
Contents

The Essence of Object Oriented
Programming with Java and UML

by
Bruce E. Wampler, Ph.D.

Contents

Preface

Why This Book?
Who Is This Book For?
Overview of Chapters
About the Author
Acknowledgements

Chapter 1: Objects, UML, and Java

Introduction
Object Orientation
Object-Oriented Languages
Object-Oriented Design and the UML
The Payoff of Objects
Chapter Summary

Chapter 2: The Essence of Objects

What Is an Object-Oriented System?

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�E�O�O�P�T�O�C�.�h�t�m�l� �(�1� �o�f� �8�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�2� }Ç

Contents

Fundamental Properties of an Object-Oriented System
Abstraction with Objects
Encapsulated Classes
Communication via messages
Object Lifetime

Class Hierarchies
Polymorphism

An Example - Putting it All Together
Other OO Concepts

Abstract Classes
Visibility of Methods
Class vs. Instance
Accessing Objects
A Low-Level View of Objects

Chapter Summary
Resources

Object-Orientation
UML

Chapter 3: Objects in Java

Defining Classes in Java
Visibility
Inheritance
Association, Aggregation, and Composition
Java Interfaces
Object lifetime in Java

Constructors
Garbage collection
Memory leaks

Class vs. Instance methods and attributes
Copies of Objects
Messages
Chapter Summary
Resources

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�E�O�O�P�T�O�C�.�h�t�m�l� �(�2� �o�f� �8�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�2� }Ç

Contents

Java

Chapter 4: Object-Oriented Analysis and Design

Software Methodologies
The Elements of a Software Project
The Essence of Object-Oriented Analysis

Object Discovery
Evaluate Candidate Objects
Determine Object Hierarchies
Discover Object Attributes
Discover Object Operations

The Essence of Object-Oriented Design
Some Design Guidelines

Get The Big Picture
Encapsulation
Designing Classes
Inheritance
General Guidelines

The Build and Release Phases
Building the Software
Releasing the Software

More on the UML
Chapter Summary
Resources

OOAD
CRC

Chapter 5: Object-Oriented Graphical User Interfaces
with Swing

Graphical User Interfaces
A Typical Application
Dialog Boxes
Events

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�E�O�O�P�T�O�C�.�h�t�m�l� �(�3� �o�f� �8�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�2� }Ç

Contents

A Brief Introduction to Swing
Handling Swing Command Events
A Bunch of Options

MVC: Model, View, Controller
MVC with Java
A Small Swing MVC GUI Framework
A Simple Application Based on Wmvc
UML Sequence Diagram for Thermometer

Chapter Summary
Resources

Swing

Chapter 6: A Case Study in Java

Analysis of MovieCat
Use Cases
Object, Attribute, and Operation Discovery
Evaluation

Design of MovieCat
Movie Class
MovieModel Class
View Classes
Putting It All Together

Implementation of MovieCat
MovieCat Class
Movie Class
MovieModel Class
MainView Class
MovieListView Class
MovieItemView Class
MovieEditor Class
Movie Helper Classes

Review
Chapter Summary

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�E�O�O�P�T�O�C�.�h�t�m�l� �(�4� �o�f� �8�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�2� }Ç

Contents

Chapter 7: Design Patterns

What are Design Patterns?
Using Design Patterns
Design Pattern Description Template

The Gang of Four Patterns
Creational Patterns
Structural Patterns
Behavioral Patterns

Example Design Patterns used by Wmvc and MovieCat
MVC
Observer Pattern
Observer Pattern in Wmvc
Command Pattern in Wmvc
Other Patterns used in Wmvc and MovieCat

Chapter Summary
Resources

Chapter 8: Refactoring

What is Refactoring?
The Basic Refactoring Process

When Do You Refactor?
Code Smells
When not to refactor

Some Refactorings
Refactoring Categories
Some Specific Refactorings

Chapter Summary
Resources

Chapter 9: Software Development Methodologies

Methodologies for Large Scale Projects
Overview of the Unified Process

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�E�O�O�P�T�O�C�.�h�t�m�l� �(�5� �o�f� �8�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�2� }Ç

Contents

Basic Concepts
Agile Methodologies for Small Projects

The Agile Alliance
eXtreme Programming
DSDM
Crystal - Adaptive Software Development

Open Source Development
Open Source is Distributed Development

Resources
Methodologies
Web Sites

Chapter 10: Software Tools for Object-Oriented
Development

GUIs vs. Consoles
Editors and IDEs

Emacs
Vi
Integrated Development Environments
VIDE
Borland JBuilder
Sun Forte
Other IDEs

Source code control
CASE, Modeling, and UML Tools

ArgoUML
MagicDraw
Rational Software
TogetherSoft
Other UML Tools

Other Java Tools
JUnit
Jikes

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�E�O�O�P�T�O�C�.�h�t�m�l� �(�6� �o�f� �8�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�2� }Ç

Contents

Chapter 11: Programming - A Personal Perspective

Programming
Your Code Never Dies
Program With Style
Know What You Are Doing
Write Practice Programs
Practice Incremental Programming
The Tools Matter
Objects Really Help
Testing
Debugging
Don't Reinvent the Wheel
Sometimes It is Better to Do It Yourself
You Can Get Ideas Any Time
Get A Life
A Plan Matters

The Tools
Your Editor Really Matters
Know About the Time-Tested Tools
Know About the Latest Tools
Tools Go Away

The Work Environment
A Happy Programmer is a Productive Programmer
Physical Environment
Flexibility
40 Hours
The Team
Marketing Matters
Keep Up To Date
Share the Struggle
Let Programmers Help Make Policy
Let Your Boss Know What You Need
The Reference Software Story

Programming Resources
Use The Web

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�E�O�O�P�T�O�C�.�h�t�m�l� �(�7� �o�f� �8�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�2� }Ç

Contents

Watch Out for the Web
Use Open Source, If You Can
Other Programmers
Web Sites

Chapter 12: What Next?

Object Orientation
Java
More Terms You Need To Know

Distributed Computing
Java Related Terms from Sun
Other Terms

Glossary

med for Flyheart

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�E�O�O�P�T�O�C�.�h�t�m�l� �(�8� �o�f� �8�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�2� }Ç

Why This Book?

Preface

Why This Book?

The goal of this book is to cover the essence of what you need to
know to develop object-oriented software using Java and UML.
When you are through with this book, you should understand object-
oriented software development well enough to answer the following
questions:

● What is object orientation?
● What is the UML?
● What is Object-Oriented Analysis and Design?
● How do you do OOAD?
● What are object-oriented development methodologies?
● How do you use Java to write truly object-oriented programs?
● What is Swing, and how can you use it to write object-oriented

graphical user interfaces?
● What are design patterns?
● What is refactoring?
● What tools do you use to write object-oriented programs?
● What are some guidelines for writing good code?
● What do I need to read next to learn even more about object

orientation?

Who Is This Book For?

This book is intended for programmers who know the basics of

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�P�r�e�f�a�c�e�.�h�t�m�l� �(�1� �o�f� �6�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�4� }Ç

Why This Book?

programming with Java, and now want to understand the
fundamentals of object-oriented software development. If you're
fairly new to programming, and have had a class or two in Java,
you're probably starting to feel comfortable using Java. So now,
you're ready to really reap the benefits of true object-orientated
programming in Java, and this book will help you.

If you're an experienced programmer who wants to move from using
an old style procedural programming language to developing object-
oriented systems in Java, this book is also for you. This book will get
you well down the path to real object-oriented software development.
You will likely be able to learn the most important aspects of Java
from the examples included in this book if you have a Java manual
available for quick reference.

However, this book should not be the last one you read on object
orientation, the UML, or Java. Instead, it should give you the
essential understanding of objects so you can read more advanced
and detailed books on the topic with greater purpose.

Overview of Chapters

Chapter 1 is a brief introduction to objects and the benefits of object-
oriented software development.

Chapter 2 covers the fundamental concepts of object orientation.
Object orientation has many important concepts, and of course, its
own vocabulary. It is very important for you to understand the main
concepts, and to be familiar with the specialized vocabulary. Even if
you already are familiar with some object-oriented concepts, you
should review them in this chapter.

Chapter 3 covers how to use Java to write object-oriented programs.
It is not really a Java tutorial, but rather concentrates on using Java to

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�P�r�e�f�a�c�e�.�h�t�m�l� �(�2� �o�f� �6�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�4� }Ç

Why This Book?

implement object-oriented concepts. The first part of the chapter
covers very basic Java concepts. However, the later parts of the
chapter cover more advanced topics such as object lifetime, copies of
objects, and other concepts that are very important when working
with classes and objects.

Chapter 4 covers Object-Oriented Analysis and Design (OOAD).
Rather than focusing on any specific OOAD methodology, Chapter 4
covers the basic concepts that are important for any methodology.

The first four chapters cover the essence of object orientation.
Chapter 5 takes a look at Graphical User Interfaces (GUIs) and the
Java Swing library using the object-oriented perspective developed in
the previous chapters. This object-oriented introduction to Swing is a
somewhat different approach than is typically found in Swing
tutorials.

Chapter 6 ties everything together with a case study of a small Java
application. The fundamental OOAD concepts covered in Chapter 4
are used to design the application, and the Java and Swing concepts
covered in Chapter 3 and 5 are used for the implementation.

The remainder of the book is less comprehensive in its treatment. The
goal is to give you a good overview of the practical aspects of object-
oriented programming. Chapter 7 introduces Design Patterns, a recent
development that uses previously developed software design patterns
to help make designing new software easier. Chapter 8 covers
Refactoring, which is a disciplined object-oriented approach to
revising and enhancing existing software. Chapter 9 gives brief
overviews of some of the current software development
methodologies for both large and small-scale object-oriented software
projects. Chapter 10 covers some of the current software tools
available for developing object-oriented software. Finally, Chapter 11
gives some of my personal guidelines for developing better software.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�P�r�e�f�a�c�e�.�h�t�m�l� �(�3� �o�f� �6�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�4� }Ç

Why This Book?

About the Author

I wrote my first program more than 30 years ago, and I have been
developing software ever since. Most of that software has been for
the PC marketplace. That means that my code has had to do a useful
job, do it with as few bugs as possible, and be passed on to others for
continued development. It has meant that I've had to be efficient and
practical. For a long time, I've wanted to share some of my practical
experience with other programmers.

So, what is all this experience I've had? Right after I finished my
Ph.D. in Computer Science at the University of Utah in 1979, I
started work at the Sandia National Laboratory working on security
software. However, I found the newly emerging Personal Computers
much more exciting. I left Sandia Labs, started a small software
company, and wrote one of the first spelling checkers that ran on a
PC. My next step was to write the first PC based grammar and
writing style checker.

I sold my company, and went to work teaching Computer Science at
the University of New Mexico, a relationship that lasted, at least on a
part time basis, until 1997. But I just couldn't stay out of the PC
business. I decided to continue my work on grammar checking, and
in 1985 started a new PC software company with some partners in
San Francisco. That company, Reference Software International,
developed and marketed the Grammatik grammar checker. I was
Chief Scientist there, and built a fairly large software development
group to improve Grammatik and build other reference software
products. WordPerfect bought Reference Software in 1992, and I
went back to teaching at the University of New Mexico. It was there
that I first started thinking about writing a book about object-oriented
programming.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�P�r�e�f�a�c�e�.�h�t�m�l� �(�4� �o�f� �6�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�4� }Ç

Why This Book?

In the mean time, I designed and wrote an open source C++ GUI
framework called V. It is an easy to use framework for building
simple GUI applications on Windows and X, and is in widespread
use today. I also wrote the VIDE freeware editor and integrated
development environment, which is widely used.

Of all the advancements in software development I've witnessed over
the years, object-oriented programming has seemed to me the most
significant in terms of how much easier it makes the programming
task. Object-oriented programming in Java or C++ can really make a
difference when developing programs. While it doesn't solve all the
problems of software development, it makes the development easier,
and the long-term maintenance much easier. The result is a real gain
in programming productivity. It is well worth the effort to learn
object-oriented software development.

The goal of this book is to introduce you to the essence of object
orientation without overwhelming you with all the details of a
specific object-oriented development methodology or every nuance
of a programming language. After years of teaching programming
and software engineering, I've found that learning to use Java or any
other object-oriented programming language effectively comes much
more easily if you first get a good understanding of objects and
designing systems using objects.

I have found that just because programmers are using an object-
oriented programming language, it doesn't mean they are writing
good object-oriented programs. Without a good understanding of
object orientation, it is impossible to realize its full benefits,
including the most important, software that is easier to write and
maintain.

Acknowledgements

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�P�r�e�f�a�c�e�.�h�t�m�l� �(�5� �o�f� �6�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�4� }Ç

Why This Book?

First, I must thank my family for putting up with me for the past year
while I've been holed up in my office working on this book. I know
they'd like to have me around more, but writing this book has been
something I've needed to do for many years.

I also must thank Ross Venables, the editor at Addison-Wesley who
discovered an early version of this book on my web site, and
encouraged me to turn it into a complete book. I also want to thank
Paul Becker who took on this project and saw it to completion after
Ross got married and left Addison-Wesley for new opportunities.

And I want to thank all the other people who have helped make this
book better, from the reviewers and editors at Addison-Wesley, to all
those who sent me suggestions and feedback on the early drafts
posted on my web site.

Bruce E. Wampler

Glenwood Springs, Colorado

med for Flyheart

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�P�r�e�f�a�c�e�.�h�t�m�l� �(�6� �o�f� �6�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�4� }Ç

Chapter 1

Chapter 1

Objects, UML, and Java

Introduction

This book is about object-oriented software development. Writing
real object-oriented programs that are used by real people is more
than slapping down a few lines of code in Java (or C++, Eiffel, or any
other object-oriented programming language). Ultimately, object-
oriented software development includes the complete process -
analysis of the problem, design of a solution, coding, and finally long-
term maintenance. Object-oriented development can make any size
program better - from a small web based application to a full-blown
business critical software system.

Object orientation has the potential for building great software, but
only if it is used as part of a complete process. Today, there are small,
agile development methodologies suitable for teams of two to ten or
so programmers, as well as large scale methodologies for huge
projects. Most of these development methodologies use or can benefit
from the UML, a modelling tool that can aid the design of any OO
system. But before you can understand and use any of these
methodologies, you need to move beyond merely getting a program
to work, and change your thinking to be object-oriented.

It has been said that any programming language can be used to write
object-oriented programs (and it has been done with C), but a true

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�.�h�t�m�l� �(�1� �o�f� �7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�4� }Ç

Chapter 1

OO programming language makes it a lot easier. Just because you use
an OO programming language, your programs are not necessarily
object-oriented.

Figure 1-1.
A Randomly Planned House

Object-oriented programming works much better when it is used
together with an object-oriented analysis and design process
(OOAD). Trying to write an OO program without first going through
the analysis and design steps is like trying to build a house without
first analyzing the requirements of the house, designing it, and
producing a set of blueprints. You might end up with a roof over your
head, but the rooms would likely be scattered all over the place, some
rooms might be missing, and the whole thing would probably come
tumbling down on your head during the first storm (Figure 1-1). An
OO program in any programming language written without at least
some OOAD might seem to work, but it is much more likely to be
full of bugs, and break when you make the first modification.

Object Orientation

Objects are the heart of object orientation. An object is a
representation of almost anything you need to model in a program.
An object can be a model of an employee, a representation of a

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�.�h�t�m�l� �(�2� �o�f� �7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�4� }Ç

Chapter 1

sensor, a window in a user interface, a data structure such as a list,
virtually anything. One way to think of an object is as a black box
with some buttons and lights (Figure 1-2). This could be a TV, a car,
whatever. To use the object, you need to know what the buttons do,
which ones you need to press to get the object to do what you need,
and what the lights mean about the status of the object. The details of
how the box is put together inside are irrelevant while you are using
the box. What is important is that the object carries out its functions
and responsibilities correctly. A software object is not much different.
It has well-defined methods for interacting with the outside world,
and can provide information about its current state. The internal
representation, algorithms, and data structures are hidden from the
outside world.

Figure 1-2.
A Black Box

In the simplest terms, designing an OO system consists of identifying
what objects the system contains, the behaviors and responsibilities
of those objects, and how the objects interact with each other. OO can
produce elegant, easy to understand designs, which in turn leads to
elegant and easy to understand programs. Individual objects can often
be implemented and debugged independently. Libraries of existing
objects can be easily reused and adapted to new designs. Most
importantly, a good OO program is easy to modify, and resistant to
the introduction of bugs during program modification and
maintenance.

Object-oriented development is a major advance for software

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�.�h�t�m�l� �(�3� �o�f� �7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�4� }Ç

Chapter 1

development. Although it may not be a magic bullet that solves all
the problems associated with producing software, it is really better
than other methodologies. While development methodologies such as
structured design and programming have many valid points, many
which carry over and are used for OO development, object-oriented
designs are inherently easier to design and maintain over time.

Object-Oriented Languages

There are several object-oriented programming languages available to
choose from, including Smalltalk, Eiffel, C++, Objective C,
Objective Pascal, Java, Ada, and even a version of Lisp. There are
two clear marketplace winners, C++ and Java.

Today, Java is the emerging object-oriented language of choice for
many programmers and software projects. One of the main reasons
for Java's emergence is the World Wide Web, and Java's ability to
run web applets directly on any computer or operating system with a
web browser. Another reason is that Java is an excellent
programming language. It is a small, well-designed language that can
be used for not just web applets, but full-blown programs on almost
any computer available today. Java was somewhat hampered in its
early days because of its speed, but this is really no longer an issue.
Because it is such a good language, Java has been widely adopted as
the main language used to teach computer science at colleges and
universities all over the world. In the whole history of computer
science and programming, this is the first time that the same
programming language has been popular as both a teaching language
and a language used for real world programs.

C++ is also a widely used programming language. It is still the
principle language used for the core applications (such as spread
sheets and word processors) used on most computers today. One of
the main reasons is that C++ was derived from C, and thus has a

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�.�h�t�m�l� �(�4� �o�f� �7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�4� }Ç

Chapter 1

heritage of being able to do real things on real systems. There is
compatibility with existing C code. One of the problems with C++,
however, is that it has grown into a large and complicated language.
It is difficult to achieve competence in the full language.

This book is mostly about object-oriented programming. Primarily,
that means it will focus on general principals of object-oriented
programming that apply to any programming language. But this book
will also show how to translate object-oriented designs to real
programs using Java. The focus will be on how to use the capabilities
of the Java language to implement OO designs. It is not a tutorial on
learning Java. We assume that you've already learned the Java basics.
Now you are ready to learn about objects, and how to use Java to
write better programs.

Object-Oriented Design and the UML

There are several different object-oriented development
methodologies in use today. Each has its strengths and weaknesses.
The older, more traditional methodologies are often called
"heavyweight" methodologies, and are most useful for large software
projects involving tens or even hundreds of programmers over years
of development effort. The newer methodologies are called
"lightweight" or "agile" methodologies, and are more appropriate for
smaller projects. Many of these are quite new and still being
standardized as this book was being written.

Design and development methodologies have always needed a
graphical notation to express the designs. In the past, one of the major
problems has been that each major methodology has had its own
graphical notation. This has all changed with the emergence of the
UML (Unified Modeling Language) as the standard notation. Any of
the current design methodologies, heavyweight or agile, use or can
benefit from the UML.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�.�h�t�m�l� �(�5� �o�f� �7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�4� }Ç

Chapter 1

The UML originated in the mid-1990's from the efforts of James
Rumbaugh, Ivar Jacobson, and Grady Booch (The Three Amigos).
There is a standard specification of the UML coordinated by the
Object Management Group (www.omg.org). OMG is an industry
sponsored organization devoted to supporting vendor-neutral
standards for the object-oriented development community. The UML
has become the de facto standard object-oriented notation.

The UML is designed for discussing object-oriented design. Its
ability to show objects and object relationships is especially useful,
and will be used in examples throughout this book. The various
features of the UML will be introduced as needed.

The Payoff of Objects

Object orientation can lead to big payoffs in the software
development game. An object-oriented design is likely to be simple
and easy to understand. Once designed, you can often implement and
test the individual objects separately. Once finished, each object tends
to be robust and bug free. As you make changes to the system,
existing objects continue to work. And as you improve existing
objects, their interface to the world stays the same, so the whole
system continues to work. It is this ease of change and robustness that
really makes OO development different, and well worth the effort.

Chapter Summary

● Object orientation is a way to develop software that leads to well-
designed systems that are robust and easy to maintain.

● The UML is a graphical representation useful for designing and
understanding object-oriented systems.

● Java is an excellent object-oriented programming language
useful for both web applets and non-web applications.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�.�h�t�m�l� �(�6� �o�f� �7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�4� }Ç

Chapter 1

med for Flyheart

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�.�h�t�m�l� �(�7� �o�f� �7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�4� }Ç

Chapter 2

Chapter 2

The Essence of Objects

So, what exactly is Object Orientation? It is a problem solving
technique used to develop software systems. Object orientation is the
culmination of years of experience in finding an effective way to
develop software, and is certainly the dominant method used to
develop major software systems today. Object orientation is a
technique of modeling a real-world system in software based on
objects. The object is the core concept. An object is a software model
of a real-world entity or concept.

Almost anything can be modeled as an object in software. For
example, you could model a temperature sensor as an object. Or, in a
more abstract system, you could model color as an object. Even
something as basic as a number can be considered an object that has a
value and a type. Typically, each object has an associated set of
attributes such as value, state, or whatever else is needed to model the
object. Sensor attributes might include a state such as active or
inactive, an attribute indicating its current value, and information
about its physical location. Objects usually provide the ability to
modify their state as well. In addition to keeping track of the current
temperature, for example, a temperature sensor object might provide
a way to turn the sensor on or off.

The attributes, or data, used inside an object are really only a tiny part
of what an object is and does. An object also has a set of

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�2�.�h�t�m�l� �(�1� �o�f� �4�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�9� }Ç

Chapter 2

responsibilities that it carries out by providing services to other
objects. It is often more useful to think of an object in terms of its
responsibilities rather than its attributes. For example, it is the
responsibility of a sensor object to keep track of the state of the
sensor. A sensor object might respond to requests from other objects
that use sensors to check the status of a sensor, to turn a sensor on or
off, or to report on the sensor's values. A sensor object could also
maintain a history of its values as part of its responsibilities. The
outside objects really don't care how a sensor object implements its
attributes internally, but rather what services the sensor object can
provide - its responsibilities.

While a program is running, individual objects usually don't stand
alone. They belong to a collection of other similar objects that all are
members of the same group, or class. A program will be made up of
many different classes, each class made up of similar objects.

class A class is a description of a set of objects. The set of
objects share common attributes and common behavior.
Class is similar in concept to abstract data types found in non-
OO programming languages, but is more comprehensive in
that it includes both structure and behavior. A class definition
describes all the attributes of member objects of that class, as
well as the class methods that implement the behavior of
member objects.

object The basic unit of object orientation. An object is an
entity that has attributes, behavior, and identity. Objects are
members of a class, and the attributes and behavior of an
object are defined by the class definition.

Classes and objects are closely related, but are not the same thing. A

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�2�.�h�t�m�l� �(�2� �o�f� �4�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�9� }Ç

Chapter 2

class is a description or definition of the characteristics of objects that
belong to that class. An object is a single instance or member of a
class that is created and exists while the program is running. A class
may have just a single object or any number of member objects
existing at any given time. All members of a class have similar
behavior.

For example, consider a software system used to monitor various
sensors in a factory. One obvious kind of object present is such a
system is a sensor. A class called Sensor would be defined and used
to model physical sensors. The class would define the basic
characteristics of any Sensor, such as its location, value, and
identification number, as well as a set of services used to carry out its
responsibilities. Each individual physical sensor in the system would
be represented as an object belonging to the class Sensor, and have
specific values for the attributes described by the class definition.

The class description includes the means of accessing and changing
the state of individual object members of that class. A common
representation of color is called RGB, where the color is specified by
the values of its red, green, and blue components. One possible
design of a class called Color could provide the means of
manipulating the color by both retrieving and setting the RGB values
of a Color object.

In an object-oriented system, it is typical to describe one class based
on a pre-existing class, either by extending the description of a higher
level class, or by including the description of another class within the
current class. For example, you could create one class that describes
the general characteristics of all sensors, and then more specialized
classes that describe specific sensors such as temperature or pressure
sensors, each based on the original general Sensor class.

Placing attributes and responsibilities in a top level general class can

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�2�.�h�t�m�l� �(�3� �o�f� �4�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�9� }Ç

Chapter 2

provide many benefits. For example, if the responsibilities of the
general Sensor class included keeping track of a history of readings
from a sensor, programming that capability could get somewhat
complex. By placing the history code in the top level class, that code
need be defined only once, and won't be repeated in new classes.
Each of the specialized sensors can then use the history capabilities of
the top level Sensor class.

Objects and classes are really the heart of object orientation. OO
software systems consist of objects of different classes that interact
with each other using well-defined methods or services specified by
the class definitions. When used properly and consistently, object-
oriented software development leads to programs that are robust, and
easy to debug, modify, and maintain.

To produce successful OO programs, it is important to always "think
objects." Just because a program is written in Java or C++ does not
mean it is an object-oriented program! If you have a programming
background that is not OO based, or even if you've just learned Java,
one of the great challenges is to switch the way you think about
programming to use the object-oriented programming paradigm.

What Is an Object-Oriented System?

Just what is an object-oriented system? What makes an OO system
different than other software systems? One way to define an object-
oriented system is to use a list of properties that characterize object-
oriented systems. A non-object-oriented system might share some
properties such as using abstraction or encapsulation, but will not be
built using objects or classes. It is also possible to use an object-
oriented language to implement a system using classes or objects, but
the system must have all the following properties to be considered a
true object-oriented system.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�2�.�h�t�m�l� �(�4� �o�f� �4�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�9� }Ç

Chapter 2

Any object-oriented software system will have the following
properties:1

1. Abstraction with objects
2. Encapsulated classes
3. Communication via messages
4. Object lifetime
5. Class hierarchies
6. Polymorphism

The next section gives a brief overview of each of these properties,
while the following sections give more detailed explanations of each.

object orientation A method of developing software that uses
abstraction with objects, encapsulated classes,
communication via messages, object lifetime, class
hierarchies, and polymorphism.

Fundamental Properties of an Object-Oriented System

Abstraction with objects

An abstraction is a mechanism that allows a complex, real-world
situation to be represented using a simplified model. Object
orientation abstracts the real world based on objects and their
interactions with other objects. For example, one possible abstraction
of a color is the RGB model.

abstraction A model of a real-world object or concept.

Encapsulated classes

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�2�.�h�t�m�l� �(�5� �o�f� �4�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�9� }Ç

Chapter 2

The abstractions of related ideas are encapsulated into a single unit.
The states and behaviors of the abstraction are incorporated into an
encapsulated whole, called a class. The actual internal
implementation of the states and behaviors is hidden from the rest of
the system. While this not a new programming technique, in OO the
encapsulation is an inherent and integral part of the system and
design. Earlier, we described a Color class that provided a way to
change it red, green, or blue values. In fact, as long as the outside
world continues to see and use a Color object in a consistent way, it
wouldn't matter just how color is represented internally by the Color
object. It could use either the HSV (hue, saturation, value) color
model or the RGB model internally, and the outside world would be
unaffected. The state and behavior of objects are controlled by well-
defined and restricted interfaces to the object. Encapsulation ensures
that the internal details of an object are hidden from the rest of the
world, that each object maintains its own unique identity and state,
and that the state can only be changed by well-defined messages.

encapsulation The process of hiding all the internal details of
an object from the outside world. In Java, encapsulation is
enforced by having the definitions for attributes and methods
inside a class definition.

Interaction via messages

In order to accomplish useful tasks, objects need to interact with
other objects. The interaction can be between objects of the same
class, or objects of different classes. This interaction is handled by
sending messages (in Java, this is done by calling methods) to other
objects to pass information or request action. For example, when a
user selects a command button in a dialog box on the screen by
clicking the mouse, a message is sent to the dialog object notifying it

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�2�.�h�t�m�l� �(�6� �o�f� �4�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�9� }Ç

Chapter 2

that the command button was pressed. Messages can be used to
change the state of an object or to request an action by the object.

Object lifetime

All objects have a lifetime. They are created and initialized as they
are needed during program execution, exist and carry out their
functions, and are eventually destroyed. While objects exist, they
maintain their own identity and state. Many objects that are instances
of the same class can exist at any given time. Each object has a
unique identity, and will have attributes that are different from other
instances of objects in the same class.

Class hierarchies

In an OO design, classes of objects are arranged into hierarchies that
model and describe relationships among the classes. The simplest
relationship is an association. For example, there could be an
employment association between a person and a company. These
simple associations exist between different classes.

Hierarchies can also be used to build the definitions of individual
classes. One way is to include other classes as part of one class. For
example, consider a dialog graphical user interface class. Such a
dialog would contain control objects such as buttons, lists, or value
sliders. Thus, all the different control objects would be parts of the
whole dialog class. This kind of hierarchy is called aggregation or
composition2.

A second way to use a hierarchy is to define more specialized classes
based on a pre-existing generalized class. For example, a dialog class
can be considered a specialized case of a more general window class.
The more specialized class will automatically share the attributes of
the more general class (e.g., size and screen position), and will

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�2�.�h�t�m�l� �(�7� �o�f� �4�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�9� }Ç

Chapter 2

probably add new attributes and behaviors to the generalized class
(e.g., associated control objects). This kind of hierarchy is called
inheritance.

Polymorphism

Polymorphism is the final fundamental characteristic of object-
oriented systems. When inheritance is used to extend a generalized
class to a more specialized class, it will usually include extending
some of the behaviors of the generalized class. The specialized class
will often implement a behavior that is somewhat different than the
generalized class, but the name used to define the behavior will be the
same. It is important that a given instance of an object use the correct
behavior, and the property of polymorphism allows this to happen
automatically and seamlessly. Polymorphism is actually easier to use
than it is to explain. We will discuss polymorphism in more detail
later.

If you read about OO in other sources, you will no doubt find slightly
different terminology than we use here, but abstraction,
encapsulation, messages, lifetime, hierarchies, and polymorphism are
really the heart of the matter. The presence of all these properties is
required for a software system to be considered object-oriented. If a
system doesn't include abstraction, encapsulation, messages, lifetime,
hierarchies, and polymorphism, then it isn't object-oriented, even if it
is written using Java, C++, or some other OO language.

Abstraction with Objects

Abstraction is one of the basic tools of all programming, not just OO
programming. When trying to write a program to solve some real
world problem, abstraction serves as a way model the real world
problem. For example, if you were trying to write an address book
program, you would use abstractions such as names, addresses, phone

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�2�.�h�t�m�l� �(�8� �o�f� �4�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�9� }Ç

Chapter 2

numbers, alphabetical order, and other concepts associated with an
address book. You would also define operations for manipulating the
attributes such as adding a new name or changing an address.
Abstraction is modeling the real world in terms that can be
implemented as a computer program.

Abstraction and OO fit together well. It is natural to model using
objects. With an OO language such as Java, you can define objects
with all the attributes and responsibilities needed to implement the
model. The OO features of Java make it easy to map your
abstractions to objects, once you know what your objects are.
Designing with objects can be challenging, and it is not always easy
to find the right objects for your model, but once you learn to think in
objects, the process becomes almost second nature.

Almost anything you need to model in software can be considered an
object - a temperature sensor in a control system, a person in a
subscription system, a room of a building, a word in a sentence. Each
of these objects has attributes and responsibilities. In the context of
an abstraction, an object is a thing or concept. It can be a real-world
thing or concept, or an abstraction of a thing or concept, expressed as
a software representation

Encapsulated Classes

Encapsulation is one of the most important aspects of OO. It is what
allows each object to be independent. The exact implementation of
attributes and of object behavior is hidden from the rest of the world
through encapsulation.

The class definition is the main programming tool that is used to
implement encapsulation. A class is a description of a collection of
objects with common attributes, behavior, and responsibilities. The
definition or specification of a class includes the definitions of the

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�2�.�h�t�m�l� �(�9� �o�f� �4�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�9� }Ç

Chapter 2

attributes comprising the state, the methods that carry out the
responsibilities of the class by implementing the behavior, and how to
set the initial attribute state of an object. A class is identified by a
name.

A class should never allow direct access to state information by the
outside world. Instead, it should change the state as part of its
responsibilities, or sometimes provide methods for accessing and
changing the state. As long as you maintain a well-defined interface
to the rest of the world, you can easily modify your class definition
without breaking the rest of the system.

attribute Used to hold state information of an object. An
attribute might be as simple as an on or off boolean variable,
or it might be a complex structure such as another object. A
class definition describes the attributes and operations
(methods) of a class.

behavior The activity of an object that is visible to the outside
world. Includes how an object responds to messages by
changing its internal state or returning state information to
other objects.

method An operation or service performed upon an object,
defined as part of the declaration of a class. Methods are used
to implement object behavior. Synonyms for method include
member function, operation, and service.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�2�.�h�t�m�l� �(�1�0� �o�f� �4�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�9� }Ç

Chapter 2

state State reflects the current values of all the attributes of a
given object, and is the result of the behavior of an object over
time.

Java programs are defined as collections of classes. Normally each
Java class is defined in a separate file. The attributes of a class are
defined by the declaration of variables of various types such as int or
boolean. A Java class includes the definitions of the methods used to
implement the behaviors of the class. The method definitions are
integral parts of the class definition.

Communication via messages

Messages are how objects communicate with each other. Any object
may send a message to other objects, and it may receive messages
from other objects. In practical programming terms, sending a
message is accomplished by invoking or calling some class method,
and receiving a message is accomplished by having a class method
called by a different object.

Usually, a message is sent by a method call as a normal part of the
execution of the program logic of an object. However, messages may
also originate from the operating system interface or language run-
time system. Consider an object that implements a dialog interface
with a user. When the user clicks on a button, a message is sent to the
dialog object or button handler telling it that a specific button has
been pressed (the implementation specifics aren't important). In this
case, however, the user program usually doesn't monitor the mouse
itself to determine which button was pressed. Instead, the underlying
system monitors the mouse, and sends the message to the appropriate
user program object. The Java run-time system and libraries provide
many other support classes that can send and receive messages for

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�2�.�h�t�m�l� �(�1�1� �o�f� �4�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�9� }Ç

Chapter 2

user programs. This message to an object approach is easier to
program than the technique usually known as callbacks used by non-
OO programming languages. Instead of defining a separate callback
procedure and then registering it with the system, a Java program will
create an object based on a standard Java system library, and
appropriate messages (such as a button press) will automatically be
sent by the system to the appropriate object method.

There is another important aspect of the concept of messages.
Messages drive program execution flow. The fact that messages can
originate from the system as well as from the program itself means
that OO programs will often not have the traditional linear program
execution typical of non-OO programs (although they can, of course).
Consider an interactive program with a graphical user interface
(GUI). The parts of a GUI program required to execute in response to
some command are controlled by the user interactively. Depending
on which menu item the user selects, or what the user does with the
mouse, different parts of the program will be executed. The messages
corresponding to a menu pick or mouse gesture originate with the
GUI system, and are sent to the appropriate program objects, which
then have the responsibility to respond with some action. The order
and timing of these messages is determined by the actions of the user,
and not by the control flow of the program.

Object orientation is a natural for this kind of programming. In an OO
program, what you often end up with is a set of objects that can
respond to a set of messages originating from a variety of sources
such as a mouse click, a sensor value change, or a data base
transaction. Individual encapsulated objects can respond to messages
and send their own messages to others objects in response. Objects in
the system interact via well-defined messages with other objects in
the system.

Object Lifetime

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�2�.�h�t�m�l� �(�1�2� �o�f� �4�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�9� }Ç

Chapter 2

Objects are dynamic entities. They are created on an as-needed basis
during program execution. When an object is created, it is
instantiated, or bound to the class definition. An instantiated
member of a class is called an object, or equivalently an instance.
When a new object first comes into existence, a special method called
the constructor is automatically invoked by the run-time system. The
constructor is responsible for giving an instance its initial state. Once
an object has been created, it can receive and send messages.

While it exists, an object has state and behavior. State is expressed by
attributes, and behavior is expressed by the methods associated with
the object. State usually reflects changeable attributes of an object.
Objects can also have nonstate attributes (e.g., a serial number).
Individual objects have identity and are distinct things, and can be
distinguished from other objects. In order to use any object requires
the use of its identity. Java uses references to keep track of
individual objects. Java references are variables declared using the
class name or type of the object. It is possible to have more than one
reference that refers to the same object. Messages are sent to an
object by using its reference with the appropriate method name.

Once an object is no longer needed, it can be destroyed. Objects
commonly go out of existence as a normal part of program execution.
Perhaps the most common case of this is when temporary objects
created by some method are no longer needed when the method is
done and returns to its caller. Some programming languages (e.g.,
C++) allow for the explicit destruction of objects. However in Java,
an object ceases to exist whenever it no longer has any references to
it from other objects, at which point it may be garbage collected by
the Java run-time system.

To get an idea of object lifetime, consider graphical user interface
(GUI) classes such as the Swing library provided with Java. One type

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�2�.�h�t�m�l� �(�1�3� �o�f� �4�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�9� }Ç

Chapter 2

of object included in a GUI is a dialog interface. Upon some action
by the user, say selecting a menu item, a given dialog object will be
created. As part of the creation process, its constructor will be called.
The constructor will set up the initial state of the dialog, which would
likely include is size, the buttons and controls it has, and its position
on the screen.

While the dialog object exists, it is able to respond to messages, and
to send messages to other objects. For example, the dialog could
respond to a message from the system that a particular button was
clicked by sending another message to some other object in the
program to take some action described by the button press.

When the user closes the dialog, the dialog object will no longer be
needed. Once it no longer has any references to it, it can be garbage
collected by the Java run-time.

constructor An operation that creates an object and defines its
initial state. For complex objects, construction can be a
significant activity, and cause the constructors of other objects
to be invoked as well.

garbage collection The automatic detection and freeing of
memory that is no longer in use. An object becomes available
for garbage collection when it is no longer referred to by any
other object. Java uses garbage collection rather than explicit
destructors found in other OO languages such as C++.

reference A data element whose value is an address. In Java,
all objects are accessed by reference. Any object variable will
be a reference to an actual object, and not the object itself.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�2�.�h�t�m�l� �(�1�4� �o�f� �4�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�9� }Ç

Chapter 2

identity The characteristics or state of an object that allows it
to be distinguished from other objects.

instance A specific object that is an instantiation of a class. An
instance has specific attributes and behaviors, and a unique
identity. Instance and object are often used interchangeably.

instantiation Creating an instance of an object of a given
class. Instantiating an instance brings it into existence.

object lifetime The time an object exists - from its instantiation
in its constructor until the object no longer exists and has been
finalized by the Java garbage collector. The creation point of
an object is under program control, but the exact moment
when an object ceases to exist cannot be determined because
of the way the Java garbage collector works.

Basic UML Class Notation

The basic UML notation for a class is a rectangle with three
horizontal parts. The top part is used to hold the name of the
class. The middle part shows attributes, and the bottom is used to
hold the class operations (methods). Depending on the level of
detail needed, the middle attribute and bottom method parts may
not be included.

Associations are shown by lines between classes, and are
usually labeled with the name of the association.

Inheritance is shown by a line with a triangular arrow pointing to

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�2�.�h�t�m�l� �(�1�5� �o�f� �4�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�9� }Ç

Chapter 2

the more general class (the superclass).

Aggregation is shown by a line with a hollow diamond pointing to
the whole class, while composition uses a solid diamond instead.

Class Hierarchies

One of the most important aspects of creating object-oriented
programs is the arrangement of classes into hierarchies. The simplest
hierarchy is called an association. Two classes are associated by a
named relationship. For example, consider a software system that
tracks the books that readers check out from a library. Two classes
present in this system could include a LibraryBook and a Reader.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�2�.�h�t�m�l� �(�1�6� �o�f� �4�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�9� }Ç

Chapter 2

There is an association between LibraryBook and Reader that could
be called either borrowing (readers borrow books from a library) or
lending (a library lends books to readers).

Figure 2-1.
A borrowing association

Depending on what makes the association clearer, it can be labeled as
a big-picture class-level association (e.g., borrowing as in Figure 2-
1), or as a specific name for each class in the association (e.g., using
borrowedBook and borrower by each class instead of borrowing).
Figure 2-2 shows the alternate way to name the association.

Figure 2-2.
Alternate names for the association

Classes in an association usually occupy equal places within a
hierarchy. In our example, Readers and LibraryBooks are
independent classes of equal standing. Associations are used to show
the relationship between different, independent classes in the overall
object-oriented design.

Associations also can have a multiplicity attribute. In the borrowing

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�2�.�h�t�m�l� �(�1�7� �o�f� �4�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�9� }Ç

Chapter 2

example, note the 0..* and 0..1 values right next to each class
diagram. The 0..* by the LibraryBook diagram means that a Reader
can borrow an unlimited number of books, from 0 up to an
unspecified number. The 0..1 by the Reader diagram means that a
given book will be borrowed by at most one reader. The multiplicity
values can specify explicit values if needed (for example, 0..4 would
mean a Reader could borrow at most 4 books). If a multiplicity is not
specified, 1 is assumed.

association An association is a relationship between two or
more classes. The association will indicate how objects of the
different classes relate to each other.

hierarchy An ordering of classes. The most common OO
hierarchies are inheritance and aggregation.

multiplicity An attribute that quantifies an association between
objects. The multiplicity is specified as a range of the number
of objects that can participate in the association, usually in the
form n..m, where n is the lower limit and m the upper limit. A *
means an unlimited number, while a single value can also be
used. Common multiplicities include 1, 0..*, 1..*, and *.

Plain associations involve classes that are independent of each other.
Hierarchies with classes that aren't independent are also an important
part of OO systems. There are two ways commonly used to organize
such class hierarchies.

The first is to include one class as a part of another. This is called a
whole/part hierarchy, and is characterized by a has-a relationship.
For example, a library is made up of a collection of books, which are

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�2�.�h�t�m�l� �(�1�8� �o�f� �4�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�9� }Ç

Chapter 2

themselves composed of pages, and so on. A library has some books,
which have some pages. You can look at this as a part-of
relationship. A page is a part of a book, which is part of a library.

Figure 2-3.
A Book Whole/Part Hierarchy

Parts of a class can either be essential to its existence, or they can be
parts that come and go. For example, a car has wheels, but would not
be a car without the wheels. A library has books, but the books can
come and go. A library without books is simply an empty library. A
book without pages is not a book. Note that the borrowing association
between a reader and a library book is independent of the whole/part
relationship of a library and its books.

The common OO term for a whole/part hierarchy is aggregation.
Objects that are in an aggregation association can come and go. If the
object is an integral part of the whole, then the hierarchy is called
composition. Most OO programming languages, including Java,
haven't defined special language support for whole/parts.
Nevertheless, whole/part hierarchies are critical for most OO
programs.

It is not difficult to define aggregation and composition in terms of
existing programming language features. There are two ways to
implement a whole/part relationship. In practice, the most common
way to implement aggregation and composition is to include an
instance of the aggregate object as an attribute of the containing class.
For example, the definition of a book class could include a reference

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�2�.�h�t�m�l� �(�1�9� �o�f� �4�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�9� }Ç

Chapter 2

to the page class (or more likely, a list or vector of pages). Java
allows also nested class declarations. Implementing aggregation and
composition is discussed more fully in the Java chapter.

aggregation A whole/part hierarchy. An aggregate object
includes (has-a) other objects, each of which is considered to
be a part of (part-of) the aggregate object.

composition A composition is a form of aggregation where the
whole cannot exist without having the parts.

has-a A way to state a whole/part relationship. The whole
object has-a part.

part-of The opposite of has-a. The component is a part-of the
whole.

whole/part A relationship between classes where one class
will be made up of or contain objects of another class.

The second kind of class relationship is the
generalization/specialization hierarchy.
Generalization/specialization (or gen/spec for short) is characterized
by an is-a relationship. For example, if you were designing a class
hierarchy to model animals, you might have a class for Dog, which is
a specialization of the class Carnivore, which is a specialization of
the class Mammal, and so on. Key to this concept is the fact that a
Dog is a Carnivore, which is a Mammal, which is an Animal.3

The main mechanism for implementing a gen/spec hierarchy is called

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�2�.�h�t�m�l� �(�2�0� �o�f� �4�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�9� }Ç

Chapter 2

inheritance. With inheritance, a new subclass is derived from an
existing parent superclass. The topmost class of the hierarchy is
called the root class. Not only does the derived subclass inherit the
properties of the superclass, but it can extend and modify its
behaviors and attributes. Defining inheritance in code is not as simple
as using a reference to an object, so all major OO programming
languages, including Java, provide direct language support for
generalization/specialization inheritance.

Figure 2-4.
An animal Generalization/Specialization Hierarchy

Note that the UML uses an open arrowhead pointing to the more
general class to show inheritance. Thus, in Figure 2-4 of the animal
hierarchy, a Mammal inherits from Animal, and so on.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�2�.�h�t�m�l� �(�2�1� �o�f� �4�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�9� }Ç

Chapter 2

UML: You can show more or less detail in UML diagrams
depending which information you want to concentrate on. For
example, since Figure 2-4 is mainly focused on the
inheritance relationships, and it doesn't show the attribute or
operation boxes. We will use this same diagram in Figure 2-5,
but show more detail, including some selected operations.

A superclass is extended without altering its definition or source
code. A subclass can be selective about which properties of the
superclass it inherits. The subclass can extend the superclass by
adding new properties, and by selectively overriding existing
properties of the superclass.

Inheritance is an especially important and powerful concept. It means
that an existing class can be used as-is by a new class, with its
properties modified and extended through the inheritance mechanism.
Classes can be designed to provide useful default behaviors and
attributes that can be extended and modified only if the derived
subclasses needs to.

Consider the mammal hierarchy. All mammals share a number of
common characteristics. These can be captured once in a generalized
Mammal class. The general mammal characteristics are then
available by inheritance to more specialized subclasses such as
Carnivore or Rodent. The class Carnivore inherits all the general
characteristics of a Mammal such as having hair and bearing live
young which are fed milk, while extending the attributes to having
certain kinds of teeth, and the behavior to eating meat. The Rodent
subclass of Mammal would extend the Mammal superclass with
different attributes than a Carnivore. The Mammal class itself could
be derived from an even more general Animal class.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�2�.�h�t�m�l� �(�2�2� �o�f� �4�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�9� }Ç

Chapter 2

This really represents an economy of expression. We can describe the
general characteristics in a superclass, while expressing the
specializations in a subclass. We don't need to repeat all the general
characteristics for each instance of a mammal, just those specific to
the subclass. And when the behaviors of different subclasses vary,
such as the eating habits of specific mammals, these too can be
specialized in a subclass.

In Java, a subclass can inherit from only one superclass. This is called
single inheritance. Other OO programming languages, such as C++,
allow classes to be defined that inherit from more than one
superclass. This is called multiple inheritance. Compared to single
inheritance, multiple inheritance is used infrequently, and can lead to
some confusion in the program design. Java does not support multiple
inheritance. Instead, Java supports what is called an interface, with
an actual class definition supplied to implement the interface. This
facility is often used in cases that would otherwise require multiple
inheritance. In practical terms, implementing an interface allows a
class to be used in well-defined ways by other classes.

Note that the is-a relationship is critical to proper design of a class. If
a subclass cannot be defined with an is-a relationship to its
superclass, then the design is likely faulty, and there is not an
inheritance relationship. A Dog is a Mammal, but it is not a Rodent or
a Color. You should always apply the is-a test when defining classes
with inheritance hierarchies.

Many discussions of object orientation will give special emphasis to
programming with inheritance, but in fact, both aggregation and
inheritance are important parts of object-oriented programming. Both
kinds of hierarchies are used to design programs that reflect the
characteristics of the problem being modeled. Any class can be
defined using a combination of both kinds of hierarchy.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�2�.�h�t�m�l� �(�2�3� �o�f� �4�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�9� }Ç

Chapter 2

default behaviors In an inheritance hierarchy, the class
behaviors defined by superclasses that will be used by default
unless they are overridden by some subclass.

derived In an inheritance hierarchy, a subclass is derived from
a superclass. The derived subclass inherits the attributes and
methods of the parent superclass.

generalization/specialization An inheritance hierarchy. Each
subclass is a specialization of a more generalized superclass.

implements In Java, a specification that the class will
implement the code required by an interface.

inheritance A mechanism that allows one class (subclass) to
share the attributes and behaviors of another class
(superclass). Inheritance defines an is-a relationship between
classes. The subclass or derived class inherits the attributes
and behaviors of the superclass, and will usually extend or
modify those attributes and behaviors.

interface In Java, an interface is a specification of methods a
class using the interface must implement. An interface is a
specification, and does not define any code. It provides an
alternative to multiple inheritance.

is-a A term used in inheritance hierarchies. In general, a
subclass is-a specialized kind of a more general superclass.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�2�.�h�t�m�l� �(�2�4� �o�f� �4�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�9� }Ç

Chapter 2

is-a test A simple test to check for proper inheritance design. If
you cannot say a subclass is-a kind of the superclass, then
inheritance is probably not appropriate.

multiple inheritance When a subclass is derived from multiple
superclasses, it is said to have single inheritance. Java does
not allow multiple inheritance, but provides interfaces as an
alternative.

overriding When a subclass specifies an alternative definition
for an attribute or method of its superclass, it is overriding the
definition in the superclass. Also called overloading. Java can
only overload methods.

root class The top most or most generalized user class of an
inheritance hierarchy. In Java, all classes are at least implicitly
derived from the Java Object class, which make it the most
primitive root class. Most applications will have many
hierarchies with different non-Object root classes.

single inheritance When a subclass is derived from a single
superclass, it is said to have single inheritance.

subclass In an inheritance hierarchy, a subclass is derived
from an associated superclass. A subclass is a specialization
of the generalized superclass.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�2�.�h�t�m�l� �(�2�5� �o�f� �4�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�9� }Ç

Chapter 2

superclass In an inheritance hierarchy, a superclass is a more
generalized class. A subclass will be derived from a
superclass. (A superclass is also known as a parent class or a
base class.)

Polymorphism

For a given class hierarchy, it is possible for different subclasses to be
derived from a common superclass. Each of the subclasses can
override and extend the default properties of the superclass
differently. Polymorphism is a characteristic of inheritance that
ensures that instances of such subclasses behave correctly.

When a subclass overrides a default method, it uses the same name
defined in the superclass. If the behavior of the default method is
adequate, a given subclass does not need to override the method, even
if other subclasses do. The derived method can implement completely
new behavior, or use the default method while extending it with
additional behaviors.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�2�.�h�t�m�l� �(�2�6� �o�f� �4�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�9� }Ç

Chapter 2

Figure 2-5.
Polymorphism means a Cat uses its own eatMeal, a Dog uses the
Carnivore eatMeal, and a Rodent the Mammal eatMeal.

The figure shows an Animal hierarchy. Since all mammals need to
eat, there would likely be a general method defined by the Mammal
class to handle eating, called eatMeal, for example. While all
Mammal objects might share some eating behaviors that are defined
in the general Mammal eatMeal method, some would require some
specialized eating behaviors that are different than other Mammal
objects. The eating habits of a Dog are different than a Cat, which are
different than a Rodent, which are different than a Primate. Thus,
each subclass definition can include an eatMeal method that
implements the specialized eating for that subclass. Not all subclasses

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�2�.�h�t�m�l� �(�2�7� �o�f� �4�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�9� }Ç

Chapter 2

need implement a specialized method if the superclass method is
satisfactory. In figure, the Dog uses the more general Carnivore
eatMeal, while the Cat has its own specialized eatMeal. The Rodent
uses the general Mammal eatMeal. Since all animals may not need an
eatMeal, there is no eatMeal method defined by the Animal class.
Note that all these methods have the same name, eatMeal, even
though they implement different behaviors.

If the system were to process a mixed list of different Mammal
objects, then it would need to use the appropriate eatMeal method for
each Mammal. For example, if the Mammal instance were a Dog,
then the eatMeal method defined for the class Carnivore would need
to be used, and not the eatMeal for a Rodent.

Polymorphism is what allows the appropriate method for any given
object to be used automatically. Polymorphism goes hand in hand
with inheritance and classes derived from a common superclass. The
mechanism that allows polymorphism to work is dynamic binding.
The actual binding of a call to a specific method is delayed until
runtime. Only then can the class a particular object instance belongs
to be determined, and the correct method from that class then called.

Polymorphism almost seems like magic. It can be difficult to really
believe that the proper eatMeal will be used for each object.
Fortunately, polymorphism is easier to use than it is to understand
completely, and you won't have to think about it explicitly most of
the time. Using it comes automatically, and seems a natural part of
using objects with inheritance.

dynamic binding Definition bound at run time.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�2�.�h�t�m�l� �(�2�8� �o�f� �4�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�9� }Ç

Chapter 2

polymorphism Polymorphism is what allows the appropriate
method for any given object to be used automatically.
Polymorphism goes hand in hand with inheritance and classes
derived from a common superclass. Polymorphism is
supported by dynamic binding of an object to the appropriate
method.

An Example - Putting it All Together

In this section, we will present a small example design that uses all
the major OO relationships: association, aggregation, composition,
and inheritance. This small example could be considered a starting
point for designing a full application for a library system. This
example will show the relationships between a library customer and
the library. Figure 2-6 shows the UML for this design.

Figure 2-6.
Relationships between a Library and its customers

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�2�.�h�t�m�l� �(�2�9� �o�f� �4�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�9� }Ç

Chapter 2

This example has two generalized superclasses, Book and Person.
Each of these describes generic objects. Presumably, each would
contain attributes common to all Books and all Persons, such as a
name. Note that a Book is composed of Pages. The composition
relationship shown indicates that a Book will have from one to any
number of pages. Any methods a Book requires to manipulate Pages
would be implemented in the Book class, and would be available for
subclasses of Book. A LibraryBook is derived from Book, and is a
specialized kind of Book. It might have additional attributes such as
an acquisition date, borrowing status, and an identification number.

A Reader is a special case of a Person who uses the Library. A
Reader object would contain specialized attributes such as a list of
checked out books.

The Borrowing class in this example is used to implement the same
borrowing association between a Reader and a Library book as we
used in Figure 2-1. Now, however, a Borrowing is also a part of a
library - a list of all books borrowed. We could use the same simple
direct association as we used before, but then the library would still
need some other object to track books that have been borrowed. In
addition, the Borrowing class can now have added responsibilities of
tracking just when a Reader borrows a LibraryBook, for example,
and or could track overdue books. The dashed line from Borrowing is
the UML notation to show this relationship. In our earlier example,
the borrowing association could be implemented as a simple double
link between a LibraryBook and a Reader. Using a class to
implement this association means the links between the LibraryBook
and the Reader will be managed by the Borrowing class. Note the 0..4
multiplicity for a Reader borrowing LibraryBooks. This would
indicate that a reader could have from 0 to 4 books borrowed.

Figure 2-6 shows an aggregation relationship between a Library and

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�2�.�h�t�m�l� �(�3�0� �o�f� �4�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�9� }Ç

Chapter 2

LibraryBooks. One might think that a library is not a library without
any books, and that the relationship should be a composition.
Perhaps. But one of the differences between aggregation and
composition is that when an object is destroyed, so are all of its
components, while the parts of an aggregation remain. So, if you
destroy a Book, the Pages are gone, too. On the other hand, if you
close a Library, all the Books will still exist.

And finally, note that both LibraryBook and Reader pass the is-a test
for inheritance. A LibraryBook is a Book, and a Reader is a Person.

Other OO Concepts

The six basic principles we've just discussed: abstraction with
objects, encapsulated classes, communication via messages, object
lifetime, class hierarchies, and polymorphism represent the pure
essence of object orientation. While these six principles are the core
of object orientation, there are other important concepts that are
essential parts of real object-oriented programming languages and
designs. This section covers some of these other concepts.

Abstract Classes

When building a class hierarchy, it is common to design some classes
that will never have any instances, and are intended to be used only
by subclasses. For example, the Animal class in the animal hierarchy
is such a class. There will never be an instance of an Animal. Instead,
there would be more specialized subclasses of Animal such as Horse
or Snake that would have instances. Classes that have no instances
are called abstract classes4. Abstract classes usually define a
common interface for subclasses by specifying methods that all
subclasses must override and define. For example, the Animal class

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�2�.�h�t�m�l� �(�3�1� �o�f� �4�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�9� }Ç

Chapter 2

might define a method called reproduce. Since all animals reproduce,
each subclass would have to define a reproduce method. But the
definition of reproduce for the Animal class would be empty since it
is an abstract class, and serves as a guideline or specification for
derived subclasses.

A concrete class, on the other hand, is one that can have actual
objects or instances. Dog and Cat are examples of concrete classes
because there will be instances of Dog or Cat. In Java, interface
definitions can be considered as a type of abstract class that has only
methods and no attributes.

A related concept is the root class we discussed earlier. In any
hierarchy, the root class is at the top of the hierarchy, and does not
have a superclass. The root class in the hierarchy we've been using is
Animal, but the root class could even be more general (for example,
Life) if necessary. A root class may or may not be an abstract class. It
is more common that an abstract class will also be a root class,
although it isn't required.

An OO system can have many root classes for different object
hierarchies. This can be visualized (Figure 2-7) as a forest of class
trees. In some OO programming languages, including Java, all
classes are actually derived from a single system defined root class5.
There are various advantages as well as disadvantages to this
requirement. The master root class in Java is the Object class.
Although all Java classes are derived from the Object class, this is
most commonly done implicitly; i.e., you don't have to explicitly
include the Object class in your class definitions. The class forest in
the figure does not include a topmost level root class.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�2�.�h�t�m�l� �(�3�2� �o�f� �4�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�9� }Ç

Chapter 2

abstract class A class that has no instances. It is usually
defined with the assumption that concrete subclasses will be
derived from it, and extend its basic attributes and behavior. In
Java, an abstract class is one that includes an abstract
method.

concrete class A class that is completely specified and can
have instances. A Java class derived from and abstract class
will define all the abstract methods from the abstract class.

Figure 2-7.
Some relationships shown by this "class forest" include: A and P are
root classes. P is a superclass of Q, R, T, and U. A, C, and E are all
superclasses of F and G. B is a subclass of A, and D is a subclass of B.
B and C are both derived from the common superclass A, using single
inheritance. U is derived from R and implements the interface S. D, F,
G, T, U, and V will certainly be concrete classes since they are at the
bottom of the hierarchy. Higher level classes could be either abstract

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�2�.�h�t�m�l� �(�3�3� �o�f� �4�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�9� }Ç

Chapter 2

or concrete. Note that in Java, A and P would be derived (probably
implicitly) from the Java Object class.

Visibility of Methods

Recall that encapsulation is one of the most important characteristics
of object-oriented programming. One aspect of encapsulation is the
hiding of all the implementation details of an object inside the class
definition, while presenting a well-defined interface to the outside
world via the class's methods. Object-oriented programming
languages such as Java provide direct language support to control the
visibility of a class's attributes and methods.

visibility The ability of one class to see and use the resources
of another class. Visibility is controlled by various
programming language features such as Java's public,
protected, and private specifiers.

Object-oriented languages usually provide four levels of visibility for
classes. These levels of visibility are usually directly supported by
language keywords. Normally, the levels of visibility will apply to
both the attributes and operations of the class. The four levels are:

1. Public Visibility. Public attributes and operations are visible
to the whole world. Any other class can access the public items
of a class.
2. Private Visibility. Private attributes and operations are visible
only to members of the given class.
3. Protected Visibility. Protected attributes and operations are
visible to the class and its subclasses.
4. Friend Visibility. Friend attributes and operations are visible
to a specified set of other classes. In Java, the package is used to

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�2�.�h�t�m�l� �(�3�4� �o�f� �4�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�9� }Ç

Chapter 2

define friend visibility. In C++, the friend specifier is used.

Encapsulation is enforced by limiting the number of public items.
Normally, attributes are never defined to be public. Instead, a class
should provide only public operations, which can provide services,
and allow other classes to interact with its attributes via a well-
defined public interface.

When a class needs to provide information about its state, the general
convention is to use what are known as setters and getters, also
known as accessors and mutators. In general, however, it is best to
minimize the number of setters and getters defined by a class. Classes
that are more data oriented (such as a Color or Coordinate class) will
be more likely to require setters and getters. Other classes should
modify their internal attributes as a result of the operations they
perform, and not by direct requests.

setter A method that allows the outside world to modify an
attribute of a class. Setter methods are also known as
mutators. Setter methods by convention have names such as
setLimit or setWidth.

getter A method that returns the value of a class attribute.
Getters are also known as accessors or selectors. By
convention, getter methods have names such as getLimit or
getWidth.

Class vs. Instance

When a class is defined, it can have two different kinds of attributes
and methods. The difference between these two is whether they apply
to the class as a whole, or if they relate to specific instances of the

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�2�.�h�t�m�l� �(�3�5� �o�f� �4�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�9� }Ç

Chapter 2

class. Class attributes and class methods apply to the class as a
whole. For example, it might be useful to know how many instances
of a give class have been created. In that case, a class attribute called
instances could be defined to track this information for the class as a
whole.

Instance attributes and instance methods, on the other hand, relate
to specific instances of a class. Commonly, any instance of a class
will need its own copies of attributes, and methods that use those
instance specific attributes.

class attribute Attributes of a class that are shared by all
instances of the class. There will be only one copy of each
class attribute, and it is possible to access these class
attributes without creating any instances of the class. These
are sometimes called static attributes in Java.

class method A method defined by a class that only operates
on class attributes. Class methods can be used without
creating any instances of the class. These are sometimes
called static methods in Java.

instance attribute An attribute of a class that is associated with
a particular instance of the class. Each instance will have its
own copies of instance attributes.

instance method Methods defined by a class that operate on
instance attributes. This is the most common type of method
defined by a class, and an instance method will be used only
with its associated instance of the class.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�2�.�h�t�m�l� �(�3�6� �o�f� �4�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�9� }Ç

Chapter 2

Accessing Objects

Object-oriented languages provide the basic mechanisms needed to
access the various parts of an object. But just as convention calls for
setters and getters, there are other special cases for accessing the
attributes and methods of an object that have their own terminology.
The following definitions cover the basic terms used to describe
different kinds of object access.

container A class whose instances are collections of other
objects. These collections may be objects all of the same
type, or of mixed types, although they usually have a common
superclass. Containers include lists, stacks, queues, bags,
and others. They usually provide a method to iterate over
each object in the container.

iterator An iterator is a method (or methods) used to access or
visit each part of an object. This allows the outside world
controlled access to all important parts of an object without the
need to know the internal implementation details of a specific
object. Iterators are often used with container classes, and
typically work by accessing the first item in a container, and
then each subsequent object until all objects have been
accessed.

mix-in A class (or usually an interface in Java) that is used to
define a single behavior. Mix-ins are usually not standalone
classes, but are used to provide a standard for implementing
the designed behavior.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�2�.�h�t�m�l� �(�3�7� �o�f� �4�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�9� }Ç

Chapter 2

callback A method that is called when an event has taken
place. Usually used in association with a listener. When a
listener detects an event, it will invoke the callback of objects
that need to know that the event has occurred.

listener A method that responds to events. These are usually
system events such as mouse clicks or timer events. The
listener will typically invoke callbacks of objects that need to
respond to the event.

link A reference to another class. Used to build associations
between classes.

this Also called self. A reference to the current object. Within a
class definition, references to the attributes and methods of
the class are implicit. The this reference can be used for clarity
to make a reference explicit. Most commonly, however, this is
used to pass a reference to the current instance to another
object. It can also be used to set a class variable to refer to
specific instance of the class.

A Low-Level View of Objects

At some point while a programming is running, class instances must
have some low-level implementation in the memory of a computer.
Having an understanding of how objects can be implemented at this
low-level can help you understand just what is going on.

The UML representation of an object with the separate attribute and
operation fields is in fact a reasonable model of how objects are
represented in memory. There are really two main components of any

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�2�.�h�t�m�l� �(�3�8� �o�f� �4�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�9� }Ç

Chapter 2

object: the data or attributes, and the code that implements the
methods. We will discuss the code part first.

A class definition includes the code for all methods of a class. The
compiler will translate the high level Java code into low-level Java
Virtual Machine code. This is the code that runs on each computer.
Because every instance of a class will use the same methods, there
really needs to be only one copy of each method defined by a class.
There does not need to be a separate copy for each object instance.
This is true for both instance and class methods and attributes. So, for
each class, there will be a single copy of all the code for the methods,
as well as the storage for any class attributes.

On the other hand, the instance data associated with each object will
be unique to each instance of a class. Each object exists as a separate
entity with its own identity. Thus, when an object is first created with
a new operator, Java will dynamically create the storage space
required for the instance attributes. Because this dynamic storage
must be initialized, most object-oriented languages, including Java,
will invoke a special class method called the constructor whenever an
object is first created.

Java will create new objects only with by an explicit use of the new
operator. It never automatically creates new objects. Since only class
methods (static methods) can be invoked without creating an instance
of a class, your program's main entry point is the class method static
void main.

Java will automatically create temporary storage for primitive items
like ints as well as object references. This storage is created to hold
the parameters passed when a method is called.

Most implementations of Java will use four different areas of
memory to store these various items. First, there will be two areas of

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�2�.�h�t�m�l� �(�3�9� �o�f� �4�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�9� }Ç

Chapter 2

memory to hold the method code and the class or static data. This
memory is allocated only once when a program or object is first
loaded. The dynamic object data and parameter storage is usually
implemented using two dynamic areas of memory. The first is called
the stack, and is used to hold the temporary copies of parameters and
copies of variables local to a method. When a method is called,
enough stack is used to hold the parameters and local method
variables needed for that call. This is done on a last in, first out basis,
so that when a method returns to its caller, the temporary parameter
values and method locals are simply removed, or popped, from the
stack. The memory required for instance variables when an object is
first created is allocated to a dynamic area of memory called the heap.
Unlike parameters and locals, instance variables are needed as long as
an object still exists. The heap usually consists of most of the free
memory available.

When the memory for an object is created, it will consist of the space
required to hold all the attributes of the object. It will also contain a
reference to the methods defined by the class. It is this dynamic
allocation of method references that allow polymorphism to be
implemented efficiently. Depending on the actual type of the object,
the proper method will be bound to the object at run time.

Just as objects have memory allocated for them when they are
created, it is necessary to free that memory when object are no longer
needed. Various object-oriented languages use different techniques to
control the freeing of this unused storage. We will discuss Java's
technique, garbage collection, more in the next chapter.

What does all this have to do with object-oriented programming? It is
part of the nature of objects that they each have their own existence,
their own identity, and their own lifetime. As a consequence, each
object has a representation in memory. The difference between
instance and class attributes and methods affects just how a particular

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�2�.�h�t�m�l� �(�4�0� �o�f� �4�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�9� }Ç

Chapter 2

object will work. The fact that an object must be created and
initialized, and that objects can go out of existence, means you must
be aware of these consequences when you program.

Chapter Summary

● Object Orientation is a significantly different way of thinking
about solving problems and developing software solutions.

● An Object-Oriented System is one that has been designed using
abstraction with objects, encapsulated classes, communication
via messages, object lifetime, class hierarchies, and
polymorphism.

● An object represents an instance of a real or abstract thing.
● A class is the definition of the attributes and methods needed to

model a related group of objects.
● Classes can be organized into hierarchies. Association is a

relationship between classes. Aggregation and composition
represent whole/part relationships. Inheritance represents
generalization/specialization.

● Inheritance allows subclasses to selectively derive the properties
of a superclass.

● Polymorphism goes hand in hand with inheritance, and means
the right methods are used for individual objects in a derived
class.

● An understanding of how objects are created and implemented
can make it easier to write good OO programs.

● Just as any other specialized discipline, object-orientation has its
own vocabulary.

Resources

Object-Orientation

Fundamentals of Object-Oriented Design in UML, Meilir Page-Jones,

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�2�.�h�t�m�l� �(�4�1� �o�f� �4�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�9� }Ç

Chapter 2

Addison-Wesley, 2000, ISBN 0-201-69946-X.

UML

UML Distilled, Martin Fowler and Kendall Scott, Addison-Wesley,
2000, ISBN 0-201-65783-X.

1

You can find many different definitions of what makes a system object-oriented, but
you would have trouble finding two OO developers who would agree to any one
definition. We will use this definition of object-orientation.

2

Aggregation and composition are similar. We will cover the differences later.

3

These may not be exactly biologically correct, but they serve our purposes for this
example.

4

Note the names Animal and Mammal are shown in italics in the UML diagram. UML
uses italics to designate abstract classes.

5

The root system class is not usually shown in UML diagrams.

med for Flyheart

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�2�.�h�t�m�l� �(�4�2� �o�f� �4�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�0�9� }Ç

Chapter 3

Chapter 3

Objects in Java

In Chapter 2, we covered the essence of object-oriented programming. The terms we used
there really apply to any object-oriented programming language: C++, Smalltalk, and, of
course, Java. In this chapter, we will focus on Java, and how Java supports object-oriented
programming.

This chapter is not an introduction to Java. We assume you've already had some
introduction to programming in Java. You have probably even used some basic object-
oriented properties of Java, such as defining objects and using inheritance. But, the
approach of this chapter will be to take a concept from object-oriented programming, such
as a class, and describe how Java supports that concept. It will not be the usual "Here's the
next language feature of Java" approach.

Since you are probably already somewhat familiar with Java, some of the material covered
in this chapter may seem very basic. Even though you may already know some of these
Java features, you may still find it useful to review it from the object-oriented perspective.

To keep the focus on objects, most of the examples will be first shown as a UML object
diagram, and then mapped to the equivalent Java code. As we said earlier, just because a
program is written in Java does not mean it is object-oriented. The goal is to keep your
thinking object-oriented, not Java-oriented. Starting with UML objects will help keep the
focus on objects1.

Defining Classes in Java

The class is the fundamental unit of Java programs. Any Java program will be made up of a
collection of class definitions. Each Java class is defined in a single file with the exact name
of the class, but with a .java file extension2.

For many of the examples in this chapter, we will assume we are working with a program
that will draw and manipulate various geometric shapes. In some cases, for clarity we will
give names to our classes that conflict with names of classes that are part of the standard
Java class library (such as Point and Color). In any event, these examples are designed to
illustrate how to use Java to implement classes and class relationships, and would likely be
somewhat different in a real world application.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�3�.�h�t�m�l� �(�1� �o�f� �3�6�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�3� }Ç

Chapter 3

Our model of shapes will assume that each shape has an x,y origin, expressed as a floating
point value. The shape would eventually be drawn on the screen at some physical location
that represents the shape's real origin. Because each shape will need to specify at least one
x,y coordinate, we will start by defining a Point class. A general Point class will likely be
useful for other aspects of drawing shapes.

The following UML class diagram shows a possible implementation of a Point class:

Figure 3-1.
UML Diagram of Point class

The following is the equivalent Java code for the Point class, and would be saved in a file
called Point.java.

Listing 3-1. Point.java
Point Class

 /**
 * Point - a double x,y coordinate
 */
 public class Point
 {
 // Attributes

 private double myX;
 private double myY;

 // Constructors

 public Point(double x, double y)
 {
 myX = x; myY = y;

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�3�.�h�t�m�l� �(�2� �o�f� �3�6�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�3� }Ç

Chapter 3

 }

 public Point()
 {
 myX = 0.; myY = 0.;
 }

 // Methods

 public double getX()
 {
 return myX;
 }

 public double getY()
 {
 return myY;
 }

 public void setPoint(double x, double y)
 {
 myX = x; myY = y;
 }
 }

Notice the exact mapping from the UML class diagram to the equivalent Java code. With
good UML design tools such as those discussed in a later chapter, it is possible to have
much of the code associated with your program generated automatically. Initially, a design
tool would generate the code that represents all the attributes and methods provided by your
class. You would fill in the lines of code that actually implements the actions supported by
the class methods. As you work with and modify your class, a good UML design tool will
automatically incorporate the changes you make into the UML class diagrams.

In this example, the Point class is defined as public class Point. The first part of the class
definition includes the private attributes of the class. The public methods associated with
the class (getX, getY, setPoint, etc.) are defined next. While Point is a simple class, it still
hides the real internal implementation of x and y from the outside world, and provides
public setters and getters. This class is so simple that you might be tempted to rename myX
and myY to x and y and make them publicly available. In fact, you will find many classes in
the standard Java library that do give direct access to the attributes. However, the standard
Java libraries represent a compromise between practical and efficiency considerations, and
truly good object-oriented design. Thus, the standard Java libraries are unfortunately not
always great examples of object-oriented software design and should not necessarily be
taken as examples of good OO programming.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�3�.�h�t�m�l� �(�3� �o�f� �3�6�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�3� }Ç

Chapter 3

In general, it is hardly ever a good idea to allow direct access to the attributes of a class.
Even providing getters and setters can expose implementation details that might better be
left hidden. In practice, however, especially for simple objects, it is sometimes acceptable to
expose the underlying model. In this case, we've chosen to expose that we are keeping the x
and y of a point as doubles. Using setters and getters helps protect the integrity of the
model. For example, we could easily add validity checks for a range of valid points if
necessary, and the programs using the Point class would not need to change.

If we wanted to change our representation of a Point from double to int values, for example,
we would have some difficulties. We would need to change any places where doubles are
used to ints. Depending on the stage of the development, even small changes like that can
still affect many lines of code. Fortunately, the strong type checking of the Java compiler
would flag places where doubles need to be ints.

Here is a slightly more complicated example. It is a Circle class that uses the Point class we
just defined.

Figure 3-2.
UML diagram of Circle class

Listing 3-2. Circle.java
First version of Circle

 /**
 * Circle.java - a simple Circle class
 */

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�3�.�h�t�m�l� �(�4� �o�f� �3�6�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�3� }Ç

Chapter 3

 public class Circle
 {
 private int red; // color of circle
 private int green;
 private int blue;
 private Point origin; // origin of circle
 private double radius; // radius

 public Circle(final Point org, final double rad)
 {
 red = 0; green = 0; blue = 0; // black
 origin = new Point(org.getX(), org.getY());
 radius = rad;
 }

 public int getB()
 {
 return blue;
 }

 public int getG()
 {
 return green;
 }

 public int getR()
 {
 return red;
 }

 public void setRGB(int r, int g, int b)
 {
 // Simplification: doesn't check for valid values
 red = r; green = g; blue = b;
 }

 public double getRadius()
 {
 return radius;
 }

 public void setRadius(double r)
 {
 radius = r;

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�3�.�h�t�m�l� �(�5� �o�f� �3�6�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�3� }Ç

Chapter 3

 }

 public Point getOrigin()
 {
 return origin;
 }

 public void setOrigin(Point org)
 {
 origin.setPoint(org.getX(), org.getY());
 }
 }

Even though this is a simple definition of a Circle class, it has some problems. Because we
already had a Point class, we used a Point to define the Circle's origin. However, we
represented the color of the Circle directly. Our design should undoubtedly define a Color
class, too. And if we were designing a program to represent different shapes, it would make
sense to define a Shape class for items that are common to all shapes (such as origin and
color), and derive specific shapes like Circle or Rectangle from that Shape class. We will do
that later in this chapter.

Note that a Point is merely a simple attribute of a Circle. A Point is really similar to a
fundamental type such as a double or an int. There is no higher level association
relationship between a Circle and Point. We will examine higher level associations later.

Visibility

When viewed in the overall context of object-oriented programming and encapsulation, it is
easier to understand all the visibility features of Java. For a class to be useful, it must
provide some services to be used by objects of other classes, while keeping the internal
details hidden.

Java uses the public specifier to define which attributes and methods are available to the
entire outside world. Any variable or method in the top level of a class definition with a
public specifier will be available for use by any other class. Note the various public
methods provided by the definition of the Point example: getX, getY, setPoint, and the
Point constructor. It is best to give public access only to class methods, and not class
attributes.

The remainder, non-public parts of a class must be hidden from the outside world. This
includes both attributes (remember that attribute is the object-oriented term for a data
structure, and other variables used in a class definition), and any methods needed to support
the internal class implementation. Java provides three ways to control the non-public

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�3�.�h�t�m�l� �(�6� �o�f� �3�6�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�3� }Ç

Chapter 3

visibility of attributes and methods.

Java naming conventions

Choosing names for Java classes, variables, and methods is not a random
process. Since its inception, there has been a set of standards for choosing Java
names. These standards were originally proposed by Sun, and have been widely
adopted by the Java programming community. You should follow the generally
accepted guidelines for naming Java items in your own programs. The
conventions presented here are adapted directly from Sun's own standards,
posted on Sun's Java web pages.

Packages

The prefix of a unique package name is always written in all-lowercase ASCII
letters and should be one of the top-level domain names, such as .com, .edu, or
one of other official top-level names.

Subsequent components of the package name vary according to an organization's
own internal naming conventions. Use dots to separate the parts.

Examples: com.sun.eng, com.objectcentral.javatools.

Classes

Class (and interface) names should be nouns descriptive of the purpose of the
class. Names are in mixed case, beginning with a capital and with the first letter of
each internal word capitalized. Use complete words, and avoid abbreviations.

Examples: Point, Shape, MovieEditor, ClientList.

Methods

Methods should be verbs descriptive of the purpose of the method. Method names
are in mixed case, with the first letter lowercase, and the first letter of each internal
word capitalized. There are prefix conventions for general types of methods, such
as using get and set for getters and setters.

Examples: getOrigin, findSmallest, drawGraph, saveModel.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�3�.�h�t�m�l� �(�7� �o�f� �3�6�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�4� }Ç

Chapter 3

Variables

Except when used as constants, all variables are named using mixed case with a
lowercase first letter, and internal words starting with capital letters. Variable
names should be meaningful enough to convey their use to someone reading the
code. Avoid abbreviations. Use one letter variable names for only for temporary
variables. Using meaningful variable names is one of the most important things
you can do to make your code easy to read and maintain.

Examples: myMovie, editedMovie, backgroundColor, lastItem.

Constants

The names of variables used as constants should be all uppercase with words
separated by underscores ("_")

Examples: MAX_SIZE, R_PG13, TERM_LIMIT.

For a simple class attributes and operations that are used only by the class itself, and won't
be used by any derived subclasses, the private specifier means that a variable or method is
visible only within the given class. Neither the outside world nor classes derived from the
class can see or use private attributes or methods. In the Point example, the attributes myX
and myY are private.

When a class is designed to serve as a parent class, and will have derived subclasses, the
protected specifier allows the given class and its subclasses to see those attributes or
methods. Classes not related to that class by inheritance cannot see protected attributes or
methods.

Finally, Java provides what is called package visibility for attributes and methods. Any
attribute or method defined without using any visibility specifier (public, private, protected)
has package visibility. A package is a collection of related classes that are tied together by
the Java package statement, which must be the first statement in each file that is a part of
the package. Package visibility is much like public visibility except that it is limited to other
classes included in the same Java package.

Package visibility is usually not a good thing. Using package visibility breaks class
encapsulation. It will couple the definitions of the classes in the package, and likely lead to
problems later as the package is maintained over time. When classes work closely together,
as they often do in a library, using package visibility can avoid making some attributes or
methods public, so it can be useful.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�3�.�h�t�m�l� �(�8� �o�f� �3�6�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�4� }Ç

Chapter 3

There are a couple of other complicating factors with package visibility. First, all non-
private attributes and methods are visible to other classes in the same package. This means
public, protected, and unlabeled attributes and methods. Second, if you don't put a class into
a package, it automatically is placed into the default package, which usually consists of all
classes in the current file directory. The small example classes shown in Listing 3-3
demonstrate this. The example consists of two files, PackageVisibility.java and Foo.java,
contained in the same file directory. Because neither file has been explicitly placed in a
package, the default package visibility makes Foo.protectedInt visible to the
PackageVisibility class. Beware.

Listing 3-3. PackageVisibility.java, Foo.java
Example showing default package visibility.

 /* This example demonstrates "default package visibility".
 * Foo is defined in the same directory as PackageVisibility.
 * Thus, only the Foo private attribute privateInt is really
 * private. PackageVisibility sees all three other variables.
 */

 public class PackageVisibility
 {
 public static void main(String args[])
 {
 Foo foo = new Foo();
 int fooPublic = foo.publicInt; // public
 int fooPackage = foo.packageInt; // package
 int fooProtected = foo.protectedInt; // default package
 // Following is not visible, would cause compiler error
 // int fooPrivate = foo.privateInt;
 }
 }

 public class Foo
 {
 // Simple class to demonstrate visibility
 public int publicInt;
 protected int protectedInt;
 int packageInt;
 private int privateInt;
 }

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�3�.�h�t�m�l� �(�9� �o�f� �3�6�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�4� }Ç

Chapter 3

As a rule, you should always use a public, private, or protected specifier in the definition of
each attribute and method in a class definition. The only exception is if you require package
visibility for a library or other Java package, and then the class definition must use a Java
package specification.

The UML provides a notation for specifying visibility of attributes and methods. Note in the
UML class diagram of Point that the private myX and myY attributes have a "-" at the
beginning, which means private visibility, while the methods getY, getX, and setPoint have
a "+" to indicate public visibility. The UML uses a "#" to indicate protected (and Java
package) visibility.

Inheritance

Inheritance is a fundamental feature of object-oriented design and programming. While the
use of class association, aggregation, and composition are just as important as inheritance
when developing real programs, inheritance differs in that implementation support for it
must be provided by the object-oriented programming language. It is in the language
support for inheritance that C++ most differs from C, or Java differs from earlier languages
such as Pascal.

In the earlier Point and Circle example, we noted that having a Color class might be useful,
and that it would make sense to generalize the concept of a shape. To demonstrate
inheritance in Java, we will develop a simple example that uses a Point class, a Color class,
and a Shape class that will be used to define Circle and Rectangle classes. (We could define
other shapes, but two are enough to illustrate how to use the UML and Java to implement
inheritance.)

First, let's design a general Shape class. What is common to a Circle and a Rectangle? Both
will have an origin, and a color. Furthermore, all shapes have some other common
geometric attributes such as area and perimeter. Thus, we will design a parent Shape class
that accounts for these common factors by including objects of the Point and Color classes
as attributes of Shape. Area and perimeter will be handled by defining methods. The
calculation of area and perimeter will be defined by the subclasses of Shape.

In our example, we can reuse the Point class from earlier, but will need to add a new Color
class. We will also need a base Shape class that will be used to derive other specific shapes.
For our example, we will design new Circle and Rectangle classes that are derived from a
Shape class.

First, here are UML class diagrams for the new Color class and again for Point:

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�3�.�h�t�m�l� �(�1�0� �o�f� �3�6�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�4� }Ç

Chapter 3

Figure 3-3.
Point and Color UML

The corresponding code for Color (see Listing 3-1 for Point):

Listing 3-4. Color.java
RGB Color class

 /**
 * Color - a simple RGB color representation
 */
 public class Color
 {
 // Attributes
 private int blue;
 private int green;
 private int red;

 // Constructors
 public Color(int r, int g, int b)
 {
 red = r; green = g; blue = b;
 }

 // Methods
 public int getB()
 {
 return blue;
 }

 public int getG()
 {

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�3�.�h�t�m�l� �(�1�1� �o�f� �3�6�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�4� }Ç

Chapter 3

 return green;
 }

 public int getR()
 {
 return red;
 }

 public void setRGB(int r, int g, int b)
 {
 red = r; green = g; blue = b;
 }
 }

Now we will show the UML diagrams for our new shapes. Recall that to show inheritance
(or generalization/specialization), the UML uses a line from the class diagram of the
specialized class connected to the diagram of the more general class with an open headed
arrow pointing to the parent class.

In this design, it would never make sense to have a Shape object - there would just be
instances of Circles or Rectangles. Thus, the Shape class should be an abstract class. This is
shown in the UML by using Italic type for the class name. In addition, we specify that all
specific Shapes must provide methods for area and perimeter. Because each specific shape
will use a different method to calculate its area and perimeter, the area and perimeter
methods of the Shape class are declared abstract, and the specific implementations are
defined in the derived subclasses.

Here is the UML diagram for Circle and Rectangle classes derived from the abstract Shape
class.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�3�.�h�t�m�l� �(�1�2� �o�f� �3�6�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�4� }Ç

Chapter 3

Figure 3-4.
Circle and Rectangle are derived from Shape

Here is the corresponding code:

Listing 3-5. Shape.java
Abstract base class for shapes

 /*
 * Shape - an abstract base class for other shapes.
 * Defines color and origin of shape, and getter/setters for
those
 * Defines abstract methods area and perimeter for actual shapes
*/
 public abstract class Shape
 {
 // Attributes
 private Color color;

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�3�.�h�t�m�l� �(�1�3� �o�f� �3�6�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�4� }Ç

Chapter 3

 private Point origin;

 // Constructors
 protected Shape(Color col, Point org)
 {
 origin = new Point(org.getX(), org.getY());
 color = new Color(col.getR(),col.getG(), col.getB());
 }

 protected Shape(Point org)
 {
 origin = new Point(org.getX(), org.getY());
 color = new Color(0,0,0); // black by default
 }

 protected Shape()
 {
 origin = new Point(0.0, 0.0); // 0.,0. origin
 color = new Color(0,0,0); // black by default
 }

 // Methods
 public abstract double area(); // real shape defines

 public abstract double perimeter(); // real shape defines

 public Color getColor()
 {
 return color;
 }

 public void setColor(Color col)
 {
 color.setRGB(col.getR(), col.getG(), col.getB());
 }

 public Point getOrigin()
 {
 return origin;
 }

 public void setOrigin(Point org)
 {
 origin.setPoint(org.getX(), org.getY());

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�3�.�h�t�m�l� �(�1�4� �o�f� �3�6�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�4� }Ç

Chapter 3

 }
 }

Listing 3-6. Circle.java
Circle derived from Shape

 /*
 * Circle - a Shape representing a circle
 */
 import java.lang.Math; // for PI

 public class Circle extends Shape
 {
 // Attributes
 private double radius;

 // Constructors
 public Circle()
 {
 super();
 radius = 0.0;
 }

 public Circle(final Point org, final double rad)
 {
 super(org);
 radius = rad;
 }

 // Methods
 public double area()
 {
 return Math.PI * radius * radius; // Pi r Squared
 }

 public double getRadius()
 {
 return radius;
 }

 public double perimeter()
 {
 return 2 * Math.PI * radius; // 2 PI r

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�3�.�h�t�m�l� �(�1�5� �o�f� �3�6�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�4� }Ç

Chapter 3

 }

 public void setRadius(double r)
 {
 radius = r;
 }
 }

Listing 3-7. Rectangle.java
Rectangle derived from Shape

 /*
 * Rectangle - defines height and width to specify rectangle
 */
 public class Rectangle extends Shape
 {
 // Attributes
 private double height;
 private double width;

 // Constructors
 public Rectangle()
 {
 super();
 height = 0.0; width = 0.0;
 }

 public Rectangle(Point org, double h, double w)
 {
 super(org);
 height = h; width = w;
 }

 // Methods
 public double area()
 {
 return height * width;
 }

 public double perimeter()
 {
 return 2 * (height + width);
 }

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�3�.�h�t�m�l� �(�1�6� �o�f� �3�6�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�4� }Ç

Chapter 3

 public double getH()
 {
 return height;
 }

 public double getW()
 {
 return width;
 }

 public void setHW(double h, double w)
 {
 height = h; width = w;
 }
 }

The Java extends specifier is used by the definitions of Circle and Rectangle to specify that
they inherit from the Shape class. The Java abstract specifier is used by the definition of
Shape to indicate that it is an abstract class, and that area and perimeter are abstract and will
not have implementations in Shape.

The base class can provide implementations of the attributes and methods common to all
subclasses. Thus, Shape provides the declarations for the color and origin attributes, and the
implementations of the getColor, getOrigin, setColor, and setOrigin methods. It is up to the
definitions the subclasses Circle and Rectangle to provide appropriate implementations for
area and perimeter.

This simple example illustrates how a simple UML diagram can be mapped to Java code. In
these examples, we've used all three of the public, private, and protected Java specifiers. All
of these are examples of specific features of Java used to support inheritance.

Notice that Java uses the dot (.) operator to provide access to individual attributes or
methods of a class. For example, the line

 color = new Color(col.getR(),col.getG(), col.getB());

from the Shape class constructor used col.getR() to access the red value of the color passed
into the constructor. In Circle.java, we find the line

 return 2 * Math.PI * radius;

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�3�.�h�t�m�l� �(�1�7� �o�f� �3�6�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�4� }Ç

Chapter 3

which references the constant value for PI from the Java core Math package.

Most of the variables used in the rest of the code don't use the dot operator. These are
references to attributes of the given instance of the class. Each of these references has an
implicit "this." associated with it, and sometimes it adds clarity to the meaning of a program
to explicitly specify this.

Association, Aggregation, and Composition

While the UML has special symbols to represent association, aggregation, and composition,
Java (like other OO languages) does not provide special programming language constructs
to support them. Fortunately, implementing these designs in code is not very difficult.
Usually, association, aggregation, and composition are all implemented in the same way -
using links. When there is only one object involved (a multiplicity of 1), then a simple
object reference variable will do. When more than one object can be involved in the
relationship, then a list or Java Vector can be used.

The links will be attributes of the classes involved in the relationship. There can be either a
one-way link, or a link in both directions, depending on the requirements of the design. This
directional connection is called navigability. If the navigability is one way, that direction is
shown in UML by and arrow on the association connection line. No arrows implies two-
way navigability.

There are conventions that can be used to choose the name of the link variable. Associations
are usually named, and often have specific names for each end of the association. If the
ends are named, then that name should be used for the link variable. If there is no name on
the end, then simply use a lower case version of the class name. Thus, for aggregation and
composition, which usually don't have an association name, use the lower case name of the
class at the other end. This will usually be the name of the part class in the whole/part
relationship.

Just to demonstrate how these links can be implemented, we will revisit the simple Library
hierarchy we discussed in Chapter 2. Figure 3-5 shows the hierarchy again. Note that in the
code that implements the UML hierarchy, you can't really tell the difference between any of
these associations just from the link declarations in the code. The different behaviors
required for association, aggregation, or composition are properties of how the code works.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�3�.�h�t�m�l� �(�1�8� �o�f� �3�6�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�4� }Ç

Chapter 3

Figure 3-5.

Relationships between a Library and its customers

The following Java code shows just how the links between the different objects can be
implemented in Java. Note that this code just shows the links. It does not show constructors,
or any other methods what would be required to actually use these objects.

Listing 3-8. Library.java
Links to parts

 /*
 * Library.java - Outline only. Code not complete.
 */
 public class Library
 {
 private Vector libraryBook; // List of all LibraryBooks
 private Vector borrowing; // List of Borrowings
 private Vector reader; // List of Readers

 // ...
 }

Listing 3-9. Book.java
Vector page implements composition links

 /*
 * Book.java - Outline only. Code not complete.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�3�.�h�t�m�l� �(�1�9� �o�f� �3�6�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�4� }Ç

Chapter 3

 */
 public class Book
 {
 private Vector page; // list of Pages
 }

Listing 3-10. Page.java
No links

 /*
 * Page.java - Outline only. Code not complete.
 */
 public class Page
 {
 // ...
 }

Listing 3-11. LibraryBook.java
Borrowing borrowed implements association

 /*
 * LibraryBook.java - Outline only. Code not complete.
 */
 public class LibraryBook extends Book
 {
 private Borrowing borrowed; // link to Borrowing object

 // ...
 }

Listing 3-12. Person.java
Root class

 /*
 * Person.java - Outline only. Code not complete.
 */
 public class Person
 {
 // ...
 }

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�3�.�h�t�m�l� �(�2�0� �o�f� �3�6�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�4� }Ç

Chapter 3

Listing 3-13. Reader.java
Extends Person, Vector borrowing implements association

 /*
 * Reader.java - Outline only. Code not complete.
 */
 public class Reader extends Person
 {
 private Vector borrowing; // Borrowings of LibraryBooks

 // ...
 }

Listing 3-14. Borrowing.java
Reader reader and LibraryBook libraryBook implement association

 /*
 * Borrowing.java - Outline only. Code not complete.
 * This code would implement a Borrowing - it will link a
 * specific LibraryBook to the corresponding Reader.
 */
 public class Borrowing
 {
 private Reader reader; // Link to the Reader
 private LibraryBook libraryBook; // Link to the book

 // ...
 }

Java Interfaces

Java does not support multiple inheritance. In practice, multiple inheritance is infrequently
used. Java does provide a language feature called interfaces. Java interfaces support what
multiple inheritance is most often used for: mix-in classes. A mix-in allows a class to
implement a specific behavior defined by the mix-in class. When multiple inheritance is
available, the mix-in can be a true class, with methods and behavior of its own. A Java
interface just allows a specification of methods without providing any code implementation
of those methods. It is up to the class using a Java interface to provide the actual
implementation of the methods described by the interface specification.3

An examination of a real Java utility class that uses an interface for its functionality will

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�3�.�h�t�m�l� �(�2�1� �o�f� �3�6�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�4� }Ç

Chapter 3

help demonstrate just how useful a mix-in interface can be. The core Java utility package
provides a class called Observable that implements the Observer design pattern.4 It is a
common programming problem to have one object that is of special interest to several other
objects that need to know when that one object changes its state. Consider a single sensor
that is monitoring the status of a door, for example. When that sensor triggers because
someone opens the door, several other objects may be affected by that event. There could
be an object that controls lighting, and needs to turn on lights automatically if the door
opens. Another object might notify a guard station or alarm system, and another simply
count how many times the door has been opened. So whenever the door sensor detects that
the door has opened, it would need to notify all objects interested in that event. The
Observer design is ideal for this.

The sensor is the Observable object, and would be designed by inheriting from the Java
Observable utility class. Any other object (light controller, guard station) interested in being
notified whenever the Observable object (the door sensor) changes state would register
itself with the Observable object. Then, when that object (door sensor) changes state, it
would send a message to all registered Observables using the notifyObservers method
provided by the Java Observable class. The notifyObservers would then call the update
method implemented by each Observer object that registered. The UML for this is shown in
the "Interfaces in UML" section.

Interfaces in UML

Interfaces are specified slightly differently in the UML than classes. The main
diagram is like a class box, but includes <<interface>> or a circle to indicate it is
an interface and not a class. And because interfaces don't have attributes, the
attribute section is usually not included. Classes that implement an interface use a
dashed realizes connection rather than the solid generalization connection.

The following UML illustrates the Observer interface discussed in this section.
Note the association between Observable and Observer with the triangle direction
indicator.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�3�.�h�t�m�l� �(�2�2� �o�f� �3�6�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�4� }Ç

Chapter 3

In this case, the Observable class provides some real functionality. It has a method
(addObserver) that builds a list of all Observers. When its notifyObservers method is called,
it uses that list to call the update method of each Observer. On the other hand, the only
function of the Observer definition is to specify that there will be an update method
provided for the Observable to call. Since the behavior of each Observer is likely to be quite
different, there is no need for any functionality in the Observer specification. Thus,
Observer is defined as a Java interface that specifies a single method, update. Furthermore,
it is likely that some of the classes that implement Observer objects will be derived for other
classes. Thus, the fact that Observer is an interface means it will serve as a simple mix-in to
the actual classes that define Observers, and without the need for multiple inheritance.

While multiple inheritance can be useful for some programming problems, it does in fact
lead to some significant problems for the language compiler and run time implementation
(These issues are beyond the scope of this book, but are real, although solvable at some
cost). The Java interface provides a similar functionality to multiple inheritance, but avoids
the big complications that multiple inheritance brings to a language implementation. Thus,
it gives most of the benefits without the added cost of true multiple inheritance.

Object lifetime in Java

As we discussed in Chapter 2, all objects have a lifetime. They are created, carry out their
responsibilities, and usually go away - either when the program is finished using an object,
or when the program terminates. (It is possible to have persistent objects that "live" from
one invocation of the program to another, but such persistent objects are a different matter.)

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�3�.�h�t�m�l� �(�2�3� �o�f� �3�6�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�4� }Ç

Chapter 3

No Java object exists until it has been created with the Java new operator. Because a
program has to start by creating new objects, a Java program requires a static component,
e.g., public static main(String args[]). The main method exists statically, and creates new
objects to get the program running.

Constructors

When a Java object is created with the new operator, it begins its lifetime by having its
constructor automatically called by the runtime system. The constructor is really a special
purpose method. The constructor has the same name as the class, with no other type
attribute. The constructor can be declared to be public, private, or protected.

The goal of a constructor is to initialize the class. It should set all class attributes to a known
state. It can create other subobjects that are a part of the class. When the constructor is done,
the newly created object should be ready to use. A constructor does not return a value, but it
can throw an exception. The new operator returns a reference to the newly created object.

Java allows you to define multiple constructors for a class. Each constructor has a different
signature determined by the order and type of the constructor's arguments. The default
constructor has no arguments. It is often useful to define several constructors to initialize
objects to different values.

If a class is derived from another class, the constructor of the parent should be called. This
is done with the Java super() statement. Java will automatically call the default constructor
of the parent class if you don't explicitly use a super() statement. If you want to use a parent
constructor other than the default one, you can use super() with an appropriate set of
arguments.

Almost every Java example shown in this book will have constructors that you can study to
see the different ways constructors can be used.

Garbage collection

After an object has carried out its purpose, it is often not needed by the program any longer.
All objects consume at least some system resources, and it is important to free these
resources when an object is no longer needed. Whenever an object no longer has any
references to it, the Java runtime system will consider the object unused, and therefore
available for garbage collection.

Automatic garbage collection is a great simplification for the programmer. Unlike in other
object-oriented languages such as C++, the Java programmer is not responsible for
explicitly freeing resources used by an object. The garbage collector handles all this
(usually - see the next section, "Memory leaks").

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�3�.�h�t�m�l� �(�2�4� �o�f� �3�6�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�4� }Ç

Chapter 3

However, having garbage collection is not totally a free ride. First, you never can predict
when the garbage collector will be invoked, and thus won't know just when an object has its
resources freed. Java provides a special method for each class called finalize(). The finalizer
is called when the garbage collector frees the resources of the object. In theory, this should
allow the object to free other resources it might have used, such as file handles. In practice,
this is not something to rely on, and finalize() is in fact relatively worthless for all but a few
specialized cases that most programmers will never see. If you have an object that uses
system resources like file handles or network connections or whatever, you should be sure
that the object frees them when you know you are done with the object, and before you
release the last reference to it, and not count on finalize.

There is another problem with garbage collection. When the garbage collector does run, it
can more or less freeze a program for a few moments while garbage collection takes place.
As processors get faster, this issue becomes less important, but it is still possible to see a
Java program momentarily pause for no apparent reason. This is the garbage collector
running.

Memory leaks

Releasing the memory used by an object is easy in Java because Java uses garbage
collection. When an object no longer has any references to it, it becomes available for
garbage collection. All you need to do is let go of all references to the object. You will
never have to worry about corrupting memory or causing a runtime error by freeing an
object more than once as you would in other languages such as C++.

You do, however, have to worry about getting rid of all references to an object when you
are finished with it. If you leave a dangling reference to an object, it will never be garbage
collected, and you can still end up with a memory leak, just like in C++.

It isn't always easy to generate unused references to an object, but it does happen. One way
is to add objects to a list, and then use only one item in the list and then never empty the rest
of the list. You can create dangling references using some core Java library routines that use
listeners. Failing to unregister listeners is a common error that can create memory leaks. On
the other hand, if you eliminate all references to an object that in turn references other
objects, the garbage collector will also reclaim the memory from those indirectly freed
objects.

Most of the time, just reassigning a Java object variable to a different object will let go of
the reference to the original object. It is good programming practice to explicitly assign null
to an object reference variable when you are done with the object if you aren't reassigning it
to a different object. This practice will help be sure that objects don't have unused
references to them, and allow them to be garbage collected.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�3�.�h�t�m�l� �(�2�5� �o�f� �3�6�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�4� }Ç

Chapter 3

Class vs. Instance methods and attributes

Recall that class methods and attributes go with an entire class. They exist even if no
instances of a class have been created. They are available for use by any instance of the
class, and are sometime used by objects outside the class. There is only one copy of any
class attribute, and its value is independent of how many instances of the class are created.

Instance methods and attributes exist and are useful only after an instance of the class has
been created. Each instance of the class will get its own copy of instance attributes, and
these attributes can have different values, depending on the state of the specific object.
Instance methods can use both instance attributes and methods and class attributes and
methods.

Java uses the keyword static to indicate class variables and methods. Class or static methods
and attributes can be accessed without having any instances of the class. To access static
methods and attributes, you can simply use the name of the class, rather than a class
reference variable. A class method must not access instance variables or methods of the
class.

Before instance methods and attributes can be used, you must first create an instance of the
class with the new operator. You must then use the object reference variable to access the
class methods or attributes for a specific instance of the class.

Class attributes can be declared as public static final and given an initial value. This is the
typical Java idiom for defining constants for use within a class and by other classes. For
example, the Circle class discussed earlier used the Java Math package's constant Math.PI,
which is the value of Pi. Using constants like this is one case where it is acceptable to use a
class attribute directly rather than through a getter. The Card example used in the next
section demonstrates using class attributes to represent playing cards.

Copies of Objects

When programming with an object-oriented programming language like Java, it is
important to understand what is going on when you assign the value of one variable to
another. With variables of standard primitive types such as int, it is easy. Take, for example:

 int a, b;
 a = 1;
 b = a;

It is clear that the value of b will be 1, just like a. When the variable is an object reference,
however, the situation is not so clear. For example:

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�3�.�h�t�m�l� �(�2�6� �o�f� �3�6�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�4� }Ç

Chapter 3

 Circle c1, c2;
 c1 = new Circle(0.5);
 c2 = c1;

In this case, c1 is a reference to a Circle object with a radius of 0.5. The important thing to
note is that c1 is a reference to a Circle, and not a Circle object. Thus, the assignment
c2 = c1 makes c2 a reference to the same Circle object that c1 refers to. Thus, c2 is a
reference copy of c1. While you are programming, it is easy to think of c1 as a particular
Circle object, but as soon as you start assigning one object variable to another, you must
remember that you are really using references to objects.

Consider the following code fragment:

 Circle c1, c2;
 c1 = new Circle(0.5);
 c2 = c1;
 c1.setRadius(1.0); // Change the radius of c1
 int r1 = c1.getRadius();
 int r2 = c2.getRadius();

What are the values of r1 and r2? Both are 1.0 because both c1 and c2 are references to the
same object. If the goal of having the c2 variable was to keep a copy of the original value of
the circle, then this code does not accomplish that task. There are plenty of times you will
want and need a copy of an object reference, but there are times when you want and need a
copy of an entire object, not just its reference.

Java provides a mechanism for creating copies of objects called cloning. However, just to
confuse matters even more, there are two different ways to make a copy of an object called
shallow copy and deep copy. Depending on just how you are using a copy of an object,
sometimes shallow copy will be all you need, and sometimes you will have to use deep
copy.

reference copy A reference copy of an object is simply another reference variable that is
a duplicate reference to the same object.

shallow copy A bit-wise copy of an object. A new object is created that has an
exact copy of the values in the original object. If any of the fields of the object are
references to other objects, just the references are copied.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�3�.�h�t�m�l� �(�2�7� �o�f� �3�6�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�4� }Ç

Chapter 3

deep copy A complete duplicate copy of an object. If an object has references to
other objects, complete new copies of those objects are also made.

A shallow copy makes a bit by bit copy of your object, including references to other
objects. Thus, if the object you are copying contains references to yet other objects, a
shallow copy refers to the same subobjects. Sometimes this is OK, especially if the values
of the subobjects won't change.

A deep copy generates a copy not only of the primitive values of the original object, but
copies of all subobjects as well, all the way to the bottom. If you need a true, complete copy
of the original object, then you will need to implement a full deep copy for the object.

Java supports shallow and deep copy with the Cloneable5 interface to create copies of
objects. To make a clone of a Java object, you declare that an object implements Cloneable,
and then provide an override of the clone method of the standard Java Object base class.
When making a clone of an object, the assignment statement looks like:

 MyObject copy = (MyObject)original.clone();

(Note: clone always returns an Object, thus the need for the cast.)

Implementing Cloneable simply tells the Java compiler that your object is Cloneable. The
cloning is actually done by the clone method. The default behavior of the clone method
provided by the standard Java Object class is to make a shallow copy of the object. To build
a deep copy, you override clone with a version that calls the standard clone method to first
create a shallow copy, and then explicitly create the copies of the subobjects used by the
class. If all the subobjects are Cloneable, then you can simply clone each subobject. It is
good programming practice to make all subobjects of a class Cloneable if you need to
implement deep copy. The examples presented in Listing 3-15 should help clarify the whole
issue.

Whether you need a reference copy, a shallow copy, or a deep copy of an object will
usually be clear from the context of your program. Many Java programs never need to use
anything other than a reference copy of an object. But it is important to understand what it
means to be using a reference to an object rather than either a shallow or deep copy (clone)
of the object.

The following examples should make the difference between the three types of object
copies clear. We will use a small console based Java program to demonstrate this.

These are the two classes in this example program. It requires two classes to demonstrate

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�3�.�h�t�m�l� �(�2�8� �o�f� �3�6�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�4� }Ç

Chapter 3

the difference between shallow and deep copy.

Listing 3-15. CardHand.java
Demonstrates reference, shallow and deep copy

 /* CardHand.java - an example to show the differences among
 * reference copy, shallow copy, and deep copy.
 * Copyright (c) 2001, Bruce E. Wampler
 */
 public class CardHand implements Cloneable
 {
 private Card c1; // A CardHand has 2 cards
 private Card c2;

 public CardHand(Card cd1, Card cd2)
 {
 c1 = cd1; c2 = cd2;
 }

 public String toString()
 {
 return "c1:" + c1 + ","+" c2:" + c2;
 }

 // **** UNCOMMENT the clone method for SHALLOW and DEEP COPY
 // // override Object.clone()
 // public Object clone() throws CloneNotSupportedException
 // {
 // // To clone, first shallow clone whole object.
 // CardHand c = (CardHand) super.clone();
 // // **** UNCOMMENT next THREE line for DEEP COPY ONLY
 // // // now clone the deep parts
 // // c.c1 = (Card) c1.clone();
 // // c.c2 = (Card) c2.clone();
 // return c;
 // }

 static void main(String args[])
 throws CloneNotSupportedException
 {
 Card newCard = new Card(Card.HEART,7);
 CardHand origHand =

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�3�.�h�t�m�l� �(�2�9� �o�f� �3�6�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�4� }Ç

Chapter 3

 new CardHand(new Card(Card.SPADE, 1),
 new Card(Card.SPADE, 13));

 // **** UNCOMMENT next 3 lines for copy by reference ****
 CardHand saveHand = origHand;
 System.out.println("\n**** REFERENCE COPY ****\n\n"
 + "BEFORE: saveHand = origHand; :\n"

 // **** UNCOMMENT next 3 lines for SHALLOW COPY ****
 // CardHand saveHand = (CardHand) origHand.clone();
 // System.out.println("\n**** SHALLOW COPY ****\n\n"
 // + "BEFORE: saveHand = origHand.clone(); :\n"

 // **** UNCOMMENT next 3 lines for DEEP COPY version ****
 // CardHand saveHand = (CardHand) origHand.clone();
 // System.out.println("\n**** DEEP COPY ****\n\n"
 // + "BEFORE: saveHand = origHand.clone(); :\n"

 + "\n origHand is " + origHand
 + "\n saveHand is " + saveHand
 + "\n newCard is " + newCard + "\n");

 origHand.c1 = newCard;
 origHand.c2.setCard(Card.DIAMOND,4);
 newCard.setCard(Card.CLUB, 2);

 System.out.println(
 "AFTER: origHand.c1 = newCard;\n"
 + " origHand.c2.setCard(DIAMOND,4);\n"
 + " newCard.setCard(CLUB,2); :\n"
 + "\n origHand is " + origHand
 + "\n saveHand is " + saveHand
 + "\n newCard is " + newCard + "\n");
 }
 }

This example, CardHand.java, simply defines a hand containing two Cards as defined in the
class shown in Listing 3-16. All three cases, reference copy, shallow copy, and deep copy
can be demonstrated by adding and removing appropriate comments. We've chosen to use
comments this way to help you to see how similar the program is for any of the three ways
all in one place. The program as shown in Listing 3-15 is commented to build the reference
copy version. The program creates an original card hand, makes a copy of the original, and
then changes the values of the original. Depending on the kind of copy used, the results are
completely different.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�3�.�h�t�m�l� �(�3�0� �o�f� �3�6�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�4� }Ç

Chapter 3

Listing 3-16 is the code for the Card object. Card has been made Cloneable so that it can
easily be used by other classes that implement deep copy. Just because it is Cloneable does
not mean that objects that use a Card will need to make clones. And because a Card has
only ints for attributes, a shallow copy and a deep copy of a Card would produce identical
copy objects.

Listing 3-16. Card.java
Needed to distinguish shallow and deep copy

 /* Card.java - a simple class for cards - part of clone demo
 * Copyright (c) 2001, Bruce E. Wampler
 */
 public class Card implements Cloneable
 {
 public static final int CLUB = 1; // constants for suites
 public static final int DIAMOND = 2;
 public static final int HEART = 3;
 public static final int SPADE = 4;

 private int suite;
 private int value;

 public Card(int s, int v)
 {
 suite = s; value = v;
 }

 public Object clone() throws CloneNotSupportedException
 {
 return super.clone(); // all ints, so just use super
 }

 public void setCard(int s, int v)
 {
 suite = s; value = v;
 }

 public int getSuite() { return suite; }
 public int getValue() { return value; }

 public String toString()
 {

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�3�.�h�t�m�l� �(�3�1� �o�f� �3�6�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�4� }Ç

Chapter 3

 String str;

 if (value == 1)
 str = "A/";
 else if (value == 11)
 str = "J/";
 else if (value == 12)
 str = "Q/";
 else if (value == 13)
 str = "K/";
 else
 str = Integer.toString(value) + "/";
 switch (suite)
 {
 case CLUB:
 str += "Clubs";
 break;
 case DIAMOND:
 str += "Diamonds";
 break;
 case HEART:
 str += "Hearts";
 break;
 default:
 str += "Spades";
 break;
 }
 return str;
 }
 }

Reference copy is the easiest. The statement

 CardHand saveHand = origHand;

is where the reference copy is made. Note that even though the Card object is Cloneable,
this statement does not make any clones since clone() is not used. Figure 3-6 shows the
output for the reference copy version.

Because saveHand is simply a reference to origHand, any changes to origHand simply show
up when we reference the same object using saveHand instead. This is also true when we
assign newCard to origHand.c1. We are making a reference copy, so any changes to

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�3�.�h�t�m�l� �(�3�2� �o�f� �3�6�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�4� }Ç

Chapter 3

newCard will show up when origHand.c1 is used - it is a reference to the same object.

 **** REFERENCE COPY ****

 BEFORE: saveHand = origHand; :

 origHand is c1:A/Spades, c2:K/Spades
 saveHand is c1:A/Spades, c2:K/Spades
 newCard is 7/Hearts

 AFTER: origHand.c1 = newCard;
 origHand.c2.setCard(DIAMOND,4);
 newCard.setCard(CLUB,2); :

 origHand is c1:2/Clubs, c2:4/Diamonds
 saveHand is c1:2/Clubs, c2:4/Diamonds

Figure 3-6.
Output showing results of reference copy

To implement shallow copy, we simply change the statement where the copy is made to use
clone instead:

 CardHand saveHand = (CardHand) origHand.clone();

This makes a shallow copy. Since we haven't yet uncommented the clone method override,
the code will use the default protected clone method of the Object class. (Note that we had
to explicitly override clone in the Card class to change clone to public.) Thus, the only
difference between the code for the reference copy version and the shallow copy version is
the use of origHand.clone().

After the clone, saveHand is no longer a reference to the same object as origHand. Instead,
it now contains copies of the references to the two Cards, c1 and c2. It does not have new
copies of the Cards, however. Thus, when origHand.c1 is set to refer to newCard,
saveHand.c1 is not changed. However, when the Card that origHand.c2 refers to is changed
by the setCard call, it is the same Card object that both origHand.c2 and saveHand.c2 that is
changed.

 **** SHALLOW COPY ****

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�3�.�h�t�m�l� �(�3�3� �o�f� �3�6�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�4� }Ç

Chapter 3

 BEFORE: saveHand = origHand.clone(); :

 origHand is c1:A/Spades, c2:K/Spades
 saveHand is c1:A/Spades, c2:K/Spades
 newCard is 7/Hearts

 AFTER: origHand.c1 = newCard;
 origHand.c2.setCard(DIAMOND,4);
 newCard.setCard(CLUB,2); :

 origHand is c1:2/Clubs, c2:4/Diamonds
 saveHand is c1:A/Spades, c2:4/Diamonds
 newCard is 2/Clubs

Figure 3-7.
Output showing results of shallow copy

Finally, we show the results of a deep copy. To do this, we uncomment the clone override
in CardHand. Now the statement

 CardHand saveHand = (CardHand) origHand.clone();

creates not only copies of the references to the Cards as in a shallow copy, but copies of
those Card objects as well. This now means that the setCard call changes the origHand.c2
Card, but not the saveHand.c2 Card copy. And origHand.c1 and newCard still refer to the
same Card object, while saveHand.c1 refers to the original "A/Spades" Card object.

 **** DEEP COPY ****

 BEFORE: saveHand = origHand.clone(); :

 origHand is c1:A/Spades, c2:K/Spades
 saveHand is c1:A/Spades, c2:K/Spades
 newCard is 7/Hearts

 AFTER: origHand.c1 = newCard;
 origHand.c2.setCard(DIAMOND,4);
 newCard.setCard(CLUB,2); :

 origHand is c1:2/Clubs, c2:4/Diamonds
 saveHand is c1:A/Spades, c2:K/Spades

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�3�.�h�t�m�l� �(�3�4� �o�f� �3�6�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�4� }Ç

Chapter 3

 newCard is 2/Clubs

Figure 3-8.
Output showing results of deep copy

Messages

When thinking in object-oriented terms, one says that an object passes a message to
another. The idea of thinking about passing messages is very useful. In fact, most messages
in a Java program are really calls to some method of a class, which can then respond to the
message by returning a value. While you can say that you are calling or invoking a class
method, it is better to say Class A passes a message to Class B.

Asynchronous messages, such as those caused by events, are somewhat different. In these
cases, the idea of really sending a message is close to what is going on. This kind of
message can be handled by a Java listener and callback. We looked at callbacks earlier. The
Java interface construct is useful for building this kind of message handling. You define a
Java interface that describes the name of the callback method, and then implement the
callback in the class that needs to receive a message. Then, some other class can send a
message by calling the callback method described in the interface.

Chapter Summary

● Java is a truly object-oriented language.
● Java has direct support for defining the attributes and methods of a class.
● There are standard conventions for naming things in Java.
● Java provides public, protected, private, and package visibility.
● Java supports single inheritance directly in the language.
● Association, aggregation, and composition are usually implemented with reference

variables.
● The Java interface provides a mechanism to support mix-ins, and substitutes for

multiple inheritance in many cases.
● All Java objects are built with the new operator, and have constructors for initialization.
● Java uses garbage collection to recover the resources of unused objects.
● The static keyword is used to define class attributes and methods. Others (non-static)

are instance methods and attributes.
● A simple assignment to an object variable creates a reference to an object. Java

provides the Cloneable interface and clone method to support shallow and deep copy.
● Messages are usually implemented as calls to the methods of a class.

Resources

Java

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�3�.�h�t�m�l� �(�3�5� �o�f� �3�6�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�4� }Ç

Chapter 3

The Java Tutorial, from Sun:
java.sun.com/docs/books/tutorial/

Code Conventions for Java, from Sun:
java.sun.com/docs/codeconv/

Java Documents, from Sun:
java.sun.com/docs/index.html

Object-Oriented Software Development Using Java, Xiaoping Jia, Addison-Wesley, 2000,
ISBN 0-201-35084-X.

Thinking in Java, Bruce Eckel, Prentice Hall, 1998, ISBN 0-13-659723-8.

Java: An Introduction to Computer Science & Programming, Walter Savitch, Prentice Hall,
1999, ISBN 0-13-287426-1.

Java in a Nutshell, David Flanagan, O'Reilly, 1999, ISBN 1-56592-487-8.

Practical Java Programming Language Guide, Peter Haggar, Addison-Wesley, 2000, ISBN
0-201-61646-7.

1

Of course, even using UML doesn't guarantee object-oriented programs.

2

Actually, you can build Java source files that define more than one class, but there can be only one public class in
each file. Any other classes within a file serve as utility classes for the main public class in that file.

3

While the Java keywords interface and implements describe the language features quite well, the terms are also
commonly used to describe a user interface and code that implements a program feature. Usually, context will tell the
true meaning.

4

Design patterns are design solutions for a large number of problems commonly found in object-oriented programs.
They are discussed in more detail in Chapter 7.

5

Cloneable is Java's (mis)spelling.

med for Flyheart

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�3�.�h�t�m�l� �(�3�6� �o�f� �3�6�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�4� }Ç

Chapter 4

Chapter 4

Object-Oriented Analysis and
Design

OK, so now you are starting to think in objects. You know what an
object is, how objects can be used together in different kinds of
organizations, and how you can build objects using Java. Now you
are ready to write some great software.

Good software doesn't just happen. Even the world's best
programmers can't just sit down in front of a computer and write
great software. Developing great software involves knowing what the
software is supposed to do, having a plan to build that software, and
using good practices to produce a high quality working software
system. Most software projects involve many people and are
developed over a period of time that can be as long as several years.
Even simple one-person projects should be developed with some
discipline. The process of building an entire software system is often
called Object-Oriented Analysis and Design (OOAD). In this chapter,
we will cover the essential parts of OOAD.

The process of building a software system has many things in
common with building a house or building. For a very small building,
the process can be pretty informal. But if you need to build a large
office building, the process is much longer and complex. The same is
true for a software system.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�1� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�8� }Ç

Chapter 4

The first step, of course, is knowing what you want to build. There is
typically someone who wants a building (customer), and someone
who is going to design and build it (designer). Sometimes, but
usually only for small projects, those two are the same person. But
there is still that first step - we need a building, it will be this size,
more or less, and will serve some purpose - a storage shed, a home, a
warehouse.

Once the decision has been made to build a building (or software
system), the next step is to develop some specifications. Even if you
are building a simple shed as a weekend project, you have to decide
where it will go, how big it will be, what material you will use to
build it. It is even possible to decide to buy a predesigned kit. This
analogy holds even for a small software system. You must start with
at least some analysis of what the software should do, what is basic
features are, where you will use the software, and even if there is an
existing system that will serve your needs. As with a building a small
building, building a small software system doesn't necessarily require
a whole lot of people, or super experts to design a successful system.

Now, consider building a house. The process is more complicated.
The customer usually first starts with an architect or experienced
designer. After a month or more of interaction between the designer
and the customer, the result is a set of fairly detailed plans of how big
the house will be, how the rooms will be laid out, and perhaps what
basic materials will be used. After this design is settled on, the details
need to be filled in. What siding will be used? What color will the
rooms be? What lighting and plumbing fixtures will be used? Finally,
the home will actually be built, usually with a crew of less than ten
workers, over a few months of construction. The tools required to
build a house are usually basic and not necessarily expensive. Often
the designer will supervise, or even participate in the construction of
the home.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�2� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�8� }Ç

Chapter 4

A small to medium sized software project isn't a whole lot different in
the approach required. There will be a period of planning between the
customer and the software designer. The customer will be the one
who specifies what is most important to include in the software
system. The designer will analyze the requirements, and produce a
high level design for the system - what it needs to do, how it will be
organized, what its parts are. After the customer and designer agree,
then a more detailed design is produced to determine such details as
what programming language will be used, what the objects in the
system are, and what the basic structures of those objects are. Finally,
programmers will turn the design into a running program. The time
frames for this size of project typically run about a year or so. The
number of programmers varies - usually at least 2 or 3, but less than
10. And depending on the specific application, there usually isn't a
need for developers with specialized knowledge. For projects of this
size, often basic software tools will be enough, with perhaps a few
specialized tools being used.

Finally, consider building a huge office building. Now the situation is
much different. The customer will likely have put a considerable
effort into deciding that they need to build a big building, and just
what that building will do for their business. They need to then work
with a large architectural firm with considerable experience in
building large office buildings. They would use different firms if the
project were for a highway, airport, or power plant. The analysis and
design phase of the project can take many months, even years, before
the actual construction begins. The construction company is likely to
be completely independent of the design company, and will use tens
or hundreds of workers skilled in building office buildings. They will
work with a detailed set of plans and specifications produced by the
designers. The project will likely need large, expensive equipment
that requires specialists to operate. The whole project may require
layers of management to keep everyone involved on track.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�3� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�8� }Ç

Chapter 4

A large software project is in many ways similar. The up front
analysis and design phase can take years. The design process will
likely require the input from experts in various fields of the
application area, and experts in designing large software systems of a
specific nature. The result of the analysis and design will be a
detailed specification that can be passed on to software companies
that specialize in building large systems. The whole process may take
years and involve tens or hundreds of software designers and
programmers. Expensive software tools that require extensive
training to use may be needed to make the project work, and outside
consultants may be required.

There are some other traits buildings and software have in common.
First, the result of the effort will be around for a long time. You may
think you are writing a quick and dirty software application, but
inevitably, it will continue to exist for years and years. Second, after
you are finished, there will be bugs. You will have missed getting a
nail in the right spot, and your shed roof leaks. Your software will
have bugs. And finally, you will end up wanting to add on - either to
your building, or to your software. And you will occasionally need to
refurbish to keep up with the latest trends in house interiors, or user
interface design.

Of course, this analogy isn't perfect. People have been building
structures for a long time. There are standard construction materials
and techniques. There are official building codes, and inspectors to be
sure the codes are followed. Software isn't quite that mature, yet, and
in many ways, software can be much more complex. The number of
lines of code in a software project can easily exceed the number of
parts used in a building. And software doesn't have the equivalent of
building codes and building inspectors (and is isn't clear that it ever
can, although people are trying). There is another difference. For
many software projects, good programmers are likely to participate in
all phases of building the system, from start to finish.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�4� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�8� }Ç

Chapter 4

Even so, there are some important things to learn from this analogy.
First, even the smallest projects really need some level of analysis
and design. Even so, smaller projects can be done with fewer people
and less formal techniques. As the complexity of a project increases,
the more it will benefit from more formal analysis and design
methodologies.

So, how do you develop a real software system? Where do you start?
What do you do next? In the rest of this chapter, we will go over
some basic software analysis and design techniques that can be used
at some level in almost any software system.

Software Methodologies

Over the years, many of the best software experts have discovered
and designed object-oriented design techniques that raise software
development above the level of black magic and artistry to something
closer to using standard engineering practices. Not all software
projects are the same. Some are very big, some small, some involve
well-understood problems, and some are risky and explore uncharted
territory, and different design techniques will apply to different
software projects.

A development methodology is set of practices or guidelines used to
develop software. Over the years, there have been many different,
often competing, software development methodologies. The most
current methodologies are designed to work especially well with
object-oriented development. Because not all software projects are
the same, there are currently several different software development
methodologies that can be applied to different kinds of software
projects. Some methodologies, such as the Rational Unified Process,
seem best used for very large, multi-year projects with large teams of
programmers. Other methodologies, such as Extreme Programming

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�5� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�8� }Ç

Chapter 4

(XP), work better with smaller scale projects with ten or fewer
programmers.

Methodologies developed before the widespread use of object
orientation are now known as structured methodologies. While object
orientation has proven itself to be much more productive than older
structured development and is the dominant development paradigm
today, there are still many active software projects that use non-object-
oriented languages and structured methodologies. We will focus
exclusively on OO methodologies in this book.

Note that the UML is not a development methodology, but a notation.
While the design of the UML was influenced heavily by the designers
of the Rational Unified Process methodology, it can be used by
almost any of the other methodologies, although not all elements of
the UML are necessarily used by a specific methodology.

In this chapter, we will try to cover analysis and design techniques
that can be applied to any development technology. We will discuss
the specifics of some of current methodologies in more detail in
Chapter 9.

Even though the different development methodologies vary widely in
their detail, there is some commonality. When examined at the
fundamental level, almost all of them include in some way or another
the following three basic parts:

● Plan
● Build
● Release

Different methodologies or other summaries of OOAD may use
different vocabulary and names, have different steps, or more steps;
but you can usually map other viewpoints back to these three steps. A

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�6� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�8� }Ç

Chapter 4

slightly expanded view of these steps includes some of the terms
often used by other methodologies:

● Plan = analysis, design
● Build = code, debug, unit test
● Release = integration test, learn, maintain

Before the wide spread use of object-oriented programming, older
development methodologies tended to treat these steps as happening
in a strictly sequential order, often known as waterfall development1.
Each step of the development cycle flowed downstream into the next.
Object-oriented methodologies tend to treat development as a much
more iterative process: Plan, Build, Release a Version, and then
repeat with refinements. The exact steps used by each methodology
vary, but the software system is typically implemented in series of
development iterations. Each iteration usually results in a release of
the system with partial functionality. After each iteration, the process
is repeated, with lessons learned in previous iterations applied to the
next to improve the process. The different object-oriented
methodologies vary most in the details of the overall process, and in
the approaches they take with each of the plan - build - release steps.

One thing that almost all modern methodologies have in common is
their ability to use the UML. The fact that different parts of the UML
can be used for various phases of software design by almost any
methodology accounts for its widespread acceptance.

The Elements of a Software Project

As we noted earlier, software projects come in all sizes. While a high
portion of current software development is maintenance and
enhancement of existing systems, there are still new software
projects, big and small, being started all the time. Just how does a
new project get started?

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�7� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�8� }Ç

Chapter 4

A software project will get started when some individual or
organization, most often after some considerable contemplation,
decides that a new software system is needed by the organization. At
this point, the organization, or customer, will contact a software
developer to discuss creating such a system. The customer and
developer may be from the same company, but software development
is also commonly done by external organizations.

The customer will meet with the developer, and provide a description
of the software system. This description will be from the perspective
of the customer and the problem domain of the system. Together,
the customer and developer will produce a more detailed initial
specification, which can then be used by the developer to determine
the feasibility and cost estimation for the proposed project.

customer The organization that needs a software system, and
is paying for the development. The customer should have a
clear idea of what the software system needs to do, and how it
can best help the customer's organization.

developer An organization that develops software for a
customer. The developer will work with the customer to design
a software system that best meets the needs of the customer
given the time and financial constraints imposed by the
customer.

problem domain The field or area a software system is being
developed for. An accounting system would fall into a financial
problem domain, and require input from financial experts to its
design, for example.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�8� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�8� }Ç

Chapter 4

initial specification An early description of what a software
system needs to do. Depending on the overall size of the
project, the initial specification can be simple, or consist of
extensive documentation.

feasibility Given an initial specification, the developer will work
with the customer to decide if it is feasible to continue with the
development of a software project given the technical, time,
and financial constraints. This is also known as risk
assessment - is it within acceptable risks to proceed with the
project?

estimation Before a project can proceed, the customer usually
needs a feasibility study and an estimation of the final cost of
the system.

These steps are the first part of the whole process. The amount of
effort required for this initial planning will depend on the size of the
project. Just as building a shed might require a simple sketch and a
call to the lumberyard to get an idea of what the materials would cost,
a simple software project might involve a meeting or two between the
customer and the developer to get an idea of the feasibility and costs
of the project. As the complexity goes up, the need for more careful
initial planning goes up.

Once a project gets at least an initial green light, the planning process
moves into a more detailed analysis phase. The scale of the analysis
phase again depends on the scale of the project. For large projects,
the initial planning will usually not involve any real coding, although
some small prototypes or coding experiments might be required for
the feasibility study.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�9� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�8� }Ç

Chapter 4

There are typically at least two parts to any planning phase. The first
part is analysis of the current state of the system. Analysis involves
the software developers, the project managers, and the customers of
the system. The second part of planning is called design. The results
of the analysis planning are used by the development team to produce
a software design that can be used for the Build phase.

In older structured methodologies, the analysis and design phases
were distinct operations. With object-oriented systems, the difference
between analysis and design is somewhat less distinct. The most
significant difference is likely to be the participants and the level of
detail involved in the process.

In OO, a major goal of both the initial analysis and design is to
discover the objects that the system will require, what the
responsibilities of the objects are, and how they will interact with
each other. In analysis, objects are treated at a higher level than in
design. The inner details of the objects are ignored, as are the exact
interactions and implementations of objects. These details are worked
out during design.

The planning process is repeated in subsequent iterations of the
development cycle. The results of the previous build and release are
used to refine the specifications of the system. This will include
refining the features of the system, as well as the objects used by the
system.

The over all size of the project will determine just how distinct the
different parts of the planning, building and release phases of a
project are. For some of the newer agile development methodologies,
such as XP, suitable for small to medium sized projects, the three
phases can become quite fuzzy. The larger the project, the more
likely it is that a heavyweight methodology will be required, and that
the distinction between phases will be more apparent.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�1�0� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�8� }Ç

Chapter 4

UML - Use Cases

Use cases are used to understand various interactions
between different parts of a system. Each use case is made up
of scenarios, which are a sequence of steps describing an
interaction between a user and the system. The users are
called actors.

Consider our example of a reader borrowing a book from a
library. In such a case, the Reader will usually interact with a
Librarian, who will carry out the transaction. In a library system,
the simplest case, or scenario, would consist of the following
steps:

1. The Reader finds a Book to Borrow, hands to Librarian.

2. The Librarian identifies the Reader in Library system.

3. The Librarian identifies the Book in Library system.

4. The Librarian lends the Book to the Reader with Library
system.

5. The borrowing is registered in Library system.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�1�1� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�8� }Ç

Chapter 4

This is just one scenario, and there will be others. The Reader
might not find the desired book. The book might not be allowed
to leave the Library. The Reader might have overdue books, or
not be in the system yet. Each of these possibilities should be
examined in alternative scenarios. Together, the scenarios
make up one use case.

The goal of this is to identify actors, objects, and interactions
between them. All this can be a useful part of the analysis, and
aid in understanding the system. The actors don't need to be
people - they can be other objects in the system, for example.

This simple borrowing scenario serves as the basis for a UML
use case diagram. A borrowing use case is depicted here as a
librarian lending a book to a reader. In the figure, we include
not only the use cases with the Reader and the Librarian, but
also use cases of the Librarian doing Maintenance. This
example is greatly simplified, and a real library system would
have many more use cases.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�1�2� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�8� }Ç

Chapter 4

In this UML use case, the stick figures represent the Reader
and Librarian actors. The use cases are in the ovals, and the
arrows represent an actor interacting with a use case.

In this section, we've just given a brief description of the early steps
in a software project. A project of any size will require experienced
developers to carry out the analysis and design required. Many of the
early issues will require significant input from management.

Designing a large software system requires extensive participation
from the most experienced analysts, designers, and programmers, and
these three roles are often (but not always) quite distinct. As the size
of the project shrinks, the more likely it is that all team members will
participate in all phases of the project.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�1�3� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�8� }Ç

Chapter 4

Even the smallest project can benefit from a certain amount of up
front analysis and design. In the next section, we will go over some of
the fundamentals of object-oriented analysis that any programmer
should know and be able to use.

The Essence of Object-Oriented Analysis

Traditionally, Object-Oriented Analysis (OOA) has been used at the
initial stages of a software project. The results of the OOA are then
used for the next step of the development process, Object-Oriented
Design (OOD). With the advent of more iterative methodologies,
OOA is used to some extent for each development iteration, and the
distinction between OOA and OOD can become blurred. A key
aspect of OOA is that it should involve both the development team
and the customer. It is the customer who best knows the problem
domain, and what the system needs to do, while the development
team best knows how to use programming and software resources to
design a system that meets the customer's requirements.

In this section, we will cover some of the major aspects of OOA.
There can be many different techniques, steps, or strategies used for
OOA, some depending on which specific methodology is being used.
The goal here is to provide you with an understanding of OOA that
will help you to write better software.

Object Discovery

No matter which OO methodology is used, one of the most crucial
aspects of the analysis and design is the determination of which
objects and classes to include. Objects are at the core of any OO
system, and it requires experience and judgement to determine just
which objects belong in the system. Thus, one of the primary
activities of OOA is called object discovery. The goal of object

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�1�4� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�8� }Ç

Chapter 4

discovery is to find objects that can potentially become a part of the
software system.

One of the first steps of the object discovery process is to examine the
system specifications that are developed during the initial phases of
the analysis. The level of detail of the specification will certainly vary
depending on the size of the project. But even the smallest project
should have some kind of written specification that can be used by
the development team.

In this section, we will cover some general techniques that can be
used for object discovery. Two sidebars, CRC Cards (page 93) and
Use Cases (page 87), cover techniques that can be used alone or
combined with the techniques discussed here to help with object
discovery.

The first step of the analysis process is to use the written problem
specification to determine likely candidates for objects used in the
system. Objects are really instances of classes. During analysis, it is
often easier to think in terms of specific objects rather than the more
general concept of class. As the model of the system is refined,
objects found in the analysis phase will be carried over directly to the
design phase to create the architecture of the system, and most will
eventually end up implemented as class definitions in real code.

One of the main differences between the analysis and design phases
is the level of detail produced about the objects. Objects are treated at
a much higher, less detailed level during analysis. The UML is
especially effective at showing different levels of detail (see the
sidebar on page 102). In the analysis phase, the UML can be used to
show just a class or object. During design, the details of specific
attributes, operations, and class relationships can be added.

When first starting out with object discovery, try to find as many

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�1�5� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�8� }Ç

Chapter 4

candidate objects as possible. While finding too may objects can be a
problem, it is probably better to find too many because you will be
able to shorten and refine the list of candidate objects later. Just
because you are using an object-oriented approach, it doesn't mean
the customer knows or understands anything about objects.

The customer may not know exactly what they want or need, and
their specification is not likely to be totally accurate or complete. It is
common to find flaws in the customer's specification, and it is
important to be able to work closely with the customer during the
early stages of the project.

A good first pass at object discovery is to use the textual problem
description to pick out the nouns and verbs. The nouns represent
candidate objects, and the verbs represent candidate operations or
methods that go with the objects.

Coming up with a definitive candidate list of objects is not a trivial
task, and no two analysts or designers are likely to come up with the
same list. Picking objects from the nouns and verbs in the description
is a simple and direct way to get started. Often, once a few objects
have been identified, it will be easier to find other candidate objects
by additional examination of the problem specification.

The following is a list of things to look for that can help with object
discovery:

● Look at the problem space itself, together with any diagrams,
pictures, and textual information provided by the customer.

● Look at other systems that communicate or interact with the
system being modeled.

● Look at physical devices that will exist in the environment and
interact with the system, regardless of the technology used to
implement the system itself.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�1�6� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�8� }Ç

Chapter 4

● Look at events that must be recorded and remembered by the
system.

● Look at roles played by different people who interact with the
system.

● Look at physical or geographical locations and sites that may be
relevant to the system.

● Look at organizational units (departments, divisions, and so on)
that may be relevant to the system.

As you go through this list, you will find that you will discover
candidate attributes as well as candidate objects. In the early stages of
analysis, it is not always clear if an item should be an object or an
attribute. It is likely, however, that many items you identify in this
process will end up as one or the other in the final model.

Once you have some candidate objects, it is important and useful to
examine the responsibilities of the object. What function does an
object perform, what are its responsibilities to the rest of the system?
One way to look for responsibilities is to concentrate on the verbs in
the problem statement. Sometimes discovering a function can lead to
the discovery of several objects required to carry out that function.

Once you have some candidate objects, the techniques used with
CRC cards can be useful. Not only do you focus on the
responsibilities of a class, you also focus on collaborators of a class.
Collaborators are other classes that use or are needed by a given
class.

It can be useful to do some behavioral role playing or personification
with a candidate object. Try to personify or imagine yourself as the
object. Ask yourself questions. Whom do I interact with? How do I
respond to a message from some other object? What is my job? What
do I do? What do I contribute to the system? What do I need to
remember? CRC cards are good for this because you can hold the

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�1�7� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�8� }Ç

Chapter 4

card in your hand while you ask these questions.

The answers to these questions can provide clues to whether the
candidate object is a good object or not, and possibly other classes
needed to support its behavior. They can also lead to discovering
methods needed to support an object.

Evaluate Candidate Objects

Once you have a list of candidate objects, it is important to evaluate
each object. It is easy to get too many objects. You should remember
inheritance, and look for the possibility of generalizing some of your
objects into a higher level class. On the other hand, it is possible to
try to group objects using inheritance when aggregation or
composition is more appropriate. Use the is-a and has-a tests. And
ask yourself if all the objects you have are really necessary. Could
they be combined into a common class? In general, smaller is better.

There are some objective criteria that can be applied to objects to
evaluate their ``goodness.'' Consider the following points:

● Each object should have some data. You don't have to know all
the attributes yet, but you should be sure that at least some
attributes exist.

● If the candidate object has only one attribute, then perhaps that
should be represented as an attribute of another object rather than
a new object. There can be objects with only one, or even no
attributes, but having only one serves as a flag for closer
inspection.

● An object must do something to justify its existence, so you
should be able to identify one or more methods for the candidate
objects. It is very unlikely that an object will have no methods.

● At the analysis phase, the function and purpose of a candidate
object should be independent of the hardware or software

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�1�8� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�8� }Ç

Chapter 4

technology that will be used to implement the system. If it is not,
then it isn't an essential object, but rather an implementation
object that should wait until a later stage of development for
more consideration.

● All the attributes of a proposed class should apply to all the
objects in that class. If you find exceptions (e.g., this attribute
applies in all cases except for that special object), then you may
have combined subclasses when they should be part of a
hierarchy. While you will want to combine classes as much as
you can, it will sometimes be necessary to split a class into more
specialized subclasses.

● Many of the "smells" applied to refactoring apply equally well to
a design. See Chapter 8, Refactoring.

● Just as all the attributes should apply to every instance, all
methods, or operations, should apply to all objects in the class.

CRC Cards

CRC Cards represent a simple yet useful OOA technique.
CRC stands for Class-Responsibility-Collaborator. The idea is
to generate a set of 3x5 or 4x6 index cards that include the
classes that make up a system. Each card lists the name of
the class, the responsibilities of the class, and other classes
the class uses or collaborates with. These cards are usually
generated in an interactive work sessions involving the
customers, analysts, and developers. While a set of CRC
cards might be used to eventually generate UML diagrams,
they are really most useful for exploring interactions between
classes in an open discussion format.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�1�9� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�8� }Ç

Chapter 4

CRC cards were originally developed in the late 1980's by
Kent Beck and Ward Cunningham as a technique to help
procedural programmers move to the design perspective
needed by object-oriented programming. In many ways, CRC
cards are so easy and basic that their original paper still
stands as a good reference. CRC cards have been found to
be so useful that they have become a standard OO design
tool.

What is a CRC Card?

The top line of the card specifies the name of the class in
large letters. A class, of course, is a collection of objects - the
things of most interest in the system being modeled.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�2�0� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�8� }Ç

Chapter 4

The responsibilities of the class are listed on the left side of
the card. A responsibility is a high-level description of what the
class does. The responsibilities should be short, concise
descriptions of what the class knows about, and what it does
with that information. One of the points of the small CRC card
is to force you to keep these descriptions small, and high-
level. Any class should probably not have more than two or
three responsibilities. Thinking in terms of responsibilities is
important because it gets away from a data centric view of
objects.

On the right side is a list of collaborator classes. These are
classes that provide information or services for the class at
hand. Each collaborator class will have its own CRC card.
Note that a collaborator is a class that is used by the given
class - the collaborator CRC card will not necessarily list the
classes that use it. As more CRC cards are added, they can
be laid out and physically grouped by classes that are related.

The backs of the CRC cards are often used to give more
details of the data and methods needed to implement the
class. These details can be used later when the classes are
actually implemented in code.

Note that you are only allowed to write as much as will fit on
the card. This helps your classes from getting too big or
complex. The section in Chapter 5 on MVC has an example
using CRC cards.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�2�1� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�8� }Ç

Chapter 4

Using CRC Cards

CRC cards are quite flexible in how they can be used. They
are often used in what is called a session. A CRC session can
vary from an informal meeting with a couple of programmers
to a formal session involving designated roles and scribes to
officially record the session. Because it is an interactive
process, a CRC session should not have more that 5 or 6
active participants (although passive observers are allowed as
well).

CRC sessions often focus on a scenario - a sequence of
interactions between objects suggested by a particular use
case or part of the problem description. Cards can be placed
on the table in groups, picked up and moved around. In using
CRC cards to act out a particular scenario, the need for other
classes or different responsibilities is often discovered. Many
designers using CRC cards find it useful to use role-playing -
picking up a card and moving it around, and essentially
becoming that object.

As the session starts, one of the first goals will be to come up
with some objects. The techniques we discussed in the Object
Discovery section can be useful here to come up with some
initial CRC cards.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�2�2� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�8� }Ç

Chapter 4

Once the interactions and responsibilities of the different
classes represented by the CRC cards have been explored,
the information can be transferred to a more formal notation
such as the UML. UML sequence and collaboration diagrams
can be developed from the interactions discovered from using
the CRC cards. UML class diagrams can be derived from the
class information contained on a CRC card. Associations
between classes can be used to build association diagrams.
However, the main goal of using CRC cards it to gain
understanding of the system and how it might work, not to
produce UML diagrams. Many projects have used CRC cards
as their chief documentation process.

Determine Object Hierarchies

Once you have a good list of candidate objects, the next phase of
OOA is to organize the basic objects into hierarchies. Object
discovery and hierarchy discovery often overlap. While examining a
problem for objects, it will often be quite apparent that some objects
naturally form a hierarchy. Other hierarchies will not be as obvious,
and must be discovered explicitly.

The main goal of this phase is to identify the hierarchies that will take
advantage of the OO paradigm. Remember the two major forms of
hierarchies: generalization/specialization, or inheritance; and
whole/part, or aggregation/composition.

The concept of inheritance with superclasses and subclasses is natural
for many problems. Inheritance implies that a subclass will inherit the
properties of the superclass, as well as adding new properties of its
own.

Whole/part discovery often takes place after the initial object

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�2�3� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�9� }Ç

Chapter 4

discovery. Sometimes the whole/part relationship is obvious, but
sometimes it is helpful to look for whole/part hierarchies explicitly.

Hierarchies reveal how related or similar objects fit together. Objects
also have relationships with other objects that reflect how the objects
interact in ways other than inheritance and aggregation. For example,
a relationship might indicate that one object uses the services or
generates an instance of another class. A ``Customer'' object might
generate an ``Order'' object.

Objects don't have to fit into a hierarchy. Sometimes a class, usually a
simple one, is simply an attribute of another class. These are
sometimes called helper classes.

Discover Object Attributes

So far, we have discussed finding objects and discovering object
hierarchies and relationships. OOA must also examine object
attributes. An object's attributes describe its meaning - what data it
holds, what state it is in, what connections it has to other objects.

At the design level, objects generally have two kinds of attributes,
public and private2. Public attributes are available to the world, while
private attributes are used internally. Generally, during OOA, you are
concerned primarily with the public attributes.

Imagining yourself to be the object works for attribute identification,
just as it does for object identification as discussed earlier. Become
the object in your mind and ask questions such as:

● As an object X, in general, how am I described?
● How am I described in this problem domain?
● What do I need to know to carry out my function?
● What state information to I need to remember over time?

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�2�4� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�9� }Ç

Chapter 4

● What states can I be in as a member of class X?

As you identify attributes that belong to your objects, you should
consider where they belong in the class descriptions. With
inheritance, the goal is to place attributes in a superclass as high up in
the hierarchy as possible. If the same attribute can be used to describe
members of different subclasses, then the attribute belongs in the
superclass. Sometime attribute discovery will help you to revise and
refine your class hierarchies.

Choosing Names

Choosing good names for things is an important part of the
analysis process. In an object-oriented design, classes,
objects, attributes, methods, and source code files are among
the things that need names. The names you select should
reflect the semantics of the item. Just as a good writer uses
the English language carefully and effectively, a good
programmer will carefully and effectively choose names.

Picking good names really does matter - in analysis, in design,
and ultimately in coding. They convey meaning. Using a good
name can eliminate the need for explanatory comments, for
example. But this means your names must really reflect what
the class represents or what the method really does.

Consider the following suggestions for picking names.

Follow the Java conventions for naming described in Chapter
2, especially regarding capitalization.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�2�5� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�9� }Ç

Chapter 4

Classes should be named with common noun phrases, such
as Color or Sensor.

Objects (the Java variables that reference objects) should be
named to indicate they are specific instances with identity,
such as theDoorSensor, foregroundColor, or listOfSensors.

Methods that modify the state of an object, or cause it to do
something should be named with active verb phrases, such as
drawShape or setColor.

Methods that return state information should indicate a result
or use a form of the verb to be, such as getColor or isClosed.

As we noted earlier, the attributes discovered in the OOA phase are
public attributes. At this point we assume that other objects will be
able to access these attributes. The attributes reflect the model, and
not the implementation design. In practice, you almost never make an
attribute directly available to the outside world. Instead, you provide
getter and setter methods to access the attributes.

Discover Object Operations

Methods are the services or operations a class defines to implement
the behavior of member objects. Methods are how an object interacts
with other objects in the system. Discovery of the methods used to
implement object behavior is an important OOA activity.

Just as a class will have both private and public attributes, it will have
private and public methods. During the analysis phase, method
discovery will concentrate on public methods, and not those private

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�2�6� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�9� }Ç

Chapter 4

methods used internally by a class.

There are several kinds of methods commonly associated with a
class. Given the importance of messages in OO systems, the methods
that respond to messages may be the most obvious to examine first.
They define how other objects will interact with members of the
class, and how they will respond.

Other objects often need to set or get the attributes of an object. Setter
and getter methods are used to provide this access. During OOA,
these are often implicitly assumed to be available for each public
attribute.

While the relationships among classes and objects are often described
statically during analysis and design, in practice the specific
relationships between instances of objects are established
dynamically as the objects execute. Classes need to provide methods
used to build these connections. UML sequence diagrams (see the
sidebar on page 99) are useful for understanding dynamic
relationships among objects.

Remember that during OOA, you are working at a high level of
abstraction. Thus, special operations like the constructor or other
methods involved with implementation details should not be
considered. These are details that can be filled in later in the design
process.

You can use the above classifications to help you discover the
methods that belong with a given class. Inheritance also makes a
difference when describing methods. You will want to move methods
that describe shared behaviors as high as possible in the hierarchy.
You will need to identify methods that will be overridden by
subclasses.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�2�7� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�9� }Ç

Chapter 4

UML - Sequence Diagrams

Once you have some candidate objects, hierarchies, and
behaviors identified, it can be useful to understand how the objects
will interact with each other. The UML provides Sequence
Diagrams to help this process. A sequence diagram shows
example object instances horizontally with lifetimes that stretch
vertically, with time flowing from top to bottom.

Sequence diagrams are often used in association with use cases -
each scenario depicted in a sequence diagram. They are helpful
for understanding just how objects will interact with each other
during particular cases. For example, below is a sequence
diagram for the borrow a book scenario given in the UML Use
Case sidebar on page 87.

The boxes at the top (aReader, aLibrarian, theLibrary, aBorrowing)
represent specific instances of objects. Note that a specific name
(e.g., theLibrary) is used for the instance, and not a class name
(e.g., LibrarySystem). The names typically use "a" or "the" to
indicate some specific instance is being used.

The dashed vertical line below each is the time line. The open box
around the timeline indicates the object is in an active operation.
The horizontal lines with arrows represent messages to other
objects. For example, aReader sends the borrow message to
aLibrarian. When an object sends a message to itself, the arrow
loops back on the object. Thus, theLibrary sends a message to
itself to find the Reader because theLibrary has the list of readers.
The dashed lines to the left represent returns. These need be
supplied only when they add clarity to the diagram.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�2�8� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�9� }Ç

Chapter 4

The three diagram types we've used so far, object diagrams, use
case diagrams, and sequences, are the most useful UML
diagrams, and the ones you will see most often. There are others,
which are described in the sidebar "More UML" on page 113.

Note that this example is based on a specific scenario, and can be
used to help with the final design - which operations will be
needed, such as findReader, borrow, and so on.

In other cases, sequence diagrams are helpful to understand
behavior of existing designs. We will use them to help clarify some
of the Java Swing examples in Chapter 5.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�2�9� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�9� }Ç

Chapter 4

The Essence of Object-Oriented Design

In the strict technical sense, Object-Oriented Design (OOD) takes the

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�3�0� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�9� }Ç

Chapter 4

results of the Object-Oriented Analysis phase and produces a detailed
design suitable for implementation in an object-oriented
programming language. In some methodologies, especially those
applied to very large software projects, this is close to what happens.
However, for smaller projects, the exact line between analysis and
design, and even between design and implementation, is not always
that clear.

One of the main differences between OOA and OOD is the level of
detail required. One of the goals of OOD is to refine the OOA
candidate objects into real classes, define the operations and
attributes, decide on specific data structures, and account for the
target system.

Some OO methodologies separate design and implementation, while
others blend the process somewhat, relying on quick feedback from
the implementation to discover the inevitable design errors and
provide quick feedback. While OOA is often done by specialized
analysts, the designers and programmers are often the same people.

UML - Level of Detail

One of the reasons that makes the UML a good tool is that it
can be used throughout the entire development cycle. The level
of detail that you can view with class diagrams provides a good
example.

During the analysis phase, the focus is at a higher level. This
means less detail with the UML class diagrams. Thus, an
analysis view of the shapes we discussed in Chapter 3 can look
like this:

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�3�1� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�9� }Ç

Chapter 4

For the design phase, when the details become more critical,
the UML allows complete specification of classes. The detail
can be so complete, in fact, that some UML tools can generate
code from the UML diagrams (and the other way around, too).
So at the end of the design phase, the shape class diagrams
can show a fine level of detail:

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�3�2� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�9� }Ç

Chapter 4

One of the current hot topics in object-oriented software development
is just where to draw the lines between analysis, design, and
implementation. In fact, there really is a different answer depending
on the overall size of the project. The various development
methodologies can be divided into two camps, more or less. For small
to medium projects, those with 20 or less programmers and time
frames of a year or so, there are several lightweight or agile
methodologies. For larger projects with longer time frames, there are
several heavyweight methodologies. Chapter 9 presents overviews of

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�3�3� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�9� }Ç

Chapter 4

some of these methodologies. Which methodology to use is often a
matter of the group or corporate personality.

Even though there are several specific methodologies to choose from
depending on the size and characteristics of the software being
developed, there are still some fundamental design principles that
apply to any methodology, and the next section will cover some of
these design basics.

Some Design Guidelines

Good design doesn't come easily. It usually requires considerable
experience to be able to develop a good design. And it a certainty that
two great designers are likely to come up with two equally good, but
different designs for the same problem. And no two designers would
come up with the same list of the most important design principles,
although there would certainly be significant overlap.

This section presents some basic design principles. Most of these
principles apply to the design phase, but many also apply to the
analysis phase. Good design is good design, no matter the phase of
development.

Probably the only way to get good at design is to design many
programs, preferably with someone more experienced who can help
you learn. It is not easy, and even the best and most experienced
designers don't get their design completely right the first time. The
following guidelines may not be complete, and certainly aren't the
same ones someone else would pick, but they provide a good starting
point.

Get The Big Picture

Before you can create a good design, it is important to have a good

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�3�4� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�9� }Ç

Chapter 4

understanding of what the software needs to do, and what computing
resources it will require to implement. Much of this understanding
comes from the early planning phase.

Understand the Problem

One of the most important tasks is to understand the problem. This
will often mean frequent talks with the customer. The customer needs
to supply the experts necessary for the designers and programmers to
understand the problem domain. A good analysis of the problem
helps to improve understanding.

Understand the Target Environment

While the customer will be best at providing the information
necessary to understand the problem domain, it is the programmers
who will best understand the target computing environment. It is
important to understand the limitations and features of the target
computing environment. Sometimes, a software project will even
require designing and specifying the hardware involved. The specific
programming language used influences the ultimate design.

Think Objects

To get a good object-oriented design, it is critical that the developers
think objects. If there are members of the development team that
come from non-object oriented environments, they must learn to
think objects.

Get Help

Even the best designers can't design great systems without help. The
kind of help you need depends. It can include expert help to
understand the problem domain, or help to understand specific
hardware or software required for the project.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�3�5� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�9� }Ç

Chapter 4

Encapsulation

If there is a single most important reason that object-oriented
development works, it is encapsulation. Objects by nature
encapsulate attributes and behavior, and encapsulation makes
software more robust, easier to debug, easier to modify, and easier to
maintain over the long term.

Maximize Encapsulation

The more independent each class can be, the better. Each class should
not provide direct access to any of its internal attributes. It should
provide the minimum number of methods for the outside world
needed to carry out its responsibilities. The interface to the outside
world should be designed to minimize the effects of any changes to
the internal design of the class. In other words, you should maximize
the encapsulation of all classes.

Minimize Coupling

As part of maximizing the encapsulation, you should minimize the
coupling between classes. Classes should depend only on the public
interfaces to other classes, and not rely on knowing anything about
how the other class works. In cases where classes must be coupled by
mutual responsibilities, the effects of the coupling should be
minimized for the rest of the world.

Separate the GUI

Separate the implementation of the Graphical User Interface (GUI)
from the implementation of the application's model. For example, the
application must not rely on being able to dynamically retrieve values
from GUI controls. Instead, changes in GUI values should update the
internal state of the model. You should be able to completely replace

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�3�6� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�9� }Ç

Chapter 4

the GUI without affecting the rest of the code. The MVC design
pattern described in the next chapter helps to separate the GUI.

Designing Classes

Once the need for a class has been identified, these guidelines will
help to improve the design of an individual class, or a group of
related classes.

A Class needs a Purpose

Every class needs responsibilities. If there are no clear
responsibilities and operations required by a class, then it likely
should be a part of a different class. If the class doesn't have a
purpose, it should not exist.

Classes vs. Attributes

If a class has a well-defined set of attributes that have associated
operations that aren't really a part of the class, and that could
potentially be used independently by other classes, then those
attributes and operations are candidates for becoming an independent
class. On the other hand, if there is a class with no operations, then its
attributes may belong as simple attributes of another class. Because
Java does not have the equivalent of a simple C structure, there may
be classes in Java that really serve as structures, and thus may not
require any operations, but be used as a simple data structure.

Associations vs. Inheritance

Be careful when designing objects with inheritance or aggregation.
Frequently, designs will use inheritance when simple association or
aggregation/composition is a better choice. Remember that all classes
in an inheritance hierarchy must pass the is-a test. Don't confuse is-a
with is-a-member-of. For example, A Circle is-a Shape, but it is-a-

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�3�7� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�9� }Ç

Chapter 4

member-of a Drawing. Thus, a Shape should be a part of a Drawing,
but not inherit from it.

A Class can't do Everything

Don't make classes too big. The responsibilities of a class should be
just those that fit within that class, and should not be related to any
other classes. If a class is trying to do things that really don't relate to
its main responsibilities, then those behaviors likely belong in another
class.

Inheritance

When designing an inheritance hierarchy, these guidelines can help
yield better designs.

Is-A Test

All classes in an inheritance hierarchy must pass the is-a test.

Is-A Is Not Always Enough

The is-a test is not always enough. Names can mislead. It is possible
for a class to pass the is-a test by using just the names of classes, but
still not be a good subclass. Besides sharing a general name
relationship, a subclass must share common behavior with the
superclass. For example, while a room is a rectangular volume, it
may not be proper to have a room inherit from a graphical cube class.
Remember the is-a member test, as well.

Move Attributes and Operations as High as Possible

You should move attributes and operations as high as possible in the
hierarchy. If you find two subclasses defining similar attributes or
operations that aren't in the superclass, they may be better used if

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�3�8� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�9� }Ç

Chapter 4

they are moved up to the superclass.

Don't Move Attributes and Operations Too High

Subclasses must take advantage of superclass. If most of the
subclasses don't use operations defined in a superclass, or most are
overriding the superclass definition, then the operation may not
belong in the superclass.

Find Superclasses

If you have independent classes that have several similar attributes or
operations, it is possible that those shared operations could be moved
to a new common superclass. But be sure the new class has
something to do.

General Guidelines

The Name Matters

Choosing good names for classes, attributes, methods, and variables
is critical for writing good software. The names should be
meaningful, and help explain the role of the item. Avoid
abbreviations. A good descriptive name will reduce the need for
explanatory comments. It may take a bit more effort to type a long
name, but the savings in reduced commenting and ease of reading
later will more than make up for a little one-time typing effort. Of
course, a name that takes most of the line will hinder readability.

One Thing at a Time

The operations of a class should accomplish a single well-defined
task. Don't combine a getter operation with one that changes the state
of the object. Avoid side effects.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�3�9� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�9� }Ç

Chapter 4

Don't Reinvent the Wheel

Avoid solving problems that have already been solved. Reuse
existing code whenever possible. Use existing libraries and
frameworks whenever possible. Learn about design patterns, and use
them when appropriate.

You Won't Get it Right the First Time

No matter how good of a designer you are, you will not get the design
just right the first time3. Recognize that there will be problems in the
design, and fix them as soon as possible. Fixing problems will
ultimately result in a better software system that is easier to modify
and maintain. Learn about and use refactoring.

Simplicity

Make your design as simple as possible. On one level, this means
don't try to adopt a fancy solution because you think it will work
better - sometime a simple linear search will work as well as a
fancier, but harder to code, binary search. On a different level,
simplicity doesn't mean using the first thing that you can think of.
Finding a simple, elegant design can require significant effort, but
will pay off in the long run.

Your Software Won't Go Away

A software system is often used far beyond its expected lifetime. All
software systems should be designed as if they will be used forever.
This means designing for the long term. A well-designed system will
be easier to maintain over time than one that takes shortcuts or makes
assumptions about limited lifetime. Remember Y2K.

The Build and Release Phases

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�4�0� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�9� }Ç

Chapter 4

At some point in the development process, the planning process will
lead to the building process. This crossover point will vary depending
on the size of the project, and the methodology being used. And of
course, the ultimate goal of any software project will be to release a
running system to the customer.

Building the Software

For most programmers, writing code is what it is all about. Many
would just as soon forget all the planning stuff, and write code. But
experience shows that planning will lead to a better product. And a
good design must be accompanied by good programming practices.

The build phase really consists of three major activities: writing code,
testing the pieces of code being worked on (sometime called unit
testing), and then debugging the code. This whole process can be
greatly enhanced by choosing the right programming environment,
and using the right tools.

Code Reviews and Ownership

One commonly followed programming practice that is valuable
for any project is the code review. In a code review, a group of
programmers will go over a piece of code line by line. Usually
the author of the code is part of the review to help explain
what the code does.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�4�1� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�9� }Ç

Chapter 4

Code reviews can range from a small session with just two or
three programmers involved, or may involve most of the
programming team. Small, informal code reviews can take
place almost any time during the development process, while
more formal reviews knows as code inspections are an
important part of the final quality acceptance process.

Regular code reviews are a very useful during development
because people tend to overlook mistakes in their own code.
They are just too close. Code reviews also help to spread
expert knowledge throughout a development team. Individuals
often have specialized knowledge that can be transferred to
the team. The suggestions and ideas which evolve during
review sessions often take the whole development process
big steps forward.

One important rule that must be followed during a code review
is to find ways to improve the code without being harsh or
judgemental. Everyone involved in a code review can learn
from the process, and the author should not be subject to
ridicule or unkind words.

Having regular code reviews helps promote joint-ownership of
all the code. While individual programmers may have primary
responsibility for certain pieces of code, individuals really
should not "own" code. Most programs consist of code
contributed by many programmers. Eventually, these
programmers will move on to other projects, and have to leave
their code behind for the team to work with. Individuals should
take pride in contributing a quality piece of code to the team,
and not get possessive of code they've written. Having a team
member who tries to maintain personal ownership of their

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�4�2� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�9� }Ç

Chapter 4

code can lead to serious problems. Group ownership of all
code is an important concept that team members must learn is
important for the benefit of all.

Since you're reading this book, it is likely that you will be working in
a Java based environment. As Java has matured as a programming
language, it has in fact become the language of choice for a variety of
applications. The language is truly object-oriented, and is a perfect
target for an object-oriented design. The language is portable across
the major computing platforms in current use, including the usually
troublesome GUI components. A variety of programming tools is
available to enhance the productivity of Java programmers. We will
survey some of those tools in Chapter 10.

One of the recent trends in programming practice has been the
emphasis on testing and integration as you go. The tendency in the
past has been to independently develop fairly large pieces of the code
with minimal testing, and then to integrate the parts late in the
development process. There is considerable practical evidence that it
is much better to get small pieces of the code working, perform unit
tests as a standard part of the process, and to frequently integrate the
different parts of the project.

The practice of constantly testing and integrating makes the
traditional release the culmination of many small steps rather than a
huge, final visible step in the overall process. Just as the lines
between planning and building can get fuzzy, so to can the line
between building and releasing. And, as usual, this will often depend
on the magnitude of the project.

Releasing the Software

Traditionally, a finished piece of software is turned over to a testing

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�4�3� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�9� }Ç

Chapter 4

department for final testing and ultimate release to the customer. This
final testing is called functional testing, and usually takes a different
team and tools than the unit testing used during ongoing
development.

One of the most important tasks associated with the release of a
system should be the learning phase. Every major project will yield
any number of lessons - we used the wrong computer configuration,
we used the wrong development tools, this testing and integration
stuff really works, we didn't have enough programmers, or the pizza
from Pizza Joe's is really bad. It is important that these lessons be
used to constantly improve the overall work environment for the
programming team.

Even if constant testing and integration are employed, there is still
something special about the real final release date. For one thing, it
often means lots of overtime right before. Sometimes, overtime work
is unavoidable. However, this practice should be the exception and
not the rule. In spite of the advances in understanding the software
development process (which is in part what this book is all about),
programming is still very much an art. Programmers really can't be
productive working over 40 hours a week for more than a few weeks
in a row, and they really need time off to recharge their creative
energies. Unfortunately, this fact is still not recognized by many
managers of programmers.

Once a project is released to the customer, it usually enters a new
phase of its lifetime, the maintenance phase. Often, this means
turning the finished code over to a maintenance team while the prime
developers move on to other projects (which might be the new and
improved version of the current project). Traditionally, the
maintenance team consists of the newest, least experienced
programmers. This tradition is not without some merit. For one thing,
if the system has a good design, and the programmers produced good

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�4�4� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�9� }Ç

Chapter 4

code, the maintainers will have a good example to learn from. But
there should be close contact with the original development team and
the maintenance team for as long as it is possible.

Eventually, however, most software takes on a life of its own, and it
is likely that a significant portion of the original development team
won't be around a few years down the line. It is this aspect of
software reality that makes it all the more critical to use good
development practices. It is here that object orientation can provide
great paybacks.

More on the UML

We've been introducing various UML features as we've needed them.
So far, we've used class and object diagrams, use case diagrams, and
sequence diagrams. These diagrams are not the only UML diagrams
available, although they are all we will use in this book. "More UML
Diagrams" on page 113 gives brief descriptions of the other diagrams
provided by the UML. These other diagrams are used to various
degrees depending on the size of the project, and the design
methodology used.

More UML Diagrams

In addition to the class and object diagrams, use case
diagrams, and sequence diagrams already discussed, the
UML also provides the diagrams briefly described in this
section.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�4�5� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�9� }Ç

Chapter 4

Collaboration Diagram

The Collaboration Diagram and the Sequence Diagram we've
already discussed are both used to show object interaction.
While the Sequence Diagram shows dynamic interactions, the
Collaboration Diagram shows the static relationships and
messages between objects. The Collaboration Diagram
consists of objects, classes the objects belong to, links and
messages with sequence numbers between these objects.
Different developers tend to use one or the other of
collaboration or sequence interaction diagrams.

State Diagram

The State Diagram is used when an object has well-defined
states and serves as a complement to the class description. It
shows all possible states that objects of the class can have,
and which events cause the state to change or transition. The
transition can also have an action connected to it, which
specifies what should be done on transitions.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�4�6� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�9� }Ç

Chapter 4

Activity Diagram

Activity Diagrams are used to show the flow of activities in a
procedure. They show actions and the results of activities.
Activity diagrams focus on the high level view of an entire
process. They can also be used to help understand what is
happening in a use case. Activity diagrams are useful for
showing workflow and in describing behavior of system with
parallel processing.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�4�7� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�9� }Ç

Chapter 4

Deployment Diagram

A Deployment Diagram is used to represent physical
relationships among the software and hardware components
in a system. It can show how components and objects move
around a networked system over.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�4�8� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�9� }Ç

Chapter 4

Package

The UML Package symbol is used to group various UML
items together into a single package. Various diagrams can be
grouped such as classes, use cases, or collaborations. Then
the relationships between various packages can be shown.

Chapter Summary

● All software can benefit from at least some design.
● There are several object-oriented development methodologies.

All include some form of planning, building, and release phases.
● The initial design of a software project should be a collaboration

between the customer and the developer.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�4�9� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�9� }Ç

Chapter 4

● Object discovery and development of coherent object hierarchies
are two of the major activities of OOA.

● CRC Cards and Use Cases are useful tools for software analysis.
● OOD is refining the results of the OOA. OOD takes the target

environment into consideration, and turns the classes developed
by the OOA into a design that includes most of the details of
how the classes will be implemented.

● The overall magnitude of a project has great influence on the
kind of methodology used, and the actual development practices
that are used for the project.

● Continual coding, testing, debugging, and integration can
enhance the development process, and lead to more robust and
bug-free code.

Resources

OOAD

Object-Oriented Analysis and Design With Applications, Grady
Booch, Addison-Wesley, 1994, ISBN 0-201-54435-0. Still the classic
OOAD reference.

CRC

The CRC Card Book, David Bellin and Susan Suchman Simone,
Addison-Wesley, ISBN 0-201-89535-8.

A Laboratory For Teaching Object-Oriented Thinking, Kent Beck
and Ward Cunningham, 1989, c2.com/doc/oopsla89/paper.html.

1

The steps of the traditional waterfall development cycle include: Feasibility Study,
Analysis, Design, Coding, Testing, and Maintenance. One of the most important
aspects of object-oriented methodologies is the recognition of the need for feedback
and allowing for dynamic change in the design.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�5�0� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�9� }Ç

Chapter 4

2

Protected can be thought of as a special case of private in this context.

3

This fact has led to the recent development of the Agile OO Methodologies, including
XP. XP says that since a design will inevitably change, you should embrace change,
and adopt an adaptive development process. See Chapter 9.

med for Flyheart

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�4�.�h�t�m�l� �(�5�1� �o�f� �5�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�1�9� }Ç

Chapter 5

Chapter 5

Object-Oriented Graphical User Interfaces
with Swing
Up to this chapter, we've concentrated on object-oriented concepts. By now, you should
have a good grasp of the basic object-oriented concepts. You should be starting to think
objects when it comes to programming in Java. This chapter will cover Graphical User
Interfaces, and the Java Swing library with the same object-oriented perspective.

Graphical User Interfaces, or GUIs, are how users interact with programs. Almost any
program will have a GUI part to it. Programming with a GUI library, or toolkit as they are
commonly called, can be a daunting task. There are dozens of methods to use, user actions
to respond to, and conventions to follow when designing the user interface.

However, looking at a GUI toolkit with object-oriented eyes can make the whole process
much easier. By getting a fundamental understanding of the relationships between the
objects of a GUI toolkit (Java's Swing, in this case), and what goals the GUI objects need
to accomplish, the whole task of building GUIs with clean and simple code becomes
possible.

In this chapter, we will cover the essence of GUIs. First, we will discuss GUIs in general
terms to get the big picture of what they need to do. Next, we will take a big picture,
object-oriented look at Swing. Taken in this perspective, Swing becomes much less
complex and easier to understand. We will show how to handle user events with Swing in
some simple examples. Finally, we will discuss the Model-View-Controller (MVC)
design. This design is commonly used to structure object-oriented GUI programs. We will
develop a small MVC framework, and build a simple Swing GUI based MVC
application.

framework A collection of classes designed to provide a set of services for a
particular problem area. The designers of a framework should be experts in a
problem domain, and thus provide a higher level design that makes it easier for
an application using the framework to build an application for that problem
domain.

Graphical User Interfaces

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�5�.�h�t�m�l� �(�1� �o�f� �4�4�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�2�5� }Ç

Chapter 5

GUIs are how most applications interact with the user. There is a lot in common with the
interfaces used by most applications. This is a good thing, because users have come to
expect a certain look-and-feel from their applications. While the visual details may differ,
most applications have windows that show views of the data being manipulated, and use
menus, tool bars, and dialogs to provide interaction with the user. The user interacts with
the program using a pointing device, usually a mouse, and the keyboard.

A Typical Application

The MovieCat application shown in Figure 5-1 is fairly representative of many Java
applications. This application is actually the example we develop in Chapter 6, so we are
using it here to demonstrate some common GUI attributes.

Figure 5-1.
Typical GUI - MovieCat App

This application has an outer frame with a title bar at the top. In this case, the title bar has
some special icons in addition to the title. The exact look of the title bar and surrounding
frame will depend on the host environment - Windows vs. Motif, for example. This
example shows the Java metal look and feel.

Inside the outer frame there is a menu bar, a tool bar, and a split pane that shows a list on
the left and information on the right. The menu bar may be the most standard component,
and consists of pull-down menus. The tool bar usually has buttons and other components
that are most often used in interacting with the program. The area below is the main
window or canvas to the program. This is where the information is usually displayed. In
this case, it is a split window with two views into the data: the left shows all movies, while
the right shows the specific movie. In this example, both view panes have additional

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�5�.�h�t�m�l� �(�2� �o�f� �4�4�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�2�5� }Ç

Chapter 5

controls - a list and some command buttons. In other applications, these panes could be
drawing canvases, and the interaction could be done using mouse motion and clicks. But
many applications follow this general pattern: menu bar, tool bar, view area.

Dialog Boxes

Dialog boxes are another common way to implement user interfaces. They usually pop up
in response to some command in the main application window. These can be file choosers,
color choosers, or specialized tools. There are two kinds of dialogs: modal and modeless
dialogs. In a modal dialog, interaction with any other window or dialog is locked out until
the user interacts with the dialog. In a modeless dialog, the user can continue to interact
with other parts of the application while the dialog remains displayed. Modal dialogs will
go away once the user enters a command. Modeless dialogs may remain visible and
available even while the user interacts with the main program window.

Most GUI toolkits provide a standard set of control components. The exact look and feel
of these can vary, but the most common controls include:

● command buttons - click to perform command
● text labels - label the controls, give information
● text input - read text input from the user
● list selection boxes - scrolling list with item selection
● combo boxes - drop down lists
● radio buttons - select only one of a group
● check boxes - select an item
● spinners and sliders for value entry - enter a value
● progress bars - shows progress in a process
● decorations - group controls, make interface look good

Toolkits that supports these components usually provide the capability to layout and group
controls within a dialog or other display frame. The dialog in Figure 5-2 is from the
MovieCat application. It uses label, text input, combo box, and button controls.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�5�.�h�t�m�l� �(�3� �o�f� �4�4�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�2�5� }Ç

Chapter 5

Figure 5-2.
Dialog Box - MovieCat Edit Dialog

Events

When a user clicks on a button, selects an item from a list, or performs some other
command, the program must respond appropriately. The structure of the code for user
command processing in GUI applications is based on events. Interaction with an
application from the user's viewpoint consists of a series of mouse movements and clicks,
and text and command input through the keyboard. From the programmer's viewpoint,
each of these is an event. The important thing about an event is that it can occur at any
time, and the program cannot simply stop and wait for the event to happen.

Interaction with an application by the user can generate several different kinds of events.
Consider mouse events. If the mouse is in the drawing area, each movement generates a
mouse movement event. If the user clicks a mouse button, a mouse button event is
generated. A keystroke from the keyboard will generate a keyboard event.

If the mouse pointer is in a dialog, or over a menu or command button, then movement
events are not generated. Instead, button clicks generate command events corresponding to
the button or other control.

In a GUI environment, windows are usually not displayed alone. Often, other applications
are running, each with its own windows. The host windowing system typically displays
windows with various decorations that let the user manipulate the windows. Sometimes,
these manipulations will generate events that require a response from the application code.
For example, the user can use the mouse to change the size of a window causing a resize
event. When multiple windows are displayed, some can be completely or partially covered
by other windows. If the user moves a window so that a different part of the window is
displayed, then an expose event is generated, which requires the program to redraw part of
the canvas area.

All these events require a response from the application - to carry out the command, to
draw something in the canvas area, or to redraw the canvas after a resize or expose event.
Some events, however, are handled by the system, and not the application. This includes
drawing menus and handling dialogs. For example, when a dialog is displayed, the system
tracks mouse movements within the dialog, and handles redrawing the dialog for expose
events. In general, the application is responsible for resize and expose events only for the
canvas area.

All these events are asynchronous, and the application must be able to respond
immediately to any of these events. The most common way to handle events is with what

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�5�.�h�t�m�l� �(�4� �o�f� �4�4�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�2�5� }Ç

Chapter 5

is called an event loop. Somewhere, there is an event loop that detects when the user
presses a key, moves the mouse, or clicks a mouse button. This detection is usually done
at the system level, and not by the program. As part of this process, the GUI tool kit will
distinguish between different kind of events - a mouse click on a control, or a mouse
motion over a drawing area, for example. These events are then passed on to the program
for appropriate action. The exact method of handling the event-loop and passing the
events on to the application code varies from toolkit to toolkit. In Swing, the program
doesn't need any direct access to the event-loop. In Java, the event loop is really in a
separate thread of execution which is started and controlled by the runtime system. A Java
program handles events using what are known as listeners and callbacks. The section
"Handling Swing Command Events" discusses events and Swing in more detail.

A Brief Introduction to Swing

The original GUI toolkit provided by Java was called the AWT (Abstract Windowing
Toolkit). While there are many existing Java AWT applications, the AWT has been
superseded by the Swing toolkit. Swing is generally more complete and easier to use than
AWT. It is almost too complete. One of the problems of providing the GUI toolkit for a
programming language is that it must provide everything, even if most of the features will
be used by only a tiny fraction of programmers. The myriad of details and options
provided by Swing make it seem more complicated that it has to be. We will try to focus
on the essentials most Java programmers will need to use. With the proper perspective, it
is possible to get a handle on Swing in just a few pages.

So, let's use our general GUI model to look at how Swing can build applications that fit
that model. For the main application, Swing needs to provide the outer window that
includes a title bar and special buttons, a menu bar, a tool bar, and place to hold the main
view or views, often a drawing canvas.

While Swing has superseded the AWT, it is based upon and uses the AWT. To
distinguish similarly named classes in the AWT, Swing has adopted its own
naming conventions. For the most part, Swing classes start with a capital J, such
as JFrame, JButton, or JSplitPane. However, not all Swing classes start with a J
(e.g., Box or Timer). It is possible to mix AWT and Swing, but that really is not a
good idea.

Swing provides the JFrame as the main class to support "standard" applications. A JFrame
is a top-level container that exists mainly to provide a place for other Swing components
to paint themselves. (Two other top-level components are also commonly used: JDialog
for dialogs, and JApplet for applets.) A JFrame will be displayed with the title frame, and

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�5�.�h�t�m�l� �(�5� �o�f� �4�4�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�2�5� }Ç

Chapter 5

has a single component called a JRootPane, which has a menu bar (a JMenuBar), a content
pane (which is typically set to hold something like a general purpose JPanel by the user
program), and some other things that generally don't matter for typical situations. The fact
that the JFrame uses a JRootPane isn't usually relevant for many practical situations.

It is really easy to create a simple Swing application with JFrame. The sequence of code
that will create the practical object structure shown in Figure 5-3 is given in Listing 5-1.

Listing 5-1. Code excerpt
Code to setup JFrame

 ...
 // Setup a JFrame for practical use

 JFrame theFrame = new JFrame("Application Name");

 JMenuBar theMenuBar = new JMenuBar();
 // code to define items on Menu, event handlers, etc.
 ...
 theFrame.setJMenuBar(theMenuBar);

 JPanel thePanel = new JPanel();
 // code to define what is on panel, layout manager,
 // define user interface, command control, etc.
 // (non-trivial)
 ...
 theFrame.setContentPane(thePanel);
 theFrame.pack();
 theFrame.setVisible(true);
 ...

This code fragment would be found in the definition of some object. This would usually
be defined in the top-level class that has the main method, and defines the application. It is
likely that all this code would be found in the order shown here, but would have some
code in between the steps to use the parts of the interface. But the steps shown are really at
the heart of the matter:

1. Create JFrame
2. Create and define JMenuBar
3. Add JMenuBar to JFrame
4. Create JPanel

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�5�.�h�t�m�l� �(�6� �o�f� �4�4�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�2�5� }Ç

Chapter 5

5. Add whatever you need to the JPanel
6. Add the JPanel to the JFrame Content Pane
7. Pack and show the JFrame

Figure 5-3.
The Practical structure of JFrame

In this example, note that the content pane has been set to a JPanel, which can be used as a
general purpose window to hold buttons, drawing canvases, split panes - anything the
program needs to display. Thus, to implement a tool bar, the JPanel can use a Border
layout to hold a JToolBar at its top, and yet another drawing pane or panel in its center.

The key to this whole idea is that the JPanel can serve to build practically any interface
needed. Swing has several kinds of panes (e.g., JPanel, JSplitPane, JTabbedPane) that can
serve to hold other Swing components. Associated with each such pane is a layout
manager. Layout managers control how other Swing components are placed in a pane.
Some layout managers are relatively simple to understand, but others get quite
complicated. But the difficulty is in the details of using a specific layout manager. The
concept that each pane has a layout manager is simple.

Once you have this basic object structure down, it is "simply" a matter of selecting which
Swing components you need to implement your interface. The basic components, such as
JButton, are quite easy to use. Others, such as JTable are harder. And if you need to draw
something on a drawing canvas, you will need to use the Java Graphics object. How to use
Graphics is beyond the scope of this book other than to note that your program will be
responsible for responding to paint events caused by the drawing pane being resized or
exposed.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�5�.�h�t�m�l� �(�7� �o�f� �4�4�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�2�5� }Ç

Chapter 5

Defining the GUI and laying out the Swing components is not all that difficult. But it is
only half the story. For each component that the user can interact with, your program must
provide code that makes an appropriate response. These are the events, and the next
section, "Handling Swing Command Events" shows how to handle events generated by
Swing components.

It is important to remember that one of the hardest parts about using Swing is figuring out
which features of a component are most useful and commonly needed, and which are
included to give Swing the capability of defining interfaces for every possible situation.
Sun's documentation for Java (and the rest of the core Java classes) is consistent and
complete. It is really much better than average. But it covers everything. The Sun Swing
Tutorial is more useful. It has many good examples which tend to demonstrate the most
useful features of the various components. Once you get an idea of what you want to do
with a component, the Swing documentation provided by Sun is about the best there is
available.

Handling Swing Command Events

The components of Java Swing generate events in response to various actions. For
example, when a user clicks on a button or selects a menu item, Swing will generate an
ActionEvent. The program handles these events by registering an appropriate Listener for
each event. There are really several kinds of events generated by Swing - ActionEvents,
ChangeEvents, ItemEvents, and others. Each kind of event is appropriate for some kind of
action in a specific component. These can be caused by a user click, a list changing its
values, a timer going off, and different things depending on the nature of the component.
All these events can be handled in the same general way.

The general steps are:

1. Create a component (such as a JButton)
2. Add it to an appropriate place in the GUI (such as a JPanel)
3. Register a Listener that gets notified when the component generates an event (such
as an ActionListener for a user click)
4. Define the callback method that is invoked when the Listener is notified (such as
actionPerformed for an ActionListener).

As with most programming tasks, these steps can be accomplished in many ways using
Java. However, two main ways that have evolved as Java idioms to do this. One is to
define a single listener, and determine which component generated the event using a series
of if statements. The second method is to use inner classes to respond to events for each
Swing component individually. And, there are really two variants of using inner classes.
The first is to use anonymous inner classes, and the other is to define named inner classes.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�5�.�h�t�m�l� �(�8� �o�f� �4�4�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�2�5� }Ç

Chapter 5

We will define a simple Java application that displays two buttons (Figure 5-4), and
responds to the user click by displaying an appropriate dialog box (Figure 5-5). However,
this example can be extended to much more complicated user interfaces. We will
implement this application three different ways - the single listener approach, the
anonymous inner class approach, and the named inner class approach.

Figure 5-4.
Simple Swing Application

Figure 5-5.
Dialog Window - response to event

First, we will implement this program using the single listener approach. We will define a
single class called Simple1. This contains all the code needed for this simple example. All
user events (button clicks in this example - they could be menu picks or any other event)
are handled by the callback actionPerformed in the single listener class SimpleListener.

Here's the code:

Listing 5-2. Simple1.java
Single listener

 /*
 * Simple1.java - an example of handling events.
 * For this example, we implement a single ActionListener
 * which is then used to catch all events. A series of ifs
 * are used to determine which object caused the event.
 */
 import java.awt.*;
 import java.awt.event.*;

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�5�.�h�t�m�l� �(�9� �o�f� �4�4�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�2�5� }Ç

Chapter 5

 import javax.swing.*;

 public class Simple1
 {
 private static JFrame frame; // static so main can use it
 private static JPanel myPanel; // panel for the contentPane
 private JButton button1; // Define out here to make
 private JButton button2; // visible to ActionListener

 public Simple1() // Construct, build GUI
 {
 // Create a panel
 myPanel = new JPanel();
 // Create the buttons.
 button1 = new JButton("Button 1"); // Create buttons
 button2 = new JButton("Button 2");

 SimpleListener ourListener = new SimpleListener();
 // Set action listener for both buttons to share
 button1.addActionListener(ourListener);
 button2.addActionListener(ourListener);

 myPanel.add(button1); // Adds to current JFrame
 myPanel.add(button2);
 }

 private class SimpleListener implements ActionListener
 {
 /*
 * We will use a simple inner class to implement an
 * ActionListener to use to get the button events. We
 * could have instead used the Simple1 class itself to
 * implement ActionListener instead, but this way is
 * more consistent with the other examples.
 */
 public void actionPerformed(ActionEvent e)
 {
 // We will use getActionCommand to get the button
 // name, but we could use getSource() instead and
 // the if tests would then be like:
 // if (e.getSource() == button1) etc.

 String buttonName = e.getActionCommand();

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�5�.�h�t�m�l� �(�1�0� �o�f� �4�4�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�2�5� }Ç

Chapter 5

 if (buttonName.equals("Button 1"))
 JOptionPane.showMessageDialog(frame,
 "Button 1 pressed");
 else if (buttonName.equals("Button 2"))
 JOptionPane.showMessageDialog(frame,
 "Button 2 pressed");
 else
 JOptionPane.showMessageDialog(frame,
 "Unknown event");
 }
 }

 public static void main(String s[])
 {
 Simple1 gui = new Simple1(); // Create Simple1 component

 frame = new JFrame("Simple1"); // JFrame for the panel
 // Standard idiom to catch close event
 frame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e)
 {System.exit(0);} });

 frame.getContentPane().add(myPanel);
 frame.pack(); // Ready to go
 frame.setVisible(true);
 }
 }

Let's go over how this code works. Our simple application will consist of a Swing JFrame
defined in main. We will add a single JPanel to the frame. The panel will contain the two
JButtons. The variable references to these components, frame, button1, and button2 are
defined at the top level of Simple1.1

The main method starts by creating the Simple1 object, which then creates the user GUI
by defining the JPanel and adding the JButtons. After each button is created,
JButton.addActionListener is called for each button instance to add the single instance of
SimpleListener. Finally, each button is added to the panel. After the GUI has been created,
main adds the panel to the frame, and displays the results. When a user clicks one of the
buttons, the actionPerformed callback is called, and inside if statements are used to
determine which button was pressed, and an appropriate modal dialog box is displayed.
The UML sequence diagram in Figure 5-6 shows the sequence of operations when a user

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�5�.�h�t�m�l� �(�1�1� �o�f� �4�4�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�2�5� }Ç

Chapter 5

clicks on Button1.

Figure 5-6.
Sequence Diagram for simple listener

This simple single listener approach has some problems. Because the determining the
identity of each event requires either a string comparison
(e.getActionCommand().equals("name")) or, alternatively, an object comparison
(e.getSource() == button1), you can't use a switch, and must add an if for each event. This
can result in a long string of if statements. And the code can get unwieldy and difficult to
read and maintain. For handling just a few events, however, this approach is simple to use.

One solution to this problem is to use anonymous inner classes. Instead of implementing a
single named inner class for the listener, you simply use an anonymous class as the
argument to addActionListener. This places the definition of the event handler right with
the definition of the control component.

Listing 5-3. Simple2.java
Anonymous inner classes for listeners

 /*
 * Simple2.java - an example of handling events.
 * For this example, we will use anonymous inner classes to
 * implement an ActionListener for each button. This approach
 * can avoid long switch-type if statements from the approach
 * used in the Simple1 example.
 */

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�5�.�h�t�m�l� �(�1�2� �o�f� �4�4�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�2�5� }Ç

Chapter 5

 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;

 public class Simple2
 {
 private static JFrame frame; // static so main can use it
 private static JPanel myPanel; // panel for the contentPane
 private JButton button1; // Define out here to make
 private JButton button2; // visible to ActionListeners

 public Simple2() // Construct, build GUI
 {
 // Create a panel
 myPanel = new JPanel();
 // Create the buttons
 button1 = new JButton("Button 1");
 button2 = new JButton("Button 2");

 // For each component that needs a listener, define an
 // anonymous inner class to implement ActionListener.
 button1.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 JOptionPane.showMessageDialog(frame,
 "Button 1 pressed");
 }
 }
);

 button2.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 JOptionPane.showMessageDialog(frame,
 "Button 2 pressed");
 }
 }
);

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�5�.�h�t�m�l� �(�1�3� �o�f� �4�4�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�2�5� }Ç

Chapter 5

 myPanel.add(button1); // Adds to current JFrame
 myPanel.add(button2);
 }

 public static void main(String s[])
 {
 Simple2 gui = new Simple2(); // Create Simple2 component

 frame = new JFrame("Simple2"); // JFrame for the panel
 // Standard idiom to catch close event
 frame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e)
 {System.exit(0);} });
 frame.getContentPane().add(myPanel);
 frame.pack(); // Ready to go
 frame.setVisible(true);
 }
 }

Using anonymous inner classes has some problems. First, the definitions of the classes,
and thus the code that handles the events, can be scattered all over the application source
code, depending on where the component was defined. They tend to be defined deep
within the nested code, which can make the indentation and appearance of the code a bit
awkward. If the required response to the event is somewhat complicated, the code for the
anonymous class can get long, thus making it difficult to follow the overall flow and intent
of the code that is defining the components in the first place. Finally, there are often
synonyms for commands defined for a particular user interface. For example, it is quite
common to provide both a tool bar button and a menu item for the same command.

The sequence diagram in Figure 5-7 shows the event sequence with an anonymous
listener. The only difference from the previous case is that the anonymous listener is
called instead.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�5�.�h�t�m�l� �(�1�4� �o�f� �4�4�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�2�5� }Ç

Chapter 5

Figure 5-7.
Sequence diagram with anonymous listener

Using named inner classes provides a good alternative to anonymous inner classes. All the
handlers can be defined in one place. They can have meaningful names. A single handler
can be reused by different controls. And the code where the GUI is defined and laid out is
not interrupted by long anonymous class definitions. So here is the simple application
again, this time written using named inner classes.

Listing 5-4. Simple3.java
Named inner classes for listeners

 /*
 * Simple3.java - an example of handling events.
 * For this example, we will use inner member classes to
 * implement an ActionListener for each button. This approach
 * can avoid some of the code clutter that anonymous classes
 * can sometimes cause. It also concentrates the action code
 * all in one place, and allows synonyms.
 */
 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;

 public class Simple3 extends JPanel
 {
 private static JFrame frame; // static so main can use it

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�5�.�h�t�m�l� �(�1�5� �o�f� �4�4�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�2�5� }Ç

Chapter 5

 private static JPanel myPanel; // a panel for contentPane
 private JButton button1; // Define out here to make
 private JButton button2; // visible to ActionListener

 // Define handlers for each event needed (button1, button2)
 private class Button1Handler implements ActionListener
 {
 public void actionPerformed(ActionEvent e)
 {
 JOptionPane.showMessageDialog(frame,
 "Button 1 pressed");
 }
 }

 private class Button2Handler implements ActionListener
 {
 public void actionPerformed(ActionEvent e)
 {
 JOptionPane.showMessageDialog(frame,
 "Button 2 pressed");
 }
 }

 public Simple3() // Construct, build GUI
 {
 // Create a panel
 myPanel = new JPanel();
 // Create the buttons
 button1 = new JButton("Button 1");
 button2 = new JButton("Button 2");

 // For each component add it ActionListener class
 button1.addActionListener(new Button1Handler());
 button2.addActionListener(new Button2Handler());

 myPanel.add(button1); // Adds to current JFrame
 myPanel.add(button2);
 }

 public static void main(String s[])
 {
 Simple3 gui = new Simple3(); // Simple3 component

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�5�.�h�t�m�l� �(�1�6� �o�f� �4�4�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�2�5� }Ç

Chapter 5

 frame = new JFrame("Simple3"); // JFrame for the panel
 // Standard idiom to catch close event
 frame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e)
 {System.exit(0);} });

 frame.getContentPane().add(myPanel);
 frame.pack(); // Ready to go
 frame.setVisible(true);
 }
 }

The sequence diagram in Figure 5-8 now shows that the named listener Button1Handler is
used when a user clicks Button1.

Figure 5-8.
Sequence diagram for named inner class listener

In this example, we are responding to the action event generated when the user clicks on
one of the buttons. The way these events are handled applies equally well to any Swing
event - a menu pick, a list selection, and others. Some of these are not ActionEvents with
ActionListeners, but include ItemEvents with ItemListeners, and ChangeEvents with
ChangeListeners, and so on. The general approaches shown in these examples will work
for all.

A Bunch of Options

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�5�.�h�t�m�l� �(�1�7� �o�f� �4�4�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�2�5� }Ç

Chapter 5

On the whole, using the basic features of Swing components is not overly complex. But,
you won't always want just the basic features. Most components have many options that
can be used. Take a JButton, for example. The simplest JButton has a simple text label and
takes the default appearance of the GUI look-and-feel. But, there are many options. You
can make it the default button. You can change the borders. You can change the color.
You can add an icon to the button. You can enable or disable the button. You can add a
tool tip. You can change its size. You can change the font. And so on. This pattern repeats,
with some overlap, for almost every Swing control.

Aside from making it harder to fully understand each component, each one of these
options is implemented by a specific method call to the Swing component's class. This
means that any code that fully takes advantages of a component's options can get long. If
we set just the options we mentioned for a JButton, it would take at least nine lines of code
to define a JButton object. Repeat this for each control, and the code for defining a GUI
can get long and ugly.

There are some solutions to this problem. The definitions for components can be isolated
somewhat from the logic. Rather than building a whole interface in the middle of code that
has some higher level meaning, you can place the definitions in some method such as
createGUI, and then just call it from the higher level code. That still means there will be
long sequences of repetitious code somewhere.

If you find you are setting the same component attributes over and over again, you can
implement small helper methods that take the attributes as parameters, and then set them
all. Then the code for defining the component would be a single line call to the helper
method, rather than many lines.

Even so, defining components of the user interface can be complex, and require several
lines of code. Even though this can make the code longer and more complex, it does keep
it all in one place, and portable across the systems Java supports.

One alternative used by other GUI toolkits is to use resource definition files. These
resource files have their own set of problems. Another alternative is to use software that
lets you define GUIs interactively, and then generates all the code automatically. Many
Java tools will let you do this, in fact. But even that approach has some serious problems,
which we will discuss in Chapter 10.

MVC: Model, View, Controller

A commonly used design architecture for GUI applications is called Model-View-
Controller, or MVC. MVC was originally developed for the Smalltalk language, but has
found widespread use for designing GUI applications in any object-oriented language.
When a GUI application works with an object, it can usually be represented with a model.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�5�.�h�t�m�l� �(�1�8� �o�f� �4�4�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�2�5� }Ç

Chapter 5

The model is a complete representation of the object being used by the application. This
could be a word processing document, a graphical image, a spreadsheet, or a database.
The key concept is that the model is self-contained, and its representation is independent
of the rest of the program. The model then provides the manipulation methods required for
the outside world to use the object the model implements.

An application will then consist of any number of views of the model. There might be an
edit view and a print view of a document, or several views of different pages of the
document for example. Each view tracks what it needs to know about its particular
perspective of the model, but each view will interact with the same model. Finally, each
view has associated with it a user interface implemented as a controller object. This might
include command buttons, handlers for the mouse, and so on. When a controller gets a
command from the user, it uses appropriate information from the associated view to
modify the model. Whenever the model changes, it will notify all views, which then
update themselves.

This is an elegant architecture, and is shown in Figure 5-9. Note that there can be as many
views as needed. Logically, each view has an associated controller. Typically there will be
a single Model class, and several View classes with their associated Controller classes.
The Controller will respond to actions from the user, use whatever information it needs
from the associated View, and send a message to the Model to modify itself. When a
Model changes (and this can be caused by events other than user commands, such as
asynchronous events generated by a shared database being modified), it notifies all Views,
which then update the display.

Figure 5-9.
Model-View-Controller

In practice, especially in Java, the View and Controllers are often combined. This is
usually due to the design of the GUI toolkit, such as Swing. So a Java MVC program will
really be a Model and associated View/Controllers made up of specifications of Swing

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�5�.�h�t�m�l� �(�1�9� �o�f� �4�4�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�2�5� }Ç

Chapter 5

components and their listeners.

No matter what the actual implementation of the View/Controller is, the main idea of
MVC is to separate the model from its display and the user interface. There are many
advantages to this approach. The model can be designed completely independently of how
it will be displayed. With such an independent model, there will then be great flexibility in
how views can be designed to display the model. New views can be created, and the
whole user interface changed without affecting the model.

CRC Cards for MVC

The MVC design lends itself as a good example for CRC cards. Note in this
example how the View and Controller cards overlap, showing their close
collaboration. The Model is placed under the View/Controller, showing their
supervision. These cards show only the minimum responsibilities to help clarify
the model. Note that when using any tool such as CRC Cards or the UML, the
tool should be used to make it easier to understand the design, which often
means showing only the details that are relevant.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�5�.�h�t�m�l� �(�2�0� �o�f� �4�4�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�2�5� }Ç

Chapter 5

MVC with Java

In the original Smalltalk MVC concept each of the classes - Model, View, Controller -
was an integral part of the Smalltalk implementation. Other programming languages, and
specifically Java, do not provide integrated MVC classes. However, the concept of MVC
is still valid, and provides a good way to implement GUI programs.

As we discussed earlier, a graphical interface in Swing is usually built by using several
Swing components, and defining the appropriate listeners for each component. Thus, it is
often easier to define a combined View/Controller class when working with Swing. There
can be a pure, Swing-free implementation of the Model class. Views then consist of
implementations of the different views of the model using Swing components, and the
controllers are implemented using the required listener interface of Swing. Thus, the
controllers will really be the required listeners for the various Swing components used in
the views. The controllers will be included with the associated view code. It is possible to
use a Controller class that further separates the controllers from the views, and we will
develop such a Controller class in the next section.

While MVC is most commonly used for full GUIs, it can be applied to other designs. At
their lowest level, many of the individual Swing components are implemented using
MVC. This provides a great deal of programming flexibility for using Swing components -
the user can provide their own look and feel, for example, by replacing the views.
However, this flexibility is not required or used by the vast majority of Swing
applications. Nor should the MVC implementation of Swing be confused with an MVC
implementation of an application that uses Swing. Swing provides nothing that makes it
easier to implement an MVC application, even though its own low-level implementation
uses MVC.

In the next section, we will present the design of a small Swing based MVC framework.
This framework combines many of the aspects of Swing that we've covered. It defines a
top-level application class that uses a JFrame to build the foundation of the application
that includes a menu bar, tool bar, and a JPanel to construct views. It implements Model,
View, and Controller classes that can be easily used to construct a full MVC application.
And it provides methods that make it easier to use and define controls within the views.

A Small Swing MVC GUI Framework

Now we are ready to put everything from this chapter together in a small Swing based
MVC framework. Even though it is small, this framework is suitable as a starting point for
even large Java MVC applications.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�5�.�h�t�m�l� �(�2�1� �o�f� �4�4�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�2�5� }Ç

Chapter 5

Recall the definition of a framework at the beginning of this chapter. One of the goals of a
framework, even a simple one, is to make it easier for a programmer to develop an
application that requires the services of the framework. In this case, the goal of our simple
framework is to make it easier to develop a Swing GUI application that uses the MVC
design.

We will begin by considering what services the framework must include to build a
"standard" GUI application as described in "Graphical User Interfaces" on page 118. Such
a standard app included an outer frame that contained a title bar, a menu bar, a tool bar,
and a drawing area that could be used for views. The existing Swing JFrame class almost
meets these requirements, so we will define a top-level application class based on JFrame.
Most frameworks have a name, and we'll call our framework the Wmvc framework for the
Wampler MVC framework. All classes in this framework will be start with Wmvc. This
kind of naming convention is commonly used with frameworks and libraries.

WmvcApp Class

The top-level application class is called WmvcApp. A user application will derive its top-
level application class from WmvcApp. The basic structure of the Wmvc framework is
shown in Figure 5-10. The class diagram for WmvcApp shows the most important
services it provides. WmvcApp allows the user app class to build an application easily.
The app will define the elements of the menu bar, tool bar, and drawing panes. The user
app defines menus by creating JMenu objects, and then adding items to those menus using
the Wmvc menu controllers, and finally adding the menus to the menu bar with
WmvcApp.addMenu. Tool bar items are defined and added to the tool bar using Wmvc
controller objects. WmvcApp provides a JPanel for the app to define whatever is needed
for views.

WmvcApp provides the basic functionality needed to build simple "standard" applications.
Although it is not that complicated, it simplifies the job of the programmer. The details of
defining a tool bar and a JPanel are hidden.

WmvcApp has another job - to support the MVC model. While the structure of an MVC
program is clear, the MVC structure must really hang off of something. In the Wmvc
framework, the WmvcApp class provides the foundation to build the MVC structure on.
Because all the views must access the model, WmvcApp provides the services setModel()
and getModel() to give them access to the model. It provides a class method to get access
to the WmvcApp object itself. WmvcApp does not provide direct support for views.
Instead, views are created in the derived WmvcApp class directly. The Thermometer
example later will help make this clear.

The details of creating the tool bar and drawing canvas are found in the WmvcApp.java
code. In addition to the services already discussed, WmvcApp provides a standard way to

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�5�.�h�t�m�l� �(�2�2� �o�f� �4�4�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�2�5� }Ç

Chapter 5

handle closing an application. When the user presses the close button on the title bar, the
method appClosing is called, and will exit by default. The user app can control closing
behavior by overriding appClosing. There is a method to cause the app window to be
displayed after it has been defined (showApp()). Since the programmer must derive an app
class from WmvcApp, it has been declared abstract.

Figure 5-10.
Wmvc framework

UML: We've introduced the note symbol in Figure 5-10. It is used to show notes
that help explain the diagram. Note how UML diagrams don't have to give all the
details. Sometimes they are used to show just the overall relationships between
classes, and don't show any details of the attributes or operations. Other times,
they can show only relevant operations. And finally, they can be used to show
the full details, including all attributes and operations.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�5�.�h�t�m�l� �(�2�3� �o�f� �4�4�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�2�5� }Ç

Chapter 5

Listing 5-5. WmvcApp.java
Top level base class for Wmvc Application

 /*
 * WmvcApp - The main Application Class for Wmvc
 * Copyright (c) 2001, Bruce E. Wampler
 */

 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;

 public abstract class WmvcApp
 {
 private static WmvcApp theApp = null; // Singleton

 // Model

 protected static WmvcModel theModel = null;

 // GUI interface parts
 private static JFrame theFrame = null; // The topmost frame
 private static JMenuBar theMenuBar = null;
 private static JToolBar theToolBar = null;
 private static JPanel theContentPanel = null;

 public static JFrame getFrame() { return theFrame; }
 public static JMenuBar getMenuBar() { return theMenuBar; }
 public static JToolBar getToolBar() { return theToolBar; }
 public static JPanel getContentPanel()
 { return theContentPanel; }
 public static WmvcModel getModel() { return theModel; }
 public static void setModel(WmvcModel m) { theModel = m; }

 public static WmvcApp getApp()
 {
 return theApp;
 }

 // Only one constructor. Could have alternates:
 // public WmvcApp()
 // public WmvcApp(String aName)

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�5�.�h�t�m�l� �(�2�4� �o�f� �4�4�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�2�5� }Ç

Chapter 5

 public WmvcApp(String aName, boolean cMenu, boolean cTool)
 {
 if (theApp != null)
 return;
 theApp = this;
 initializeWmvc(aName,cMenu,cTool);
 }

 private void initializeWmvc(String aName, boolean cMenu,
 boolean cTool)
 {
 // Step 1 - set up the main JFrame
 theFrame = new JFrame(aName);

 // handle closing cleanly
 theFrame.setDefaultCloseOperation(
 JFrame.DO_NOTHING_ON_CLOSE);
 theFrame.addWindowListener(new WindowAdapter()
 {
 public void windowClosing(WindowEvent e)
 {
 if (theApp.appClosing())
 System.exit(0);
 }
 });

 // Step 2 - the menu bar
 if (cMenu) // add a MenuBar?
 {
 theMenuBar = new JMenuBar();
 theFrame.setJMenuBar(theMenuBar);
 }

 // Step 3 - the JPanel (may or may not have a tool bar)

 theContentPanel = new JPanel(); // A JPanel
 theContentPanel.setLayout(new BorderLayout());
 theContentPanel.setPreferredSize(
 new Dimension(400, 300));

 if (cTool) // add a Tool Bar?
 {
 theToolBar = new JToolBar();

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�5�.�h�t�m�l� �(�2�5� �o�f� �4�4�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�2�5� }Ç

Chapter 5

 theContentPanel.add(theToolBar,BorderLayout.NORTH);
 }

 // Note: we could add a status bar (another ToolBar) at
 // the bottom by using BorderLayout.SOUTH

 theFrame.setContentPane(theContentPanel);
 }

 public static void addMainPane(JComponent pane)
 {
 // This will add the "user" pane to the content pane
 theContentPanel.add(pane,BorderLayout.CENTER);
 }

 public static void addMenu(JMenu menu)
 {
 if (theMenuBar == null)
 return;
 theMenuBar.add(menu);
 }

 public static void showApp()
 {
 theFrame.pack();
 theFrame.setVisible(true);
 }

 public boolean appClosing()
 {
 return true; // Default behavior - close automatically
 }
 }

WmvcView, WmvcController, WmvcModel Classes

The MVC classes themselves are not too complicated. One of the most important
responsibilities of these classes is to allow the model to update all the views whenever it
changes. This is implemented by using the Java Observable/Observer classes2.
WmvcView implements the update method of the Observer Java interface as updateView.
Each view then registers itself with the model using the WmvcModel method addView,
which uses the addObserver method defined by the Java Observable class that

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�5�.�h�t�m�l� �(�2�6� �o�f� �4�4�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�2�5� }Ç

Chapter 5

WmvcModel extends. When the model changes, the model object uses notifyViews to
send a message to all views that have registered with the model. The Observable class
initiates calling the updateView method of each registered view. The Wmvc classes
insulate the application programmer from the details of using the Observable class, and
provide a naming convention more meaningful to use with the MVC design.

Listing 5-6. WmvcModel.java
Wmvc Model base class - the Model

 /*
 * WmvcModel - An MVC model superclass for the Wmvc Framework
 * Copyright (c) 2001, Bruce E. Wampler
 */

 import java.util.*;

 public class WmvcModel
 extends Observable
 {
 // not a huge class, but provides implementation of
 // Observer pattern using MVC naming

 public WmvcModel()
 {
 super();
 }

 public void addView(WmvcView view)
 {
 addObserver((Observer) view);
 }

 public void deleteView(WmvcView view)
 {
 deleteObserver((Observer) view);
 }

 public void notifyViews()
 {
 setChanged();
 notifyObservers();
 }

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�5�.�h�t�m�l� �(�2�7� �o�f� �4�4�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�2�5� }Ç

Chapter 5

 }

Listing 5-7. WmvcView.java
Wmvc View base class - the View

 /*
 * WmvcView - An MVC view superclass for the Wmvc Framework
 * Copyright (c) 2001, Bruce E. Wampler
 */

 import java.util.*;

 public class WmvcView
 implements Observer
 {
 // implement the single Observer class
 public void update(Observable observed, Object value)
 {
 updateView();
 }

 public void updateView()
 {
 // no-op by default
 }
 }

Wmvc includes the WmvcController class. This class is designed specifically to make it
easier to build controllers for menu items and tool bar buttons3. The WmvcController
class serves as a base class for subclasses that support specific menu bar and tool bar
controls. This example has been simplified to implement only basic text and check box
menu items (WmvcMenuItemCtl and WmvcChkMenuItemCtl), and simple buttons
(WmvcTBButtonCtl) for the tool bar. Additional subclasses of WmvcController would be
required to support additional Swing components on the tool bar, but have not been
implemented to help simplify the example. Note that WmvcController is intended to
simplify working with the menu bar and the tool bar. Controllers for Swing components
inside the individual views would need to be implemented using Swing listeners defined
within the view code. It would be possible, however, to design other WmvcController
implementations for components not on the menu or tool bars. As we noted earlier, using
MVC with Java often means a combined View/Controller.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�5�.�h�t�m�l� �(�2�8� �o�f� �4�4�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�2�5� }Ç

Chapter 5

The WmvcController supports functionality for subclasses that will implement menu
items and tool bar controls. The basic support includes handling tool tips, and providing
the implementation for the WmvcExecutor class. There is a subclass for each type of
Swing component: normal menu, check box menu, and tool bar button. It would be simple
to support other Swing components by adding new subclasses of WmvcController. There
are many details that are "hidden" in this code to simplify using these components for the
framework user.

Listing 5-8. WmvcController.java
The Controller

 /*
 * WmvcController - implements a general purpose Swing based
 * Controller using the Command pattern - for Wmvc framework
 * Used to simplify Swing controls
 *
 * (c) 2001, Bruce E. Wampler
 */

 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;
 import javax.swing.event.*;

 public class WmvcController
 implements ActionListener,
 ItemListener
 {
 protected JComponent myComponent;
 private WmvcExecutor wmvcExecutor; // The Executor object

 // This constructor is use by the subobjects
 public WmvcController(JComponent comp, // the component
 String tip,
 WmvcExecutor wExec)
 {
 myComponent = comp;
 wmvcExecutor = wExec;
 if (tip != null)
 myComponent.setToolTipText(tip);
 }

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�5�.�h�t�m�l� �(�2�9� �o�f� �4�4�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�2�5� }Ç

Chapter 5

 public WmvcExecutor getWmvcExecutor()
 { return wmvcExecutor; }

 /* --
 * Implement the Listeners for components.
 * Each listener will send a message to the appropriate
 * execute method from the associated WmvcExecutor. Type
 * of event determines the signature of the execute method.
 */

 // implment the ActionListener
 public void actionPerformed(ActionEvent event)
 {
 if (wmvcExecutor != null)
 wmvcExecutor.execute(event);
 }

 // implement ItemLisetener
 public void itemStateChanged(ItemEvent event)
 {
 if (wmvcExecutor != null)
 wmvcExecutor.execute(event);
 }
 }

The following are subclasses of WmvcController and implement menu items, checked
menu items, and tool bar buttons.

Listing 5-9. WmvcMenuItemCtl.java
Controller subclass for JMenuItem

 /*
 * WmvcMenuItemCtl - implements JMenuItem controller
 * (c) 2001, Bruce E. Wampler
 */
 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;
 import javax.swing.event.*;

 public class WmvcMenuItemCtl extends WmvcController

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�5�.�h�t�m�l� �(�3�0� �o�f� �4�4�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�2�5� }Ç

Chapter 5

 {

 private JMenu myMenu;
 private JMenuItem menuItem;

 // Constructor for JMenu item: Standard JMenuItem
 public WmvcMenuItemCtl(JMenu menu, // JMenu I go with
 String text, // Button's text
 String icon, // the icon's name
 char mnemonic, // Button's mnemonic
 String accel, // accelerator
 WmvcExecutor wExec)
 {
 super((JComponent)new JMenuItem(), null, wExec);

 myMenu = menu;
 menuItem = (JMenuItem) myComponent;

 if (text != null)
 menuItem.setText(text);
 if (mnemonic != ' ' && mnemonic != 0)
 menuItem.setMnemonic(mnemonic);
 if (accel != null)
 {
 KeyStroke ks = KeyStroke.getKeyStroke(accel);
 menuItem.setAccelerator(ks);
 }
 if (icon != null)
 {
 Icon theIcon = new ImageIcon(icon);
 menuItem.setIcon(theIcon);
 }
 menuItem.addActionListener(this); // Add listeners
 menuItem.addItemListener(this);
 menu.add(menuItem); // Finally, add to menu
 }

 public void setEnabled(boolean enable)
 {
 menuItem.setEnabled(enable);
 }

 public JMenu getJMenu() { return myMenu; }

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�5�.�h�t�m�l� �(�3�1� �o�f� �4�4�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�2�5� }Ç

Chapter 5

 public JMenuItem getJMenuItem() { return menuItem; }
 }

Listing 5-10. WmvcChkMenuItemCtl.java
Controller subclass for JCheckBoxMenuItem

 /*
 * WmvcChkMenuItemCtl - implements JCheckBoxMenuItem controller
 * (c) 2001, Bruce E. Wampler
 */

 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;
 import javax.swing.event.*;

 public class WmvcChkMenuItemCtl extends WmvcController
 {
 private JMenu myMenu;
 private JCheckBoxMenuItem checkBoxItem;

 // Constructor for JMenu item: JCheckBoxMenuItem
 public WmvcController(JMenu menu, // JMenu I go with
 String text, // Button's text
 String icon, // the icon's name
 char mnemonic, // Button's mnemonic
 String accel, // accelerator
 boolean checked, // initial state
 WmvcExecutor wExec)
 {
 super((JComponent)new JCheckBoxMenuItem(), null, wExec);

 myMenu = menu;
 checkBoxMenuItem = (JCheckBoxMenuItem) myComponent;
 if (text != null)
 checkBoxItem.setText(text);
 if (mnemonic != ' ' && mnemonic != 0)
 checkBoxItem.setMnemonic(mnemonic);
 if (accel != null)
 {

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�5�.�h�t�m�l� �(�3�2� �o�f� �4�4�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�2�5� }Ç

Chapter 5

 KeyStroke ks = KeyStroke.getKeyStroke(accel);
 checkBoxItem.setAccelerator(ks);
 }
 if (icon != null)
 {
 Icon theIcon = new ImageIcon(icon);
 checkBoxItem.setIcon(theIcon);
 }

 checkBoxItem.setState(checked);

 checkBoxItem.addActionListener(this); // Add listeners
 checkBoxItem.addItemListener(this);
 myMenu.add(checkBoxItem); // Finally, add to menu
 }

 public boolean getState()
 { return checkBoxItem.getState();
 }
 public void setState(boolean checked)
 { checkBoxItem.setState(checked);
 }
 public void setEnabled(boolean enable)
 { checkBoxItem.setEnabled(enable);
 }
 public JMenu getJMenu() { return myMenu; }
 public JCheckBoxMenuItem getJCheckBoxMenuItem()
 { return checkBoxItem;
 }
 }

Listing 5-11. WmvcTBButton.java
Controller subclass for JButton for tool bar

 /*
 * WmvcTBButtonCtl - implements JButton controller for tool bar
 * (c) 2001, Bruce E. Wampler
 */

 import java.awt.*;
 import java.awt.event.*;

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�5�.�h�t�m�l� �(�3�3� �o�f� �4�4�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�2�5� }Ç

Chapter 5

 import javax.swing.*;
 import javax.swing.event.*;

 public class WmvcTBButtonCtl extends WmvcController
 {
 private JButton myButton;

 // Constructor for JToolBar item: JButton
 public WmvcTBButtonCtl(String text, // Button's text
 String icon, // the icon's
name
 String tip, // tool tip
 WmvcExecutor wExec)
 {
 super((JComponent)new JButton(), tip, wExec);

 myButton = (JButton) myComponent;

 if (text != null)
 myButton.setText(text);
 if (icon != null)
 {
 Icon theIcon = new ImageIcon(icon);
 myButton.setIcon(theIcon);
 }

 myButton.addActionListener(this); // add listener
 WmvcApp.getToolBar().add(myButton); // add to bar
 }

 public void setEnabled(boolean enable)
 { myButton.setEnabled(enable);
 }
 public JButton getJButton() { return myButton; }
 }

WmvcExecutor is the implementation specification for the Command design pattern. In
the context of this MVC framework, Executor seemed to be a more appropriate name,
even though it is based on the Command pattern. It is used and functions much like a
standard Swing listener.

Listing 5-12. WmvcExecutor.java

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�5�.�h�t�m�l� �(�3�4� �o�f� �4�4�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�2�5� }Ç

Chapter 5

The Executor (Command pattern) used with WmvcController

 /*
 * WmvcExecutor - Support class for implementation
 * of the WmvcController class.
 * (c) 2001, Bruce E. Wampler
 */

 import java.awt.event.*;
 import javax.swing.event.*;

 public class WmvcExecutor
 {
 // an execute for each type of event we might have
 public void execute(ActionEvent event)
 {
 }
 public void execute(ItemEvent event)
 {
 }
 public void execute(ChangeEvent event)
 {
 }
 }

Now that we've examined the implementation of the Wmvc framework, we will present a
small example that uses the framework.

A Simple Application Based on Wmvc

We will use a small application called Thermometer to illustrate how the Wmvc
framework can be used. This application will display a temperature value in both degrees
Fahrenheit and degrees Celsius. It will provide buttons on the tool bar to allow the user to
move the temperature up and down.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�5�.�h�t�m�l� �(�3�5� �o�f� �4�4�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�2�5� }Ç

Chapter 5

Figure 5-11.
Thermometer App

The model, called ThermometerModel, is simple. It simply is an integer value
representing the Fahrenheit temperature. It has a getter to get the current temperature, and
a setter to set a new temperature. Whenever the temperature changes, the model will
notify all views.

There are three views. The most obvious are the display views which display the
temperature in Fahrenheit and in Celsius. The third view is doesn't actually display the
temperature. It is a control view that reacts to menu and tool bar commands. This non-
display view is really just a controller, but it is implemented as a view/controller to fit
within the MVC design. The two display views are really two objects of the class
TemperatureView. These views don't have a controller. The non-display view is called
MainView, and it uses the WmvcController class to implement the controller.

Figure 5-12 is the UML diagram of the Thermometer application. Note that this diagram is
really somewhat simplified to show the logical structure of the app. We don't show the
WmvcApp, WmvcModel, or WmvcView classes as they are unneeded detail. The update,
modify, and draw-in associations have been removed to simplify the diagram.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�5�.�h�t�m�l� �(�3�6� �o�f� �4�4�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�2�5� }Ç

Chapter 5

Figure 5-12.
Thermometer UML

The code for the application is really quite simple. That was the goal of designing the
Wmvc framework to begin with. Listing 5-13 shows the Thermometer class, which is the
app class derived from WmvcApp. Thermometer defines the app by creating the model,
the views, and adding the Fahrenheit and Celsius views to a JSplitPane.

Listing 5-13. Thermometer.java
Thermometer subclass of WmvcApp

 /*
 * Thermometer - A simple test for Wmvc Framework
 * Copyright (c) 2001, Bruce E. Wampler
 */

 import java.awt.*;
 import javax.swing.*;

 public class Thermometer extends WmvcApp
 {
 private MainView mainView;
 private TemperatureView fView;
 private TemperatureView cView;

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�5�.�h�t�m�l� �(�3�7� �o�f� �4�4�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�2�5� }Ç

Chapter 5

 public Thermometer(String name) // constructor
 {
 super(name, true, true); // Create with menu, toolbar

 // **** First, create the model
 setModel((WmvcModel) new ThermometerModel());

 // **** Next, create the view/controllers
 mainView = new MainView(); // won't use any panels
 fView = new TemperatureView('F'); // Fahrenheit, left
 cView = new TemperatureView('C'); // Celsius, right

 // **** Create a split pane, add list and item views
 JSplitPane splitPane = new JSplitPane(
 JSplitPane.HORIZONTAL_SPLIT, fView.getPanel(),
 cView.getPanel());
 splitPane.setOneTouchExpandable(false); // details
 splitPane.setDividerLocation(150);

 WmvcApp.addMainPane(splitPane); // add splitter
 }

 public static void main(String[] args)
 {
 final Thermometer theThermometer =
 new Thermometer("Thermometer App");

 WmvcApp.getContentPanel().setPreferredSize(
 new Dimension(300, 60)); // not big
 WmvcApp.showApp();

 ((ThermometerModel) (WmvcApp.getModel())).setTemp(70);
 }
 }

The model for this application is extremely simple. It has one attribute: the temperature.
The views and controller interact with the model using setTemp and getTemp. The model
updates views when setTemp changes the value.

Listing 5-14. ThermometerModel.java
Model subclass

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�5�.�h�t�m�l� �(�3�8� �o�f� �4�4�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�2�5� }Ç

Chapter 5

 /*
 * ThermometerModel - implements model. Handles changes.
 * Copyright 2001, Bruce E. Wampler
 */

 import java.util.*;

 public class ThermometerModel
 extends WmvcModel
 {
 private int theTemp;
 public int getTemp() { return theTemp; }

 public ThermometerModel()
 {
 theTemp = 0;
 }

 public void setTemp(int newTemp)
 {
 theTemp = newTemp;
 notifyViews(); // not much to the model!
 }
 }

The MainView defines the menu items and the tool bar items. Since it doesn't have to
change anything when the model changes, its uses the default WmvcView update method,
which doesn't do anything.

Listing 5-15. MainView.java
Main view subclass

 /*
 * MainView - Top level view/controller for the Thermometer
 *
 * This is the main view/controller.
 * Copyright (c) 2001, Bruce E. Wampler
 */

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�5�.�h�t�m�l� �(�3�9� �o�f� �4�4�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�2�5� }Ç

Chapter 5

 import java.util.*;
 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;

 public class MainView extends WmvcView
 {
 private ThermometerModel myModel; // local model reference

 public MainView()
 {
 myModel = (ThermometerModel) WmvcApp.getModel();
 myModel.addView(this);
 JMenu fileMenu = new JMenu("File");

 // File->Up
 WmvcMenuItemCtl fileUp = new WmvcMenuItemCtl(fileMenu,
 "Up",null, 'U',
 null /* no accel */, new WmvcExecutor()
 {
 public void execute(ActionEvent event)
 {
 myModel.setTemp(myModel.getTemp()+1);
 }
 });

 // File->Down
 WmvcMenuItemCtl fileDown = new WmvcMenuItemCtl(fileMenu,
 "Down",null, 'D',
 null /* no accel */, new WmvcExecutor()
 {
 public void execute(ActionEvent event)
 {
 myModel.setTemp(myModel.getTemp()-1);
 }
 });

 // File->Exit
 WmvcMenuItemCtl fileExit = new WmvcMenuItemCtl(fileMenu,
 "Exit", null, 'x',
 null /* no accel */, new WmvcExecutor()
 {
 public void execute(ActionEvent event)

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�5�.�h�t�m�l� �(�4�0� �o�f� �4�4�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�2�5� }Ç

Chapter 5

 {
 if (WmvcApp.getApp().appClosing())
 System.exit(0);
 }
 });

 WmvcApp.addMenu(fileMenu); // Add to app menu

 // ToolBar: Up
 WmvcTBButtonCtl toolUp = new WmvcTBButtonCtl(
 " Up ",null,"Up one degree F",
 fileUp.getWmvcExecutor() /* same as file up */);

 // ToolBar: Down
 WmvcTBButtonCtl toolDown = new WmvcTBButtonCtl(
 " Down ",null,"Down one degree F",
 fileDown.getWmvcExecutor() /* same as file up */);
 }
 }

There is one view class for both the Fahrenheit and Celsius views. The constructor
determines which scale will be used. It overrides the WmvcView update method to handle
the change notification from the model.

Listing 5-16. TemperatureView.java
View subclass for Fahrenheit and Celsius views

 /*
 * TemperatureView - a view for C or F temps.
 * Copyright (c) 2001, Bruce E. Wampler
 */

 import java.util.*;
 import java.awt.*;
 import javax.swing.*;

 public class TemperatureView extends WmvcView
 {
 private JPanel myPanel;
 private ThermometerModel myModel; // local copy
 private char myScale;

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�5�.�h�t�m�l� �(�4�1� �o�f� �4�4�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�2�5� }Ç

Chapter 5

 private static JLabel lblF = new JLabel("Fahrenheit: ");
 private static JLabel lblC = new JLabel("Celsius: ");
 private JLabel fldTemp;

 public JPanel getPanel() { return myPanel; }

 public TemperatureView(char scale)
 {
 myModel = (ThermometerModel)WmvcApp.getModel();
 myModel.addView(this); // adds update for mvc

 myScale = scale; // remember my scale

 myPanel = new JPanel(); // surrounding Panel
 myPanel.setPreferredSize(new Dimension(390, 40));

 if (scale == 'F' || scale == 'f')
 {
 myPanel.add(lblF); // F degrees
 }
 else
 {
 myPanel.add(lblC); // C degrees
 }
 fldTemp = new JLabel(" ");
 fldTemp.setForeground(Color.black); // temp in black
 myPanel.add(fldTemp);
 }

 public void updateView()
 {
 int val = myModel.getTemp();
 if (myScale == 'C')
 val = (int) (((double)(val-32))/1.8); // not rounded
 fldTemp.setText(Integer.toString(val));
 }
 }

UML Sequence Diagram for Thermometer

Figure 5-13 is the UML Sequence Diagram corresponding to the user clicking the Up

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�5�.�h�t�m�l� �(�4�2� �o�f� �4�4�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�2�5� }Ç

Chapter 5

Button. The sequence diagram shows how the Wmvc framework implements MVC to
send messages to the views.

Figure 5-13.
UML Sequence Diagram - Up button pressed

When the user clicks the Up button, the object corresponding to the Up button, called
upButton in the diagram, sends an actionPerformed message to the Up button controller,
toolUp4. The toolUp controller then sends a setTemp message to the model, myModel, to
increase the temperature by 1. After changing its internal state appropriately, theModel then
sends the notifyViews message. This is effectively a message to itself (using the Observer
design pattern), which then causes the update method of each View to be called. The views
then change their labels appropriately.

Chapter Summary

● A "typical" GUI based application has an outer frame, a title bar, a menu bar, a tool
bar, and a drawing area. Applications can have dialogs with control components like
buttons or lists.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�5�.�h�t�m�l� �(�4�3� �o�f� �4�4�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�2�5� }Ç

Chapter 5

● Swing is Java's GUI toolkit. The JFrame, JDialog, and JApplet are the normal top-
level container components used to build applications, dialogs, and applets. Events
are handled in Swing by defining listeners with callbacks to respond to the events.

● MVC, Model-View-Controller is an object-oriented design pattern useful for GUI
applications.

● Wmvc is a small Swing base Java GUI framework the combines the Swing JFrame
with an implementation of MVC. It demonstrates all the basics for building good
object-oriented Swing based GUI applications in Java.

Resources

Swing

Creating a GUI with JFC/Swing, from Sun:
java.sun.com/docs/books/tutorial/uiswing/index.html.

The JFC Swing Tutorial: A Guide to Constructing GUIs, Kathy Walrath, Mary Campione,
Addison-Wesley, 1999, ISBN: 0-201-43321-4.

1

Note how this code follows the setup code for JFrames we outlined in Listing 5-1. It creates and adds JButtons to a
JPanel (and implements the listeners for the buttons). The then creates a JFrame, and sets the content pane to the
JPanel just created. The order of creation is not important. This app has no menus, so JMenuBar was not used.

2

The Observable class implements the Observer design pattern. Design patterns are discussed in more detail in
Chapter 7. The examples that follow use other design patterns, which we will note.

3

WmvcController is implemented using the Command design pattern. See Chapter 7.

4

The Up button object, which we call upButton, is actually created by creating a WmvcController object. The
framework hides the button object from the application. The corresponding controller is called toolUp.

med for Flyheart

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�5�.�h�t�m�l� �(�4�4� �o�f� �4�4�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�2�5� }Ç

Chapter 6

Chapter 6

A Case Study in Java

The goal of this chapter is to put everything from the previous chapters together to develop
a small Java application. We will start with a specification for the program, go through a
simplified OOAD process, and finally build the program with Java and Swing.

For this case study, we will develop a small home video movie catalog. Here is the
specification for the application.

The application, which we will call MovieCat, is intended to allow a collector to create a catalog of a
home movie collection. The movies can be collected from several sources in different media formats.
The movies can be either original commercial copies, or recorded at home. The movies can be on
VHS tape, DVD, VCD, SVCD, Hi8, or miniDV. The user should be able to categorize the movies
into classes such as action, comedy, family, and the like. MovieCat should include the rating of the
movie (G, PG-13, etc.), as well as a personal evaluation by the user. The information included in the
catalog should include the title, director, and year the movie was made. Because people often record
multiple movies on one tape, MovieCat should be able to track which tape a movie is recorded on.
Finally, MovieCat should have a general comment field where the user can enter any other
information they want to about the movie. To help simplify the program, it won't have to keep track
of the actors or awards, or other specific information. The application should use Java and have a
GUI that is simple and easy to use. The user will want to browse for movies in the collection (but, at
least for now, not search for specific titles or other parts), add new movies, and edit or delete existing
movies.

This is a simple application, so the specification can itself be simple. Because MovieCat
will perform a function that is familiar to everyone, maintaining a list of a movie collection,
there is not a lot of specialized expertise required to build this application. It might be
useful to talk to a real movie buff to find out what information is most interesting to track,
but most of us have seen movie reviews and books with movies listed and rated, so this is
really common knowledge.

Analysis of MovieCat

Use Cases

MovieCat is a small, simple application, and so it won't require an extensive analysis. First,
we will present the use cases. There aren't very many, and in fact, the last sentence of the
specification reveals the likely use cases: browse for movies, add new movies, edit existing

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�6�.�h�t�m�l� �(�1� �o�f� �4�7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�2� }Ç

Chapter 6

movies, and delete a movie. Figure 6-1 shows the UML Use Case diagrams.

Figure 6-1.
MovieCat use cases

The next step is to produce a written description of each use case with the accompanying
scenarios. MovieCat is simple. There is only one actor, the Collector. There is not much
that can go wrong when using this program, so the scenarios are short. We won't bother
with a formal use case write up, and will just show the scenarios that go with each use case.

Scenario for Lookup Movie

1. Collector chooses movie catalog.
2. Collector browses list of movies.
3. When the collector is at the beginning or end of the list, browsing will wrap around
to bottom or top.

Scenario for Add Movie

1. Collector chooses movie catalog.
2. Collector selects add movie.
3. Collector edits new movie entry.
4. Collector commits or abandons new movie.
5. On commit, movie is added in alphabetical order of the title to the list of movies.

Scenario for Edit Movie

1. Collector chooses movie catalog.
2. Collector browses for movie to edit.
3. Collector edits movie.
4. Collector commits or abandons edits.
5. On commit, the entry is replaced in the correct alphabetical order.

Scenario for Delete Movie

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�6�.�h�t�m�l� �(�2� �o�f� �4�7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�2� }Ç

Chapter 6

1. Collector chooses movie catalog.
2. Collector browses for movie to delete.
3. Collector deletes movie.

These scenarios reflect some decisions made while writing them. For example, the original
specification did not say anything about the order the movie list would be kept in. The
scenarios indicate that the movie catalog will be kept in alphabetical order. The
specification of the steps required to edit or delete a movie reveal that editing and deleting
movies involves many of the same steps required to simply browse.

Even though there are only four simple use cases, they do reveal important aspects of what
needs to be done. Larger applications would have many more use cases, some more
complicated, some just as simple. The use cases lead to the scenarios. Scenarios will often
be much more complicated than this example, and will represent a more detailed contract
between the customer and the developer for certain features or functionality. In a more
critical application, for example, the Edit Movie scenario would need to be much more
detailed. We simply specify "edits movie." If we were editing a record in a financial
application, for instance, then the scenario would have to cover each field of the record.
What are the legal values of the field? What fields are required? What if the user makes an
entry error? A complete scenario would cover each possible situation. The level of detail
required for each scenario will depend on many things, but writing scenarios helps to ensure
that everyone understands what the system is supposed to do.

We've been informal in our presentation of the MovieCat use cases and scenarios.
Sometimes this informal approach and a few pieces of paper or a white board is all that is
needed. More formal OO methodologies will have more formal rules for just how to specify
use cases and their associated scenarios, and use specific software tools to create and track
them.

Now that we have the MovieCat use cases and their scenarios, we can continue with the
OOA. The next step is to analyze the problem to discover objects, attributes, and operations.

Object, Attribute, and Operation Discovery

In Chapter 4, we gave some of the basic steps of analysis, including object discovery,
attribute discovery, and operation discovery. Because the MovieCat problem is so simple,
we will combine these steps. In a larger problem, the steps would more likely be done as
separate tasks, although there will always be some overlap.

Examining the problem specification for nouns and verbs is one of the most effective ways
to begin object, attribute, and operation discovery. We will list the nouns and verbs in the
MovieCat problem description.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�6�.�h�t�m�l� �(�3� �o�f� �4�7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�2� }Ç

Chapter 6

Nouns

Reading the problem description gives the following list of nouns: application, collector,
catalog, movie collection, movie, formats, classes, rating, evaluation, user, title, director,
year, tape, comment field, information, Java, and GUI. The following table discusses each
noun and presents candidate classes and attributes.

Analysis of Nouns in the MovieCat problem description

Nouns Discussion Candidate Classes and Attributes

application

The application is the main thing we are talking
about. Since this application is a GUI app, we will
use the Wmvc framework we presented in Chapter 5.
Thus, our application will derive from WmvcApp.

MovieCat

collector

The collector is the user of the system, and is outside
of it. If this system were intended to be used by
several collectors, this might represent a useful
candidate object, but not in our case.

catalog
Creating a catalog is one of the primary goals of this
application. However, catalog and movie collection
are really the same thing.

movie
collection

This is the real thing - what we will be modelling.
The concept of a movie collection fits well with the
MVC notion of a model, so we will call it the model.

MovieModel

movie
A movie collection is made up of movies. So, we
have discovered an object, Movie, and a hierarchy,
part of a collection.

Movie

format This is the format of the tapes. It seems this is simply
an attribute of a movie. Movie.format

classes This is the category of a movie. A better name is
genre, and it is an attribute of a Movie. Movie.genre

rating A Movie attribute. Movie.rating

evaluation A Movie attribute. Movie.
evaluation

user Another name for the collector. Outside the system.

title A Movie attribute. Movie.title

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�6�.�h�t�m�l� �(�4� �o�f� �4�7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�2� }Ç

Chapter 6

director A Movie attribute. Movie.
director

year A Movie attribute. Movie.year

tape A Movie attribute. It will be an ID or label on a tape. Movie.label

comment
field A Movie attribute. Movie.

comments

information In this context, the content of the comment field.

Java
Sometimes the customer will specify the
environment or language. This is a design constraint,
but not an object or attribute.

GUI

We already discussed the GUI as part of the
application. We will use the Wmvc framework and
Swing to build the GUI. Because of this decision, we
know there will also be some views which we still
have to identify.

The analysis of the nouns from the problem statement has given us three candidate objects
or classes: MovieCat, MovieModel, and Movie. We discovered several attributes of a
Movie. We identified a whole/part hierarchy between the MovieModel and Movie. Finally,
we have some views to identify.

We also decided to use the Wmvc framework. This level of decision is usually more of a
design decision, but sometimes candidates for libraries or support data bases come up in the
analysis because such decisions can affect the ultimate design. Next, we will examine the
verbs from the problem description.

Verbs

Reading the problem description gives the following list of verbs: create catalog, collected,
categorize, track, browse, add new, edit, and delete. Because this list is short, we will just
discuss the verbs instead of creating a table.

The first four verbs, create catalog, collected, categorize, and track, involve how the
collector will use MovieCat. They don't really add any hints about the objects involved. The
remaining verbs; browse, add new, edit, and delete; are the same actions we've already
discussed in the use cases and scenarios.

We know that browsing, adding, editing (which is really just replacing an existing movie
with a "new" edited version), and deleting movies are important activities, and these will no

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�6�.�h�t�m�l� �(�5� �o�f� �4�7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�2� }Ç

Chapter 6

doubt show up as operations on the MovieModel and individual Movies. We noted in the
discussion of the noun GUI that we still need to identify the views we will need. Taking the
verbs browse and edit yields probable views: a view of the movie collection to browse with
an associated detailed view of an individual movie, and an edit view to edit existing movies
or add information for new movies. So, the new candidate views would be a
MovieListView, a MovieItemView, and a MovieEditView.

Evaluation

Now that we have some candidate objects, attributes, and operations, we can evaluate what
we have before going on to the design phase. In our analysis, the MovieModel and Movie
classes were covered in the most detail. Figure 6-2 is a UML diagram to summarize
MovieModel and Movie. All the operations and attributes included in the diagrams come
directly from the analysis we just did.

Figure 6-2.
MovieModel and Movie class diagrams - analysis

Note that the UML class diagrams in Figure 6-2 represent analysis diagrams, and not design
or implementation class diagrams. The level of detail we are looking at is different, and
specific implementation details such as public attributes instead of setters and getters for the
Movie class are not relevant in analysis. We have not yet specified types for the attributes,
either. This is a detail best left for design and implementation.

Design of MovieCat

The results of our analysis for MovieCat can lead directly to a specific design. The goal of
the design phase is to cover the details, and come up with a design that can be turned into
the final implementation in code. This means that not only do we consider what the
program will do, and what its main organization is, but that we specify the details - what
programming language, what hardware, what libraries we will use, and all the other details
needed to get a working implementation.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�6�.�h�t�m�l� �(�6� �o�f� �4�7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�2� }Ç

Chapter 6

As part of the analysis, we decided to use the MVC design to build MovieCat. One of the
advantages of MVC is that it allows you to design a model that is completely independent
of the rest of the application. In this section, we will focus mainly on designing the model,
which is made up of the MovieModel and Movie classes. We already have the analysis
class diagrams for those two classes in Figure 6-2 on page 169.

Movie Class

We will start by refining the Movie class. The analysis diagram for Movie has all the
attributes as public values. In the actual implementation, these public attributes should all
be made private, with appropriate methods supplied to get and set their values as needed.

Attributes can be variables of simple Java primitive type, or they can be variables that
reference objects of some class. Most of the attributes associated with a Movie seem to be
simple Java Strings. This would include comments, director, label, and title. Year could be
either a String or an int, but we will use String.

The other attributes, evaluation, format, genre, and rating, all represent a list of possible
values. For example, rating would be one of "G", "PG", "PG-13", "R", "NC-17", "X", or
"NR". One obvious way to represent this would be as an array of Strings with all the
different values. But any given move will have only one of these values. So an alternative
representation could be to define integer constants that represent a given rating. In fact,
partly because of the different ways we will view a Movie, we'd like to be able to use either
representation - an int or a String.

One way around this dilemma is to use small helper classes for the evaluation, format,
genre, and rating attributes. These helper classes would all be similar, and allow us to
represent the value of the attribute as an int, but easily convert between the int and a String.
And we'd like to know all the possible values (which might change over time - perhaps
there will be a new rating added) for use in a list or combo box. The helper classes won't
have much behavior, and can be implemented as class (i.e., static) variables and methods.
Each class will provide methods to map between the int and String representations, and will
return the full String list of possible values. To keep them static, a separate class will be
used for each attribute (this is a Java limitation). One of the main advantages of designing
these attributes this way is that it isolates all the representational information in the class
definition. We could easily add new genres, or modify the letter codes for the ratings
without affecting how the rest of the program works.

What other responsibilities should the Movie class have? Who will be using a Movie
object? We know that we will want to edit a Movie object. An editor should work with a
copy of a Movie, so the Movie class should be cloneable. And it is common practice for
objects that will have their values saved in a file to able to read and write themselves, so we

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�6�.�h�t�m�l� �(�7� �o�f� �4�7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�2� }Ç

Chapter 6

will add readMovie and writeMovie methods. Finally, we will define a constructor.

The Movie class is somewhat atypical because it is so data dominated. It has more setters
and getters than is typical of most classes, but that is not out of the ordinary for a data-
oriented class. Movie still has significant responsibilities such as reading and writing Movie
objects. Data-oriented classes are not necessarily bad, and many applications will require
one or several such classes.

Figure 6-3 is the final detailed UML object diagram for the Movie class.

Figure 6-3.
Movie Class

This class diagram shows the list-like attributes (genre, etc.) as ints. Movie will save the
representations as ints, and then use the helper classes to get the String values.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�6�.�h�t�m�l� �(�8� �o�f� �4�7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�2� }Ç

Chapter 6

The UML for the helper classes is shown in Figure 6-4. Note that the diagrams show the
values for the Strings. The UML uses underlines to indicate class attributes and methods.

Figure 6-4.
Movie Helper Classes

MovieModel Class

The analysis diagram of the MovieModel class in Figure 6-2 on page 169 shows five
methods for the views to use to interact with the model. In the design phase, we need to
decide if those five are all the methods we will really need. We need to consider just what
all information about a list of movies the views will require to be able to completely display
their views.

We will have at least three views: a list view, a view of the current movie, and an edit view.
First, note that the phrase "current movie" implies that there will be a single movie that is
the one to be displayed in the current movie view. This is a new attribute for MovieModel.
The current movie view needs access to the current Movie object, which will then be used
by the view to get all the values that it needs to display. The list view will require access to

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�6�.�h�t�m�l� �(�9� �o�f� �4�7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�2� }Ç

Chapter 6

the full list of movies, the ability to get or set which movie is the current movie, and to find
out if the list has changed. The edit view will require access to either a blank movie object,
or a copy of the current movie. It will then add a new movie, replace the current movie, or
delete the current movie.

The user will want to be able to open an existing movie list file or save the current movie
list to a file. MovieCat should only save the movie list if it has changed, so MovieModel
needs to track if it has changed. Since the MovieModel is part of the MVC design, it must
implement the notifyViews method. These responsibilities belong in the MovieModel
object.

Figure 6-5 is the UML for the MovieModel class that includes all the responsibilities we
just discussed. Note the FILE_ID attribute. This is a constant that will be used to identify
MovieCat files.

The private Vector theList is the list of the Movie objects, and represents the
implementation of the aggregation relationship between MovieModel and Movie.

Figure 6-5.
MovieModel UML

View Classes

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�6�.�h�t�m�l� �(�1�0� �o�f� �4�7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�2� }Ç

Chapter 6

In the analysis, we identified three candidate view classes: list, item, and edit. In the
Thermometer example in Chapter 5, we used another view we called the MainView to
implement the controllers for the menu and tool bar commands. We will also use a
MainView for MovieCat.

Before designing the view classes, it would be a good idea to know what the GUI should
look like. Good GUI design is somewhat of an art form, and a full treatment is beyond the
scope of this book, but we will briefly cover the MovieCat GUI design. One of the first
steps of any design is to simply use paper and pencil to sketch out a rough design.
Depending on what software tools you have available, you might then generate some trial
GUIs using a GUI designer tool. These rapid prototyping tools can quickly give you a good
idea of what might work for your application.

The MovieCat app has simple GUI requirements. The fact we are using the Wmvc
framework means we won't use any kind of GUI prototyping tool. The GUI for MovieCat
was initially designed by using pencil and paper, and then mapped directly to the
corresponding Swing components. Figure 6-6 shows the final version of the MovieCat GUI.
We will use it instead of the original pencil layouts to discuss the design of the MovieCat
view classes.

Figure 6-6.
MovieCat App

The screen shot of MovieCat show three views - the main view is the view/controller for the
menu and tool bars, and doesn't show any movie information. The JPanel provided by the
Wmvc framework is used to hold a JSplitPane. The list view is in the left pane, and the item
view is in the right pane. The user browses the movie list by using the scrolling functions of
the list view.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�6�.�h�t�m�l� �(�1�1� �o�f� �4�7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�2� }Ç

Chapter 6

What about the edit view? One choice would have been to use the item view for the editor
as well. One problem with this approach is that it is too easy for the user to accidentally
make changes. A better design is to have the editor as a separate popup dialog. The layout
of the dialog is similar to the item view, but uses editable components so the user can
change or create a movie entry. The editor dialog is invoked by the Edit button in the item
view, or by the Add Movie button on the tool bar. There are synonyms for these commands
in the Menu.

Figure 6-7 shows the MovieCat movie editor dialog.

Figure 6-7.
MovieCat Edit Dialog

Because we are using Wmvc and Swing, the design of the view classes is a matter of
selecting the appropriate Swing components to implement the required functionality that
has been specified. The MVC design architecture will dictate the logical structure of the
views. We won't show detailed UML diagrams of the view classes.

The Wmvc framework requires one more class, the main app class. We will call the class
MovieCat, and its main purpose is to create the model and the views. Its design is really
dictated by the Wmvc framework.

One of the advantages of using a framework, even a small one like Wmvc, is that it can
really simplify the design. Wmvc defines a specific framework based on MVC, and
provides some basic Swing building blocks. The basic Wmvc architecture makes the design
of the views, main app, and even the model much simpler than it might have been with a
design from scratch. Once we designed the MovieModel class, it was not difficult to design
the views.

Putting It All Together

We now have all the parts of MovieCat designed. Figure 6-8 has a UML class diagram for

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�6�.�h�t�m�l� �(�1�2� �o�f� �4�7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�2� }Ç

Chapter 6

the full MovieCat application, but without the Wmvc details. The UML shows how all the
parts fit and interact with each other.

Figure 6-8.
MovieCat UML for design

Implementation of MovieCat

Now that we have the design of MovieCat, we can write the code. The following listings1
show the complete implementation of the MovieCat application. Each listing is introduced
by a short description of the class.

MovieCat Class

We will start with the main MovieCat class. It isn't always easy to know what order to
examine source code in, but it is often good to start with the main application class.

MovieCat.java is the top level app class derived from WmvcApp. This class has the main
method that gets things rolling. It creates the parts of the app in the MovieCat constructor.

After creating the MovieModel object, the constructor creates the three views. Finally, it
creates a JSplitPane with two JScrollPanes to hold the MovieListView and MovieItemView
views. The JSplitPane is then added to the MainPane provided by Wmvc.

The last thing the MovieCat class does is to call showApp, which causes the GUI to be
displayed, and the Java event loop thread to start.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�6�.�h�t�m�l� �(�1�3� �o�f� �4�7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�2� }Ç

Chapter 6

Listing 6-1. MovieCat.java
MovieCat main app class

 /* MovieCat - A simple Movie Catalog Application
 * Copyright (c) 2001, Bruce E. Wampler
 */

 import java.awt.*;
 import javax.swing.*;

 public class MovieCat extends WmvcApp
 {
 private MainView mainView;
 private MovieListView listView;
 private MovieItemView itemView;

 public MovieCat(String name) // constructor
 {
 super(name, true, true); // Create with menu, toolbar

 // **** First, create the model
 setModel((WmvcModel) new MovieModel());

 // **** Next, create the view/controllers
 mainView = new MainView(); // won't use any panels
 listView = new MovieListView(); // list view for left
 itemView = new MovieItemView(); // item view for right

 // **** Create a split pane, add list and item views
 JScrollPane listPane =
 new JScrollPane(listView.getPanel());
 JScrollPane itemPane =
 new JScrollPane(itemView.getPanel());
 JSplitPane splitPane =
 new JSplitPane(JSplitPane.HORIZONTAL_SPLIT,
 listPane, itemPane);
 splitPane.setOneTouchExpandable(true); // details
 splitPane.setDividerLocation(200);
 Dimension minimumSize = new Dimension(100, 50);
 listPane.setMinimumSize(minimumSize);
 itemPane.setMinimumSize(minimumSize);

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�6�.�h�t�m�l� �(�1�4� �o�f� �4�7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�2� }Ç

Chapter 6

 WmvcApp.addMainPane(splitPane); // add splitter
 }

 public boolean appClosing()
 {
 return mainView.closingCurrentMovie(true);
 }

 public static void main(String[] args)
 {
 final MovieCat movieCat =
 new MovieCat("MovieCat Movie Catalog Application");

 WmvcApp.getContentPanel().setPreferredSize(
 new Dimension(640, 300)); // make bigger than default
 movieCat.showApp(); // pop it up
 }
 }

Movie Class

Since the Movie class is used by almost all the other classes, it is the next class we will
examine. The Movie class follows the design shown in the UML in Figure 6-3 on page 172.
Each attribute is implemented as a protected value, and setters and getters are provided for
each attribute. There is a clone method to support cloning.

The readMovie and writeMovie classes are the most interesting. Java provides a rich library
for doing I/O. One of the alternatives to consider when writing and reading objects to a file
is to use Java's Serializable feature, which allows you to read or write an entire object with a
single statement. This is very convenient and easy to use. A problem with Serializable
objects, however, is that the saved object represents the exact form of a given object. If you
change the class definition of the object in any way, such as adding a new attribute variable,
the serialized form also changes, and you will no longer be able to read previous versions of
the object.

Since it is likely that the definition of the Movie class will change, readMovie and
writeMovie use Java's DataInputStream and DataOutputStream. Each attribute is handled
separately. If the definition of Movie ever changes, it will be simple to write a program to
convert the format of an old saved movie data base to that of the latest version.

Listing 6-2. Movie.java
Movie class

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�6�.�h�t�m�l� �(�1�5� �o�f� �4�7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�2� }Ç

Chapter 6

 /* Movie - Defines and manipulates a Movie object for MovieCat
 * Copyright (c) 2001, Bruce E. Wampler
 */

 import java.io.*;

 public class Movie
 implements Cloneable
 {
 protected String title;
 protected String director;
 protected String year;
 protected int genre;
 protected int rating;
 protected int format;
 protected int evaluation;
 protected String label;
 protected String comments;

 public void setTitle(String name) { title = name; }
 public String getTitle() { return title; }
 public void setDirector(String dir) { director = dir; }
 public String getDirector() { return director; }
 public void setYear(String yr) { year = yr; }
 public String getYear() { return year; }
 public void setGenre(int g) { genre = g; }
 public int getGenre() { return genre; }
 public void setRating(int r) { rating = r; }
 public int getRating() { return rating; }
 public void setFormat(int f) { format = f; }
 public int getFormat() {return format;}
 public void setEvaluation(int e) { evaluation = e; }
 public int getEvaluation() { return evaluation; }
 public void setLabel(String l) { label = l; }
 public String getLabel() { return label; }
 public void setComments(String c) { comments = c; }
 public String getComments() { return comments; }

 public Movie()
 {
 title = new String(""); director = new String("");
 year = new String(""); genre = 0;
 rating = 0; format = 0;

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�6�.�h�t�m�l� �(�1�6� �o�f� �4�7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�2� }Ç

Chapter 6

 label = new String(""); evaluation = 0;
 comments = new String("");
 }

 // override Object.clone()
 public Object clone()
 {
 Movie c = null;
 try
 {
 c = (Movie)super.clone(); // copy ints
 c.title = new String(title); // String doesn't
 c.director = new String(director); // have clone so
 c.label = new String(label); // make copy of
 c.comments = new String(comments); // each String
 }
 catch (CloneNotSupportedException e)
 {
 System.out.println(
 "Should never happen: Movie clone failed.");
 }
 return c;
 }

 public boolean readMovie(DataInputStream in)
 throws IOException
 {
 try // read one MovieCat record
 {
 title = new String(in.readUTF());
 director = new String(in.readUTF());
 year = new String(in.readUTF());
 genre = in.readInt();
 rating = in.readInt();
 format = in.readInt();
 evaluation = in.readInt();
 label = new String(in.readUTF());
 comments = new String(in.readUTF());
 return true;
 }
 catch (EOFException e) // all records read
 {
 in.close();

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�6�.�h�t�m�l� �(�1�7� �o�f� �4�7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�2� }Ç

Chapter 6

 return false;
 }
 }

 public void writeMovie(DataOutputStream out)
 throws IOException
 {
 out.writeUTF(title);
 out.writeUTF(director);
 out.writeUTF(year);
 out.writeInt(genre);
 out.writeInt(rating);
 out.writeInt(format);
 out.writeInt(evaluation);
 out.writeUTF(label);
 out.writeUTF(comments);

 }
 }

MovieModel Class

The MovieModel class follows the UML design shown in Figure 6-5 on page 175 closely.
There are some details worth covering.

The attributes listChanged and editsMade serve slightly different purposes. The listChanged
is needed to interact with the MovieListView when the list of movies changes in any way.
The editsMade tracks if any changes have been made to any of the movies in the movie list,
and is used to determine if the movie list needs to be saved when the application closes.

The movie list aggregation is implemented using a Java Vector. A Vector is a standard
collection class provided by the Java library, and makes handling the list almost trivial. One
of the features of a Vector is the iterator2 it provides. The iterator is used twice in the
MovieModel class.

MovieModel provides the high level methods needed to read and write an entire movie list.
These methods, in turn, rely on the Movie methods readMovie and writeMovie.
MovieModel adds an ID tag to the beginning of the movie list file so that the format of the
file can be checked and identified.

Listing 6-3. MovieModel.java
The MovieModel class

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�6�.�h�t�m�l� �(�1�8� �o�f� �4�7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�2� }Ç

Chapter 6

 /* MovieModel - implements the movie model. Handles changes.
 * Copyright 2001, Bruce E. Wampler
 */

 import java.io.*;
 import java.util.*;
 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;

 public class MovieModel
 extends WmvcModel
 {
 private int currentMovieIndex;
 private Vector theList;
 private final int FILE_ID = 48879; // 0xBEEF

 // need two changed flags - one if a new entry has been
 // added that is true only until the views update, and a
 // global one that remains true if anything has changed
 // until the list is saved
 private boolean listChanged; // true until views updated
 private boolean editsMade; // true until saved
 private File myFile;

 public ListIterator getMovieListIterator()
 { return theList.listIterator();}
 public boolean getListChanged() { return listChanged; }
 public boolean getEditsMade() { return editsMade; }
 public int getCurrentMovieIndex()
 { return currentMovieIndex; }
 public int getNumberOfMovies() { return theList.size(); }
 public File getFile() { return myFile; }

 public MovieModel()
 {
 editsMade = false;
 listChanged = false;
 theList = new Vector();
 myFile = null;
 }

 public void setCurrentMovieIndex(int movieNumber)

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�6�.�h�t�m�l� �(�1�9� �o�f� �4�7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�2� }Ç

Chapter 6

 {
 if (theList == null || theList.size() == 0) // valid?
 return;
 // Validate number passed in, wrap appropriately
 if (movieNumber < 0)
 movieNumber = theList.size() - 1;
 if (movieNumber >= theList.size())
 movieNumber = 0;

 currentMovieIndex = movieNumber; // change the movie
 notifyViews(); // update
 }

 public void addMovie(Movie movie)
 {
 if (movie == null) // some validation
 return;
 editsMade = true; // we've made some changes
 listChanged = true;

 ListIterator it = getMovieListIterator();
 int nextI = 0;

 while (it.hasNext())
 {
 // Assume list is sorted, so as soon as we find the
 // first entry that is > than this one, we insert
 // it before that one.

 nextI = it.nextIndex(); // index of next entry
 Movie m = (Movie) it.next();
 String adding = movie.getTitle();
 String curName = m.getTitle();
 if (adding.compareToIgnoreCase(curName) <= 0)
 break; // curName > adding
 }

 if (!it.hasNext()) // add at end (also if 1st time)
 {
 theList.add(movie);
 // make it current movie
 setCurrentMovieIndex(theList.size() - 1);
 }
 else // add it before nextI

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�6�.�h�t�m�l� �(�2�0� �o�f� �4�7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�2� }Ç

Chapter 6

 {
 theList.add(nextI,movie);
 setCurrentMovieIndex(nextI);
 }
 }

 public void deleteCurrentMovie()
 {
 if (theList.size() <= 0)
 return;

 editsMade = true; // we've made some changes
 listChanged = true;

 theList.removeElementAt(currentMovieIndex);
 setCurrentMovieIndex(currentMovieIndex);
 }

 public void replaceCurrentMovie(Movie movie)
 {
 if (movie == null)
 return;

 theList.setElementAt(movie,currentMovieIndex);
 editsMade = true; // we've made some changes
 listChanged = true;
 notifyViews();
 }

 public boolean saveMovies()
 {
 return saveMoviesAs(myFile);
 }

 public boolean saveMoviesAs(File file)
 {
 if (file != null)
 {
 try
 {
 DataOutputStream out = new DataOutputStream(
 new BufferedOutputStream(
 new FileOutputStream(file)));
 out.writeInt(FILE_ID);

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�6�.�h�t�m�l� �(�2�1� �o�f� �4�7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�2� }Ç

Chapter 6

 ListIterator it = getMovieListIterator();
 while (it.hasNext())
 {
 Movie m = (Movie) it.next();
 m.writeMovie(out);
 }
 out.flush(); out.close();
 myFile = file; // remember name
 }
 catch (IOException e)
 {
 JOptionPane.showMessageDialog(
 WmvcApp.getFrame(),
 "Error opening file: " + e,
 "MovieCat Error",
 JOptionPane.ERROR_MESSAGE);
 return false;
 }
 }
 else
 return false;

 editsMade = false; // no edits now!
 return true;
 }

 public boolean openMovies(File file)
 {
 if (file != null)
 {
 myFile = file; // remember the name
 try
 {
 DataInputStream in = new DataInputStream(
 new BufferedInputStream(
 new FileInputStream(file)));
 // check if file was made by us
 if (in.readInt() != FILE_ID)
 {
 in.close();
 myFile = null;
 JOptionPane.showMessageDialog(
 WmvcApp.getFrame(),

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�6�.�h�t�m�l� �(�2�2� �o�f� �4�7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�2� }Ç

Chapter 6

 file.getName() +
 " is not a valid MovieCat file.",
 "MovieCat Error",
 JOptionPane.ERROR_MESSAGE);
 return false;
 }
 for (; ;) // do until catch EOF Exception
 {
 Movie m = new Movie();
 if (!m.readMovie(in))
 break;
 theList.add(m);
 }
 }
 catch (IOException e)
 {
 JOptionPane.showMessageDialog(
 WmvcApp.getFrame(),
 "Error reading file: " + e,
 "MovieCat Error",
 JOptionPane.ERROR_MESSAGE);
 myFile = null;
 return false;
 }

 editsMade = false; // no edits to start
 listChanged = true;
 notifyViews();
 return true;
 }
 else
 return false;
 }

 public boolean closeMovies()
 {
 // Just close - Views responsible to save before closing
 myFile = null; // reset to empty values
 theList.clear();
 editsMade = false; // no edits now!
 listChanged = true;
 notifyViews();
 return true;

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�6�.�h�t�m�l� �(�2�3� �o�f� �4�7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�2� }Ç

Chapter 6

 }

 public Movie getCurrentMovie()
 {
 if (currentMovieIndex < 0
 && currentMovieIndex >= theList.size())
 return null;
 else if (theList.size() == 0)
 return null;
 else
 return (Movie)theList.elementAt(currentMovieIndex);
 }

 public void notifyViews()
 {
 super.notifyViews();
 // updating views makes list correct
 listChanged = false;
 }
 }

MainView Class

The MainView class handles defining and implementing the commands on the main menu
and tool bars. Because we are using Wmvc, this process is greatly simplified.

To handle some of the commands, MainView uses dialog boxes. Some are standard Java
dialogs (e.g., JOptionPane, JFileChooser). It also uses the MovieEditor dialog class.

MainView does not display any part of the movie list. Because it only handles control
functions, it does not need to provide the update method used by the MVC design.

Listing 6-4. MainView.java
MainView handles menu and tool bars

 /* MainView - Top level view/controller for the MovieCat
 *
 * This is the main view/controller.
 * The main view/controller interacts with the model for
 * the global commands like open and save list in a file.
 * Copyright (c) 2001, Bruce E. Wampler
 */

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�6�.�h�t�m�l� �(�2�4� �o�f� �4�7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�2� }Ç

Chapter 6

 import java.io.*;
 import java.util.*;
 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;
 import javax.swing.filechooser.*;

 public class MainView extends WmvcView
 {
 private JFileChooser fc; // instance of a file chooser
 private MovieEditor theMovieEditor; // instance of editor
 private MovieModel myModel; // local copy of model reference

 public MainView()
 {
 myModel = (MovieModel) WmvcApp.getModel();
 myModel.addView(this);

 // Create file chooser dialog. We will tell it to open
 // in the "user.dir" directory, which will usually be
 // the "current directory" when the program was started.
 // This will let the user use the "Start In" setting
 // on Windows, for example.

 fc = new JFileChooser(// file chooser in current dir.
 new File(System.getProperty("user.dir")));

 createControls(); // Create controls - menus,toolbar

 theMovieEditor = MovieEditor.getInstance(); // editor
 theMovieEditor.initialize();
 }

 public boolean closingCurrentMovie(boolean ask)
 {
 // Check if current movie has changed, ask if want to
 // save. Returns true if saved or didn't want to save,
 // false if save fails or user cancels.
 if (myModel.getEditsMade())
 {
 if (ask) // interactive closing
 {
 switch (JOptionPane.showConfirmDialog(
 WmvcApp.getFrame(),

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�6�.�h�t�m�l� �(�2�5� �o�f� �4�7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�2� }Ç

Chapter 6

 "The movie list has changed since you "
 + "last saved it.\n"
 + "Save the current movie list?",
 "Movie List Has Changed",
 JOptionPane.YES_NO_CANCEL_OPTION))
 {
 case JOptionPane.NO_OPTION:
 return true; // don't save, but done
 case JOptionPane.CANCEL_OPTION:
 case JOptionPane.CLOSED_OPTION:
 return false;
 default:
 break; // YES
 }
 if (myModel.getFile() == null)
 {
 int retV =
 fc.showSaveDialog(WmvcApp.getFrame());
 if (retV == JFileChooser.APPROVE_OPTION)
 {
 File file = fc.getSelectedFile();
 if (!myModel.saveMoviesAs(file))
 return false;
 else
 {
 myModel.closeMovies();
 return true;
 }
 }
 else
 return false;
 }
 }
 myModel.saveMovies();
 myModel.closeMovies();
 }
 return true;
 }

 private void createControls()
 {
 // This is the Controller for this view. It creates the
 // menu & toolbar, and implements all the control code,

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�6�.�h�t�m�l� �(�2�6� �o�f� �4�7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�3� }Ç

Chapter 6

 // mostly in anonymous WmvcExecutor classes.

 // MenuBar: File
 JMenu fileMenu = new JMenu("File");

 // File->Open Movie List
 WmvcMenuItemCtl fileOpen = new WmvcMenuItemCtl(fileMenu,
 "Open Movie List","images/open-16.gif", 'O',
 null /* no accel */, new WmvcExecutor()
 {
 public void execute(ActionEvent event)
 {
 if (!closingCurrentMovie(true))
 return;

 int retV =
 fc.showOpenDialog(WmvcApp.getFrame());
 if (retV == JFileChooser.APPROVE_OPTION)
 {
 File file = fc.getSelectedFile();
 myModel.openMovies(file);
 }
 }
 });

 // File->Save Movie List
 WmvcMenuItemCtl fileSave = new WmvcMenuItemCtl(fileMenu,
 "Save Movie List","images/save-16.gif", 'S',
 null /* no accel */, new WmvcExecutor()
 {
 public void execute(ActionEvent event)
 {
 if (myModel.getFile() == null)
 {
 JOptionPane.showMessageDialog(
 WmvcApp.getFrame(),
 "No movie file name specified.\n"
 + "Use \"Save MovieList As\" instead.",
 "No file name specified",
 JOptionPane.ERROR_MESSAGE);
 }
 else
 myModel.saveMovies();

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�6�.�h�t�m�l� �(�2�7� �o�f� �4�7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�3� }Ç

Chapter 6

 }
 });

 // File->Save Movie List
 WmvcMenuItemCtl fileSaveAs = new WmvcMenuItemCtl(
 fileMenu,
 "Save Movie List As","images/gray.gif",
 'A', null /* no accel */, new WmvcExecutor()
 {
 public void execute(ActionEvent event)
 {
 int retV =
 fc.showSaveDialog(WmvcApp.getFrame());
 if (retV == JFileChooser.APPROVE_OPTION)
 {
 File file = fc.getSelectedFile();
 myModel.saveMoviesAs(file);
 }
 }
 });

 WmvcApp.addMenu(fileMenu); // Add to app menu

 // MenuBar: Edit
 JMenu editMenu = new JMenu("Edit");

 // Edit->Edit Current Movie
 WmvcMenuItemCtl editEdit = new WmvcMenuItemCtl(editMenu,
 "Edit Current Movie","images/gray.gif", 'E',
 null /* no accel */, new WmvcExecutor()
 {
 public void execute(ActionEvent event)
 {
 Movie edited = theMovieEditor.showDialog(
 WmvcApp.getFrame(),
 myModel.getCurrentMovie());
 myModel.replaceCurrentMovie(edited);
 }
 });

 // Edit->Add New Movie
 WmvcMenuItemCtl editNew = new WmvcMenuItemCtl(editMenu,
 "Add New Movie","images/addmovie-16.gif", 'A',

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�6�.�h�t�m�l� �(�2�8� �o�f� �4�7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�3� }Ç

Chapter 6

 null /* no accel */, new WmvcExecutor()
 {
 public void execute(ActionEvent event)
 {
 Movie blank = new Movie();
 Movie newMovie = theMovieEditor.showDialog(
 WmvcApp.getFrame(), blank);
 myModel.addMovie(newMovie);
 }
 });

 // Edit->Remove Current Movie
 WmvcMenuItemCtl editRemove = new WmvcMenuItemCtl(
 editMenu,
 "Remove Current Movie","images/delx.gif", 'R',
 null /* no accel */, new WmvcExecutor()
 {
 public void execute(ActionEvent event)
 {
 myModel.deleteCurrentMovie();
 }
 });

 WmvcApp.addMenu(editMenu); // Add to app menu

 // ToolBar: Open
 WmvcTBButtonCtl toolOpen = new WmvcTBButtonCtl(
 "Open","images/open-16.gif",
 "Open an Existing Movie List",
 fileOpen.getWmvcExecutor()); // reuse fileopen exec

 // ToolBar: Add
 WmvcTBButtonCtl toolAdd = new WmvcTBButtonCtl(
 "Add Movie", "images/addmovie-16.gif",
 "Add a new movie",
 editNew.getWmvcExecutor()); // reuse editNew exec
 }
 }

MovieListView Class

The MovieListView class implements the movie list browser shown in the left side of the
split pane. It uses a Java JList in a JPanel to do this. The JList is created in the constructor,
and handled by the valueChanged method of the ListSelectionListener implemented by the

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�6�.�h�t�m�l� �(�2�9� �o�f� �4�7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�3� }Ç

Chapter 6

class. When the user selects a different movie from the list, MovieListView will send a
message to the MovieModel to change the current movie, which then causes the MVC
notifyViews to be called to update all the views.

There is some code that uses the updating attribute. This was needed to avoid some
interaction between MVC update messages and list change messages coming from the JList
object.

Listing 6-5. MovieListView.java
MovieListView implements the movie list browser

 /*
 * MovieListView - the list View of the MovieCat model.
 * This view implements the view of the movie list
 * Copyright (c) 2001, Bruce E. Wampler
 */

 import java.util.*;
 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;
 import javax.swing.event.*;

 public class MovieListView
 extends WmvcView
 implements ListSelectionListener // for JList
 {
 // need updating to avoid interaction between update and
 // valueChanged listener
 private static boolean updating = false;
 private JPanel listPanel;
 private JList jlist;

 private MovieModel myModel;
 private DefaultListModel movieList;

 public JPanel getPanel() { return listPanel; }

 public MovieListView()
 {
 // Build list view which is simply a JList in a JPanel
 myModel = (MovieModel)WmvcApp.getModel();
 myModel.addView(this); // add view to model list

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�6�.�h�t�m�l� �(�3�0� �o�f� �4�7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�3� }Ç

Chapter 6

 movieList = new DefaultListModel(); // first allocation
 movieList.addElement("No Movie List Opened");

 listPanel = new JPanel();
 listPanel.setLayout(new BorderLayout());

 jlist = new JList(movieList);
 jlist.setSelectionMode(
 ListSelectionModel.SINGLE_SELECTION);
 jlist.setSelectedIndex(0);
 jlist.addListSelectionListener(this); // valueChanged

 listPanel.add(jlist,BorderLayout.CENTER);
 }

 public void updateView()
 {
 // Called when model changes
 updating = true;
 // if list changed, don't need to refresh here
 if (myModel.getListChanged())
 {
 movieList.ensureCapacity(
 myModel.getNumberOfMovies() + 8);
 movieList.clear();

 // See if just the selection changed
 // copy titles from movie list to view list
 ListIterator it = myModel.getMovieListIterator();
 while (it.hasNext())
 {
 Movie m = (Movie) it.next();
 movieList.addElement(m.getTitle());
 }
 }
 // Always update selected item
 // Note that by using the DefaultListModel, these will
 // trigger valueChanged, so we need the updating value
 jlist.setSelectedIndex(myModel.getCurrentMovieIndex());
 jlist.ensureIndexIsVisible(
 myModel.getCurrentMovieIndex());
 updating = false;
 }

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�6�.�h�t�m�l� �(�3�1� �o�f� �4�7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�3� }Ç

Chapter 6

 // Implement ListSelectionListener
 public void valueChanged(ListSelectionEvent e)
 {
 if (e.getValueIsAdjusting()) // Still adjusting?
 return;

 JList theList = (JList)e.getSource();
 if (! theList.isSelectionEmpty())
 {
 int index = theList.getSelectedIndex();
 // now set the model to use the selected movie name
 if (!updating)
 myModel.setCurrentMovieIndex(index);
 }
 }
 }

MovieItemView Class

While the MovieItemView class seems long, it is not complex. Most of its bulk comes from
the code needed to setup the Swing component layout. The view consists of JLabel,
JTextArea, and JButton components laid out in a GridBagLayout.

It turns out that the helper classes for the list-like Movie attributes are the most useful in
this MovieItemView class and the MovieEditor class. By providing the helper classes,
MovieItemView and MovieEditor can use the String values provided by the helper classes
rather than defining their own String arrays or using long switch statements to determine the
values of those attributes for display in the GUI.

MovieItemView also defines the protected setAndAdd method to help simplify defining the
various components added to the view panel.

Listing 6-6. MovieItemView.java
MovieItemView shows details of each Movie

 /*
 * MovieItemView - the item View for the MovieCat model.
 * This implements a view of a single item - the current movie.
 * Copyright (c) 2001, Bruce E. Wampler
 */

 import java.util.*;

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�6�.�h�t�m�l� �(�3�2� �o�f� �4�7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�3� }Ç

Chapter 6

 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;

 public class MovieItemView
 extends WmvcView
 implements ActionListener // for buttons
 {
 protected GridBagLayout gridbag;
 protected GridBagConstraints c;

 private JPanel itemPanel;
 private MovieModel myModel; // local copy

 // Various components needed for constructing the view
 // We use private statics of each of these since there will
 // be only one instance of the itemView

 private static JLabel lblTitle=new JLabel("Movie Title: ");
 private static JLabel fldTitle = new JLabel(" ");
 private static JLabel lblDirector=new JLabel("Director: ");
 private static JLabel fldDirector = new JLabel(" ");
 private static JLabel lblYear = new JLabel("Year: ");
 private static JLabel fldYear = new JLabel(" ");
 private static JLabel lblRating = new JLabel("Rating: ");
 private static JLabel fldRating = new JLabel(" ");
 private static JLabel lblGenre = new JLabel(" Genre: ");
 private static JLabel fldGenre = new JLabel(" ");
 private static JLabel lblFormat = new JLabel(" Format: ");
 private static JLabel fldFormat = new JLabel(" ");
 private static JLabel lblLabel = new JLabel(" Label: ");
 private static JLabel fldLabel = new JLabel(" ");
 private static JLabel lblEvaluation =
 new JLabel("My Rating: ");
 private static JLabel fldEvaluation = new JLabel(" ");
 private static JLabel lblComments=new JLabel("Comments: ");

 private static JTextArea textArea;
 private static JButton bPrevious;
 private static JButton bNext;
 private static JButton bEdit;

 public JPanel getPanel() { return itemPanel; }

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�6�.�h�t�m�l� �(�3�3� �o�f� �4�7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�3� }Ç

Chapter 6

 protected void setAndAdd(JComponent comp,
 int gx, int gy, int gheight, int gwidth, double wx)
 {
 // to simplify laying out the gridbag
 c.anchor = c.WEST;
 c.gridx = gx; c.gridy = gy;
 c.gridheight = gheight; c.gridwidth = gwidth;
 c.weightx = wx;
 gridbag.setConstraints(comp,c);
 itemPanel.add(comp);
 }

 public MovieItemView()
 {
 myModel = (MovieModel)WmvcApp.getModel();
 myModel.addView(this); // adds update

 // We will use a GridBag for simple layout of itemView

 itemPanel = new JPanel(); // surrounding Panel
 gridbag = new GridBagLayout();
 c = new GridBagConstraints();
 itemPanel.setLayout(gridbag);
 itemPanel.setBorder(BorderFactory.createEmptyBorder(
 5, 5, 5, 5));

 // Set data fields to black foreground
 fldTitle.setForeground(Color.black);
 fldDirector.setForeground(Color.black);
 fldYear.setForeground(Color.black);
 fldRating.setForeground(Color.black);
 fldGenre.setForeground(Color.black);
 fldFormat.setForeground(Color.black);
 fldLabel.setForeground(Color.black);
 fldEvaluation.setForeground(Color.black);

 // Movie Title: ________________________
 setAndAdd(lblTitle, 0, 0, 1, 1, 1.0);
 setAndAdd(fldTitle, 1, 0, 1, c.REMAINDER, 0.);

 // Director: _____________________
 setAndAdd(lblDirector, 0, 1, 1, 1, 1.0);
 setAndAdd(fldDirector, 1, 1, 1, c.REMAINDER, 0.0);

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�6�.�h�t�m�l� �(�3�4� �o�f� �4�7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�3� }Ç

Chapter 6

 // Year: _______ Genre: _________
 setAndAdd(lblYear, 0, 2, 1, 1, 1.0);
 setAndAdd(fldYear, 1, 2, 1, 1, 0.0);
 setAndAdd(lblGenre, 2, 2, 1, c.RELATIVE,0.0);
 setAndAdd(fldGenre, 3, 2, 1, c.REMAINDER,0.0);

 // Rating: _______ Format: __________
 setAndAdd(lblRating, 0, 3, 1, 1, 1.0);
 setAndAdd(fldRating, 1, 3, 1, 1, 0.0);
 setAndAdd(lblFormat, 2, 3, 1, c.RELATIVE, 0.0);
 setAndAdd(fldFormat, 3, 3, 1, c.REMAINDER, 0.);

 // My Rating: ______ Label: _________
 setAndAdd(lblEvaluation, 0, 4, 1, 1, 1.0);
 setAndAdd(fldEvaluation, 1, 4, 1, 1, 0.);
 setAndAdd(lblLabel, 2, 4, 1, c.RELATIVE, 0.0);
 setAndAdd(fldLabel, 3, 4, 1, c.REMAINDER, 0.);

 // Comment box:
 setAndAdd(lblComments, 0,5,1,1, 0.0);
 textArea = new JTextArea(4,30);
 JScrollPane textScroll = new JScrollPane(textArea);
 setAndAdd(textScroll, 1,5,4,c.REMAINDER, 0.0);

 // Command Buttons
 bEdit = new JButton(" Edit ");
 bEdit.setActionCommand("edit");
 bEdit.addActionListener(this);
 bEdit.setToolTipText("Edit current movie");
 setAndAdd(bEdit, 1,9,1,1, 0.0);

 bPrevious = new JButton("Previous");
 bPrevious.addActionListener(this);
 bPrevious.setActionCommand("previous");
 bPrevious.setIcon(new ImageIcon("images/left-16.gif"));
 bPrevious.setToolTipText("Go to previous movie");
 setAndAdd(bPrevious, 2,9,1,1, 0.0);

 bNext = new JButton("Next");
 bNext.setActionCommand("next");
 bNext.addActionListener(this);
 bNext.setIcon(new ImageIcon("images/right-16.gif"));
 bNext.setToolTipText("Go to next movie");
 setAndAdd(bNext, 3,9,1,1,0.0);

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�6�.�h�t�m�l� �(�3�5� �o�f� �4�7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�3� }Ç

Chapter 6

 }

 public void updateView()
 {
 // When model changes - update each fld componenet
 Movie m = myModel.getCurrentMovie();

 fldTitle.setText(m.getTitle());
 fldDirector.setText(m.getDirector());
 fldYear.setText(m.getYear());
 fldLabel.setText(m.getLabel());
 textArea.setText(m.getComments());

 fldRating.setText(MovieRating.stringAt(m.getRating()));
 fldGenre.setText(MovieGenre.stringAt(m.getGenre()));
 fldFormat.setText(MovieFormat.stringAt(m.getFormat()));
 fldEvaluation.setText(
 MovieEvaluation.stringAt(m.getEvaluation()));
 }

 // Implement ActionListener
 public void actionPerformed(ActionEvent e)
 {
 // Since only three buttons, easier to use one listener
 if (e.getActionCommand().equals("edit"))
 {
 Movie edited =
 MovieEditor.getInstance().showDialog(
 WmvcApp.getFrame(),
 myModel.getCurrentMovie());
 myModel.replaceCurrentMovie(edited);
 }
 else if (e.getActionCommand().equals("previous"))
 {
 myModel.setCurrentMovieIndex(
 myModel.getCurrentMovieIndex()-1);
 }
 else if (e.getActionCommand().equals("next"))
 {
 myModel.setCurrentMovieIndex(
 myModel.getCurrentMovieIndex()+1);
 }
 }

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�6�.�h�t�m�l� �(�3�6� �o�f� �4�7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�3� }Ç

Chapter 6

 }

MovieEditor Class

The MovieEditor class extends the Swing JDialog class to implement a modal dialog to edit
Movies. Much of its code is very similar to the MovieItemView since it follows the same
layout of Movie attributes. It uses JComboBox components to allow the user to select from
a list of attributes, and JTextField components to allow the String values to be edited.

There is no interaction between the MovieModel and the MovieEditor. MovieEditor dialogs
are created by the MainView and MovieItemView classes in response to user commands.
The edited Movie object from the MovieEditor is handled appropriately by those classes3.

Listing 6-7. MovieEditor.java
MovieEditor lets user edit a movie

 /* MovieEditor - edits a Movie object for MovieCat
 * Copyright (c) 2001, Bruce E. Wampler
 */

 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;

 public class MovieEditor
 extends JDialog
 implements ActionListener
 {
 // Implement MovieEditor with Singleton pattern
 private static MovieEditor theMovieEditor = null;
 private Movie editedMovie = null;

 protected GridBagLayout gridbag;
 protected GridBagConstraints c;

 private JPanel itemPanel;

 // Various components needed for constructing the view
 // We use private statics of each of these since there will
 // be only one instance of the editor

 private static JLabel lblTitle=new JLabel("Movie Title: ");
 private static JTextField fldTitle = new JTextField(30);

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�6�.�h�t�m�l� �(�3�7� �o�f� �4�7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�3� }Ç

Chapter 6

 private static JLabel lblDirector=new JLabel("Director: ");
 private static JTextField fldDirector = new JTextField(30);
 private static JLabel lblYear = new JLabel("Year: ");
 private static JTextField fldYear = new JTextField(6);
 private static JLabel lblRating = new JLabel("Rating: ");
 private static JComboBox fldRating;
 private static JLabel lblGenre = new JLabel(" Genre: ");
 private static JComboBox fldGenre;
 private static JLabel lblFormat = new JLabel(" Format: ");
 private static JComboBox fldFormat;
 private static JLabel lblLabel = new JLabel(" Label: ");
 private static JTextField fldLabel = new JTextField(8);
 private static JLabel lblEvaluation =
 new JLabel("My Rating: ");
 private static JComboBox fldEvaluation;
 private static JLabel lblComments=new JLabel("Comments: ");

 private static JTextArea textArea;
 private static JButton bPrevious;
 private static JButton bNext;
 private static JButton bUpdate;
 private static JButton bRevert;

 private Movie movie; // for a local copy

 protected void setAndAdd(JComponent comp,
 int gx, int gy, int gheight, int gwidth)
 {
 // to simplify laying out the gridbag
 c.anchor = c.WEST;
 c.gridx = gx; c.gridy = gy;
 c.gridheight = gheight; c.gridwidth = gwidth;
 gridbag.setConstraints(comp,c);
 itemPanel.add(comp);
 }

 static public MovieEditor getInstance()
 {
 if (theMovieEditor == null)
 {
 theMovieEditor = new MovieEditor();
 }
 return theMovieEditor;

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�6�.�h�t�m�l� �(�3�8� �o�f� �4�7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�3� }Ç

Chapter 6

 }

 public MovieEditor()
 {
 // call JDialog constructor
 super(WmvcApp.getFrame(), "Edit Movie", true);
 }

 public void initialize()
 {
 // We will use a GridBag for simple layout of itemView
 itemPanel = new JPanel(); // surrounding Panel

 gridbag = new GridBagLayout();
 c = new GridBagConstraints();
 itemPanel.setLayout(gridbag);

 itemPanel.setBorder(BorderFactory.createEmptyBorder(
 5, 5, 5, 5));

 // Movie Title: ________________________
 setAndAdd(lblTitle, 0, 0, 1, 1);
 setAndAdd(fldTitle, 1, 0, 1, c.REMAINDER);

 // Director: _____________________
 setAndAdd(lblDirector, 0, 1, 1, 1);
 setAndAdd(fldDirector, 1, 1, 1, c.REMAINDER);

 // Year: _______ Genre: _________
 setAndAdd(lblYear, 0, 2, 1, 1);
 setAndAdd(fldYear, 1, 2, 1, 1);
 setAndAdd(lblGenre, 2, 2, 1, c.RELATIVE);
 fldGenre = new JComboBox(MovieGenre.getNames());
 setAndAdd(fldGenre, 3, 2, 1, c.REMAINDER);

 // Rating: _______ Format: __________
 setAndAdd(lblRating, 0, 3, 1, 1);
 fldRating = new JComboBox(MovieRating.getNames());
 setAndAdd(fldRating, 1, 3, 1, 1);
 setAndAdd(lblFormat, 2, 3, 1, c.RELATIVE);
 fldFormat = new JComboBox(MovieFormat.getNames());
 setAndAdd(fldFormat, 3, 3, 1, c.REMAINDER);

 // My Rating: ______ Label: _________

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�6�.�h�t�m�l� �(�3�9� �o�f� �4�7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�3� }Ç

Chapter 6

 setAndAdd(lblEvaluation, 0, 4, 1, 1);
 fldEvaluation = new JComboBox(
 MovieEvaluation.getNames());
 setAndAdd(fldEvaluation, 1, 4, 1, 1);
 setAndAdd(lblLabel, 2, 4, 1, c.RELATIVE);
 setAndAdd(fldLabel, 3, 4, 1, c.REMAINDER);

 // Comment box:
 setAndAdd(lblComments, 0,5,1,1);
 textArea = new JTextArea(4,30);
 JScrollPane textScroll = new JScrollPane(textArea);
 setAndAdd(textScroll, 1,5,4,c.REMAINDER);

 // Command Buttons

 bRevert = new JButton(" Cancel ");
 bRevert.setActionCommand("revert");
 bRevert.addActionListener(this);
 setAndAdd(bRevert, 2,9,1,1);

 bUpdate = new JButton(" OK ");
 bUpdate.setActionCommand("update");
 bUpdate.addActionListener(this);
 setAndAdd(bUpdate, 3,9,1,1);

 Container contentPane = getContentPane();
 contentPane.add(itemPanel,BorderLayout.CENTER);
 pack();
 }

 public Movie showDialog(Component comp, Movie m)
 {
 if (theMovieEditor == null || m == null)
 return null;
 editedMovie = null;

 movie = (Movie)m.clone();// make a copy to work with

 // Set box to current fields
 fldTitle.setText(movie.getTitle());
 fldDirector.setText(movie.getDirector());
 fldYear.setText(movie.getYear());
 fldLabel.setText(movie.getLabel());
 fldRating.setSelectedIndex(movie.getRating());

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�6�.�h�t�m�l� �(�4�0� �o�f� �4�7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�3� }Ç

Chapter 6

 fldGenre.setSelectedIndex(movie.getGenre());
 fldFormat.setSelectedIndex(movie.getFormat());
 fldEvaluation.setSelectedIndex(movie.getEvaluation());
 textArea.setText(movie.getComments());

 setLocationRelativeTo(comp);
 setVisible(true);

 // will now wait here until actionPerformed
 // calls setVisible(false)

 return editedMovie;
 }

 // Implement ActionListener
 public void actionPerformed(ActionEvent e)
 {
 if (e.getActionCommand().equals("update"))
 {
 movie.setTitle(fldTitle.getText());
 movie.setDirector(fldDirector.getText());
 movie.setYear(fldYear.getText());
 movie.setLabel(fldLabel.getText());
 movie.setRating(fldRating.getSelectedIndex());
 movie.setGenre(fldGenre.getSelectedIndex());
 movie.setFormat(fldFormat.getSelectedIndex());
 movie.setEvaluation(
 fldEvaluation.getSelectedIndex());
 movie.setComments(textArea.getText());
 editedMovie = movie;
 setVisible(false);
 }
 else if (e.getActionCommand().equals("revert"))
 {
 editedMovie = null;
 setVisible(false);
 }
 }
 }

Movie Helper Classes

The helper classes are all nearly identical. Logically, the classes could have been derived
from a single superclass. However, to maximize the ease of using these helper classes

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�6�.�h�t�m�l� �(�4�1� �o�f� �4�7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�3� }Ç

Chapter 6

(specifically, making them completely static with no need of constructors), they were
implemented as individual classes.

Listing 6-8. MovieEvaluation.java
Helper class for evaluation attribute

 /* MovieEvaluation - very simple helper class
 * Copyright 2001, Bruce E. Wampler
 */
 public class MovieEvaluation
 {
 private static String[] values =
 {
 "*", "**", "***", "****", "*****"
 };

 public static int indexOf(String str)
 {
 for (int ix = 0 ; ix < values.length ; ++ix)
 if (values[ix].equals(str))
 return ix;
 return 0;
 }
 public static String stringAt(int at)
 {
 if (at < 0 || at >= values.length)
 return "-";
 return values[at];
 }
 public static String[] getNames()
 {
 return values;
 }
 }

Listing 6-9. MovieFormat.java
Helper class for format attribute

 /* MovieFormat - very simple helper class
 * Copyright 2001, Bruce E. Wampler
 */

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�6�.�h�t�m�l� �(�4�2� �o�f� �4�7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�3� }Ç

Chapter 6

 public class MovieFormat
 {
 private static String[] values =
 {
 "VHS", "DVD", "VCD", "SVCD", "Hi8", "DV", "Other"
 };

 public static int indexOf(String str)
 {
 for (int ix = 0 ; ix < values.length ; ++ix)
 if (values[ix].equals(str))
 return ix;
 return 0;
 }
 public static String stringAt(int at)
 {
 if (at < 0 || at >= values.length)
 return "Other";
 return values[at];
 }
 public static String[] getNames()
 {
 return values;
 }
 }

Listing 6-10. MovieGenre.java
Helper class for genre attribute

 /* MovieGenre - very simple helper class
 * Copyright 2001, Bruce E. Wampler
 */
 public class MovieGenre
 {
 private static String[] values =
 {
 "Drama", "Comedy", "Children", "Family", "Action",
 "Sci-Fi", "Documentary", "Other"
 };

 public static int indexOf(String str)
 {

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�6�.�h�t�m�l� �(�4�3� �o�f� �4�7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�3� }Ç

Chapter 6

 for (int ix = 0 ; ix < values.length ; ++ix)
 if (values[ix].equals(str))
 return ix;
 return 0;
 }
 public static String stringAt(int at)
 {
 if (at < 0 || at >= values.length)
 return "Other";
 return values[at];
 }
 public static String[] getNames()
 {
 return values;
 }
 }

Listing 6-11. MovieRating.java
Helper class for rating attribute

 /* MovieRating - very simple helper class
 * Copyright 2001, Bruce E. Wampler
 */
 public class MovieRating
 {
 private static String[] values =
 {
 "G", "PG", "PG-13", "R", "NC-17", "X", "NR", "Unknown"
 };

 public static int indexOf(String str)
 {
 for (int ix = 0 ; ix < values.length ; ++ix)
 if (values[ix].equals(str))
 return ix;
 return 0;
 }
 public static String stringAt(int at)
 {
 if (at < 0 || at >= values.length)
 return "Unknown";
 return values[at];

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�6�.�h�t�m�l� �(�4�4� �o�f� �4�7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�3� }Ç

Chapter 6

 }
 public static String[] getNames()
 {
 return values;
 }
 }

Review

At the end of the development of any software, one of the most important steps is to review
the project, and to apply lessons learned to the next round of development. The MovieCat
application is not a completely typical case. While it does have a useful purpose, it was
designed mostly as a good, short case study for this book, and it meets that goal. It lent
itself to a good, yet simple analysis. It had some non-trivial design issues. It provided a
good example for using MVC to build a real application. And it could be implemented with
a reasonable amount of code to include in a book.

There are still some aspects of MovieCat we can review. For one thing, the program is not
really complete. There are several features that could be added for the next release. In fact,
the MovieCat app presented in this chapter is not unlike a real world app; now that we have
an initial release version, we need to see what should be added for the second release.

What is missing from MovieCat? The following list gives just some features that might be
added.

1. More attributes, including actors, writers, awards, language, aspect ratio, and others.
2. Multiple categories for genre.
3. Printing.
4. Searching.
5. IMDb (Internet Movie DataBase, gives complete information about most existing
movies) connectivity.
6. Import/Export of movie list.
7. Movie images and clips.

How hard would these be to add? Evaluating how easy it would be to modify an existing
program is a good measure of how well designed it is. Let's examine a couple of items from
the list.

How about adding more attributes? Adding them to the Movie class should be simple. All
the attributes we've discussed would easily map to either a String or a new helper class.
There would be some problems associated with adding new Movie attributes.

First, we would have to provide a conversion program to convert from the original file

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�6�.�h�t�m�l� �(�4�5� �o�f� �4�7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�3� }Ç

Chapter 6

format to a new one. This might mean that we would want to revisit the whole issue of file
format. Perhaps we would be better off with a format that would not require conversion
from one version of MovieCat to the next.

Second, we would have to modify the code for both the MovieItemView and MovieEditor
classes to account for the new attributes. However, the Swing GridBagLayout we've used
lends itself to easily modifying component layout, and adding the new code would not be
much more difficult than writing the original. The fact that all the new attributes will be
isolated in the Movie class will make the process easier.

What about adding searching capability? This should be easy. There are two approaches we
could use. In either case, the user interface would be most easily added to the MainView
class. First, we could add a search method to the MovieModel class, and then use it from
the MainView interface. A second approach would be to use the iterator provided by the
MovieModel, and implement the search within MainView. Keeping the search within the
MovieModel would make the system less sensitive to future changes, but it would limit the
searches to whatever the MovieModel class provides. Building a search based on using the
iterator would allow the most flexibility on which fields could be used for the search, but
would be sensitive to changes. Either way will easily be added to the current MovieCat
code.

Some of the other changes, such as adding images or IMDb connectivity would require a
significant effort to understand what image formats are available, or how to connect and use
the IMDb. The effort to add either could equal or exceed the original effort, but would still
fit within the existing design.

The same seems true for the other features. The isolation of the model from the GUI, and
the use of MVC will make it easy to add features to MovieCat.

Chapter Summary

● This chapter uses the material from previous chapters to build a small application.
● A short specification for the MovieCat application was provided.
● The problem was analyzed, and we produced several candidate objects and some

analysis level UML class diagrams.
● The analysis was refined, and we designed several classes for the final implementation.

We produced detailed UML class diagrams for some of the classes.
● The design was implemented in Java and Swing.
● We evaluated the resulting design.

1

Note that some of these listing have a few awkward line breaks caused by the need to fit the page size of this book.
The full source code is also included on the book CD.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�6�.�h�t�m�l� �(�4�6� �o�f� �4�7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�3� }Ç

Chapter 6

2

The iterator is another design pattern used for accessing every item in a collection of objects.

3

Only one copy of the MovieEditor will exist. Thus, MovieEditor was implemented using the Singleton design
pattern.

med for Flyheart

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�6�.�h�t�m�l� �(�4�7� �o�f� �4�7�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�3� }Ç

Chapter 7

Chapter 7

Design Patterns

Design patterns have become an essential part of object-oriented
design and programming. They provide elegant and maintainable
solutions to commonly encountered programming problems. Before
the mid-1990's, design patterns were seldom mentioned. Now it is
difficult to find a current article or book about designing software that
doesn't mention design patterns, and an understanding of design
patterns has become a critical part of any object-oriented
programmer's toolbox.

One of the key events in the spread of design patterns was the
publication and popular acceptance of the book Design Patterns:
Elements of Reusable Object-Oriented Software by Erich Gamma,
Richard Helm, Ralph Johnson, and John Vlissides (often called the
Gang of Four or just GoF). Currently, design patterns are used mostly
for software architecture and design, but the concept of patterns is
moving to other areas of software development as well.

The goal of this chapter is to give you a good feeling for what design
patterns are, and why they can lead to better designed object-oriented
programs. You will need to read one of the design pattern books
listed in Resources on page 223 for more complete coverage of
design patterns.

What are Design Patterns?

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�7�.�h�t�m�l� �(�1� �o�f� �1�9�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�5� }Ç

Chapter 7

One big challenge in developing software is avoiding reinventing the
wheel. Using libraries and frameworks is one way to reuse useful
tools for many software systems. The tools provided by libraries and
frameworks solve common, but low-level problems.

Design patterns deal with solving common design problems at a
higher level. They do not provide code that can be used directly for a
specific problem, but rather a design solution to a software problem
that has been found to come up repeatedly over many software
projects. A design pattern provides a description of a design solution
that can be adapted and applied to a specific situation.

The Gang of Four (GoF) Design Patterns book describes twenty-
three patterns arranged into three groups. The groups help classify
how the patterns are used. Creational patterns are used to help make a
system independent of how the objects it uses are created. Structural
patterns are concerned with how classes and objects are organized
and composed to build larger structures. Behavioral patterns are used
to deal with assignment of responsibilities to objects and
communication between objects.

Using Design Patterns

The complexity of different design patterns ranges from simple to
hard. For example, the Iterator design pattern is so simple and basic
that it has become an essential feature of the standard Java object
collections library. Others, such as the Composite pattern, are
somewhat more complex, and require more experience to recognize
when they are useful.

Most of the patterns are not inherently difficult or complex. In fact,
good software designers have been using the solutions described by
the patterns for years, but without formally recognizing that they
really could be described as general design guidelines. One of the

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�7�.�h�t�m�l� �(�2� �o�f� �1�9�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�5� }Ç

Chapter 7

goals of developing design patterns has been to pass on the
experience and knowledge of pattern authors to other programmers to
help them produce better designs.

Using design patterns takes some experience. You must have at least
a basic understanding of all the patterns available, and then be able to
recognize when you have a design situation that can be helped by
using a pattern. Often, this will require nothing more than reading
through the patterns to see if any fit the case at hand. When a pattern
fits, it tends to ring a little bell of recognition. The longer you work
with patterns, the easier they become to use.

For the rest of this chapter, we will cover how design patterns are
described in the GoF book, go over each of the basic GoF patterns,
and finally show how a few patterns have been used in the Wmvc
framework and the MovieCat application.

Design Pattern Description Template

The GoF developed a description template that is used in their book
to define their patterns. The GoF template has also been adopted for
descriptions of patterns found in other sources. The following table
covers the sections included in the GoF pattern description template.
Each pattern in the GoF book is defined using this layout.

Section Description

Pattern Name and Classification
The name of the pattern, and its
classification (Creational,
Structural, or Behavioral).

Intent A short statement about what the
pattern does.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�7�.�h�t�m�l� �(�3� �o�f� �1�9�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�5� }Ç

Chapter 7

Also Known As Alternate well known names for
the pattern.

Motivation
An illustrative design problem that
shows how the pattern can solve
the problem.

Applicability Situations where the pattern can be
used.

Structure A graphical (UML) representation
showing the classes in the pattern.

Participants The classes that participate in the
pattern and their responsibilities.

Collaborations How the participants collaborate.

Consequences Benefits and trade-offs of using
the pattern.

Implementation
Hints, pitfalls, and techniques that
can be used to help implement the
pattern.

Sample Code Code illustrations of using the
pattern.

Known Uses Examples of the pattern used in
real systems.

Related Patterns Other patterns closely related to
the current one.

The Gang of Four Patterns

The Design Patterns book presents descriptions of twenty-three

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�7�.�h�t�m�l� �(�4� �o�f� �1�9�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�5� }Ç

Chapter 7

different patterns. Since it was first published, other software
designers have developed and defined new patterns. See Resources
on page 223 for a list of some other pattern resources. However, the
GoF Design Patterns remains the standard reference, and this section
presents a brief description of the GoF patterns. The last section
presents an example of how patterns can be used in the design of a
real software system, in this case, Wmvc and MovieCat.

Creational Patterns

Abstract Factory

An Abstract Factory is a class that is used to create instances of other
objects that are related to or depend on each other. An example of
this is creating GUI components for different GUI toolkits. The
Abstract Factory will let the application see a unified component,
while it creates the appropriate concrete object for a given look-and-
feel.

Builder

The Builder pattern is used by a Director class to construct different
complex objects based on a specific requirement. An example is
creating a text converter object that can convert text to different
formats depending on how the converter is built.

Factory Method

A Factory Method provides a common interface for creating
subclasses. The factory method is defined in the top level class
definition, but instantiation of the subclasses determine which
specific instance of the factory method is used.

Prototype

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�7�.�h�t�m�l� �(�5� �o�f� �1�9�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�5� }Ç

Chapter 7

The Prototype pattern can reduce the number of different classes used
by creating new object instances based on a copy or clone of an
original prototype instance. The copies can then be modified to carry
out their different responsibilities.

Singleton

Often there will be situations where there needs to be one and only
one instance of a class. Rather than relying on the programmer to
create only one instance of a class, the Singleton pattern will create
only one instance of a class, and makes that instance accessible by
other objects.

Structural Patterns

Adapter

The Adapter pattern is used to adapt an interface of one class so that
it can be used by a different class that originally could not use it. The
adapter is sometimes called a wrapper. For example, adapters or
wrappers are often written for existing libraries so that a new
application can use the library.

Bridge

A Bridge is used to decouple an abstraction from its implementation.
The Bridge pattern is often used to build drivers, such as a printer
driver, which connect an application program with a real printer. It is
possible to vary the abstraction and the implementation
independently.

Composite

The Composite pattern is used to compose whole-part hierarchies into
a tree structure that will let the client treat either the individually

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�7�.�h�t�m�l� �(�6� �o�f� �1�9�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�5� }Ç

Chapter 7

objects, or compositions of those objects uniformly. An example is a
graphical object, which can be made up of individual graphics (like a
line or a square), or other graphical objects (a picture in a picture).

Decorator

The goal of the Decorator pattern is to add more responsibilities to an
object dynamically, and avoid subclassing. An example is adding
scrolling to a text view. The scrolling object surrounds the text view,
handles the mechanics of the scroll bar, and then tells the text view to
display itself appropriately.

Facade

The Facade pattern provides a higher level unified interface to a set
of objects in a subsystem. The extra layer provides a simpler interface
to the subsystem, and helps to avoid coupling between classes.

Flyweight

The Flyweight pattern is used to efficiently use a large number of
small objects with sharing. An example is sharing representation of
individual characters in a document formatting program.

Proxy

The Proxy pattern is similar to the Adapter in that it provides an
interface layer between objects. While an Adapter will change the
interface, a Proxy doesn't change the interface, but instead will
control the access to one object from another.

Behavioral Patterns

Chain of Responsibility

The Chain of Responsibility pattern allows a sender to issue a request

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�7�.�h�t�m�l� �(�7� �o�f� �1�9�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�5� }Ç

Chapter 7

to a series or chain of objects and allowing each object a chance to
handle the request. The receiving objects pass the request along until
some object handles the request. An example is a context sensitive
help system that will pass a request for help along a chain until the
appropriate object can provide the help.

Command

The Command pattern provides a way to encapsulate a command
request as an object without the object that issues the command
needing to know what the response will be. An example is a GUI
menu system that will issue a command in response to a menu
selection. Any menu command can issue a request to a Command
object in a uniform way without having to know how the object will
handle the command.

Interpreter

The Interpreter pattern recognizes that sometimes it is better to
define a language with a grammar, and to provide an interpreter for
that language. An object that can recognize and respond to a regular
expression search pattern is an example that can use the Interpreter
pattern.

Iterator

The Iterator pattern is used to provide a means to access all the
elements of some collection of objects sequentially without exposing
the collection's internal representation. The Iterator is so common and
useful that Java provides iterators for its collection objects as a
standard feature.

Mediator

The Mediator pattern is used to define an object that knows how to

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�7�.�h�t�m�l� �(�8� �o�f� �1�9�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�5� }Ç

Chapter 7

use several other objects, and to provide a means for those objects to
refer to each other using the Mediator instead of directly. This
increases encapsulation and decreases coupling.

Memento

The Memento pattern is used to capture and save the current state of
an object without violating its encapsulation. For example, an editor
program would use the Memento pattern to save the state of whatever
was being edited so that it could be restored via an undo command.

Observer

The Observer pattern is used when any number of objects (the
Observers) need to be notified automatically whenever another object
(the Observable) changes its state.

State

The State pattern is used to allow an object to change its behavior
depending on how its internal state is changed. An example is a
network monitoring object that will change its behavior depending on
whether the network connection is open or closed.

Strategy

The Strategy pattern is used to define a family of interchangeable
algorithms. The client will be able to use the object that implements
the Strategy without necessarily knowing which strategy is used, or
how it differs from other strategies. An example might be a Strategy
that implements different sort algorithms, with each algorithm
appropriate for different kinds of data.

Template Method

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�7�.�h�t�m�l� �(�9� �o�f� �1�9�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�5� }Ç

Chapter 7

The Template Method is used to define an operation as a superclass
whose implementation will be deferred to subclasses. This lets the
subclasses redefine an operation without affecting how the method is
used.

Visitor

The Visitor pattern is used to perform an operation on some structure
of objects. The Visitor allows new operations to be defined without
changing any of the elements that are part of the structure. An
example would be visiting each leaf of a tree of objects to perform
some operation.

Example Design Patterns used by Wmvc and
MovieCat

Because design patterns can be so useful, it should be no surprise that
several design patterns can show up in even small applications. The
Wmvc framework and the MovieCat applications that we covered in
Chapter 5 and 6 use several patterns. We will discuss some of the
details of using the patterns in this section.

MVC

The GoF Design Patterns doesn't call Model/View/Controller a
design pattern. Instead, it uses MVC as a higher level design that can
be implemented using patterns. However, in other sources, MVC
itself is called a design pattern.

Since we've covered MVC is some detail already, we won't cover it
again here. However, we will look at how the Wmvc framework uses
two of the GoF design patterns for its implementation.

Observer Pattern

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�7�.�h�t�m�l� �(�1�0� �o�f� �1�9�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�5� }Ç

Chapter 7

The Observer pattern is an easy way to implement having the model
update all the views when it changes state. Wmvc uses the Observer
pattern for its implementation. To better understand Observer, we
will start with an excerpted version of the full pattern description
from Design Patterns. This fairly complete excerpt should help give
you a good idea of what a pattern description is like. [Comments
about text we've omitted from the full pattern description are shown
in square brackets like this.]

Pattern

Observer, an Object Behavioral pattern

Intent

Define a one-to-many dependency between objects so that when one
object changes state, all its dependents are notified and updated
automatically.

Also Known As

Dependents, Publish-Subscribe

Motivation

A common side effect of partitioning a system into a collection of
cooperating classes is the need to maintain consistency between
related objects. You don't want to achieve consistency by making the
classes tightly coupled, because that reduces their reusability.

[A description of a GUI toolkit.]

The Observer pattern describes how to establish these relationships.
The key objects in this pattern are subject and observer. A subject
may have any number of dependent observers. All observers are

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�7�.�h�t�m�l� �(�1�1� �o�f� �1�9�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�5� }Ç

Chapter 7

notified whenever the subject undergoes a change in state. In
response, each observer will query the subject to synchronize its state
with the subject's state.

Applicability

Use the Observer pattern in any of the following situations:

● When an abstraction has two aspects, one dependent on the
other. Encapsulating these aspects in separate objects lets you
vary and reuse them independently.

● When a change to one object requires changing others, and you
don't know how many objects need to be changed.

● When an object should be able to notify other objects without
making assumptions about what these objects are. In other
words, you don't want these objects tightly coupled.

Structure

Participants

● Subject

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�7�.�h�t�m�l� �(�1�2� �o�f� �1�9�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�5� }Ç

Chapter 7

knows its observers. Any number of Observer objects may observe a
subject.
provides an interface for attaching and detaching Observer objects.

● Observer

defines an updating interface for objects that should be notified of
changes in a subject.

● ConcreteSubject

stores state of interest to ConcreteObserver objects.
sends a notification to its observers when its state changes.

● ConcreteObserver

maintains a reference to a ConcreteSubject object.
stores state that should stay consistent with the subject's.
implements the Observer updating interface to keep its state consistent
with subject's.

Collaborations

ConcreteSubject notifies its observers whenever a change occurs that
could make it observers' state inconsistent with its own.

After being informed of a change in the concrete subject, a
ConcreteObserver object may query the subject for information.
ConcreteObserver uses this information to reconcile its state with that
of the subject.

[Sequence diagram shown in original.]

Consequences

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�7�.�h�t�m�l� �(�1�3� �o�f� �1�9�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�5� }Ç

Chapter 7

The Observer pattern lets you vary subjects and observers
independently. You can reuse subjects without reusing their
observers, and vice versa. It lets you add observers without
modifying the subject or other observers.

[A discussion of further benefits and liabilities of the Observer
pattern.]

Implementation

[A discussion of issues related to the implementation of the pattern.
Since Observer is already provided by the Java library, the
implementation details are not relevant.]

Sample Code

[An example of implementing the Observer pattern.]

Known Uses

The first and perhaps best-known example of the Observer pattern
appears in Smalltalk Model/View/Controller (MVC), the user
interface in the Smalltalk environment. MVC's Model class plays the
role of Subject, while View is the base class for observers. [more
examples given.]

Related Patterns

[Two patterns related to the example are given.]

Observer Pattern in Wmvc

We know that from reading Design Patterns that Observer is useful
for MVC. How is Observer really used by Wmvc?

It turns out that Wmvc can simply use the Observer supplied by the

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�7�.�h�t�m�l� �(�1�4� �o�f� �1�9�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�5� }Ç

Chapter 7

Java library, and won't have to implement it. The descriptions in
Design Patterns include a discussion for implementation of a pattern,
but in this case, that's already done. We just need to figure out how to
use Observer to implement MVC.

First, let's look at the specifics of the Java Observer implementation.
It defines a class called Observable that corresponds directly to the
Subject class in the pattern description. It also provides the Observer
interface, which corresponds to the Observer class in the pattern. This
makes sense. Since an Observer only needs one method, update, an
interface works well for this, and it allows the different observers to
be derived from other classes. The Observable (Subject) needs to
provide several services to implement the pattern. The Java
Observable class has named the Subject attach method addObserver,
and the Subject detach method deleteObserver. The Subject notify is
named notifyObservers. There are some other methods provided to
make using Observable easier. Figure 7-1 shows the relevant details
in UML.

Figure 7-1.
Java Observer

Now we are ready to see how Wmvc uses Observable. In MVC, what
is the Subject, or Observable? It is the Model. So, we will extend
Observable in WmvcModel. And the observers are the Views, so we
will implement Observer in WmvcView. To stay consistent with the
MVC model, we will provide the functionality of the xObservable

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�7�.�h�t�m�l� �(�1�5� �o�f� �1�9�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�5� }Ç

Chapter 7

methods renamed as xView methods instead (e.g., addView instead
of addObserver). While it can be good to use the names described in
a pattern, it will sometimes make more sense to rename them to fit
the actual problem. Finally, the ConcreteSubject and
ConcreteObservers will be new classes derived from WmvcModel
and WmvcView. Figure 7-2 shows how everything fits together.

Figure 7-2.
Wmvc implementation using Observer pattern

Command Pattern in Wmvc

One of the goals of the Wmvc Framework is to provide an easy to use
interface to menu bar and tool bar commands. Even though the
details of implementing a menu item, a tool bar button, or other Java
Swing components are different, Wmvc provides a uniform interface
to each component. This uniform interface is provided using the
Command design pattern. Figure 7-3 shows the structure of the

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�7�.�h�t�m�l� �(�1�6� �o�f� �1�9�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�5� }Ç

Chapter 7

Command pattern as given in Design Patterns.

Figure 7-3.
Command Design Pattern Structure

As we noted earlier, the Command pattern provides a way to
encapsulate a command request as an object without the object that
issues the command needing to know what the response will be. In
the case of Wmvc, it is the Swing library that issues a command after
user input, and it is a Wmvc application that encapsulates the
command response.

Within Wmvc, the class WmvcExecutor implements the Command
class of the pattern. Wmvc uses the name Executor rather than
Command because it makes more sense within the framework.
Design patterns are outlines of solutions to problems that can be
adapted and applied to specific problems. In this case, we adapted the
name.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�7�.�h�t�m�l� �(�1�7� �o�f� �1�9�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�5� }Ç

Chapter 7

Within the WmvcExecutor class is the execute() method which is
invoked by the Swing system in response to user input. This is the
behavior encapsulated by the Command pattern. Each command
object (Swing component) invokes the execute() method, and is
protected from knowing what happens then.

Other Patterns used in Wmvc and MovieCat

The MovieEditor is implemented as a Singleton pattern. The
singleton pattern makes sure there will be only one MovieEditor
object created. We want only one editor active at a time.

The MovieModel class uses the Iterator pattern to provide access to
all the movies. This access is used by MovieListView to get the
movies for the list. The Iterator is also used within MovieModel itself
to find the correct place to add a new movie object.

Chapter Summary

● Design Patterns have become an important part of designing
object-oriented software.

● The primary reference is the Gang of Four Design Patterns book.
● Patterns are defined using a description template.
● There are twenty-three basic patterns arranged into three

classification groups.
● Wmvc and MovieCat use several patterns, including Observer,

Command, Singleton, and Iterator.

Resources

Java Design Patterns: A Tutorial, James W. Cooper; Addison-
Wesley, 2000, ISBN 0-201-48539-7.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�7�.�h�t�m�l� �(�1�8� �o�f� �1�9�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�5� }Ç

Chapter 7

Pattern Hatching: Design Patterns Applied, John Vlissides, Addison-
Wesley, 1998, ISBN 0-201-43293-5.

Patterns in Java, A Catalog of Reusable Design Patterns Illustrated
with UML, Volume 1, Mark Grand, Wiley, 1998, ISBN 0471258393.

Patterns Home Page - hillside.net/patterns/patterns.html.

med for Flyheart

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�7�.�h�t�m�l� �(�1�9� �o�f� �1�9�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�5� }Ç

Chapter 8

Chapter 8

Refactoring

Up to this point, we've focused on using object orientation to design
and develop new programs. Understanding objects, and using object-
oriented techniques is one of the best ways to develop programs that
are easy to understand, easy to write, and perhaps most importantly,
easy to modify and maintain.

The fact is, most programming involves maintaining and modifying
existing code. If the existing code is not written in an object-oriented
language, then using object orientation probably won't help much
with changing that code. If the existing code is written in an object-
oriented language, then there is hope. Unfortunately, as we've noted
before, just because a program uses Java or C++ doesn't mean it uses
OO techniques. And even if the program started out with a decent OO
design, if it has been maintained and modified over time, it is likely
that it has lost some of its initial elegance.

So, what are you going to do? One of the most recent object-oriented
techniques to be formalized and developed into an essential
programming tool is called Refactoring. While programmers have
always spent at least some time cleaning up their code, refactoring
takes this a bit farther. Refactoring is a specific, disciplined approach
to improving the design of existing code. With refactoring, the
overall design and structure of an existing program is improved,
while its observable functionality remains unchanged. Once its design

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�8�.�h�t�m�l� �(�1� �o�f� �1�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�6� }Ç

Chapter 8

has been improved, it will be easier to maintain.

Software maintenance usually has one of two goals. The first is to fix
bugs, and the second is to add features. While the goal of refactoring
is neither of these, it can greatly improve how easy it is to do either.
At first it may seem a waste to refactor code without adding any new
functionality, but trying to modify a poorly constructed program can
take far more time and effort than first refactoring, and then
modifying. Refactoring can reveal flaws in the structure of the
existing code that are the underlying causes of bugs or incorrect
behavior.

Ward Cunningham and Kent Beck were two of the first software
experts to recognize the importance of refactoring, and to help
develop it into a formal technique. The principle refactoring resource
is Refactoring, Improving the Design of Existing Code by Martin
Fowler. While refactoring can be useful for almost any kind of object-
oriented programming, it is an essential part of the eXtreme
Programming (XP) methodology (see Chapter 9).

What is Refactoring?

Refactoring should be considered a basic principle of programming,
and does not require any special methodology. Refactoring can
improve the design of existing code. Over time, as code is changed, it
tends to deteriorate. Changes are often made on the fly, under time
pressures, without regard for the overall structure of the code. This
can lead to code entropy. Refactoring can help undo code entropy.

The Basic Refactoring Process

While the basic refactoring process is not that complicated,
experience with programming helps (especially object-oriented
programming). The main goal of refactoring is to improve the overall

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�8�.�h�t�m�l� �(�2� �o�f� �1�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�6� }Ç

Chapter 8

design and structure of an existing program without changing its
observable behavior. This means that you don't refactor and add
functionality at the same time. Once the refactoring has been done, it
will be easier to add functionality.

The first step of refactoring is to start to understand the existing code,
usually by reading the code. As part of this process, you will almost
certainly find problems with the code that can be improved.
Refactoring isn't just about finding problems and making small
improvements to code. It is a well-defined and structured technique
for improving the code. Each individual refactoring may make only a
small difference, but the cumulative effect of applying many
refactorings can result in greatly improved overall quality,
readability, and design of the code.

Refactorings

The developers of refactoring have identified a list and descriptions
of known refactorings that can help improve code. Many of these
refactorings are listed and described in Martin Fowler's Refactoring
book, and more can be found on the refactoring web site at
www.refactoring.com. As you become experienced with refactoring,
the many specific refactorings will become familiar, and you will
start to recognize cases in code that can benefit from refactoring.

Reduce Risk of Change

Any time you change code, it is risky. You can introduce new bugs.
You can change the behavior of the program. You can break things.
By using disciplined refactoring, you can reduce the risk of making
changes. This is one of the major differences between a simple code
clean up and the formal refactoring process. By carefully following
the refactoring process, you reduce the risk of making changes to
code, while at the same time improving its design and making it

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�8�.�h�t�m�l� �(�3� �o�f� �1�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�6� }Ç

Chapter 8

easier to change in the future.

Don't Change Functionality

One of the first rules of refactoring is that you do not change
functionality of the existing code. By functionality in this context, we
mean the outside observed behavior of the code. The program should
behave exactly the same before and after the refactoring. If the
behavior changes, then it will be impossible to know for sure that the
refactoring hasn't broken other things as well. If you need to change
the behavior, do that as a separate step. Improve the code with
refactoring, then make the change.

One Thing at a Time

In order to be sure that you don't change behavior, it is important to
apply only one refactoring at a time. While you are going over the
code, you will often find several things that can benefit from
refactoring. But to reduce the risk of making changes, refactoring
requires that you make only one change at a time.

Test Each Step

Perhaps the single most important principle of refactoring is to
thoroughly test the program after each refactoring. This is the one
way you have to reduce the risk of change is by ensuring that you
haven't changed functionality, or broken other parts of the program.
Besides the identification of a large set of known refactorings, the
combination of not changing functionality, making only one change
at a time, and testing after each step is one most important
contributions of refactoring.

Summary

The following list summarizes the refactoring process:

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�8�.�h�t�m�l� �(�4� �o�f� �1�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�6� }Ç

Chapter 8

1. Review code to identify refactorings.
2. Apply only one refactoring at a time without changing
functionality.
3. Test the refactoring.
4. Repeat to find more refactorings.

When Do You Refactor?

To use refactoring effectively, it is important to know just when to
refactor. You don't always need to refactor working code. There are
some guidelines for deciding when to refactor.

First, when you are going to add some functionality to a program,
you should be prepared to refactor. As we've noted before, one
important benefit of object-oriented program design is that the code is
easier to maintain and modify. So, when it comes time to add new
functionality to a program, it is important that code be as well-
designed as it can be. And this is precisely the goal of refactoring.
Refactoring should be applied to the code until its design has
improved enough to make it easy to modify. Then, after the
refactoring, new functionality will be much easier to add.

Refactoring is also useful when you need to find bugs. Part of finding
a bug means understanding a program. The fact that a program has
bugs often means that the code isn't clear enough to spot them in the
first place. Refactoring while you are going over code to hunt for
bugs will improve the quality of the code and even reduce the number
of bugs.

One important part of almost every project is the code review. For
code reviews with just two or three programmers (probably the most
productive kind), refactorings can be suggested and applied as the
group goes over the code and gets better understanding of its design.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�8�.�h�t�m�l� �(�5� �o�f� �1�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�6� }Ç

Chapter 8

In fact, the pair programming of eXtreme Programming can be
considered pair code reviews, and refactoring is an important part of
XP.

Code Smells

Kent Beck and Martin Fowler have also developed a list of what they
call "code smells" to help to determine when to refactor. These are
things to look for in existing code that indicate that refactoring is in
order. Here's a brief list of some of the smells they've identified:

● Duplicate Code - duplicate code means you need to extract some
methods.

● Long Method - too long is hard to understand, extract methods.
● Large Class - a class that does too much needs to be split.
● Long Parameter List - makes it hard to read, consider passing

objects.
● Divergent Change - code degradation as a result of too many

chaotic changes to a class.
● Shotgun Surgery - too many undisciplined changes to classes and

attributes.
● Feature Envy - one class is interested in too many details of

another class.
● Data Clumps - data that is used together everywhere should be in

a class of its own.
● Primitive Obsession - a program can use too many primitive data

types that should really be part of a class.
● Switch Statements - switch statements can mean you are not

using polymorphism effectively.
● Parallel Inheritance Hierarchies - repeating class definitions in

parallel classes is more duplication to eliminate.
● Lazy Class - a class should do enough to pay its own way or be

eliminated.
● Speculative Generality - designing for future flexibility before it

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�8�.�h�t�m�l� �(�6� �o�f� �1�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�6� }Ç

Chapter 8

is needed can increase complexity unnecessarily.
● Message Chain - too many messages in a chain are hard to

follow.
● Middle Man - sometimes it is better to work with an object

directly.
● Inappropriate Intimacy - classes shouldn't need to know too

much about each other.
● Incomplete Library Class - sometimes you can't get it all and

need to do some of yourself.
● Data Class - classes need something to do.
● Refused Bequest - subclasses should use most of what their

parents give them.
● Comments - could a comment be eliminated by providing a

better name for a method or variable?

When not to refactor

Knowing when not to refactor is also important. One of the main
reasons not to refactor is when the code is so bad that it needs to be
rewritten from scratch. Eventually, code can become so outdated, so
difficult to understand, or so buggy, that it would be more cost
effective to start over than try to fix it or add new features to it.

This decision can also apply to code that is written in a non-object-
oriented language. Most refactorings apply to object-oriented
languages. Obviously, these refactorings will have limited use for non-
OO languages. It may be time to rewrite the program using an OO
language.

Some Refactorings

The identification of specific refactorings gives you a catalog of
things to look for in existing code. Each refactoring has been given a
name, much like the design patterns we discussed in Chapter 7. There

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�8�.�h�t�m�l� �(�7� �o�f� �1�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�6� }Ç

Chapter 8

are many more refactorings than there are design patterns, and most
refactorings are much simpler and easier to understand.

In this section, we will go over a few refactorings to give you the
flavor of just what they are. It is not the goal here to make you into a
master of refactoring, but to give you an idea of some of the specifics.
Just as design patterns belong in every good programmer's toolbox,
refactoring has its place there, too.

Refactoring Categories

Over 70 specific refactorings have been identified in the Refactoring
book, and many more are identified on the refactoring web site, with
more being added all the time. The refactorings have been organized
into the following categories. Specific individual refactorings are
show in italics. This summary only mentions a small fraction of the
total number of refactorings.

Composing Methods

One common problem comes from code with methods that are too
long. The Composing Methods group of refactorings are intended to
help reduce the size of methods, and help to improve the readability
of the code by replacing sequences of code with calls to methods that
are built from the original code. Refactorings in this category include
Extract Method, Inline Method, and Replace Temp with Query.

Moving Features Between Objects

During object design, one important decision is where to place
various responsibilities. Sometimes, a given responsibility will be
placed in the wrong class. Some classes will end up with too many
responsibilities. Such refactorings as Move Method, Move Field, and
Extract Class can be used to help put responsibilities where they
belong.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�8�.�h�t�m�l� �(�8� �o�f� �1�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�6� }Ç

Chapter 8

Organizing Data

Sometime objects can be used instead of simple data items.
Refactorings such as Replace Data Value with Object or Replace
Array with Object can be used to make working with a class easier.
They can also make it clearer what the data item is being used for,
and easier to work with.

Simplifying Conditional Expressions

Conditional expressions can be some of the most complicated and
confusing parts of any program to understand. Such refactorings as
Decompose Conditional or Consolidate Duplicate Conditional
Fragments can be used to simplify code.

Making Method Calls Simpler

Defining the interface to a class can be difficult. Just what the
methods are named, and how they are called can lead to confusion or
simplicity. Refactorings such as Rename Method, Add Parameter,
and others from this category can help improve the interface to a
class.

Dealing with Generalization

One of the guidelines we discussed for good object design was to
move methods as high up the inheritance hierarchy as possible.
Getting methods and subclasses in just the right place is the goal of
this category of refactorings. Some of them include Pull Up Method,
Push Down Method, Extract Subclass, and Extract Superclass. All
are meant to help refine the inheritance hierarchy.

Some Specific Refactorings

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�8�.�h�t�m�l� �(�9� �o�f� �1�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�6� }Ç

Chapter 8

In Refactoring, each of the individual refactoring descriptions
includes the name of the refactoring, a short description of the
problem, a short description of the solution, followed by a more
detailed discussion of the motivation for using the refactoring, and a
discussion of the mechanics for carrying out the refactoring.

Currently, refactoring is a mostly manual operation. It is up to the
programmer to identify specific refactorings, and then actually
rewrite the code. As this book is being written, a few refactoring
software tools are beginning to appear that can help with some of the
mechanical aspects of the different refactorings. The refactoring web
site, www.refactoring.com, keeps information about the latest
refactoring tools.

The following descriptions of some specific refactorings are neither
complete, nor intended to imply that these are the most important
refactorings. They were chosen simply to illustrate some typical
refactorings from each category.

Extract Method

Extract Method is used when you have a code fragment that can be
grouped together. That code is extracted and turned into a method
whose name will clearly explain the purpose of the method. Short,
well-named methods can make code clearer. A well-named method
can eliminate the need for a comment. Sometimes you will even find
duplicated code that belongs in a method.

Replace Temp with Query

Replace Temp with Query is used when you find a temporary
variable being used to hold the results of an expression. By extracting
the expression into a method, and then replacing all references to the
temp with the method call, the meaning can be clearer, and you will
be able to reuse the method in other places.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�8�.�h�t�m�l� �(�1�0� �o�f� �1�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�6� }Ç

Chapter 8

Move Method

If you find that a method is being used more often by another class
than the one where it is defined, Move Method can be used to move
the method to the other class. You remove the original definition, and
invoke the new method from the original class.

Extract Class

If you find that you have one class that is doing work that should
really be done by two, use Extract Class. You will create a new class
and move the relevant methods and attributes from the old class into
the new one.

Decompose Conditional

One way to improve complicated conditional statements is to extract
the code that makes up the then and else parts into methods with
meaningful names. This will reduce the complexity, make the
statements more meaningful to read, and often result in methods that
can be reused.

Rename Method

Rename Method is one of the simplest refactorings, yet is can lead to
code that is much easier to understand. If the name of a method (or
even a variable) does not indicates its purpose, then it should be
renamed so that it is meaningful.

Pull Up Method

If you find methods in different subclasses that have identical results,
then you can use Pull Up Method to move them to the superclass.
Eliminating this duplicate behavior will make the code easier to

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�8�.�h�t�m�l� �(�1�1� �o�f� �1�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�6� }Ç

Chapter 8

maintain and understand.

Extract Subclass

If a class has methods that are used by only some of the instances of
that class, it indicates that those instances should have their own
subclass. Extract Subclass is used to extract those features into a new
subclass.

Chapter Summary

● Refactoring is a programming tool that can improve the design of
existing code.

● A major goal of refactoring is to reduce the risk of change by
providing a well-defined approach to improving code.

● Several things indicate you need to refactor, including "code
smells."

● There are have been many specific refactorings discovered in
several categories.

Resources

Refactoring, Improving the Design of Existing Code, Martin Fowler,
Addison-Wesley, 1999, ISBN 0-201-48567-2.

Refactoring web site: www.refactoring.com.

med for Flyheart

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�8�.�h�t�m�l� �(�1�2� �o�f� �1�2�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�6� }Ç

Chapter 9

Chapter 9

Software Development
Methodologies
While object-oriented programming languages have been available for a
long time, it was only in the late 1980's and early 1990's object-oriented
software development started to emerge as a mature technology. Before
this time, structured development techniques and methodologies
dominated.

In the early 1990's, there were several competing object-oriented
analysis and design methodologies to choose from. Most of these
methodologies had one thing in common: they were designed for large-
scale software projects. In addition, each of the methodologies had their
own set of principles, and their own graphical design notation.

One of the earliest methodologies was known as Coad-Yourdon Object-
Oriented Systems Design. Coad-Yourdon's design notation was among
the easiest to learn and use of any of the methodologies. While some of
its features resembled older structured methodologies in the approach to
the software lifecycle, it had many outstanding concepts for object
design, including its approach to object discovery and evaluation. Many
of the principles discussed in Chapter 4 are derived from Coad-
Yourdon.

Another major methodology from the early 1990's was the Booch
Method, designed by Grady Booch. It, too, had many sound object-
oriented design concepts, as well as its own design notation (often
called Booch Clouds). Today, Booch's book, Object-Oriented Analysis
and Design, remains a classic OO reference.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�9�.�h�t�m�l� �(�1� �o�f� �2�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�9� }Ç

Chapter 9

Two other methodologies are worth mentioning. James Rumbaugh
developed a methodology called the Object Modelling Technique, or
OMT, which has heavily influenced the design of the UML. Ivar
Jacobson developed the Objectory methodology, which was based
largely on the Use Case.

In the mid-1990's, James Rumbaugh and Ivar Jacobson joined Grady
Booch (together often known as The Three Amigos) at Rational
Software to unify their methodologies. One of the first results of this
collaboration was the UML, followed by the Rational Unified Process
(or RUP as it is commonly called). RUP is discussed in the next section.

RUP has emerged as the most dominate object-oriented design
methodology used today. Unfortunately, probably more projects don't
use any kind of methodology. One reason for this may be that RUP is
best suited for large projects with good management teams in place.
Another is that until recently, there has not been much in the way of
alternate development methodologies.

Fortunately, this is changing. Several new methodologies more suited to
small scale projects have emerged. Just as there were many competing
heavyweight OO development methodologies in the early 1990's, the
turn of the millennium has seen the rise of several competing
lightweight methodologies.

In the next section, we will briefly discuss the Rational Unified Process.
Following that, we will look at some of the smaller, agile
methodologies, especially eXtreme Programming. Finally, we will go
over open source development, which really can be considered an
alternate development methodology.

Methodologies for Large Scale Projects

It is a fact that large software projects require significant planning and
management. The largest projects, which involve tens or even hundreds

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�9�.�h�t�m�l� �(�2� �o�f� �2�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�9� }Ç

Chapter 9

of programmers, can take years to finish. Any software project that
involves people numbering in the tens, and time frames of a year or
more, really need a well-defined development process.

Today, the Rational Unified Process, or RUP, developed by The Three
Amigos, is the main heavyweight methodology in widespread use.
While the main principles of RUP may be used by themselves as a
development process, they are almost exclusively associated with
Rational Software which has a large number of software development
tools to help with RUP-based development.

Let there be no doubt about just what RUP is. It is a very good
development process, most suitable for large software projects. It has
many strong points to its procedures and philosophies. It is somewhat
adaptable to different project needs.

However, it is large and comprehensive. This means it requires
extensive training to use properly. It is also expensive. Rational
Software is the principle supplier of the software tools used for RUP. It
can cost several thousand dollars for each developer seat. The whole
process is heavily documentation oriented, and requires significant
management resources.

This is not to imply that there is anything wrong with RUP. It was
developed by some of the best software methodologists around. It has
been shown to work for a wide variety of software projects. What is not
clear, though, is if such a heavyweight process is best, or even needed,
for smaller projects.

Overview of the Unified Process

In many ways, RUP is not all that different from the basic software
development process we discussed in Chapter 4. It starts with
significant planning, includes analysis and design, and finishes with
building and releasing. One of the strengths of RUP is that it makes all

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�9�.�h�t�m�l� �(�3� �o�f� �2�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�9� }Ç

Chapter 9

these steps part of an overall process that includes support for both the
management and the software engineering sides of the process.The
whole process is iterative, with a goal of producing some tangible result
at the end of each iteration.

Basic Concepts

One way to look at RUP is to view it as a two-dimensional process as
shown in Figure 9-1. Overall, a software development cycle is made up
of four phases: Inception, Elaboration, Construction, and Transition.
There are activities, or workflows, that are parts of each cycle, including
Business Modeling, Requirements, Analysis and Design,
Implementation, Test, and others.

 Management View

 Phases

Workflows Inception Elaboration Construction Transition

Business
Modeling ∗∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗

Requirements ∗∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗∗

Analysis &
Design ∗∗∗∗∗∗ ∗∗∗∗∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗∗

Implementation ∗∗∗∗ ∗∗∗∗∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗∗∗∗∗∗

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�9�.�h�t�m�l� �(�4� �o�f� �2�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�9� }Ç

Chapter 9

Test ∗∗∗∗∗ ∗∗∗∗∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗

Deployment ∗∗∗∗∗∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗∗∗∗

Configuration
and
Change
Management

 ∗∗∗∗ ∗∗∗∗∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗∗

Project
Management ∗∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗∗

 Inception
 Iterations

 Elaboration
 Iterations

 Construction
 Iterations

 Transition
 Iterations

 Iterations

 Engineering View

Figure 9-1.

Overview of
RUP

The entire process is iterative. Each phase will itself consist of one or
more the four phase cycles. Thus, the main construction phase may
consist of several cycles, each producing a more complete product than
the last. One of the goals of RUP is to produce some kind of product at
the end of each cycle.

The vertical lines between each phase in Figure 9-1 are milestones.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�9�.�h�t�m�l� �(�5� �o�f� �2�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�9� }Ç

Chapter 9

Progress on the project is tracked using these milestones.

The horizontal lines associated with each workflow help indicate when
the activity is carried out during the development cycle. While Figure 9-
1 shows the time line of each work flow, there is also an intensity
associated with each workflow not shown by the *'s in this diagram. For
example, the Analysis & Design workflow will involve the most effort
at the beginning of the development cycle in inception and elaboration,
while the implementation workflow will be most intense in the
construction phase.

This view of development also can be used to help control the project
from both a high level management viewpoint, and a lower lever
engineering viewpoint. Top level management can view the whole
project as one big cycle of the four phases, while the engineering view
will see the iterative cycles that really make the project work. Different
levels of management can use different milestones to track project
progress.

One of the features of RUP is that it is designed to be flexible. The RUP
support tools available from Rational Software can be used to modify
the process to fit a particular project. The number of iterations involved,
the timing of milestones, the total number of people involved can be
handled flexibly. And because the process is inherently iterative, there
is some flexibility built in to handle changing requirements.

One of the problems with any activity involving tens or hundreds of
people is that the whole process can get too rigid and impersonal. With
many people involved, there will often be a management bureaucracy
and an emphasis on producing documentation to track project progress.
This may be inevitable when dealing with that many people. However,
it can also be quite impersonal, and frustrating for programmers who
like to think of their work as having a high level of creativity.

Agile Methodologies for Small Projects

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�9�.�h�t�m�l� �(�6� �o�f� �2�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�9� }Ç

Chapter 9

It isn't only large projects that need a development methodology. Any
software project can benefit. While a heavyweight methodology like
RUP may be adaptable to smaller projects, most small projects simply
cannot afford the training and management overhead needed to make
using them effective. For projects with up to 10 or 15 programmers,
what is needed is a lightweight methodology that is small, easy to learn
and use, and doesn't require extensive management support.
Methodologies need to recognize the talents of the programmers
involved, and treat everyone as a member of a team working toward a
common goal.

The Agile Alliance

In February, 2001, there was an amazing meeting at Snowbird in Utah.
Seventeen people, representatives from several development
methodologies (including eXtreme Programming, SCRUM, DSDM,
Adaptive Software Development, Crystal, Feature-Driven
Development, Pragmatic Programming, and others who see a need for
alternatives to heavyweight methodologies) met to find some common
ground. Getting seventeen software gurus to agree on anything was
nothing short of a miracle. The group formed what is known as the
Agile Alliance, and produced a manifesto and set of basic principles
that is posted on the www.agilealliance.org web site.

It has become clear that there is a place for both lightweight, agile
methodologies, and large, heavyweight methodologies. Because the
principles set forth by the Agile Alliance are important, and because the
alliance wants their message to be freely disseminated, the manifesto
and principles are reproduced here from the Agile Alliance web site:1

Manifesto for Agile Software Development

We are uncovering better ways of developing software by doing it
and helping others do it. Through this work we have come to value:

Individuals and interactions over processes and tools

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�9�.�h�t�m�l� �(�7� �o�f� �2�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�9� }Ç

Chapter 9

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

Kent Beck
Mike Beedle
Arie van Bennekum
Alistair Cockburn
Ward Cunningham
Martin Fowler

James Grenning
Jim Highsmith
Andrew Hunt
Ron Jeffries
Jon Kern
Brian Marick

Robert C. Martin
Steve Mellor
Ken Schwaber
Jeff Sutherland
Dave Thomas

Principles: The Agile Alliance

We follow these principles:

Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software.

Welcome changing requirements, even late in development.
Agile processes harness change for the customer's competitive advantage.

Deliver working software frequently, from a couple of weeks to
a couple of months, with a preference to the shorter timescale.

Business people and developers must work together
daily throughout the project.

Build projects around motivated individuals.
Give them the environment and support they

need, and trust them to get the job done.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�9�.�h�t�m�l� �(�8� �o�f� �2�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�9� }Ç

Chapter 9

The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation.

Working software is the primary measure of progress.

Agile processes promote sustainable development.
The sponsors, developers, and users should be able to

maintain a constant pace indefinitely.

Continuous attention to technical excellence and good design enhances agility.

Simplicity--the art of maximizing the amount of work not done--is essential.

The best architectures, requirements, and designs
emerge from self-organizing teams.

At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly.

As the time this book was written, several development methodologies
fall into the agile development philosophy. The one getting the most
attention is known as eXtreme Programming, or simply XP. We will
discuss some of the major features of XP in the next section, then
briefly discuss some of the other agile methodologies in following
sections.

eXtreme Programming

Extreme Programming come mainly from the work of Kent Beck and
Ward Cunningham who have been leaders in the object-oriented
programming world for some time. The main reference is Kent Beck's
book, Extreme Programming Explained: Embrace Change.

As the title of the book indicates, one of the main tenants of XP is to
embrace change. The traditional development process puts the analysis
and design at the beginning, and hopes to get it right. This is partly
based on the assumption that making changes in software is more
expensive the later in the development the change is required. It will
cost far more to fix some flaw in the design after the software is mostly

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�9�.�h�t�m�l� �(�9� �o�f� �2�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�9� }Ç

Chapter 9

written than to discover and fix the flaw early in the design process.

The problem trying to lock in a design early is that the requirements
almost always change as the project progresses. If nothing else, both the
customer's and developer's understanding of the problem will increase,
making things obvious that weren't at the beginning. XP says software
requirements will change, so embrace that change. Use a development
process that will make it easy to change software, and reduce the cost of
doing so.

With this in mind, XP has developed a set of practices that define the
process. Four basic values help make these practices work:
communication, simplicity, feedback, and courage.

Communication is critical. This is communication between the
developer and the customer, between management and the
programmers, and between the programmers themselves. Problems in
software systems can often be traced back to some missed
communication. With an emphasis on communication, discovery of
problems will come as early as possible.

Simplicity is another important XP value. Part of the idea is to not
overdesign. The software should be as simple as possible to meet the
most important business requirements. This means doing what needs to
be done now, not maybe later, because often code written for future
possibilities won't ever be used, possibly because the requirements have
changed. By focusing on what needs to be done now, everyone's
understanding of just how the system works and what it can do will be
maximized.

Communication and simplicity also help with the third XP value,
feedback. Feedback is important to know just what the current state of
the system is. Which tests are working, which have failed? How far
along is the project, and how do the current capabilities meet the
customers expectations? All this feedback keeps the project on track.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�9�.�h�t�m�l� �(�1�0� �o�f� �2�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�9� }Ç

Chapter 9

And the final XP value is courage. This means courage to change,
courage to act when flaws are found, and courage to trust that XP
practices will work. Many parts of XP are indeed radical when
compared to traditional development methodologies, and it does take a
certain amount of courage from both management and programmers to
embrace the change of XP.

XP Practices

The Planning Game

This is the XP planning process. The customer plays an important part
of the XP process. The customer first writes user stories, short
descriptions of the behavior of the product, and ranks them by
importance. The developers then estimate the development effort
required. Together, the customer and developer rank the stores and
select what should be implemented next, and what should be deferred.

Short Releases

XP teams get a system working as early as possible, and follow up with
frequent updates with added functionality on very short cycles.

Metaphor

Communication is important, so XP teams use a common terminology
and system of names to guide the development.

Simple Design

One of the major principles of XP is to always design as simply as
possible. Thus, an XP program should be the simplest program that
meets the current requirements. It will avoid adding features for the
future that may never be needed. The focus is always on providing
business value. To keep the incremental changes inherent to this design
philosophy, XP relies on refactoring.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�9�.�h�t�m�l� �(�1�1� �o�f� �2�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�9� }Ç

Chapter 9

Testing

One practice that XP follows is to write tests based on the requirements
first, and then the software that meets the tests. These tend to be unit
tests for specific objects that are part of the design. The customer helps
develop the overall acceptance tests for the full product.

Refactoring

Refactoring is an integral part of the XP process. All code is subject to
constant refactoring to keep the design clean, simple, and complete.

Pair Programming

Pair programming is one of XP's most unusual, and even controversial
features. All programming is done in pairs - two programmers working
together on one machine (and not necessarily the same two all the time).
The idea is to maximize productivity, reduce errors, and increase
communication.

Collective Ownership

All code is owned by all the programmers. This maximizes
communication, minimizes the importance of single programmers, and
gives great flexibility in who is able to change any part of the code.

Continuous Integration

XP code is constantly integrated, perhaps several times per day. This
keeps all the code synchronized, and enables rapid progress with
continuous feedback as to the state of the software.

40-Hour Week

XP recognizes that fresh, healthy, and happy programmers are effective
and productive. Tired programmers make more mistakes and are less

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�9�.�h�t�m�l� �(�1�2� �o�f� �2�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�9� }Ç

Chapter 9

productive. Thus, it is a core principle of XP to avoid excessive working
hours.

On-Site Customer

XP requires a dedicated, on-site representative of the customer. The
representative will be able to determine and clarify requirements, set
priorities, and answer questions as the programmers have them. This
enhanced communication can reduce the need for expensive
documentation, and eliminate costly delays waiting for clarifications.

Coding Standards

Pair programming and shared code ownership requires that all
programmers write code following a common standard. Thus, XP
requires a clearly specified coding standard for all programmers to
follow.

The Rise of XP

Many of the XP practices are indeed quite different than more
traditional approaches. XP is almost more a philosophy on how to
develop code than it is a specific set of design rules. For example, XP
does not specify the use of one design notation over another, or even
any design notation at all. Some XP projects will use virtually no formal
design techniques. CRC cards are one of the more commonly used
design tools by XP projects, partly because they are so easy to learn to
use and are well suited for informal group design sessions. On the other
hand, UML can and does have a place with XP projects. It all depends
on the specific project, and the personalities of the programmers
involved.

In many ways, XP is a programmer first process. The pair
programming, the 40-Hour workweek, and the need for constant
communication and feedback, are all programmer friendly practices.
This fact alone may be responsible for the rapid rise of interest in XP in

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�9�.�h�t�m�l� �(�1�3� �o�f� �2�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�9� }Ç

Chapter 9

the OO programming community. XP principles are even being applied
to other methodologies, such as efforts to build a variant of RUP that
uses XP practices.

DSDM

The Dynamic Systems Development Method, or DSDM, is an open
standard for a development process originally based on Rapid
Application Development, or RAD, principles. It is targeted for
developing business systems on tight time schedules.

The DSDM Consortium met for the first time in 1994, and had 16
originating founders. The goal of the DSDM Consortium was the
development of a public domain RAD methodology. Currently, most
active DSDM support is based in Europe.

The main source for information about DSDM is its website,
www.dsdm.org. DSDM is independent of any particular set of software
tools or techniques, and can be adapted to common object-oriented or
structured analysis and design practices.

Somewhat like RUP, the DSDM lifecycle is iterative and incremental. It
has a core five phase process that can be adapted to the particular
project:

1. feasibility study
2. business study
3. functional model iteration
4. design and build iteration
5. implementation

DSDM also has a set of principles that sound very much like those of
XP:

1. Active user involvement is imperative.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�9�.�h�t�m�l� �(�1�4� �o�f� �2�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�9� }Ç

Chapter 9

2. DSDM teams, made up of both users and developers, must be
empowered to make decisions.
3. The focus is on frequent delivery of products.
4. Fitness for business purpose is the essential criterion for
acceptance of deliverables.
5. Iterative and incremental development is necessary to converge
on an accurate business solution.
6. All changes during development are reversible.
7. Requirements are baselined at a high level.
8. Testing is integrated throughout the life-cycle.
9. A collaborative and co-operative approach between all
stakeholders is essential.

Note that this is only a brief outline of DSDM. The website has much
more information.

Crystal - Adaptive Software Development

The developers of two lightweight methodologies, Jim Highsmith with
Adaptive Software Development, and Alistair Cockburn with Crystal,
have recently joined forces to unify their work on light and self-adaptive
methodologies. Highsmith and Cockburn are well known names in
object-oriented software development circles.

While the combined methodology is still in development, it is likely to
be an important alternative. Both Highsmith and Cockburn were
signatories of the Agile Alliance manifesto, so the new combined effort
will no doubt reflect those values.

Open Source Development

The methodologies we've talked about so far all have one thing in
common, they are all commercial products, and other than DSDM, all
proprietary to one degree or another. Someone has an interest in each,
and usually with a goal of financial gain. Rational Software sells many

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�9�.�h�t�m�l� �(�1�5� �o�f� �2�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�9� }Ç

Chapter 9

support tools for the RUP. The developers of the other methodologies
all profit from books, consulting, or providing training. There is nothing
wrong with this, but that is a fact.

The Open Source movement is somewhat of a contrast. The main tenant
of open source is that the source code of any program is available for
anyone to see, use, and adapt. Open Source software is usually released
under one of several licenses (see the Open Source website,
www.opensource.org, for details of specific licenses). Even though the
source code is open, people can still get financial gain by adding value
to the software through support and training.

The best known example of a successful open source project is the
Linux operating system. What is commonly called Linux is really a
combination of an operating system kernel originally written by Linus
Torvalds combined with a large collection of software utilities
developed by the GNU project. All are open source software licensed
under the GNU Public License (GPL).

While open source is one way to release and license software, it also
can be considered a development methodology. A definite set of
conventions and customs that really describe how to develop open
source software have evolved since the beginning of the open source
software movement.

While some commercial companies are releasing code that once was
proprietary under various open source licenses, most open source
programs were developed by individuals spread all over the world. For
most open source programs, the development process is really a
distributed development model.

Open Source is Distributed Development

A typical open source program usually originates with a single
dedicated programmer who sees a need for a specific program and

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�9�.�h�t�m�l� �(�1�6� �o�f� �2�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�9� }Ç

Chapter 9

writes it. Sometimes a small group of programmers will band together
to build a program. If the program is useful, it usually attracts a user
community when it is released. These users become the customers who
beta test the program, and suggest changes. Sometimes, they even
contribute changes directly to the source code. The original author
incorporates the changes, and releases new versions.

As the size and popularity of a program grows, it may attract many
other developers. The original author often then becomes the program's
coordinator, and serves mostly to coordinate and incorporate changes
contributed by other developers, and to sanction official releases.

Most of this effort is undertaken by self-selected volunteer
programmers. Linux is a prefect example of this. Originally, the Linux
kernel was pretty much the result of Linus Torvalds' individual effort.
Eventually, tens of thousands of programmers have contributed to the
whole that makes up Linux. Many years after the first versions of the
Linux kernel were released, Linus Torvalds still serves as the main
coordinator.

The Web has really made the open source distributed development
model possible. First, the Web provides a potentially huge base of users
and developers for any program. Web sites, e-mail, and user groups
provide a worldwide network needed for this base of users and
developers to communicate.

Once an open source program reaches the point that it has many users
and developers, it requires some level of management. In the open
source development model, program management can almost be
considered as an inverted organization from traditional management.

First, it is the programmers who have the most control of a project.
They are mostly self-selected volunteers who work on a program for the
experience and fun of it. The programmers listen to user feedback, and
then decide where to take the program based on a combination of the

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�9�.�h�t�m�l� �(�1�7� �o�f� �2�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�9� }Ç

Chapter 9

feedback and their own personal interests. The many developers
involved with a program will ultimately decide what the final features
are through consensus reached in group discussions carried out on the
Web or by e-mail. The source code is usually held in a central
repository (such as www.sourceforge.org), and changes most commonly
submitted using Concurrent Versions System, or CVS.

One of the main principles of open source development is to release
early and release often. It is common practice to have what are known
as stable releases at infrequent intervals, and separate development
snapshots that are updated frequently.

It usually up to the development coordinator to take care of the details
of building a release version of a program, and then providing for its
distribution. The coordinator is really just that, a coordinator and not a
manager. This is the opposite of traditional management, where the
programmers are guided by the manager. With open source, it is the
programmers with most of the control.

Another feature of open source development is the many-eyes method
of testing and quality control. The idea is that with the source code open
to examination by anyone, that after enough eyes have examined the
code, that most bugs will be spotted by someone or other. There is also
the idea that since programmers know their code will be viewed by
many others, that the peer pressure will encourage them to write their
best code.

For the most part, open source really does deliver relative bug-free
code. Linux, for example, is well known for its rock solid stability. It is
nearly impossible to crash.

But, there are problems. Since open source is heavily dependent on
volunteer programmers, it is difficult or impossible to have fixed feature
sets or specific release deadlines. Even so, open source development
does tend to respond to change and produce new code quickly. Some

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�9�.�h�t�m�l� �(�1�8� �o�f� �2�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�9� }Ç

Chapter 9

contributor to a project will often have a personal stake in adding a
specific feature, and the release often philosophy sees to it that such
enhancements are available almost immediately.

One of the main problems with open source development is quality
code. While the peer review does tend to bring out the best in
programmers, many open source developers are relatively new and
inexperienced. While open source code generally works and is
modified, it is not necessarily all that readable or maintainable
compared to code developed under a good common coding standard.

Open source development is not necessarily object-oriented. If the
original developer was an experienced object-oriented designer, it is
possible for an open source program to be a well-designed object-
oriented system. However, much open source software is designed on a
more-or-less ad hoc basis, and isn't necessarily object-oriented.

There are some large software companies thriving on the open source
model, but it remains to be seen if the approach will be viable over the
long term. But the open source development model has merit, and some
of its principles apply to any development methodology. And open
source programs need not die since their source will remain available
for others to take over if necessary.

Resources

Methodologies

Extreme Programming Explained: Embrace Change, Kent Beck,
Addison-Wesley, 2000, ISBN 0-201-61641-6.

Object-Oriented Analysis, Peter Coad and Edward Yourdon, Yourdon
Press, 1991.

Object-Oriented Analysis and Design With Applications, Grady Booch,

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�9�.�h�t�m�l� �(�1�9� �o�f� �2�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�9� }Ç

Chapter 9

Addison-Wesley, 1994, ISBN 0-201-54435-0.

Object-Oriented Modeling and Design, James Rumbaugh, et al.,
Prentice Hall, 1991.

Object-Oriented Software Engineering: A Use Case Driven Approach,
Ivar Jacobson, et al., Addison-Wesley, 1992.

Object-Oriented Systems Design, An Integrated Approach, Edward
Yourdon, 1994, Yourdon Press, ISBN 0-13-6363325-3.

The Rational Unified Process: An Introduction, Philippe Kruchten,
Addison-Wesley, 2000, ISBN 0-201-70710-1.

The Cathedral and the Bazaar, Eric S. Raymond,
tuxedo.org/~esr/writings/cathedral-bazaar/index.html

Web Sites

Adaptive Software Development: www.adaptivesd.com

Crystal: www.crystalmethodologies.org

DSDM: www.dsdm.org

eXtreme Programming: www.xprogramming.com

GNU: www.gnu.org

Open Source: www.opensource.org

SCRUM: www.controlchaos.com

1

© 2001, the above signatories. This declaration may be freely copied in any form, but only
in its entirety through this notice.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�9�.�h�t�m�l� �(�2�0� �o�f� �2�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�9� }Ç

Chapter 9

med for Flyheart

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�9�.�h�t�m�l� �(�2�1� �o�f� �2�1�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�3�9� }Ç

Chapter 10

Chapter 10

Software Tools for Object-Oriented
Development
Just as a carpenter needs a good set of tools, so does a programmer.
The question is, which tools should you use to develop your Java
programs? In this chapter, we will look at some specific software
tools that can make your programming task easier. The final selection
of just which tools you will use will probably be a combination of
personal choice and which tools that are used at your workplace. But
it is good to know not only about specific choices, but of the broad
categories of software tools that are available to use.

Discussing specific software products is a somewhat risky
proposition for a book that will likely outlast some of the products
covered. In today's volatile software industry, products come and go
as companies go out of business or merge with other companies.
Some of the specific tools covered here are likely to be around for a
long time to come1, while you may find some no longer available.
However, if some specific tools is no longer available, then there will
certainly be a descendent or similar product available. What is most
important is to be familiar with the range of software tools you have
to choose from. The book's web site will try to keep up with the latest
status of the tools discussed here.

GUIs vs. Consoles

Today, most new software tools are developed to use a full graphical
user interface, either on MS-Windows or a graphical environment on

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�0�.�h�t�m�l� �(�1� �o�f� �2�3�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�2� }Ç

Chapter 10

a Unix-like system (e.g., Gnome on Linux or Motif on Solaris). And
some of the best Java tools are written in Java, and run the same on
any Java platform.

It hasn't been all that long, however, since most programming was
done using 24 by 80 character terminals, and then console windows
on a graphical system. Many different tools were available to run in a
console based environment.

Many long-time programmers consider Unix and its descendents such
as Linux to be the ultimate development platform. The programmer's
tools include a choice of editors, a compiler system, and a set of
many powerful tools such as grep, diff, make, lex and yacc that work
together2 to help the development process. One of the most powerful
tools found on Unix-like systems is the command shell which allows
the programmer to write scripts to automate much of the development
process.

The following is a list of just a few of the standard software tools
found on Unix-like systems.

● grep - this utility will search files for occurrences of regular
expressions.

● diff - this utility shows the difference between versions of code
and documentation.

● rcs, sccs, cvs - these are version control systems that manage
changes in source code. Currently, cvs is widely used by the
open source software community.

● sort - will sort a file based on various criteria.
● merge - will merge two files.
● tr - will transform specified characters if a file.
● tar - will make an archive of files.
● make - a utility that controls building software from various

source files.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�0�.�h�t�m�l� �(�2� �o�f� �2�3�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�2� }Ç

Chapter 10

● lex, yacc - tools for building lexical analyzers and parsers.

Today, Linux is the best known Unix-like system, and includes all the
well known software tools. These tools are also available today as
free open source software under the GNU Public License. There is a
ready-to-run version known as Cygwin (www.cygwin.com) available
to run on MS-Windows platforms. While these tools were developed
before Java, they still be very useful for many aspects of developing a
program, including a Java program.

Editors and IDEs

The editor you use is a very personal choice. Programmers are known
to get into long and passionate debates about which editor is best.
This section will discuss some of the characteristics of programming
editors, as well as Integrated Development Environments (IDE),
which are GUI based development tools that integrate the editor with
various other tools such as the compiler.

Characteristics of a Good Editor

Easy to use command set

First and foremost, an editor should have a very easy to use command
set. If you touch type, and like to keep your hands on the keyboard,
any editor that requires you to use the mouse extensively is less than
ideal.

The command set must easy to learn and use. Once you know the
command set, your fingers will automatically do the right thing. You
will barely have to think about what you are doing. Ideally, the most
common commands will require you to press only a single key (or
perhaps a single key combination). Less commonly used commands
can use two or three key sequences. There should be some logic to

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�0�.�h�t�m�l� �(�3� �o�f� �2�3�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�2� }Ç

Chapter 10

which keys are used for which command (like using S or F for search
or find).

The command set must be comprehensive. All editors will let you
move around the code and perform basic edits, but a programmer's
editor should have other features. Some examples include easily
splitting lines, changing case, matching parens, automatic
indentation, and code formatting.

Powerful finds

Being able to search for just what you want in your code is important.
Good editors will include some kind of extended pattern matching in
their find commands. Being able to search for regular expressions is
considered essential by many programmers.

Another kind of search that is especially useful to programmers is to
find the definition of some symbol, or all the references to a symbol.
This is also an essential feature for any good editor.

Macros

Programmers will commonly need to carry out some repetitious task
when editing. At the most basic level, that could be renaming all
instances of a variable. But a programmer should be able to repeat
any specific sequence of commands. Thus, an editor should have the
ability to define arbitrary sequences of commands and execute them.
These are often called macros.

Language awareness

Any good editor will be programming language aware. At the very
least, this will mean the editor will do syntax highlighting of the
source code. Other common language aware features include
automatic completion of keywords, availability of code templates for

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�0�.�h�t�m�l� �(�4� �o�f� �2�3�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�2� }Ç

Chapter 10

common language constructs, and context sensitive help for a given
language.

Integration with other tools

More and more, it is becoming important for an editor to provide
some integration with other programming tools. While it is still
possible to be extremely productive using multiple command shells in
a Unix-like environment, some features are becoming a standard part
of the editor. These features include the ability to work directly with
the compiler, and to go directly to code lines with syntax errors.
Other integrations can include interfaces to file search utilities,
interface designers, class browsers, and the like.

Three Types of Editors

Currently, there are three flavors of editors: modeless and moded
programmer's editors which have evolved from console based
systems, and editors that are entirely GUI based. Which kind of editor
is best is a highly personal preference.

Standard modeless editing

Most editors you will encounter can be classified as modeless editors.
That is, normal character keystrokes are entered as text into the file,
while commands require special keys or multi-key combinations to
distinguish them from regular characters. The command keys are
often not on the main home keyboard (e.g., arrow keys), or use a
second key (e.g., Alt) that borders the main keyboard. This means
either slowing down your editing while you move your hand, or
awkward finger movements that have been known to generate sore
pinkies used to press the Alt key. The best known modeless
programmer's editor is Emacs.

Moded editing

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�0�.�h�t�m�l� �(�5� �o�f� �2�3�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�2� }Ç

Chapter 10

In a moded editor, there are generally two different modes: command
mode and insert mode. When the editor is in command mode,
pressing any key is interpreted as a command, and will be carried out.
In order to insert text, you have to enter insert mode by entering the
insert command. There is then a single special key used to escape
from insert mode back to command mode. One of the primary
advantages to moded editors is that the regular keys can represent
commands, and that you don't need to press special keys or special
key combinations to enter a command. Thus, the "f" key could
represent the "find" command directly. All your fingers can usually
stay firmly planted on the home row of the keyboard. The best known
moded programmer's editor is vi.

This two moded editing can seem strange and frustrating to someone
first using a moded editor, especially since almost everyone has done
at least some editing on a PC where any text you type appears on the
screen. Nothing happens in moded editor until you go into insert
mode. But some informal studies have shown that expert users can
edit faster with a moded editor. The main reason is that your fingers
don't need to leave the keyboard to fumble for special command keys
as they must in a standard editor.

GUI-based editing

A GUI based editor will work only on a GUI based platform such as
MS-Windows or X Windows. They are heavily oriented to using the
mouse and arrow keys. GUI based editors are almost always
modeless. Most GUI based IDEs will have an editor with a default
command set that is GUI oriented. There are usually keystroke
equivalents for most commands. The problem with many GUI based
editors is that they are too generic. They are often missing the more
specialized commands a programmer needs and expects. While an
IDE may have many useful features, the default editor is often

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�0�.�h�t�m�l� �(�6� �o�f� �2�3�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�2� }Ç

Chapter 10

underpowered compared to the more specialized programming
editors like vi and Emacs. Ideally, you should be able to substitute
either your own editor, or you own editing command set.

Emacs

One of the most widely known and popular programming editors is
Emacs. Emacs was originally written in the mid-1970's by Richard
Stallman, founder of the Free Software Foundation and responsible
for much of the core GNU software package. The current version is
known as GNU Emacs.

At its simplest, Emacs is a modeless editor. However, it really is
much more. It contains its own LISP language engine which is used
to write extensions and macros for the editor. The GNU Emacs
system is very large, and can be made to carry out almost any task a
programmer will likely want or need to do. It is possible to control
the entire programming process without leaving the Emacs
environment, and many people claim Emacs is really the ultimate
IDE.

All this power is not without a cost, however. While basic editing
with Emacs is not difficult, the vast power of Emacs takes significant
effort to learn. Most Emacs users say that taking the time to learn the
full power of Emacs is well worth it in long term dividends.

One of the best things about Emacs is that there is only one main
version in widespread use for virtually every programming platform
available today. It is free under the GPL. Emacs is a standard part of
every Linux distribution. The full distribution of GNU Emacs,
including full source code and the MS-Windows executable binary, is
on the CD accompanying this book. The GNU Emacs web site is
www.gnu.org/software/emacs/emacs.html.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�0�.�h�t�m�l� �(�7� �o�f� �2�3�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�2� }Ç

Chapter 10

Vi

Vi is another editor very popular with many programmers. It was
originally developed by Bill Joy, co-founder of Sun Microsystems,
back in the mid-1970's while he was a student at Berkeley. It became
the standard visual editor for Unix.

Vi is a moded editor - there is command mode and insert mode. The
commands are typically single character commands like `x' for delete
a character or `h' to move the cursor one character left. Others are two
letter commands like `dd' to delete a line or `dh' to delete a character
left (there is a whole set of `d' delete commands). While the
command set seems a bit obscure, it is actually very efficient once
you know it.

Vi and Emacs share one important legacy. The were both developed
when programmers were just first starting to use terminals connected
to time sharing systems. These terminals were connected to the
computer at only 300 or 1200 Baud3. The terminals themselves were
very primitive when compared to the GUI systems available today.
Thus, both Emacs and vi were designed when even getting the text on
the screen was a challenge, and the commands needed be simple one
or two character sequences.

One interesting bit of trivia about the vi command set concerns the
choice of the letters "hjkl" for the left, up, down, and right cursor
movements. In the mid-1970's at Berkeley, the most common
terminal around campus was an ADM-3a. The terminal was not very
versatile, but it was cheap. There was no separate keypad for arrow
keys. Instead the ADM-3a had arrows printed on the hjkl keys, which
were usually used in combination with the Control key. Vi simply
uses hjkl.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�0�.�h�t�m�l� �(�8� �o�f� �2�3�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�2� }Ç

Chapter 10

Figure 10-1.
VIM editor

Unlike GNU Emacs, there is not a standard version of vi available.
The original was a part of the commercial Unix system, and is not
free for general distribution. There are, however, several free clones
available. The most popular is VIM, or vi improved (www.vim.org).
It is totally freeware, and the source code and an executable version
for MS-Windows are included on the accompanying CD.

Integrated Development Environments

Integrated Development Environments (IDEs) are designed to
support the most common programming tasks in a single program.
Some IDEs work with multiple languages, but many are designed for
a specific language such as Java.

While the feature set of IDEs will vary among products, most IDEs
will have the following features:

● Programming Editor
● Integration with the compiler: supports an easy way to go

directly to syntax errors for editing.
● Build control: grouping all source files required by a project and

allowing the while project to be compiled and built in one step.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�0�.�h�t�m�l� �(�9� �o�f� �2�3�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�2� }Ç

Chapter 10

● Integration with debugger.
● Advanced Search facilities: includes the ability to search for

specific symbols within a program, and to search multiple files.
● Version Control: integration with a version control system.
● Help: extended help facilities about both the IDE and the

programming language.
● Integration with other tools: the ability to work with other

external tools.
● Other language specific features: class browsers for object-

oriented languages, User Interface builders for specific GUIs
(e.g., Swing).

The following sections discuss some IDEs for Java.

VIDE

VIDE is a small, free IDE written by the author of this book. It is uses
the author's open source V C++ GUI Framework. Compared to some
of the large commercial IDEs, VIDE is very small and fast.

VIDE supports both C++ and Java. C++ support includes the GNU
g++ compiler and the free Borland C++ command line compiler.
VIDE also supports the Sun's Java development environment, which
is available for free download at java.sun.com.

The default VIDE editor supports a standard GUI modeless command
set. It includes other important editing features like macros, code
indentation, syntax highlighting, and symbol browsing. It also
supports two moded command sets - a subset of vi, and the See
command set developed by the author.

The fact that VIDE is small and simple is both its strength and its
weakness. It really is quite simple to learn to use, and supports almost
all the basic tasks a programmer needs. However, it lacks some of the

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�0�.�h�t�m�l� �(�1�0� �o�f� �2�3�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�2� }Ç

Chapter 10

language specific features found in full blown C++ or Java IDEs, or
the comprehensiveness of Emacs.

Figure 10-2.
VIDE

Even so, because VIDE is free, small, and so simple it has been
adopted as a recommended choice by several introductory computer
programming courses at universities and colleges around the world.
An executable version of VIDE is included on the accompanying CD,
and there are VIDE project files for all the Java code examples found
in this book.

Borland JBuilder

Borland JBuilder 54 may be the best Java IDE available today. It
consistently shows up as a programmer's favorite in internet
discussion groups, and it gets favorable reviews in various
magazines.

Like most Java IDEs available today, JBuilder is written in Java for

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�0�.�h�t�m�l� �(�1�1� �o�f� �2�3�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�2� }Ç

Chapter 10

Java programming. This means that it is available for all Java
platforms, and it is designed very specifically to support Java and
associated Java packages such as Swing.

Borland is distributing JBuilder 5 in three different versions:
Personal, Professional, and Enterprise. Each version supports
different features, with the Personal edition being the most limited.

Figure 10-3.
Borland's JBuilder 5

The Personal Edition of JBuilder is available for download from
Borland at no cost (www.borland.com). Even better, there is a copy
of JBuilder 5 Personal on the book CD. This is really an amazing
piece of software, and it is free5.

All versions of JBuilder, have the following features:

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�0�.�h�t�m�l� �(�1�2� �o�f� �2�3�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�2� }Ç

Chapter 10

● Java language support: syntax highlighting, class browsing, full
language help support, code templates, and more.

● Swing support: can interactively build User Interfaces from
Swing components and automatically generate Java source code.

● XML support.
● JavaBean support.
● Full project support for compiling and debugging.
● Version control.
● Wizards to help create projects, build applets, and so on.

The features included in the Personal edition are really very
complete, and can be used to build almost any Java application.
However, the Professional and Enterprise editions have significant
features that make it easier to develop more advanced Java
applications. It is important to remember that a programmer's time is
very expensive, and that providing the appropriate tools will almost
always be cost-effective.

The Professional Edition has the following extra features:

● JDBC: includes full support for JDBC as well as extra Borland
tools for building data base applications.

● Servlets
● Support for Multiple Java Development Kits
● More wizards to simplify development, including building

JavaBeans.
● More editing features: customizable command set, editable

templates.
● Supports more Swing User Interface components.
● Deployment tools, including a JAR file builder.

JBuilder Enterprise adds even more, including support for Enterprise
Java Beans, distributed computing applications, CORBA support, and
JSP support. Any company building Java applications at this level

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�0�.�h�t�m�l� �(�1�3� �o�f� �2�3�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�2� }Ç

Chapter 10

will understand the capabilities needed to support their development.

Borland also has some interactive training CDs that can help you
learn JBuilder quickly. These training tools are likely to be quite cost-
effective at getting new programmers up to speed.

A feature list is only the first step in evaluating how good a program
really is. Reading reviews and what other users have to say about a
product is another important step, and JBuilder really stands out here.
And finally, the only real way to know if a software tools is right for
you is to use it and evaluate it. The very best programs have all the
features you need, yet are also easy to learn and to use. JBuilder
seems to meet this last test better than some of the other IDEs such as
Forte.

While JBuilder is very good, it has some faults. Programmers used to
all the editing features of Emacs, vi, or even VIDE might be
disappointed in JBuilder's editor. Setting up projects has a few quirks
in how directories are set up and used, but that is just matter of
learning the tool's conventions. And JBuilder suffers the same
problem as many Java-base applications - it is slow to load, and
sometimes a bit slow in its response. This is especially noticeable on
slower machines.

There is another issue to be aware of when using JBuilder, or any of
the other Java IDE), and that is the automatic application generation
tools. These tools let you build simple GUI applications rather easily,
but you build them the way that the tools have decided. For example,
when you use the JBuilder application wizard to build an application
from scratch, it starts by creating the top level class that extends
JFrame. While this is a standard way of building Java applications, it
is not necessarily what you want to do. Be sure you use the tool to
build the programs you want using good object-oriented design, and
don't get trapped into using a design structure provided by the IDE by

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�0�.�h�t�m�l� �(�1�4� �o�f� �2�3�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�2� }Ç

Chapter 10

default.

As noted earlier, a full version of the free Personal Edition is on the
book CD. You will have to register this version at Borland's web site.
If you are a student or associated with an educational institution,
Borland provides highly discounted prices for the Professional and
Enterprise editions. You can check Borland's website for details.
There are JBuilder project files for all the Java code examples found
in this book on the CD as well.

Sun Forte

Sun Microsystems distributes a Java IDE called Forte. Forte is very
similar to JBuilder in many ways. While JBuilder seems to do better
in reviews than Forte, there is a rapidly growing Forte community.

Sun provides two editions of Forte, a free community edition, and an
enterprise edition. The community edition has more features than
JBuilder Personal. For example, there is support for JDBC. As would
be expected, the enterprise edition has support for enterprise wide
networked applications and other advanced features.

Forte's editor in some ways seems more advanced that JBuilder's. It
has macros, and is customizable even in the free version. However,
the JBuilder editor has more total commands, and comes with several
predefined command sets. On the other hand, the code generated by
JBuilder's User Interface designer seems cleaner and easier to modify
than Forte's.

In the end, the decision on which IDE, if any, to use is usually very
personal. In a large enough project, it is possible that a whole team
will have to use the same IDE because of the support they give for
version control and project coordination, but the important issue is to
use the tool that maximizes your productivity.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�0�.�h�t�m�l� �(�1�5� �o�f� �2�3�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�2� }Ç

Chapter 10

Since both Borland and Sun have free versions of their IDEs, it is
probably worth some effort to try both if you haven't yet settled on a
specific tool. JBuilder and Forte aren't the only Java IDEs available.
The next section briefly covers some others.

Other IDEs

There are other IDEs available. Perhaps the most significant is IBM's
VisualAge for Java (www-4.ibm.com/software/ad/vajava/). It has
several editions, including a free version for download (although the
download size is huge). The design philosophy and work model
supported by VisualAge is significantly different that most other
IDEs, and has a significant learning curve. However, many
VisualAge users claim that its approach is much better than other
IDEs once you are accustomed to it.

Source code control

A version control system keeps track of all the changes made to a set
of files. For an individual developer, that means being able to keep
track of all the changes made to a program during the entire time it
has been in development.

Version control systems are not only valuable, but are essential for
development teams. Not only do they track changes, but they allow
programmers to check out individual files, make changes, and then
have those changes merged back into the main source code
repository.

CVS is the Concurrent Versions System, and is currently the most
widely used version control system. It is open source, and works on
individual computers, or over any computer network, thus making it
useful for both the individual and the team.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�0�.�h�t�m�l� �(�1�6� �o�f� �2�3�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�2� }Ç

Chapter 10

There are other version control systems available such as rcs and
sccs, but CVS is the most popular. Most IDEs will either have their
own version control features, or integrate with CVS or another
system.

Complete information about getting and using CVS is available at
www.cvshome.org. It is open source, and freely available. Using a
version control system is an essential programming practice, and
CVS is as good as any system available.

CASE, Modeling, and UML Tools

CASE stands for Computer Aided Software Engineering. When
CASE tools were first conceived, many hoped they would
revolutionize software development. So far, this has not been the
reality. While CASE tools can be very useful and help keep a project
on track, practices such as object orientation have proven to be more
useful.

There are several kinds of CASE tools available. IDEs can be
considered the most basic CASE tool. Usually, however, CASE tools
are tied to some specific software development philosophy or
management practice. One of the most common category of CASE
tool includes the software modeling tool. Specifically, there are many
tools that are used to design and implement software using the UML.
Some are methodology independent, and others are tied to a specific
one.

Other CASE tools are more comprehensive, and contain tools for
developing software using a specific methodology. They can include
such features as building specific kinds of management charts and
time lines, code tracking, bug tracking, process management, and
more.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�0�.�h�t�m�l� �(�1�7� �o�f� �2�3�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�2� }Ç

Chapter 10

While there are a few free and open source CASE tools available, so
far none yet match the functionality and quality of commercial tools.
Unfortunately for the small company or development team, most
commercial CASE tools are very expensive, typically costing several
thousand dollars per seat. A few are available for just a few hundred
dollars, and can really help the productivity of a small development
team (and can be suitable for large teams as well).

ArgoUML

If you want to try a basic UML design tool, check out ArgoUML.
ArgoUML is an open source project to develop a full UML design
tool. As this book is being written, the ArgoUML project has been
under development for several years, and shows real promise of
becoming an excellent open source UML tool. Best of all, you can try
working with UML using a free tool.

While not as capable as commercial products, it can generate basic
UML diagrams, and has some interesting design critique features.
Because it is an evolving program, it is not included on the book CD.
The download of the latest version is available at www.argouml.org.

MagicDraw

MagicDraw (www.magicdraw.com) is one of the more affordable
UML modeling tools currently available. It supports the entire UML
standard, and is easy to learn and to use. It is almost in a class of its
own given its features and price. MagicDraw was used to produce all
the UML diagrams for this book, and a demo version is included on
the book CD.

MagicDraw facilitates analysis and design of object-oriented systems
and databases. It supports the latest standards of Java, UML and XMI
and provides the comprehensive code engineering mechanism, with

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�0�.�h�t�m�l� �(�1�8� �o�f� �2�3�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�2� }Ç

Chapter 10

full round-trip support for Java, C++, and CORBA IDL programming
languages. MagicDraw also provides database schema modeling,
DDL generation and reverse engineering facilities.

MagicDraw has a reasonably priced Standard Edition with these basic
features:

● Drawing all UML diagrams.
● Performance of OO model analysis.
● Generation of HTML reports with embedded images.
● Read/write capability for Rational Rose model (mdl) files.
● Capability to connect to the teamwork server.

The slightly more expensive Professional Edition adds:

● Code generation.
● Reverse engineering.
● Round-trip engineering.
● Java, C++, and CORBA IDL code engineering.
● Database design support.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�0�.�h�t�m�l� �(�1�9� �o�f� �2�3�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�2� }Ç

Chapter 10

Figure 10-4.
MagicDraw UML Design Tool

The code generation and round-trip capabilities of the Professional
Edition will be well worth the extra cost for most teams.
MagicDraw's capabilities are on par with most other UML tools, and
deserves serious consideration.

Rational Software

Rational Software has a full suite of software development tools.
Rational Rose is their full featured UML based modeling tool. It is
the standard by which all other modeling tools are judged. They also
have tools to manage the Rational Unified Process.

Committing to Rational is essentially committing to an entire
development philosophy. The tools are expensive, and most likely to

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�0�.�h�t�m�l� �(�2�0� �o�f� �2�3�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�2� }Ç

Chapter 10

be used by large development organizations. The decision to use
Rational products will usually be made at a company or project level.
See www.rational.com.

TogetherSoft

ToghtherSoft was founded by Peter Coad, who helped developed the
Coad-Yourdon object-oriented analysis and design methodology. The
main product of TogetherSoft is ControlCenter. ControlCenter is not
methodology specific, and is more than a modelling tool.

TogetherSoft calls ControlCenter a Model-Build-Deploy Platform.
Their web site says "With it, you can: model - EJB - pattern - edit -
compile - debug - version - doc - metric/audit - provision - assemble -
deploy - run." It has a UML tool, a programming editor, round-trip
code engineering, software matrix tools, and more. It is a total CASE
tool.

ControlCenter is an alternative to Rational Software products. It is
expensive, and likely will take an organization-wide commitment.
See www.togethersoft.com.

Other UML Tools

mUML

mUML is very low cost UML tool that is worth checking out. It is
supported by a small company, Mount Field Computers. It supports
all UML diagrams, and will generate Java code, and can perform
reverse engineering. While not as full featured as MagicDraw, it quite
capable, and was available for less than $50 when this book was
written. See www.mfcomputers.com.

ObjectDomain

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�0�.�h�t�m�l� �(�2�1� �o�f� �2�3�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�2� }Ç

Chapter 10

ObjectDomain is a UML modeling tool that supports C++ and Python
as well as Java. See www.objectdomain.com.

SoftModeler

SoftModeler is another full featured UML modeling tool. There are
three versions, starting at a reasonably priced Standard Edition. The
Professional edition adds support for modeling JavaBeans, and the
Enterprise edition has support for shared projects. See softera.com.

Other Java Tools

JUnit

JUnit is an open source regression testing framework written by Erich
Gamma and Kent Beck. It is used to implement unit tests for Java
programs. JUnit is an important tool to use when refactoring code,
and with XP. JUnit is in active development, and can be downloaded
at junit.org. JUnit can be integrated into JBuilder.

Jikes

Jikes is an open source Java compiler from IBM. It is an alternative
to the compiler that comes with Sun's JDK. While Jikes is often
mentioned in discussions of Java compilers, the future of Jikes is not
clear. For the latest information about Jikes, see
oss.software.ibm.com/developerworks/opensource/jikes/.

1

Specifically, open source tools such as Emacs are likely to be around for as long as
programmer's need an editor. This long lifetime is an often under appreciated advantage
of open source software.

2

The output of one tool can be fed to the input of another tool to build powerful chains
of commands.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�0�.�h�t�m�l� �(�2�2� �o�f� �2�3�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�2� }Ç

Chapter 10

3

Just consider how slow even a 28,000 Baud connection to the internet seems today.

4

Version 5 was the latest as of the writing of this book. New versions are available on
approximately an annual basis.

5

There is a real difference between open source software, and software that is free. Open
source software is freely available, and anyone can use and modify the source code.
Open source software can be redistributed under the open source license. JBuilder is
not open source software, even though the Personal edition is free. Borland has not
released the source code, and controls distribution.

med for Flyheart

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�0�.�h�t�m�l� �(�2�3� �o�f� �2�3�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�2� }Ç

Chapter 11

Chapter 11

Programming - A Personal
Perspective
This chapter is a bit different from the rest of the book. For one thing,
I'm going to change the point of view of the writing from the
impersonal to the first person. While I've tried to give an objective
presentation of the material up to now, this chapter represents my
own subjective view of programming.

Even after programming in one form or another for 30 years, I still
find programming a fun thing to do. I'm still doing active
development on my own open source projects, the V C++ GUI
Framework and VIDE. I'd like to extend the Wmvc framework I used
for this book.

Over the years, I've programmed in many languages, including some
you've probably never heard of. The main languages I've used include
Fortran, Ratfor, Pascal, C, PDP-11 assembler, Intel 8080/8086
assembler, C++, and Java. Of all the languages I've used, I find I like
C++ and Java the best, mostly because they are object-oriented.
There have been many new programming ideas developed over my
career, but object orientation has been the most significant. Besides
the real benefits of how easy it is to maintain object-oriented code, I
just find it more fun to design and program with objects.

I've been involved with programming at many levels. When I was at
Sandia National Labs, I worked with on a very large project with
many programmers and layers of management. When I started my

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�1�.�h�t�m�l� �(�1� �o�f� �2�3�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�4� }Ç

Chapter 11

first personal computer software company, I learned how important it
is to write software that will work on different computers (Microsoft
was just one of many small companies back then), and that work
correctly for paying customers. My years with the University of New
Mexico taught me how to teach others about programming. My
favorite time was that spent with my company, Reference Software,
working to build a great team of programmers to develop our
grammar checker and other reference software works. And the past
few years, I've tried to give something back to the software
community, first by developing open source software, and now by
writing this book.

In this chapter, I will cover some of the things I've found important
for developing great software. Some of these are important
programming principles, some simple tips or guidelines, and some a
matter of philosophy.

I've divided this chapter into several sections. The first section,
Programming, is about day-to-day programming - how to write code.
The second is about using tools to make your programming efforts
easier and more productive. The next section is about the
programming work environment, and how a good work environment
is critical for developing good software. And finally, I'll cover how to
use some of the many resources available today to enhance your
programming skills.

Programming

This section covers some practical aspects of actually programming.
Some of these topics are really about programming, some are more
philosophical. All are principles I have found important for writing
better programs. Some of the issues apply both to a personal
productivity level, and to a workplace level, and I'll cover them under
both categories.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�1�.�h�t�m�l� �(�2� �o�f� �2�3�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�4� }Ç

Chapter 11

Your Code Never Dies

I have found the simple realization that Your Code Never Dies has a
profound effect on just how I program, perhaps more that any other
single factor. It is true. No matter how small, how trivial, or how
temporary you think a piece of code might be, almost without fail,
you or someone else will see that code again sooner or later. Now,
depending on how you use this revelation, that can mean the code can
come back to help you or to haunt you.

One of the best examples I can think of personally is an editor I
originally wrote in 1980. Partly because I didn't like the editors
available on the VAX computer I was working with at the time, and
partly to really learn how to program for that VAX, I decided to write
an editor. I wrote the first version of the editor in a language called
Ratfor, which allowed you to use C syntax to write Fortran programs.

The editor worked well, and I've used it as my editor of choice ever
since. Well, before long, I moved to a different computer and
operating system. The first thing I had to do was move my editor to
that machine. Before long, we switched to C instead of Ratfor, so I
translated the program to C. Then I changed jobs, and took the editor
with me.

Over the past 20 years, this editor has followed me everywhere I've
gone. It has undergone many transitions. First, from Ratfor to C.
Then modifications to make it work on different systems with
different terminals. Then to support a graphical user interface. Then
to C++. And so on. Today, you can still see remnants of the original
Ratfor code in the source for my free V IDE. And I'm still using it,
still modifying the code, and still finding bugs. Back in 1980, I don't
think I possibly could have imagined that I would still be using and
modifying descendents of that code in 2001.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�1�.�h�t�m�l� �(�3� �o�f� �2�3�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�4� }Ç

Chapter 11

The same can be said about the millions and millions of lines of code
that had to be reviewed and fixed for the millennium. If all those
programmers who had originally written this code thirty, twenty, or
even just five years ago had believed that their code would never die,
perhaps many of the problems associated with Y2K could have been
avoided.

Remember, eventually someone (and it might be you) will have to
modify the code, which means they will have to understand it. So,
write clear, logical code. Choose good names. Comment thoroughly
and appropriately. If you had to look something up to use a library,
for example, then a comment will help.

Write the best code you can. Take pride in it. You will get a great
feeling when someone later tells you that they were impressed with
your code quality.

Don't write quick and dirty code. You might think you'll remember
what you've done, but you won't. Even after a few months, let alone
years, your own code might as well have been written by someone
else. So when you write code, remember you will have to see it again,
and you won't remember what you were doing the first time. Give
yourself a break.

While you can use refactoring later, it is easier to get it right when
you are creating the code the first time. This doesn't necessarily mean
you have to write perfect code while you are still working on it and
figuring out how to make it work, but you should refactor and fix
code before you consider it finished.

Program With Style

If you know you are writing code that others will read, then it
becomes important that you write your code with style. Style is more

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�1�.�h�t�m�l� �(�4� �o�f� �2�3�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�4� }Ç

Chapter 11

that having good data structures, or using good algorithms. It is
making code that is both easy and inviting to read.

If you read a good textbook, for example, you will find it is more
than just a collection of words and sentences. It will have a definite
style to it. The first page of each chapter will have a specific and
consistent design. The chapters will be broken down into parts or
sections that also follow a design. There will be a consistency as to
how the pages look, how the figures are arranged. There will be
conscious use of whitespace to make the book easier to read. There
will be a significant degree of artistry that has gone into the design of
the book.

The same should be true for computer code. Many programmers try
to cram as much code into as small a space as possible. This is not
good programming. You should use design principles when laying
out your code, just as is done when a book is printed. One thing that
many programmers don't seem to realize is that liberal, but deliberate
use of whitespace can make a program much easier to read1. The
following are some of the layout principles I find important:

● Use a fixed format for each class definition, and each method
definition. Use whitespace to make them stand out. Often
comments with a consistent style help.

● Indentation should indicate code structure. It should make the
code easy to read. I like to indent my code using multiples of
four spaces. I line up ifs and elses. I put braces on lines by
themselves because that has a real visual impact on making the
code easier to read. While the most common Java standard is to
put the leading brace on the same line as its associated control
statement, I find this makes the code more difficult to read. I find
the bit of extra whitespace accompanied by the quick visual
matching of braces makes the each brace on its own line much
more pleasant to read.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�1�.�h�t�m�l� �(�5� �o�f� �2�3�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�4� }Ç

Chapter 11

● Take as much care laying out comments as you do laying out
code. Remember white space. Group comments together. I like
to use trailing comments when appropriate, and I try to keep
plenty of white space when possible, and to line them up in
columns with each other.

● Good names for classes, methods, and variables are important,
too. I find that the Java capitalization standard leads to the most
readable names I've found so far. It now seems so obviously
better to me than other naming conventions that I wonder why it
took so long to develop.

Know What You Are Doing

It really does help to understand what you are doing. Take the time
you need to understand the problem, the computer, the programming
language. For example, it really does help you program better if you
understand shallow vs. deep copy or how the Java runtime works. It
does help to look at Swing with object-oriented eyes.

Write Practice Programs

Whenever I move to new system (a new operating system, a new
programming language, a new GUI, etc.), I spend a week or two
learning about it by writing a few practice programs, or getting some
program you've worked with before to run. I can't really count the
number of times the first thing I did when moving to a new system
was to get my editor working on that system.

When I'm moving to an environment when that wouldn't work, I try
to get a few simple programs working. It is important to get a
reasonable understanding of the tools (editors, compilers, etc.)
available with the new system, as well as how it works. Once I have
the basics down, I can move on to something real.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�1�.�h�t�m�l� �(�6� �o�f� �2�3�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�4� }Ç

Chapter 11

Practice Incremental Programming

Whenever I am creating new code, I practice what I call incremental
programming. I always add the very least I possibly can, test it to be
sure it works, and then move on to the next step.

For example, when I add a new class to a system, I will just create the
bare outline of the class, perhaps with a few stubs for methods, get
that basic outline to compile and link. Only then to I start to add
functionality. I will do that one feature at a time, and in as a small of
an increment at a time as possible. After I add each feature, I will test
to see that it works as it should, and that I haven't broken anything
else.

By adding one small feature at a time, you can minimize the time you
spend debugging. Because you will know just what part of the code
you are changing, you will usually be able to know just what part of
the whole program you are affecting, and can usually find out what
went wrong easily without needing to resort to using your debugger.

The Tools Matter

It is important to find just the right set of tools that fit your own style.
I personally still find I'm most productive using a Unix style
development environment. This means a good set of separate tools -
an editor, a compiler, a debugger, and some other software tools like
CVS and grep. Other programmers thrive with a full featured IDE
where all those tools are available from one interface.

Just which tools you use is much a matter of personal style. I like to
do things my own way, for example, and I find the flexibility of
separate tools makes this the easiest. I find that using a big, full-
featured IDE takes a great deal of overhead to learn to use effectively,
and then it will likely to thwart how I like to do things anyway.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�1�.�h�t�m�l� �(�7� �o�f� �2�3�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�4� }Ç

Chapter 11

Others find just the opposite, that a big IDE makes their life easier.

The important thing to realize, however, is that the tools really can
make a difference. You should take the time to try using different
tools, and use the ones that work best for you. Just because someone
hands you a big Java development tool that they think is the way to
program Java doesn't mean that it is best for you. Investigate the
alternatives.

Objects Really Help

Object-oriented programming really is more productive. If you have
well-designed objects, you will be able to confine changes to just an
object, and the objects that use it. This is ideal for the incremental
programming I discussed earlier.

Testing

Most of the testing I do is unit testing associated with the kind of
incremental programming I tend to practice. When I'm first
developing a new class, I will usually write a driver program first,
which really is just a test for the new class. As I add functionality to
the class, I can use that driver to test the new features. With the cycle
of add one thing, test that thing, I find I can produce lots of working
code quickly. This is not that much different than the test/code cycle
of eXtreme Programming.

Debugging

Since I've been doing object-oriented programming in C++ and Java,
I've found I very rarely use a debugger. Every so often, especially
when using a library or framework, I find I need to resort to a
debugger, but that isn't often. Debuggers can also be useful when you
are integrating different components of a bigger project.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�1�.�h�t�m�l� �(�8� �o�f� �2�3�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�4� }Ç

Chapter 11

When I'm working on a specific section of code, I find that
incremental programming makes debugging trivial. I know what I've
just changed, so I know where to look when something breaks.

When I can't find a bug, however, a debugger isn't necessarily the
best first step. One of the best ways I've ever found to track down a
bug is to try to explain the code to another programmer. Just going
over the code with someone else will uncover the bug with surprising
regularity. Try that first.

The very nature of objects means that it can also be very informative
to put trace print statements in object constructors. With Java, you
can run your programs from a console, and print useful information
whenever an object is constructed. This will often show exactly what
you need to find out.

When you do need to resort to a debugger, it is important to
understand just how the program is supposed to work. It is difficult to
know just where to set breakpoints, or what variables to watch unless
you know what the program should be doing.

I also have one critical rule to follow when debugging. As you debug
and try things to fix the bug, change only one thing at a time. As you
go over the code, it is often tempting to change another thing or two
before you recompile and test again. Resist. If you change more than
one thing in the code at a time, you will not know for sure which
change fixed the problem, or if you've introduced yet another bug in
the process.

Don't Reinvent the Wheel

A lot of programming problems have already been solved. Try to
avoid reinventing a solution to a problem that has already been
solved. There are textbooks with algorithms. There are design

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�1�.�h�t�m�l� �(�9� �o�f� �2�3�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�4� }Ç

Chapter 11

patterns you can use. There are libraries and frameworks that can
solve the problem with minimal work on your part. The goal is to
minimize the work you need to do reinventing what someone else has
already done.

Sometimes It is Better to Do It Yourself

Even though you want to try to avoid duplicating existing work,
sometimes you have to. The existing solution you find may not do
just what you need, or it may even be more difficult to use than just
starting from scratch. Sometimes it is important to know when to give
up and do it yourself.

There is one trend in software development that sill makes me a bit
uneasy, and that's the development of tools for automatically
generating GUI interfaces, especially for Java. This is a feature of
both Forte and JBuilder, for example. While these tools can be really
great for exploring various user interfaces, I worry about two aspects
of them.

First, you are locked into the structure of the code they generate. This
means that if you want your code to have a particular organization or
design, you may have to bend it a bit to fit the GUI code generated by
the tool you used. And while the code generated by such tools isn't
necessarily bad, it will always be generalized to fit the requirements
of the tool, and not necessarily easy to modify or understand.

Another problem is long term support. For example, while Sun is
currently supporting Forte, there is no guarantee that in a year or two
market conditions won't force Sun to drop Forte and switch to a new
product. If that were to happen, then anyone who had relied on using
Forte to build their user interfaces might be out of luck.

So, while rapid GUI designers might be great for prototypes, it is

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�1�.�h�t�m�l� �(�1�0� �o�f� �2�3�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�4� }Ç

Chapter 11

probably better and safer to build your own GUI code, or at the very
least to use only open source tools. This applies to almost any kind of
automatic code generation tool.

You Can Get Ideas Any Time

Over the years, I've discovered I have some of my best programming
ideas either while I'm in the shower, or right when I first wake up in
the morning. While you are intensely involved with a programming
project, you are likely to find that good ideas can pop into your head
at almost any time. I have found it very valuable to be prepared for
such occasions by having a small spiral notebook always nearby. I
can then write down my ideas right away before they get away, and
then review them later when I get back to programming. I still haven't
figured out how to always read my own scrawling, however.

Keeping such a notebook can be useful for other aspects of
programming, as well. You can keep meeting notes in it. You can
write down trivial details of the installation process of some software
product. While handheld organizers are great for many things,
sometimes a plain old notebook is still best for writing down rapid
notes.

Get A Life

I really like programming. When I get on a roll, I can become totally
oblivious to what is going on with the rest of the world. But only up
to a point. Then I have to do something else.

I've known programmers who got so wrapped up in their job that they
were missing out on the rest of the world. While some employers
might like this kind of programmer, it is very important to get some
kind of life away from the computer. I have found that programmers
who have a life outside their jobs end up being great and productive

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�1�.�h�t�m�l� �(�1�1� �o�f� �2�3�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�4� }Ç

Chapter 11

programmers for years, while those whose life is programming will
burn out.

Sometimes, however, you do get on a roll. You will be turning out
code at an amazing rate, and it all works. These times can happen
infrequently. If possible, you should take advantage of being on a
roll. But don't overdo, especially to the point of ignoring your friends
or family. These rolls usually only last a week or so, so beware if you
are letting them go on too long.

A Plan Matters

Master programmers who have been programming a long time can
sometime program by feel. Their experience tells them just what
approach to take solving a problem and how to write the code.
Unfortunately, there just aren't that many programmers with that
ability available. For the rest of the time, it really does matter to have
a plan.

Taking the time to understand the problem, analyze the requirements,
and do a proper design really pays off. Using the talents of a master
programmer to help make the plan can be especially productive. Once
a plan is ready, then all the programmers involved will be more
productive and the resulting product will be better. While the up front
planning may not be as much fun as actually building a product, the
effort will pay off.

The Tools

As I said in the last section, your software tools really do matter.
They can make you a more productive programmer while making the
programming task more enjoyable. In this section, I will discuss a bit
of what I believe about software tools.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�1�.�h�t�m�l� �(�1�2� �o�f� �2�3�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�4� }Ç

Chapter 11

Your Editor Really Matters

While you are actually programming, you will spend a whole lot of
your time in your code editor. Hardly any other programming tool
can invoke more ardent feelings and discussions than an editor.
Which editor you use really does matter. You should know about the
alternatives, and be able to use the one that best suites your work
style.

Know About the Time-Tested Tools

Many experienced programmers find that Unix-like programming
environment is still the best. Today, Linux is probably the best place
to experience the Unix-like environment, although there are versions
that work on Microsoft Windows.

Know About the Latest Tools

While the many of the standard software tools have been around for
years, there are new ones being developed all the time. This has been
especially true with the rise in Java's popularity. There have been
many tools developed specifically for object-oriented development,
and for Java development. Some of the newer tools are available in
free open source versions, but most are commercial products. I
already covered some of these in the last chapter. Here is a list of the
latest software tools:

● UML - there are many software tools available for working with
UML, from simply generating UML diagrams to reading and
generating Java and C++ code.

● CASE - Computer Aided Software Engineering tools are used to
help design software. Many are associated directly with specific
development methodologies.

● Project Management - Tools to help manage software projects of

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�1�.�h�t�m�l� �(�1�3� �o�f� �2�3�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�4� }Ç

Chapter 11

various sizes.
● Testing - Tools, such as JUnit, to help automate testing.
● RAD - Rapid Application Development, tools to help quickly

generate code based on simple specifications or interactive input.
● IDEs - Integrated Development Environments that bring together

many formerly separate tools into one package.
● Code Profilers - tools to both analyze runtime characteristics, and

static code properties as well.

Tools Go Away

Software tools can really enhance a programmer's productivity. There
is one significant problem with many tools, however, especially
commercially developed and marketed tools. Market forces change,
and companies go out of business.

Remember, your programs will never die. Unfortunately, companies,
methodologies, and even programming languages do. There will
always be a certain amount of risk when using the latest software
development technology. While this risk shouldn't stop you from
using the latest and greatest, your plans should include contingencies
for such unfortunate events.

The Work Environment

Even though the Internet has given many programmers the
opportunity to do at least some of their work at home or on the road,
most programmers will still work at some kind of office, usually with
a group of other programmers. The work environment can radically
effect how productive programmers are. In this section, I'll touch on a
few things I learned about just how important the work environment
is.

Most of the time, I talk from the perspective of management because

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�1�.�h�t�m�l� �(�1�4� �o�f� �2�3�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�4� }Ç

Chapter 11

these are the policies I tried to follow when I was a manager. Some of
these just seem like common sense to me, although they aren't
practiced by many companies or managers. However, I've found
these concepts and practices to be true, and to help keep programmers
productive.

If you, as a programmer, work at a place that is not pleasant, or
follows policies that don't take into consideration the special abilities
and needs of programmers, then you should try to convince your boss
that policies like I outline here really work, and will result in more
productive programmers.

A Happy Programmer is a Productive Programmer

The most important thing I've found is that a happy programmer is a
productive programmer. Thus, whenever I've worked with a team of
programmers, I've always tried to create a work environment that is
not just pleasant, but fun. This is not necessarily easy to do, but I've
found that following these principles can help create a great
environment for programmers.

Physical Environment

The physical environment is important. This includes not only the
physical building, but the computers and software tools needed for
programming.

I personally find that a private office with a door that is usually open,
but can be closed, is important. The usual policy it to try to keep your
door open to invite spontaneous and casual conversation, but to be
able to close it when you need to concentrate.

I think that open cubicles are too public and too noisy for
programmers. They can work for support people, such as a testing

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�1�.�h�t�m�l� �(�1�5� �o�f� �2�3�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�4� }Ç

Chapter 11

group, but don't allow the quiet concentration programmers sometime
need. If the physical space or company finances don't allow for
individual offices, then the cubical space must allow for as much
privacy as possible.

Extreme Programming is an exception to this. XP calls for pair
programming in a shared common space. However, XP also calls for
quiet, private space that programmers can retreat to when necessary.

Programmers should also have up to date equipment and software.
Spending a few hundred or even a few thousand extra dollars for
tools for a programmer you are paying a salary of many thousands of
dollars makes sense. Keeping the software and equipment up to date
will help maximize productivity.

Flexibility

Once you give your programmers a good work environment, you then
have to give them as much flexibility as possible in how they do their
job. I've found that if you give your programmers the respect they
deserve, and give them flexibility in how they work, they will reward
you by giving back their best work.

● Vacation. People should be able to take their vacations when
they want to. They should coincide with family needs, and not
company needs. However, vacation is very important to
revitalize programmers, and they should be required to use
vacation time, and not carry it over from year to year. And two
weeks really isn't enough. If the company isn't able to give more
than two weeks of paid vacation, then programmers should be
allowed extra time off without pay.

● Deadline Time. Deadline time is special. Every project reaches a
point where there is an important deadline. These critical
deadlines should be scheduled as far in advance as possible. For

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�1�.�h�t�m�l� �(�1�6� �o�f� �2�3�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�4� }Ç

Chapter 11

critical deadlines, programmers should be expected to put in
some extra hours, and perhaps adjust their vacation schedule.
However, these deadlines must not be abused. The critical time
can't stretch out for more that two or three weeks, and they can't
be used more than two, maybe three, times a year. And the
programmers should be compensated for the extra hours.

● Mostly Regular Hours. Most projects involving many
programmers will need to have the all programmers available for
each other at the same time. This means keeping some kind of
regular work schedule. But an individual's schedule can be
somewhat flexible, and still meet the needs of the team. I found
that letting the programmers set their own schedule as long as
there was always 5 or 6 hours of overlap on most work days with
the other programmers worked very well. This policy also allows
for some people to work from home at least part of the
workweek. Having all the programmers at work together for at
least part of the time not only allows for the required
communication, it is needed to keep the people working as a
team.

● Job Sharing. While it is not always possible for programmers
working on critical sections of a program, I've found that part-
time programmers, or programmers who split one position can be
very productive.

40 Hours

Programming is a creative and mentally intensive task. Expecting
programmers to work more than 40 hours a week on a regular basis
does not work. Eventually they will burn out and become much less
productive. I find it very significant that a 40 hour workweek is a
major principle of eXtreme Programming.

The Team

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�1�.�h�t�m�l� �(�1�7� �o�f� �2�3�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�4� }Ç

Chapter 11

The importance of teamwork has long been known in sports. Having
a great team of programmers who work together well is also
important for software development. Not only does a great team
produce great software, the team members come to count on each
other, often both professionally and personally.

The work environment should encourage teams to become close and
work together well. This includes putting team members close
together in the workplace. It can also include less tangible things like
making things fun. This can include encouraging the team members
to have lunch together, and providing social get-togethers. If the
company is small enough, these activities can extend to the entire
company.

Marketing Matters

When a company produces a product that it sells to a large customer
base, it will no doubt have a marketing department. Conflicts
between the marketing department and the development department
are legendary. The fact is, the efforts of the marketing team are just as
important to the company's health as are the efforts of the
programming team. Both sides must learn that they really need each
other.

Marketers must accept realistic time estimates from the developers.
At the same time, the developers must listen to the marketing team.
They often know what the ultimate customer wants, or at least what
will make the software product most valuable in the marketplace.
And the developers must give realistic estimates of time frames. They
shouldn't pad the estimates, and if marketing has some fixed date it
needs for a release, then the developers should tell marketing what
they can reasonably deliver. And marketing should listen. With
mutual respect, the whole company will profit.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�1�.�h�t�m�l� �(�1�8� �o�f� �2�3�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�4� }Ç

Chapter 11

Keep Up To Date

A company needs to do everything it can to keep its programmers up
to date. This means providing access to training, sponsoring trips to
relevant conferences, and providing the latest in proven hardware and
software technology.

Share the Struggle

While I firmly believe that all the practices I give in this section will
result in increased productivity, I also know that sometimes reality
intrudes onto these ideals. Companies, especially new startups, have
financial constraints. It can be a real struggle to come up with the
financial resources to pay a competitive salary, hire all the
programmers a project really needs, and have a great physical
facility. Sometimes you just have to struggle through.

I've found it is important to avoid secrecy and to share the struggles
that the company is going through with the employees. All the
employees, including the programmers, will understand, and even
work harder to help keep the company going. If you respect your
employees, and compensate for tough financial times by giving them
extra flexibility or extra incentives such as stock options, they will
come through for you.

Let Programmers Help Make Policy

Management needs to respect the programming team. One way to
show real respect for the programming team is to let the programmers
help make policy. This will include policy on thing like the
development environment used. It means that if the team says they
would be more productive by switching to XP, for example, then
management should respect this view. Give the programmers a voice,
and then trust them to come up with the best way to develop code.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�1�.�h�t�m�l� �(�1�9� �o�f� �2�3�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�4� }Ç

Chapter 11

Let Your Boss Know What You Need

Just as management needs to let the programmers help make policy
decisions, programmers need to let management know when things
aren't working or when they could be better. Tell management that 50
and 60 hour workweeks are counter productive. Tell management
about object-oriented programming. Tell them how to let you be
more productive.

The Reference Software Story

All this happy programmer stuff really does work. One of my favorite
stories is about the Reference Software development team I built.
Reference Software was a bit unusual in that the sales, marketing, and
tech support was located in San Francisco, while the biggest software
development team was in Albuquerque. Both locations had a
company policy of keeping the workplace fun and flexible. We did
almost everything I've mentioned here - flexible hours, part-time
work, a quality work place, good equipment and software, and team
building.

One of the biggest traditions we established was a monthly Friday
lunch for everyone who wanted to come. We would get a big table at
a local restaurant, and everyone would have a good time. This simple
monthly activity served to renew contacts, and rejuvenated
everyone's spirit. This really was a great team builder.

This is not the end of the story. WordPerfect bought Reference
Software in 1992, and for some time kept the team mostly intact in
Albuquerque. But business being what it is, most of the employees
were given the chance to move to WordPerfect's home office in Utah,
and the Albuquerque office was closed. Most of the people found
new jobs and stayed in Albuquerque. However, closing the office did
not end the monthly lunches. For several years after the office closed,

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�1�.�h�t�m�l� �(�2�0� �o�f� �2�3�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�4� }Ç

Chapter 11

the tradition continued, and many of the team's members continued to
have the monthly lunch. I hear that some of the people still get
together occasionally to this day.

I think there is a lesson to learn from this story. If you create a
comfortable work environment where everyone respects each other,
and where everyone is happy and likes their job, you will end up with
a group of truly productive software developers who become part of a
real team. That team can become so strong that even closing down
the office won't break the social bonds that were created.

Programming Resources

Finally, I'm going to discuss some of the resources that are available
to help improve your programming skills. It is important to keep up
with the state of the art. Not only will this keep you productive, it will
keep your job interesting, and give you opportunities to use your
skills in new circumstances.

Use The Web

The World Wide Web is one of the most important resources
available to programmers. If you need the latest information about
some programming challenge, or you want to keep up with the very
latest trends and discussions, then the Web is the place.

Watch Out for the Web

The Web can be too good. There is so much information, that it can
be overwhelming. It is very easy to follow an interesting side path on
some topic that is not relevant to whatever you were looking for to
begin with. And there is plenty of junk on the web, too. So be careful.
If you can't find the information you need quickly, don't waste more
of your valuable time following dead ends.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�1�.�h�t�m�l� �(�2�1� �o�f� �2�3�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�4� }Ç

Chapter 11

Use Open Source, If You Can

Open Source software is a valuable resource. There is some very high
quality free software available, some which can probably help you on
your current project. But the same warning applies: there is a lot of
junk, and a lot of software that won't quite match what you really
need. Don't waste effort trying to track down some free or open
source software when it would be more productive to use a
commercial product, or to develop the code yourself.

Other Programmers

One of the most important assets available to programmers is other
programmers. There is nothing like experience to improve a
programmer's skills. One of the best ways to improve your own skills
it to work with a more experienced programmer, and to learn from
them. This spread of knowledge is part of why code reviews and team
programming work so well.

Web Sites

There are an amazing number of web sites available with great
resources. Other than the fact there is a lot of poor information
available on the web, there is also the problem of longevity. If you
make a bookmark list of useful resources, chances are that within a
few months or a year, that a large percentage of the bookmarks will
no longer be valuable.

Rather that give a list of useful web sites here, I've set up a list of
useful links on my own web site (www.objectcentral.com). I hope my
links will be around for a long time, and will continue to be a
resource for my readers. So check out my web site, and follow any of
the links. There will be a special link for information related to this
book.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�1�.�h�t�m�l� �(�2�2� �o�f� �2�3�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�4� }Ç

Chapter 11

1

Unfortunately, because of the limits of the page size of this printed book, I haven't
always been able to format the code examples in this book the way I'd like to. I have
tried my best to make the examples look good, and have kept my braces on lines by
themselves.

med for Flyheart

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�1�.�h�t�m�l� �(�2�3� �o�f� �2�3�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�4� }Ç

Chapter 12

Chapter 12

What Next?

We've covered a lot of material in this book, but there is still much
more to know about object-oriented software and Java. With the
essentials of objects and how to use Java with objects we've covered,
you should be able to handle almost any related topic.

In this final chapter, we will briefly list some other good books on
object-oriented programming, and list some major Java topics we
have not covered. And finally, we will simply give definitions of
some terms and abbreviations you are likely to encounter as you read
about objects and Java.

Object Orientation

There are many books available with "object-oriented" in their title,
but a few stand out as the best available, or as important classics that
still have good information to offer. Consider the following books:

Object-Oriented Analysis and Design With Applications, Grady
Booch, Addison-Wesley, 1994, ISBN 0-201-54435-0. Still the classic
OOAD reference. Booch's notation has been replaced with UML, but
still easy to understand.

Fundamentals of Object-Oriented Design in UML, Meilir Page-Jones,
Addison-Wesley, 2000, ISBN 0-201-69946-X. Very readable. Not

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�2�.�h�t�m�l� �(�1� �o�f� �1�0�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�5� }Ç

Chapter 12

just a UML book.

Object-Oriented Systems Design: An Integrated Approach, Edward
Yourdon, Yourdon Press, 1994, ISBN 0-13-636325-3. One of my
favorites. Includes some history of software design, and helps put
object-orientation into context. Topics covered are relevant to any
methodology.

Java

In this book, we've concentrated on how to use Java to build objects.
There are many important aspects of Java that we've intentionally
ignored. For example, we've not used exception handling code in
some places where it might be appropriate for production quality
code. This helps keep the code short and focused on the example at
hand. The following is a list of some important Java topics that you
will need to know to become a complete Java programmer:

● applets
● exceptions
● Java Beans
● Javadoc
● Java libraries and frameworks
● threads
● packages
● deployment

You probably now know enough Java to be able to take advantage of
almost any good Java reference. There is very good material included
with Sun's JDK distribution, for example. Here are some good Java
books to consider:

Object-Oriented Software Development Using Java, Xiaoping Jia,
Addison-Wesley, 2000, ISBN 0-201-35084-X. A textbook. Covers

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�2�.�h�t�m�l� �(�2� �o�f� �1�0�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�5� }Ç

Chapter 12

Java, and keeps the focus on objects.

Java in a Nutshell, David Flanagan, O'Reilly, 1999, ISBN 1-56592-
487-8. Comprehensive and brief. Be sure to get the latest version.

Java: An Introduction to Computer Science & Programming, Walter
Savitch, Prentice Hall, 1999, ISBN 0-13-287426-1. A very readable
introductory textbook, great for getting started with Java and
programming.

More Terms You Need To Know

Distributed Computing

Distributed computing software is meant to run on an environment of
different computers connected by a network. These applications can
run on an internal company network, or increasingly, on computers
connected by the World Wide Web. Java is playing a major role in
developing distributed computing applications.

While programming distributed applications is beyond the scope of
this book, you can hardly avoid encountering a vast number of terms
and abbreviations related to distributed computing when you read a
computer oriented magazine or article. The following definitions will
help you to get a better idea of what you are reading about.

Because Sun has so many Java related products and terms, many
related to distributed computing, Sun specific terms are given in their
own section.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�2�.�h�t�m�l� �(�3� �o�f� �1�0�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�5� }Ç

Chapter 12

application server A server program that allows the installation
of application specific software components, in a manner so
that they can be remotely invoked, usually by some form of
remote object method call.

COM COM refers to standard developed by Microsoft
Corporation which provides a framework for integrating
components. DCOM is the distributed computing version.

CORBA Distributed computing standard maintained by the
Object Management Group (OMG), called the Common
Object Request Broker Architecture.

COS Naming CORBA standard for object directories.

DAP Directory Access Protocol, a protocol for directory
services, derived from X.500.

DCE Distributed Computing Environment is a distributed
computing standard developed by the Open Software
Foundation (OSF) with input from industry.

DCOM Microsoft's Distributed Component Object Model.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�2�.�h�t�m�l� �(�4� �o�f� �1�0�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�5� }Ç

Chapter 12

distributed computing A computing environment where
applications are composed of various parts and objects that
can be located on different computers connected to a network.
Distributed computing requires a set of standards that specify
how the parts running on different computers communicate
with each other. Currently, the two main standards are
CORBA and DCOM.

IDL Interface Description Language, CORBA's syntax for
defining object remote interfaces. (Another meaning of IDL is
Interactive Data Language, a programming tool for the
interactive reduction, analysis, and visualization of scientific
data and images.)

IIOP Internet Inter-ORB Protocol, CORBA's wire protocol for
transmitting remote object method invocations.

messaging middleware Middleware that supports a publish-
and-subscribe or broadcast metaphor.

middleware Middleware is a software interface between the
network and the applications. It provides services such as
identification, authentication, authorization, directories, and
security. The most widespread middleware standards are the
Open Software Foundation's DCE, OMG's CORBA, and
Microsoft's COM/DCOM.

MOM Message-Oriented Middleware.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�2�.�h�t�m�l� �(�5� �o�f� �1�0�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�5� }Ç

Chapter 12

NSAPI Netscape's C language API for adding application
extensions to their Web servers.

ORB Object Request Broker, a middleware technology that
manages communication and data exchange between
distributed objects. It is the primary message routing
component in a CORBA product.

POA Portable Object Adapter, a CORBA standard for defining
object lifecycle and activation.

servlet Servlets are modules of Java code that run in a server
application to answer client requests. Servlets don't use a
specific client-server protocol, but they are usually used with
HTTP.

Java Related Terms from Sun

Sun Microsystems is the originator of Java, and remains one of the
principle vendors of Java software products. Sun's developers and
marketing teams have produced a large number of products, and most
are known by their acronyms.

You will find advertisements for other products such as IDEs and
developments tools that promote that they are compliant with this or
that product from Sun. This section may help you wade through Sun's
alphabet soup.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�2�.�h�t�m�l� �(�6� �o�f� �1�0�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�5� }Ç

Chapter 12

EJB Enterprise JavaBeans, a server component standard
developed by Sun Microsystems.

J2EE Java 2 Platform, Enterprise Edition, Sun's standard for
developing enterprise applications, especially targeted for
distributed computing.

Java Naming and Directory Interface The Java standard API
for accessing directory services, such as LDAP, COS Naming,
and others.

Java Transaction API Java API for coding client demarcated
transactions, and for building transactional data source
drivers.

JDBC Java database connectivity technology is the Sun API
that implements the X/Open SQL call-level interface
specifications to provide cross-DBMS connectivity to a wide
range of SQL databases. This is the main Java standard
access to databases.

JNDI Java Naming and Directory Interface.

JNI Java Native Interface (JNI) is a standard programming
interface for writing Java native methods and embedding the
Java virtual machine into native applications.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�2�.�h�t�m�l� �(�7� �o�f� �1�0�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�5� }Ç

Chapter 12

JSP JavaServer Pages, a technology from Sun that to build
dynamic web pages using Java and XML-like tags to generate
page content.

JTA Java Transaction API.

JTS Java Transaction Service, the Java binding for the
CORBA Transaction Service.

JVM Java Virtual Machine.

RMI Remote Method Invocation, the Java standard technology
for building distributed objects whose methods can be invoked
remotely across a network.

SQLJ An extended Java syntax for embedding SQL-like
commands in a Java program.

Other Terms

The following are some other terms you are likely to encounter when
reading about Java or Web Programming.

HTTP Hypertext Transfer Protocol, one of the main protocols
for transferring web pages.

object database An object-oriented database system. See
ODMG and ODBMS.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�2�.�h�t�m�l� �(�8� �o�f� �1�0�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�5� }Ç

Chapter 12

ODBC Open Database Connectivity (ODBC) is Microsoft's
standard based on the X/Open SQL call-level interface
specifications. It does not work well with Java.

ODMG Object Data Management Group, responsible for
setting standards for object databases.

ODBMS Object Database Management System, the result of
integrating database capabilities with object-oriented
programming language capabilities.

OMG Object Management Group, an organization that defines
and promotes object oriented programming standards.

OODB Object-Oriented Database.

OODBMS Object-Oriented Database Management System.

RUP Rational Unified Process, an object-oriented
development methodology from Rational Software.

SQL Structured Query Language, the most widely used
standardized query language for requesting information from a
database.

XMI XML Metadata Interchange A new OMG standard
combining UML and XML.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�2�.�h�t�m�l� �(�9� �o�f� �1�0�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�5� }Ç

Chapter 12

XML XML is an open standard of the World Wide Web
Consortium (W3C) designed as a data format for structured
document interchange on the web. For example, it allows
defining new operations when standard HTML is not a good
fit.

med for Flyheart

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�C�h�a�p�t�e�r�1�2�.�h�t�m�l� �(�1�0� �o�f� �1�0�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�5� }Ç

Gloss.html

Glossary

abstraction A model of a real-world object or concept.

abstract class A class that has no instances. It is usually defined with the
assumption that concrete subclasses will be derived from it, and extend its
basic attributes and behavior. In Java, an abstract class is one that includes an
abstract method.

accessor A method that can access the state of an object.

actor An actor is an object that can operate on other objects, but is never
operated on by other objects itself.

agent An agent can both operate on other objects and provide services to
other objects. As the name implies, it often serves as an agent or
intermediary between other objects.

aggregation A whole/part hierarchy. An aggregate object includes (has-a)
other objects, each of which is considered to be a part of (part-of) the
aggregate object.

API Application Programming Interface. The specification of how a
programmer writing an application accesses the behavior and state of classes
and objects.

application server A server program that allows the installation of
application specific software components, in a manner so that they can be
remotely invoked, usually by some form of remote object method call.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�G�l�o�s�s�.�h�t�m�l� �(�1� �o�f� �1�5�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�7� }Ç

Gloss.html

association An association is a relationship between two or more classes.
The association will indicate how objects of the different classes relate to
each other.

attribute Used to hold state information of an object. An attribute might be
as simple as an on or off boolean variable, or it might be a complex structure
such as another object. A class definition describes the attributes and
operations (methods) of a class.

base class The most generalized class in an inheritance hierarchy. Most
applications will have many hierarchies with different base classes.

behavior The activity of an object that is visible to the outside world.
Includes how an object responds to messages by changing its internal state or
returning state information to other objects.

callback A method that is called when an event has taken place. Usually
used in association with a listener. When a listener detects an event, it will
invoke the callback of objects that need to know that the event has occurred.

CASE Computer Aided Software Engineering. Software tools used to help
automate the development process. CASE tools are most often associated
with a specific software development methodology (such as RUP or XP), or
design notation (UML).

class A class is a description of a set of objects. The set of objects share
common attributes and common behavior. Class is similar in concept to
abstract data types found in non-OO programming languages, but is more
comprehensive in that it includes both structure and behavior. A class
definition describes all the attributes of member objects of that class, as well
as the class methods that implement the behavior of member objects.

For Java specifically, a class definition defines instance and class variables
and methods, as well as specifying the interfaces the class implements and
the immediate superclass of the class. If the superclass is not explicitly
specified, the superclass will implicitly be Object.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�G�l�o�s�s�.�h�t�m�l� �(�2� �o�f� �1�5�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�7� }Ç

Gloss.html

class attribute Attributes of a class that are shared by all instances of the
class. There will be only one copy of each class attribute, and it is possible to
access these class attributes without creating any instances of the class.
These are sometimes called static attributes in Java.

class method A method defined by a class that only operates on class
attributes. Class methods can be used without creating any instances of the
class. These are sometimes called static methods in Java.

cohesion The connection or similarity (or similarity of purpose) of the
components of a class. All elements of a class should work on achieving a
common purpose.

COM COM refers to standard developed by Microsoft Corporation which
provides a framework for integrating components. DCOM is the distributed
computing version.

composition A composition is a form of aggregation where the whole cannot
exist without having the parts.

concrete class A class that is completely specified and can have instances. A
Java class derived from and abstract class will define all the abstract methods
from the abstract class.

constructor An operation that creates an object and defines its initial state.
For complex objects, construction can be a significant activity, and cause the
constructors of other objects to be invoked as well. In Java, constructors are
instance methods with the same name as their class. Constructors are
invoked using the new keyword.

container A class whose instances are collections of other objects. These
collections may be objects all of the same type, or of mixed types, although
they usually have a common superclass. Containers include lists, stacks,
queues, bags, and others. They usually provide a method to iterate over each
object in the container.

constructor An operation that creates an object and defines its initial state.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�G�l�o�s�s�.�h�t�m�l� �(�3� �o�f� �1�5�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�7� }Ç

Gloss.html

For complex objects, construction can be a significant activity, and cause the
constructors of other objects to be invoked as well.

CORBA Distributed computing standard maintained by the Object
Management Group (OMG), called the Common Object Request Broker
Architecture.

core class A public class (or interface) that is a standard member of the Java
Platform.

COS Naming CORBA standard for object directories.

customer The organization that needs a software system, and is paying for
the development. The customer should have a clear idea of what the software
system needs to do, and how it can best help the customer's organization.

coupling The interdependence of various components of the system on one
another. Independent objects should have no coupling with each other.
Relying on the internal implementation of a class, or using friend access
couples two classes.

DAP Directory Access Protocol, a protocol for directory services, derived
from X.500.

DCE Distributed Computing Environment is a distributed computing
standard developed by the Open Software Foundation (OSF) with input from
industry.

DCOM Microsoft's Distributed Component Object Model.

deep copy Making a copy of an object that makes a duplicate of everything,
including allocating space to build new copies of anything pointed to by
pointers.

default behaviors In an inheritance hierarchy, the class behaviors defined by
superclasses that will be used by default unless they are overridden by some
subclass.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�G�l�o�s�s�.�h�t�m�l� �(�4� �o�f� �1�5�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�7� }Ç

Gloss.html

derived In an inheritance hierarchy, a subclass is derived from a superclass.
The derived subclass inherits the attributes and methods of the parent
superclass.

destructor A destructor is an operation that destroys an object and frees
whatever resources the object used. It is invoked when an object ceases to
exist, such as when it goes out of scope.

developer An organization that develops software for a customer. The
developer will work with the customer to design a software system that best
meets the needs of the customer given the time and financial constraints
imposed by the customer.

distributed computing A computing environment where applications are
composed of various parts and objects that can be located on different
computers connected to a network. Distributed computing requires a set of
standards that specify how the parts running on different computers
communicate with each other. Currently, the two main standards are
CORBA and DCOM.

dynamic binding Definition bound at run time.

EJB Enterprise JavaBeans, a server component standard developed by Sun
Microsystems.

encapsulation The process of hiding all the internal details of an object from
the outside world. In Java, encapsulation is enforced by having the
definitions for attributes and methods inside a class definition.

estimation Before a project can proceed, the customer usually needs a
feasibility study and an estimation of the final cost of the system.

event An occurrence that can alter the state of the system.

feasibility Given an initial specification, the developer will work with the
customer to decide if it is feasible to continue with the development of a

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�G�l�o�s�s�.�h�t�m�l� �(�5� �o�f� �1�5�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�7� }Ç

Gloss.html

software project given the technical, time, and financial constraints. This is
also known as risk assessment - is it within acceptable risks to proceed with
the project?

finalization A finalizer method is called by the Java garbage collector when
it finally frees the storage space used by an object. It is not possible to know
when an object will be finalized.

framework A collection of classes designed to provide a set of services for a
particular problem area. The designers of a framework should be experts in a
problem domain, and thus provide a higher level design that makes it easier
for an application using the framework to build an application for that
problem domain.

friend A friend class is one that has access to protected data even though it is
not a direct subclass of a given class. Friend access is provided by package
access in Java.

garbage collection The automatic detection and freeing of memory that is no
longer in use. An object becomes available for garbage collection when it is
no longer referred to by any other object. Java uses garbage collection rather
than explicit destructors found in other OO languages such as C++.

generalization/specialization An inheritance hierarchy. Each subclass is a
specialization of a more generalized superclass.

generic/parameterized classes A class whose final definition is determined
by parameters. One typical use is to define container classes for arbitrary
types of objects. The type of the object is specified in the parameter.
Parameterized classes are not supported by Java.

getter A method that returns the value of a class attribute. Getters are also
known as accessors or selectors. By convention, getter methods have names
such as getLimit or getWidth.

has-a A way to state a whole/part relationship. The whole object has-a part.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�G�l�o�s�s�.�h�t�m�l� �(�6� �o�f� �1�5�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�7� }Ç

Gloss.html

hierarchy An ordering of classes. The most common OO hierarchies are
inheritance and aggregation.

HTTP Hypertext Transfer Protocol, one of the main protocols for
transferring web pages.

identity The characteristics or state of an object that allows it to be
distinguished from other objects.

IDL Interface Description Language, CORBA's syntax for defining object
remote interfaces. (Another meaning of IDL is Interactive Data Languaage, a
programming tool for the interactive reduction, analysis, and visualization of
scientific data and images.)

IIOP Internet Inter-ORB Protocol, CORBA's wire protocol for transmitting
remote object method invocations.

implements In Java, a specification that the class will implement the code
required by an interface.

inheritance A mechanism that allows one class (subclass) to share the
attributes and behaviors of another class (superclass). Inheritance defines an
is-a relationship between classes. The subclass or derived class inherits the
attributes and behaviors of the superclass, and will usually extend or modify
those attributes and behaviors.

single inheritance When a subclass is derived from a single superclass, it is
said to have single inheritance.

multiple inheritance When a subclass is derived from multiple superclasses,
it is said to have single inheritance. Java does not allow multiple inheritance,
but provides interfaces as an alternative.

initial specification An early description of what a software system needs to
do. Depending on the overall size of the project, the initial specification can
be simple, or consist of extensive documentation.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�G�l�o�s�s�.�h�t�m�l� �(�7� �o�f� �1�5�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�7� }Ç

Gloss.html

instance A specific object that is an instantiation of a class. An instance has
specific attributes and behaviors, and a unique identity. Instance and object
are often used interchangeably.

instance attribute An attribute of a class that is associated with a particular
instance of the class. Each instance will have its own copies of instance
attributes.

instance method Methods defined by a class that operate on instance
attributes. This is the most common type of method defined by a class, and
an instance method will be used only with its associated instance of the class.

instantiation Creating an instance of an object of a given class. Instantiating
an instance brings it into existence.

interface In Java, an interface is a specification of methods a class using the
interface must implement. An interface is a specification, and does not define
any code. It provides an alternative to multiple inheritance.

is-a A term used in inheritance hierarchies. In general, a subclass is-a
specialized kind of a more general superclass.

is-a test A simple test to check for proper inheritance design. If you cannot
say a subclass is-a kind of the superclass, then inheritance is probably not
appropriate.

iterator An iterator is a method (or methods) used to access or visit each part
of an object. This allows the outside world controlled access to all important
parts of an object without the need to know the internal implementation
details of a specific object. Iterators are often used with container classes,
and typically work by accessing the first item in a container, and then each
subsequent object until all objects have been accessed.

J2EE Java 2 Platform, Enterprise Edition, Sun's standard for developing
enterprise applications, especially targeted for distributed computing.

Java Naming and Directory Interface The Java standard API for accessing

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�G�l�o�s�s�.�h�t�m�l� �(�8� �o�f� �1�5�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�7� }Ç

Gloss.html

directory services, such as LDAP, COS Naming, and others.

Java Transaction API Java API for coding client demarcated transactions,
and for building transactional data source drivers.

JDBC Java database connectivity technology is the Sun API that implements
the X/Open SQL call-level interface specifications to provide cross-DBMS
connectivity to a wide range of SQL databases. This is the main Java
standard access to databases.

JNDI Java Naming and Directory Interface.

JNI Java Native Interface (JNI) is a standard programming interface for
writing Java native methods and embedding the Java virtual machine into
native applications.

JSP JavaServer Pages, a technology from Sun that to build dynamic web
pages using Java and XML-like tags to generate page content.

JTA Java Transaction API.

JTS Java Transaction Service, the Java binding for the CORBA Transaction
Service.

JVM Java Virtual Machine.

link A reference to another class. Used to build associations between classes.

listener A method that responds to events. These are usually system events
such as mouse clicks or timer events. The listener will typically invoke
callbacks of objects that need to respond to the event.

member An attribute or method that belongs to a given class.

method An operation or service performed upon an object, defined as part of
the declaration of a class. Methods are used to implement object behavior.
Synonyms for method include member function, operation, and service.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�G�l�o�s�s�.�h�t�m�l� �(�9� �o�f� �1�5�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�7� }Ç

Gloss.html

message A message is an operation one object performs on another.
Messages are usually sent by invoking a specific method or operation
provided by another object.

messaging middleware Middleware that supports a publish-and-subscribe or
broadcast metaphor.

method An operation or service performed upon an object, defined as part of
the declaration of a class. Methods are used to implement object behavior.
Synonyms for method include member function, operation, and service.

middleware Middleware is a software interface between the network and the
applications. It provides services such as identification, authentication,
authorization, directories, and security. The most widespread middleware
standards are the Open Software Foundation's DCE, OMG's CORBA, and
Microsoft's COM/DCOM.

mix-in A class (or usually an interface in Java) that is used to define a single
behavior. Mix-ins are usually not standalone classes, but are used to provide
a standard for implementing the designed behavior.

modifier This is an operation that alters the state of an object.

module A module is a basic technique of organizing a program, and is
usually thought of as containing all the specific code and declarations needed
to implement a given part of a design. It is the basic unit of encapsulation. In
an OO design, usually each class is implemented as a separate module, and
encapsulates all the data structures and methods, and controls access by the
outside world.

MOM Message-Oriented Middleware.

multiplicity An attribute that quantifies an association between objects. The
multiplicity is specified as a range of the number of objects that can
participate in the association, usually in the form n..m, where n is the lower
limit and m the upper limit. A * means an unlimited number, while a single

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�G�l�o�s�s�.�h�t�m�l� �(�1�0� �o�f� �1�5�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�7� }Ç

Gloss.html

value can also be used. Common multiplicities include 1, 0..*, 1..*, and *.

NSAPI Netscape's C language API for adding application extensions to their
Web servers.

object The basic unit of object orientation. An object is an entity that has
attributes, behavior, and identity. Objects are members of a class, and the
attributes and behavior of an object are defined by the class definition. An
object and an instance are the same thing.

object database An object-oriented database system. See ODMG and
ODBMS.

object orientation A method of developing software that uses abstraction
with objects, encapsulated classes, communication via messages, object
lifetime, class hierarchies, and polymorphism.

object lifetime The time an object exists - from its instantiation in its
constructor until the object no longer exists and has been finalized by the
Java garbage collector. The creation point of an object is under program
control, but the exact moment when an object ceases to exist cannot be
determined because of the way the Java garbage collector works.

ODBC Open Database Connectivity (ODBC) is Microsoft's standard based
on the X/Open SQL call-level interface specifications. It does not work well
with Java.

ODBMS Object Database Management System, the result of integrating
database capabilities with object-oriented programming language
capabilities.

ODMG Object Data Management Group, responsible for setting standards
for object databases.

OMG Object Management Group, an organization that defines and promotes
object oriented programming standards.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�G�l�o�s�s�.�h�t�m�l� �(�1�1� �o�f� �1�5�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�7� }Ç

Gloss.html

OODB Object-Oriented Database.

OODBMS Object-Oriented Database Management System.

operation A class definition describes the attributes and operations of a
class. Attributes are implemented as variables and operations are
implemented as methods.

ORB Object Request Broker, a middleware technology that manages
communication and data exchange between distributed objects. It is the
primary message routing component in a CORBA product.

overriding When a subclass specifies an alternative definition for an
attribute or method of its superclass, it is overriding the definition in the
superclass. Also called overloading. Java can only overload methods.

part-of The opposite of has-a. The component is a part-of the whole.

persistence Some objects can thought of as persistent whose existence
transcend time. Persistent objects usually provide methods that save and
restore their own state (to disk, for example).

POA Portable Object Adapter, a CORBA standard for defining object
lifecycle and activation.

polymorphism Polymorphism is what allows the appropriate method for any
given object to be used automatically. Polymorphism goes hand in hand with
inheritance and classes derived from a common superclass. Polymorphism is
supported by dynamic binding of an object to the appropriate method.

private, protected, public Private, protected, and public are access concepts
within a class. Private data and methods are available only to instances of the
immediate class. Protected items are available to other classes directly
derived from the immediate class. Public items are available to the world. It
is usually best to keep all data items and structures private or protected, and
allow public access to a class only through public methods.

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�G�l�o�s�s�.�h�t�m�l� �(�1�2� �o�f� �1�5�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�7� }Ç

Gloss.html

problem domain The field or area a software system is being developed for.
An accounting system would fall into a financial problem domain, and
require input from financial experts to its design, for example.

problem statement A plain language description of what a program must
do. A problem statement will not include details of how a program is going
to do it. The problem statement must be written in the vocabulary of the
problem domain. For example, the problem statement for an accounts-
payable system should be written in the vocabulary of an accountant, not that
of a computer programmer.

reference A data element whose value is an address. In Java, all objects are
accessed by reference. Any object variable will be a reference to an actual
object, and not the object itself.

RMI Remote Method Invocation, the Java standard technology for building
distributed objects whose methods can be invoked remotely across a
network.

root class The top most or most generalized user class of an inheritance
hierarchy. In Java, all classes are at least implicitly derived from the Java
Object class, which make it the most primitive root class. Most applications
will have many hierarchies with different non-Object root classes.

RUP Rational Unified Process, an object-oriented development methodology
from Rational Software.

selector This is an operation that gets information about the state of an object
without altering the state of the object.

servlet Servlets are modules of Java code that run in a server application to
answer client requests. Servlets don't use a specific client-server protocol, but
they are usually used with HTTP.

setter A method that allows the outside world to modify an attribute of a
class. Setter methods are also known as mutators or modifiers. Setter

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�G�l�o�s�s�.�h�t�m�l� �(�1�3� �o�f� �1�5�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�7� }Ç

Gloss.html

methods by convention have names such as setLimit or setWidth.

SQL Structured Query Language, the most widely used standardized query
language for requesting information from a database.

SQLJ An extended Java syntax for embedding SQL-like commands in a
Java program.

state State reflects the current values of all the attributes of a given object,
and is the result of the behavior of an object over time.

subclass In an inheritance hierarchy, a subclass is derived from an associated
superclass. A subclass is a specialization of the generalized superclass.

superclass In an inheritance hierarchy, a superclass is a more generalized
class. A subclass will be derived from a superclass. (A superclass is also
known as a parent class or a base class)

this Also called self. A reference to the current object. Within a class
definition, references to the attributes and methods of the class are implicit.
The this reference can be used for clarity to make a reference explicit. Most
commonly, however, this is used to pass a reference to the current instance to
another object.

visibility The ability of one class to see and use the resources of another
class. Visibility is controlled by various programming language features such
as Java's public, protected, and private specifiers.

whole/part A relationship between classes where one class will be made up
of or contain objects of another class.

XMI XML Metadata Interchange A new OMG standard combining UML
and XML.

XML XML is an open standard of the World Wide Web Consortium (W3C)
designed as a data format for structured document interchange on the web.
For example, it allows defining new operations when standard HTML is not

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�G�l�o�s�s�.�h�t�m�l� �(�1�4� �o�f� �1�5�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�7� }Ç

Gloss.html

a good fit.

med for Flyheart

�f�i�l�e�:�/�/�/�C�|�/�o�o�b�o�o�k�/�G�l�o�s�s�.�h�t�m�l� �(�1�5� �o�f� �1�5�)� �[�1�3�/�0�3�/�2�0�0�3� �0�2�:�5�5�:�4�7� }Ç

	Local Disk
	Contents
	Why This Book?
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Gloss.html

