLi st ener interface in order to receive event callbacks
when services that match your UUI D criteria are discovered. This method returns an i nt that is the transaction
ID. You can later use the transaction ID to cancel this search if you need to.

public String selectService(UUID uuid, int security, boolean master)

This method also allows you to search for services, but it has a slight twist that makes it different from
searchServi ces() . This method accepts neither a Di scover yLi st ener nor a Renot eDevi ce object. B!
using this method, you can perform a search for a particular UUI D that is available on ANY device in the area. |
there is a match, then this method returnsa St r i ng that will be used in the Connect or . open() method in

order to establish a connection to that device. Be sure to notice that this method only allows you to search on a
singleUUI D and not multiple UUI Ds, as in sear chSer vi ces() .

Unfortunately, there is no method available in the JSR-82 specification that will allow you to discover every
service offered by remote devices. By using either sear chSer vi ces() orsel ect Servi ce(), you need to

know the UUID of the service that you're looking for before you attempt to perform a search.

Note You may be able to discover every service on a remote device if that device has all of its services
categorized with a Br owseGr ouplLi st attribute in the service record. If not, then you're out of luck.
See the Bluetooth specification for more details on how to browse for services.

javax.bluetooth.DiscoveryListener

Our good ol' buddy Di scover yLi st ener, which helped us to discover devices, comes back to help us discov
services on remote Bluetooth devices.

public void servicesDiscovered(int transiD, ServiceRecord[] servRecord)

If you use the Di scover yAgent . searchSer vi ces() method (which accepts a Di scoveryLi st ener), th
this method is called by the JVM when services are discovered on the remote device. The transaction ID and al
array of Ser vi ceRecor d objects are provided to this method. With a Ser vi ceRecor d in hand, you can do
plenty of things, but you would most likely want to connect to the Renot eDevi ce where this Ser vi ceRecor d
originated:

String connectionURL = servRecord[i].getConnectionURL(0O, false);

javax.bluetooth.ServiceRecord

Ser vi ceRecor d objects are representations of individual entries in the SDDB. As you may remember, the
SDDB is the central repository of service records for a Bluetooth device.

javax.bluetooth.DataElement

As we continue to break down the anatomy of service discovery, let's now examine the Dat aEl emrent object.
EachSer vi ceRecor d object in the SDDB is made up of attributes. All attributes are stored as Dat aEl enment
objects. A Dat aEl ement object can be from any of the following:

= Integers

m Booleans

= Strings

m UUIDs

m Sequences of the preceding values

Be sure to take another look at Figures 4-1 through 4-4 if you're still in the dark about the relationship between
the SDDB, Ser vi ceRecor d,Dat aEl emrent , and UUI D objects.

Service Registration

Before a Bluetooth client device can use service discovery on a Bluetooth server device, the server needs to
register its services internally. That process is called service registration. This section discusses what's involved
service registration for a Bluetooth device, and we'll also give you a rundown of the classes needed to
accomplish this.

Note In a peer-to-peer application, like afile transfer or chat application, be sure to remember that any

device can act as the client or the server, so you'll need to incorporate that functionality into your code
in order to handle both scenarios of service discovery and service registration.

Here's a scenario of what's involved in getting your service registered and stored in the SDDB:

1.

6.

CallConnect or . open() and cast the resulting connection to a St r eamConnect i onNot i fi er objec
Connect or. open() creates a new Ser vi ceRecor d and sets some attributes.

Use the Local Devi ce object and the St r eamConnect i onNoti fi er to obtain the Servi ceRecord
that was created by the system.

Add or modify the attributes in the Ser vi ceRecor d (optional).

Use the St r eanConnecti onNoti fi er to call accept AndOpen() and wait for Bluetooth clients to
discover this service and connect.

The system creates a service record in the SDDB. Wait until a client connects. When the server is ready
exit, call cl ose() onthe StreamConnecti onNoti fier.

The system removes the service record from the SDDB.

St reantonnecti onNoti fi er and Connect or both come from the j avax. m cr oedi ti on. i o package
the J2ME platform. Listing 4-4 is a snippet of code that achieves the service registration process.

Listing 4-4: The Service Registration Process

/1l let's name our vari abl es

St reanConnectionNotifier notifier = null;
St r eanConnecti on sconn = null;

Local Devi ce | ocal device = nul |;

Servi ceRecord servicerecord = null;

Il step #1
/1 the String url will already be defined with the correct url paraneters
notifier = (StreanConnecti onNotifier)Connector.open(url);

/'l step #2
/1 we will get the Local Device if not already done

| ocal devi ce = Local Devi ce. get Local Devi ce();
servi cerecord = | ocal devi ce. get Record(notifier);
/'l step #3 is optional

Il step #4

/1l this step will block the current thread until a client responds
notifier.accept AndOpen();

/1l the service record is now in the SDDB

/1l step #5
[l just wait...
/'l assume the client has connected and you are ready to exit

/] step #6
/!l this causes the service record to be renpved fromthe SDDB
notifier.close();

And that's all that you need to do service registration in Bluetooth. The next step is communication.

Communication

Okay, Bluetooth is a communication protocol, so how do you communicate with it? Well, the official Java
Bluetooth API gives you three ways to send and receive data, but for right now we'll cover only two of them:
RFCOMM and L2CAP.

RFCOMM Connections

As you may remember from Figure 2-9, the most common Bluetooth profiles use the Serial Port Profile as a
foundational layer.

Note RFCOMM is the protocol layer that the Serial Port Profile uses in order to communicate, but these twi
items are almost always used synonymously.

Sessions and Connections

Before we continue, there's a little more terminology to introduce here: sessions and connections. You can onl
have a single session between two Bluetooth devices. This limitation isn't a big deal, per se, because the
definition of a session is simply one or more connections shared between two devices. You can also relate a
Bluetooth session in the same way that sessions are created and used on the Web. When a Web server is
communicating to a Web client, there is only one session, although there are numerous connections. Now, a
Bluetooth device can have multiple sessions only if each session is linked to a different device. This also applie:
on the Web; powerful application servers have the capability to create multiple sessions and keep them in
memory, but each session is linked to a different client.

Server Connections with the Serial Port Profile
Listing 4-5 demonstrates what is needed to open connections on a Bluetooth device that will act as a server.

Listing 4-5: Opening Connections on a Bluetooth Server

// let's nane our vari abl es

St reanConnecti onNotifier notifier = null;
St reanConnecti on con = null;

Local Devi ce | ocal device = nul | ;
Servi ceRecord servicerecord = null;
I nput St ream i nput ;

Qut put St ream out put ;

/]l let's create a URL that contains a UU D that

/'l has a very | ow chance of conflicting wi th anything

String url = "btspp://1ocal host:00112233445566778899AABBCCDDEEFF; nanme=seri al conn'
/'l let's open the connection with the URL and cast it into

a StreanConnecti onNotifier

notifier = (StreamConnecti onNotifier) Connector.open(url);

/'l block the current thread until a client responds
con = notifier.accept AndOpen();

/'l the client has responded, so open sone streans

i nput = con. openl nput Stream() ;

out put = con. openQut put Stream() ;

/'l now that the streans are open, send and receive sone data

For the most part, this is just about the same code used in service registration, and in fact, it is; service
registration and server communication are both accomplished using the same lines of code. Here are a few
items that need to be pointed out. The Stri ng url beginswith bt spp: / /1 ocal host : , which is required if
you're going to use the Bluetooth Serial Port Profile. Next comes the UUID part of the URL, which is
00112233445566778899AABBCCDDEEFF. This is simply a custom UUID that was made up for this service; a
string that's 128 bits long could have been used. Finally, we have name=seri al conn inthe URL Stri ng. We
could have left this part off, but we want our custom service to have a hame, so the actual service record in the
SDDB has the following entry:

Servi ceNane = seri al conn

The implementation has also assighed a channel identifier to this service. The client must provide the channel
number along with other parameters in order to connect to a server.

Client Connections with the Serial Port Profile

Establishing a connection with the Serial Port Profile for a J2ME client is simple because the paradigm hasn't
changed. You simply call Connect or . open().

St reantConnecti on con = (StreanConnecti on) Connector. open(url);

You obtain the url St ri ng thatis needed to connect to the device from the Ser vi ceRecor d object that you
get from service discovery. Here's a bit more code that will show you how a Serial Port Profile client makes a
connection to a Serial Port Profile server:

String connecti onURL = servi ceRecord. get Connecti onURL(O0, false);
St reanConnecti on con (St reanConnecti on) Connect or. open(connecti onURL);

What does a Serial Port Profile client connection URL look like? If the address of the server is 0001234567AB
then the St ri ng that the SPP client would use would look something like this:

bt spp://0001234567AB: 3

The 3atthe end of the URL St ri ng is the channel number that the server assigned to this service when this
service was added to the SDDB.

L2CAP Connections

Unlike RFCOMM connections, which are stream oriented, L2ZCAP connections are packet oriented. Before we
cover how to create L2ZCAP connections, we'll briefly cover a new concept called Maximum Transmission Unit
(MTU). We'll also cover the classes needed in order to create L2CAP connections: L2CAPConnect i on and
L2CAPConnecti onNoti fi er.

Maximum Transmission Unit

Because of the fact that the L2CAP layer sends data in packets, the official Java Bluetooth API gives you the
flexibility to control how large the packets can be. The default MTU is 672 bytes, but you can attempt to negotia
a larger MTU in your connection URL strings. Here's why we say "attempt": If the client indicates that it can
receive data in packet sizes of 10MB, and the server is only capable of sending data at 1kB, then there's no ree
problem; the clientll get its data in 1kB packets. Now on the other hand, if the server indicates that it's sending
data in 10MB-size packets, and the client is only capable of handling 1kB packets, then the transmission will fai
horribly.

In order to find out the largest packet size that you can receive from a L2CAP connection, just run the following
piece of code:

Local Devi ce | ocal = Local Devi ce. get Local Devi ce();
String recei veMIUrax = | ocal . get Property("bl uetooth.| 2cap.recei veMIU. max");

L2CAP Server Connections

Following is the code that a L2CAP server uses to open a connection to a client:

L2CAPConnecti onNotifier notifier = (L2CAPConnecti onNotifier). Connector.open(url)
L2CAPConnecti on con = (L2CAPConnection)notifier.accept AndOpen();

As you can see, it is not much different from the standard St r eamConnect i onNoti fi er and Connecti on
used for RFCOMM server connections.

L2CAP Client Connections

Now here's the code that a client would use in order to establish an L2ZCAP connection with a server:

L2CAPConnecti on = (L2CAPConnecti on) Connect or. open(url);

Once again, it's pretty straightforward.
More on MTUs

Now, let's look at MTUs one more time, in conjunction with opening connections. For instance, if the server cod
looked like this:

String url =
"btl 2cap:/ /1 ocal host:00112233445566778899AABBCCDDEEFF; Recei veMIu=1024; Tr ansni t MT!

=1024";

The connection St ri ng for the client, on the other hand, would look something like this:

String url = "btl2cap://2E345BB78902: 1055; Recei veMIu=4096; Transm t MTU=512";

As you can see, the server is proposing to send data in packet sizes of 1024 bytes. Since the client is able to
receive data packets four times that size, the negotiated connection will have a packet data size of the lowest
common denominator: 1024. On the other hand, the client wants to send its data in packets of 512 bytes. The
server is able to handle that packet size with no problem at all, and the negotiated connection will be 512 byte
packets.

Now, let's take a brief look at the two classes used in order to create L2ZCAP connections and some of their
methods.

javax.bluetooth.L2CAPConnection

This interface is just a subclass of the Connect i on interface, and you use it in the same manner. The followin
methods are found in L2CAPConnect i on that are not found in Connecti on:

m public int getRecei veMIU() : This method gets the negotiated ReceiveMTU value from the
connection.

m public int getTransm t MIU() : This method gets the negotiated TransmitMTU value from the
connection.

m public bool ean ready(): This method will return true if there is any data ready to be read. If this
method returnstrue, then a call to r ecei ve() will not block the main thread.

m public int receive(byte[] inBuf):Regardlessofthe Recei veMIU between your device and the
remote device, you can set the size of i nBuf to be whatever you want it to be. If the size of i nBuf is great
than or equal to the Recei veMTU, then you won't lose any data during a transmission. If the size of i nBuf
is smaller than the size of Recei veMIU, then i nBuf [] will be filled with data for the incoming packet, but
the remainder of the data will be lost.

m public void send(byte[] data): Use this method to send data to a remote Bluetooth device via thi
L2CAP protocol. You're free to send any size packet that you want, but if you exceed the Transm t MTU
size, then the excess data will be discarded.

L2CAP vs. RFCOMM

So now that you know how to send data between Bluetooth clients and servers using both L2CAP and RFCOM
we bet you're wondering about typical usage scenarios for these connections. In other words, why would anyon
use RFCOMM instead of L2CAP to send data or vice versa? Well, RFCOMM is also known as the virtual serial
port communication protocol. An ideal way to use RFCOMM is in situations when you would replace a serial
cable. For instance, if you were a developer for a GPS manufacturer, and your duty was to make one of their
units Bluetooth enabled, then RFCOMM would be a likely choice in this scenario. Why? The GPS unit will alway
have a constant stream of information that needs to be processed, rendered, calculated, etc. So, collect the da
from your stream and plot those coordinates on the screen.

On the other hand, L2CAP is great for handling packet data. L2ZCAP can easily be used (and actuallyis) asa
data multiplexer. You can read data from the connection, and based upon a header in the packet, you can rout
that data to different methods, threads, and classes in your application.

Summary

This chapter gave you a formal introduction to the official Java Bluetooth APIs. You should be aware of all
the basic components of a Bluetooth application, as well as how to implement them using the classes and
interfaces of the official Java Bluetooth API. This chapter also discussed the importance and the roles that
the Bluetooth Control Center (BCC) plays in your wireless applications.

Essentially, this chapter showed you how a Bluetooth application works by its components. In the next
chapter, we'll look at a full working example of a Java Bluetooth application using the Atinav Java
Bluetooth SDK.

Chapter 5: Bluetooth with J2ME MIDP

Now that we've covered a lot of the foundational material, let's start creating some Java Bluetooth
applications. This chapter will give you your first full example of a Java Bluetooth application, but before
we dive right in, we're going to give a brief primer on J2ME and the Mobile Information Device Profile
(MIDP). Afterwards, we're going to examine two sample applications: Stealth Mode and the Piconet
Browser.

Note If you've already developed a MIDlet, or if you have a working knowledge of J2ME, then feel free
to skip down to the example code in the sections "Stealth Mode Example" and "Piconet Browser

Example."

J2ME Overview

Under the general term of J2ME, there are two configurations that correspond to two classes of devices.
The connected device configuration (CDC) is a classification for devices that have a network connection,
but have less processing power than a typical desktop computer. Set-top boxes, appliances, smart
phones, and high-end PDAs fit into this category. The connected limited device configuration (CLDC)
classifies many mobile devices; they are capable of making a network connection, but it isn't robust or
dedicated. CLDC devices typically don't have a lot of processing power, and many mobile phones, two-
way pagers, and some PDAs fit into this category.

A J2ME Profile is a software layer that is built on top of a configuration (not to be confused with a Bluetooth
profile). Configurations typically encompass a broad classification of devices, and profiles help to narrow
the scope, while providing more functionality to the configuration. Figure 5-1 shows the J2ME world, and
the relationship between configurations and profiles.

Personal Profile

PDA Profile

Personal Basis Profile

Mobile Information

Device Profile Foundation Profile

CLDC coc

JIME

Figure 5-1: J2ME Profiles and configurations

The Mobile Information Device Profile

Now, let's take a look at what is (by far) the most widely used J2ME Profile: Mobile Information Device
Profile (MIDP). If you have a Java-enabled mobile phone, then it's most likely a MIDP device. As stated
earlier, the J2ME Profiles extend the functionality of a configuration. The CLDC provides the following

packages for the developer in order to create Java applications for small devices:

j ava. | ang (basic core language classes)

j ava. i o (networking classes)

java. util (utility classes)

j avax. m croedition.io (more networking classes)

Note These are not the full 22SE versions of j ava. | ang,j ava. i 0,andjava. util APIs. The
CLDC contains a subset of these packages that's optimized for micro devices.

The MIDP adds these additional packages for mobile devices:

javax. m croedition. | cdui (userinterface classes)
javax. m croedition. ndl et (core MIDlet classes)

javax. m croedi tion. rns (data persistence classes)

According to the MIDP specification, these are the qualifications for a MIDP 1.0 device:

A minimum screen resolution of 96 54 pixels.

A minimum of 128kB nonvolatile memory for the MIDP implementation.

A minimum of 32kB volatile memory for JVM heap space.

A minimum of 8kB nonvolatile memory for applications to store persistent data.

Some type of input mechanism.

Support for network connectivity.

The OS must provide minimal scheduling, exception handling, and interrupt processing.
The OS must support writing of bitmapped graphics to display.

The OS must be able to accept the input and pass it on to the JVM.

The MIDP 2.0 specification raises the bar by requiring at least 256kB of non-volatile memory, and 128kB
of memory for the Java heap space. However, the MIDP 2.0 specification also brings along more
functionality for wireless applications, including the following:

Secure networking with HTTPS

Push applications with the j avax. m cr oedi ti on. i 0. PushRegi stry class
Standardized serial port communications

Wireless application deployment with Over-the-Air provisioning (OTA)

Better gaming applications with the j avax. m croedi ti on. | cdui . gane package

Developing MIDlets

What is a MIDlet? A MIDlet is a Java application that runs on a mobile device and uses the Mobile
Information Device Profile. MIDlets can be created by extending the

javax. mcroedition. nmdlet.MDl et class. AMIDlet has three states in its life cycle: active,
paused, and destroyed. Those three states correspond to three methods: st art App() ,pauseApp(),
anddest r oyApp() . One or more MIDlets packaged together in a JAR file constitute a MIDlet suite.
Software on the mobile device (called the application manager) is responsible for loading, running, and
destroying the MIDlet.

The skeletal structure of a typical MIDlet looks like this:

i nport javax.nmicroedition.mdlet.MDlet;
public class MyAppl cati on extends M D et
{

public MyApplication()

{

}

public void startApp()

{

}

public void pauseApp()

{

}

public void destroyApp(bool ean unconditional)

{

}

Note Sun has created a very handy tool for MiDlet development called the J2ME Wireless Toolkit.
The tool comes bundled with an emulator and can package, compile, preverify, and run CLDC
and MIDP applications. The examples in this chapter use this tool, and it is available free from
the Wireless Java Web site (http://wireless.java.sun.com/).

Using the MIDP User Interface Components

The MIDP Ul s logically composed of two APIs: high-level and low-level. The high-level API is primarily
designed for business applications, and it gives you objects like Li st ,Text Box,Choi ceG oup, and

Dat eFi el d. This API includes a high level of abstraction because you can't define the visual appearance
(i.e., shape, color, font, etc.) of those components. When using the high-level Ul components, you won't
have direct control of the navigation or scrolling, or have direct access to the input device (you can process
input, but you won't have direct access to it). All of these items are handled by the MIDP implementation
and are device dependent. This abstraction allows the same MiIDlet to run on a Blackberry pager as well
as on aPalm PDA.

Thelow-level API, on the other hand, is designed for applications that need precise placement and control
of graphic elements, as well as access to low-level input events. The low-level API is well suited for
gaming or entertainment-based applications.

Using the RMS for Persistent Storage

So, how do you store persistent data on a micro device? If you think about it, a mobile phone probably
wouldn't have a file system in order to store its data. It's really overkill for such a small device that keeps
names and phones numbers to have a file system just for data storage. Being aware of this, the J2ME
architects have developed a viable alternative to storing data persistently called the RecordManage ment
System (RMS). The j avax. mi croedi ti on. r ms package contains all the functionality that will enable

http://wireless.java.sun.com/

your classes to read, write, and sort data in the RMS.

The RMS is a record-oriented database stored in the nonvolatie memory of the mobile device. Since it is
record oriented, the RMS is also referred to as a flatfile system, where the data is stored in a series of
rows in a table, much like the data stored in a conventional database. Each row will have a unique
identifier. A logical representation of arecord store is illustrated in Figure 5-2.

1 Byte Array
2 Byte Array
3 Byte Array

Figure 5-2: A logical representation of an RMS record store

The main classinthe RMSisj avax. m croedi ti on. rms. Recor dSt or e. This class contains the
methods for creating, updating, deleting, and querying a record store. A few interfaces are also provided is
this package, and they help you whenever you need to enumerate, compare, and filter the data stored
inside the record store. The RMS also includes a listener interface called

javax. m croedition. rns. RecordLi st ener. When you associate this listener with a record store,

the interface reports events that correspond to inserts, updates, and deletes of data that are in the record
store.

Performing I/O with the GCF

In order for J2ME applications to perform any networking or I/O, they must use the j ava. i o and
javax. m croedition.i o packages. These packages together form the Generic Connection
Framework (GFC).

The general philosophy behind the GCF is to create a framework to abstract the communication process
through a single class called Connect or . You can then use Connect or to create any connection like file

I/O streams, TCP/IP socket connections, HT TP connections, etc. In order to open a connection, just use
theopen method:

Connect or. open("protocol : address: paraneters");

If auser wants to open an HTTP connection, the connection URL will look like this:

Connect or. open("http://nmydonai n. coni);

Working with the Example Code

Before you try out any of the examples in this book, it is recommended that you first get your JSR-82
implementation on your development environment installed and configured. If you don't have your
development environment set up, then here's a checklist of the things that you need to do:

m Select a JSR-82 implementation that supports your OS. You can find an updated listing of JSR-82
implementations at the companion Web site for thisbook: ht t p: / / www. | avabl uet oot h. com

http://www.javabluetooth.com

m Select the Bluetooth hardware that is supported by your JSR-82 implementation.
m Install and configure your development environment.

= Tryout the demo programs that are included with your JSR-82 implementation.
m Determine what stack initialization code (if any) is used in the demo programs.

The documentation for your JSR-82 implementation really should point out what you need to do in
order to initialize your stack. But just in case they don't, a dead ringer would be a class that you need
toimport that's not part of the j avax. bl uet oot h orj avax. obex packages (see Appendices A and
B for an exhaustive list). In some cases, your stack initialization code will also be setting the baud rate
for your Bluetooth device.

Stealth Mode Example

The Stealth Mode example is a simple program that illustrates the concepts of stack initialization, device
management, and device discovery. When the program starts, it looks for remote Bluetooth devices as

shown in Figure 5-3.

efaultColo

Piconet Browser

Figure 5-3: The application starts, and is now looking for remote Bluetooth devices.

Once it finds another device, it goes into nondiscoverable mode, as shown in Figure 5-4.

DefaultColorPhone [HE E3
—

Figure 5-4: After a remote device is found, we now go into stealth mode (i.e., nondiscoverable).

In this example, we're using the J2ME Wireless Toolkit configured with the Atinav Bluetooth SDK. The
Bluetooth device that we're using is a TDK USB module, as shown in Figure 5-5.

> 4

Figure 5-5: The TDK USB Bluetooth device using a CSR Bluetooth radio

The code for this example is shown in Listings 5-1 and 5-2.

Listing 5-1: Stealth.java

i nport javax.nmicroedition. mdlet.*;
i nport javax. ncroedition.!|cdui.?*;
i nport javax. bl uet ooth. *;

i nport java.io.*;

inport java.util.*;
i nport javax.microedition.io.?*;
i nport com ati nav. bcc. *;

/* The Timer and the Beanilsk class is used to create the beam of
* 3 concentric circles blinking. It has no purpose except visual enhancenent.
*/
public class Stealth extends M D et {
private Display display;
private GUJI canvas;
private Tinmer tm
private Beamlsk tsk;
private String dev;
private RenoteDevice device[];

public Stealth()

{
di spl ay=Di spl ay. get Di spl ay(this);
canvas=new GUl (this);
t menew Tinmer () ;
t sk=new Beanilsk(canvas) ;
t m schedul e(t sk, 1000, 1000) ;
}
protected void startApp()
{
di spl ay. set Current (canvas);
}
protected void pauseApp()
{
}
public void destroyApp(bool ean unconditional) {
}
public void exitStealth()
{
destroyApp(true);
noti fyDestroyed();
}

public void exitTinmer(){
tm cancel ();
t sk. cancel () ;

}
}

class GUI extends Canvas inplenments ComrandLi stener {
private Conmand exit Conmand,;
private | mage inmg=null;
private | mage i ngArc=null;
private Stealth nidlet;
public int i=0; // used for creating the beam
public int count=0; // used to create the blinking
publ i ¢ bool ean cancel =f al se;
i nt x=30;
i nt y=30;
i nt wd=5;
i nt ht=10;

public GUI (Stealth midlet){
this. mdlet=mdlet;
exi t Command=new Command("Exit", Command. EXI T, 1) ;
addConmand(exi t Conmrand) ;
set ConmandLi st ener (thi s);

try {
i rg=I mage. cr eat el mage("/ phone. png");
}

catch (java.io.|lOException e){
Systemerr.println("Unnable to | ocate or read i mage (.png) file");

}

try{
BCC. set Port Nane(" COVL") ;

BCC. set BaudRat e(57600) ;

BCC. set Connect abl e(f al se);

Local Devi ce | ocal Devi ce = Local Devi ce. get Local Devi ce();

di scoveryAgent = | ocal Devi ce. get Di scoveryAgent () ;

devi ce = new Renot eDevi ce[10];

di scoveryAgent.startlnquiry(Di scoveryAgent.d AC, this);
}cat ch(Bl uet oot hSt at eExcepti on bt st at eex)

{
bt st at eex. pri nt StackTrace();
}
}
public void devi ceDi scovered(Renot eDevi ce bt Devi ce, DeviceC ass cod)
{
/* The method is fired every tinme a device is discovered.
* The inquiry is cancelled after the first device is discovered.
*/
BCC. set Di scover abl e(Di scover yAgent . NOT_DI SCOVERABLE) ;
cancel I nqui ry(di scoveryAgent);
}
public void inquiryConpl eted(int discType)
{
cancel =t rue;
this.notify();
}
/**
* paint
*/

public void paint(Gaphics g) {

if (i==0){
/'l Used to clear the portion of the screen
g. set Col or (255, 255, 255) ;
g.fill Rect(25,10,50,70);
}
el se {
/1l draw the i mage of phone at given
/'l coordinates at the top left of the screen
g. drawl mage(i ng, 10, 30, Graphi cs. LEFT| G- aphi cs. TOP) ;
/'l draw a string at the bottomleft
g.drawString("Me", 10, 45+i nmg. get Hei ght (), G- aphi cs. LEFT]|

G aphi cs. BOTTOV) ;
if (!cancel){
// draw an arc at given coordi nates
g. drawArc(x,y,wd, ht, 270, 180) ;

}
el se{
g. drawl mage(i ng, 90, 30, G aphi cs. Rl GHT| Gr aphi cs. TOP) ;
g.drawString("l amin Stealth Mde", 2,100, G aphi cs. LEFT|
Graphi cs. BOTTOW ;
try {
i rg=I mage. cr eat el mage("/ phonegray. png");
}catch (Exception e){e.printStackTrace();}
g. drawl mage(i ng, 10, 30, Graphi cs. LEFT| G aphi cs. TOP) ;
mdlet.exitTinmer() ;
}
}
}
public void commandActi on(Command c, Displayable s) {
if (c == exitConmand)
mdlet.exitStealth();
}
}

Listing 5-2: BeamTsk.java

i nport java.util.*;
public class Beamlsk extends Ti ner Task {

private GU canvas;
/** Creates a new i nstance of BeanfTsk */
publ i ¢ Beamlsk(GU canvas) {
t hi s. canvas=canvas;
}
public void run() {
/1if (canvas. count >5)
/1 canvas. cancel =t r ue;
if (canvas.i<3)
canvas. i =canvas. i +1;
el se
canvas. i =0;

switch (canvas.i){
case 1:{
canvas. x=30;
canvas. y=30;
canvas. ht =10;
br eak;

case 2 :{
canvas. x=canvas. x+5;
canvas. y=canvas. y- 3;

canvas. ht =canvas. ht +6;
br eak;

case 3:{
canvas. x=canvas. x+5;
canvas. y=canvas. y- 3;
canvas. ht =canvas. ht +6;
canvas. count =canvas. count +1;
br eak;
}
}

canvas.repaint();

}

Piconet Browser Example

The Piconet Browser is a handy utility that demonstrates all the concepts presented in the last example and
also includes the functionality of service discovery. It's really something that you would want to keep with
you at all times, so after you get this example working, be sure to load it on your mobile phone or PDA.
Using the Piconet Browser, you can see what Bluetooth devices are in the vicinity. After the list is displayed,
you can select a particular Bluetooth device to see what services it offers.

The algorithm for this example is pretty simple. First, the MIDlet creates a form and displays it with buttons
labeled Search and Exit (see Figure 5-6).

ﬂ DefaultColorPhone [HE E3
& —

- O &

D & @@

D D D

@ e o

MODE SPACE
-

Figure 5-6: The initial screen for the Piconet Browser application

After pressing the Search button, the application performs a device discovery, and displays the search

results (see Figure 5-7).

DefaultColorPhone [IE E3 |

r"

CLEAR
aooo i
o @ @
Ema
.

Figure 5-7: The Piconet Browser displays a list of Bluetooth devices in the area.

After you select a Bluetooth device, the application will display the services that it offers (see Figure 5-8).

DefaultColorPhone [HI[E E3
r—-

Figure 5-8: The Piconet Browser now displays the services offered by the remote device.

Listing 5-3 shows the code for the Piconet Browser.

Listing 5-3: PiconetMIDlet.java.

i nport javax.microedition. mdlet.*;
i nport javax.mcroedition.!|cdui.*;
i nport javax. bl uet ooth. *;

i nport java.io.*;

i nport javax.mcroedition.io.*;

i nport com ati nav. bcc. *;

public class PiconetMDl et extends javax.mcroedition.mdlet.MDl et inplenents
ConmandLi st ener, Di scoveryLi st ener {
private Local Devi ce | ocal Devi ce=nul | ;
private RenoteDevi ce devi ce=null;
private Di scoveryAgent discoveryAgent = null;
private Command exitCommand; // The exit command
private Command srchCommand; //The search command
private Conmand backCommand,;

private Display display; /1 The display for this MDI et
private Formfrm

private List devicelst;
private List Servicelst;

int count = O;

private String[] dev = null;
private Image ing[] =null;
private String[] services=null;

public void startApp() {

}

di splay = Display. getDisplay(this);

exi t Command = new Command("Exit", Command. EXIT, 1);
srchCommand=new Command(" Sear ch", Command. SCREEN, 1) ;
backCommand= new Conmand(" Back", Conmmand. BACK, 1) ;
frmenew For m(" Pi conet Browser");

frm addConmand(sr chConmand) ;

f rm addConmand(exi t Conmrand) ;

frm set ConmandLi st ener(this);

di splay.setCurrent(frm;

public void pauseApp() {

}

public void destroyApp(bool ean unconditional) {

}

public void commandActi on(Conmmand ¢, Displayable s) {

if (c == exitComuand) {
destroyApp(fal se);
not i f yDest royed();

if (¢ == srchCommand) {
try{
BCC. set Port Nane(" COVL") ;
BCC. set BaudRat e(57600) ;
BCC. set Connect abl e(f al se);
BCC. set Di scover abl e(Di scover yAgent . NOT_DI SCOVERABLE) ;
Local Devi ce | ocal Devi ce = Local Devi ce. get Local Devi ce();
/I devi ce = new Renot eDevi ce[10] ;
di scoveryAgent = | ocal Devi ce. get Di scoveryAgent () ;
di scoveryAgent.startlnquiry(Di scoveryAgent.d AC, this);
}cat ch(Bl uet oot hSt at eExcepti on bt st at eex)
{

bt st at eex. pri nt StackTrace();

}

try{

devi ceLst =new Li st ("Devices", List.IMPLICIT, dev,ing);
devi ceLst . addCommand(exi t Comrand) ;

srchCommand=nul | ;

srchCommand=new Command(" Refresh", Command. SCREEN, 1) ;
devi ceLst . addCommand(sr chComrand) ;

devi celLst . set CommandLi st ener (thi s);

di spl ay. set Current (devi celLst);

System out. printl n(devi ceLst. get Sel ect edl ndex());
}catch (Exception e){e.printStackTrace();}
}
i f (c==Li st.SELECT_COMVAND) {
i nt i ndex=devi celLst. get Sel ect edl ndex();
/1 do service search for device[index]
int[] attrSet = {100};
UU D] uuids = new UUI D 1];
uui ds[0] = new UUI D("9856",true);
servi ces=nul | ;
i nt transl d=di scoveryAgent. searchServi ces(attr Set, uui ds,
devicel[i], PiconetMDl et);

Servi ceLst=new List("Service",List.IMPLICIT);
for (int k=0;k<services.|ength; k++)

Servi celLst . append(services[k],null);
Servi celLst . addCommand(backCommand) ;
Servi celLst . set ConmandLi stener(this);
di spl ay. set Current (Servi celLst);

if (¢ == backCommand) {
di spl ay. set Current (devi celLst);
}

public void devi ceDi scovered(Renot eDevi ce bt Devi ce, DeviceC ass cod)

/* Store the device address in the array which will be
* used to create the device list.
* the getBl uetoot hAddress() returns the Bl uetooth address as a string.
*/
devi ce[count] =bt Devi ce;
/1 Check the type of device so that the appropriate i mage can be sel ected
try{
if (cod.getM norDeviceC ass()==0x04)
i ng[count] =l mage. cr eat el mage("/ phone. png");
else if (cod.getM norDeviced ass()==0x0C)
i ng[count] ={ 1 nage. creat el nage("/ | aptop. png")};
el se inmg[count] ={I mage. createl mage("/ nm sc. png")};

} catch (Exception e){e.printStackTrace();}
count ++;

}

public void servicesDi scovered(int translD, Servi ceRecord[] servRecords)
{
for(int i=0;i<servRecords.|ength;i++)
services[i]=servRecords[i].getAttributeVal ue(0x0100);
synchroni zed(t hi s){
this.notify();

public void serviceSearchConpleted(int translD, int respCode)

{i f(respCode==SERVI CE_SEARCH ERROR) {
System out . printl n("\nSERVI CE_SEARCH ERROR\ n");
}
i f (respCode==SERVI CE_SEARCH COWVPLETED) {
/1 System out. println("\nSERVI CE_SEARCH COVPLETED\ n");

}
i f (r espCode==SERVI CE_SEARCH_TERM NATED) {

System out. println("\'n SERVI CE_SEARCH TERM NATED\ n") ;

}
i f(respCode == SERVI CE_SEARCH NO RECORDS) {
servi ces[0] =" None";
synchroni zed(t hi s){
this.notify();
}

System out. println("\n SERVI CE_SEARCH NO RECORDS\ n");

}

i f(respCode == SERVI CE_SEARCH _DEVI CE_NOT_REACHABLE)
System out. println("\'n SERVI CE_SEARCH DEVI CE_NOT_REACHABLE\ n") ;

}
public void inquiryConpl eted(int discType)
{
this.notify();
}

In order to port these examples to another JSR-82 SDK, just remove the import statement:

i nport com ati nav. bcc. *;

and the stack initialization code:

BCC. set Port Nanme(" COML") ;

BCC. set BaudRat e(57600) ;

BCC. set Connect abl e(f al se);

BCC. set Di scover abl e(Di scover yAgent . NOT_DI SCOVERABLE) ;

Your code is now 100 percent JSR-82 compatible. The next step is to follow the instructions of your JSR-82
implementation on how to initialize your stack. In some cases, as with the Rococo implementation, no
additional code is needed at all.

Summary

This chapter gave you your first fully working example of a wireless application using Java and Bluetooth.
We gave you two examples, and together they demonstrated stack initialization, device management,
device discovery, and service discovery. The Piconet Browser is a good utility program that you'll probably
want to keep with you at all times.

If any concepts are unclear to you, right now would be a good time to review them, because in the next
chapter we'll demonstrate communication by printing, and we'll also take a look at the JPS API.

Chapter 6: Creating a Bluetooth Print Server with JPS
API

Highlights

In the years to come, many (if not all) printers will include a Bluetooth interface. You'll be able to walk up to
any printer, download its drivers, and print to it using the Hardcopy Cable Replacement Profile.
Unfortunately, that's not the case today. A large majority of the printers on the market today do not have a
Bluetooth interface, and in order to make them Bluetooth enabled, you need to add a Bluetooth printer
adapter, like the one shown in Figure 6-1.

Figure 6-1: You can use the 3Com Wireless Bluetooth Printer Adapter in order to make a traditional
(i.e., non-Bluetooth) printer Bluetooth enabled.

Let's say that you have a mobile Bluetooth device that is capable of printing (for instance, a laptop or
PDA). Whether you're a business user or a home user, you most likely would want to print to the printers
that you already have connected to your desktop computer. If you're a consumer with one or two printers
in your home, then you may need to buy a few printer adapters for the printers that are not Bluetooth
enabled (which is somewhat practical, but can get really expensive if you have more printers). On the
other hand, if you're a business user, you probably have a whole network of printers available at your
disposal. Buying a printer adapter for each and every printer in a corporate environment really doesn't
make a lot of sense.

This chapter gives you a handy utility that will turn your desktop computer into a Bluetooth print server
using the Java Print Service (JPS) API. If your desktop computer already has the drivers and mappings
that are necessary to print to your printers, why not utilize it? Your mobile device can submit print jobs to
your desktop computer, and your desktop will automatically print the file to one of your printers using JPS

(seeFigure 6-2).

Figure 6-2: Using the handy utility provided in this chapter, you can turn your desktop into a Bluetooth

print server.

JPS Overview
The relationship between a printer and its client is pretty simple. The client needs to answer two questions:
= What to print?
= How to print it?
In turn, the printer also needs to answer two questions:
m What's the status of the printer itself?
m What's the status of the print job?

The exchange of information between the printer and its client takes place by means of three entities
within the JPS architecture: documents,attributes, and events.

Note Consequently, the JPS API consists of the following packages: j avax. pri nt,
javax.print.attribute,javax.print.attribute.standard, and
javax. print.event.

Documents

By far, the most important piece of data that will be exchanged between the client and the printer is the
document itself. In JPS terminology, the term document is used in a generic sense; it only refers to the
item to be printed. A document could be animage, a style sheet, an actual text document, or anything
that's printable. The classes that will enable you to create a document are included in the j avax. pri nt
package. This package also has functionality that will allow you to create documents of well-known data
formats such as HT ML, PostScript, GIF, and JPEG.

Attributes

Of course, you'll have to do more than just give the printer a document; you also need to tell the printer
what exactly needs to be done to the document. Print attributes will indicate to the printer things such as
the size of the paper required, how many copies to print, the number of pages, and duplexing. The
packagesj avax. print.attribute andjavax. print.attribute. standard allowyou to create
these attributes.

Events

The JPS event model is pretty simple; after you've submitted a print job to the printer, the printer will inform
you of its status through events. You can be notified of things like the printer's on/off status, the number of
pages printed, and so on. The j avax. pri nt. event package dealswith creating and handling these
events.

A Step-by-Step JPS Application

Let's walk through a simple JPS application. Along the way, we'll identify major classes and interfaces that
are a part of the JPS API. Now, in order to create a Java Print Service application, you need to do the
following:

1. Identify the format of the data to be printed (i.e., GIF, JPEG, PDF, HTML, etc.).
2. Searchfor a print service that supports your data format.
3. Create a print job and submit it.

4. Listen for status updates (optional).

Printers and Print Services

If you're new to the JPS, you may say to yourself, "I know what a printer is, but what's a print service?"
InJPS, ajavax. print. Print Servi ce objectis a logical representation of an actual printer. So
instead of printing to a printer, you'll print to a print service.

Identifying the Format

The first thing to do is identify the data format. The class that allows you to do this is
javax. print. DocFl avor . For instance, if you wanted to tell the print service that you want to print out

GIF files, then the code would look something like this:

DocFl avor docfl avor = DocFl avor. | NPUT_STREAM d F;

The JPS also has the functionality built in to print other popular binary formats like PDF, PostScript, PNG,
and JPEG.

Creating a Document

Now that you've specified a document format, the next step is to create a document. All documents in JPS
must implement the j avax. pri nt. Doc interface. You can implement this interface yourself, or you can
use thej avax. pri nt. Si npl eDocobject to encapsulate your data into a document. Following is a
snippet of code that demonstrates how to create a document from a GIF file:

DocFl avor flavor = DocFl avor. | NPUT_STREAM d F;
Fil el nput Stream fl nput = new Fil el nputStream"nicePic.gif");
Doc doc = new Si npl eDoc(flnput, flavor, null);

Searching for a Print Service

Now it's time to find a suitable printer for your needs. In the JPS, you'll never interact directly with a printer;
you will always have to interact with a print service that represents that printer. So, when you are searching
for a printer (either connected peripherally to your computer, or somewhere on your network), you are
searching for print services.

The code that follows shows you how to search for a print service that can print GIF files. In addition, this
example also demonstrates how to specify some print attributes; this print service is capable of printing two
copies, double-sided, on A4 size paper.

DocFl avor flavor = DocFl avor. | NPUT_STREAM G F;

Print Request Attri buteSet attri bSet = new HashPri nt Request Attri buteSet();
attri bSet. add(new Copies(2));

attri bSet. add(Medi aSi zeNane. | SO_A4) ;

attri bSet. add(Si des. TWO_SI DED _LONG_EDGE) ;

PrintService[] services =

Pri nt Servi ceLookup. | ookupPri nt Services(flavor, attribSet);

As you can see, the static method | ookupPri nt Servi ces() from the class

javax. print.PrintServi ceLookup returns an array of Pri nt Ser vi ce objects.

EachPri nt Ser vi ce represents a printer that is capable of printing according to the attributes that you
specified.

Creating a Print Job and Printing

After that's done, the next step is to create the print job and submit the job to a print service. Once you
have an instance of a Pri nt Ser vi ce object, just call the cr eat ePri nt Job() method, and it will return
aDocPri nt Job object (which is a print job). In order to print, just call the pri nt () method on the
DocPri nt Jobobject and provide it with the document that you want to print as well as the print

attributes. The code snippet that follows shows how to create a print job and submit it:

DocPrintJob printJob = services[0].createPrintJob();
try{

printJob. print(doc, attribSet);

} catch (PrintException e){

}

Listening for Status Updates

Optionally, you can listen to status updates on your print job after you have submitted it. For instance, if
you haven't received an update from the printer in a while, you may also want to get a status update on the
printer itself (it may be out of paper or something). The classes that enable you to do this are

javax. print.event.PrintServiceAttributelListener,

javax. print.event.PrintJobAttributelListener,and

javax. print.event. PrintJobLi stener.Byimplementing these interfaces, you'll receive callbacks
from the JVM upon changes in state of the printer or the print job.

A Complete JPS Application: JPSPrint

Listing 6-1 shows the complete source for JPSPr i nt . j ava, summarizing all the material that we've
covered so far. It includes an inner class named Pr i nt St at us, which implements the

Pri nt JobLi st ener interface. This code will provide the status of a print job by displaying a few text
messages at the command line

Listing 6-1: JPSPrint.java

i nport java.io.*;

i nport javax.print.*;

i nport javax.print.event.?*;

i nport javax.print.attribute.*;

i nport javax.print.attribute.standard. *;

class PrintStatus inplenents PrintJobListener {

public void printDataTransferConpl eted(PrintJobEvent pje) {

Systemout.printin("Data delivered to printer successfully...");

}

public void printJobCancel ed(PrintJobEvent pje) {
Systemout.println("The print job has been cancelled...");

}

public void printJobConpl eted(PrintJobEvent pje) {
Systemout.printin("The print job conpleted successfully...");

}

public void printJobFailed(PrintJobEvent pje) {
Systemout.println("The docunent failed to print ..");

}

public void printJobNoMoreEvents(PrintJobEvent pje) {
Systemout.printin("No nore events to deliver...");

}

public void printJobRequiresAttention(PrintJobEvent pje) {
Systemout.println("Sonething terrible" +
"happened which requires attention...");

public class JPSPrint {
public static void nmain(String args[]) throws Fil eNot FoundExcepti on{
PrintStatus status = new PrintStatus();

/1l Create the DocFlavor for A F
DocFl avor flavor = DocFl avor. | NPUT_STREAM G F;

/1l Create an attribute set conprising of the print instructions
Print Request Attri buteSet attribSet = new HashPri nt Request Attri buteSet();
attri bSet. add(new Copies(1));
attri bSet. add(Medi aSi zeNane. | SO_A4) ;
/1l Locate print services, which can print a G F in the manner specified
Print Service[] pservices =
Pri nt Servi ceLookup. | ookupPri nt Services(flavor, attribSet);

if (pservices.length > 0) {
DocPrintJob job = pservices[0].createPrintJob();

/1 Adding a PrintStatus Listener
j ob. addPri nt JobLi st ener (st atus);

/'l Create a Doc inplenentation to pass the print data
FilelnputStream flnput = new FilelnputStreanm("nicePic.gif");
Doc doc = new Si npl eDoc(flnput, flavor, null);

/1 Print the doc as specified

try {
job.print(doc, attribSet);
}

catch (PrintException e) {
Systemerr.println(e);
}
}

el se
Systemerr.println("No suitable printers");

}

Caution The JPS APl is apart of JDK 1.4, and older versions of the JDK are not capable of running
the JPSPrint example.

Integrating JPS and Bluetooth

Now that you have a full working example of a JPS application under your belt, let's see what it will take in orde
to turn this ordinary JPS print service into a Bluetooth-enabled, wireless print server (refer back to Figure 6-2).

The algorithm for the application is pretty simple. The computer that functions as the print server will start an
L2CAP server and wait for clients to connect. After an incoming file is received by the server, it is printed to a
printer using the JPS API.

Note As you may have already guessed, this application won't work if you use a JSR-82-compliant Java
Bluetooth development kit. Why? Well, as we stated in Chapter 3, the official Java Bluetooth API has
a dependency on the Generic Connection Framework (GCF) to exist, which unfortunately is not a par
of the J2SE JDK 1.4.

That doesn't mean that Java Bluetooth development kits don't exist for the J2SE. In fact, Atinav,
Rococo, and Zucotto all make Java Bluetooth development kits for the J2SE. At the time of this
writing, Atinav's and Rococo's J2SE implementation closely matches that of the JSR-82
implementations. The next example uses the Atinav J2SE Bluetooth development kit.

Listing 6-2 is the server code for the wireless print server example, JPSBI uet oot hPri nt. j ava. As you can
see, itis simply the JPSPr i nt . j ava example with a little Bluetooth code thrown in. All the wireless
functionality is encapsulated in the method connect ToCl i ent AndPri nt () . When this method is called, the
server will wait until a client attempts to connect at an L2CAP channel. After the client connects and sends a
file, the server will attempt to print it with its pri nt Fi | e() method.

Listing 6-2: JPSBluetoothPrint.java

i nport java.io.*;

i nport javax.print.*;

i nport javax.print.event.?*;

i nport javax.print.attribute.*;

i nport javax.print.attribute.standard. *;
i nport javax. bl uet ooth. *;

i nport com atinav. standardedition.io.*;

class PrintStatus inplenents PrintJobListener {

public void printDataTransferConpl eted(PrintJobEvent pje) {

Systemout.printin("Data delivered to printer successfully...");

}

public void printJobCancel ed(PrintJobEvent pje) {
Systemout.println("The print job has been cancelled...");

}

public void printJobConpl eted(PrintJobEvent pje) {
Systemout.printin("The print job conpleted successfully...");

}

public void printJobFail ed(PrintJobEvent pje) {
Systemout.println("The docunent failed to print ..");

}

public void printJobNoMreEvents(PrintJobEvent pje) {
Systemout.printin("No nore events to deliver...");

}

public void printJobRequiresAttention(PrintJobEvent pje) {
Systemout.printin("Sone thing terrible happened which" +
"requires attention...");

public class JPSBI uetoothPrint inplenments Runnable {

L2CAPConnection | 2capConn = nul | ;
private int maxRecv = -1;

private boolean printFile(String fileNane) throws Fil eNot FoundExcepti on{

System out . println("Invoking Conmon printAPlI for printing file : "+
fil eNane);

PrintStatus status = new PrintStatus();

/'l Create the DocFlavor for G F
DocFl avor flavor = DocFl avor. | NPUT_STREAM G F;

/'l Create an attribute set conprised of the print instructions

Print Request Attri buteSet attri bSet = new HashPri nt Request Attri buteSet();
attri bSet.add(new Copies(1));

attri bSet.add(Medi aSi zeNane. | SO_A4) ;

/'l Locate print services, which can print a G F in the manner specified
PrintService[] pservices = PrintServiceLookup. | ookupPrintServices(flavor,
attribSet);

if (pservices.length > 0) {
DocPrintJob job = pservices[0].createPrintJob();

/1l Adding a PrintStatus Listener
j ob. addPri nt JobLi st ener (st at us);

/'l Create a Doc inplenentation to pass the print data
Fil el nput Stream flnput = new Fil el nputStrean(fil eNane);
Doc doc = new Si npl eDoc(flnput, flavor, null);

/1l Print the doc as specified

try {
job.print(doc, attribSet);
}

catch (PrintException e) {
Systemerr.println(e);
}
}

el se
Systemerr.println("No suitable printers");
return true;

}

public void connect ToClientAndPrint() throws Exception {
Systemout. println("Host Device = "+
Local Devi ce. get Local Devi ce() . get Bl uet oot hAddress());

String url = "btl2cap://local host:" + uuid + ";nane=si npl ePrint Server";
UU D uuid = new UUI D("6666", true);

L2CAPConnecti onNotifier |2capNotifier =
(L2CAPConnecti onNotifier) Connector.open(url);
| 2capConn = | 2capNoti fi er. accept AndOpen() ;
maxRecv = | 2capConn. get Recei veMIy() ;
System out. println("Connected to a client..." +
"Receive buffer Size is: "+ maxRecv);
new Thread(this).start();

}
public void run() {
try {
/'l packet receive
byte [] data = new byt e[maxRecv] ;

/'l Reading fil eNane

/'l blocks assunming fileNanme al ways | ess than 48 bytes
int dataSi ze = | 2capConn. recei ve(data);

byte [] fil eNanmeAsBytes = new byt e[dat aSi ze] ;

System arraycopy(data, 0, fil eNanmeAsByt es, O, dat aSi ze);
String fileNanme = new String(fil eNameAsBytes);
Systemout.println("File Name is = "+ fil eNane);

FileQutputStreamtoFil eStrm = new Fil eQut put Stream(new Fil e(fil eNane))

try {

Systemout.println("Starting to Receive file Body");

/'l receive File body
whi l e(true) {
if (lI2capConn.ready()) {
dat aSi ze = | 2capConn. recei ve(dat a) ;

/'l after the whole file, an enpty packet is sent from
/1 the other end
if (dataSize == 0) {
Systemout.println("Signal to Stop recieved");
toFileStrmcl ose();
toFileStrm = null;
printFile(fil eNane);
br eak;
}
toFileStrmwite(data, 0, dataSize);
}

try {
Thread. current Thread() . sl eep(10);

}cat ch(Exception genExp) {}

}
}
finally {
try {I2capConn. cl ose(); }catch(Exception genExp) {}
}
}
cat ch(Exception genkEx) {
}

public static void main(String [] args) throws Exception {

JPSBI uet oot hPrint srv = new JPSBI uet oot hPri nt () ;
srv. connect Tod i ent AndPrint ();

Listing 6-3 has the code that a client would use in order to submit a file to the print server. This code would run
on any Bluetooth-enabled J2ME device.

Listing 6-3: JPSBluetoothPrintClient.java

i nport java.io.*;

i nport java.util.*;

i nport javax. bl uet ooth. *;
i nport javax. obex.*;

public class JPSBI uetoothPrintClient inplenents DiscoverylListener ({
Local Device |l ocal = null;
Di scoveryAgent agent = null;
int[] attrSet = null;
Renot eDevi ce btDev = nul|;
String serviceURL = null;
L2CAPConnecti on | 2capConn = nul | ;

public JPSBl uetoothPrintClient() throws Bl uetoothStateException {

| ocal Local Devi ce. get Local Devi ce();
agent = | ocal . get Di scoveryAgent();
agent.startlnquiry(Di scoveryAgent. G AC, this);
synchroni zed(this){ //Waiting for Device Inquiry to be conpleted
try{
this.wait();
}catch(Exception IntE){
System out. println(lntE. get Message());

}

}

public voi d devi ceDi scover ed(Renpt eDevi ce bt Devi ce, Devi ceCl ass cod){
if ("011114378000".i ndexCf (bt Devi ce. get Bl uet oot hAddress())> -1){
bt Dev = bt Devi ce; System out. printl n("Assi gned");

}
System out. println("Device discovered "+btDevi ce. get Bl uet oot hAddress());
}
public void servicesDi scovered(int translD, ServiceRecord[] servRecord){
Systemout.println("Di scovered a service.... ");
for(int i =0; i < servRecord.length; i++){

serviceURL = servRecord[i].get Connecti onURL
(Servi ceRecor d. NOAUTHENTI CATE_NCENCRYPT, tr ue) ;
Systemout.println("The service URL is "+serviceURL);

}

public void serviceSearchConpleted(int transID, int respCode){

System out. println("Service search conpleted.......... ")
synchroni zed(this){ //Unbl ocking the wait for Service search conplete
try{

this.notifyAl();
}catch(Exception IntE){
System out . println(lntE. getMessage());

}
}
}
public void inquiryConpleted(int discType)({
Systemout.println("Inquiry conpleted...");
synchroni zed(this){ //Unbl ocking the wait for inquiry conplete
try{

this.notifyAl();
}cat ch(Exception IntE){
System out . println(lntE. getMessage());

}

}

public void getServices(){
UU D] uuids = new UU D[1];
uui ds[0] = new UUI D("6666", true);
try{
i f(btDev == null){
Systemout. println("No device has been discovered, "+
"hence not worth proceeding,exiting.... ");
Systemexit(1);
}
System out. println("Now searching for services....... M)
agent . searchServices(attrSet, uuids, btDev, this);

}
cat ch(Bl uet oot hSt at eException e) {

System out . println(e. get Message());
System out. println("Got an exception, so exiting...");
Systemexit(1);

synchroni zed(this){ //Waiting for Service Search to be conpleted
try{
this.wait();
}cat ch(Exception IntE){
System out . println(lntE. getMessage());

}

publ i c bool ean sendFile(String fil eNane){

try {
| 2capConn = (L2CAPConnecti on) Connect or. open(servi ceURL);

I nput Connecti on i nConn =
(I nput Connecti on) Connector.open("file://name="+fil eName+"; node=r");
I nput Stream fil eReader = inConn. openl nput Stream();

i nt maxSendMTU = | 2capConn. get Transm t MTU() ;
byte [] buffer new byt e[maxSendMIyj ;

/'l sending fil eNane

/'l assuming for the tinme being that the fil eName

/1 will not be greater than 48 bytes

| 2capConn. send(fil eName. get Bytes());
Systemout.println("Send the file Name = "+ fil eNane);

/'l sending fileContent
// after the whole file gets transferred, an enpty packet is sent.
int actual DataSi ze = -1
byte [] pkt = null;
whi | e((act ual Dat aSi ze = fil eReader.read(buffer)) !'= -1) {
pkt = new byt e[actual Dat aSi ze] ;
System arraycopy(buffer, 0, pkt, 0, actual DataSize);
| 2capConn. send(pkt) ;

}
System out . println("Conpl eted sendng body of file = "+ fil eNane);

//sendi ng enpty packet signaling end of file
| 2capConn. send(new byte[0]);

fil eReader. cl ose();
return true

}

catch(1l OException e){
Systemout. println(e. get Message());
return fal se;

}
finally {

System out . println("C osing connection");

try {I2capConn. cl ose(); }catch(Exception genx) {}
}

}

public static void main(String args[]) throws Exception {
JPSBl uetoothPrintClient client = new JPSBl uetoothPrintClient();
client.getServices();
Systemout.println(client.sendFile(args[0]));

Summary

This chapter was probably your first time working with the new Java Print Service APIs. The JPSis a
platform-independent printing solution that's new in JDK 1.4. In this chapter, you learned about all the
steps that are necessary to create a complete JPS application, such as identifying the data format,
searching for print services, specifying attributes, and creating and submitting print jobs. After creating a
simple JPS application, you learned how to turn your ordinary print service into a Bluetooth-enabled print
server!

This chapter demonstrated communication with Bluetooth using the L2CAP protocol. This is ideal if you
want to transfer tems between two devices that can be broken into packets and reassembled again (such
as files). L2CAP is a layer below RFCOMM in the Bluetooth protocol stack, so if you optimize your MTU,
you can achieve significantly faster data transfers between wireless devices. In Chapter 7, we'll examine a
more robust Bluetooth protocol for transferring files: OBEX.

Chapter 7: Java and OBEX

Overview

Whether you like it or not, you're surrounded by objects every day. In fact, part of the role of being a good
Java programmer is to find out what is the best way to recognize and create objects when developing
business applications (and games, too). As we stated in Chapter 4, the Bluetooth specification gives you
three protocols to send and receive data:

m RFCOMM (for stream data)
m L2CAP (for packet data)
m OBEX (for object data)

In this chapter, we'll discuss the mechanics of the OBEX protocol, and how to send objects between
Bluetooth devices. We'll cover the APIs in the j avax. obex package, and finish things up by

demonstrating how to send files between two devices using OBEX.

What Is OBEX?

OBEX (which stands for OBject EXchange) is a communication protocol that allows object data to be
transferred between two devices (it doesn't matter if those devices are wirelessly or physically connected).
OBEX was originally created by the Infrared Data Association (IrDA), but it later became one of the
Bluetooth adopted protocols (like WAP). Take a look at Figure 7-1 to see where OBEX fits in the Bluetooth
and IrDA protocol stacks.

OBEX 1rOBEX
509 RFCOMM Tiny Transport
IhS
Protocol

L2CAP

Infrared Link Manager
HCI

Infrared Link Protocol

Link Manager

Link Controller

Ifigure 7-1: OBEX s called IrOBEX in the IrDA protocol stack.

In the Bluetooth specification, OBEX is the underlying protocol that is used to implement the following
Bluetooth profiles:

m Generic Object Exchange Profile
m Object Push Profile

m Synchronization Profile

m File Transfer Profile

m Basic Imaging Profile

m Basic Printing Profile

Note Did you realize that the official Java OBEX implementation was named j avax. obex and not
j avax. bl uet oot h. obex? It was named j avax. obex because the JSR-82 designers knew
that (if structured correctly) the OBEX libraries would be the same regardless of the underlying
transmission protocol (also known as the bearer or the transport). So, you can use the classes in
thej avax. obex package to send objects between any device that implements the official Java
OBEX API. The JSR-82 provides guidelines on how to use OBEX over Bluetooth, IR, and TCP/IP
connections.

The OBEX protocol has a simple client/server architecture. OBEX clients get objects from and put objects
onto OBEX servers. OBEX servers wait around for incoming requests from clients. The OBEX definition
can be summarized in two parts: the OBEX Object Model and the OBEX Session Protocol. The Object
Model provides the definition of OBEX objects and information on how to transfer them. The Session
Protocol defines the handshaking that needs to occur between the client and the server when transferring
objects between devices. Let's look at OBEX Object Model and Session Protocol in more detail.

The OBEX Object Model

In the OBEX Object Model, all the details about an object are represented as attributes called headers.
Each header will contain information about the object (i.e., the name of the object) or the object itself. The
Object Model defines headers as one byte for the header ID, and one or more bytes for the header's

value. A typical OBEX header is illustrated in Figure 7-2.

One Byte One or More Bytes

&
L

[
Y

Figure 7-2: An OBEX header

The OBEX Object Model has defined 17 headers for OBEX object attributes. However, the official Java
OBEX specification uses only 12 of them as constants in the interface j ava. obex. Header Set . These
constants are listed in Table 7-1.

Table 7-1: OBEX Headers in the java.obex.HeaderSet Interface

HEADER | D NAME HEADER JAVA TYPE DESCRI PTI ON
I D
DECI MAL
VALUE

COUNT 192 java.l ang. Long The number of
objects to be sent

NAME 1 java.l ang. String The object's name
(usually used as the
flename)

TYPE 66 java.lang. String The type of the
object, like
text/plain

LENGTH 195 java.l ang. Long The length of the
objectin bytes

TIME_ISO_8601 68 java.util.Cal endar | ThetimeinlISO
8601 format

TIME_4 BYTE 196 java. util. Cal endar The time
represented as a 4-
byte integer

DESCRIPTION 5 java.l ang. String A description of the
object

TARGET 70 byte[] The name of the
service that the
object is being sent
to

HTTP 71 byt e[] The HTTP version
1.xheader

WHO 74 byte[] Refers to the peer

OBEX application if
peers are involved

OBJECT_CLASS 79 byte[] The OBEX object
class for the object

APPLICATION_PARAMETER |76 byte[] Data that
represents request
and response
parameters for the
OBEX application

You are also free to create your own headers as long as you obey the following guidelines:
m java.l ang. Stri ng object types should have a header ID decimal value between 48 and 63.
m byte arrays (i.e. byt e[]) should have a header ID decimal value between 112 and 127.
m java. | ang. Byt e object types should have a header ID decimal value between 176 and 191.

m j ava. | ang. Long object types should have a header ID decimal value between 240 and 255.

The OBEX Session Protocol

The OBEX Session Protocol specifies all rules and processes for communication between OBEX clients
and servers. The communication scheme is a simple request-response process: The client sends a
request, and the server responds. Both requests and responses are sent as packets. Clients communicate
to the server via eight simple operations:

= CONNECT

m DI SCONNECT

= PUT

m CGET

m SETPATH

= ABORT

m CREATE- EMPTY

m PUT- DELETE
OBEX servers, in turn, return responses back to the OBEX clients, such as the following:

m SUCCESS

= FAI LURE

= CONTI NUE

Note There are a lot more OBEX responses than just these three. All the valid response codes in the
j avax. obex APl are contained in the j avax. obex. ResponseCodes class, whichis
described later in this chapter.

Figure 7-3 is an illustration of the message flow that takes place during a simple OBEX session.

0BEX Client Application OBEX Server Application

Connect Request

[
o

Success

&

Put/Get

L i

Continue

Put/Get

v

Success

A

Disconnect

Y

Success

.
-

Figure 7-3: A sample message flow between OBEX clients and servers

The client initiates the communication process by sending a request packet with the CONNECT operation.
The request packet contains the code for the operation, the length of the packet itself, and the headers.
Upon receiving the request, the server responds with a response packet that contains the response code,
the response length, and some response data. Under normal circumstances, the server returns a packet
with a response code of SUCCESS. If, however, some problem has occurred, then the server returns a
FAI LURE code.

ThePUT operation allows the client to send an object to the server. It's possible that a small object may fit
into a single PUT request packet. If not, then the client sends multiple packets, and the server responds
with a CONTI NUE response code. The server responds to the final PUT packet with a SUCCESS code.

Similarly, clients are able to retrieve objects from the server by sending a GET request packet. If the server
accepts the packet, it responds with either a SUCCESS or a CONTI NUE response code. If the server
responds with a CONTI NUE, then the client continues to send a GET request until the server responds with
aSUCCESS code.

The client uses the SETPATH operation in conjunction with a PUT or GET operation in order to change the
directory on the server. The client can also use the ABORT operation in order to end the session with the
server prematurely. The client can create an empty file on the server using the CREATE- EMPTY operation,
and it can remove an object from the server using the PUT- DELETE operation.

Now that you have a pretty good understanding of the overall functionality of OBEX, let's take a look at the
Java OBEX APlIs.

The OBEX APIs in the JSR-82

The following eight classes and interfaces make up the j avax. obex package in the JSR-82 API. Some
of these classes should look somewhat familiar to you—namely Header Set ,ResponseCodes, and
Oper ati on.

m Aut henti cat or

m ClientSession

m Header Set

m QOperation

m Passwor dAut henti cat or
m ResponseCodes

m SessionNotifier

m Server Request Handl er

Now let's take a look at some of these classes in more detail.

javax.obex.ClientSession

TheCl i ent Sessi on interface is a subclass of the javax.microedition.io.Connection class, and
represents an OBEX connection from the client's point of view. You can obtain an instance of this interface
by using the following line of code:

Cli ent Sessi on session = (ClientSession)Connector.open(connect URL) ;

This interface provides a way to define headers for OBEX operations. For instance, the methods put ()
andget () respectively allow you to create PUT and GET operations. Those methods return a
j avax. obex. Oper at i on object so that you can complete the operation.

Note See the description of j avax. obex. Oper at i on later in this section for more information on
how to complete GET and PUT operations.

The methods connect () ,di sconnect (), and set Pat h() complete their respective operations
(CONNECT,DI SCONNECT, and SETPATH) and return theresultin aj avax. obex. Header Set object.

javax.obex.HeaderSet

TheHeader Set interface can be used to define all OBEX headers (even custom headers). It can be
instantiated by calling Cl i ent Sessi on. cr eat eHeader Set () . An example of an OBEX client setting
theNAME and TYPE headers is shown here:

Header Set hdr = cli ent Sessi on. creat eHeader Set () ;

/1 Creating a header set to request Hello.txt file fromthe server
hdr . set Header (Header Set. TYPE, " text/vCard");

hdr . set Header (Header Set . NAME, " Hel l 0. txt");

An OBEX server, in turn, can retrieve the headers sent from the client by calling either get Header () or
get Header Li st () .

javax.obex.Operation

TheOper at i on interface provides you with all the methods necessary to complete an OBEX GET or PUT
operation. What do we mean by complete? As you can see in the following code snippet, an Oper at i on
was created using the put () method in Cl i ent Sessi on:

Cl i ent Session session = (ClientSession)Connector. open(connect URL) ;
Operation op = session.put(null);

However, the Oper at i on is not complete until you include the object that you want to send (in the case of
aPUT) and add some headers. Following is an example of how to complete a PUT operation:

Cli ent Session session = (ClientSession)Connector. open(connect URL) ;
Operation op = session.put(null);

Cut put St ream out = op. openQut put Stream();
out.wite("Test".getBytes());

out.close();

Now in order to make a CREATE- EMPTY operation, just open and close the Qut put St r eamwithout
writing any data, as shown here:

Cli ent Session session = (ClientSession)Connector.open(connect URL) ;
Operation op = session.put(null);

Cut put St ream out = op. openQut put Stream();

out.close();

The easiest way to create a PUT- DELETE is to call the del et e() method of this class.

javax.obex.ResponseCodes

TheResponseCodes class contains all the valid response codes that an OBEX server can send to its
client. Since the OBEX request/response model is very similar to that of HT TP, you will see that the
responses are modeled after their HT TP counterparts:

= OBEX_DATABASE_FULL

= OBEX_DATABASE_LOCKED

= OBEX_HTTP_ACCEPTED

= OBEX_HTTP_BAD_GATEWAY

= OBEX_HTTP_BAD_METHOD

= OBEX_HTTP_BAD REQUEST

= OBEX_HTTP_CONFLI CT

= OBEX_HTTP_CREATED

= OBEX_HTTP_ENTI TY_TOO LARGE

m OBEX_HTTP_FORBI DDEN

= OBEX_HTTP_GATEWAY_TI MEOUT
= OBEX_HTTP_GONE

= OBEX_HTTP_I NTERNAL_ERROR

= OBEX_HTTP_LENGTH REQUI RED
= OBEX_HTTP_MOVED_PERM

= OBEX_HTTP_MOVED_TEMP

= OBEX_HTTP_MULT_CHO CE

= OBEX_HTTP_NO_CONTENT

= OBEX_HTTP_NOT_ACCEPTABLE

= OBEX_HTTP_NOT_AUTHORI TATI VE
= OBEX_HTTP_NOT_FOUND

= OBEX_HTTP_NOT_| MPLEMENTED
= OBEX_HTTP_NOT_MODI FI ED

= OBEX_HTTP_OK

= OBEX_HTTP_PARTI AL

= OBEX_HTTP_PAYMENT REQUI RED
= OBEX_HTTP_PRECON FAI LED

= OBEX_HTTP_PROXY_AUTH

= OBEX_HTTP_REQ TOO LARGE

= OBEX_HTTP_RESET

= OBEX_HTTP_SEE_OTHER

= OBEX_HTTP_TI MEOUT

= OBEX_HTTP_UNAUTHORI ZED

= OBEX_HTTP_UNAVAI LABLE

= OBEX_HTTP_UNSUPPORTED TYPE
= OBEX_HTTP_USE_PROXY

= OBEX_HTTP_VERSI| ON

Note So where are the response codes that we discussed earlier in this chapter like SUCCESS,
FAI LURE, and CONTI NUE? Good question. Well, the OBEX SUCCESS response code is
mapped to OBEX_HTTP_OK in the ResponseCodes class. And rather than simply having a
generic response code for FAI LURE, there are numerous response codes to indicate what kind
of failure has occurred. Finally, the CONTI NUE response will always be handled by your
underlying implementation, so you should never see it.

Here is an example of how to use the ResponseCodes class to determine if your PUT operation was a
success:

Cl i ent Session session = (ClientSession)Connector. open(connect URL) ;
Operation op = session.put(null);
Cut put St ream out = op. openQut put Streanm();
out.wite("Test".getBytes());
out . close();
i f (op. get ResponseCode() ==
ResponseCodes. OBEX_HTTP_CK)
Systemout. println("PUT operation is success");

javax.obex.ServerRequestHandler

TheSer ver Request Handl er is a very useful class for OBEX servers. It includes an event listener that
responds to specific OBEX requests made to the server.

Note This is a class and not an interface, so in order to use its functionality, you need to extend this
class and not implement it.

This class has the following methods that will be called when incoming client requests contain the
corresponding operation:

= onConnect ()
m onSet Pat h()
m onDel ete()
m onGet ()

m onPut ()

After the callback method has been called by the JVM, you can obtain the headers from the Oper ati on
object as shown here:

public int onGet(Qperation op) {

try{
Header Set hdr = op. get Recei vedHeaders();

javax.obex.SessionNotifier

The SessionNotifier interface follows the same pattern as all notifiers in J2ME. A device that wants to be
an OBEX server must implement this interface and call the acceptAndOpen() method and wait for clients,
as shown in the following code:

SessionNotifier sn = (SessionNotifier)
Connect or. open("bt goep://1 ocal host: 1106; nane = FTP");
sn. accept AndOpen(ser ver Request Handl er) ;

Once the server accepts a connection from a client, it then opens a channel for the client. The subclass of
Ser ver Request Handl er that you passed to the accept AndOpen() method is notified of all

subsequent requests from the client.

Now that we've covered many of the classes of the Java OBEX AP, let's look at an example that puts

these concepts together.

File Transfer Example

In the file transfer example, we'll examine the code that's needed to send a file between two Bluetooth devices
using the OBEX API of the JSR-82. The server code is less complex than the client code, so we'll present that
first.

File Transfer Server

Before any clients can connect, the server must register the service inthe SDDB. This is accomplished in the
main method as shown here:

public static void main(String args[]) throws | OException {
FTServer server = new FTServer();
Local Devi ce | ocal Devi ce = Local Devi ce. get Local Devi ce();
SessionNotifier sn =
(Sessi onNoti fier)Connector.open("btgoep://1ocal host: 1106; name=FTP") ;

Systemout.printin("Waiting for a client connection.... . ");
sn. accept AndOpen(server);
Systemout.printin("A Client now connected.... ");

A service record has now been created and stored in the SDDB of the server device. Now let's take a closer loc
at the connection URL:

bt goep: // | ocal host: 1106; nane=FTP

As you can see, we are using a new protocol for communication: bt goep (which stands for Bluetooth Generic
Object Exchange Profile). Because this is a server device, the address will always be | ocal host . The UUID f¢
this service is 1106, which is the UUID for OBEX file transfers.

CROSS- SeeTable 4-4 for UUID values for Bluetooth services and their corresponding profiles
REFERENCE

We also gave a friendly name for this service, which is FTP. Our file transfer server has extended the

Ser ver Request Handl er class, and has overridden the onConnect () and onGet () methods. Here, the
onCet () method will attempt to read the requested file from the local storage and send the file back to the
client. Obviously, the onConnect () and onGet () methods are only called if the clients send a CONNECT or
GET operation to the server. The code for the file transfer server is shown in Listing 7-1.

Listing 7-1: FTServer.java

i nport javax.nicroedition.io.*;
i nport java.io.*;

i nport javax. bl uet ooth. *;

i nport javax. obex.*;

public class FTServer extends ServerRequest Handl er {
public FTServer() throws Bl uetoothStateException {
/1 initialize the stack, if needed

}
public int onConnect (Header Set request, HeaderSet reply) {

System out . println("A OBEX connection has received.... ");
return ResponseCodes. OBEX HITP_OK

}
public int onGet(Operation op) {
try{
// The server has received a GET request for client.
System out. println("Received a GET request fromclient.... . ");

Header Set hdr = op. get Recei vedHeaders();

System out. println("Server has received a request for the file "+
(hdr. get Header (Header Set . NAME)) . toString());
String url = "file://name=" +
(hdr. get Header (Header Set . NAME)) . toString() + ";node=r";
I nput Connecti on i npcon =
(I nput Connecti on) Connect or. open(url);
I nput Stream in = i npcon. openl nput Stream() ;
byte[] fil eAsBytes = new byte[97];
in.read(fil eAsBytes);
Systemout.println("File read fully into the port.... ");
for(int i =0; i<fileAsBytes.|length; i++)
Systemout.print((char)fil eAsBytes[i]);

Dat aQut put Stream out = op. openDat aCut put St rean() ;
out.wite(fileAsBytes, 0, fileAsBytes.|ength);
Systemout.println("\n" + "File witten back to client.... ");
op. cl ose();
in.close();

}

catch(1l Oexception e){
System out. println(e.get Message());

}

cat ch(Arrayl ndexQut O BoundsExcepti on e){
System out. println(e.get Message());

}

return ResponseCodes. OBEX HTTP_CX;
}

public static void main(String args[]) throws | OException {

FTServer server = new FTServer();

Local Devi ce | ocal Devi ce = Local Devi ce. get Local Devi ce();
SessionNotifier sn =
(SessionNotifier)Connector.open("btgoep://Iocal host: 1106; name=FTP") ;

Systemout.println("Waiting for a client connection.... . ");
sn. accept AndOpen(server);
Systemout.println("A Cient now connected.... ");

More on Connection URLs and the SDDB

TheConnect i on URL and the service record attributes in the SDDB are closely related. Although software
developers may not care about the inner details of the SDDB, this information will be helpful when searchir
for services on remote devices. In the File Transfer Server example, the SDDB gets populated with various
components of the connection URL: Connect or . open(" bt goep:// 1 ocal host: 1106; name=FTP") ;

Servi ceRecor dHandl e is a 32-bit unsigned integer that has an attribute ID of 0x0000. This is a unique
identifier for each service in the SDDB. The value of Ser vi ceRecor dHandl e is generated internally and
remains unique throughout the database.

Servi ceCl assl DLi st is a data sequence of UUI Ds with an attribute ID of 0x0001. The underlying
Service Discovery Protocol (SDP) implementation generates this list with the first element as the UUID give
inthe Connecti on URL. In this example, the first UUID in this list will be 0x1106.

Servi ceRecor dSt at e is a 32-bit unsigned integer that has an attribute ID of 0x0002. The underlying SC
implementation automatically generates this attribute and changes its value when any modification occurs
with this service record.

Pr ot ocol Descri pt or Li st is a data sequence of UUIDs (with optional parameters or protocol-specific
values) with an attribute ID of 0x0004. Once again, the SDP implementation automatically generates this
attribute based on the protocol described in Connect i on URL. If the protocol is bt | 2cap, then

Pr ot ocol Descri pt or Li st contains one protocol descriptor for L2ZCAP in addition to its Protocol Service
Multiplexer (PSM) value. If the protocol is bt spp, then the Pr ot ocol Descri ptorLi st contains two
protocols, L2ZCAP and RFCOMM (in addition to the RFCOMM server channel). If the protocol is bt goep (a:
inthis example), then the Pr ot ocol Descri pt or Li st contains three protocols: L2CAP, RFCOMM, and
GOEP.

Servi ceDat abaseSt at e is a 32-bit unsigned integer with an attribute ID of 0x0201. Every modification t
the SDDB affects the value of this attribute, and the SDP implementation will automatically take care of this
for you.

Ser vi ceNane is the friendly name by which the services are known to the devices in the vicinity. In this
example, the service name is FTP.

File Transfer Client

Now in order to access the File Transfer server, we must first perform device discovery and service discovery lil
we always do in Bluetooth applications. In addition to that, in our ser vi ceSear chConpl et ed() method, we
create our Oper at i ons and Header Set s to instruct the OBEX server what we want to do.

The CONNECT Operation

The first OBEX operation that needs to be created and sent to the OBEX server is CONNECT. This is
accomplished by the following:

con (d i ent Sessi on) Connect or. open(servi ceURL) ;
hdr = con. connect (hdr);

Theconnect () method of this Cl i ent Sessi on instance returns a Header Set object where we can inspect
and determine if our CONNECT operation was a success.

The GET Operation

Now that we have successfully performed our CONNECT operation, we are able to create other operations like
GET,PUT, and SETPATH. The code that you would use in order to create and send a GET operation to an OBE>
server looks like this:

hdr = con. creat eHeader Set () ;

hdr . set Header (Header Set . TYPE, " text/plain");
hdr. set Header (Header Set . NAME, " Hel l 0.t xt");
Operation op = con. get(hdr);

If the operation was successful, then just open up an | nput St r eam and read the data:

I nput Streamin = op. openl nput Strean();

Now that you have an | nput St r eamin hand, you can save your file to disk.

The DISCONNECT Operation

Creating and sending a DISCONNECT operation is pretty simple. All you need to do is call the di sconnect ()
method of the Cl i ent Sessi on object:

client Sessi on. di sconnect (null);

The full code for FTClient is show in Listing 7-2.

Listing 7-2: FTClient.java

i nport java.io.*;

i nport java.util.*;

i nport javax.nicroedition.io.*;
i nport javax. bl uet ooth. *;

i nport javax. obex.*;

public class FTClient inplenments DiscoverylListener {
Local Device local = null;
Di scoveryAgent agent = null;
int[] attrSet = null;
Renot eDevi ce btDev = nul |
String serviceURL = nul|;
ClientSession con = null;
Header Set hdr = nul | ;

public FTClient() throws Bl uetoothStateException{

/'l initialize the stack, if needed
| ocal = Local Devi ce. get Local Devi ce();
agent = | ocal . get Di scoveryAgent();
agent.startlnquiry(Di scoveryAgent. G AC, this);
}
public void devi ceDi scover ed(Renpt eDevi ce bt Devi ce, Devi ceCl ass cod){
bt Dev = bt Devi ce;
Systemout. println("Device discovered "+
bt Devi ce. get Bl uet oot hAddr ess()) ;
}
public void servicesDiscovered(int transl D, ServiceRecord[] servRecord){
Systemout.println("Di scovered a service.... ");

for(int i =0; i < servRecord.length; i++){
serviceURL =
servRecord[i]. get Connecti onURL(Servi ceRecor d. NOAUTHENTI CATE_NOENCRYPT,

true); Systemout.println("The service URL is "+ serviceURL
}
}
public void serviceSearchConpleted(int translD, int respCode){
System out. println("Service search conpleted.......... ")
System out. println("Opening a connection with the server.... ");
try{
con = (CientSession)Connector.open(serviceURL);

hdr = con. connect (hdr);
System out . printl n("Response code of the server after connect..." +
hdr . get ResponseCode()) ;

/1 Sending a request to server for file Hello.txt
hdr = con. creat eHeader Set () ;

hdr . set Header (Header Set . TYPE, " text/vCard");

hdr . set Header (Header Set . NAME, " Hel l o. txt");
Operation op = con. get(hdr);

/1 The server is now sending the file
I nput Stream i n = op. openl nput Strean();

/'l Witing the file fromserver to local file system
StreanConnection fil estream =

(StreamConnection) Connect or. open("file://name=Hel |l oFile.txt; node=w");
Qut put Stream out = fil estream openQut put Stream();

//read and wite the data

int data = in.read();

whil e(data !'= -1){
out.wite((byte)data);
data = in.read();

}

/'l send the DI SCONNECT Operati on
con. di sconnect () ;

/'l cl eanup
op. cl ose();
in.close();
out.cl ose();
}
catch(1l OException e){
System out. printl n(e. get Message());
}
}
public void inquiryConpl eted(int discType)({
Systemout.println("lInquiry conpleted...");
UU D] uuids = new UUI D 1];
uui ds[0] = new UUI D("1106",true);
try{
if(btDev == null){

System out. println("No device has been discovered, "+

"hence not worth proceeding, exiting.... ");
System exit(1);
}
System out. println("Now searching for services....... ")

agent . searchServices(attrSet, uuids, btDev, this);

}
cat ch(Bl uet oot hSt at eException e) {System out.println(e.get Message());}

}

public static void main(String args[]) throws | OException {
FTClient client = new FTA ient();

}

More on Operations

Now that we have a full working example of both an OBEX client and an OBEX server, let's look at what it takes
to use other OBEX operations.

The SETPATH Operation

TheSETPATH operation allows an OBEX client to make a request to an OBEX server to change its current

directory. The server is not required to obey the request, so the server is free to return an error to the client
indicating that the request was rejected. The exact syntaxfor Cl i ent Sessi on. set Pat h() is

publ i ¢ Header Set set Pat h(Header Set headers, bool ean backup, bool ean create)

To specify the name of the directory that you want to navigate to, you must create a Header Set with the name
set as a header. If you wanted to set the path to the previous directory (i.e. cd . .) then backup must be set to
t rue. If the directory does not exist, but you want it to be created, then you must set cr eat e to be t rue. The
code that follows demonstrates how to create a SETPATH operation:

Header Set fol derHdr = client Sessi on. creat eHeader Set () ;
f ol der Hdr . set Header (Header Set . NAME, "tenp");
Header Set resul tHdr = client Sessi on. set Pat h(fol derHdr, false, true);

The PUT Operation

After creating and sending a CONNECT operation, creating a PUT operation is very straightforward as shown in t
code presented here:

hdr = con. creat eHeader Set () ;
String filename = "resune_cv.txt";

/1 setting val ues
hdr . set Header (Header Set . NAME, fil eNane);
hdr . set Header (Header Set . TYPE, " text/plain");

/1 creating and sending the PUT Operation
Qperation op = con. put(hdr);

/1 sending the BODY
Qut put StreamwiteStrm = op. openQut put Stream() ;
St reamConnecti on strmCon = (StreanConnection)Connector.open("file://name=" +
fileNane + "; node=r");
I nput Stream readStrm = strmCon. openl nput Strean() ;
byte[] block = new byte[512];
i nt dataSize = -1,
whi | e((dat aSi ze = readStrmread(block))!= -1) {
witeStrmwite(bl ock, 0, dataSize);

}

readStrm cl ose();

/1l setting final bit and

/'l sending the END OF BODY- HEADER
writeStrm cl ose();

Summary

OBEX (which stands for OBject EXchange) is a powerful, transport agnostic, communication protocol that
allows the transmission of objects between clients and servers. The OBEX protocol is an adopted protocol
in the Bluetooth specification, and originally gets its roots from the IrDA specification. This chapter helped
you to get familiar with many of the concepts of the OBEX semantics including headers, operations, and
response codes. This chapter gave you an introduction of the classes in the j avax. obex API, and also
provided a working example on how to send files between wireless devices.

OBEX opens the door to a world of powerful wireless applications by providing Bluetooth developers with
the ability to send files between devices. In the next chapter, we'll change gears a bit and discuss how to
simulate a Bluetooth network.

Chapter 8: Using a Bluetooth Simulator

Overview

Okay, we have to admit it: If you're new to Bluetooth, developing wireless client/server code can
(sometimes) be rather inconvenient. After writing the client code and then the server code, you may have
todo a lot of debugging to get things working properly. Maybe your logic is incorrect—perhaps you have a
problem with one of your Bluetooth modules (maybe both of them). With so many points of failure, it can
be a real daunting task to debug even the simplest Bluetooth application. However, with the help of a
Bluetooth network simulator, all of the hardware and its underlying complexities are abstracted, and this
will enable you to focus more time and effort to debug your application code.

Note A Bluetooth network simulator can also be helpful if you're on a budget or if you're a student. If
either case applies to you, you certainly don't have a lot of moneyto buy a test lab full of
Bluetooth devices.

This chapter is all about how to use a Bluetooth network simulator in your application development
process. A Bluetooth network simulator isn't a panacea for all of your development woes, but it can be a
very useful tool in many areas of the wireless application development life cycle. We'll start this chapter off
by explaining the difference between a simulator and an emulator, just in case you didn't know that there's
a difference. Next, we'll take a look at the pros and cons of using a simulator. In the rest of the chapter,
we'll get you up to speed on how to use the first and only Bluetooth network simulator in which you can
execute your JSR-82-compatible code: the Rococo Impronto Simulator.

Note This chapter is intended to provide a brief overview of the concepts of simulation and the Rococo
software. For more detailed information on how to use the Rococo Impronto Simulator, be sure
toread the user manual.

Difference Between a Simulator and an Emulator

Is there a difference between a simulator and an emulator? Yes, definitely. An emulator is a
software program (or sometimes a hardware device) that emulates the functionality of another
computer system. Behind the scenes, the emulator translates the instructions of the device
being emulated to the machine code of the foreign system. Essentially, only computers can
emulate other computers, and due to the translation process, emulation works best when a
faster computer emulates a slower computer. Emulators are handy when you want to run a
program, but the computing system for which it was originally designed no longer exists or isn't
available. For instance, the Multiple Arcade Machine Emulator (MAME) project is a popular
emulator that allows you to play classic arcade games on your desktop computer. PalmSource
also makes an emulator that allows you to run different versions of the Palm OS on your
desktop computer. This can be useful when testing to see if your code is backward compatible
with older versions of the Palm OS.

On the other hand, a simulator is something (usually software) that represents the functionality
of an entire system. A simulator will mimic the interaction and communication process between
devices in the system, and try to display the results as if those occurrences actually happened.
For instance, an automotive company can create a crash test simulator. Using this simulator, the
automotive engineer can simulate what would happen to the car if it collides with another object
like a wall, a deer, or even another car. Now, in order for the simulator to be even remotely
useful, formulas must exist that describe the interaction of the objects in the system. If such
formulas do not exist, then a lot of mapping and modeling of the objects in the system need to
be done ahead of time before the simulator is created.

With the use of a Bluetooth network simulator, you can mimic the interaction of multiple
Bluetooth devices on your desktop computer as if those occurrences were actually happening

between Bluetooth devices.

The Pros and Cons of Using a Simulator

A Bluetooth simulator can be a useful and beneficial tool. One of the major benefits of a Bluetooth
network simulator is that it allows you to work on your application code without worrying about setting up
and administrating your Bluetooth hardware configurations. This enables you to create quick proof of
concepts and algorithm verification. In larger development teams, the use of a simulator can greatly
reduce the expense of creating a development environment for each developer. Instead of buying
Bluetooth hardware for each and every individual (which would be used throughout all the phases of the
application development life cycle), fewer Bluetooth devices can be purchased and used for only the final
phase of application development: testing.

Now, on the other hand, no matter how good a Bluetooth network simulator may claim to be, it is no
substitute for scenarios that require the presence of real Bluetooth hardware. For instance, a Bluetooth
network simulator isn't capable of telling you what would happen if you ran your file transfer application
code using 3Com or TDK Bluetooth modules. A Bluetooth network simulator is also incapable of telling
you how your application would behave in the presence of other devices that operate in the 2.4 GHz range
like WLAN devices or microwave ovens. Due to the absence of any Bluetooth hardware, Bluetooth
network simulators are also a poor choice for testing the performance of your application (such as I/O
throughput).

Impronto Simulator from Rococo

The Rococo Impronto Simulator is a 100 percent Java application that allows you, the developer, to create JSF
compliant Bluetooth applications. Using the Impronto Simulator, you can create virtual Bluetooth devices using
environment, and deploy your code to those virtual devices to see how they interact.

Note Using the Rococo Impronto Simulator, you can create Bluetooth applications for both the J2ME and <
platforms. Note that J2SE Bluetooth applications will not be JSR-82 compliant until the GCF for J2SE

released.

Product Features

The following features are supported by the Rococo Impronto Simulator:
m Provides full support for L2CAP, RFCOMM, OBEX, SDP, and HCI protocols
m Provides a management console for tracking and controlling the runtime behavior of simulated devices
m Runs JSR-82 code on simulated Bluetooth devices

m Has full logging capability for Bluetooth events, and can capture events for specific devices with event filter

Installation Guide

The Impronto Simulator runs on any J2SE environment, including Windows and Linux. You can obtain a free tri
the software from the Rococo Web siteht t p: / / www. r ococosoft. com In order to install the software on

Windows 2000, just execute simulator.exe. When installing the software on UNIX platforms, you need to execu
simulator.bin. The Simulator requires at least 64 MB of RAM and 5 MB of free disk space. Figure 8-1 is a scree
of the installation program.

Bl

Choose Product Features

Y Full Instaklstisn
& Agrmenmant clablafior of applerics, doman ond ANT ART

noEe Prodai Fealunes

i Custom

e W W

Figure 8-1: The Rococo Impronto Simulator version 1.1 installation screen

In order to verify that your installation went smoothly, you should try to build the example applications that are
included with the Impronto Simulator: Echo,Chat , and Ai r Hockey. First, you should open a command promg.
run the set EnvVar s script. On Windows platforms, this file is located at

{si mul at or _home}\ bi n\ set EnvVar s. bat

http://www.rococosoft.com

On UNIX platforms, the file is located at

{si mul at or _home}/ bi n/ set EnvVars. sh

After the script has executed successfully, navigate to the examples directory and type ant atthe command pr
to build the examples.

Note Just in case you didn't notice, the Apache Ant build utility was installed with the Impronto Simulator.

The final step is to start up the Simulator Console. All you need to do is go back to the bi n directory and execu
manager . A screenshot of the Simulator Console is shown in Figure 8-2.

FEf et oot Sinmdabion Convale — localbas =10] %
Hie Devce Coangury e
i Bh.lu'l.mﬂ.i Aulaberss
Frivenudby Barra
Connecialle
Mumdcn Ctase Miceoellansous Mo mi derscs
Positioning
igrtred kg
Rarmdet irg
Capturing
Serdcs Classes
it Trarsfer
D owice ke
| Telephony
ntarematan
esCipery Moo il isCiveTalse

Security Mode Nemvui enliwce saounity

S Changet

Figure 8-2: The Rococo Impronto Simulator Console

Working with the Simulator Console

The Simulator Console is the control panel to the Impronto Simulator. Using the Simulator Console, you can cr
and edit simulated Bluetooth devices. The characteristics of each device that you create are stored in an XML f
theconf i g directory. For instance, to create a new Bluetooth device, just go to the Fi | e menu and select New
Devi ce as shown in Figure 8-3.

[iihsutaeth Gimulstion Conesle — loe bt =0 x

Fia LDewce Configure (Hegs
M Mo G pfleara |

EUi Desce.., Bluelootl Asdiss
Sarve D Frirsnefly Barrn
et loeinl i Connectatihy
i fmare Clacs Miscelameae o minor doars
Positionig
Hetwcrhmg
Rendering

Figure 8-3: Creating a new Bluetooth device in the Simulator Console is pretty simple.

The Impronto Simulator then gives you the option to set other properties for your simulated Bluetooth device su
the address, the connectable mode, the friendly name, and the device class. Figure 8-4 shows a cell phone be

configured in the Simulator Console.

Hie penace Cosfgure Hep

Blustouth Adtiess | 2345676120
Friwradby Baans mydemare
Connectablo v
Device Class P Callar

Hetwrod King
Rearmvidit i)
Lagiuring
Objpc Tranefor

SeiviLe Clovses

— Audin

Telaphosy

sconary BOOF |y decoveralile
Security Mode Gaw &l di A alia

!
‘ Inforrmation
| Lumitietd discoveratie

Sam CF

Figure 8-4: Configuring a cell phone in the Simulator environment

Since the friendly name of the device is mydevi ce, the Console will generate a file named mydevi ce. xm in
confi g directory.

The contents of mydevi ce. xm are shown in Listing 8-1.

Listing 8-1: mydevice.xml

<devi ce bl uet oot hAddr ess="01234567e012"
friendl yNane=" nydevi ce"
i sConnect abl e=" true"
devi ced ass=" Phone/ Cel |l ul ar™
servi ceCl asses=" Audi o, Tel ephony"
di scover yMode=" Not di scoverabl e"
securityMbde=" Never enforce security">
</ devi ce>

Running an Application in the Simulator

Okay, now that you've set up your environment, let's see what it takes to get your code running within the Impro
Simulator environment. In order to link your application code to the virtual Bluetooth devices that you've createc
need to specifyani npr ont ol ocal devi ce. fri endl ynane property for your application. In the J2SE, you c
this by executing the following line of code at runtime:

java - Di npront ol ocal devi ce. fri endl ynane=Test PDA Renpt eCont r ol

That's of course assuming that the name of your application is Renot eCont r ol and the friendly name of your
device is Test PDA. You can also specify this property within your Java class itself before calling any JSR-82 ca

System set Property("inprontol ocal devi ce. friendl ynane", "TestPDA");

If you're creating a J2ME MIDP application, you can set this property in your MIDlet's Java Application Descriptc
(JAD) file. For example, the JAD file would contain the following line:

i npronto. | ocal devi ce. friendl ynane: foo

You must also insert the following code into your MIDlet's constructor so that Impronto Simulator can read the .
file using the get AppPr operty() method of MIDlet:

i nport comrococosoft.inpronto.configuration.*;
i nport javax.microedition. mdlet.*;
public class SoneM Dl et extends M Dl et
public SonmeM Dl et () {
Configuration.setConfiguration (new M DPConfi gurationlnpl (this));

}

Note Any application that uses pure JSR-82 code (i.e., no vendor libraries) can run in the simulator as well
only downside is that the simulator will create generic "dummy" devices.

Chat Example

The chat example we present here uses the Serial Port Profile to send text messages from one simulated Blue
device to another. In Chat Ser ver . j ava, the chat server registers its service and waits for a client to connect.
a client connects, the server prints the client's message to the command line and prompts the server to respon
Chat d i ent.j ava, the client searches for the server and creates a Serial Port Profile connection after obtain
the connection URL. Listing 8-2 shows the code for Chat Ser ver . j ava and Listing 8-3 shows the code for
ChatClient.java.

Listing 8-2: ChatServer.java

i nport java.io.*;
i nport javax. bl uet ooth. *;
i nport comrococosoft.io.*;

class Server {

St reanConnecti on con = nul |l ;

St reanConnecti onNotifier service= null;

InputStreamip = null;

Qutput Streamop = null;

String serviceURL = "btspp://local host:1111; name=Chat Server";

public Server() throws | OException{
/I Extends a streamfor client to connect
service = (StreantConnectionNotifier)Connector.open(serviceURL);
/1 Server waiting for client to connect
con = service. accept AndOpen();
/1 Open streans for two way contmuni cati on.
i p = con.openlnput Strean();

op = con. openQut put Stream() ;
//Starts a new thread for reading data from i nputstream
/Iwhile the present thread, goes forward and wite data to outputstream
//thus enabling a two way communi cation with the client

ReadThread rdthr = new ReadThread(ip);

rdthr.start();

writeData();

private void witeData() throws | OException{
int data = O;
do{
try{
data = Systemin.read();
op.wite(data);
}catch(1l OException e){}
}while(true);
}
}

cl ass ReadThread extends Thread {
InputStreamip = null;
publ i ¢ ReadThread(l nput Stream i np) {
ip = inp;
}
public void run() {
char dat a;
int i = 0;
do{
try{
// Read data fromthe stream
data = (char)ip.read();
System out. print (data);
//This is a bit sneaky and hard to expl ain.
//comrent out the following line to see the difference in how
//the application behaves.
i f(data == 0x0d) System out.println();

}
catch(1l Oexception e){}
}while(true);
}

}

public class Chat Server {
public static void main(String args[]) throws | OException {

System set Property("i nprontol ocal devi ce. fri endl yname", "Chat Server");
Server chat Server = new Server();
}

Listing 8-3: ChatClient.java

i nport java.io.*;

i nport javax. bl uet ooth. *;

i nport comrococosoft.io.*;

class dient inplenents DiscoverylListener{

private static Local Device |ocal Device = null;

private Di scoveryAgent discoveryAgent = null;

private String connectionURL = null;

private RenoteDevice[] device = null;

private ServiceRecord[] records = null;

private bool ean inquiryConpl = false;

int count = O;

i nt maxSear ches = 10;

InputStreamip = null;

Qutput Streamop = nul |l ;

public Client() throws | OException, InterruptedException{
| ocal Devi ce = Local Devi ce. get Local Devi ce();

di scoveryAgent = | ocal Devi ce. get Di scoveryAgent () ;
devi ce = new Renpt eDevi ce[10]
/[l Starts inquiry for devices in the proximty and waits till the

[linquiry is conpleted.
Systemout.println("\nSearching for Devices...\n");
di scoveryAgent.startlnquiry(Di scoveryAgent.d AC, this);
synchroni zed(thi s){
this.wait();
}

/1 Once the Device inquiry is conpleted it starts searching for the
/lrequired service. Service search is done with the given uuid.

[l After starting each search it waits for the result. |If the

[/l connectionURL is null, ie, if No service Records are obtained, then
/1it continues search in the next device detected.

int[] attrSet = {0, 3, 4, 0x100};
UUI D[] uuids = new UU D[1];
uui ds[0] = new UUI D("1111",true);
for(int i = 0; i< count;i++) {
int transactionid = discoveryAgent.searchServices
(attrSet, uuids, device[i],this);

if(transactionid !'= -1){
synchroni zed(thi s){
this.wait();

}

}

i f(connectionURL != null)
br eak;

}// end of forloop
[11f the URL returned from SPP Server begins with btspp then
//we call the getConnection nmethod which
/l establishes a connection with the SPPServer and returns it. Connection
/1l returned is of type StreamConnection.
/1A piece of raw data i s being sent over RFCOW

i f(connectionURL == null)

Systemout.printin("No service available.......... ")
el se if(connectionURL. startsWth("btspp")){

St reanConnecti on connection = getconnection();

op = connection.openQutput Stream();

ip = connection.openlnputStrean();

}
WiteThread wthr = new WiteThread(op);

wrthr.start();

readDat a() ;
}
private void readData()throws | OException{
char dat a;
int i = 0;
do{
data = (char)ip.read();
System out. print (data);
i f(data == 0x0d) System out.println();
}while(true);
}

[/ When a device is discovered it is added to the renpte device table.

public synchroni zed voi d devi ceDi scover ed(Renot eDevi ce bt Devi ce, Devi ceC ass cod
{
System out. println("New Device discovered : "+btDevice. get Bl uet oot hAddr ess())
devi ce[count ++] = bt Devi ce;

/I When a service is discovered in a particular device
/1 and the connection url is not null //then the thread that
/lis waiting in the main is notified.

public synchroni zed void servicesDi scovered(int translD,
Servi ceRecord[] servRecords) {
records = new Servi ceRecord[servRecords. | ength];
records = servRecords;
for(int i=0;i<servRecords.length;i++) {
int[] atrids = servRecords[i].getAttributel Ds();
String servNane = (String) ((DataEl enent)
servRecords[i].getAttri but eVal ue(0x100)). get Val ue();
Systemout. println("Service Nanme : "+servNane);
connecti onURL = servRecords[i].getConnecti onURL
(Ser vi ceRecor d. NOAUTHENTI CATE_NOENCRYPT, t r ue) ;
System out . println("Connection url :" + connectionURL);
if(connectionURL !'= null) {
synchroni zed(this) {
this.notify();
}
br eak;
}
}
}

/1 This function notifies the Thread waiting in nmain if a service search is
/'l termnated, i.e., if the responsecode is SERVI CE_SEARCH COVPLETED or
/ | SERVI CE_SEARCH_NO_RECORDS

public synchroni zed void serviceSearchConpleted(int translD, int respCode) {

i f(respCode==SERVI CE_SEARCH_ ERROR)
System out. printl n("\ nSERVI CE_SEARCH ERROR\ n") ;

i f(respCode==SERVI CE_SEARCH COVPLETED)

System out . printl n("\ nSERVI CE_SEARCH COMPLETED\ n") ;

i f(respCode==SERVI CE_SEARCH TERM NATED)

System out. println("\'n SERVI CE_SEARCH TERM NATED\ n") ;
i f(respCode == SERVI CE_SEARCH NO RECORDS) {

synchroni zed(this) {

this.notify();

}
System out. println("\'n SERVI CE_SEARCH NO RECORDS\ n");

}
i f(respCode == SERVI CE_SEARCH_DEVI CE_NOT_REACHABLE)
System out. println("\'n SERVI CE_SEARCH DEVI CE_NOT_REACHABLE\ n");

}

/1 Once the device inquiry is conpleted it notifies the Thread that waits in the |
public synchronized void inquiryConpleted(int discType) {
this.notify();
}
St reanConnecti on get connection() throws | OException {
return (StreantConnecti on)Connector. open(connecti onURL) ;
}

}

class WiteThread extends Thread {
Qut put Stream op = nul | ;
public WiteThread(Qutput Stream oup) {

op = oup;
}

public void run() {
int data = O;

int i = 0;

do{

try{

data = Systemin.read();
op.wite(data);

}catch(1l OException e){}
}while(true);

}

}
public class ChatCient {

public static void main(String args[]) throws | OException,|nterruptedExcepti ol

{
System set Property("i nprontol ocal devi ce. friendl yname", "ChatCient");
Client chatdient = new dient();
}
}

In order to test the application, you need to set the system properties for each class. Figure 8-5 shows the Impr
Simulator after we ranthe Chat Ser ver application.

Poad by

[T e
Hemérrmg

= gt

] Dt Savgea (i

= ¥ e |1l
ey
Tnlaphny

(CAEE
oty Whide: LR R

S Py Wide et mrfor oo wEcm ity

S Charmgen Agply Ul M . Pewin.

Figure 8-5: The ChatServer Bluetooth device in the Impronto Simulator device list

Now that the server is running, let's open a new command window and run the chat client. Figure 8-6 shows tht
Impronto Simulator with Chat Cl i ent making a connection to Chat Ser ver .

Fila Dosacs Configurn Help

i ChatServor ol Chong
(Mt end Ackiress DOD03 7500001
Franaily Mo ChatClend
Connectable v
ChesdCles Dipdes Claka Mt allandoin MO il devioi
hcBmne g
Hrtmmn hing
Aembering
5= Capturing
| Deicas

Senare CIESEs
Chafsarrer Oiyec! Transior

Al

| by
Figure 8-6: The ChatServer interacting with the ChatClient in the Impronto Simulator environment

And that's it! You now have a complete simulated JSR-82 application. Figures 8-7 and 8-8 show the conversati
between the client and the server.

awn Chatbeorver

wlls | ran

glla I ras

Figure 8-7: The server has sent a message and the client responds.

Luntc
Bl T

Figure 8-8: The client receives a message and sends a reply.

Summary

This chapter gave you an introduction to the Rococo Impronto Simulator, the first and only development
environment that allows you to create JSR-82-compliant applications using simulated Bluetooth devices.
Bluetooth simulators are very useful tools in the application development process because they allow you
to avoid configuring or debugging Bluetooth devices in your test environment.

InChapter 9, we're going to discuss the security measures that are provided by the Bluetooth specification
and the JSR-82 in order to make your applications more secure.

Chapter 9: Bluetooth Security

So far, we've discussed the benefits and the advantages of using Java and Bluetooth, but we haven't addresse:
any detail) the security implications of using this technology. What prevents other people from using your Bluetc
devices? What prevents a hacker from intercepting your transmission if you're transmitting sensitive information
financial, personal, or medical data? In this chapter, we'll take a look at the security measures built into the Blut
specification and the JSR-82 APl in order to make your wireless applications more secure. We'll wrap things ug
demonstration of how to use the Mobiwave Bluetooth Protocol Analyzer in order to see "what's in the air" when
transmitting data between Bluetooth devices.

Bluetooth Security Measures

Data security is an important aspect of any networked application. All data that isin transit is vulnerable to an al
from an eavesdropper (it doesn't matter if the connections are physical or wireless). Developers must realize th
is no way to completely ensure that information transmitted wirelessly will only reach the intended destination.

Note Well, except for infrared...but of course, you already knew that!

For application developers, the Bluetooth specification addresses security in three ways: authentication, authori
and encryption. Let's look at these in more detail.

Authentication

Authentication with Bluetooth consists of a simple challenge/response mechanism. The Bluetooth specification
not provide any means to authenticate users; you can only authenticate devices. So, the challenge/response dc
involve auser name and password as typical authentication schemes. Authentication with Bluetooth only involv
personal identification number (PIN).

During the authentication process, the PIN code is never transmitted from the client to the server. In order to
authenticate, the client creates a 128-bit shared link key, which is derived from the PIN. If the PIN codes on the
and the server do not match, then the authentication process fails.

A practical example for the usage of Bluetooth authentication would be a Bluetooth-enabled hotel business cer
hotel that's oriented to business travelers could enable authentication on all of its Bluetooth-enabled devices (il
printers and scanners) in the business center. Upon check-in, a registered guest of the hotel will be given the P
inorder to access the services in the business center, and this would prevent non-hotel customers from simply
up and using the services that are reserved for hotel guests.

Server Authentication

Bluetooth servers can request authentication by adding the aut hent i cat e parameter to the connection URL
Stri ng. The code that follows shows a server using the Serial Port Profile, and requesting authentication:

String url = "btspp://1ocal host:00112233445566778899AABBCCDDEEFF; aut henti cate=tr

If the aut hent i cat e parameter is setto t r ue, then the JSR-82 implementation attempts to enforce authentic
when devices connect to the server.

Note The key word here is attempt.

ABI uet oot hConnecti onExcepti on will be thrown if the server does not support authentication, ¢
there is a conflict with the settings of the BCC. It is ultimately the decision of the BCC to allow authent
or to throw the exception. If the server device has a user interface, then the device may prompt the us
change the device's settings.

If the aut hent i cat e parameter is setto f al se, then the implementation does not attempt to authenticate the

If the aut hent i cat e parameter is notin the URL St ri ng at all, then the implementation treats itas f al se, L
you setencrypt oraut hori zetotrue.

Client Authentication

Bluetooth clients can also require the server to authenticate by setting the aut hent i cat e parametertot rue
shown here:

String url = "btspp://02AB45AC35DF: 00112233445566778899AABBCCDDEEFF; aut hent i cat e:

If the aut hent i cat e parameter is setto f al se (or is not in the URL at all), then the client will not require the
to authenticate.

Note Why would the client request the server to authenticate it (especially if the server didn't require
authentication) ?Well, since authentication is a requirement for encryption, the client may want to be
authenticated to the server in order to send some data securely, even though the server doesn't requ

Whether you're a client or a server, you can request authentication even after the connection is established, as
here:

/'l get an instance of the RenpteDevice if we don't already have it
/'l assume that we have an active Connection object naned "conn"
Renot eDevi ce renpteDevi ce = Renpt eDevi ce. get Renpt eDevi ce(conn);

r emot eDevi ce. aut henti cate();

The JSR-82 APl also gives you a method to check to see if your Connect i on to a Renot eDevi ce is authenti
Just call the i sAut henti cat ed() method of Renpt eDevi ce.

Note Have you noticed that in both client and server authentication, the PIN is never specified in the URL (¢
anywhere else)? Assigning and entering the PINs on both the client and server are handled by the B(C

Bluetooth Server Authorization

Bluetooth servers can request that only authorized devices connect and use a particular service. These authori;
devices are called trusted devices.

Servers can require that clients be authorized by setting the aut hor i ze parameterto t r ue in the connection |

shown here:

String url = "btspp://02AB45AC35DF: 00112233445566778899AABBCCDDEEFF; aut hori ze=tr!

Authorization requires authentication, so the following line of code is more descriptive of what's actually going o

String url =
"bt spp://02AB45AC35DF: 00112233445566778899AABBCCDDEEFF;
aut henti cat e=true; aut hori ze=true"

However, if you explicitly set aut hent i cat e to f al se, and aut hori ze to t r ue, then the system will throw a
Bl uet oot hConnect i onExcept i on. If authorization was not specified in the connection URL, the server can
the client to be authorized by calling the aut hori ze() method of the Renpt eDevi ce class as follows:

/1 get an instance of the RenmpteDevice if we don't already have it
/1 assume that we have an active Connection object naned "conn"

Renot eDevi ce renot eDevi ce = Renpt eDevi ce. get Renot eDevi ce(conn) ;
renot eDevi ce. aut hori ze(conn);

Whether the connection is established or not, the server can check to see if the client is a trusted device by call
i sTrust edDevi ce() method of the Renpt eDevi ce class.

Note There is no such thing as client authorization. Why? Well, since authorization is not a requirement for
encryption, it doesn't make sense for a client to request a server to authorize i, if the server does not
it.

A good use of the authorization security measure occurs when you're dealing with personal devices. For instan:
you have a Bluetooth-enabled TV and a Bluetooth-enabled remote control, then you want your TV to only obey
commands coming from your remote, obviously. Otherwise, you'll be vulnerable to common pranksters coming
range of your house, and changing your channels while you're watching TV—or even worse, turning on your T\
high volume at 3:00 a.m.!

Encryption

Authentication and authorization are good if you want to prevent unwanted users from accessing the services o
Bluetooth devices. However, neither of those security measures will protect your sensitive data from a hacker w
the right tools to "sniff" your data while it's being transmitted. Encryption, however, is the security measure that)
employ in order to protect your sensitive data transmissions.

Now, in order to encrypt information (whether you're using Bluetooth or not), you need an encryption algorithm,
encryption key, and the information that you want to protect. An encryption algorithm (also called a cipher) is sit
procedure that is followed in order to scramble the data. Some well-know encryption algorithms are Blowfish, T
RC4, DES, TripleDES, IDEA, CAST, and Rijndael. The encryption key is simply a code that is used by the algol
encrypt the data. In symmetrical encryption, the same key is used to encrypt and decrypt the data. In asymmetr
encryption, however, two keys are used to encrypt and decrypt the data.

Note We won't talk about asymmetrical encryption any further because Bluetooth uses symmetrical encryg
encrypt its data transmissions.

Now let's look at a quick example. Listing 9-1 shows some information that needs to be cryptographically prote:
transmitted from a Bluetooth-enabled cash card.

Listing 9-1: Bank Account Information

Bank Nane: SDH Bank

Account Nanme: Bruce Hopkins
Account Nunber: 123456789
Account Bal ance: $0.03

Note Of course, we're protecting the bank account number, not the balance!

When the encryption key, as shown in Listing 9-2, and the CAST algorithm are applied to the data, then sensiti
account information will get encrypted, as shown in Listing 9-3.

Listing 9-2: A 1024-Bit Encryption Key

MG BD1ZRx4RBADgi QLi ScTndxd5aM/RI ZbcnSs AzwXW EBwar MO6xR4SDgp/ j i O
KaU02y OD08Xx MA2k 9y vaQXGpKK6Jr TeagMFOVKyy26Sur 3eM j NxbPJok2XWjcZj
hFCYZj G1/ wRbx60sf / xt WseuhHy KENGhp352/ r Byv TFOKSEM 2t x YZLOOQCqg/ Oal

rqcZTOQy howaf gM El @21 dED/ A3i 50K+i by N2t 10aJpyxFe/ NFL5uwbl j yWANdFN
2rdhQG h7f OhNgVVWinbMGUNu/ | qD5Mb76JSEngy QcxaGAGrj COPEl Vk79+EJabeku
ebAaPeq50sCHUAsSbUD31vux SK8qGs My 1xt Ogi d2gCuS52HDaUANnvI t 90j pvnOPr Z
zr gzBACZAnCz0Z+RNKYP50ch/ UWFgbo60PR0Z4Vbi 1UFvoZl / B8auxSvYueXj AuC
bo8YEE]j Bl pygWCt w8hP0Oj xFG3L/ hWe950Qkgu8k NTX+SX6bt hPBWAVZ7vTgst YyAQ
yXLwf LIRYuuT9i 8CuqODw3KcOu3xTwl E4KI | vl HwadYv5z2G+7 ChRWR3aWlgSGw
a2l ucyA8Ymhvc& pbnNAZ2x0Zy5j b20+i QBYBBARAgAYBQ 9WUc e CAs CAwk | BWEK
Ahk BBRs DAAAAAAOJEJI ON/ wl1g4wQNDAANANT ZRbJ XWARLbowL Bwf Tr IJmvF hwAJ 9V
| 4770H3TB/ V2SLbJ0oSLY9q1CW k CDQQOIWJceEAgA9k I Xt wh/ CBdyor r WjULzBej 5
UxES5T7bxbr | LOCDaAadWoxTpj 0BV89AHxst DgZSt 90xkhkn4Dl O9Zek X1KHTUP] 1
WY/ cdl JPPT2N28624Ve SW39uK50T8X8dr yDxUcwYc58yWh/ Ff m7/ ZFexwGg0lue
jad cj rUsvC RgBYK+X0i P1YTknbz SCOneSRBz Zr New4DUUAD3y | sxx8W29v PJ
| 8BDBKVLhG 20ul1WWLUF040z TOf BAXQ6MIGGzeMy Est Sr/ POGxKUAYEY18hKcKct aG
XAMZy Ac pesqVDNmW6vQCI ChAKbTCD1npF1Bn5x8vYI LI hknuqui XsNV6TI LOWVAC
Agf +MLEO8J4AnzN20aLhj bG81j r In5BI VPkHxnb6snmP5r | Hl4kprkoLJst XV+P7HD
r WaQXBgBzx0OwECchZL+S7gaz RQA6d@Be2f SeMOABQgo7pDj DEnlr Ki t Th5501gFK6
yH+t pEC/ C9zkpeLNEODK/ viIwK] 7XI +d8gEUYX0DALbQ6r Z5e3e TEU+3WFmAI p6AQ
Z14BKnPARYW8Ii j 21 LEHPJ+F6aAZAnzp7U/ 2HEVQH 7Zr Zogz 0dnOr Al MpRHgPVs|

uOr yEYXSdsG61 3s5xgqY4JRON96hg38GZj V4/ 22kt Sunc XWbupmOXt yyxBWsr oxb
W AS2KMkb6Y5s0sSsf Q63i nD3I k ATAQYEQ ADAUCPVI HHg Ub DAAAAAAKCRCSNDF 8
NauMECO3AKD1UonZc Lk nDx0CGChJwnp2nmDP2j wCg03KNt DRx6FyyZpZc5QRAVLgP
PAM=

=trvX

Listing 9-3: Bank Account Information Encrypted with the CAST Algorithm

0 ANQR1DBWU4DMCK FMAt Tf Bs QCACAW hOUK50sv3gZJ3i vf 5BUb+j mOR6n2vKUi j p
KUz u3B1PSS3i gnZ9t 1Bvp+HSXuX3| Bg8KsoMYYSwj 3QLSkKgYJz1PkAyvyR9bXed
5agRoFVNdQ GDQEPAG r | j A8/ Y6UFVXskQq4w37vwy Uoyv SOONYX GPOeHEA/ YkOb
Cj A3i 6aFl H81Pksb8pNgr +vOmy5XPFSaYbvLveEr Coh6wd63c Gz KL8Q@R3St 6Kk Xi

r Bgf Fya7Eu+Vj c78mre9vVlI W dwézyhb35bnaybr LEPW// xp2K6el soi i HhgL5MK
MAf qr uoPp2k7UOnzwOt f 1Eoj EZ8nyOvJ CPOZARHhz NAonA6z B/ Of 2ygNnNt sEal d
10Ci | GKohl Mm0a07VTXx7cmXUCToSuor | gF43KNs 3wP9nPPv x| V3+MuG4ADHF6Tm
oVcR5j df bFRbbUj zLHVPnt P+QSOnE2LAXLsbf MQ6zEkz2F2i JI GbOFy8cj c+eOXJ
j nf GL+z4Ti OM yvAl1T6f d9qJP7TYsBnr QyLLF60PCWQsnE26+nm_H9gn4sgPdPhv
y8ZHj t Sf yon5+vgY6t gr Y+OSB6Gy pgN8b2v/ RCi 9y5WhsNAO1OWS XnT i KowTEQAB
j 7YxBkoPgC2eOf KWwZnAghMel munFX1767ew QkcBTi W Os Q) QZI mDOFulxpywdf k
5GLoVny 3y XRXHLr AbxysNU+0yl GdRNi PEj vnLG2NpXi Ct cWAVUGGM SI DOFI kRi M
Dw/ D/ / p4QOgr achGmhZ2r wm9HPI kHj vxbTwt nlgRx| t 99y Bt P6nt DEVKI 8Q bLVYr

2RUEl EF+3Ak/ hvVd2er 82Xj eNbger hbf CSOLd9w==

=r ZCL

As we stated earlier, Bluetooth uses symmetrical encryption, so there's only one key for encrypting and decrypt
information. However, the key is never transmitted from the server to the client. The encryption key is derived fr
several factors that are known to both the client and server (including the PIN). Now let's take a look at how to ¢

your data transmissions using the JSR-82.

Server Encryption

Bluetooth servers can specify that they want their transmissions encrypted by setting the encr ypt parameter t

in the connection URL, as follows:

String url = "btspp://02AB45AC35DF: 00112233445566778899AABBCCDDEEFF; encr ypt =t rue'

Encryption requires authentication, so the following line of code is more descriptive of what's actually going on:

String url =
"bt spp:// 02AB45AC35DF: 001122334455667 78899 AABBCCDDEEFF;
aut henti cate=true; encrypt =true”

However, if you explicitly set aut henti cat e to f al se, and encrypt totrue, then the system will throw a
Bl uet oot hConnect i onExcepti on. If encryption was not specified in the connection URL, the server can la
encrypt the transmission by calling the encr ypt () method of the Renpt eDevi ce class as shown here:

/1 get an instance of the RenpteDevice if we don't already have it
/1 assume that we have an active Connection object nanmed "conn"
Renot eDevi ce renoteDevi ce = Renpt eDevi ce. get Renpt eDevi ce(conn);

r enot eDevi ce. encrypt (conn, true);

/1 now that the sensitive information has been

/[l transmitted, turn off encryption and send the

/1l rest of the data unencrypted for better perfornmance

r enot eDevi ce. encrypt (conn, false);

Client Encryption

Bluetooth clients can also require that their communication with their servers be encrypted by setting the encr
parameter to t r ue in the URL as demonstrated here:

String url = "btspp://02AB45AC35DF: 00112233445566778899AABBCCDDEEFF; encrypt =t r ue'

The following line of code is also harmless:

String url =
"bt spp:// 02AB45AC35DF: 00112233445566778899AABBCCDDEEFF;
aut henti cat e=true; encrypt =true"

If the encrypt parameteris setto f al se (or is not in the URL at all) then the transmissions between the client
server are not encrypted.

After the connection has been established, both the server and the client can check to see if the transmission is
encrypted by calling the i sEncrypt ed() method of the Renot eDevi ce class.

If all of this sounds really complex to you, don't worry; the encryption/ decryption process is all done behind the
by your underlying JSR-82 implementation, so you don't have to worry about ciphers, keys, and other cryptogra
elements.

Security Example

Now let's take a look at a practical demonstration of the security measures that are provided to us by Bluetooth

and the

JSR-82. In this example, the client uses authentication and authorization over an L2CAP connection to

send a simple message to the server. Initially, encryption is not enabled so that we can demonstrate how easily
a third party can capture your wireless data transmissions if left unprotected. When running the example, we
used some of the many features of Mobiwave BPA-D10 Protocol Analyzer. The BPA-D10 is a noninstructive
Bluetooth Protocol Analyzer that allows the realtime capturing, logging, decoding, and displaying of the
Bluetooth data transmissions. The BPA-D10 is capable of capturing protocol information over the air and

relaying

the data to a host desktop computer through an Ethernet connection. This allows remote data logging

and unlimited storage capability. Figure 9-1 shows a picture of the device.

Y

mo’

-

Figure 9-1: The Mobiwave BPA-D10 Bluetooth Protocol Analyzer

Listing 9-4 presents the server code for our security example.

Listing 9-4: ServerApp.java

i nport
i nport
i nport
public

java.io.*;

j avax. bl uet oot h. *;

com ati nav. standardedition.io.*;
class ServerApp {

public static void main(String args[]){

Server App a = new Server App();
L2CAPConnection con = null;
L2CAPConnect i onNoti fier service = null;
InputStreamin = null;
Qut put Stream out = nul | ;
String serviceURL = "btl 2cap://local host: 1111; name=ATI NAV; " +
"aut hori ze=true; aut henti cat e=true; encrypt =fal se";
Local Device local = null;

try {
| ocal = Local Devi ce. get Local Devi ce();
Systemout.println("\'n Atinav aveli nk Bl uetooth Server Application \n")
Systemout.println(" \n");
Systemout.println("My BDAddress: "+ |ocal.getBl uetoothAddress());
Systemout.println(" \n");

service = (L2CAPConnecti onNotifier) Connector. open(serviceURL);

/1
// Add the service record to the SDDB and
/1l accept a client Connection

/1

con = service. accept AndOpen();
System out . println("\nConnection established to the renpte device\n");

byte[] data = new byte[1000];
while (!con.ready()){

try{

Thr ead. sl eep(1);

}catch(I nterruptedException ie){}
}
con. receive(data);
Systemout.println("Data received at the Server Side "+

new String(data));

String strData= "This is the Data Fromthe Server Application to "+

" the dient Application";

byte[] datax = strData. getBytes();
con. send(dat ax) ;
/1 Systemout.println("Data sent fromthe server side." + strData);
try{

Thr ead. sl eep(10);

}catch(Exception e){}

}cat ch(Exception e){
e.printStackTrace();

}

Listing 9-5 shows the client code for our security demonstration.

Listing 9-5: ClientApp.java

i nport java.io.*;
i nport javax. bl uet ooth. *;
i nport com ati nav. standardedition.io.*;

public class ClientApp inplenments Di scoverylistener{

private static Local Device |ocal Device = null;
private Di scoveryAgent discoveryAgent = null;
private String connectionURL = null;

private RenoteDevice[] device = null;

private ServiceRecord[] records = null;
private bool ean inquiryConpl = false;

int count = O;

i nt maxSearches = 10;

public dientApp(){

Systemout.println("\'n Atinav avelLink Bluetooth Cient Application \n");

System out . println(" \n");
try{

| ocal Devi ce = Local Devi ce. get Local Devi ce();

di scoveryAgent = | ocal Devi ce. get Di scoveryAgent () ;

devi ce = new Renot eDevi ce[10] ;

System out . println(" \n");

Systemout . println("My BDAddress: "+
| ocal Devi ce. get Bl uet oot hAddr ess());
System out . println(" \n");
/1l Starts inquiry for devices in the proximty and waits till the
/1l inquiry is conpleted

System out . println("\nSearching for Devices...\n");
di scoveryAgent.startlnquiry(Di scoveryAgent.d AC, t his);

synchroni zed(t hi s){
this.wait();
}

/1 Once the Device inquiry is conpleted it starts searching for the
/'l required service. Service search is done with the given uuid. After
/1l starting each search it waits for the result.

[l If the connection URL is null, i.e., if No service Records obtained,
/!l then it continues search in the next device detected.

int[] attrSet = {0, 3, 4, 0x100};

UU D] uuids = new UUI D 1];

uui ds[0] = new UUI D("1111",true);

System out. println("\nSearching for Service...\n");

for(int i = 0; i< count; i++){

int transactionid =
di scoveryAgent . searchServi ces(attrSet, uui ds, device[i],this);
if(transactionid !'= -1){
synchroni zed(t hi s){
this.wait();
}
}

i f(connectionURL !'= null)
br eak;

}

}catch(Exception ie){
ie.printStackTrace();

}
/1

/1
/1
/1
/1

If the URL of the device begins with btl2cap, then we call the

get Connecti on net hod whi ch establishes a connection with the L2CAPServer
and returns it.

Connection returned is of type L2CAPConnection. A piece of raw data is
bei ng sent over L2CAP

i f(connectionURL == null)
Systemout.printin("No service available.......... ")

el se if(connectionURL. startsWth("btl2cap")){

try{
L2CAPConnecti on connecti on = getconnection();

Systemout. println("\nConnection established to the renpte device\n");
String strData = "This is the Data From Client Application "+
"to Server Application";

byte[] data = strData.getBytes();
connecti on. send(dat a);
try{

Thr ead. sl eep(10);
}catch(Exception e){}

whil e(true){
byte[] datax = new byt e[1000];

while (!connection.ready()){

try{

Thr ead. sl eep(1);

}catch(l nterruptedException ie){}
}
connecti on. recei ve(dat ax) ;
Systemout.printin("Data received at the Client Side "+

new String(datax));

}

/1 connection. cl ose();

}catch(Exception ioe){
i oe.printStackTrace();

}

}// end of else if

11
/1 When a device is discovered it is added to the renmpte device table.
11
publ i c synchroni zed voi d devi ceDi scover ed(Renpt eDevi ce bt Devi ce,
Devi ceCl ass cod) {

devi ce[count ++] = bt Devi ce;
Systemout. println("New Device discovered : "+
bt Devi ce. get Bl uet oot hAddress());
}
11

/1 When a service is discovered in a particular device and the connection URL
/1 is not null then the thread that is waiting in the main is notified.
11
public synchroni zed void servicesDi scovered(int translD
Servi ceRecord[] servRecords){

records = new Servi ceRecord[servRecords. | ength];
records = servRecords;
for(int i=0;i<servRecords.|ength;i++){

int[] atrids = servRecords[i].getAttributel Ds();
String servNane =
(String)((DataEl ement)servRecords[i].getAttributeVal ue(0x100)). getVal ue();

Systemout.println("Service Name : "+ servNane);
connecti onURL = servRecords[i].getConnecti onURL(1,true);
System out . println("Connection url :" + connectionURL);
i f(connectionURL != null)/{

synchroni zed(t hi s){

this.notify();
}

br eak;

}

}
/1

/1 This function notifies the Thread waiting in main if a service

/'l search is termnated,ie,ig the responsecode

/'l is SERVI CE_SEARCH COWVPLETED or SERVI CE_SEARCH NO_RECORDS

/1

public synchroni zed void serviceSearchConpl eted(int translD, int respCode){

i f(respCode==SERVI CE_SEARCH ERROR)
System out . printl n("\nSERVI CE_SEARCH ERROR\ n");

i f(respCode==SERVI CE_SEARCH COVPLETED)
System out . printl n("\ nSERVI CE_SEARCH COWMPLETED\ n") ;

i f(respCode==SERVI CE_SEARCH TERM NATED)
System out. println("\'n SERVI CE_SEARCH TERM NATED\ n") ;

i f(respCode == SERVI CE_SEARCH NO RECORDS) {
synchroni zed(t hi s){
this.notify();
}
System out. println("\'n SERVI CE_SEARCH NO RECORDS\ n");

}

i f(respCode == SERVI CE_SEARCH_DEVI CE_NOT_REACHABLE)
System out . println("\'n SERVI CE_SEARCH DEVI CE_NOT_REACHABLE\ n");

}

/1

/1 Once the device inquiry is conpleted it notifies the Thread

[/ that waits in the Min.

/1

public synchronized void inquiryConpleted(int discType){
this.notify();

}

/1
/'l Opens the connection to the Server.

/1
L2CAPConnecti on get connection() throws | OExcepti on{
return (L2CAPConnecti on) Connect or. open(connecti onURL);
}
public static void main(String[] args){
ClientApp client = new CientApp();
}

Running the Security Example

Now let's see what happens when we run the example. Figure 9-2 shows our security server waiting for a client
to connect.

CinWIm T LSyt emd o eme = feva

Figure 9-2: The security server is waiting for the client to connect.

Figure 9-3 shows the security client attempting to connect to the server.

abinay suslink Blustocth Clienl Application

Searching For Devices

New Douics diccouvered DEEA3 T &1 Bae

Searching for Seruice

Figure 9-3: The security client is attempting to connect to the server.

The security server requires all clients to authenticate, so the Atinav stack prompts the user to enter a PIN code
as shown in Figure 9-4.

avelink Bluetooth BCC

Rt Densce Address: FI1014370000

Enfer SecurityPi: |
—

et
anirol Center

Lar g g e me N

Figure 9-4: The security server prompts the user to enter a PIN for the application.

Note This of course, is a part of Atinav's implementation of the BCC for their stack. Other JSR-82
implementations may allow you to enter the PIN for your server prior to runtime.

Similarly, the client is also prompted to enter a PIN. Of course, if the client enters an incorrect PIN, then the
authentication process will fail. Figure 9-5 shows that the authentication process is a success.

Y sveLink Bluctooth Control Conte

aveLink Bluetooth BGG PR
[Cemdcor il ess: 131014378000
(e Hama: ATINAV

Dy yurtd wrinirl D idthind G0 Ulis fommvod o dbinac.. |

[ved | [mo

.: '-II 1 I.}
onfrol Center

T .

A W W A

Figure 9-5: The authentication process has succeeded.

In this example, the encr ypt parameter in the connection URL was initially setto f al se in order to show you
how easy it is to capture unencrypted data while in transit. Figure 9-6 shows the Mobiwave BPA-D10 sniffing the
data transmission.

1@ 21 g c Deiilieinrn - L]

d Eergim
Wik
wload e [y
[Bl
WM Dy Tt i i [i o

i aree bppic ston

DA Thid Li e
DWbe Fre C1n
T Application Bo
Farewr dpplicwm
Tien

=% AL

L] ChE D

Figure 9-6: You need to be very careful if you're sending sensitive data unencrypted between Bluetooth
devices because it can be captured by a third party using a Bluetooth Protocol Analyzer.

Now let's see what happens when we set the encr ypt parameter to t r ue in the connection URL. The results
are shown in Figure 9-7.

Fle B Seerh Ve EPAlnimise CoptuwDets Dwoyptan ihb

= Ll BT EWE 2B iaD| B
FRIAl
(ol D000 700087
Py
Ik D000 S6:AMT
Faeal
e 0000 Satbd?
&4 LI it _ancnpion_nen
O D0 AT (O E-0F=1 } -
Pl 1% T Facke
(B D00c e AL ———— O[] 5=1 [Bl ——
ST S Camepied Fache
Ol @D00CETE AT - O [raE]5=0 [F=1 |
Fai 47 rrupid Fach
Ol D00 AN - [CRFRE] ST [0
Pt A ' | Pl i
(b 00T Al T - {Cikd T [renic] £=0 [#=1
(=7F] Coreaind Pacsd
O O0c i d by #———— r'lll'.'.' [-,.|'[|.-'.:—-.-
PRED Comupted P
(il D000 IcmAMT +———— DRI REETE-0 [F-T
P4 5 e Fsch
Ol D000 T ldd -
LI"\-IDC. I.'\. '.I s L

Figure 9-7: With encryption enabled, the Protocol Analyzer is still able to capture the data transmission;
however, the data is corrupted.

More on Mobiwave BPA-D10

Given sufficient information, the Mobiwave Protocol Analyzer could decrypt those encrypted packets over
the air. The Mobiwave Protocol Analyzer is equipped with a feature called SmartDecrypt. SmartDecrypt wa
designed to tackle the noisy RF environment so that all the seven client/slave sessions could be decrypted
inreal time. Here's what you need to do in order to enable SmartDecrypt on the Mobiwave BPA-D10.

The first thing that you need to do is to add the slave devices to the list of known slave devices. From the
BPA-D10 main menu, select Decryption and then select Decryption Setup. This brings up the slave list
dialog box, shown here:

= 1

Click Add to bring up the Add New Slave dialog box as shown here:

ok | Coseel

If the PIN is not available or defined, enter HEX "00"(this is the default PIN). If the current link key is known,
you can enter it, else leave this field blank. Click OK when you are done. The current link key, if not
specified, will be automatically generated during the capture of a good pairing or bonding session between
the two Bluetooth devices.

Now let's run the security sample application again with the encr ypt parameter set to true. Remember to
set the same PIN code you used to configure your slave device in the BPA-D10. The following figure
illustrates how the Mobiwave Protocol Analyzer intelligently decrypted data packets on the fly:

Please note that the SmartDecrypt feature of the BPA-D10 does not illustrate any of the limitations or
shortcomings of Bluetooth's wireless encryption capabilities.

Prior to decrypting the Bluetooth-encrypted packets successfully, the following information must be
available:

m The slave or client BD address that is involved

m The PIN that is used during the pairing or bonding session

m When the pairing or bonding session is carried out

m Confirmation of a good capture of the pairing or bonding session

If any of this information is missing or incomplete, the decryption will not be successful. Information such as
when a pairing or bonding session is made is a rare and random event. Furthermore, during the capturing
of a pairing or bonding session, many things could go wrong due to interference over the air or Bluetooth
devices being out of range. Bluetooth's encryption mechanism is not easily breached or compromised.

Java developers can further mitigate this risk by creating their own symmetric or asymmetric encryption
routines by using the libraries from the JCE (Java Cryptography Extension) or from the Bouncy Castle at
http://ww.bouncycastl! e. org.

http://www.bouncycastle.org

Summary

This chapter introduced you to the security measures that you can employ to make your Bluetooth
applications with the JSR-82 more secure. You learned about how to use the APIs inthe JSR-82 in order
to enable authentication, authorization, and encryption in your Bluetooth applications. This chapter also
gave you an introduction to the Mobiwave BPA-D10 Protocol Analyzer.

So far, we have used the JSR-82 in order to make client-server, peer-to-peer, and cable replacement
wireless applications. In the next chapter, we'll take a look at the SND Micro BlueTarget in order to make
fixed-wireless applications using the JSR-82.

Chapter 10: Wireless Embedded Systems with the
Micro BlueTarget

So far, this book has taken mainly a software-based approach to things, and rightfully so since the JSR-82
is a software specification about controlling Bluetooth devices with the Java language. In the past,
Bluetooth device manufacturers envisioned their devices to be programmed in a native language like
assembly or C, and making a Java interface to their devices was pretty much an afterthought. In this
chapter, we're going to take a look at a device that was developed with the JSR-82 in mind: the Micro
BlueTarget from Smart Network Devices (ht t p: / / www. snart nd. com.

What Is the Micro BlueTarget?

So what is the Micro BlueTarget and what can it do? The Micro BlueTarget is a fully self-contained
computer that includes a Bluetooth radio, a Bluetooth stack, Bluetooth profiles, an operating system, a
J2ME VM, and the JSR-82 libraries. Figure 10-1 shows the Micro BlueTarget standard version, and Figure
10-2 shows the Micro BlueTarget Starter Kit.

Figure 10-1: The Micro BlueTarget standard version is a small form factor embedded system with a
board outline of just 3.25.9 cm! This is a great solution for OEMs that want to make their devices
Bluetooth enabled.

Figure 10-2: The Micro BlueTarget Starter Kit uses a standard Micro BlueTarget and adds RS-232
and Ethernet ports, which is ideal for developers who need to create quick prototypes and proofs of

http://www.smartnd.com

concepts.

The Micro BlueTarget has been designed to meet typical requirements of fixed-wireless infrastructure
components. What's a fixed-wireless device? A fixed-wireless system is typically a large, stationary device
that is capable of wireless communication. Consumer-oriented fixed-wireless systems are things like
network access points, information kiosks, and vending machines (see Figure 10-3). On the other hand, a
typical example of a fixed-wireless system for commercial use would be alarge machinein a
manufacturing center (see Figure 10-4).

L.
Figure 10-3: A Bluetooth phone utilizing the services of a fixed-wireless consumer system— a
Bluetooth-enabled vending machine

Figure 10-4: A Bluetooth PDA receiving the status from a fixed-wireless commercial system— a
Bluetooth-enabled machine in a manufacturing facility

In the rest of this chapter, we'll take a look at the physical aspects of Micro BlueTarget, starting off with its
hardware configuration. Next, we'll add a brief discussion about its software configuration by looking at the
operating system and its Java implementation. Finally, we'll round up the chapter with some information
on how to start the development process with this device by providing some example code.

The Micro BlueTarget Hardware Configuration

Figure 10-5 is a block diagram that describes the interrelationship of the hardware components that
comprise the Micro BlueTarget.

Serial

Port Main CPU Bus
Bluetoath Serial | Dual
| f—— Basshamd 16550
| Contraller UaRT
: 2 ME Flash
] | Host Fizmsare
—] | File System
1 M8 Flash
Bluetooth
Firmesre
A M
SDRAM
| 10100 Madn
Ethernet Ethernet MBit HE-JW
Port Mapretics Ethernet
Controller
Expansion Bus
Connector

Figure 10-5: A block diagram of the Micro BlueTarget hardware components

The Micro BlueTarget is based upon the 32-bit RISC/DSP embedded micro-processor architecture from
Hyperstone AG (ht t p: / / ww. hyper st one. com). Smart Network Devices chose this architecture
primarily because of its extremely low gate count (the CPU itself consists of only just 35,000 gates), which
equates to its low power consumption. In the future, this opens the door for the possibility of smaller form
factor solutions, even System-on-Chip (SoC) architectures.

The Bluetooth baseband controller is a BlueCore 01b from CSR (see Figure 2-2), which is interfaced
through a standard 16550-compatible UART device. By using a dual UART module (the 16752 chip) in the
device, one UART is still free for external serial communication.

Note The Micro BlueTarget Starter Kit connects the available UART to the RS-232 port. This allows
developers who don't have a lot of hardware experience to quickly utilize the Micro BlueTarget
for external serial communication.

Note As an option, the dual UART device can be substituted by one of the many PIC family
microcontrollers. This will enable the Micro BlueTarget to externally communicate via other
protocols such as SPI, I12C, and GPIO. Some PIC chips will even enable the Micro BlueTarget to
have a CAN bus interface or perform A/D conversion.

Here's a quick synopsis of the hardware details of the Micro BlueTarget:
m 120 MHz, 32-bit RISC/DSP Hyperstone E1-16XS CPU
m 3.3VDC (@ 250 mA)
= 8MB SDRAM memory

m 2+1MB flash memory

http://www.hyperstone.com

10/100 Mb/s Ethernet interface
Integrated Class 2 Bluetooth radio (10m nominal radio range)
Available serial communication port (UART with up to 3 Mb/s transfer rate)

Peripheral /O bus connector (addresses, 8-bit data, RD/WR, chip selects, interrupts)

The Micro BlueTarget Software Configuration

The Micro BlueTarget board runs the HyNetOS, SND's specialized operating system for the Hyperstone
RISC/DSP CPU architecture. The HyNetOS was created for primarily two reasons. The first reason was to
have the smallest possible memory footprint in order to match internal memory sizes of future Systems-
on-Chip (SoC) architectures. The memory footprints for Embedded Linux and Embedded Windows (also
known as Windows CE .NET) were simply too large to even think about SoC. Secondly, by creating their
own OS, Smart Network Devices can have a highly efficient network and data communication architecture,
which is optimized for the underlying platform. All interprocess communication is event driven and takes
place through an internal message system.

The HyNetOS is based upon a highly efficient multitasking real-time kernel (only 16kB in size) and is
written entirely in Hyperstone assembler. On top of the kernel is a complete operating environment that
consists of following components:

m Device manager

Protocol manager

File manager

Java Virtual Machine

The device manager is simply a layer that abstracts the underlying hardware, and the protocol manager is
a layer that implements the TCP/IP and Bluetooth protocol stacks. The multifaceted file manager can
handle different file systems, including RAM disk and flash disk, as well as external memory cards (we'll
cover the details of the JVM in the next section).Figure 10-6 gives an illustration of the overall structure of
the HyNetOS.

Java APIs Java API
for TCP, UDP, Serial for Bluctoath | Native €

Applications

Java KYMSACLDC

Asynchromous Event Handler

- Protocol Manager
File Manaper {TCP/IP, PPP, Bluetooth)

Dewice Manager
(Hardware Abstraction Layer)

Flash 100 MBit Bluetaoth

Memory Ethernet Baseband

Figure 10-6: A structural overview of the HyNetOS for the Micro BlueTarget

The Java Implementation

The Java Virtual Machine for the Micro BlueTarget is an implementation of the Sun Microsystems Java 2
Micro Edition (J2ME) KVM/CLDC V1.0.3 and has passed the CLDC Technology Compatibility Kit (T CK). In
addition to providing the JSR-82 APIs, Smart Network Devices has provided additional libraries for Micro
BlueTarget development, such as

m UDP (datagram) socket communication

m TCP (stream) socket communication

m HTTP 1.1 libraries

m RS-232 serial communication (you can address ports COM1-COMS5)
m Graphics library for monochrome LCD (12864 pixel)

m Java interface to ITU-style keypad (keys: 0-9,* #)

m File /O library

For performance reasons and memory footprint size, the TCP/IP and the Bluetooth stacks were written in
C and were implemented as asynchronous native processes. The Java VM, which exists as a native
HyNetOS executable, has its own internal thread scheduler. A second process, called the asynchronous
event handler, interfaces the asynchronous protocol software to the synchronous Java VM task. So what
does all this mean? Once a Java thread makes a blocking I/O call (while waiting to receive data), not only
will all other native OS tasks be scheduled on the CPU, but all other Java threads as well. This approach
ensures the best possible match of synchronous and asynchronous computing architectures in order to
achieve the best optimum system performance.

The Bluetooth Implementation

On the Bluetooth side of things, the CSR baseband controller handles all low-level Bluetooth protocols up
to the HCl interface. The corresponding firmware is located in a separate flash memory (refer back to
Figure 10-5), which can be updated dynamically through the HyNetOS host system. An HCI driver, L2CAP,
RFCOMM, SDP, and some of the basic profiles like General Access Profile, Serial Port Profile, LAN
Access Profile, and Service Discovery Application Profie comprise the Bluetooth portion of the HyNetOS
protocol manager.

Now that you have a general overview of the underlying hardware implementation of the Micro Blue Target,
let's take a look at the OS and included software for this device.

Application Development on the Micro BlueTarget Platform

The core HyNetOS system is contained in a single file, named PROJECT. HEX Figure 10-7 is a diagram of the r
map of the Micro BlueTarget's 2MB flash memory module.

Bootloader Code (B64kB)

HyNet 05 and Configuration Files (Up to 300kB)

Java Core Libraries (Up to 200kB)

Free Disk Space for User Files and
Applications (Approw. 1550%B)

Figure 10-7: The memory map of the Micro BlueTarget. End user applications have about 1.5MB of space
flash disk.

Apart from the bootloader section (also called the ROM section), the remaining flash memory space is organiz:
large solid-state disk. Since HyNetOS comes built-in with an FTP server, this flash disk can easily be administre
using any FTP client program.

In order to specify device drivers or interfaces that you would like to see started with HyNetOS after a system re
need to edit a configuration file named JSTARTUP. | NI . This file can also be used to designate the class files t
want be executed at boot time. A typical JSTARTUP. | NI would look like this:

[devi ces]
comL

cowe
ETHSMSC111
LCD12864
KEYPAD
BLUETOOTH

[protocol s]
TCP/ I P
BLUETOOTH

[applications]
myapp. cl ass

Operating System Tools

Several tools are provided to the user in order to perform common sysadmin tasks on the Micro BlueTarget. Yc
do things like load a new OS, reboot the system, format the flash disk, and trace the application code. All these
are Java desk-top applications (J2SE), and can be executed on any Java-enabled platform.

HYFLASH

HYFLASH is an administration tool for the Micro BlueTarget's flash memory (the flash disk). It can check and u
the ROM section, format the flash disk, and upload content from any directory on your PC to the target system.

HYLOAD

HYLOAD is the dynamic OS loader. If the HyNetOS is already stored on the flash disk, the bootloader will
automatically boot the system after a system reset. At runtime, however, an OS restart can always be triggered
HYLOAD while dynamically uploading a newer version of the OS.

HYMON

HYMON is the Micro BlueTarget's system monitor console. On the PC, this text-based monitor can be usedto ¢
the file system, display directories, and set network settings (such as the IP address, netmask, gateway, etc.). T
HYMON utility can also be used to start Java applications on the device. At the system prompt, simply type

kvm myapp

to start up myapp. cl ass on the device.

HYTRACE

HYTRACE is the Micro BlueTarget's system trace window. Stacktrace messages and output from your
System out. printl n() statementsin your Java code will appear here.

Programming the Micro BlueTarget

In order to start developing wireless applications for the Micro BlueTarget, you first need to set up your develop
environment. Here are the steps that are involved:

1. Connect your Micro BlueTarget board to your PC using a crossover Ethernet cable.

2. Configure your Micro BlueTarget's IP network parameters using the HYMON utility.

3. Formatthe Micro BlueTarget's flash disk using the HYFLASH utility.

4. Create the necessary configuration files and transfer them to the Micro BlueTarget's flash disk.

These steps are all explained in detail in the Micro BlueTarget Starter Kit documentation. After you compile anc
preverify your code, just FTP the corresponding class files for your application to the Micro BlueTarget and hit t
button. If your app is specified inthe JSTARTUP. | NI file, then it will automatically start up; otherwise, just start
application manually using the HYMON utility.

Note The HyNetOS is a multilanguage, multitasking embedded operating system that can run native C
applications and Java apps at the same time. In order to resolve conflicting requests between native ¢
Java applications that want to utilize the Bluetooth stack and radio, Smart Network Devices created a
centralized entity called the Bluetooth Service. The Bluetooth Service in JSR-82 vernacular is called
Bluetooth Control Center (BCC). As mentioned in Chapter 4, the Bluetooth Control Center doesn't
necessarily have to be a Java application, and in the case of the Micro BlueTarget, the Bluetooth Cor
Center is a native application. For the Micro BlueTarget, you can initialize and control the Bluetooth C
Center via configuration files.

The Wireless Network Access Point

Let's say that you have a Bluetooth-enabled device like a PDA or laptop, and want to use it to access the Intern
traditional LAN access point (refer to Figure 10-8). With the Micro BlueTarget, you're already halfway there, anc

Java coding is needed!

ﬁE ﬂ R — Fthernet Leased ljbr—-':_'.jn:mu _

P04 Micro BlueTarget Network Hub o
Figure 10-8: Using the built-in functionality of the Micro BlueTarget, you can have any Bluetooth device witl
LAN Access Profile access the Internet (or any other Ethernet-based network).

So, in order to accomplish this with the HyNetOS, all you need to do is to edit the parameters in a configuration
BTAUTCLAN. CFG. The contents of the file would look something like this:

[BT LAN ACCESS]
MODE=aut omati c
| P- ASSI GNVENT=aut omati c

I NQUI RY- CYCLE=15 ; i n seconds

[PPP]

USER- | D=y Nane

PASSWORD=mmy Passwor d

AUTHENTI CATI ON=PAP, CHAP ; preferred nethods

The Micro BlueTarget would then constantly search (in this case, every 15 seconds) for appropriate devices an
provide them with network access.

Note Now, it's nice to know that the Micro BlueTarget has the built-in capability to function as a wireless net
access point, but what type of effort would be involved if you wanted to develop that functionality your.
First of all, since the JSR-82 doesn't provide any foundational classes to write apps according to the L
Access Profile, then you'll need to implement it on your own. According to the LAN Access Profile poi
the Bluetooth specification, data terminals (i.e., phones, PDAs, etc.) are supposed to authenticate witl
LAN access point using the PPP protocol. After that, the data terminal will be assigned a dynamic IP
address, an IP gateway, and a DNS server for Internet name resolution.You're not out of the woods y
that's where a majority of the effort should exist.

L2CAPEcho Example

L2CAPEcho is a very simple example that will demonstrate communication between two Micro BlueTarget dev
This is the first example involving two Micro BlueTarget devices, and this is the kind of example that you want ta
just to make sure you can get two devices talking to each other. If this example doesn't work, then you need to

troubleshoot your setup and configuration.

So how does it work? Well, as shown in Figure 10-9, one board is offering an "echo service" to the public. The «
board is the client that is using that service and is sending messages to the server.

f | 1 |I | i
i | | B | | 1 1 g | I l
Micro BlueTarget Micro BlueTarget

1 (Client) 2 (Server)

Figure 10-9: The L2ZCAPEcho Service

Since this example contains most of the foundational elements that were described previously in this book, we
into further explanation other than the fact that the client sends a message once per second to the server. The
reads the message from the | nput St r eamand writes it back to the Qut put St r eam and the client gets the n
back as an echo. Listing 10-1 shows the code for the L2ZCAPEchoServer.

Listing 10-1: L2ZCAPEchoServer.java

i nport
i nport
i nport
i nport

public

{

java.l ang. *;

java.io.*;

javax. mcroedition.io.?*;
j avax. bl uet oot h. *;

cl ass L2CAPEchoSer ver

static ClientProcess Client = null

public static void main(String[] args)

{

L2CAPConnecti onNoti fi er Server = null;

try

{
Local Device | ocal = Local Devi ce. getLocal Devi ce();
| ocal . set Di scoverabl e(Di scoveryAgent.d AC);

}

catch (Bl uetoothStateException e)

{

Systemerr.printin("Failed to start service");
Systemerr.println("Bl uetoothStateException: " + e.getMssage());

return;
}
try
{
/1l start the echo server (with a fictional UUI D)
String url = "btl 2cap://|ocal host:00112233445566778899AABBCCDDEEFF" ;
Server = (L2CAPConnectionNotifier) Connector.open(url);
}
catch (1 OException e)
{
Systemerr.printin("Failed to start service");
Systemerr.println("I OException: " + e.getMssage());
return;
}

Systemout.println("Starting L2CAP Echo Server");

/1 This server actually runs forever. However, it can be stopped
/1 by termnating the KVM fromthe command |ine

/1 The server can term nate client connections by

/'l setting the client connections public variable "end" to "true"
/'l like: L2CAPEchoServer.Client.end = true;

while(true)

{

L2CAPConnecti on conn = null;

try
{

/1 wait for incomng client connections (bl ocking nethod)

conn

Server. accept AndOpen() ;

/'l here we've got one, start it
L2CAPEchoServer. Cli ent

L2CAPEchoServer.Cient.start();

}
catch (1 OException e)
{
System out. println("I CException
}

}

class CientProcess extends Thread

{
static L2CAPConnection clientconn;
publ i c bool ean end;

/1 the constructor
ClientProcess(L2CAPConnection conn)

{

this.clientconn
this.end fal se

conn,

}

/] start the conmmunication with the client
public void run()

in a separate thread
new Cl i ent Process(conn);

" + e.get Message());

(met hod bl ocks!)

+ length + " bytes fromclient”

// and imedi ately send it back on the sane connection (echo)

" + e.get Message());

{
byte[] data = nul|;
int |ength;
Systemout.println("Client is connected");
while('end)
{
try
{
/'l prepare a receive buffer
I ength = clientconn. get Recei veMru();
data = new byte[l ength];
/'l read in the data sent by the client
Il ength = clientconn. receive(data);
System out. println("Received "
clientconn. send(data);
}
catch(1 OException e)
{
System out. println("I CException
}
}

{

clientconn. close();

}
catch(1 OException e)
{
Systemout. println("lI OException: " + e.getMessage());
}

Listing 10-2 shows the code for the L2ZCAPEchoClient.

Listing 10-2: L2CAPEchoClient.java

i nport java.lang. *;

i nport java.io.*;

i nport java.util.*;

i nport javax.mnicroedition.io.*;
i nport javax. bl uet ooth. *;

public class L2CAPEchoClient inplenents Di scoveryli stener
{
/1 The Di scoveryAgent for the | ocal Bluetooth device.
private Di scoveryAgent agent;

/1 The max nunber of service searches that can occur at any one tine.
private int maxServi ceSearches = 0;

/'l The nunber of service searches that are presently in progress.
private int serviceSearchCount;

/'l Keeps track of the transaction IDs returned from searchServices.
private int transactionlD];

/1 The service record to an echo server that can reply to the nessage
/1 provided at the command |i ne.
private ServiceRecord record

/'l Keeps track of the devices found during an inquiry.
private Vector devicelist;
/'l The constructor: creates an L2CAPEchoCl i ent object and prepares the
obj ect
/1 for device discovery and service searching.
public L2CAPEchoClient () throws Bl uetoothStateException
{
/'l Retrieve the |ocal Bluetooth device object.
Local Device | ocal = Local Devi ce. get Local Devi ce();

/'l Retrieve the DiscoveryAgent object that allows us to perform device
/1 and service discovery.
agent = | ocal . get Di scoveryAgent();

/1 Retrieve the max nunber of concurrent service searches that can
/] exist at any one tine.

try

{

maxSer vi ceSear ches =

I nt eger. parselnt(Local Devi ce. get Property("bl uet oot h. sd.trans. nax"))

}
cat ch(Nunber For mat Exception e)
{

Systemout.println("General Application Error");

System out . println("Nunber For mat Excepti on: " + e.getMessage());
}

transactionl D = new i nt[maxServi ceSear ches];
/1l Initialize the transaction list
for(int i=0; i<maxServiceSearches; i++)

{
}

transactionlDi] = -1;

record = null;
devi ceLi st = new Vector();

}

/1 Adds the transaction table with the transaction |ID provided.
private void addToTransacti onTable(int trans)

{
for(int i=0; i<transactionlD.length; i++)
{
if(transactionlDi] == -1)
{
transactionlDi] = trans;
return;
}
}
}

/'l Renpbves the transaction fromthe transaction |ID table.
private void renoveFronilransacti onTable(int trans)

{
for(int i=0; i<transactionlD.length; i++)
{
if(transactionlDi] == trans)
{
transactionlDi] = -1;
return;
}
}
}

/'l Conpletes a service search on each renote device in the list until all

/'l devices are searched or until an echo server is found that this applicati:

/'l can send nessages to.
private bool ean searchServi ces(RenoteDevice[] devList)

{
UU D[] searchList = new UU OO 2];

/1 Add the UU D for L2CAP to make sure that the service record
/1 found will support L2CAP. This value is defined in the

/'l Bluetooth Assigned Nunbers docunent.

searchLi st[0] = new UU D(0x0100)

/1 Add the UU D for the echo service that we are going to use to
/1 the list of UUDs to search for. (a fictional echo service UU D)
searchList[1] = new UU D("00112233445566778899AABBCCDDEEFF", fal se);

/1l Start a search on as many devi ces as the system can support.
for(int i=0; i<devList.length; i++)
{

Systemout.println("Length =" + devList.length);

/1 1f we found a service record for the echo service, then
// we can end the search

if(record !'= null)
{
Systemout.println("Record is not null™");
return true
}
try
{
Systemout.println("Starting Service Search on " +
devList[i].getBluetoothAddress());
int trans =
agent . searchServices(null, searchList, devList[i], this);
Systemout.println("Starting Service Search " + trans);
addToTransacti onTabl e(trans);
}
cat ch(Bl uet oot hSt at eException e)
{
// Failed to start the search on this device, try another device
System out . println("BluetoothStateException: " + e.getMessage()
}

/! Deternmine if another search can be started. If not, wait for
/! a service search to end.
synchroni zed(this)

{
servi ceSear chCount ++
System out. println("maxServi ceSearches = " + naxServi ceSear ches
System out. println("serviceSearchCount = " + servi ceSearchCount
i f(serviceSearchCount == maxServi ceSearches)
{
Systemout.println("Waiting");
try
{
this.wait();
}

catch(Exception e) {}
}

Systemout.println("Done Waiting " + serviceSearchCount);

}

/1 Wait until all the service searches have conpl et ed.
whi | e(servi ceSearchCount > 0)

{
synchroni zed (this)
{
try
{
this.wait();
}
catch (Exception e) {}
}
}
if(record !'= null)
{
Systemout.println("Record is not null");
return true
}
el se
{
Systemout.println("Record is null");
return fal se;
}

}

/'l Finds the first echo server that is available to send nessages to.
publ i c ServiceRecord findEchoServer ()
{
/1 If there are any devices that have been found by a recent inquiry,
/1 we don't need to spend the tine to conplete an inquiry.
Renot eDevi ce[] devList = agent.retrieveDevi ces(Di scoveryAgent. CACHED);
if(devList !'= null)
{

i f(searchServices(devList))

{
}

return record;

}

/1 Did not find any echo servers fromthe list of cached devices.

/1 WIIl try to find an echo server in the list of pre-known devices.
devLi st = agent.retrieveDevices(Di scoveryAgent. PREKNOMN) ;

if(devList !'= null)

{

i f(searchServices(devList))

{
}

return record;

}

/1 Did not find an echo server in the |ist of pre-known or cached
/'l devices. So start an inquiry to find all devices that could be
/1 an echo server and do a search on those devices.

try

{

agent.startlnquiry(Di scoveryAgent. G AC, this);

/1 Wait until all the devices are found before trying to start the
/1l service search.
synchroni zed(t hi s)

{
try
{
this.wait();
}
catch (Exception e) {}
}
}
cat ch(Bl uet oot hSt at eException e)
{
Systemout.println("Unable to find devices to search”);
}
i f(deviceList.size() > 0)
{
devLi st = new Renpt eDevi ce[devi celLi st. size()];
devi celLi st. copylnto(devList);
i f(searchServices(devList))
{
return record,
}
}
return null;

}

/1l This is the main nethod of this application.
public static void nmain(String[] args)

{
L2CAPEchoClient client = null;

/1l Validate the proper nunmber of arguments exi st when starting this
/'l application.
if((args == null) || (args.length !'= 1))

{
Systemout. println("usage: java L2CAPEchoC i ent <message>");
return;
}
/'l Create a new Echod ient object.
try
{
client = new L2CAPEchoCl ient ();
}
cat ch(Bl uet oot hSt at eException e)
{
Systemout.println("Failed to start Bluetooth Systeni);
System out. println("Bl uetoothStateException: " + e.getMessage());
}

/1 Find an Echo Server in the |ocal area
Servi ceRecord echoService = client.findEchoServer();

i f(echoService !'= null)
{
/1 retrieve the connection URL string
String conURL =
echoServi ce. get Connecti onURL(Servi ceRecor d. NOAUTHENTI CATE_NCENCRYPT, fal se

/1l create a new client instance
EchoCl i ent echoClient = new EchoClient(conURL);

/1 and send the nessage give on the command |ine
echod i ent.sendMessage(args[0]);
}

el se

{

Systemout.println("No Echo Server was found");

}

/1 Called when a device was found during an inquiry. An inquiry

/'l searches for devices that are discoverable. The sane device may

/1l be returned multiple tines.

public void deviceDi scovered(RenoteDevice btDevice, DeviceC ass cod)

{

Systemout.println("Found device = + bt Devi ce. get Bl uet oot hAddress());
devi celLi st . addEl enent (bt Devi ce);

}

/1 The following nethod is called when a service search is conpleted or
/1l was term nated because of an error. Legal val ues include:

/'l SERVI CE_SEARCH_COVPLETED, SERVI CE_SEARCH _TERM NATED,

/| SERVI CE_SEARCH_ERROR, SERVI CE_SEARCH _DEVI CE_NOT_REACHABLE

/1 and SERVI CE_SEARCH_NO_RECORDS

public void serviceSearchConpleted(int translD, int respCode)

{

Systemout.println("serviceSearchConpleted(" + translD + ", "+
respCode + ")");

/1 Renpves the transaction ID fromthe transaction table.
renoveFronilr ansacti onTabl e(translD);

ser vi ceSear chCount —

synchroni zed(this)

{
}

this.notifyAl();

}

/1 Called when service(s) are found during a service search
/1 This nmethod provides the array of services that have been found.
public void servicesDiscovered(int translD, ServiceRecord[] servRecord)
{

/1 If this is the first record found, then store this record

/1 and cancel the renmining searches.

if(record == null)

{

Systemout.println("Found a service " + transiD);

Systemout.println("Length of array = " + servRecord.length);
if(servRecord[0] == null)
{
Systemout.println("The service record is null");
}
record = servRecord[0];
if(record == null)
{
Systemout.println("The second try was null");
}

/1 Cancel all the service searches that are presently
/'l being perforned.
for(int i=0; i<transactionlD.length; i++)
{
if(transactionlD[i] !'=-1)
{

System out . printl n(agent. cancel Servi ceSearch(transactionlDi]));

}

/'l Called when a device discovery transaction is

/1l conpleted. The <code>di scType</code> will be

/1 1 NQUI RY_COWPLETED if the device discovery transaction ended normal |y,
/1 I NQU RY_ERROR if the device discovery transaction failed

/1 to conplete normally,

/1 1 NQUI RY_TERM NATED i f the device discovery transaction

/'l was cancel ed by calling

/1 DiscoveryAgent.cancel Il nquiry().

public void inquiryConpl eted(int discType)

{ synchroni zed(t hi s)
{
try
{
this.notifyAl();
iatch (Exception e) {}
}
}
}
/1 The EchoClient will nmake a connection using the connection string

/1l provided and send a nessage to the server to print the data sent.

cl ass Echod i ent

{
/'l Keeps the connection string in case the application would |like to make
/1 multiple connections to an echo server
private String serverConnectionString;

/'l The constructor: creates an EchoClient object that will allow an
/1l application to send nultiple nessages to an echo server

EchoCient(String server)

{
}

server Connecti onString = server;

/'l Sends a nmessage to the server.
publ i c bool ean sendMessage(String nsg)
{

L2CAPConnecti on con = nul | ;

byte[] data = nul|;

int index = 0;

byte[] tenp = null;

try
{

/]l Create a connection to the server
con = (L2CAPConnecti on) Connect or. open(serverConnectionString);

/1 Deternine the maxi num anount of data | can send to the server.
i nt MaxQut Buf Si ze = con. getTransm t MTU() ;
tenp = new byt e[MaxQut Buf Si ze] ;

/1 Send as many packets as are needed to send the data
data = nsg. get Bytes();
while(index < data.length)

{
/'l Determine if this is the last packet to send or if there
/'l will be additional packets
if((data.length - index) < MaxCQutBufSize)
{
tenp = new byte[data.length - index];
System arraycopy(data, index, tenmp, 0, data.length-index);
}
el se
{
tenp = new byt e[MaxQut Buf Si ze] ;
System arraycopy(data, index, tenp, 0, MaxCQutBufSize);
}
con. send(tenp);
i ndex += MaxCQut Buf Si ze;
}

/'l Prepare a receive buffer
int rxlen = con. get Recei veMIy() ;
byte[] rxdata = new byte[rxlen];

// Wait to receive the server's reply (nmethod bl ocks!)
rxlen = con.receive(rxdata);

/'l Here, we've got it
String nessage = new String(rxdata, 0, rxlen);
Systemout.println("Server replied: " + nmessage);

/] Close the connection to the server
con. cl ose();

cat ch(Bl uet oot hConnecti onException e)

{
Systemout.println("Failed to send the nessage");
System out . println("BluetoothConnectionException: " +

e. get Message());

Systemout.println("Status: " + e.getStatus());

}

catch(| OException e)

{
Systemout.println("Failed to send the nessage");
Systemout.println("I OException: " + e.getMessage());
return fal se;

}

return true;

Wireless System Monitor Example

In the Wireless System Monitor example, we're going to look at an industrial device that is in great need of wirel
communication: the Programmable Logic Controller (PLC). PLCs are industrial control devices that programmi
control large machinery. They are widely used with manufacturing facilities to control relays, switches, motors, ¢
test chambers, assembly lines, robotic arms—the list goes on and on.

Now a large manufacturing facility is very likely to have a considerable number of PLCs, each doing a particula
Now, if you want to monitor the status of a particular PLC, you typically would have to walk over to the machine
you want to inquire about, and hook up a portable computer to the PLC's RS-232 interface. You would then rur
program on the computer that would read the data coming from the serial port of the PLC.

This in itself can become a tedious process, especially if you're the guy who has to check the status on the PLC
Sometimes, the hardest part of the job is trying to hook up the serial cable. We're not kidding here; in some ind
environments, the PLC may be located in a hard to reach area, and the communication ports may be even hart
reach. As you can see, PLCs make good candidates to be converted into fixed-wireless systems.

As shown in Figure 10-10, with the addition of a Micro BlueTarget, a PLC can instantly become a fixed-wireless
system. The Micro BlueTarget will read the data from the RS-232 interface and transmit the data wirelessly witt
Serial Port Profile. All a status technician needs to do is to come within range of the PLC to gather the data.

Bljon) (onpn, ..

P MicTe BlueTarget

Prograssshle
Figure 10-10: Using the Micro BlueTarget to create a fixed-wireless system

SPP2COMM j ava is a dual-purpose application that you could run on a Micro BlueTarget in order to read the d
from its serial port and transmit it wirelessly. When the Micro BlueTarget receives data coming in from its COMI
will go into "server mode" and create a Serial Port Profile server and pipe the data from the COMM port to its S
Port Profile "port."”

This same code could also be run on a JSR-82-enabled client in order to collect the data from the Micro BlueT
Since the client isn't collecting data from its serial port, it will automatically go into "client mode" and create a S¢

Port Profile client. When the client receives data, it will try to pipe the data to its native serial port. The code for
SPP2COWM j ava is shown in Listing 10-3.

Listing 10-3: SPP2COMM.java

i nport java.lang. *;

i nport java.io.*;

i nport java.util.*;

i nport javax.nicroedition.io.*;
i nport javax. bl uet ooth. *;

public class SPP2COW i npl enent s Di scoveryLi st ener
{

/1 The connection to the serial port

static StreanConnection serialport = null;

/1 The I nput/Qutput streams to the |local serial port
static QutputStream ser_out = null;
static InputStreamser_in = null;

/1 The Bl uetooth connection to the peer device
static StreantConnection bl uetoothport = null;

/1 The I nput/Qutput streams to the Bluetooth connection
static QutputStream bt_out = null;
static InputStreambt_in = null;

/1 The DiscoveryAgent for the | ocal Bluetooth device.
private Di scoveryAgent agent;

/1 The max number of service searches that can occur at any one tine.
private int maxServi ceSearches = 0;

/1 The number of service searches that are presently in progress.
private int serviceSearchCount;

/'l Keeps track of the transaction IDs returned from searchServices.
private int transactionlD];

/1 The service record to a cable replacenent service
private ServiceRecord record;

/'l Keeps track of the devices found during an inquiry.
private Vector devicelist;

/1 The constructor: creates an SPP2COW and prepares the object
/1 for device discovery and service searching.
public SPP2COVMM) throws Bl uet oot hSt at eException
{
/1l Retrieve the |ocal Bluetooth device object.
Local Devi ce | ocal = Local Devi ce. get Local Devi ce();

/1 Retrieve the DiscoveryAgent object that allows us to perform device
/1l and service discovery.
agent = | ocal . get Di scoveryAgent ();

/1 Retrieve the max nunber of concurrent service searches that can

/] exist at any one tine.

try
{

maxSer vi ceSear ches =

I nt eger. parselnt(Local Devi ce. get Property("bl uet oot h. sd.trans. max")'

}
cat ch(Nunber For mat Exception e)
{

Systemout.println("General Application Error");

System out . println("Nunber For mat Excepti on: " + e.getMessage());
}

transactionl D = new i nt[maxServi ceSear ches];

/1l Initialize the transaction |ist
for(int i=0; i<maxServiceSearches; i++)

{
}

record = null;
devi ceLi st = new Vector();

transactionlDi] = -1;

}

/1 Adds the transaction table with the transaction |ID provided.
private void addToTransacti onTable(int trans)

{
for(int i=0; i<transactionlD.length; i++)
{
if(transactionlDi] == -1)
{
transactionlDi] = trans;
return;
}
}
}

/'l Renpbves the transaction fromthe transaction |ID table.
private void renoveFronilransacti onTable(int trans)

{
for(int i=0; i<transactionlD.length; i++)
{
if(transactionlDi] == trans)
{
transactionlDi] = -1;
return;
}
}
}

/'l Conpletes a service search on each renote device in the list until all

/'l devices are searched or until a cable replacenment peer is found that this

/1l application can connect to.
private bool ean searchServi ces(RenoteDevice[] devList)

{
UU D[] searchList = new UU OO 2];

/1 Add the UU D for L2CAP to make sure that the service record

/1 found will support L2CAP. This value is defined in the

/1 Bluetooth Assigned Nunbers docunent.

sear chLi st[0] = new UU D(0x0100);

/1 Add the UUI D for the cable replacenent service that we are going
/!l to use to the list of UUDs to search for

/1 This is a fictional cable replacenent service UU D

searchList[1] = new UU D(" FFEEDDCCBBAA998877665544332211", false);

/1l Start a search on as many devices as the system can support.
for (int i = 0; i < devList.length; i++)
{

Systemout.println("Length =" + devlList.length);

/1 If we found a service record for the cable replacenent service, t
/1 we can end the search.

if (record !'= null)
{

Systemout.println("Record is not null");

return true;
}
try
{

Systemout.println("Starting Service Search on " +

devList[i].getBl uetoothAddress());

int trans = agent.searchServices(null, searchList, devList[i], tI

Systemout.println("Starting Service Search " + trans);

addToTransacti onTabl e(trans);
}
catch (Bl uet oot hSt at eException e)
{

/!l Failed to start the search on this device, try another devic:

Systemout.println("BluetoothStateException: " + e.getMessage(.
}

// Determine if another search can be started. |If not, wait for
// a service search to end
synchroni zed(thi s)

{
servi ceSear chCount ++;
Systemout.println("maxServi ceSearches = " + nmaxServi ceSearche
Systemout.println("serviceSearchCount = " + servi ceSearchCouni
i f(serviceSearchCount == maxServi ceSear ches)
{
Systemout.println("Waiting");
try
{
this.wait();
}
catch(Exception e) {}
}
Systemout.println("Done Waiting " + serviceSearchCount);
}

/1 Wait until all the service searches have conpl et ed.
whi | e(servi ceSearchCount > 0)

{
synchroni zed (this)
{
try
{
this.wait();
}
catch (Exception e) {}
}
}
if(record !'= null)
{
Systemout.println("Record is not null");
return true
}
el se
{
Systemout.println("Record is null");
return fal se;
}

}

/1l Finds the first cable replacement peer that is available to connect to.
public ServiceRecord findCabl eRepl acement Servi ce()
{
/1 If there are any devices that have been found by a recent inquiry,
/1 we don't need to spend the tine to conplete an inquiry.
Renot eDevi ce[] devLi st = agent.retrieveDevi ces(D scoveryAgent. CACHED)
if(devList !'= null)
{

i f(searchServices(devList))

{
}

return record;

}

/1 Did not find any cable replacenment peer fromthe list of cached devi ci
/1 WIIl try to find a cable replacenent peer in the list of

/'l pre-known devices.

devLi st = agent.retrieveDevices(Di scoveryAgent. PREKNOMN) ;

if(devList !'= null)

{

i f(searchServices(devList))

{
}

return record;

}

/1 Did not find a cable replacenent peer in the list of pre-known or

/'l cached devices. So start an inquiry to find all devices that could be
/'l a cable replacenent peer and do a search on those devices.

try

{

agent.startlnquiry(Di scoveryAgent. G AC, this);

/1 Wait until all the devices are found before trying to start the
/1l service search.
synchroni zed(t hi s)

{
try
{
this.wait();
}
catch (Exception e) {}
}
}
cat ch(Bl uet oot hSt at eException e)
{
Systemout.println("Unable to find devices to search”);
}
i f(deviceList.size() > 0)
{
devLi st = new Renpt eDevi ce[devi celLi st. size()];
devi celLi st. copylnto(devList);
i f(searchServices(devList))
{
return record,
}
}
return null;

}

/1l This is the main nethod of this application.
public static void nmain(String[] args)
{

SPP2COW client = null;

SppServer Process server = null;

i nt baudrat e;

/1l Validate the proper number of arguments exi st when starting
/1l this application.
if((args == null) || (args.length !'= 1))

{
Systemout. println("usage: java SPP2COW <baudr ate>");
return;
}
/'l Create a new SPP2COW obj ect.
try
{
client = new SPP2COMM) ;
}
cat ch(Bl uet oot hSt at eException e)
{

Systemout.println("Failed to start Bluetooth Systeni);
System out. println("Bl uetoothStateException: " + e.getMessage());

/'l get the baudrate for the serial port fromthe conmand |ine
baudrate = Integer.parselnt(args[0]);

/'l make the connection to the serial port
try {
/1l get the connection
serial port = (StreanConnecti on) Connector.open("conm 1; baudrate=" +
baudrate, Connector.READ WRI TE, true);

}

catch(Exception e)

{
Systemout.println("serial port open exception: " + e);
Systemexit(0);

}

/1l open the serial port's output stream

try

{
ser_out = serial port.openQutputStrean();

}

catch(Exception e)

{
Systemout.println("serial output stream open exception: " + e);
Systemexit(0);

}

/1l open the serial port's input stream

try

{
ser_in = serial port.openlnput Strean();

}

catch(Exception e)

{
Systemout.println("serial input stream open exception: " + e);
Systemexit(0);

}

/'l Create a new SPP server object.

try

{

server = new SppServerProcess();
server.start();

}

catch(Exception e)

{
Systemout.println("Failed to start Spp Server" + e);
Systemexit(0);

}

/! the main |oop runs forever. However, it can be stopped
/1 by termnating the KVM fromthe command |ine
while(true)
{
/1l Create buffer to receive data fromthe serial port
byte[] rxdata = new byte[64];
i nt r x| en=0;

i nt dat a;

try
{
/'l read in as many bytes fromthe serial port
/'l as currently available but do not exceed the
/'l current buffer |ength.
/'l The read() method blocks but is periodically rel eased
/1 by an Interruptedl OException in order to allow other
// things to happen nmeanwhil e
while(true)
{
data = ser_in.read();
rxdata[rxlen] = (byte)data;
rxl en++;
if(rxlen >= 64 || data == -1)
br eak;
}
Systemout.println("data received fromserial port, len=" +
rxlen);
}
catch(Interruptedl OException e)
{
Systemout.println("serial port receive tineout: " + e);
}
catch(Exception e)
{
Systemout.println("serial port receive exception: " + e);
}

// Did we get any data fromthe serial port?
if(rxlen >0)

{
// Do we have a Bluetooth connection already?
if(bluetoothport !'= null)
{
// Do we have an QutputStream on the BT connection already?
if(bt _out == null)
{
/1 no, then create one
try
{
bt _out = bl uet oot hport. openQut put Streamn();
}
catch(Exception e)
{
System out. println("Bluetooth output stream open exception: " + e);
}
}
Systemout.println("send serial data on Bluetooth Iink");
try
{

bt out.wite(rxdata);
bt _out.flush();

}
catch(Exception e)

{
System out . println("Bluetooth output streamwite exception: " + e);
}
}

el se

{

Systemout.println("No Bluetooth link: try to establish one...");

/'l Find a cable replacenent service in the |local area
Servi ceRecord cabl eRepl acenent Servi ce =
client.findCabl eRepl acenent Servi ce();

i f(cabl eRepl acenent Service !'= null)
{
/'l retrieve the connection URL string
String conURL =
cabl eRepl acenent Ser vi ce. get Connect i onURL(
Ser vi ceRecor d. NOAUTHENTI CATE_NOENCRYPT, fal se);

try
{

/'l Create a connection to the SPP peer
bl uet oot hport =
(St reamConnect i on) Connect or. open(conURL);

}
cat ch(Exception e)

{

Systemout.println("Failed to establish Bluetooth link: " + e);

}

if(bluetoothport !'= null)

{
try
{

/'l open an Qutput Stream on the Bluetooth connection
bt _out = bl uet oot hport. openQut put Stream();

}
catch(Exception e)

{

System out. println("Bluetooth output stream open exception: " + e);

}

/'l and send the data fromthe serial port
Systemout.println("send serial data on Bluetooth Iink");

try

{

bt out.wite(rxdata);
bt _out.flush();

}
catch(Exception e)

{

Systemout.println("Bluetooth output streamwite exception: " + e);

}
}

}

el se
{
Systemout.println("No SPP peer found");
}
}
}
/1l do we have a Bl uetooth connection already?
if(bluetoothport !'= null)
{

/1 do we have an I nputStream on the Bluetooth connection already?
if(bt_in == null)

{
/1 no, then create one
try
{
bt _in = bluetoothport.openl nput Stream();
}
catch(Exception e)
{
System out . println("Bluetooth output stream open exception: " + e);

}

}

/1 listen on the bluetooth connection

rxlen = 0;

try

{

/'l read in as many bytes fromthe serial port

// as currently available but do not exceed the

/1l current buffer |ength.

/1 The read() method blocks but is periodically rel eased
/1 by an Interruptedl OException in order to allow other
/1 things to happen neanwhil e

while(true)

{
data = bt _in.read();
rxdata[rxl en] = (byte)data;
rxl en++;
if(rxlen >= 64 || data == -1)
br eak;
}
Systemout.println("data received from bluetooth port, len=" + rxlen);
}
catch(Interruptedl OException e)
{
Systemout.println("Bluetooth port receive tineout: " + e);
}
catch(Exception e)
{
Systemout.println("Bluetooth port receive exception: " + e);
}

try
{

Systemout.println("send Bluetooth data on serial |ink");
ser_out.wite(rxdata);
ser_out.flush();

}
catch(Exception e)
{
Systemout.println("Bluetooth output streamwite exception: " + e);
}

}
}

/1l Called when a device was found during an inquiry. An inquiry

/'l searches for devices that are discoverable. The same device may
/1l be returned nultiple tines.

public void devi ceDi scovered(Renot eDevi ce bt Devi ce, DeviceC ass cod)

{

System out. println("Found device = + bt Devi ce. get Bl uet oot hAddress())
devi celLi st. addEl enent (bt Devi ce);

}

/'l The following nethod is called when a service search is conpleted or
/'l was term nated because of an error. Legal val ues incl ude:
/'l SERVI CE_SEARCH COVMPLETED, SERVI CE_SEARCH TERM NATED,
/'l SERVI CE_SEARCH ERROR, SERVI CE_SEARCH DEVI CE_NOT_REACHABLE
/1 and SERVI CE_SEARCH NO_ RECORDS
public void serviceSearchConpleted(int transIiD, int respCode)
{
System out.println("serviceSearchConpl eted(" + transliD +
", " + respCode + ")");

/!l Renpves the transaction ID fromthe transaction table.
renoveFr omlransacti onTabl e(translD);

servi ceSear chCount —

synchroni zed(t hi s)

{
}

this.notifyAll();

}

/'l Called when service(s) are found during a service search
/'l This nmethod provides the array of services that have been found.
public void servicesDi scovered(int translD, ServiceRecord[] servRecord)
{

/1 1f this is the first record found, then store this record

/1 and cancel the renmining searches.

if(record == null)
{
Systemout.println("Found a service " + transliD);
Systemout.println("Length of array = " + servRecord.length);
if(servRecord[0] == null)
{
Systemout.println("The service record is null");
}

record = servRecord[0];

Systemout.println("After this");
if(record == null)

{
}

Systemout.println("The Second try was null");

/1 Cancel all the service searches that are presently
/'l being perforned.
for(int i=0; i<transactionlD.length; i++)
{
if(transactionlD[i] '=-1)
{

System out. printl n(agent. cancel Servi ceSearch(transactionlDi]));

}
}

}

/1l Called when a device discovery transaction is

/'l compl eted. The <code>di scType</code> wi |l be

/1 I NQUI RY_COWPLETED if the device discovery transactions ended nornally,
/1 I NQU RY_ERROR if the device discovery transaction failed

/1 to conplete nornally,

/1 1 NQUI RY_TERM NATED i f the device discovery transacti on was cancel ed

/1 by calling D scoveryAgent.cancel I nquiry().

public void inquiryConpleted(int discType)

{
synchroni zed(this)
{
try
{
this.notifyAll();
}
catch (Exception e) {}
}
}

}

cl ass SppServerProcess extends Thread

{

/* the constructor */
SppSer ver Process()

{
}
public void run()
{
St reantConnecti onNotifier Server = null
try
{
Local Devi ce | ocal = Local Devi ce. get Local Devi ce();
| ocal . set Di scoverabl e(Di scoveryAgent. d AC);
}

cat ch(Bl uet oot hSt at eException e)

Systemerr.println("Failed to start service");

Systemerr.println("Bl uetoothStateException: " + e.getMessage());

return;
}
try
{
// start the SPP server (with a fictional UU D)
Server = (StreamConnectionNotifier) Connector. open(
"bt spp:/ /1 ocal host : FFEEDDCCBBAA99887766554433221100");
}
catch(1 OException e)
{
Systemerr.println("Failed to start service");
Systemerr.println("I OException: " + e.getMessage());
return;
}

Systemout.println("Starting SPP Server");

while(true)

{
/'l accept connections only if we are not yet connected
i f(SPP2COW bl uet oot hport == null)
{
try
{
/'l wait for incomng client connections (blocking nethod)
SPP2COWM bl uet oot hport = Server. accept AndOpen();
}
catch(1 OException e)
{
System out. println("l OException: "+ e.getMessage());
}
try
Thr ead. sl eep(1000);
}
catch(Exception e) { }
}

Client Options

Once you get data feeding the Micro BlueTarget and have SPP2COVMrunning on it, then you're all set from the
server's point of view; you have created a fixed-wireless system. Now on the client side of things, you have a fe\
options. Let's say that the vendor of the PLC makes a program to read and interpret the data from the PLC (wh
connected serially, of course). You really don't need to use the SPP2COVMin client mode at all; all you need to
Bluetooth-enable your laptop and pair it with the Micro BlueTarget. The vendor's program will read the data froi
PLC (via the Micro BlueTarget) through COMM7 or COMMBS (which are typical Serial Port Profile ports) instead
COMM1 or COMM2.

Now let's say that all the preceding conditions exist, but for some reason you can't Bluetooth-enable the laptop
read the data from the PLC. Don't worry, there's hope for you too! All you need to do is attach another Micro
BlueTarget to your non-Bluetooth-enabled laptop and run the SPP2COVMM program. Since this Micro BlueTarge
collecting data over its serial port, it will automatically run in client mode and look for a Serial Port Profile server
then read the data from the Serial Port Profile server, and pipe that data to its own serial port. Your laptop can t
the vendor program to read and interpret the PLC data (this time via two Micro Blue Targets) through a tradition.
port like COMM1 or COMMZ2. In this case, you have made a serial-to-wireless bridge.

Now let's say that you're in a very special situation in that the vendor doesn't make a program to read and intery
data from the PLC. Now, you can be really creative and just make your own! In this case all you need is a JSR-
enabled client device (like a PDA or laptop), and you have to make a slight modification to SPP2COMM progra
the client mode part of it, instead of sending the data to the COMM port, just interpret, display, or process it.

Summary

In this chapter, you were introduced to one of the first fully functional computing systems that is JSR-82
compliant: the Micro BlueTarget. You should be fully aware of its physical aspects for computational
power, data connectivity, and wireless communication. You should also be familiar with HyNetOS, the
operating system for the Micro BlueTarget.

Due to its small form factor, low power requirements, and extensibility, the Micro BlueTarget is a great
device to create fixed-wireless systems and proofs of concepts for wireless applications. In Chapter 11,
we'll explore what it takes to create scalable and robust wireless applications in Bluetooth that can handle
more than just seven concurrent users.

Chapter 11: Enterprise Bluetooth Applications with
the Ericsson BlipNet

Overview

As you have seen in the previous chapters of this book, the JSR-82 is a great API for creating Bluetooth
applications with the Java language. With any vendor implementation of the JSR-82, you can create
hundreds of client-server, peer-to-peer, cable replacement, and fixed-wireless Bluetooth applications.
However, this API falls short when you need to create enterprise Bluetooth applications. So what's an
enterprise Bluetooth application? Well, here are the major qualifications of an enterprise Bluetooth
application:

m Capability to handle more than just seven active connections

m A connection range greater than just 30 or 300 ft

m Centralized communication to the devices (also called nodes) that comprise your network
m A means for managing groups of nodes

m A means for session management when clients move between nodes

Note Of course, Class 1 Bluetooth devices have a range of 300 ft, but you must realize that if the
clientis a Class 2 or Class 3 device (like most mobile phones and PDAS), then it doesn't matter
if the server is a Class 1 device (like some LAN access points).

The JSR-82 was not created to handle enterprise Bluetooth applications, and doesn't provide any way to
address the problems that enterprise Bluetooth applications can solve.

Consider the locations where Bluetooth applications will be widely deployed, like shopping malls, airports,
museums, office buildings, and grocery stores. At a mall, for instance, the scaling issue is very important.
It's not practical to create a Bluetooth-enabled information kiosk at a mall without being able to scale up to
handle more than just seven active connections. In order to accomplish this, your enterprise Bluetooth
applications will contain more than a single Bluetooth-enabled node.

Centralized communication is an important feature in enterprise Bluetooth applications because there's no
way to implement group management or session management without it. For instance, in a Bluetooth-
enabled museum exhibit, there should be a way to activate or deactivate a group of nodes without
disturbing the other nodes on the network. Session management comes into play in a Bluetooth-enabled
retail location like a grocery store. Without session management, a customer may be offered the same e-
coupon multiple times when passing by a different node in a grocery store.

In an office building, providing wireless network access to Bluetooth-enabled clients is a common
enterprise Bluetooth application. Session management in this scenario is also important so that clients can
freely roam around the building without having to reauthenticate when they go in and out of range of
different nodes.

In order to create enterprise Bluetooth applications, you heed more than just a single Bluetooth device and
an API. Enterprise Bluetooth applications also require an infrastructure to be in place that will allow your
system to be scalable and robust.

The Ericsson BlipNet

The Ericsson BlipNet contains the infrastructure, functionality, and scalability that will allow developers to
create enterprise Bluetooth applications using the Java language. An architecture diagram of the Ericsson
BlipNet is shown in Figure 11-1.

BlipServer

!\: H_'_] BlipMamager
- Application

Clients
Figure 11-1: An architecture diagram of the Ericsson BlipNet

¥

Note Although the Ericsson BlipNet allows you to create enterprise Bluetooth applications in Java, it
does not support the JSR-82. The JSR-82 is oriented toward creating applications where a
single Bluetooth device communicates to other devices in a piconet. The BlipNet APl is oriented
toward managing a network of Bluetooth-enabled nodes, where each node has the capability to
interact with Bluetooth-enabled clients.

BlipNet Architecture

The core part of the BlipNet system is the BlipServer. The BlipServer itself is not Bluetooth enabled at all.
It does, however, have a direct TCP/IP connection to each of the BlipNodes (which are Bluetooth enabled)
and controls them via Java RMI. In order to create your enterprise Bluetooth applications, you write J2SE
classes that interface with the BlipNet API. Now, since you're writing J2SE code here, you may realize that
there's nothing preventing you from accessing external resources on behalf of your Bluetooth-enabled
clients. In fact, that's the whole point of it. Using the Ericsson BlipNet, external resources such as
databases, LDAP directories, Web servers, and e-mail servers are all available at your client's disposal (as
long as you can access them via a Java API). This is reflected in Figure 11-2.

=

)| =W | W

- Datanase Emall
:7 Server Server Server

-
i
e
TR

ey

T

BlipServer

I i
M

TCR/IR

,_
=]
L

BlipNodes |

Clients
Figure 11-2: You can use the BlipNet APl and custom J2SE code to access external resources like

databases, directories, and e-mail servers.

BlipServer

The BlipServer does not require any specialized hardware and can run on either Windows or Linux
operating systems. The statistics on the BlipServer are pretty impressive: a Pentium 400 MHz computer

with 256MB of RAM can manage 200 BlipNodes!

BlipNodes

In an enterprise Bluetooth application, the BlipServer cannot directly communicate to your Bluetooth-
enabled clients; it has to interface with the BlipNodes. Each BlipNode is capable of multipoint
communication and includes the following profiles to interact with clients:

m Generic Access Profile
m Service Discovery Application Profile
m LAN Access Profile

m Object Push Profile

Note The BlipNodes also conform to the WAP over Bluetooth interoperability requirements as defined
in the Bluetooth specification.

Your enterprise Bluetooth application will listen for events from the BlipNodes and act accordingly. For
instance, let's say that you want to track where employees are in the building (assuming, of course, that
they are wearing Bluetooth-enabled ID badges). When users come within range of a BlipNode, your
application will listen to device-discovered events via the Generic Access Profile. The BlipNet system is
sophisticated enough to let you know which BlipNode detected a user, so all you need to do is store that

data in a database, and create another application to view the results.

Now let's say that you're the manager of a hotel, and you want to allow your customers with Bluetooth-
enabled devices to send e-mails wirelessly from within the conference rooms. At these "e-malil stations,”
the BlipNodes will use the Object Push Profile to send clients the custom e-mail application (of course, this
works well if the app is a JSR-82 application). Clients compose their e-mail using the custom application,
and when they are ready to send the e-mail, they simply come within range of an e-mail station and push
the e-mail OBEX object to the BlipNode. On the BlipServer, your enterprise Bluetooth application will be
listening for an Object Push event, and will connect to an e-mail server to send the e-mail on behalf of the

hotel guest.

Note This might be a perfect time for you to try creating custom headers for your OBEX e-mail object.
There's nothing stopping you from defining a custom header for the "to", "from", and "subject"
fields for the e-mail.

As you can see, the wireless e-mail station scenario clearly demaonstrates the difference between the
programming paradigms of the JSR-82 and the BlipNet. Using the JSR-82, you can create the client app
that generates the e-mail OBEX object and pushes it to the server. One of the major drawbacks, however,
is that you need to implement the Object Push Profile in your application code (which may be an
inconvenience for inexperienced developers). On the other hand, the Object Push Profile is already
defined within the BlipNet API, so all you need to do is write the event handling code when your object
arrives from your Bluetooth-enabled clients.

BlipNode Installation

Installation of a BlipNode is pretty simple. All you need to do is supply the Ethernet connection and power.
The device will then register itself to the BlipNet. Figure 11-3 is a picture of a single BlipNode unit.

Figure 11-3: A single BlipNode

BlipManager Application

The BlipManager tool is used to configure and administer the BlipNet system. As shown in Figure 11-4, the
BlipManager gives you a visual representation of all the BlipNodes on your network.

Figure 11-4: The BlipManager application

Out of the box, the BlipManager comes with the following features:
m Device filtering
m Security administration
= Node administration

With the device filtering feature, you can block certain Bluetooth devices from using the BlipNet. You can
create this filter based upon the client device's address or the device's class (i.e., laptop, cell phone,
headset), or based upon the available services on the device. The security administration feature allows
you to assign PINs for individual nodes, or for the entire BlipNet. Using the node administration features of
the BlipManager, you can administer an individual node or create a group of nodes and administer them
collectively. The node administration features also give you the ability to activate and deactivate the
profiles on your nodes. Using this feature, it is very easy to configure multiple enterprise Bluetooth
applications on the same BlipNet network. For instance, in a grade school environment, all the BlipNodes
at the entrance of the school can be configured to use only the Object Push Profile so that parents and
visitors are greeted with some information about the school. However, in the teacher's lounge, the
BlipNodes can be connected to the same network, but have only the LAN Access Profile activated so that
teachers can get wireless Internet access.

BlipNet APl Overview

The BlipNet 1.1 API consists of 6 packages and 40 classes and interfaces that allow you to create
enterprise Bluetooth applications. Here's a list of the BlipNet packages:

m comericsson. blipnet.api.blipnode

m comericsson. blipnet.api.blipserver

m comericsson. blipnet.api.bluetooth

m com ericsson. blipnet. api.event

m com ericsson. blipnet. api.obex. pushobjects
m comericsson. blipnet.api.util

Thecom ericsson. bl i pnet. api . bl i pnode package contains classes that deal directly with
individual BlipNodes, like Bl i pNodeHandl e. Conversely, the package

com ericsson. blipnet.api.blipserver contains classes that deal with the BlipServer such as
Bl i pServer and Bl i pSer ver Connecti on. If you are looking for classes that pertain to Bluetooth-
specific things like Bl uet oot hAddr ess and Cl assOf Devi ce, then they are found in the package
com ericsson. blipnet. api. bl uetooth.

Almost every application will use one or more of the interfaces contained in the

com ericsson. bl i pnet. api . event package. This package contains all the interfaces for listeners
and events within the BlipNet. For instance, if you implement the Bl i pSer ver Event Li st ener interface,
then you can receive callbacks from the JVM when Bl i pNodeEvent s,Connect i onEvent s, and
CbexEvent s are occurring. The com eri csson. bl i pnet . api . event package also includes the
CbexPr ogr essLi st ener interface, which you can use to determine the progress of an OBEX object
transfer.

When dealing with clients that support the Object Push Profile, the classes that form the

com ericsson. bl i pnet. api . obex. pushobj ect s package come in handy. This package contains
classes such as ObexFi | e and CbhexCGeneri cOhj ect that help you when you're sending or receiving
OBEX objects. For obvious reasons the com eri csson. bl i pnet. api . uti| was designed to be a
utility package, but at the moment it only contains a single class for icons: Bl i pNet | cons.

CROSS- See Appendix D for a complete list (with descriptions) of all the classes and
REFERENCE interfaces of the BlipNet 1.1 API.

Now that you have a good understanding of the BlipNet architecture and its APIs, let's look at an example
demonstrating how to create an enterprise Bluetooth application using the Ericsson BlipNet.

The Bluetooth Device Tracker

A Bluetooth device tracker is an extremely useful enterprise Bluetooth application, but it's really an invaluable tc
to anyone in the retail business. Why? Have you ever been to a grocery store where the peanut butter is in aisle
two, but the jelly is located in aisle twelve? Or even worse, the coffee and the cream are eight aisles apart.

In the near future, almost every mobile phone will be Bluetooth enabled, so a Bluetooth device tracker will help
grocery store manager to answer the following questions:

m Are customers wandering around aimlessly?

m Do consistent buying patterns exist?

Which are the frequently traveled aisles?

Are the aisles arranged properly?

How long are customers in the store?
All these factors impact customer satisfaction and directly affect whether or not if the customer will return.

Tr acki ng. j ava is a simple enterprise Bluetooth application that allows you to track Bluetooth devices using t
Ericsson BlipNet. Of course, before you run Tr acki ng. j ava, you have to have at least two BlipNodes connec
to your BlipServer (otherwise, it would be pointless to track devices with only a single node). Another prerequisit
that a user name and password to the BlipServer must already be created. In this example, the user name is
Tr acki ng and the passwordis Tr acy. You also need to assign the BlipNodes that you want to perform device
tracking to a group. In this example the group is called Fi r st _Fl oor .

Note Of course, you can create user names, passwords, and groups using the BlipManager application.

In order to run the application (and to track every discoverable Bluetooth device), just execute the following
statement, at the command line:

java Tracking First_Fl oor

If you want to track specific Bluetooth clients, then you need to provide their Bluetooth address at the commanc
line, separated by spaces:

java Tracking First_Floor 001122334455 007e3ba4780f 0065ca98bd2e

This application starts off by calling the method i ni t Bl i pSer ver Connect i on() inthe constructor. In turn,
i ni tBlipServerConnection() obtains a Bl i pSer ver Connect i on object by calling the static method

get Connecti on() from the Bl i pSer ver class. The parameters to this method include the user name and
password that you've created, as well as the hostname of the BlipServer:

Bl i pServer. get Connecti on("Tracking", "Tracy", "local host");

Afterwards, a Bl i pServer Event Fi | t er is created by calling the get Event Fi | t er () method:

Bl i pServerEventFilter blipServerEventFilter =
get Event Fil ter (di scover Bl i pNodeGr oup, term nal sToTr acl

Finally, we're going to add an event listener to the Bl i pSer ver Connect i oninstance by calling its
addEvent Li st ener () method.

bl i pServer Connecti on. addEvent Li st ener (new Tracki ngEvent Li st ener (),
bli pServerEventFilter);

TheaddEvent Li st ener () method requires a Bl i pSer ver Event Li st ener and (optionally) a

Bl i pServer Event Fi | t er. At this point, we already have an instance ofa Bl i pSer ver Event Fi | t er on
hand, so we create a new instance of our inner class Tr acki ngEvent Li st ener .Tr acki ngEvent Li st ene
a subclass of Bl i pSer ver Event Adapt er, which, in turn, is an implementation of

Bl i pServer Event Li st ener.

When Bluetooth devices are detected, the events are passed to the inner class, and the inner class then prints
on the command line what's going on. The code for Tr acki ng. j ava is shown in Listing 11-1.

Listing 11-1: Tracking.java

package com ericsson. bl i pnet. sanpl es;

i nport com ericsson. blipnet.api.event.*;

i nport com ericsson. blipnet.api.blipserver.?*;

i mport com ericsson. blipnet.api.bluetooth. Bl uet oot hAddr ess;
i mport com ericsson. blipnet.api.blipserver.BlipNode;

i nport java.util.Hashtabl e;

public class Tracking {
private BlipServerConnection blipServerConnection
private Hashtabl e tern nal Last SeenOnThi sBl i pNode = new Hasht abl e();

public Tracking(String di scoverBlipNodeG oup,
Bl uet oot hAddress[] term nal sToTrack) {

/|l Get a connection to the server
i nitBlipServerConnection();

Bl i pServerEventFilter blipServerEventFilter =
get Event Fil ter (di scover Bl i pNodeGroup, term nal sToTrack);

try {
/!l Register the event Listener with the generated filter

bl i pServer Connecti on. addEvent Li st ener (new Tracki ngEvent Li st ener (),
bli pServerEventFilter);
} catch (BlipServerConnecti onException e) {
Systemout.println("Error attaching |istener");
e.printStackTrace();
Systemexit(-1);

}
}
private void initBlipServerConnection() {
try EIipServeernnection = Bli pServer. get Connecti on("Tracki ng"

"Tracy", "local host");
} catch (BlipServerConnecti onException e) {
Systemout.println("Error connecting to server");

e.printStackTrace();
Systemexit(-1);
} catch (BlipServer AccessException e) {
e.printStackTrace();
Systemout.println("Error registering user - Have You created "+
"a username/ password for this application in BlipManager?");
Systemexit(-1);

}

private BlipServerEventFilter getEventFilter(String discoverBli pNodeG oup
Bl uet oot hAddress[] term nal s)
/1 List of BlipNodelds used for tracking - is built frominput
/'l in-line paraneters entered at start up of Tracking application
Bl uet oot hAddr ess[] bl i pNodeAddressLi st = null;

Bl i pNode[] inquiryOnlyBlipNodes = null
try {

i nqui ryOnl yBl i pNodes = bl i pServer Connecti on. get Bl i pNodes

(di scoverBl i pNodeG oup, "Discover Devices", false, false);

} catch (BlipServerConnecti onException e) {

System out. println("Could not get BlipNode handles "+

"for the BlipNode Group: "+ discoverBlipNodeGoup + "\n" + e);

Systemexit(-1);

}

/'l Are there any BlipNodes in the specified group ?
if (inquiryOnlyBlipNodes.length > 1) {

bl i pNodeAddr essLi st =

new Bl uet oot hAddr ess[i nqui ryOnl yBl i pNodes. | engt h];
for (int i = 0; i < blipNodeAddressList.length; i++) {
bl i pNodeAddressList[i] =
i nqui ryOnl yBl i pNodes[i].getBlipNodel IX);

}
} else {

Systemout.println("Have You inserted at |east 2 BlipNodes " +

"in the group (" + discoverBlipNodeGoup + ") ?");
usage();

}

System out. println("BlipNodes used for tracking (fromgroup '"+
di scover Bl i pNodeGroup + "'):");
for (int i=0; i<blipNodeAddressList.length; i++) {
Systemout.println("* "+
bl i pNodeAddressList[i].toString().toUpperCase());

}

if (null '= termnals) {
Systemout. println("\nTernm nals being tracked: ");
for (int i=0; i<termi nals.length; i++) {

Systemout.println("* "+
termnal s[i].toString().toUpperCase());

}

} else {

Systemout.println("* Tracking all discoverable devices.");

}

Systemout.println("----------------- \n");

return new BlipServerEventFilter(null,
new int[] {Event. TERM NAL_DETECTED},
bl i pNodeAddr essLi st, terninals);

}

private class Tracki ngEventLi stener extends BlipServerEvent Adapter {
public void handl eConnecti onEvent (Connecti onEvent e) {
switch (e.getEventl D)) {
case Event. TERM NAL_DETECTED:
Bl uet oot hAddress termnalID = e.get Term nal | D() ;
Bl uet oot hAddr ess bl i pNodel D = e. get Bl i pNodel D() ;
if (term nal Last SeenOnThi sBl i pNode. cont ai nsKey(term nal | D))
/'l Termi nal has already been di scovered before,
/!l so has it noved?
if (!term nal Last SeenOnThi sBl i pNode.
get(term nal I D). equal s(bl i pNodel D)
Systemout.println("Termnal: " + termnallD+ " ("
e. get Term nal Fri endl yName() +
") nmoved from Bl i pNode: " +
((Bl uet oot hAddress) term nal Last SeenOnThi sBl i pNode. renove(term nal ID)) +
" to BlipNode:" + blipNodelD);
term nal Last SeenOnThi sBl i pNode. put (term nal | D,
bl i pNodel D) ;
} else {
/'l Term nal stays on the sane Bli pNode.
/1 Do not do anything.
}
} else {
/1 This is the first this terminal is seen on the syste
Systemout.println("Termnal: " + termnallD+ " (" +
e.get Term nal Fri endl yName() +
") discovered for the first time on"
" BlipNode: " + blipNodelD);
term nal Last SeenOnThi sBl i pNode. put (term nal | D,
bl i pNodel D) ;
}
br eak;
defaul t:
Systemout.println("Error - only TERM NAL_DETECTED " +
"events shoul d be received! \nReceived "
"event:" +
Event . FRI ENDLY_NAMES[e. get Event I D()]);

}

private static Bl uetoot hAddress[] parseTerninal List(final String[] args) {
int nunmberOf Terminals = args.length - 1;

/1 List of BlipNodelds used for tracking - is built from
/'l input in-line paraneters entered at start up of Tracking application.
Bl uet oot hAddress[] trackTheseTerminals = null;

if (numberOf Terminals > 0) {
trackTheseTerm nal s = new Bl uet oot hAddr ess[nunmber Of Ter m nal s] ;
for (int inputParaneterCount=0; inputParaneterCount <
number Of Ter mi nal s; i nput Par anet er Count ++) {
try {
/'l Make sure it is a valid Term nallD (Bl uetoothAddress)
trackTheseTerm nal s[i nput Par anet er Count] =
new Bl uet oot hAddr ess(args[i nput Par amet er Count +1]
} catch (Il egal Argunent Exception iae) {

Systemout.println("Termnalld: " +
ar gs[i nput Par anet er Count] +
" isinvalid. Avalidid, e.g. " +

"112233445566\ n" + iae);
usage();

}
}

return trackTheseTerni nal s;

}

private static void usage() {
Systemout. println("The tracking application requires at least 2 " +
"Bl i pNodes, please use BlipManager to specify the
"Bl i pNodelds in the group.");
Systemout. println("Specify the group nane as first input parameter:");
Systemout.println("> Tracki ng MyG oup");
System out. println("Thereby the BlipNodes (specified in the " +
"Bl i pManager) in the group 'MyGroup' will be used.
"These Bl i pNodes nust be");
n("configured as "I nquiry Only' BlipNodes. Use at " +
"l east two BlipNodes in the group.");
n("When no Terminal Ids are specified all " +
"di scoverabl e devices will be tracked.");
Systemout.println("------------------- ")
Systemout.println("If only specific ternminal is to be tracked, the " +
"Term nal 1ds can be specified after the group " +
"name, e.g.:");
Systemout. println("> Tracki ng MyGroup 001122334455 000102030405");
System out. println("Thereby the sane Bli pNodes as above be used " +
"for tracking,");
n("and only the termnals with Ids 001122334455 " +
000102030405 will be tracked (termnal |ist can "
"be continued).");
Systemout.println("------------------- ")
Systemout.println("In Bli pManager a usernane/ password pair must be " +
"defined for the Tracking-application. Under " +
"'BlipServer Properties',");
Systemout.println("" Applications'; Create a new user with "+
"user nane/ password: Tracking/ Tracking.");

System out . pri nt

System out . pri nt

System out . print

Systemexit(-1);
}

public static void main(String[] args) {
/'l Must specify at |east a BlipNode G oup
if (args.length<l) {
usage();

}

Bl uet oot hAddress[] trackTheseTermni nals = parseTerm nal Li st (args);

Systemout.println("** Starting Tracking application **");
Systemout.println("------------------ ")

Tracki ng tracker = new Tracking(args[0], trackTheseTerm nals);

System out . println("Tracking application started");

Note Please see the Tracker.java example in the "examples" directory of the BlipNet SDK for a more detai
code explanation of the Tracker example.

Summary

This chapter gave you an introduction to the concept of enterprise Bluetooth applications. At this point, you
should understand the scenarios where enterprise Bluetooth applications are best suited and the
components that are needed to create them. As you have seen, enterprise Bluetooth applications cannot
be built with just a single Bluetooth device and an API.

Using the Ericsson BlipNet, developers have the API, tools, and infrastructure in place in order to create
scalable and robust enterprise Bluetooth applications. In the final chapter of this book, we'll examine how
to network Bluetooth devices in a decentralized manner and create a Jini federations among Bluetooth
devices.

Chapter 12: Bluetooth and Jini

Overview

Well, you've made it to the last chapter of the book. By now, you should be fully aware of the capabilities of
Bluetooth technology with respect to Java. As we stated in Chapter 4, the basics of any Bluetooth
application consist of

m Stack initialization

m Device management
m Device discovery

m Service discovery

m Service registration
= Communication

CROSS- SeeChapter 4 for more details on the basics of a Bluetooth application.
REFERENCE

Now perhaps you've heard of Jini as well. If you haven't used it before, then you should be at least aware
that it's a networking technology. Jini also happens to be a service-oriented technology like Bluetooth (i.e.,
after you join the network, you are able to consume or provide services).

So, if you want to know how to use Bluetooth and Jini together, then this is the chapter for you! Before we
go any further, let's first clearly define the following:

= Whatis Jini?
m How does Jini work?

After we answer those two questions, we can look at what it'll take to combine Jini and Bluetooth together.
We'll also look at a device that already integrates Bluetooth and Jini together: the PsiNaptic PsiNode.

What Is Jini Network Technology?

Jini network technology was created by Sun Microsystems to enable networked devices to communicate
and share services with little or no human intervention. In part, this was in response to their (correct)
perception that the rapidly increasing complexity of the network environment would cause current
practices in network management to fail completely. Jini set out to solve the following problems with
distributed com puting:

m Networks are unreliable. Connections to other computers may disappear unexpectedly.

m The latency of a network is variable. Delays in sending and receiving information are dependent on
factors such as the physical medium, traffic on the network, and information routing algorithms.

m Bandwidth is not constant. Like latency, there is often no guarantee of transmission capacity.

m Networks are insecure. This is especially true of heterogeneous networks where the devices
exchanging information cannot control the path that the information takes.

m Network topologies are variable. This is most obvious in mobile networks when devices move between
network access points. Now and in the near future, multimode devices will move between network
types (e.g., from a cellular network to a wireless local area network to a wired desktop network).

m Administration of networks is not uniform. Multiple networks provide their own sets of rules, protocols,
access, authorization, and security protocols, all controlled by different organizations and individuals.
Accessing and securing resources across these networks will be complicated because of inconsistent
administration practices.

m Access and transportation costs are variable.

m Many different devices with different configurations, capabilities, and operating systems will participate
in the network.

Jini federations are agnostic to the type of connection between the devices participating in the network. It
doesn't matter if the participants are connected physically or wirelessly; the only requirement is that the
connections are TCP/IP based.

Note Jini also supports members in a federation with non-TCP/IP-based connections through
surrogates.

The functionality of members in a Jini federation can be summarized in six mechanisms:
m Lookup
m Discovery
= Join
m Leasing
m Transactions

m Events

Lookup

Lookup is a Jini service that acts much like a directory. For instance, if a printer wants to provide printer
services to a Jini federation, then it must register that service with a Lookup Service. Conversely, if you are
participating in a Jini federation, and you want to print, you must check the Lookup Service to see if any
printer services are available.

Note As you can see, finding services in Jini has a centralized approach by going through a Lookup
Service. Bluetooth has a decentralized approach to finding services since you need to perform a
search on each device in your piconet to find what services are available.

Discovery
The process of finding a suitable Lookup Service in a Jini federation is referred to as discovery.

Note The concept of discovery in Jini is radically different compared to that in Bluetooth. In Jini,
discovery is simply finding a Lookup Service. In Bluetooth, discovery allows you to find Bluetooth
devices as well asthe services that they offer.

Join

Once a Lookup Service has been found, a service may join that Lookup Service by providing one or more
Java objects. The Join protocol defines the mechanism to accomplish this.

Leasing

The use of a resource in a Jini federation is granted for a specific amount of time. This concept is known
as a lease. The duration of the lease may be fixed by the grantor or negotiated. To maintain the use of a
service (including services joined to Lookup Services), the lease must be renewed periodically. This allows
for the expiration and cleanup of services that are no longer required, or whose owners have left the
federation.

Transactions

Atransaction allows a set of operations to be grouped in such a way that they either all succeed or all fail.
To the members of the federation, the group of operations in the transaction appear to function as a single
unit.

Events

An object residing on a device may register an interest in an event occurring in another object residing on
a different device in the federation and receive notification when the event occurs. Thus, events provide a
mechanism for maintaining consistency of state information in the federation.

How Jini Works

So, let's first define a Jini Ser vi cel t em A Ser vi cel t emis comprised of a service object and some
attributes. The only real restriction on Ser vi cel t emobjects is that they be serializable.

There are typically three entities involved in a Jini federation:

m Service Providers are the entities that provide a Java-based software service. The service can be
pretty much anything and doesn't necessarily have anything to do with the device that hosts the
provider. For instance, a Jini-enabled printer can provide a printer service in a Jini federation, but
there's nothing stopping it from providing a random number generator service to the federation as
well.

m Service Consumers are clearly the entities that have an interest in using the services that are available
in the Jini federation.

m Lookup Services (LUS) are the Jini services that act on behalf of Service Providers to host their
services. This is also the "directory” that Service Consumers use in order to find services in the
federation.

Before the federation is formed, these entities must exist (see Figure 12-1).

/ Lok Service \';,‘

T s
Service Condumst Service Prowider | |

Servicelten

Figure 12-1: These three entities must exist before a Jini federation is established. The federation
itself hasn't been formed because the entities don't know anything about each other yet.

Discovering a Lookup Service

In order to get the ball rolling, the clients (Service Providers or Service Consumers) must discover a
Lookup Service.

Note A Jini federation can have more than one Lookup Service.
Jini defines three discovery mechanisms:
m Multicast announcement from a Lookup Service
m Multicast request from a client
m Unicast request from a client

A Lookup Service can use multicast announcements periodically to advertise its presence on the network.
Interested clients, Service Providers or Service Consumers in particular, can use the information provided
in an announcement to communicate with the Lookup Service.

Clients use multicast requests to discover a Lookup Service. A Lookup Service receiving a request
responds directly to that client. Once the address of a Lookup Service is known, a client sends a unicast

request directly to the Lookup Service.

The Lifecycle of a Service Provider

Now, let's assume that a Lookup Service is making periodic multicast announcements. A Service Provider
hears an announcement, and receives from the Lookup Service its Ser vi ceRegi strar. A

Servi ceRegi strar is a Java object that is simply the public interface to the Lookup Service. It allows a

client to register services, look up services, and request notification of changes in the Lookup Service. This
interaction is shown in Figure 12-2.

Lockup Service \.\
III"

I'l.

Sexvice Congusssr Service Provider :

2 : Cervicelt
ServiceRegistrar .n..:l-c.e_ H

N -_—'\.
Figure 12-2: The Service Provider discovers the Lookup Service and receives its

Servi ceRegi strar object. The Servi ceRegi strar is used to interact with the Lookup Service
via its public methods.

In the final step of the discovery process, the Service Provider receives the Ser vi ceRegi str ar object,
which it can use to register its Ser vi cel t emwith the Lookup Service.

Leasing a Serviceltem and Joining a Federation

When a Service Provider registers its Ser vi cel t emas shown in Figure 12-3, it also specifies a lease
duration for the service. If the registration is successful, the Lookup Service will keep the service registered
for at least that length of the lease requested, or provide a duration of its own. It's up to the Service
Provider to renew the lease as required. After the Ser vi cel t emis registered with the Lookup Service, the

Service Provider has joined the federation.

Lowviogs Service

.
Serviceltes |

)
F, "_I.I

N A

Begisters Serviceiten

B T
Service osomer Service Provider |

Lerviceltem

5 | .
Figure 12-3: The Service Provider registers its Ser vi cel t emwith the Lookup Service.

Note The leasing mechanism is an important part of Jini technology because it allows devices to
clean up unused resources. If a lease expires (or if it can't be renewed because the lease
grantor or holder has left the federation), the associated resource can be released.

Now that we have a federation with a Service Provider in it, it's time to look at things from the Service
Consumer's perspective.

The Lifecycle of a Service Consumer

The Service Consumer also starts its life cycle by discovering a Lookup Service. It uses the same
discovery mechanisms that a Service Provider uses. The Service Consumer can use any of the three
discovery mechanisms, but in this scenario, let's say that the Service Consumer is using a multicast
request to find a Lookup Service. This is illustrated in Figure 12-4.

4 Lookup Service \\.\

\
Serviceltem 11

| 1
|
i !

¥
e ;
'\..___:._._ _.:':_,/;

Eesponse \
(Imcluding N
Servicetegistrar)

Service Comsumer | |

tervice Provider |

Srr\'il:rj'.n.
Figure 12-4: The Lookup Service receives a multicast request from the Service Consumer and
responds with a unicast message containing the ServiceRegistrar object.

The Service Consumer device makes a number of periodic multicast requests. When a Lookup Service
receives a request, it responds with a simple message that contains its Ser vi ceRegi st rar object. At
this point the Service Consumer is part of the federation.

With the Ser vi ceRegi st rar in hand, the Service Consumer can use its| ookupmethods to look for
useful services.

Thel ookup methods of the Ser vi ceRegi strar object require a Servi ceTenpl at e object as an

argument. This template may contain nothing more than an array of class types. It's that simple! You get
back either the service object itself, or a special object (Ser vi ceMat ches) containing all the services that

matched your template. This process is illustrated in Figures 12-5 and 12-6.

- "
/' Lockup Service
| %

\
1]
.-'l |

!

\S - _____-ff;j:

Serviceltes

. Ecquest Serviceltom

Service Condumer Service Provider

ServiceRegistrar Servicelien

gl :")
Look wp services

Figure 12-5: The Service Consumer uses the local ServiceRegistrar object to look up services that
are registered in the Lookup Service.

"

;'. Lookup Ser\'i-:t\s\

Serviceltem

Servicelt T
Service Consuser e Service Provider |

Serviceltes | Serviceltes

< L |
Figure 12-6: The Serviceltem requested is returned to the Service Consumer and can be used

locally.

Note Though not crucial to understanding how the Service Consumer gets a service, it's useful to
know that a requested service is marshalled on the Lookup Service before being passed to the
Service Consumer. Basically, the service object is flattened and serialized, and then served as a
file to the Service Consumer. Once received, the Service Consumer's JVM unmarshalls the

object into an instantiation of the service object.

Once the Service Consumer has the desired Ser vi cel t em it can use the service locally. "Under the
covers" the service may communicate back to the Service Provider as shown in Figure 12-7.

i Lockup Service \".'I\,
5 1

Serviceltem
! 1 | |

[I,
Service Consumer Service Frovider |

Data and Signals |
. Leriicelten

Servicelten -

&

—
Figure 12-7: Once activated on the Service Consumer, the Service Provider's service may

communicate directly with the Service Provider device as part of the service offered.

Integrating Jini and Bluetooth

Now that you have a clear understanding of the basics of a Jini federation, let's examine the possible
scenarios of what's involved when integrating Jini and Bluetooth together.

All-Bluetooth Jini Federation

As the name implies, in an all-Bluetooth Jini federation, all the devices participating in the federation are
Bluetooth enabled. For such a scenario to take place, the Bluetooth devices must discover each other and
form a piconet. Since a requirement of a Jini federation is that the connections between the devices be
TCP/IP based, the Bluetooth devices in an all-Bluetooth Jini federation would be connecting with either of
the following TCP/IP-based Bluetooth profiles:

m Dial-Up Networking Profile
m LAN Access Profile
m Personal Area Networking Profile

Note Invariably, a manufacturer could make an all-Bluetooth Jini device without providing any of the
preceding Bluetooth profiles in its product. For instance, the manufacturer can satisfy the TCP/IP
requirement by simply implementing the BNEP protocol. The major drawback, however, is that
those devices will be totally incompatible with devices from other manufacturers.

After the piconet has been established and the IP addresses have been assigned, the Jini federation can
be formed. At this point, this federation is just like any other Jini federation. If other Bluetooth devices want
to join the federation, they must first join the piconet, obtain an IP, and then join the Jini federation. Since
the IP network is running over Bluetooth, this federation is wireless. An example of an all-Bluetooth Jini
federation is shown in Figure 12-8.

F Lockup Service \\.
|y

8)

T :
Service Consumer Serwice Frowider I

3 9

< m = =
Figure 12-8: In an all-Bluetooth Jini federation, all the devices participating in the federation must be
Bluetooth enabled. This federation is wireless.

Hybrid Bluetooth Jini Federation

In a hybrid Bluetooth Jini federation, one or more devices are Bluetooth enabled. Note however that all the
devices are physically connected by traditional TCP/IP connections, and the federation is not wireless
(unless the TCP/IP network is WLAN). There are no special precautions that need to be taken care of, so
this federation is formed in the usual manner. Any of the devices in the federation can be Bluetooth
enabled, but it makes sense that either the Service Provider or the Service Consumer have Bluetooth
capability so it can act as a bridge between the Jini federation and an outside Bluetooth piconet elsewhere.
A hybrid Bluetooth Jini federation is shown in Figure 12-9.

- .,

r
__-"' Lookup Service

B

Service Consuser Service Provider
— e

0 0

Figure 12-9: In a hybrid Bluetooth Jini federation, at least one of the devices participating in the
federation must be Bluetooth enabled. This federation is not (necessarily) wireless, and the Jini-
Bluetooth-enabled device acts as a bridge between the Jini federation and an external Bluetooth
piconet.

A Jini-Bluetooth-Enabled Device: The PsiNaptic PsiNode

Dallas Semiconductor has a product line of sensors that can be connected to a two-wire bus (power and
ground) called 1-Wire. They have a Java development platform and reference design called Tiny Internet
Interface (TINI) that includes a 1-Wire interface. PsiNaptic Inc. has combined the TINI chipset with an
Ericsson Bluetooth module in a reference design platform that they have named, PsiNode. The PsiNode
platform is capable of acting as a Jini Lookup Service host and is a perfect solution for creating a low-cost,
small-footprint, remote 1-Wire sensor/controller. A picture of the PsiNode is shown in Figure 12-10.

Figure 12-10: The PsiNode development platform. The Ericsson Bluetooth module is covered by two
metal plates, and is connected to the Dallas Semiconductor TINI microcontroller.

Note Any ordinary TINI device (i.e., a non-Bluetooth-enabled TINI) can function as a Jini Lookup
Service in a Jini federation. PsiNaptic also makes software for this purpose (called JMatos), and
you can get it from their Web site (http://www.psinaptic.com).

http://www.psinaptic.com

The Benefits of Bluetooth and Jini

So what are the advantages of integrating Bluetooth and Jini into devices? In the case of mobile devices,
an all-Bluetooth Jini federation allows devices to form "smarter" networks. A Jini federation allows
Bluetooth devices to interoperate with more flexibility, without being constrained by the limits of Bluetooth
profiles. More importantly, a Jini federation brings to the table the concepts of events, transactions, and
leasing, which allows for more fault-tolerant and robust Bluetooth applications.

In a hybrid Bluetooth Jini federation, Bluetooth devices that are not capable of joining the federation and
using its services can interact with the bridge device and consume the services of the federation.
Conversely, the bridge device can provide wireless services to the Jini federation by interacting with an
external Bluetooth piconet.

Summary

In this chapter, we gave you an overview of the principles and concepts of Jini network technology. We
also presented an overview of the "hows" and "whys" for integrating Bluetooth and Jini together in order to
create some really cool wireless applications. Both Jini and Bluetooth complement each other for creating
networked applications. Jini brings to the table advanced networking capabilities such as leasing and
distributed events, while Bluetooth allows the members of the network to be small, power efficient, and
wireless.

Appendix A: javax.bluetooth

This appendix contains all the fields and method signatures of the classes, interfaces, and exceptions that
comprise the j avax. bl uet oot h package of the JISR-82 API.

Class BluetoothConnectionException

Il fields

static int FAILED NO NFO
static int NO _RESOURCES

static int SECURI TY_BLOCK
static int TIMEOUT

static int UNACCEPTABLE_PARANMS
static int UNKNOAN_PSM

/'l constructors
Bl uet oot hConnecti onException(int error)
Bl uet oot hConnecti onException(int error, java.lang.String nsg)

/1 methods
int getStatus()

Class BluetoothStateException

/'l constructors
Bl uet oot hSt at eExcepti on()
Bl uet oot hSt at eExcepti on(j ava.l ang. Stri ng nsg)

Class DataElement

/1 fields

static int BOOL
static int DATALT
static int DATSEQ
static int INT_1
static int INT_16
static int INT_2
static int INT_4
static int INT_8
static int NULL
static int STRING
static int UINT_1
static int U_INT_16
static int UINT_2
static int UINT_4
static int UINT_8
static int URL
static int UU D

/'l constructors

Dat aEl enent (bool ean bool)

Dat aEl ement (i nt val ueType)

Dat aEl enent (i nt val ueType, |ong val ue)

Dat aEl enent (i nt val ueType, java.l ang. Qbj ect val ue)

/1 methods

voi d addEl enent (Dat aEl enent el en)

bool ean get Bool ean()

i nt get Dat aType()

| ong get Long()

int getSize()

java. |l ang. Obj ect get Val ue()

voi d insertEl enent At (Dat aEl emrent el em int index)
bool ean renoveEl erent (Dat aEl ement el em

Class DeviceClass

/'l constructors
Devi ceCl ass(int record)

/1 methods

i nt get Maj or Devi ceCl ass()
i nt get M norDevi ceCl ass()
i nt get ServiceCl asses()

Class DiscoveryAgent

/1 fields

static int CACHED

static int G AC

static int LIAC

static int NOT_DI SCOVERABLE
static int PREKNOWN

/1 methods
bool ean cancel | nqui ry(Di scoverylListener |istener)
bool ean cancel Servi ceSearch(int translD)
Renot eDevi ce[] retrieveDevices(int option)
int searchServices(int[] attrSet, UU D[] uuidSet, RenpteDevice btDev,
Di scoverylLi stener disclLi stener)
java.lang. String selectService(UUI D uuid, int security, boolean master)
bool ean startlnquiry(int accessCode, DiscoverylListener |istener)

Interface

DiscoveryListener

| NQUI RY_COVPLETED
| NQUI RY_ERRCR

| NQUI RY_TERM NATED

SERVI CE_SEARCH_COVPLETED

SERVI CE_SEARCH_DEVI CE_NOT_REACHABLE
SERVI CE_SEARCH_ERROR

SERVI CE_SEARCH_NO_RECORDS

SERVI CE_SEARCH_TERM NATED

devi ceDi scover ed(Renpt eDevi ce bt Devi ce, Devi ceCl ass cod)
i nqui ryConpl et ed(i nt di scType)
servi cesDi scovered(int transl D, ServiceRecord[] servRecord)

/1 fields
static int
static int
static int
static int
static int
static int
static int
static int
/'l nmet hods
voi d

voi d

voi d

voi d

servi ceSearchCompl eted(int transl D, int respCode)

Interface L2ZCAPConnection

/] fields
static int DEFAULT_MIU
static int M N MUM MIU

/1 methods

i nt getRecei veMIy()

int getTransm t MIU()

bool ean ready()

int receive(byte[] inBuf)
voi d send(byte[] data)

Interface L2ZCAPConnectionNotifier

/1 method
L2CAPConnecti on accept AndOpen()

Class LocalDevice

/1 methods

java.l ang. String get Bl uet oot hAddr ess()

Devi ceC ass get Devi ceCl ass()

i nt getDi scoverabl e()

Di scover yAgent get Di scoveryAgent ()

java.lang. String getFriendl yName()

static Local Devi ce getLocal Devi ce()

static java.lang. String getProperty(java.lang.String property)
Servi ceRecord get Record(javax. m croedition.io.Connection notifier)
bool ean set Di scoverabl e(i nt node)

voi d updat eRecor d(Servi ceRecord srvRecord)

Class RemoteDevice

/1 constructor
prot ect ed RenoteDevi ce(java.l ang. String address)

/1 methods

bool ean aut henti cate()

bool ean aut hori ze(javax. m croedition.io.Connection conn)

bool ean encrypt (j avax. m croedition.io.Connection conn, bool ean on)
bool ean equal s(j ava.l ang. Obj ect obj)

java.l ang. String get Bl uet oot hAddr ess()

java.l ang. String getFri endl yNane(bool ean al waysAsk)

static Renpot eDevi ce get Renot eDevi ce(j avax. nmi croedition.io.Connection conn)
i nt hashCode()

bool ean i sAut henti cat ed()

bool ean i sAut hori zed(javax. m croedition.io.Connection conn)

bool ean i sTrust edDevi ce()

Interface ServiceRecord

Il fields

static int AUTHENTI CATE_ENCRYPT
static int AUTHENTI CATE_NOENCRYPT
static int NOAUTHENTI CATE_NCENCRYPT

/1 methods

int[] getAttributel Ds()

Dat aEl ement get Attri buteVal ue(int attrl D)

java.l ang. String get Connecti onURL(int requiredSecurity, bool ean must BeMast er)
Renot eDevi ce get Host Devi ce()

bool ean popul ateRecord(int[] attrlDs)

bool ean setAttributeValue(int attrl D, DataEl ement attrVal ue)

voi d set Devi ceServi ceC asses(int classes)

Class ServiceRegistrationException

/'l constructors
Servi ceRegi strati onException()
Servi ceRegi strati onException(java.lang. String nsg)

Class UUID

/'l constructors
UUI D(1 ong uui dVal ue)
UUI D(j ava. | ang. Stri ng uui dVal ue, bool ean short UUl D)

/1 methods

bool ean equal s(j ava.l ang. Obj ect val ue)
i nt hashCode()

java.lang. String toString()

Appendix B: javax.obex

This appendix contains all the fields and method signatures of the classes, interfaces, and exceptions that
comprise the j avax. obex package of the JSR-82 API.

Interface Authenticator

/1 methods

Passwor dAut henti cati on onAut henticati onChal |l enge(java.l ang. String description,
bool ean i sUser| dRequi red, bool ean isFul |l Access)

byte[] onAuthenticati onResponse(byte[] user Nane)

Interface ClientSession

/1 methods

Header Set connect (Header Set header s)
Header Set creat eHeader Set ()

Header Set del et e(Header Set headers)
Header Set di sconnect (Header Set headers)
Operati on get (Header Set headers)

| ong get Connecti onl D()

Operati on put (Header Set headers)

voi d set Aut henti cat or (Aut henti cat or aut h)
voi d set Connectionl D(l ong id)

Header Set set Pat h(Header Set headers, bool ean backup, bool ean create)

Interface HeaderSet

/1 fields

static int APPLI CATI ON PARAMVETER
static int COUNT

static int DESCRIPTI ON
static int HTTP

static int LENGTH

static int NAME

static int OBJECT_CLASS
static int TARGET

static int TIME_4_BYTE
static int TIME_I SO 8601
static int TYPE

static int WHO

/'l nmet hods

voi d creat eAut henti cati onChal |l enge(java.lang. String realm bool ean userl D
bool ean access)

java. |l ang. Obj ect get Header (i nt header| D)

int[] getHeaderlList()

i nt get ResponseCode()

voi d set Header (i nt header| D, java.lang. Object header Val ue)

Interface Operation

/1 methods

voi d abort ()

Header Set get Recei vedHeader s()
i nt get ResponseCode()

i nt get ResponseCode()

Class PasswordAuthentication

/1 constructor
Passwor dAut henti cati on(byte[] userNane, byte[] password)

/1 methods
byte[] getPassword()
byte[] getUserNane()

Class ResponseCodes

[fi
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati

o
o
»

OO0 0000000000000 000000000000000000O0O0O0O0O0

>0 5 533 3033303309303 3 03035305 333 0335 0335 05 305 0SS 05 IS S
— + =+ ~+ ~+ + + ~+ ~+ + + ~+ ~+ + + ~+ ~+ + + ~+ ~+ &+ + ~+ ~+ + + ~+ ~+ &+ + ~+ ~+ &+ ~+ ~+ ~+

OBEX_DATABASE_FULL
OBEX_DATABASE_L OCKED
OBEX_HTTP_ACCEPTED
OBEX_HTTP_BAD_GATEWAY
OBEX_HTTP_BAD_METHOD
OBEX_HTTP_BAD_REQUEST
OBEX_HTTP_CONFLI CT
OBEX_HTTP_CREATED
OBEX_HTTP_ENTI TY_TOO_LARGE
OBEX_HTTP_FORBI DDEN
OBEX_HTTP_GATEWAY_TI MEOUT
OBEX_HTTP_GONE

OBEX_HTTP_I NTERNAL_ERROR
OBEX_HTTP_LENGTH_REQUI RED
OBEX_HTTP_MOVED PERM
OBEX_HTTP_MOVED _TEMP
OBEX_HTTP_MULT_CHO CE
OBEX_HTTP_NO_CONTENT
OBEX_HTTP_NOT_ACCEPTABLE
OBEX_HTTP_NOT_AUTHORI TATI VE
OBEX_HTTP_NOT_FOUND
OBEX_HTTP_NOT_| MPLEMENTED
OBEX_HTTP_NOT_MODI FI ED
OBEX_HTTP_OK
OBEX_HTTP_PARTI AL
OBEX_HTTP_PAYMENT REQUI RED
OBEX_HTTP_PRECON_FAI LED
OBEX_HTTP_PROXY_AUTH
OBEX_HTTP_REQ TOO LARGE
OBEX_HTTP_RESET
OBEX_HTTP_SEE_OTHER
OBEX_HTTP_TI MEOUT
OBEX_HTTP_UNAUTHORI ZED
OBEX_HTTP_UNAVAI LABLE
OBEX_HTTP_UNSUPPORTED_TYPE
OBEX_HTTP_USE_PROXY
OBEX_HTTP_VERSI ON

Class ServerRequestHandler

/1 constructor
protected Server Request Handl er ()

/1 methods

Header Set creat eHeader Set ()

| ong get Connecti onl D()

voi d onAut henti cati onFail ure(byte[] userNane)

i nt onConnect (Header Set request, Header Set reply)

i nt onDel et e(Header Set request, HeaderSet reply)

voi d onDi sconnect (Header Set request, Header Set reply)
int onGet (Operation op)

i nt onPut (Operation op)

i nt onSet Pat h(Header Set request, HeaderSet reply, bool ean backup, bool ean create
voi d set Connectionl D(l ong id)

Interface SessionNotifier

/1 methods

javax. m croedition.io.Connection accept AndOpen(Server Request Handl er handl er)

javax. m croedition.io.Connection accept AndOpen(Server Request Handl er handl er,
Aut hent i cat or aut h)

Appendix C: Java Bluetooth Development on the
PalmOS Platform

The purpose of this appendix is to demonstrate how to get started using the Impronto Developer Kit 1.0 for
PalmOS (the Palm DK).

Note For more updated information, please consult the Palm DK user guides.

Supported Bluetooth Protocols

The Palm DK supports the following Bluetooth protocols:
s RFCOMM
m L2CAP
m SDP

m OBEX

System Req uirements
Here are the system requirements for the Palm DK:
m Pentium-based PC with at least 64MB of RAM
m Microsoft Windows 2000 service pack 1 (or higher)
= Minimum 35MB of free disk space
m JDK1.3.1
m PalmOS device with PalmOS 4.0 (or higher)
m Palm Bluetooth SDIO card (or) Sony Bluetooth Memory Stick

Now, developing ordinary, stand-alone Java applications on the PalmOS can be a little cumbersome
because you need to create your application, compile it, build a PRC, and deploy (i.e., HotSync) it on the
PDA. It gets even more cumbersome if you develop wireless Java applications because you'll need to
create two applications (client and server code) and deploy to two PDAs. Because of this, it is highly
recommended that you also get the following:

m PalmOS emulator 3.5, with PalmOS 4.0 ROM (or higher) and Palm's Bluetooth stack
m TDK Bluetooth Palm Developers Kit (includes TDK Bluetooth hardware).

This configuration is shown in Figure C-1.

o

Figure C-1: With the TDK Bluetooth Developer's Kit and the PalmOS emulator, you can develop,
deploy, and test your Java Bluetooth applications all within the environment of your development
machine.

Included Software

The following items are included in the Impronto Developer Kit 1.0 for PalmOS:
m IBM WebSphere Micro Environment for PalmOS (the J9 KVM)
m Apache ANT build tool
m Java Bluetooth APIs

m Demo applications

Installation

Installation is pretty simple. In order to run the installer, just execute devki t . exe, and follow the on-
screen instructions. The installation of the Impronto Developer Kit will also install WebSphere Micro
Environment.

To complete your installation, install the necessary .prc files on your PDA. The Impronto Developer Kit
files are

m jdev_nidp_j9.prc
m idev_racs.prc
m idev_utils.prc
m idev_wrap.prc

The J9 VM .prcs are named
m cdlcl5. prc
= j9_vmbundle.prc
m j9pref.prc
m m dpl5. prc

After you have completed your installation, verify that everything is correct by running the sample
application:M DP- Chat . A screenshot of this application is shown in Figure C-2.

Figure C-2: The MIDP-Chat application

Appendix D: BlipNet 1.1 API

This appendix, presented here with permission from Ericsson, contains descriptions of all the fields and
method signatures of the classes, interfaces, and exceptions that comprise the BlipNet 1.1 AP1.[]

Note For more information about BlipNet, see http://www.ericsson.com/blipnet.

Class BlipNeticons

public class BlipNetlcons extends java.lang. Qbj ect

/ | Package
com ericsson. blipnet.api.util

/1 Fields

static int BLI PMANAGER | CON

static int BLI PNODE_ALARM | CON
static int BLIPNODE_|I CON

static int BLIPNODE_LOCKED | CON
static int BLI PNODE_NOT_WORKI NG | CON
static int BLI PNODE_ SWJPGRADE | CON
static int BLI PSERVER | CON

static int COVPUTER_DESKTOP_| CON
static int COVPUTER_LAPTOP_I CON
static int COVPUTER PDA | CON
static int COVWUTER_SERVER | CON
static int LAN_ACCESS AVAIL_I CON
static int PHONE CELLULAR | CON
static int PHONE_SMARTPHONE_I CON
static int SESSION_LAP_I CON

static int SESSI ON_OPP_I CON

static int UNKNOWN_DEVI CE_| CON

/| Met hods

static getlcon(ClassOfDevice classOf Devi ce, bool ean javax.sw ng. | magel con
| ar gel con)

Returns an | magel con illustrating the specified Class of Device.

static javax.sw ng.|lmgelcon getlcon(int iconld, boolean |argelcon)

Returns al nagel con.
Copyright © L.M. Ericsson A/S, Bluetooth Networks

http://www.ericsson.com/blipnet

Interface BlipNode

public interface BlipNode extends java.io.Serializable

ABIl i pNode object contains information about a BlipNode.

/ | Package
com ericsson. blipnet. api.blipserver

/1 Met hods
java.lang. String getBlipNodeFriendl yNanme()

Returns the friendly name of the BlipNode.

java.l ang. String getBli pNodeG oupConfi gurati onNane()

Returns the Configuration group of the BlipNode.

java.lang. String getBli pNodeG oupName()

Returns the group name of the BlipNode.

Bl uet oot hAddr ess get Bl i pNodel IX)

Returns the Bluetooth device address of the BlipNode.

java.l ang. String getBlipNodel P()

Returns the IP address of the BlipNode.

java.lang. String getUser ()

Returns the user of the BlipNode if it was reserved at the time this BlipNode object was created.

bool ean i sBl i pNodeConnect ed()

Checks whether the BlipNode is connected to the server at the time this BlipNode object was created.

Interface BlipNodeCause

public interface BlipNodeCause

This interface defines the cause values returned in BlipNode events.

/ | package
com ericsson. blipnet.api.blipnode

/] Fields
static int CAUSE_BASEBAND ERROR

Baseband error in BlipNode.

static int CAUSE_BLI PNODE_BLI PSERVER PROTOCOL_ERROR

BlipNode-BlipServer protocol error.

static int CAUSE_DHCP_ERROR LAP

DHCP error (LAN Profile).

static int CAUSE_HOST_STACK ERROR

Host stack error.

static int CAUSE HOST_TI MEOQUT

Host timeout.

static int CAUSE_I NSUFFI Cl ENT_TERM NAL_CAPABI LI Tl ES

Insufficient terminal capabilities.

static int CAUSE_| NTERNAL_ERROR

Signifies an internal error in the BlipNode which causes a reboot.

static int CAUSE_LOSS OF_SI GNAL

Loss of signal.

static int CAUSE_MAX_CONNECTI ONS_REACHED

Max connections reached.

static java.lang. String[] CAUSE NAMES

Friendly names for the cause values.

static int CAUSE_PAGE_TI MEOUT

Page timeout.

static int CAUSE_RELAY_ AGENT TO DHCP_CLI ENT_SW TCH

Relay Agent/DHCP Client switch (rebooting).

static int CAUSE_SESSI ON_NOT_CREATED

Session not created.

static int CAUSE_SYSTEM ENDED_CONNECTI ON

System ended connection.

static int CAUSE_UNEXPECTED_TERM NAL_BEHAVI OR

Unexpected terminal behavior.

static int CAUSE_USER _ENDED_CONNECTI ON

User ended connection.

Interface BlipNodeEvent

public interface BlipNodeEvent extends Event

An event which indicates that a BlipNode-related action occurred in the server.

/ | Package
com ericsson. bl i pnet. api . event

/| Met hods
bool ean equal s(j ava.l ang. Obj ect obj)

Returns true if content of object is equal to this.

java.lang. String get Applicati onNanme()

Returns the name of the user/application which has (un)locked the Bl i pNodeHandI e for the BlipNode
specified in this event.

java.lang. String getBli pNodeFri endl yNane()

Returns the friendly name of the BlipNode which initiated this event.

java.l ang. String getBlipNodel P()

Returns the IP address of the BlipNode which initiated this event.

java.lang. String getBli pNodeSof t war eVer si on()

Returns the software version of the BlipNode which initiated this event.

int get Cause()

Returns the cause of the event.

Interface BlipNodeHandle

public interface BlipNodeHandl e

ABIl i pNodeHandl e provides an application access to a physical BlipNode. A Bl i pNodeHandl e is
obtained through a Bl i pSer ver Connecti on.

When an application has acquired a Bl i pNodeHandl e, that application has exclusive access to the
physical BlipNode until the handle is released by callingr el ease() .

If the BlipNode disconnects from the server, the handle will be released by the server causing a
Bl i pNodeHandl eRel easedExcept i on to be thrown when an application tries to use the handle.

/ | Package
com ericsson. blipnet.api.blipnode

/ | Met hods
voi d addToBl i pNodeDenyLi st (Bl uet oot hAddress terninal | D)

Adds the specified device ID to the local deny list on this BlipNode.

voi d addTol nqui ryFilter (Bl uet oot hAddress terminall D, int tineout)

Adds the specified terminal to the inquiry filter in this BlipNode.

voi d changel nqui ryLengt h(i nt inquiryLength)

Dynamically configures the length of time (in units of 1.28 s) in which the BlipNode performs inquiry before
restarting inquiry or switching to Scan.

voi d changelLi nkEst abl i shnent Mode(bool ean
automati cLi nkEst abl i shnment On, bool ean nanmeLookupOn)

Dynamically switch the BlipNode in and out of automatic link establishment mode.

voi d changeScanLengt h(i nt scanLength)

Dynamically configures the length of time (in units of 1.28 s) in which terminals are able to detect the
BlipNode during inquiry or paging.

voi d changeScanMbde(ScanMbde scanhbde)

Dynamically changes the Scan mode on the BlipNode.

voi d cl ear Bl i pNodeDenyLi st ()

Clears the local deny list on this BlipNode.

voi d di sconnect Li nk(Bl uet oot hAddress termnal I D, int inquiryFilterTine)

Disconnects the specified terminal from this BlipNode if it is connected.

voi d establi shLi nk(Bl uet oot hAddress termninall D, C assCfDevice tern nal COD)

Attempts to establish a link to the specified terminal.

voi d establ i shLi nk(PageData p)

Attempts to establish a link to the terminal specified in the paging data.

voi d exchangeBusi nessCar ds(Bl uet oot hAddress terni nal | D)

Initiates a business card exchange between the specified terminal and the BlipNode if the terminal is
connected to the BlipNode.

Li nk[] get Acti veLi nks()

Returns alist of links that are currently active on the BlipNode.

Bl uet oot hAddr ess[] get Bl i pNodeDenyLi st ()

Retrieves a list of terminals in this BlipNode's deny list.

Bl uet oot hAddr ess get Bl i pNodel IX)

Returns the Bluetooth device address of the BlipNode connected to this handle.

voi d pul | Busi nessCar d(Bl uet oot hAddress terninal | D)

Attempts to pull the business card from the specified terminal.

voi d push(ObexPushObj ect pushObj ect, Bl uetoothAddress term nallD)

Pushes the specified object to the specified terminal if it is connected to the BlipNode.

voi d push(ObexPushObj ect pushObj ect, Bl uet oot hAddress termninallD,
QbexPr ogressLi stener |istener)

Pushes the specified object to the specified terminal if it is connected to the BlipNode.

voi d pushBusi nessCar d(Bl uet oot hAddress term nal | D)

Pushes this BlipNode's business card to the specified terminal if the terminal is connected to the BlipNode.

voi d rel ease()

Releases the Bl i pNodeHandl e for use by other applications.

voi d renmoveFronBl i pNodeDenyLi st (Bl uet oot hAddress term nal | D)

Removes the specified device from the local deny list on this BlipNode.

voi d renpoveSessi on(Bl uet oot hAddress term nal | D, Session sessionType)

Removes the specified session from this BlipNode if the session exists.

voi d set Bl i pNodeDenyLi st (Bl uet oot hAddress[] termninall Ds)

Sets the local deny list on this BlipNode to the specified list.

voi d setBusi nessCard(java.lang. String busi nessCard)

Configures the business card of this BlipNode.

Class BlipNodeHandlelInUseException

public final class BlipNodeHandl el nUseExcepti on extends Bl i pServer Exception

Thrown by Bl i pSer ver Connect i on when an application attempts to get a handle for a BlipNode which
is already used by another application.

/ | Package
com ericsson. blipnet.api.blipnode

/I Constructors

Bl i pNodeHandl el nUseExcepti on()

Bl i pNodeHandl el nUseException(java.l ang. String s)
Bl i pNodeHandl el nUseException(java.l ang. String s,
j ava. |l ang. Throwabl e e)

Class BlipNodeHandleReleasedException

public final class BlipNodeHandl eRel easedExcepti on extends
Bl i pServer Excepti on

Thrown by Bl i pNodeHandl e when an application attempts to execute a method on a released
Bl i pNodeHandl e.

The handle may have been released either by the application itself or by the server (due to a reboot of the
BlipNode).

/ | Package
com ericsson. blipnet. api.blipnode

/] Constructors

Bl i pNodeHandl eRel easedExcepti on()

Bl i pNodeHandl eRel easedExcepti on(java.lang. String s)
Bl i pNodeHandl eRel easedException(java.lang. String s,
java. | ang. Throwabl e €)

Class BlipNodeNotConnectedException

public final class BlipNodeNot Connect edException extends
Bl i pServer Excepti on

Thrown by a Bl i pSer ver Connect i on when an application tries to get a Bl i pNodeHand| e for a
BlipNode which is not connected to the server.

/ | Package
com ericsson. blipnet.api.blipnode

/I Constructors

Bl i pNodeNot Connect edExcepti on()

Bl i pNodeNot Connect edExcepti on(java.l ang. String s)
Bl i pNodeNot Connect edExcepti on(j ava.l ang. String s,
j ava. |l ang. Throwabl e e)

Class BlipServer

public final class BlipServer extends java.lang. Obj ect

Factory class for getting Bl i pSer ver Connecti ons.

/ | Package
com ericsson. blipnet. api.blipserver

/[Constructors
Bl i pServer ()

/| Met hods
static get Connection(java.lang. String usernane, BlipServerConnection
java.lang. String password, java.lang.String serverHost)

Returns a Bl i pSer ver Connect i on to the specified server using default values for port number and
service name.

static get Connection(java.lang. String usernane, BlipServerConnection
java.lang. String password, java.lang.String serverHost, int serverPort,
java.lang. String server Servi ceNane)

Returns aBl i pSer ver Connect i on to the specified server.

Class BlipServerAccessException

public class BlipServer AccessExcepti on extends BlipServerException

Thrown by a Bl i pSer ver Connect i on when an application tries to access the server with invalid
username or password. The reason for denying access can be wrong username/password or access from
a host other than the host associated with this account.

/ | Package
com ericsson. blipnet. api.blipserver

/I Constructors
Bl i pServer AccessException(java.lang. String s)
Bl i pServer AccessException(java.lang. String s, java.lang. Throwabl e e)

Interface BlipServerConnection

public interface BlipServerConnection

ABIl i pSer ver Connecti on is used to attach BlipNode event listeners to the server, and to get handles
for connected BlipNodes.

/ | Package
com ericsson. blipnet. api.blipserver

/| Met hods
voi d addEvent Li st ener (Bl i pServer Event Li stener |i stener)

Adds the specified listener to the BlipServer.

voi d addEvent Li st ener (Bl i pServer Event Li stener 1i stener,
Bl i pServerEventFilter filter)

Adds the specified listener to the BlipServer.

java.lang. String[] getBlipNodeConfigurationG oupNanes()

Returns alist of the configuration names which are currently defined in the server.

java.lang. String[] getBli pNodeG oupNanes()

Returns a list of BlipNode group names which are currently defined in the server.

Bl i pNodeHandl e get Bl i pNodeHandl e(Bl uet oot hAddr ess bl i pNodel D)

Returns a handle to the BlipNode with the specified ID if it is connected to the server, or null if the
BlipNode is not connected or the handle is already in use by another application.

Bl i pNodeHandl e get Bl i pNodeHand|l eFr onGroup(j ava. |l ang. String bl i pNodeG oupNane)

Returns a handle to the first available BlipNode from the specified BlipNode group.

Bl i pNode[] getBli pNodes(java.lang. String groupNane, java.l ang. String
bl i pNodeG oupConfi gurati onNane, bool ean i ncl udeReser vedBl i pNodes,
bool ean i ncl udeDi sconnect edBl i pNodes)

Returns a list of BlipNodes which match the specified criteria.

Bl uet oot hAddr ess get Connect edBl i pNode(Bl uet oot hAddr ess terni nal | D)

Returns the Bluetooth device address of the BlipNode to which the specified terminal is connected.

Bl uet oot hAddr ess[] get Connect edTer m nal s()

Returns a list of terminals currently connected to the server.

byte[] get CbhexCbject(java.io.File file)

Returns the contents of the specified file if the file is found on the server.

voi d rel easeBl i pNodeHandl e(Bl uet oot hAddr ess bl i pNodel D)

Releases the handle to the specified BlipNode if the handle was reserved by this user.

voi d renmoveEvent Li stener (Bl i pServer Event Li st ener |i stener)

Removes the specified listener from the server.

Class BlipServerConnectionException

public final class BlipServerConnecti onException extends
Bl i pServer Excepti on

Thrown by a Bl i pSer ver Connect i on if the connection to the server is lost.

/ | Package
com ericsson. blipnet. api.blipserver

/I Constructors
Bl i pServer Connecti onException(java.lang. String s, java.lang. Throwabl e e)

Class BlipServerEventAdapter

public abstract class BlipServerEvent Adapter extends java.lang. Object
i npl enents Bl i pServer Event Li st ener

An abstract adapter class for receiving events from the BlipServer. The methods in this class are empty.
The class exists as convenience for creating listener objects which only listens to a certain class of events.

/'l package

com ericsson. bl i pnet. api . event
/I Constructors

Bl i pServer Event Adapt er ()

/ | Met hods
voi d handl eBl i pNodeEvent (Bl i pNodeEvent e)

Called by the BlipServer event dispatcher when a Bl i pNodeEvent occurs.

voi d handl eConnecti onEvent (Connecti onEvent e)

Called by the BlipServer event dispatcher when a Connect i onEvent occurs.

voi d handl eCbexEvent (CbexEvent e)

Called by the BlipServer event dispatcher when an CbhexEvent occurs.

Class BlipServerEventFilter

public final class BlipServerEventFilter extends java.lang. Obj ect
i npl ements java.io. Serializable

This class is used to filter notification of events for client applications which implement
Bl i pServer Event Li st ener.

/ | Package
com ericsson. bl i pnet. api . event

/I Constructors
Bl i pServerEventFilter(int[] eventC asses, int[] eventlDs,
Bl uet oot hAddr ess[] bl i pNodel Ds, Bl uetoot hAddress[] ternmninallDs)

Constructs a Bl i pServer EventFil ter.

/I Met hods
bool ean cont ai ns(Event event)

Checks whether the listener attached to this filter should be notified of the specified event.

bool ean cont ai nsBl i pNodel D(Bl uet oot hAddr ess bl i pNodel D)

Checks whether the specified BlipNode ID isincluded in this filter.

bool ean contai nsEvent Cl ass(i nt event Cl ass)
bool ean contai nsEvent | D(int eventl D)
bool ean cont ai nsTerni nal | D(Bl uet oot hAddr ess term nal | D)

Checks whether the specified terminal ID is included in this filter.

Bl uet oot hAddr ess[] get Bl i pNodel Ds()

Returns a copy of the bl i pNodel Ds of the Bl i pServer EventFil ter.

int[] getEventd asses()

Returns a copy of the event Cl asses ofthe Bl i pServer EventFilter.

int[] getEventl Ds()

Returns a copy of the event Types ofthe Bl i pServer EventFilter.

Bl uet oot hAddress[] get Terni nal | Ds()

Returns acopy ofthet er mi nal | Ds of the Bl i pServer EventFilter.

Interface BlipServerEventListener

public interface BlipServerEventListener

This interface should be implemented by client classes wishing to listen to events generated by the
BlipServer.

/ | Package
com ericsson. bl i pnet. api . event

/| Met hods
voi d handl eBl i pNodeEvent (Bl i pNodeEvent e)

Called by the BlipServer event dispatcher when a Bl i pNodeEvent occurs.

voi d handl eConnecti onEvent (Connecti onEvent e)

Called by the BlipServer event dispatcher when a Connect i onEvent occurs.

voi d handl eCbexEvent (CbexEvent e)

Called by the BlipServer event dispatcher when an CbhexEvent occurs.

Class BlipServerException

public class BlipServerException extends java.l ang. Exception

Superclass for all exceptions which can be thrown by the BlipServer.

/ | Package
com ericsson. blipnet. api.blipserver

/] Constructors

Bl i pServer Excepti on()

Bl i pServer Exception(java.lang. String s)

Bl i pServer Exception(java.lang. String s, java.lang. Throwabl e e)

Class BluetoothAddress

public final class Bl uetoothAddress extends java.l ang. Cbject inplenents
java.io. Serializable

TheBl uet oot hAddr ess class models a Bluetooth Device Address (BD_ADDR). This is a 48 bit unsigned
integer, often written in hexadecimal.

Objects of the Bl uet oot hAddr ess class are immutable—once created they cannot change.

This class provides the equals and hashCode methods for use in connection with the Col | ecti on
classes.

/ | Package
com ericsson. blipnet. api. Bl uetooth

/] Constructors
Bl uet oot hAddr ess(byt e[] bl uet oot hAddr ess)

Constructs a Bl uet oot hAddr ess object from a byte[].

Bl uet oot hAddr ess(j ava. |l ang. Stri ng bl uet oot hAddr ess)

Constructs a Bl uet oot hAddr ess objectfrom a St ri ng.

/I Met hods
bool ean equal s(j ava. |l ang. bj ect obj)

Compares this Bl uet oot hAddr ess with an Obj ect and returns true if they are equal.

byte[] getBytes()
i nt hashCode()

Returns a hashCode for this Bl uet oot hAddr ess.

java.lang. String toString()

Returns a St ri ng representation of this Bl uet oot hAddr ess.

Class ClassOfDevice

public final class C assOfDevice extends java.l ang. Cbject inplenents
java.io. Serializable

TheCl assOf Devi ce class models a class of device. This is a 24 bit unsigned integer, often written in
hexadecimal.

Objects of the Cl assOf Devi ce class are immutable—once created they cannot change.
This class provides the equals and hashCode methods for use in connection with the Col | ecti on

classes.

/ | Package
com ericsson. blipnet. api. Bl uetooth

/| Fields

static java.lang. String AV

static java.lang. String AV_CAMCORDER

static java.lang. String AV_CAR_AUDI O

static java.lang. String AV_GAM NG TOY

static java.lang. String AV_HANDS_ FREE

static java.lang. String AV_HEADPHONES

static java.lang. String AV_HEADSET

static java.lang. String AV_HI FI

static java.lang. String AV_LOUDSPEAKER

static java.lang. String AV_M CROPHONE

static java.lang. String AV_PORTABLE_AUDI O
static java.lang. String AV_SET_TOP_BOX

static java.lang. String AV_SHORT

static java.lang. String AV_VCR

static java.lang. String AV_VI DEO CAMERA

static java.lang. String AV_VI DEO CONF

static java.lang. String AV_VI DEO DI SPLAY
static java.lang. String AV_VI DEO MONI TOR
static java.lang. String BLI PNODE_CLASS OF DEVI CE
static java.lang. Stri ng COWUTER

static java.lang. String COMPUTER _DESKTOP
static java.lang. Stri ng COVWUTER_HANDHELD
static java.lang. String COVPUTER LAPTOP

static java.lang. Stri ng COWUTER_PALM SI ZED
static java.lang. String COWPUTER_SERVER CLASS
static java.lang. String COMPUTER_SHORT

static java.lang. Stri ng COWUTER _WEARABLE
static java.lang. String | MAG NG

static java.lang. String | MAG NG_CAMERA

static java.lang. String | MAG NG DI SPLAY

static java.lang. String | MAG NG PRI NTER

static java.lang. String | MAG NG_SCANNER

static java.lang. String | MAG NG_SHORT

static java.lang. String LAN_ACCESS PO NT
static java.lang. String LAN_ACCESS_ PO NT_FI FTH
static java.lang. String LAN_ACCESS_PO NT_FI RST
static java.lang. String LAN_ACCESS PO NT_FOURTH

static java.lang. String LAN _ACCESS PO NT_FULLY
static java.lang. String LAN_ACCESS_ PO NT_NO_SERVI CE
static java.lang. Stri ng LAN_ACCESS PO NT_SECOND
static java.lang. String LAN_ACCESS PO NT_SHORT
static java.lang. String LAN _ACCESS PO NT_SI XTH
static java.lang. String LAN_ACCESS PO NT_THI RD
static java.lang. String PERI PHERAL

static java.lang. String PERI PHERAL COVBO

static java.lang. String PERI PHERAL_DI d Tl ZER
static java.lang. Stri ng PERI PHERAL GAMEPAD
static java.lang. String PERI PHERAL_ JOYSTI CK
static java.lang. Stri ng PERI PHERAL KEYBOARD
static java.lang. Stri ng PERI PHERAL PO NTI NG_DEV
static java.lang. String PERI PHERAL REMOTE
static java.lang. Stri ng PERI PHERAL SENSI NG DEV
static java.lang. String PERI PHERAL SHORT

static java.lang. Stri ng PHONE

static java.lang. Stri ng PHONE CELLULAR

static java.lang. Stri ng PHONE_CORDLESS

static java.lang. String PHONE | SDN

static java.lang. String PHONE SHORT

static java.lang. String PHONE_SI MCARD

static java.lang. Stri ng PHONE_ SMART_PHONE
static java.lang. Stri ng PHONE W RED

static java.lang. String UNKNOMN

static java.l ang. String UNKNOAN_SHORT

/] Constructors

Cl assOf Devi ce(bool ean | imtedDi sc, bool ean positioning, boolean networking,
bool ean rendering, bool ean capturing, boolean objectTransfer, bool ean audio,
bool ean tel ephony, bool ean information, java.lang.String majorClass,
java.lang. String m norC ass)

Constructs a Cl assCOf Devi ce object.

C assO Devi ce(byte[] classOf Devi ce)

Constructs a Cl assCOf Devi ce object from a byte][].

O assO Devi ce(java. lang. String cl assOf Devi ce)

Constructs a Cl assCf Devi ce object from a string.

/ | Met hods
bool ean equal s(j ava.l ang. Obj ect obj)

Compares this Cl assCOf Devi ce with an Obj ect and returns true if they are equal.

byte[] getBytes()

Returns the byte representation of this Cl assOf Devi ce object.

int getlconld()

Returns the Icon Id for the Class of Device.

java.l ang. String get Mpaj or TypeText ()

Returns the Class of Device Maj or type as a Long text description.

java.l ang. String get Mpaj or TypeText (bool ean | ongText)

Returns the Class of Device Maj or type as a text description.

java.lang. String get M nor TypeText ()

Returns the Class of Device M nor type as a text description.

i nt hashCode()

Returns ahashCode for this Class Of Device.

bool ean i sAudi 0Set ()

Examines the Audio bit of the Class Of Device.

bool ean i sCapturingSet ()

Examines the Capturing bit of the Class Of Device.

bool ean i sl nfornationSet ()

Examines the Information bit of the Class Of Device.

bool ean i sLim tedD scoverabl eSet ()

Examinesthe Limited Discoverable bit of the Class Of Device.

bool ean i sNetwor ki ngSet ()

Examines the Networking bit of the Class Of Device.

bool ean i sCbj ect Transf er Set ()

Examines the Object Transfer bit of the Class Of Device.

bool ean i sPositioni ngSet ()

Examines the Positioning bit of the Class Of Device.

bool ean i sRenderi ngSet ()

Examines the Rendering bit of the Class Of Device.

bool ean i sTel ephonySet ()

Examines the Telephony bit of the Class Of Device.

java.lang. String toString()

Returns a St r i ng representation of this Class Of Device.

Interface ConnectionEvent

public interface Connecti onEvent extends Event

An event indicating that a connection-related action has occurred in the server.

/ | Package
com ericsson. bl i pnet. api . event

/| Met hods
bool ean equal s(j ava.l ang. Obj ect obj)

Returns true if content of object is equal to this.

i nt get Cause()

Returns the cause of this event.

i nt get Sessi onType()

Returns the type of session that this event is related to.

Short Uui d[] get Short UUI Ds()

Returns an array of short UUIDs representing the services supported by the terminal to which this event is
related.

java.lang. String get Terni nal C assCf Devi ce()

Returns the class of device of the terminal to which this event is related.

java.l ang. String get Term nal Fri endl yNanme()

Returns the friendly name of the terminal to which this event is related.

Bl uet oot hAddr ess get Term nal | ()

Returns the Bluetooth device address of the terminal to which this event is related.

java.lang. String getTerninall P()

Returns the IP address of the terminal to which this event is related.

Class EricssonMelody

public final class EricssonMel ody extends java.lang. Object inplenments
CbexPushObj ect

AnObexPushObj ect implementation of an Ericsson Melody. This class wraps the given melody string in
a format understandable by an Ericsson Mohile Phone.

/ | Package
com ericsson. bl i pnet. api . obex. pushobj ect s

/] Constructors
Eri cssonMel ody(j ava. |l ang. Stri ng mrel ody)

Constructs an Ericsson Melody push object with a default name (NONAME.EMY).

Eri cssonMel ody(j ava.l ang. String nel ody, java.lang. String nane)

Constructs an Ericsson Melody push object with the name specified.

/I Met hods
byte[] get CbexBody()

Returns the body of this CbexPushQbj ect .

java.l ang. String get ChexNane()

Returns the name of this ChexPushObj ect .

java.l ang. String get ChexType()

Returns the mime-type of this ChexPushCbj ect .

Interface Event

public interface Event extends java.io.Serializable

The superclass of all events. This interface defines common event methods and contains event ID
definitions for all events.

/ | Package
com ericsson. bl i pnet. api . event

/] Fields
static int BLI PNODE_ALARM

Indicates that a critical condition has occurred in a BlipNode connected to the server.

static int BLIPNODE_DEREG STERED

Indicates that a BlipNode has disconnected from the server.

static int BLI PNODE_EVENT

Event class of BlipNode-related events.

static int BLI PNODE LOCKED

Indicates that an application has acquired the lock on a BlipNode.

static int BLI PNODE_REQ STERED

Indicates that a BlipNode has connected to the server.

static int BLI PNODE_RELEASED

Indicates that an application has released its lock on a BlipNode.

static int BLI PNODE_STARTUP_FAI LED

Indicates that a BlipNode attempted to connect to the server, but the startup failed for some reason.

static int BLI PNODE_SW UPGRADE_COVPLETE

Indicates that a BlipNode software upgrade has been completed successfully.

static int BLI PNODE_SW UPGRADE_FAI LED

Indicates that a BlipNode software update failed.

static int BLI PNODE_SW UPGRADE_STARTED

Indicates that a BlipNode software upgrade has been initiated.

static int BLI PNODE_WAI TI NG FOR_CONFI GURATI ON

Indicates that a BlipNode has registered with the server, but no configuration exists for that BlipNode.

static java.lang. String[] CLASS NAMES
static int CONNECTI ON_EVENT

Event class of Connection-related events.

static java.lang. String[] FRI ENDLY_NAMES
static int OBEX BUSI NESS CARD EXCHANGE COWVPLETED

Indicates successful completion of a business card exchange.

static int OBEX_BUSI NESS CARD EXCHANGE_FAI LED

Indicates a failed attempt to exchange business cards with a terminal.

static int OBEX_BUSI NESS CARD PULL_COWLETED

Indicates successful completion of a business card pull.

static int OBEX_BUSI NESS CARD PULL_FAI LED

Indicates a failed attempt to pull business card from a terminal.

static int OBEX_EVENT

Event class of OBEX-related events.

static int OBEX_OBJECT_ RECEI VED

Indicates that an OBEX object has been received and stored by the server.

static int OBEX PUSH COVPLETED

Indicates successful completion of an OBEX push.

static int OBEX_PUSH_FAI LED

Indicates a failed attempt to push an OBEX object to a terminal.

static int OBEX PUSH PROGRESS

Indicates progress in an ongoing OBEX push.

static int TERM NAL_DETECTED

Indicates that a terminal was detected in inquiry.

static int TERM NAL_LI NK_ESTABLI SH FAI LED

Indicates a failed attempt to establish a Bluetooth link to a terminal.

static int TERM NAL_LI NK_ESTABLI SHED

Indicates that a Bluetooth link to a terminal has been established.

static int TERM NAL_LI NK_LOST

Indicates that a Bluetooth link to a terminal has been disconnected.

static int TERM NAL_SESSI ON_CREATE_FAI LED

Indicates a failed attempt to create a session with a terminal.

static int TERM NAL_SESSI ON_CREATED

Indicates that a session has been created with a terminal.

static int TERM NAL_SESSI ON_REMOVED

Indicates that a session with a terminal has been removed.

/ I Met hods
bool ean equal s(java.l ang. Obj ect obj)

Returns true if content of object is equal to this.

Bl uet oot hAddr ess get Bl i pNodel D()

Returns the Bluetooth device address of the BlipNode to which this event is related.

i nt getEvent Cl ass()

Returns the event class of this event.

int getEventl)

Returns the ID of this event.

java.l ang. String get Message()

Returns the message associated with this event if any.

i nt hashCode()
java.lang. String toString()

Returns a St r i ng representation of this event.

Interface InquiryResultEvent

public interface InquiryResultEvent extends Connecti onEvent

An event indicating that a terminal has been detected by a BlipNode in Inquiry Only Mode.

/ | Package
com ericsson. bl i pnet. api . event

/| Met hods
PageDat a get PageDat a()

Returns the Paging data needed for direct paging of this terminal.

Interface Link

public interface Link extends java.io.Serializable

TheLi nk interface provides methods to retrieve snapshot information about a specific BlipNode-Terminal
link.

/ | Package
com ericsson. blipnet. api. Bl uetooth

/| Met hods
bool ean equal s(j ava.l ang. Obj ect obj)

Compares this Li nkl mpl with an Obj ect and returns true if they are equal.

Bl uet oot hAddr ess get Bl i pNode()

Returns the Bl uet oot hAddr ess of the BlipNode using this session.

int[] getCurrent Sessions()

Returns an array of active sessions on this link.

Bl uet oot hAddr ess get Terni nal ()

Returns the Bl uet oot hAddr ess of the terminal using this session.

bool ean i sSessi onActi ve(l ong sessi onType)

Tells whether the indicated session type is active.

java.lang. String toString()

Implements the t oSt ri ng method.

Class NoSuchSessionException

public class NoSuchSessi onExcepti on extends java.l ang. Runti neExcepti on

Thrown by a Bl i pNodeHandl e to indicate that an attempt was made to close a non-existing session.

/ | Package
com ericsson. blipnet.api.blipnode

/I Constructors

NoSuchSessi onExcepti on()

NoSuchSessi onExcepti on(j ava. |l ang. String nessage)
NoSuchSessi onExcepti on(j ava. |l ang. Stri ng nessage,
java. | ang. Throwabl e cause)

NoSuchSessi onExcepti on(j ava. | ang. Thr owabl e cause)

Interface ObexEvent

public interface ObexEvent extends Event

An event indicating that an OBEX-related action has occurred in the BlipServer.

/ | Package
com ericsson. bl i pnet. api . event

/| Met hods
bool ean equal s(j ava.l ang. Obj ect obj)

Returns true if content of object is equal to this.

java.lang. String getM nmeType()

Returns the mime-type of the OBEX object to which this event is related.

i nt get GbexResponseCode()

Returns the OBEX Response Code associated with this event (if any).

java.io.File getPath()

Returns the path of the file to which this event is related.

Bl uet oot hAddr ess get Termi nal |)

Returns the Bluetooth device address of the terminal to which this event is related.

Class ObexFile

public final class ObexFile extends java.l ang. Cbject inplenents
CbexPushObj ect

Implements an OBEX push object containing a file.

/ | Package
com ericsson. bl i pnet. api . obex. pushobj ect s

/] Constructors
CbexFile(java.io.File file)

Constructs an OBEX push object representing the specified file.

CbexFile(java.io.File file, byte[] b)

Constructs an OBEX push object containing the bytes of the specified byte[] and with the specified
flename.

/I Met hods
java.l ang. String get Absol ut eFi | eNane()
byte[] get CbexBody()

Returns the body of this CbexPushQbj ect .

java.l ang. String get ChexNane()

Returns the name of this ChexPushObj ect .

java.l ang. String get ChexType()

Returns the mime-type of this CbhexPushCbj ect .

voi d set GbexType(java.lang. String m neType)

Class ObexGenericObject

public class ObexCGenericObject extends java.lang. Cbject inplenents
CbexPushObj ect

Implements a generic OBEX push object.

/ | Package
com ericsson. bl i pnet. api . obex. pushobj ect s

/] Constructors
CbexCeneri cbj ect (byte[] bytes)

Constructs an OBEX push object representing the specified file.

CbexCeneri cOhj ect (byte[] bytes, java.lang. String obexType)

Constructs an OBEX push object containing the bytes of the specified byte[] and with the specified
flename.

CbexCeneri cOhj ect (j ava. l ang. String obexNane, byte[] bytes)

Constructs an OBEX push object containing the bytes of the specified byte[] and with the specified
flename.

CbexCeneri cOhj ect (j ava. l ang. String obexNanme, byte[] bytes,
java.lang. String obexType)

Constructs an OBEX push object containing the bytes of the specified byte[] and with the specified
flename.

/ I Met hods
byte[] get CbexBody()

Returns the body of this CbexPushObj ect .

java.l ang. String get CohexNanme()

Returns the name of this CbexPushObj ect .

java.lang. String get ObexType()

Returns the mime-type of this CbhexPushObj ect .

voi d set GbexType(java.lang. String m neType)

Interface ObexProgressEvent

public interface OobexProgressEvent extends Event

An event indicating progress of an ongoing OBEX push. This type of event is only sent to
CbexPr ogressLi st eners.

/ | Package
com ericsson. bl i pnet. api . event

/| Met hods
bool ean equal s(j ava.l ang. Obj ect obj)

Returns true if content of object is equal to this.

i nt get Byt esConpl et ed()

Returns the number of bytes received so far.

java.l ang. String get CbhexNane()

Returns the name of the OBEX object to which this event is related.

int getObjectSize()

Returns the total size of the object to which this event is related.

Bl uet oot hAddr ess get Termi nal |)

Returns the Bluetooth device address of the terminal to which this event is related.

i nt hashCode()

Interface ObexProgressListener

public interface ObexProgressLi stener

This abstract class should be extended to create an event listener for listening to CbexPr ogr essEvent s
while pushing content to a terminal.

/ | Package
com ericsson. bl i pnet. api . event

/| Met hods
voi d newProgr ess(ObexProgressEvent e)

This method is called by the BlipServer whenever new push progress information is available.

Interface ObexPushObject

public interface ObhexPushObject extends java.io.Serializable

TheCbexPushObj ect class defines a common interface for OBEX objects which are going to be pushed
to a terminal.

/ | Package
com ericsson. bl i pnet. api . obex. pushobj ect s

/| Met hods
byte[] get CbexBody()

Returns the body of this ChexPushOhj ect .

java.l ang. String get CbhexNane()

Returns the name of this CbexPushQbj ect .

java.l ang. String get ChexType()

Returns the mime-type of this CbhexPushCbj ect .

Class ObexServerHostedFile

public final class ObexServerHostedFil e extends java.l ang. Obj ect
i npl enents QbexPushbj ect

AnObexSer ver Host edFi | e is an OBEX push object which will be read from the server's local storage

when the object is pushed to a terminal. The advantage of a server hosted file compared to a regular
ObexFi | e is that the contents of the file are not transferred across the network when pushing the file. This

may be desirable when pushing very large objects.

/ | Package
com ericsson. bl i pnet. api . obex. pushobj ect s

/I Constructors

ObexServer HostedFil e(java.io.File file)
CbexServerHostedFile(java.io.File file, java.lang. String obexType)
/ | Met hods

bool ean fil eExi sts()

java.io.File getFileDescriptor()
byte[] get GbexBody()

Returns the body of this ChexPushOhj ect .

java.l ang. String get CbhexNane()

Returns the name of this CbexPushQbj ect .

java.l ang. String get ChexType()

Returns the mime-type of this CbhexPushCbj ect .

Interface PageData

public interface PageData extends java.io. Serializable

APageDat a object contains all data needed to do a link establishment after an inquiry. Using the data in
this object, link establishment time will be shortened. Used when BlipNode is in INQUIRY RESULT mode
and the application does the link establishment via the BlipServer API.

/ | Package
com ericsson. blipnet. api. bl uetooth

Interface RemoteBlipServerEventListener

public interface RenoteBlipServerEventLi stener extends java.rn .Renote

Defines the handle Event method for notifying event listeners of BlipServer events. The interface is used
internally by the BlipServer API, and should never be implemented by client applications.

/ | Package
com ericsson. bl i pnet. api . event

/| Met hods
voi d handl eEvent (Event event)

Interface RemoteObexProgressListener

public interface RenpteObexProgressLi stener extends java.rmn .Renote

Defines the newPr ogr ess method for notifying event listeners of Push progress events. The interface is
used internally by the BlipServer API, and should never be implemented by client applications.

/ | Package
com ericsson. bl i pnet. api . event

/| Met hods
voi d newProgr ess(ObexProgressEvent e)

Class ScanMode

public final class ScanMbde extends java.lang. Object inplenments
java.io. Serializable

TheScanMode class encapsulates the different Scan Modes supported by the BlipNode.

/ | Package
com ericsson. blipnet. api. Bl uetooth

I/ Fields
static java.lang. String[] FRI ENDLY_NAMES

Friendly names of the defined Scan Modes.

static int | NQU RY_AND PAGE_SCAN DI SABLED

Inquiry Scan: Disabled, Page Scan: Disabled.

static int | NQU RY_AND PAGE_SCAN_ENABLED

Inquiry Scan: Enabled, Page Scan: Enabled.

static int | NQU RY_SCAN_ENABLED

Inquiry Scan: Enabled, Page Scan: Disabled.

static int PAGE_SCAN _ENABLED

Inquiry Scan: Disabled, Page Scan: Enabled.

/I Constructors
ScanMode(i nt val ue)

Constructs a ScanMode object representing a valid Scan Mode.

/ I Met hods
bool ean equal s(j ava.l ang. Obj ect obj)
i nt get Scanhbde()

Returns the scan mode represented by this object.

i nt hashCode()
java.lang. String toString()

Class Session

public final class Session extends java.l ang. Object inplenments
java.io. Serializable

TheSessi on class encapsulates the session types supported by the BlipServer.

/ | Package
com ericsson. blipnet. api. Bl uetooth

I/ Fields
static java.lang. String[] FRI ENDLY_NAMES

Friendly names of the defined session types.

static | ong LAP_CLI ENT

LAN Access Profile (LAP) Client session type.

static | ong LAP_SERVER

LAN Access Profile (LAP) Server session type.

static | ong OPP_CLI ENT

Object Push Profile (OPP) Client session type.

static | ong OPP_SERVER

Object Push Profile (OPP) Server session type.

/] Constructors
Sessi on(l ong sessi onType)

Constructs a Sessi on object representing the specified session type.

/ I Met hods
bool ean equal s(j ava.l ang. Obj ect obj)
| ong get Sessi onType()

Returns the type of this Sessi on object.

i nt hashCode()
java.lang. String toString()

Class ShortUuid

public final class ShortUuid extends java.lang. Object inplenents
java.io. Serializable

TheShor t Uui d class models a Bluetooth universal unique identifier. This is a 16 bit unsigned integer,
often written in hexadecimal.

Objects of the Shor t Uui d class are immutable—once created they cannot change.

This class provides the equals and hashCode methods for use in connection with the Collection classes.

/ | Package
com ericsson. blipnet. api.bluetooth

/| Fields
static int DI ALUP_NETWORKI NG _SERVI CE_CLASS | D

Short UUID for the Dialup Networking Profile.

static int LAN_ACCESS US| NG PPP_SERVI CE_CLASS | D

Short UUID for the LAN Access Using PPP Profile.

static int OBEX OBJECT PUSH SERVI CE_CLASS | D

Short UUID for the OPP Profile.

static int SERIAL_PORT_SERVI CE_CLASS | D

Short UUID for the Serial Port Profile.

static int SERVI CE_DI SCOVERY_SERVER SERVI CE_CLASS_| D

Short UUID for the Service Discovery Server Profile.

static int WAP_OVER BLUETOOTH CLI ENT_SERVI CE_CLASS | D

Short UUID for the WAP over Bluetooth Client.

static int WAP_OVER BLUETOOTH SERVER SERVI CE_CLASS | D

Short UUID for the WAP over Bluetooth Server.

/[Constructors
Short Uui d(byte[] short Uui d)

Constructs a Shor t Uui d object from a byte][].

Shor t Uui d(int short Uui d)

Constructs a Shor t Uui d object from an int.

Short Uui d(j ava. l ang. Stri ng short Uui d)

Constructs a Shor t Uui d objectfroma Stri ng.

/I Met hods
bool ean equal s(j ava.l ang. Obj ect obj)

Compares this Shor t Uui d with an Obj ect and returns true if they are equal.

byte[] getBytes()

Returns the byte representation of this Shor t Uui d object.

int getlnt()
i nt hashCode()

Returns ahashCode for this Shor t Uui d.

java.lang. String toString()

Returns a St r i ng representation of this Short Uui d.

java.lang. String toString4Mal Si gnal ()

Class TerminalNotConnectedException

public cl ass Termn nal Not Connect edExcepti on ext ends
java. |l ang. Runti meExcepti on

Thrown by a Bl i pNodeHand| e when a request for action is made towards a terminal which is not
connected.

/ | Package
com ericsson. blipnet.api.blipnode

/I Constructors

Ter m nal Not Connect edExcepti on()

Ter mi nal Not Connect edExcepti on(java. |l ang. String nessage)
Ter mi nal Not Connect edExcepti on(java.l ang. String nessage,
java. | ang. Throwabl e cause)

Ter mi nal Not Connect edExcepti on(java.l ang. Throwabl e cause)

Class Wap Servicelndication

public final class WapServicel ndi cation extends java.lang. Object inplenments
CbexPushObj ect, java.io. Serializable

TheWapSer vi cel ndi cat i on class models the WAP Service Indication. This service provides the ability
to send natifications to end-users in an asynchronous manner. Such notifications may, for example, be
about new e-mails, changes in stock prices, news headlines, advertising, reminders of, for example, low
prepaid balance, and so forth.

The WAP Service Indication contains a short message and a URI indicating a service. The message is
presented to the end-user upon reception, and the user is given the choice to either start the service
indicated by the URIimmediately, or postpone the Service Indication for later handling. If the Service
Indication is postponed, the client stores it and the end-user is given the possibility to act upon it at a later
point of time.

Objects of the WApSer vi cel ndi cat i on class are imnmutable—once created they cannot change.

/ | Package

com ericsson. bl i pnet. api . obex. pushobj ect s
/] Fields

static byte DELETE

The WAP Service Indication(s) received on the terminal with a given ID must be deleted.

static byte SIGNAL_HI GH

Indicates that the WAP Service Indication must be presented as soon as the implementation (of the
terminal) allows that to be carried out in a non-user-intrusive manner, or earlier if considered appropriate
(which may result in a user-intrusive behavior).

static byte SIGNAL_LOW

Indicates that the WAP Service Indication must be postponed without user intervention.

static byte SI GNAL_MEDI UM

Indicates that WAP Service Indication must be presented as soon as the implementation allows that to be
carried out in a hon-user-intrusive manner.

static java.lang. String TOKENI ZED MEDI A TYPE

Defines the tokenized form of the WAP Service Indication Media Type.

/] Constructors
WapServi cel ndi cation (java.lang. String uri, java.lang.String id,
byte action, java.lang.String contents)

Constructs a WApSer vi cel ndi cat i on.

WapServi cel ndi cation(java.lang. String uri, java.lang.String id,
java.lang. String contents)

Constructs a WapSer vi cel ndi cati on.

WapServi cel ndi cation(java.lang. String uri, java.lang.String id,
java.lang. String expires, byte action, java.lang.String contents)

Constructs a WapSer vi cel ndi cati on.

WapServi cel ndi cation(java.lang. String uri, java.lang. String id,
java.lang. String expires, java.lang. String contents)

Constructs a WapSer vi cel ndi cati on.

/| Met hods
bool ean equal s(j ava. |l ang. Qbj ect obj)

Compares this WApSer vi cel ndi cat i on with an Obj ect and returns true if they are equal.

byte[] get CbexBody()

Returns the body of this CbexPushOhj ect .

java.l ang. String get CbhexNane()

Returns the name of this ChexPushObj ect .

java.l ang. String get ChexType()

Returns the mime-type of this CbexPushObj ect .

i nt hashCode()

Returns a hashCode for this WapSer vi cel ndi cat i on.

java.lang. String toString()

Returns a St r i ng representation of this WapSer vi cel ndi cat i on.

Class Wap ServicelLoading

public final class WapServi ceLoadi ng extends java.lang. Cbject inplenents
CbexPushObj ect, java.io. Serializable

TheWapSer vi ceLoadi ng class models the WAP Service Loading. This service provides the ability to
cause a user agent on a terminal to load and execute a service, that, for example, can be inthe form of a
WML deck. The Service Loading contains an URI indicating the service to be loaded by the user agent
without user intervention when appropriate.

Objects of the WApSer vi ceLoadi ng class are immutable—once created they cannot change.

/ | Package
com ericsson. blipnet. api . obex. pushobj ects

/1 Fields
static byte CACHE

Indicates that the WAP service content is loaded in the same way as for EXECUTE-LOW, but instead of
executing the service in the same way as for EXECUTE-LOW it is placed in the cache of the client.

static byte EXECUTE_H GH

Indicates that the WAP service content is loaded and executed in the same way as for EXECUTE-LOW
but may result in an user-intrusive behavior.

static byte EXECUTE_LOW

Indicates that the WAP service content is fetched from either an origin server or from the client's cache, if
available.

static java.lang. String TOKENI ZED MEDI A TYPE

Defines the tokenized form of the WAP Service Loading Media Type.

/'] Constructors
WapSer vi ceLoadi ng(j ava.lang. String uri)

Constructs a WapSer vi ceLoadi ng.

WapServi ceLoadi ng(java.lang. String uri, byte action)

Constructs a WApSer vi ceLoadi ng.

/I Met hods
bool ean equal s(j ava.l ang. Obj ect obj)

Compares this WapSer vi ceLoadi ng with an Obj ect and returns true if they are equal.

byte[] get CbexBody()

Returns the body of this GbexPushObj ect .

java.l ang. String get ChexNane()

Returns the name of this CbexPushObj ect .

java.l ang. String get ChexType()

Returns the mime-type of this CbhexPushCbj ect .

i nt hashCode()

Returns a hashCode for this WApSer vi ceLoadi ng.

java.lang. String toString()

Returns a St r i ng representation of this WapSer vi ceLoadi ng.

Index

Numbers

1-Wire (Dallas Semiconductor), 254—255
1-Wire interface, 254

1-Wire sensor/controller, 255

2.4 GHz frequency band, 1

3Com USB Bluetooth module, 14

3Com Wireless Bluetooth Printer Adapter, 97
802.11b, vs. Bluetooth, 1-3

1024-bit encryption key, 160-161

Index

A

AcceptAndOpen() method, 127

Add New Slave dialog box, 177

AddEventListener() method, 234-235

Adopted protocols, explained, 20

Airports,226

All-Bluetooth Jini federation, 252-254

Antennae on HP iPAQ 5400 series Pocket PC, 4

Apache Ant build utility, 141

Application development with Micro BlueTarget, 187—224
Application manager, 78

Arcade, in restaurant lobby, 9

Asymmetrical encryption, 159

Asynchronous event handler, 187

Atinav Bluetooth SDK, 47,83,105

Atinav SDK stack initialization code, 47

Attributes, of service records, 59-60

Authenticate parameter of connection URL, 156-157,162

Authentication,156-158,173
with LAN access point, 192
over L2CAP connection, 163

Authentication request (client), 157

Authentication request (server), 156

Authenticator interface (javax.obex), 265
Authorization (Bluetooth server), 158-159,163
Authorization over L2CAP connection, 163
Authorize parameter of connection URL String, 158
Authorize() method of RemoteDevice class, 158

Index

B

Bank account information (listing), 160
Bank account information encrypted (listing), 161
Baseband controller (Bluetooth), 183
Basic Imaging Profile, 28
Basic Printing Profile, 28
BCC (Bluetooth Control Center), 46,191
BeamTsk.java listing, 87—88
Blatand, King Harald of Denmark, 11
BlipManager application, 231-232
BlipNet,226-232
accessing external resources, 228
architecture,227-232
architecture diagram, 227
BlipManager application, 231-232

BlipNodes,229-230
BlipServer,227-228

BlipNet API overview, 232—-233
BlipNet packages, 232—233
BlipNetlcons class, 233

BlipNode installation, 230
BlipNode unit, 230

BlipNodes (BlipNet), 229-230
BlipServer (BlipNet), 227-228
BlipServerConnection class, 234
BlipServerEventAdapter class, 235
BlipServerEventFilter class, 234-235
BlipServerEventListener class, 235
BlueCore 01b (CSR), 183

Bluetooth
vs. 802.11b, 1-3
as cable replacement technology, 2
as a low-power wireless technology, 2
as a wireless communication protocol, 1
basic components of, 45-72,241
client-server architecture, 1
deployment locations, 226
history of, 11-12
vs. infrared, 1
integrating with Java, 33—43
integrating with Jini, 252—256
integrating with JPS, 104-112
with J2ME MIDP, 75-96
nominal range, 1
omnidirectional transmissions, 1

on PalmOS platform, 269-272

in small office or home office, 6

for voice applications, 6—7

when not to use with Java, 33—-34

for wireless gaming, 7

inyour car, 7-8
Bluetooth Assigned Numbers document, 52
Bluetooth-certified product, explained, 31
Bluetooth compliance, explained, 22
Bluetooth device tracker, 233-240

Bluetooth devices, 13-15,40-41
authentication of, 156
classes of, 225
connection capabilities of, 15-16
creating in Impronto Simulator, 142
of the future, 8-9
on the market today, 3—7
power classes, 16-17
TDK USB, 83-84
that beep until found, 8

Bluetooth devices in the area, browsing, 90

Bluetooth discovery modes, 52

Bluetooth host, 41

Bluetooth Print Server, creating with JPS API, 97-113
Bluetooth printer adapter, 97

Bluetooth profiles, 23—28
vs. J2
ME profiles, 29-30
OBEX to implement, 116
TCP/IP-based,253
UUID values for, 62

Bluetooth Protocol Analyzer, 163,173-178
Bluetooth protocol stack, 17-23

Bluetooth protocol stack layers, 18-20,23
Bluetooth protocols to send and receive data, 115
Bluetooth Qualification Body, 31

Bluetooth qualification process, 31-32

Bluetooth Qualification Web site, 32

Bluetooth radios, 13.See also Bluetooth devices

Bluetooth security. SeeSecurity

Bluetooth server
authentication,156-157
authorization,158-159
connections with Serial Port Profile, 68—69
encryption,161-162

Bluetooth Service, explained, 191
Bluetooth SIG promoter companies, 12
Bluetooth (network) simulator, 137—153

Bluetooth Special Interest Group (SIG), 11-12
Bluetooth specifications page, 23

Bluetooth stack, 41,4751

Bluetooth stack initialization, 47-51

Bluetooth version 1.1, 11-32
BluetoothConnectionException class, 156,158,162,259
BluetoothSetupl.java listing, 47—-48

Bluetooth StateException class, 259

BNEP (Bluetooth Network Encapsulation Protocol), 22,252
Bootloader section (ROM), 188

BTAUTOLAN.CFG file, 192

Btgoep protocol, 128

Building, tracking employees in, 229

Index

C

C/Cbased Bluetooth SDK, 39

Cable replacement protocol (RFCOMM), 21,25,67-70,72
Cable replacement technology, Bluetooth as, 2,5
CACHED device, explained, 56-57

Car, Bluetooth in, 7-8

CAST algorithm, 160-161

CDC (connected device configuration), 75

Cell phones
configuring in Impronto Simulator, 143
and laptop connection sharing, 5
limitations of, 3
and PDA data transfer, 3—4

Centralized communication, 226
Challenge/response mechanism, 156

Chat example, 145-152

ChatClient.java listing, 146-150

ChatServer Bluetooth device, 151

ChatServer conversation, 152

ChatServer interacting with ChatClient, 151
ChatServer.java listing, 145-146

Cipher (encryption algorithm), 159

Class 1 Bluetooth devices, 17,225

Class 2 or Class 3 Bluetooth devices, 17,225
CLDC (connected limited device configuration), 75-76,186
CLDC packages for small device Java applications, 76
CLDC Technology Compatibility Kit (T CK), 186
Client authentication, 157

Client authentication request, 157

Client connections with Serial Port Profile, 69—70
Client encryption, 162-163

Client-server architecture (Bluetooth), 1
ClientApp.java listing, 165-170

ClientSession interface (javax.obex),122,265

ClientSession object
connect() method, 131
createHeaderSet() method, 122
disconnect() method, 132
setPath() method, 135

Com.ericsson.blipnet.api packages, 232—233

Communication,67-72
multipoint, 16

point-to-point,15
CONNECT operation (OBEX), 121,131
Connect() method of ClientSession object, 131
Connection class (javax.microedition.io), 122
Connection sharing, laptop to phone, 5

Connection URL String, 128
authenticate parameter, 156-157,162
authorize parameter, 158
encrypt parameter, 161-162,174,177
and the SDDB, 130

Connections
Bluetooth device, 15-16
defined,68
and sessions, 68
Connector class, 66
Connector object open() method, 64,69,
ConnectToClientAndPrint() method, 105

CONTINUE response code (OBEX), 121,125

80,130

Controllers.SeeBluetooth devices
Cordless phone (Bluetooth), 21,27
Cordless Telephony Profile, 27

CPU gate count, 183

CREATE-EMPTY operation (OBEX), 123
CreateHeaderSet() method, 122
CreatePrintJob() method, 101

CSR baseband controller, 187

CSR BlueCore 1 radio, 14

Index

D

Data format, identifying with JPS, 100

Data security. SeeSecurity

Data terminal authentication, 192

DataElement class (javax.bluetooth), 59-60,65,260
Debugging, with Bluetooth simulator, 137-153
Decryption,177-178

Deployment locations for Bluetooth applications, 226
Development environment setup checklist, 81
Device classes, Bluetooth major and minor, 54-55

Device communication types
multipoint, 16
point-to-point,15

Device discovery, 55-57

Device driver, 17

Device management, 25,51-55

Device Manager (Windows 2000), 25

DeviceClass class (javax.bluetooth), 53,57-58,261
DeviceDiscovered() method, 57
DeviceProperties.java listing, 48—51

Devices (Bluetooth). SeeBluetooth devices

Dial-up networking, wireless, 5

Dial-Up Networking Profile, 26
DISCONNECT operation (OBEX), 132
Disconnect() method of ClientSession object, 132
Discovery modes (Bluetooth), 52

Discovery Service (Jini), 244
DiscoveryAgent class, 52,56-57,63—64,261
DiscoveryListener interface, 57,64,261-262
Distance measuring, 34

Distributed computing, problems of, 242
Doc interface, 100

DocFlavor object, 100

DocPrintJob object, 101

Documents, in JSP, 99-101

Dynamic OS loader, 189

Index

E

E-mail stations in a hotel, 229

Echo service, 193-207

Embedded Linux, 185

Embedded Windows, 185

Employees, tracking in a building, 229
Emulator, vs. simulator, 138

Encrypt parameter in connection URL, 161-162,174,177
Encrypt() method of RemoteDevice class, 162
Encrypted data, decrypting, 176-178
Encryption,159-163

Encryption algorithm (cipher), 159

Encryption key, 159-161

Enterprise Bluetooth applications, 225-240
creating using Java, 226
qualifications of, 225

Ericsson,11-12

Ericsson BlipNet. SeeBlipNet

Events (Jini), 245

Events (JPS), 99

Example code in this book, working with, 81

Index

F

FAILURE response code (OBEX), 121,125
FAX Profile, 26

File transfer client, 131-134

File transfer example (JSR-82 OBEX API), 127-136
File Transfer Profile, 27

File transfer server, 127-131
Fixed-wireless commercial system, 182
Fixed-wireless consumer system, 181
Fixed-wireless device, explained, 181
Fixed-wireless system, creating, 207—223
Flash disk, 188

Flash memory, 187-189

Flat file system, RMS as, 79

Fossil Wrist PDA with Palm OS 4.1, 9
FTClientjava listing, 132-134
FTServer.java listing, 128-130

Future Bluetooth devices, 8—-9

Index

G

Gaming (wireless)
Bluetooth for, 7
playing in restaurant lobby, 9

Gate count (CPU), 183

GCF (Generic Connection Framework),
Generic Access Profile, 24,28,51,229
Generic Object Exchange Profile, 27
GET operation (OBEX), 121,123,131
GetAppProperty() method of MIDlet, 144
GetBluetoothAddress() method, 51,53
GetConnection() method, BlipServer object, 234
GetDiscoverable() method, 53
GetDiscoveryAgent() method, 56
GetEventFilter() method, 234
GetFriendlyName() method, 53
GetLocalDevice() method, 51
GetMajorDeviceClass() method, 53
GetMinorDeviceClass() method, 53

Grade school environment, 232

2,80,105

Grocery store Bluetooth device tracker, 233-240
Grocery store environment, 226,233-240

Index

H

Hands Free Profile, 28

Hardcopy Cable Replacement Profile, 28,97

HCI (Host Controller Interface), 20,187

HeaderSet interface (javax.obex), 117-118,122-123,265-266
HeaderSet object, 131,135

Headset Profile, 26

HID (Human Interface Device) protocol, 22

High-level API (MIDP), 79

Home, Bluetooth in, 8

Home office, Bluetooth in, 6

Host (Bluetooth), 41

Host Controller Interface, 41

Hotel business center, Bluetooth-enabled, 156
Hotel e-mail stations, 229

HP iPAQ 5400 series Pocket PC antennae, 4
HTTP protocol stack, 17

Human Interface Device Profile, 28

Human Interface Device (HID) protocol, 22
Hybrid Bluetooth Jini federation, 253—255
HYFLASH utility (HyNetOS), 189

HYLOAD utility (HyNetOS), 189

HYMON utility (HyNetOS), 189-190

HyNetOS (for Micro BlueTarget), 185-191
Bluetooth implementation, 186-187
operating environment components, 185
protocol manager, 187
structural overview, 186
tools,189-190

Hyperstone AG microprocessor, 183
Hyperstone RISC/DSP CPU architecture, 185
HYTRACE utility (HyNetOS), 190

Index

I

I/O, performing with the GCF, 80

Import statement, 95

Impronto Developer Kit 1.0 for PalmOS, 269-272

Impronto Simulator (Rococo), 139-152
Console,141-143
device list, 151
features of, 139
installation of, 140-141
running an application in, 144
v.1.1 installation screen, 140

Infrared, vs. Bluetooth, 1

InitBlipServerConnection() constructor, 234
InputStream,131,193

Intercomm Profile, 27

Interoperability, any device to any device, 6

IrDA (Infrared Data Association), 21,115
IsAuthenticated() method of RemoteDevice, 157
IsEncrypted() method of RemoteDevice class, 162
IsTrustedDevice() method of RemoteDevice class, 158

Index

J

J2ME (Java 2 Micro Edition) platform, 42,186
MIDP,75-96
overview of, 75
J2ME Profiles, 75
vs. Bluetooth profiles, 29-30
diagram of, 76

J2ME Wireless Toolkit, 78

J2SE platform, 42
with BlipNet API to access external resources, 228
Java Bluetooth development kits for, 105

JAD (Java Application Descriptor) file, 144

Java
for creating enterprise Bluetooth applications, 226
integrating Bluetooth with, 33—-43
and OBEX, 115-136
when not to use Bluetooth with, 33—-34

Java 2 Micro Edition (J2ME), 42,75-96,186

Java Bluetooth APIs, 45-73

Java Bluetooth development kits for J2SE, 105
Java Bluetooth SDK vendors, 42-43

Java implementation of Micro BlueTarget, 186-187
Java OBEX API, 115-136

Java Real-Time Technology, 34

Java Specification Request, 35

Java.io package, 80

Java.util .stack,19

Javax bluetooth package, 36—-37,259-264
DataElement,59—60,65,260
DeviceClass,53,57-58,261
DiscoveryAgent,52,56-57,63-64,261
DiscoveryListener,57,64,261-262
L2CAPConnection,71-72,262
LocalDevice,51-53,56,262
ServiceRecord,58-59,64,263
UUID,61-63,264

Javax.microedition.io package, 80,122
Javax.microedition.io.Connection class, 122
Javax microedition.rms.RecordListener,80
Javax.microedition.rms.Record Store,80

Javax.obex package, 36,116,121-122,265-268
classes in, 38
ClientSession class, 122
HeaderSet interface, 117,122-123
Operation class, 122-123

ResponseCodes class, 120,123-126
ServerRequestHandler class, 126-127
SessionNotifier class, 127

Javax.print package, 99-101. See also JPS
Javax print.attribute,99
Javax.print.attribute.standard,99
Javax.print.Doc interface, 100
Javax.print.DocFlavor,100
Javax.print.event package, 99
Javax.print.PrintService object, 100
Javax.print.PrintServiceLookup object, 101
Javax.print.SimpleDoc object, 100-101
JCP (Java Community Process), 34—38

Jini,241-258
Discovery Service, 244
events,245
how it works, 245-253
integrating with Bluetooth, 251255
Join protocol, 244
Leasing Service, 244
Lookup Service, 243-247
Lookup Service discovery, 245-247
Service Consumer lifecycle, 249-251
Service Provider lifecycle, 245-249
Serviceltem object, 245,248-249,252-253
ServiceRegistrar object, 247-248,249-250
ServiceTemplate object, 249
solving distributed computing problems, 242
transactions,245

Jini-Bluetooth-enabled device, 256-257

Jini federation, 243,255
entities in, 245
functionality of members in, 243
joining,247—-249

Jini network technology, 242—245
JMatos (PsiNaptic), 254
Join protocol (Jini), 244

JPS (Java Print Service), 97-113
architecture,99
attributes,99
creating a Bluetooth Print Server with, 97-113
creating a document, 100-101
creating a print job and printing, 101-102
documents,99-101
event model, 99
identifying the data format, 100
integrating with Bluetooth, 104-112
listening for print status updates, 102
overview,98—99
relationship between printer and client, 98
searching for a print service, 101

JPS API packages, 99

JPS application example (JPSPrint), 102-104
JPSBIluetoothPrintClient.java listing, 109-112
JPSBIluetoothPrint.java listing, 105-109
JPSPrint application, 102-104

JPSPrint.java listing, 102-104

JSR-82 API, 35,42,45-73
application simulation, 152
as only standardized Bluetooth API, 39—40
benefits of, 38—40
compatible code, 96
independent of stack and radio, 38—39
OBEX APIs in, 121-136
role of, 35—36

JSR-82-compliant Bluetooth applications, 139
JSR-82-compliant Bluetooth stack layers, 39
JSR-82 Expert Group, companies in, 35—36
JSR-82 OBEX APIfile transfer example, 127-136
JSTARTUP.INI file, 188-190

JVM (Java Virtual Machine), 186

JVM for Micro BlueTarget, 186-187

Index

K

Keyboard (Bluetooth) services, 60

Index

L

L2CAP (Logical Link Control and Adaptation Protocol), 20
client connections, 71
connection authentication and authorization, 163
connections,70—72,163
vs. RFCOMM, 72
server connections, 70

L2CAP layers, 70
L2CAPConnection interface, 262
L2CAPConnection methods, 71-72
L2CAPConnection object, 71-72
L2 CAPConnectionNotifier interface, 262
L2CAPEcho Service example, 192-207
L2CAPEchoClient.java listing, 196—207
L2CAPEchoServer.java listing, 193-196
LAN Access Profile, 26,232
Laptop to phone connection sharing, 5
Layers (Bluetooth protocol), UUID values for, 61
Layers of the protocol stack, 18—20,23,61
Leasing service (Jini), 244
Light waves, 34
Line-of-site issues of infrared, 1
Listings
1024-bit encryption key, 160-161
bank account information, 160
bank account information encrypted, 161
BeamTsk.java,87—88
BluetoothSetupl.java,47-48
ChatClient.java,146-150
ChatServer.java,145-146
ClientApp.java,165-170
DeviceProperties.java,48-51
FTClient.java,132-134
FTServer.java,128-130
JPSBluetoothPrintClient.java,109-112
JPSBluetoothPrint.java,105-109
JPSPrint java,102-104
L2CAPEchoClient.java,196-207
L2CAPEchoServer.java,193-196
mydevice.xml,143
opening connections on Bluetooth Server, 68—69
PiconetMIDlet.java,91-95
ServerApp.java,163-165
service registration process, 66—67
SPP2COMM.java,208-223
stack initiation code for Atinav SDK, 47
Stealth.java,84-87

Tracking.java,235-240
LocalDevice class, 51-53,56,262
Lookup Service discovery (Jini), 245-247
Lookup Services (LUS), Jini, 243-247,249
LookupPrintServices() method, 101
Low-level API (MIDP), 79
Low-power wireless technology,Bluetooth as, 2
LUS (Lookup Services), Jini, 245-247,249

Index

M

MAME (Multiple Arcade Machine Emulator) project, 138
Manufacturing facility, Bluetooth in, 182
Master and slave concept, 1,30—-31

Micro BlueTarget (Smart Network Devices), 179-224
application development on, 187—224
Bluetooth implementation of, 187
communication between devices, 192-207
creating a fixed-wireless system, 207—223
for external serial communication, 184
hardware components block diagram, 183
hardware configuration, 182—-184
hardware details, 184
HyNetOS,185-191
Java implementation, 186-187
JVM for, 186-187
libraries,186-187
memory map of, 188
operating environment components, 185
operating system for, 185-191
operating system tools, 189-190
programming,190-224
software configuration, 185-187
standard version, 180
Starter Kit, 180,184
whatitis, 179-182
Wireless Network Access Point, 191-192

MIDlet suite, 78

MiIDlets
defined,78
developing,78-80
JAD (Java Application Descriptor) file, 144
skeletal structure of, 78—79

MIDP (Mobile Information Device Profile), 75-96
high-level API and low-level API, 79
packages for mobile devices, 77
user interface components, 79

MIDP 1.0 device, qualifications for, 77

MIDP 2.0 specification, 77

MIDP 2.0 wireless application functionality, 77—78
MIDP-Chat application, 272

Mobile phone
configuring in Impronto Simulator,143
and laptop connection sharing, 5
limitations of, 3
and PDA data transfer, 3—4

Mobiwave BPA-D10 Bluetooth Protocol Analyzer, 163,173-178
data captured by, 174-175

data transmission sniffing, 173
Motorola,35
MTUs (Maximum Transmission Units), 70—71
Multicast announcements (LUS), 247
Multicast requests (LUS), 247,250
Multipoint device communication, 16
Museum environment, 226
Mydevice.xml listing, 143

Index

N

NAME headers (OBEX), 122

Node administration (BlipManager), 231232

Nokia N-Gage gaming system, Bluetooth-enabled, 7
Nondiscoverable mode (stealth mode), 81-83

Index

O

OBEX (Object Exchange), 21,115-136
called I'OBEX in IrDA protocol stack, 116
what itis, 115-121

OBEX API file transfer example, 127-136

OBEX APIs in JSSR-82, 121-127

OBEX clients and servers, message flow between, 120
OBEX definition, explained, 117

OBEX headers, 117
creating,119
injava.obex.HeaderSet interface, 118

OBEX libraries, 116

OBEX Object Model, 117-119

OBEX operations, 119,134-136

OBEX protocol client/server architecture, 117

OBEX protocol to implement Bluetooth profiles, 116-117
OBEX server response codes, 123-126

OBEX server responses, 120,123-126

OBEX Session Protocol, 117,119-121

Object Model (OBEX), 117-119

Object Push Profile, 27,229-230,232—233

Offices, Bluetooth in, 6,226

Omnidirectional transmissions, 1

OnConnect() method, 128

OnGet() method, 128

Opening connections on Bluetooth Server (listing), 68—69

Operation interface (javax.obex), 123,266
Operation object (javax.obex), 122,126
Operations (OBEX), 119,134-136
OutputStream,193

Index

P
Packet data, handling with L2ZCAP, 72

Palm DK (Impronto Developer Kit 1.0 for PalmOS), 269
included software, 271
installation,272
sample application, 272
supported Bluetooth protocols, 269
system requirements, 270

Palm SD Bluetooth card for PalmOS 4 devices, 15
PalmOS 4 devices, Palm SD Bluetooth card for, 15
PalmOS 4.1, Fossil Wrist PDA with, 9

PalmOS emulator, 140,271

PalmOS platform
Bluetooth development on, 269-272
running versions of, 138

PalmSource emulator, 138

PAN (Personal Area Networking) Profile, 26
PasswordAuthentication class (javax.obex), 266
PC to peripherals, replacing cable between, 5
PCs, connecting two, 5

PDA to phone data transfer, 3—4

PDAs
Bluetooth-enabled 4
service discovery process for, 60

Peripherals connected wirelessly, 5—6
Persistent storage, RMS for, 79-80
Personal area networks, 30—31
Personal networks, PC to PC, 5

PIC family microcontrollers, 184

Piconet Browser example application, 88—96
displaying Bluetooth devices in the area, 90
displaying remote device services, 91
initial screen for, 89

PiconetMIDlet.java listing, 91-95

Piconets (Bluetooth), 30—31

PIN (personal identification number) codes, 156
PLC (Programmable Logic Controller), 207
Point-to-point device communication, 15

POSE (PalmOS emulator), 140

Power classes of Bluetooth devices, 16-17
Power user, 6

PPP protocol, 192

PREKNOWN device, explained, 56-57

Print attributes (JPS), 99
Print job, creating in JPS, 101-102

Print server
client submitting a file to, 109
creating with JPS API, 97-113

Print services
explained,100
searching for in JPS, 101

Print status updates, in JPS, 102
Print() method, 101

Printer adapter (Bluetooth), 97
Printers (Bluetooth), 20,100
PrintFile() method, 105

Printing
inJPS, 101-102
wireless,5—-6

PrintJobListener interface, 102
PrintService object, 100-101
PrintServiceLookup class, 101
PrintStatus class, 102

Profile interdependencies, 28—30

Profiles (Bluetooth), 23—28
vs. J2ME profiles, 29-30
OBEX to implement, 116
TCP/IP-based, 252
UUID values for, 62

Profiles (J2ME), 75
Profiles (JSR-82-compliant required), 39
PROJECT .HEX file, 187

Protocol Analyzer (Mobiwave BPA-D10),163,173-178
data captured by, 174-175
data transmission sniffing, 173

Protocol layers (Bluetooth), UUID values for, 61
Protocol multiplexing, 20

Protocol stack (Bluetooth), 17-23

Protocol stack (Bluetooth) layers, 18—20,23
Protocol DescriptorList, 130

Protocols (Bluetooth), Palm DK supported, 269
Proximity measurement, 34

PsiNode development platform, 254-255

PUT operation (OBEX), 121,123,135-136

Index

R

Radio frequencies, 13

Radio signals, 12,34

Radio spectrum, 12-17

Radios (Bluetooth), 13. See also Bluetooth devices

RecordListener object, 80
RecordStore object, 80

RemoteDevice class (javax.bluetooth), 53,57,263
authorize() method, 158
encrypt() method, 162
isAuthenticated() method, 157
isEncrypted() method, 162
isTrustedDevice() method, 158

Request packet (OBEX), 121

Response codes (OBEX server), 123-126
Response packet (OBEX), 121

ResponseCodes class (javax.obex), 123-126,267
Restaurant lobby arcade, 9

Retail store, Bluetooth device tracker for, 233-240
RetrieveDevices() method, 56-57

RFCOMM (wireless serial port), 21
connections,67-70
vs. L2CAP, 72

RFCOMM layer, 25
RI (Reference Implementation), 36
RISC/DSP 32-bit CPU (Hyperstone), 183,185

RMS (Record Management System), 79
logical representation of, 80
for persistent storage, 79-80

Rococo Impronto Simulator, 139-152

Index

S

Scatternets (Bluetooth), 31

SDDB (Service Discovery Database), 58—60
connection URLs and, 130
registering and storing services in, 66
service records in, 59
service registration in, 127

SDP (Service Discovery Protocol), 20
SDP layer, 24,58
SearchServices() method, 63—-64

Security,155-178
authentication,156-158
encryption,159-163
server authorization, 158-159

Security administration (BlipManager), 231
Security client attempting to connect to server, 171
Security example, 163-178

Security measures, 155-163

Security server
prompting user for PIN, 172
waiting for client to connect, 170

SelectService() method, 63—64

client connections with, 69-70
server connections with, 68—69

Server authentication, 156-157

Server authorization, 158-159

Server connections with Serial Port Profile, 68—69
Server encryption, 161-162

ServerApp .java listing, 163-165
ServerRequestHandler class, 126-128,268
ServerRequestHandler methods, 126
Service Consumer lifecycle (Jini), 249-253
Service Consumers (Jini), 245,249-253
Service discovery, 58-65,88,91

Service Discovery Application Profile, 24,58
Service discovery process for a PDA, 60

Service Providers (Jini), 245
lifecycle,247-249
and Service Consumer, 253

Service record attributes, 59-60
Service records in the SDDB, 59
Service registration, 65-67

defined,65
process listing, 66-67
inthe SDDB, 127

ServiceClassIDList,130

ServiceDatabase State,131

Serviceltem leasing, 247-249

Serviceltem object (Jini), 245,247-249,250-252
ServiceName object, 69,131

ServiceRecord class, 58-59,64,26

ServiceRecordHandle,130
ServiceRecordState,130

ServiceRegistrar object (Jini), 247-248,250-251
ServiceRegistration Exception class, 263

Services, registering and storing in the SDDB, 66
ServicesDiscovered() method, 64
ServiceTemplate object (Jini), 250

Session management, 226

Session Protocol (OBEX), 117,119-121
SessionNatifier interface (javax.obex), 127,268
Sessions, defined, 68

SetDiscoverable() method, 52

SetEnvVars script, 140-141

SETPATH operation (OBEX), 121,135
SetPath() method, 135

Shared link key, 156

Shopping malls, 226

Signal strength indicator, 33

SimpleDoc object, 100-101

Simulator (Bluetooth), 137-153
vs. emulator, 138
pros and cons of using, 138-139

Simulator.bin,140

Simulator.exe, 140

Slave list dialog box, 176

Slaves and master concept, 1,30-31

Small office, Bluetooth in, 6

Smart Network Devices, 183,185
SmartDecrypt (Mobiwave Protocol Analyzer), 176-178
SND operating system (HyNetOS), 185

SoC (System-on-Chip) architecture, 183,185
Sound applications, Bluetooth for, 6—7
SPP.SeeSerial Port Profile
SPP2COMM.java listing, 208-223

Stack (Bluetooth), 41

Stack initialization, 47-51,95

Stack initialization code for Atinav SDK, 47

Stack layers (JSR-82-compliant Bluetooth), 39
Startinquiry() method, DiscoveryAgent object, 56-57
Stealth mode (nondiscoverable mode), 81-88
Stealth Mode example, 81-88

Stealth.java listing, 84-87

Stream ConnectionNotifier object, 66

SUCCESS response code (OBEX), 121,125

Sun Microsystems Java 2 Micro Edition. SeeJ2ME platform
Sun Microsystems Jini. SeeJini

Symmetrical encryption, 159,161

Synchronization Profile, 27

System monitor console (Micro BlueTarget), 189
System trace window (Micro BlueTarget), 190

Index

T

TCK (Technology Compatibility Kit), 36
TCP/IP-based Bluetooth profiles, 252
TCS (Telephony Control Protocol Specification), 21
TCS-BIN,21

TCS Binary, 21

TDK Bluetooth Developer's Kit, 271
TDK USB Bluetooth device, 83—-84
Testing, using Bluetooth simulator for, 137-153
Text messages example, 145-152
Thread scheduler, 187

TINI (Tiny Internet Interface), 254-255
TINI chipset, 254

TINI devices, 255

TINI microcontroller, 255

Tracking employees in a building, 229
TrackingEventListener class, 235
Tracking.java,234-240

Tracking.java listing, 235—240
Transactions (Jini), 245
Triangulation,34

Trusted devices, 158

TYPE headers (OBEX), 122

Index

U

UART device, 183

Unicast request (LUS), 247,250

UUID (Universal Unique Identifier), 61
UUID class (javax.bluetooth), 61-63,264
UUID() methods, 62—63

UUID values
for Bluetooth profiles, 62
for Bluetooth protocol layers, 61

Index

V
Vending machine, Bluetooth-enabled, 181
Virtual serial port communication protocol. SeeRFCOMM

Voice applications, 6—7,33—-34

Index

w

WAP (Wireless Access Protocol), 21,229

WAP over Bluetooth, 229

Windows 2000 Device Manager, 25

Windows CE.NET, 185

Wireless communication protocol, Bluetooth as, 1
Wireless dial-up networking, 5

Wireless embedded systems, 179-224

Wireless LAN (802.1b) vs. Bluetooth, 1-3
Wireless Network Access Point, 191-192
Wireless serial port. SeeRFCOMM

Wireless System Monitor example, 207-223
client options, 223-224
server setup, 208-223

List of Figures

Chapter 1: Introducing Bluetooth

Figure 1-1: The short antennae on HP iPAQ 5400 series Pocket PC allows it to communicate via
Bluetooth and 802.11b. For added security, this model also includes a fingerprint reader.

Figure 1-2: The Bluetooth-enabled Nokia N-Gage wireless gaming system

Figure 1-3: Although the Fossil Wrist PDA doesn't contain any Bluetooth hardware, it does come
preloaded with a Bluetooth-enabled OS— the Palm OS 4.1. Palm OS is a registered trademark of
Palm, Inc.

Chapter 2: Bluetooth 1.1

Figure 2-1: The 3COM USB Bluetooth module

Figure 2-2: The CSR BlueCore 1. This single-chip solution includes a microprocessor, RAM, 1/O
controller, and Bluetooth implementation in a single package! This is most likely the smallest radio
that you've ever seen.

Figure 2-3: The Palm SD Bluetooth card for Palm OS 4 devices. Palm OS is a registered trademark of

Palm, Inc.

Figure 2-4: You can only connect to one Bluetooth device at a time if you have hardware that only
supports point-to-point communication.

Figure 2-5: You can connect to up to seven Bluetooth devices at a time if you have multipoint-capable
hardware.

Figure 2-6: A) The computer may be attached to its peripherals, but it can't control them without a
driver. B) The computer may be attached to a Bluetooth device, but it can't control it without a stack.

Figure 2-7: The Bluetooth protocol stack

Figure 2-8: As you can see in Windows 2000, the operating system thinks that COMM10 and
COMML11 are actual serial ports!

Figure 2-9: Bluetooth profile interdependencies
Figure 2-10: In a piconet, the slaves can only communicate to the master.

Figure 2.11: A scatternet is formed when a slave in one piconet is the master in another piconet.

Chapter 4: Understanding the Java Bluetooth API

Figure 4-1: Service records in the SDDB

Figure 4-2: An individual attribute of a service record
Figure 4-3: An illustration of a service record attribute
Figure 4-4: DataElements

Figure 4-5: The service discovery process for a PDA that wants to use the services of a Bluetooth
keyboard

Chapter 5: Bluetooth with J2ME MIDP

Figure 5-1: J2ME Profiles and configurations

Figure 5-2: A logical representation of an RMS record store

Figure 5-3: The application starts, and is now looking for remote Bluetooth devices.

Figure 5-4: After a remote device is found, we now go into stealth mode (i.e., nondiscoverable).
Figure 5-5: The TDK USB Bluetooth device using a CSR Bluetooth radio

Figure 5-6: The initial screen for the Piconet Browser application

Figure 5-7: The Piconet Browser displays a list of Bluetooth devices in the area.

Figure 5-8: The Piconet Browser now displays the services offered by the remote device.

Chapter 6: Creating a Bluetooth Print Server with JPS API

Figure 6-1: You can use the 3Com Wireless Bluetooth Printer Adapter in order to make a traditional
(i.e., non-Bluetooth) printer Bluetooth enabled.

Figure 6-2: Using the handy utility provided in this chapter, you can turn your desktop into a Bluetooth
print server.

Chapter 7: Java and OBEX

Figure 7-1: OBEX is called IrOBEX in the IrDA protocol stack.
Figure 7-2: An OBEX header

Figure 7-3: A sample message flow between OBEX clients and servers

Chapter 8: Using aBluetooth Simulator

Figure 8-1: The Rococo Impronto Simulator version 1.1 installation screen

Figure 8-2: The Rococo Impronto Simulator Console

Figure 8-3: Creating a new Bluetooth device in the Simulator Console is pretty simple.

Figure 8-4: Configuring a cell phone in the Simulator environment

Figure 8-5: The ChatServer Bluetooth device in the Impronto Simulator device list

Figure 8-6: The ChatServer interacting with the ChatClient in the Impronto Simulator environment
Figure 8-7: The server has sent a message and the client responds.

Figure 8-8: The client receives a message and sends a reply.

Chapter 9: Bluetooth Security

Figure 9-1: The Mobiwave BPA-D10 Bluetooth Protocol Analyzer

Figure 9-2: The security server is waiting for the client to connect.

Figure 9-3: The security client is attempting to connect to the server.
Figure 9-4: The security server prompts the user to enter a PIN for the application.
Figure 9-5: The authentication process has succeeded.

Figure 9-6: You need to be very careful if you're sending sensitive data unencrypted between
Bluetooth devices because it can be captured by a third party using a Bluetooth Protocol Analyzer.

Figure 9-7: With encryption enabled, the Protocol Analyzer is still able to capture the data
transmission; however, the data is corrupted.

Chapter 10: Wireless Embedded Systems with the Micro BlueTarget

Figure 10-1: The Micro BlueTarget standard version is a small form factor embedded system with a
board outline of just 3.25.9 cm! This is a great solution for OEMs that want to make their devices
Bluetooth enabled.

Figure 10-2: The Micro BlueTarget Starter Kit uses a standard Micro BlueTarget and adds RS-232
and Ethernet ports, which is ideal for developers who need to create quick prototypes and proofs of
concepts.

Figure 10-3: A Bluetooth phone utilizing the services of a fixed-wireless consumer system— a
Bluetooth-enabled vending machine

Figure 10-4: A Bluetooth PDA receiving the status from a fixed-wireless commercial system— a
Bluetooth-enabled machine in a manufacturing facility

Figure 10-5: A block diagram of the Micro BlueTarget hardware components
Figure 10-6: A structural overview of the HyNetOS for the Micro BlueTarget

Figure 10-7: The memory map of the Micro BlueTarget. End user applications have about 1.5MB of
space on the flash disk.

Figure 10-8: Using the built-in functionality of the Micro BlueTarget, you can have any Bluetooth device
with the LAN Access Profile access the Internet (or any other Ethernet-based network).

Figure 10-9: The L2CAPEcho Service

Figure 10-10: Using the Micro BlueTarget to create a fixed-wireless system

Chapter 11: Enterprise Bluetooth Applications with the Ericsson
BlipNet

Figure 11-1: An architecture diagram of the Ericsson BlipNet

Figure 11-2: You can use the BlipNet API and custom J2SE code to access external resources like
databases, directories, and e-mail servers.

Figure 11-3: A single BlipNode

Figure 11-4: The BlipManager application

Chapter 12: Bluetooth and Jini

Figure 12-1: These three entities must exist before a Jini federation is established. The federation itself
hasn't been formed because the entities don't know anything about each other yet.

Figure 12-2: The Service Provider discovers the Lookup Service and receives its
Servi ceRegi strar object. The Servi ceRegi strar is used to interact with the Lookup Service
via its public methods.

Figure 12-3: The Service Provider registers its Ser vi cel t emwith the Lookup Service.

Figure 12-4: The Lookup Service receives a multicast request from the Service Consumer and
responds with a unicast message containing the ServiceRegistrar object.

Figure 12-5: The Service Consumer uses the local ServiceRegistrar object to look up services that are
registered in the Lookup Service.

Figure 12-6: The Serviceltem requested is returned to the Service Consumer and can be used locally.

Figure 12-7: Once activated on the Service Consumer, the Service Provider's service may
communicate directly with the Service Provider device as part of the service offered.

Figure 12-8: In an all-Bluetooth Jini federation, all the devices participating in the federation must be
Bluetooth enabled. This federation is wireless.

Figure 12-9: In a hybrid Bluetooth Jini federation, at least one of the devices participating in the
federation must be Bluetooth enabled. This federation is not (necessarily) wireless, and the Jini-
Bluetooth-enabled device acts as a bridge between the Jini federation and an external Bluetooth
piconet.

Figure 12-10: The PsiNode development platform. The Ericsson Bluetooth module is covered by two
metal plates, and is connected to the Dallas Semiconductor TINI microcontroller.

Appendix C: Java Bluetooth Development on the PalimOS Platform

Figure C-1: With the TDK Bluetooth Developer's Kit and the PalmOS emulator, you can develop,
deploy, and test your Java Bluetooth applications all within the environment of your development
machine.

Figure C-2: The MIDP-Chat application

List of Tables
Chapter 2: Bluetooth 1.1

Table 2-1: Common Radio Frequencies
Table 2-2: Bluetooth Device Power Classes

Table 2-3: Layers of the Bluetooth Protocol Stack

Chapter 3: Before You Get Started

Table 3-1: Classes in the javax.bluetooth Package
Table 3-2: Classes in the javax.obex Package

Table 3-3: Java Bluetooth SDK Vendors

Chapter 4: Understanding the Java Bluetooth API

Table 4-1: Bluetooth Discovery Modes
Table 4-2: Bluetooth Major and Minor Device Classes
Table 4-3: Common UUID Values for Bluetooth Protocol Layers

Table 4-4: Common UUID Values for Bluetooth Profiles

Chapter 7: Java and OBEX

Table 7-1: OBEX Headers in the java.obex.HeaderSet Interface

List of Listings

Chapter 4: Understanding the Java Bluetooth API

Listing 4-1: Stack Initialization Code for the Atinav SDK
Listing 4-2: BluetoothSetupl.java

Listing 4-3: DeviceProperties.java

Listing 4-4: The Service Registration Process

Listing 4-5: Opening Connections on a Bluetooth Server

Chapter 5: Bluetooth with J2ME MIDP

Listing 5-1: Stealth.java
Listing 5-2: BeamTsk.java

Listing 5-3: PiconetMIDlet.java.

Chapter 6: Creating a Bluetooth Print Server with JPS API

Listing 6-1: JPSPrint.java
Listing 6-2: JPSBluetoothPrint.java

Listing 6-3: JPSBluetoothPrintClient.java

Chapter 7: Java and OBEX

Listing 7-1: FTServer.java

Listing 7-2: FTClient.java

Chapter 8: Using aBluetooth Simulator

Listing 8-1: mydevice .xml
Listing 8-2: ChatServer.java
Listing 8-3: ChatClient.java

Chapter 9: Bluetooth Security

Listing 9-1: Bank Account Information

Listing 9-2: A 1024-Bit Encryption Key

Listing 9-3: Bank Account Information Encrypted with the CAST Algorithm
Listing 9-4: ServerApp.java

Listing 9-5: ClientApp.java

Chapter 10: Wireless Embedded Systems with the Micro BlueTarget

Listing 10-1: L2CAPEchoServer.java
Listing 10-2: L2CAPEchoClient.java

Listing 10-3: SPP2COMM java

Chapter 11: Enterprise Bluetooth Applications with the Ericsson
BlipNet

Listing 11-1: Tracking.java

List of Sidebars
Chapter 2: Bluetooth 1.1

Bluetooth Profiles vs. J2ME Profiles

Chapter 5: Bluetooth with J2ME MIDP

Working with the Example Code

Chapter 6: Creating a Bluetooth Print Server with JPS API

Printers and Print Services

Chapter 7: Java and OBEX

More on Connection URLs and the SDDB

Chapter 8: Using aBluetooth Simulator

Difference Between a Simulator and an Emulator

Chapter 9: Bluetooth Security

More on Mobiwave BPA-D10

	Table of Contents
	BackCover
	Bluetooth for Java
	Introduction
	Intended Audience
	The Code

	Chapter 1: Introducing Bluetooth
	Bluetooth vs. 802.11b
	Bluetooth Devices on the Market Today
	Devices of the Future
	Summary

	Chapter 2: Bluetooth 1.1
	A Brief History of Bluetooth
	The Radio Spectrum
	The Bluetooth Protocol Stack
	Profiles
	Profile Interdependencies
	Personal Area Networks: Piconets and Scatternets
	The Bluetooth Qualification Process
	Summary

	Chapter 3: Before You Get Started
	Understanding the JCP
	The Benefits of the Java Bluetooth API
	What You Need to Get Started
	Summary

	Chapter 4: Understanding the Java Bluetooth API
	Summary

	Chapter 5: Bluetooth with J2ME MIDP
	The Mobile Information Device Profile
	Stealth Mode Example
	Piconet Browser Example
	Summary

	Chapter 6: Creating a Bluetooth Print Server with JPS API
	JPS Overview
	A Step-by-Step JPS Application
	A Complete JPS Application: JPSPrint
	Integrating JPS and Bluetooth
	Summary

	Chapter 7: Java and OBEX
	What Is OBEX?
	The OBEX APIs in the JSR-82
	File Transfer Example
	Summary

	Chapter 8: Using a Bluetooth Simulator
	The Pros and Cons of Using a Simulator
	Impronto Simulator from Rococo
	Summary

	Chapter 9: Bluetooth Security
	Security Example
	Summary

	Chapter 10: Wireless Embedded Systems with the Micro BlueTarget
	The Micro BlueTarget Hardware Configuration
	The Micro BlueTarget Software Configuration
	Application Development on the Micro BlueTarget Platform
	Summary

	Chapter 11: Enterprise Bluetooth Applications with the Ericsson BlipNet
	The Ericsson BlipNet
	BlipNet API Overview
	The Bluetooth Device Tracker
	Summary

	Chapter 12: Bluetooth and Jini
	What Is Jini Network Technology?
	How Jini Works
	Integrating Jini and Bluetooth
	A Jini-Bluetooth-Enabled Device: The PsiNaptic PsiNode
	The Benefits of Bluetooth and Jini
	Summary

	Appendix A: javax.bluetooth
	Class BluetoothStateException
	Class DataElement
	Class DeviceClass
	Class DiscoveryAgent
	Interface DiscoveryListener
	Interface L2CAPConnection
	Interface L2CAPConnectionNotifier
	Class LocalDevice
	Class RemoteDevice
	Interface ServiceRecord
	Class ServiceRegistrationException
	Class UUID

	Appendix B: javax.obex
	Interface ClientSession
	Interface HeaderSet
	Interface Operation
	Class PasswordAuthentication
	Class ResponseCodes
	Class ServerRequestHandler
	Interface SessionNotifier

	Appendix C: Java Bluetooth Development on the PalmOS Platform
	System Requirements
	Included Software
	Installation

	Appendix D: BlipNet 1.1 API
	Interface BlipNode
	Interface BlipNodeCause
	Interface BlipNodeEvent
	Interface BlipNodeHandle
	Class BlipNodeHandleInUseException
	Class BlipNodeHandleReleasedException
	Class BlipNodeNotConnectedException
	Class BlipServer
	Class BlipServerAccessException
	Interface BlipServerConnection
	Class BlipServerConnectionException
	Class BlipServerEventAdapter
	Class BlipServerEventFilter
	Interface BlipServerEventListener
	Class BlipServerException
	Class BluetoothAddress
	Class ClassOfDevice
	Interface ConnectionEvent
	Class EricssonMelody
	Interface Event
	Interface InquiryResultEvent
	Interface Link
	Class NoSuchSessionException
	Interface ObexEvent
	Class ObexFile
	Class ObexGenericObject
	Interface ObexProgressEvent
	Interface ObexProgressListener
	Interface ObexPushObject
	Class ObexServerHostedFile
	Interface PageData
	Interface RemoteBlipServerEventListener
	Interface RemoteObexProgressListener
	Class ScanMode
	Class Session
	Class ShortUuid
	Class TerminalNotConnectedException
	Class WapServiceIndication
	Class WapServiceLoading

	Index
	Index_A
	Index_B
	Index_C
	Index_D
	Index_E
	Index_F
	Index_G
	Index_H
	Index_I
	Index_J
	Index_K
	Index_L
	Index_M
	Index_N
	Index_O
	Index_P
	Index_R
	Index_S
	Index_T
	Index_U
	Index_V
	Index_W

	List of Figures
	List of Tables
	List of Listings
	List of Sidebars

