
Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Java(TM) Look and Feel Design Guidelines: Advanced Topics
Sun Microsystems Inc

Product Details

• Paperback: 200 pages ; Dimensions (in inches): 0.55 x 9.30 x 7.26
• Publisher: Addison Wesley Professional; ISBN: 0201775824; 1st

Edition
• Average Customer Review: Based on 1 review..
• Amazon.com Sales Rank: 90,892
• Made: By dotneter

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Copyright 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California
94303 U.S.A. All rights reserved. Use is subject to License terms.

This product or documentation is distributed under licenses restricting its use, copying,
distribution, and decompilation. No part of this product or documentation may be
reproduced in any form by any means without prior written authorization of Sun and its
licensors, if any. Third-party software, including font technology, is copyrighted and
licensed from Sun suppliers.

Sun, Sun Microsystems, the Sun logo, Java, JDK, and the Java Coffee Cup logo are
trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries. Adobe is a registered trademark of Adobe Systems, Incorporated.

UNIX is a registered trademark in the United States and other countries, exclusively
licensed through X/Open Company, Ltd.

Federal Acquisitions: Commercial Software--Government Users Subject to Standard
License Terms and Conditions.

U.S. Government: If this Software is being acquired by or on behalf of the U.S.
Government or by a U.S. Government prime contractor or subcontractor (at any tier), then
the Government's rights in the Software and accompanying documentation shall be only
as set forth in this license; this is in accordance with 48 C.F.R. 227.7202-4 (for
Department of Defense (DOD) acquisitions) and with 48 C.F.R. 2.101 and 12.212 (for
non-DOD acquisitions).

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH
DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

The publisher offers discounts on this book when ordered in quantity for special sales. For
more information, please contact:

Addison-Wesley Professional
75 Arlington Street, Suite 300
Boston, Massachusetts 02116
U.S.A.

Text printed on recycled and acid-free paper.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Copyright 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, Californie
94303 Etats-Unis. Tous droits réservés. Distribué par des licences qui en restreignent
l'utilisation.

Ce produit ou document est protegé par un copyright et distribué avec des licences qui en
restreignent l'utilisation, la copie, la distribution, et la décompilation. Aucune partie de ce
produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que
ce soit, sans l'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s'il y
en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices
de caractères, est protegé par un copyright et licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, Java, JDK, et le Java Coffee Cup logo sont des
marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux
Etats-Unis et dans d'autres pays. Adobe est une marque enregistrée de Adobe Systems,
Incorporated.

UNIX est une marque déposé aux Etats-Unis et dans d'autres pays et licenciée
exclusivement par X/Open Company Ltd.

L'accord du gouvernement americain est requis avant l'exportation du produit.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES
CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES SONT
FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI
APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE IMPLICITE RELATIVE A
LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A
L'ABSENCE DE CONTREFACON.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Contents

 Preface

Part I: General Topics

Chapter 1: Introduction

Logical Organization
Scalability
Predictability
Responsiveness
Efficiency

Chapter 2: Windows

Windows, Objects, and Properties
Overview of Window Types
Window Types for Objects, Properties, and Actions
Primary Windows

Title Bars in Primary Windows
Toolbars in Primary Windows
Status Bars in Primary Windows

Property Windows
Property Window Characteristics
Choosing the Correct Property Window Characteristics
Dedicated and Non-Dedicated Property Windows
Inspecting and Non-Inspecting Property Windows
Behavior and Layout of Property Windows

Action Windows
Title Text in Action Windows
Command Buttons in Action Windows

Window Titles for Identically Named Objects and Views
Window Titles for Identically Named Objects
Window Titles for Multiple Views of the Same Object

Setting the State of Windows and Objects
Positioning Secondary Windows
Restoring the State of Property Windows

Alerting Users After an Object's State Changes
Multiple Document Interfaces

Chapter 3: Menus

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Menu Elements
Keyboard Shortcuts and Mnemonics for Menu Items
Available and Unavailable Items
Additional Conventions for Menu Items

Common Menus
Typical File Menu

New Item
Open Item
Close Item
Print Item
Preferences Item
File Properties Item
Most Recently Used (MRU) Menu List
Exit Item

Typical Edit Menu
Updating Labels of Menu Items
Paste Special Item
Properties Item

Typical View Menu
Typical Help Menu
Additional Menus

Object Menus
Object Menus and the Action Menu
Beyond Object Menus and the Action Menu

Contextual Menus
Window Management and the File Menu

When Window Reuse Is the Default
When Opening a New Window Is the Default

Chapter 4: Behavior

Modes
Modal Secondary Windows
Modes Set From Tool Palettes
Application-Wide Modes

Selecting Multiple Objects
Filtering and Searching a Set of Objects

Complex Filtering and Searching
Simple Filtering and Searching
Stopping Searches and Filter Operations

Tool Tips

Chapter 5: Idioms

Overview of Idioms

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Idioms for Selecting and Editing in Tables
Selection Models and Editing Models for Tables
Using Row Selection Models
Editing Row-Selection Tables
Using Cell Selection Models
Editing Cell-Selection Tables

Idioms for Arranging a Table
Table Appearance
Table Command Placement
Column Reordering and Column Resizing
Row Sorting
Automatic Row Sorting

Tree Table Idiom
Idioms for Text Fields and Lists

Browse Idiom
Key-Search Idiom
Add-and-Remove Idiom

Container-and-Contents Idiom

Chapter 6: Responsiveness

Characteristics of Responsive Applications
Problems of Unresponsive Applications
Responsiveness as Part of Performance

Computational Performance
Scalability
Perceived Performance, or Responsiveness

Determining Acceptable Response Delays
Measuring Response Delays

Setting Benchmarks for Response Delays
Tools for Measuring Response Delays

Responding to User Requests
Providing Operational Feedback

Deciding Whether to Provide Feedback
Types of Visual Feedback
Providing the Correct Type of Visual Feedback
Letting Users Stop Commands in Progress

Part II: Special Topics

Chapter 7: Wizards

Fundamentals of Wizards
Standalone Wizards and Embedded Wizards
Typical Uses of Wizards

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Deciding Whether You Need a Wizard
Providing Alternatives to Wizards
Types of Wizard Pages

User-Input Pages
Overview Page
Requirements Page
Confirmation Page
Progress Pages
Summary Page

Designing Wizard Pages
Designing the Title Bar
Designing the Bottom Pane
Designing the Right Pane

Subtitles
Main Instructions
User-Input Areas
Additional Instructions
Navigation Instructions

Designing the Left Pane
Deciding What to Display in the Left Pane
Left Pane With a List of Steps
Left Pane With Steps That Branch or Loop
Left Pane With Help Text
Left Pane With Steps and Help Text
Left Pane With a Graphic

Designing Wizard Behavior
Delivering and Starting Wizards
Supporting a User's Entire Task
Positioning and Sizing Wizards
Checking Wizard Dependencies and User Input
Providing Operational Feedback in Wizards
Alerting Users in Wizards

Designing Installation Wizards
Choosing a Location for a Wizard's Code
Helping Users Decide Whether to Install
Tasks That Installation Wizards Should Handle

Chapter 8: Events and Alarms

Alarm Conditions
Levels of Severity
Alarm Status
Logging Events
Displaying Alarm Views

Alarm Graphics

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Monitored-Entities View
Detailed Alarm View

 Glossary

 Index

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Preface

Java Look and Feel Design Guidelines: Advanced Topics provides guidelines
for anyone designing user interfaces for applications written in the JavaTM
programming language. In particular, this book offers design guidelines for
applications that use the Java look and feel. This book supplements Java Look
and Feel Design Guidelines, 2d ed. For details on that book, see Related
Books.

Although some topics in Java Look and Feel Design Guidelines: Advanced
Topics apply only to certain types of applications, most topics apply to all
applications that use the Java look and feel.

Who Should Use This Book

Primarily, this book addresses the designer who chooses an application's
user-interface elements, lays them out in a set of components, and designs the
user interaction model for an application. This book should also prove useful
for software developers, technical writers, graphic artists, production and
marketing specialists, and testers who help create applications that use the
Java look and feel.

Java Look and Feel Design Guidelines: Advanced Topics focuses on design
issues and human-computer interaction in the context of the Java look and feel.
For information about technical aspects of the Java Foundation Classes (JFC),
visit the JFC and Swing Connection web sites:

• http://java.sun.com/products/jfc
• http://java.sun.com/products/jfc/tsc

The guidelines in this book are appropriate for GUI applications that run on
personal computers and network computers. These guidelines are not
intended for software that runs on consumer electronic devices, such as
wireless telephones or personal digital assistants (PDAs).

How to Use This Book

This book is intended to be read in its entirety or to be consulted as a reference
on particular topics. The information in this book is easier to understand if you
first read Java Look and Feel Design Guidelines, 2d ed. If you read only

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

particular topics in this book, you should also see any corresponding topics in
that book.

This book assumes that you are familiar with the terms and concepts in Java
Look and Feel Design Guidelines, 2d ed., which is available in printed form at
bookstores and as hypertext at the following web address:

http://java.sun.com/products/jlf

In addition, this book assumes that you are using the default Java look and feel
theme, as described in Chapter 4 of Java Look and Feel Design Guidelines,
2d ed.

What Is in This Book

This book contains two main parts--
"General Topics" and "Special Topics."

Part One, "General Topics," consists of chapters whose user interface
guidelines apply to most applications.

• Chapter 1, "Introduction," explains why a consistent look and feel is important in
applications and describes characteristics of well-designed applications.

• Chapter 2, "Windows," defines user-interface objects and then describes various
types of windows. In addition, the chapter describes how to choose the right
window type, design window elements, set the state of windows, and handle
multiple windows.

• Chapter 3, "Menus," provides guidelines for designing menu elements, common
menus (such as File, Edit, and Help), and contextual menus. The chapter also
provides guidelines for assigning mnemonics and keyboard shortcuts to menu
items.

• Chapter 4, "Behavior," discusses modes of user interaction, multiple selection,
filtering, searching, and tool tips.

• Chapter 5, "Idioms," describes how to use sets of JFC components to achieve a
standardized appearance and behavior. In particular, the chapter discusses
idioms for tables, text fields, lists, and hierarchies of user-interface objects.

• Chapter 6, "Responsiveness," discusses characteristics of responsive
applications, describes how responsiveness relates to performance and to
response delay, explains how to measure response delay, and describes ways to
improve responsiveness and provide operational feedback to users.

Part Two, "Special Topics," consists of chapters whose guidelines apply only
to applications that include wizards or alarms.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

• Chapter 7, "Wizards," introduces wizards and then describes how to decide
whether your users need a wizard, how to design the layout and behavior of
wizards, and what other factors to consider when designing wizards.

• Chapter 8, "Events and Alarms," defines the terms "event" and "alarm" and then
provides information on how to display alarm views (representations of alarms)
and how to manipulate alarm views (for example, by sorting them at a user's
request).

What Is Not in This Book

This book does not provide detailed discussions of human interface design
principles or the design process, nor does it present information about task
analysis--an essential concept in user interface design. For resources on
these topics, see Related Books and "Related Books and Web Sites" in Java
Look and Feel Design Guidelines, 2d ed.

Many of this book's guidelines can be applied to applications that use the Java
look and feel to display text in any language. However, the usability of the
book's guidelines and examples has been tested only with languages in which
users read left to right. If you are designing for users who read right to left, use
your judgment to decide whether this book's guidelines regarding layout are
appropriate for your application.

Graphic Conventions

The screen shots in this book illustrate the use of JFC components in
applications with the Java look and feel. Except where noted, measurements
called out in screen shots are in pixels.

Throughout the text, symbols call your attention to Java look and feel design
guidelines and to tips for implementing them.

Java Look and Feel Standards

Requirements for the consistent appearance and compatible behavior of Java
look and feel applications. To conform with the Java look and feel, applications
must meet these requirements.

Java look and feel standards promote consistency and ease of use in
applications. In addition, they support the creation of applications that are
accessible to all users, including users with physical and cognitive limitations.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

These guidelines require you to take actions that go beyond the provided
appearance and behavior of the JFC components.

Implementation Tips

Technical information and useful tips of particular interest to the programmers
who are implementing your application design.

Related Books

The preface to Java Look and Feel Design Guidelines, 2d ed., cites many
references on topics such as fundamental principles of human interface design,
design issues for specific (or multiple) platforms, and issues relating to
internationalization and accessibility. This section does not repeat those
references; instead, it lists only books to which this book refers.

• Sun Microsystems, Inc. Java Look and Feel Design Guidelines, 2d ed.,
Addison-Wesley, 2001. This book provides essential information for anyone
involved in creating cross-platform GUI (graphical user interface) applications and
applets in the Java programming language. In particular, the book offers design
guidelines for software that uses the Java look and feel.

• Hackos, JoAnn T., and Janice C. Redish. User and Task Analysis for Interface
Design. John Wiley & Sons, Inc., 1998. This book explains how to observe and
interview users to gather the information you need to design your application.

• Johnson, Jeff. GUI Bloopers: Don'ts and Do's for Software Developers and Web
Designers. Morgan Kaufman, 2000. This book provides examples of poor design
in windows, inconsistent use of labels, and lack of parallelism in visual layout and
grammar. The writer develops principles for achieving lucidity and harmony of look
and feel.

• Wilson, Steve, and Jeff Kesselman. Java Platform Performance: Strategies and
Tactics. Addison-Wesley, 2000. Intended to help software developers write
high-performance software for the Java platform, this book describes the various
qualities known as performance and describes how to attain and measure them.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Part I: General Topics

This part consists of:

• Chapter 1: Introduction
• Chapter 2: Windows
• Chapter 3: Menus
• Chapter 4: Behavior
• Chapter 5: Idioms
• Chapter 6: Responsiveness

1: Introduction

An application's usability depends on its appearance and behavior--its
look and feel. A consistent look and feel helps users learn an application
faster and use it more efficiently. In addition, a consistent look and feel helps
users learn other applications that share that look and feel.

This book provides guidelines for designing applications with the
Java look and feel. All the guidelines are intended to help you create a
well-designed application.

Well-designed applications have the following characteristics:

• Logical organization
• Scalability
• Predictability
• Responsiveness
• Efficiency

The rest of this chapter describes each of these characteristics, why each is
important, and which parts of this book relate to each characteristic.

Logical Organization

Applications that use the Java look and feel consist of user interface
components displayed in windows. The way that you organize your application
into windows and components should be consistent with the logical divisions
that users perceive in their tasks. For example, a logically organized email
application might include:

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

• A window for reading received messages, each of which is an object
• A window for composing messages, with components such as text fields for

addressees, a text area for the message, and a button for sending the message

Logical organization is especially important in applications that display many
objects in several windows. For example, an application for managing a large
network might display:

• Windows displaying sets of network domains
• Views (such as icons or table entries) of each domain's nodes
• Views of each node's properties (for example, its network address)

Chapter 2 discusses how to choose the correct types of windows for different
types of user interaction. Within a window, usability often depends on whether
menus are organized logically. Chapter 3 describes how to design menus.

Scalability

Applications sometimes need to display widely varying numbers of user
interface objects. For example, in an application that monitors the computers
of a growing corporation, the number of objects representing computers at a
particular site might increase rapidly. When looking for a particular object in a
window representing that site, a user might need to view 15 objects in one
month or 1500 the next. The user interface of such an application should be
scalable. In other words, it should enable users to find, view, and manipulate
widely varying numbers of objects.

This book discusses several ways to make your application's user interface
more scalable. For example, Chapter 4 describes filtering and
searching--features that enhance an application's ability to manipulate large
sets of objects.

Predictability

To learn new parts of an application, users often rely on their experience with
the application's other parts. Slight inconsistencies between the look and feel
of different parts can frustrate users and reduce their productivity. Chapter 5
describes ways to group JFC components into reusable units that promote
predictability in your application.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Responsiveness

Responsiveness is an application's ability to keep up with users. It is often
cited as the strongest factor in users' satisfaction with applications. Chapter 6
describes techniques for measuring and improving your application's
responsiveness.

Efficiency

To provide maximum usability, your application must be efficient. An
application's logical organization, scalability, predictability, and responsiveness
all contribute to its efficiency.

Efficiency is especially important if users' tasks are complex and
time-consuming. User aids, such as wizards, can help new users and
experienced users work efficiently. Chapter 7 describes how to design wizards
that are as efficient as other user-interface designs.

In applications that monitor and manage real-time systems--such as large
computer systems and networks--a user's ability to respond efficiently to
alarms can sometimes prevent major system failures. Chapter 8 discusses how
to design applications that enable users to handle alarms efficiently.

2: Windows

The Java platform provides several types of windows, each for a different type
of interaction. To help you choose appropriate windows types for your
application, this chapter:

• Introduces objects and properties, which are displayed in windows
• Provides an overview of window types
• Explains how to choose the correct window type
• Describes various window types in detail
• Describes how to title windows and set their state
• Provides guidelines about using multiple document interfaces

This chapter supplements Chapters 7 and 8 of Java Look and Feel Design
Guidelines, 2d ed.

In this chapter, the dialog box window type is subdivided into action
windows and property windows, both described here.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

For information about using menus in windows, see Chapter 3.

Windows, Objects, and Properties

Windows can display user interface objects. An object is a logical entity that
an application displays and a user manipulates--for example, a document or
paragraph in a word-processing application. User interface objects do not
necessarily correspond to Java programming language objects in an
application's code. User interface objects represent data or other parts of a
user's tasks.

User interface objects have characteristics called properties. For example,
a paragraph might have a property that determines whether it is indented.
Users can view or set the values of properties.

Applications can display a single object in more than one view. For example,
at a user's request, an application might display the same objects as list items,
table entries, or icons, as shown in Figure 1.

Figure 1 Different Views of the Same Objects

Overview of Window Types

The Java platform provides the following basic window types:

• Plain windows
• Utility windows
• Primary windows
• Secondary windows

Figure 2 shows these window types and their subtypes.

Figure 2 Window Types

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Table 1 lists each window type and describes its intended use.

Table 1 Window Types and Intended Use

Window Type Intended Use

Plain
window

Typically, displays a splash screen, which appears briefly in the
time between when an application starts and when the
application's main window appears.

Utility
window

Displays a set of tools (for example, the drawing tools in a
graphics program), or enables other user interaction that can
affect a primary window.

Primary
window

Represents an object or a set of objects. A primary window can
have any number of dependent, or secondary, windows. For
more information, see Primary Windows.

Secondary
window

An alert box or a dialog box:

Alert box--Enables brief interaction with a user--for example, to
display error messages or warn of potential problems. For more
information, see Alerting Users After an Object's State
Changes.

Dialog box--A property window or an action window:

• Property window--Enables a user to display or set the properties of

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

one or more objects, typically objects in the parent window (which
opened the property window). For more information, see Property
Windows.
• Action window--Prompts a user for information needed to perform an
action (such as opening a file). The user requested the action from the
parent window. Action windows are not for displaying or setting
properties of objects. For more information, see Action Windows.

Window Types for Objects, Properties, and Actions

A window's intended use determines its correct window type. Choosing the
correct window type is especially important when displaying objects or
properties.

Only two window types are intended for displaying objects and their properties:

• Primary windows
• Property windows

You can use an action window to let users perform actions on an object. In
addition, you can enable users to perform actions on objects by providing
drop-down menus or equivalent controls.

To represent an object or a set of objects, use a primary window. To

represent an object's properties, use a property window. Use these window
types only for these purposes.

When providing a window for performing actions on an object, use an

action window. However, do not use an action window to display or set the
properties of an object. Use a property window instead.

Primary Windows

A primary window is the main window in which a user interacts with a
document or data. An application can have one or more primary windows,
each of which a user can manipulate independently.

A primary window represents an object (such as an email message) or a set of
objects (such as all the messages in a mail window). For information about
representing the properties of objects, see Property Windows.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Primary windows contain a title bar and, optionally, a menu bar, toolbar, and
status bar, as shown in Figure 3.

Figure 3 Elements of a Primary Window

Title Bars in Primary Windows

The title bar of a primary window displays text that includes the name of the object, or set of
objects, that the window represents. Figure 4 shows a typical title bar for a primary window.

Figure 4 Title Bar of a Primary Window

For more information about window titles, see Chapter 7 of Java Look and Feel Design
Guidelines, 2d ed. In addition, see Window Titles for Identically Named Objects and
Views of this book.

In primary windows, begin the window title text with the name of the object

or set of objects that the window represents, followed by a space, a hyphen,
another space, and the application name.

Toolbars in Primary Windows

Primary windows can contain a toolbar, as shown in Figure 5.

Figure 5 Toolbar of a Primary Window

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

A toolbar can contain any combination of the following controls:

• Command buttons--for example, a button for printing or searching
• Controls for choosing modes of interaction--for example, buttons for choosing

painting tools in a graphics application
• Controls that dynamically change and display an object's property values--for

example, in a word-processing program, a button that both italicizes the current
text and shows that the current text is italicized

If users can access an action from a toolbar, provide keyboard access to

that action as well. Alternatively, provide an equivalent action that is keyboard
accessible.For example, if you provide a toolbar control for printing text, you
might also provide a menu item for printing text. Toolbar controls can differ
from their corresponding menu items--but only in that the toolbar control uses
default values, whereas the menu item opens an action window.

When providing a keyboard-accessible alternative to a toolbar control,

ensure that the alternative has at least the capabilities of the toolbar control.

Omit all toolbar controls from the keyboard traversal order so that expert

users to navigate more easily. If a user presses the Tab key to move keyboard
focus in a window, do not move focus to toolbar controls.

Provide a tool tip for each toolbar control, especially if the control has no

label. (For more information about tool tips, see "Tool Tips" on page 68.)

Status Bars in Primary Windows

The bottom of primary windows can include a status bar, as shown in Figure 6.

Figure 6 Status Bar at the Bottom of a Primary Window

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

You can use the status bar to display status messages and read-only
information about the object that the window represents.

In a window's status bar, ensure that each message fits the available

space when the window is at its default size.

To avoid displaying obsolete information in a window's status bar, clear

each status message when the next user action occurs in that window.

Property Windows

A property window is a dialog box in which users can display or change values
of one or more object properties.

Property Window Characteristics

A property window has four main behavioral characteristics--one from each of
the following pairs:

• Modal or modeless
• Single-use or multiple-use
• Dedicated or non-dedicated
• Inspecting or non-inspecting

This section discusses only the following characteristics:

• Dedicated
• Non-dedicated
• Inspecting
• Non-inspecting

For a discussion of the remaining characteristics, see Chapter 8 of Java Look
and Feel Design Guidelines, 2d ed.

Table 2 describes each main behavioral characteristic that can apply to
property windows.

Table 2 Property Window Characteristics

Characteristic Description

Modal Prevents a user from interacting with other windows in the

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

current application.

Modeless Does not prevent a user from interacting with other windows
in the current application.

Single-use Intended for users who are likely to perform only one
operation with the dialog box before dismissing it.

Multiple-use Intended for users who are likely to perform more than one
operation with the dialog box before dismissing it.

Dedicated Affects only objects already selected when the property
window opened.

Non-dedicated Affects currently selected objects, even if the current
selection changes.

Inspecting Displays a continuously updated view of the property values
for the currently selected object, even if the values change.

Non-inspecting Displays a static view, or snapshot, of the selected object's
property values.

Only a few combinations of the characteristics in Table 2 are recommended,
so choosing the correct property window characteristics is simpler than it might
seem. This section describes how to make the correct choices. Later sections
describe each property window characteristic in detail.

Figure 7 shows a primary window, an inspecting property window, and a
non-inspecting property window.

Figure 7 Property Windows and a Primary Window

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

For information about positioning a property window in relation to its parent
window, see Positioning Secondary Windows.

Choosing the Correct Property Window

Characteristics

Before choosing characteristics for your application's property windows,
consider how users should interact with each window. A property window's
intended use determines its correct window characteristics. Figure 8 helps you
choose the correct characteristics for property windows.

Figure 8 Steps for Choosing Property Window Characteristics

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Of the sets of property window characteristics in Figure 8, only two sets are
typically used in applications. Table 3 provides examples of property windows
whose characteristics match those of the typical sets.

Table 3 Examples of Typical Property Windows

Property Window
Characteristics

Example

Multiple-use, modeless,
non-dedicated, inspecting

The small windows for choosing colors or layers
in graphics applications such as Adobe®
Photoshop software.

Single-use, modeless,
dedicated, non-inspecting

The Preferences dialog box of a typical
application.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Dedicated and Non-Dedicated Property Windows

A dedicated property window affects only objects already selected when the
property window opened. Changing the selection while a dedicated property
window is open does not change which objects the property window affects.

In contrast, a non-dedicated property window affects only objects currently
selected--even if the selection changes while the property window is open. In
other words, a non-dedicated property window affects whichever objects are
currently selected when a user clicks the window's OK button or Apply button.
In a non-dedicated property window, a user can change which objects the
window affects. To do so, the user can select different objects while the
window is open.

Inspecting and Non-Inspecting Property Windows

Property windows are inspecting or non-inspecting, depending on:

• How current their displayed information is
• When a user's changes take effect

Inspecting Property Windows

An inspecting property window is a dialog box that both:

• Displays a continuously updated view of the property values for the selected
object

• Enables a user to change the displayed property values (and the selected object)
immediately

Figure 9 shows an inspecting property window.

Figure 9 Inspecting Property Window

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

In inspecting property windows, a user does not click an OK button or Apply
button to apply changes. The application applies changes automatically.

An inspecting property window displays the values of the selected object. If a
user changes the selection, the values in the property window also change
immediately to reflect the newly selected object. An inspecting property
window continuously updates its view of an object's property values, even if
those values change outside a user's control. Most inspecting property
windows are modeless.

If your application has many types of objects, avoid creating a separate
inspecting property window for each type. Instead, create a single inspecting
property window whose contents change depending on the properties of the
selected object.

If users need to update two or more interdependent property values, do not
provide an inspecting property window. Instead, provide a non-inspecting
property window, thereby ensuring that changes to interdependent properties
occur at the same time.

Here is an example of why inspecting property windows are inappropriate for
updating interdependent property values. An application has a Customer
object for which users can enter an address that includes a city and
country--such as Paris, France. As a user types the address, the Customer
object automatically verifies that the specified city (Paris) is in the specified
country (France).

In an inspecting property window, if a user tries to change the city name from
Paris to Tokyo, the Customer object rejects the change because the user has
not changed the country name from France to Japan. If the user then tries to
change the country name, the change is again rejected, because the city name
has not been changed from Paris to Tokyo.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Non-Inspecting Property Windows

A non-inspecting property window is a property window that displays a static
view, or snapshot, of the selected object's property values--accurate as of the
time that the property window opened. Figure 10 shows a non-inspecting
property window.

Figure 10 Non-Inspecting Property Window

Non-inspecting property windows are particularly useful when a user needs to
update several interdependent values at the same time.

If a user changes property values in a non-inspecting property window, those
changes take effect only if the user clicks the window's OK button or Apply
button. Changes that take place beyond the user's control are not reflected in
the window until it opens again.

NOTE ¯ If your application's objects can change outside a user's control, alert the user to
any such changes. For more information, see Alerting Users After an Object's State
Changes.

Behavior and Layout of Property Windows

For property windows, the correct behavior and command-button layout
depend on the window's characteristics. This section provides guidelines for
the behavior and layout of property windows.

Place no menu, toolbar, or status bar in property windows.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

To enable users to open a property window, place an item labeled

Properties on the Object menu, if there is one. (Object stands for the type of
the object whose properties the window displays--for example, Document.) If
your application has no Object menu, place the Properties item on the Edit
menu. Label the item Object Properties if the Edit menu also contains items for
other property windows.

Title Text in Property Windows

Property windows include title text, displayed in the title bar, as shown in
Figure 11.

Figure 11 Title Text in the Title Bar of a Property Window

Regardless of a property window's characteristics, the title text consists of the
following items, in order:

1. The name of the object that the window represents
2. A hyphen, preceded by one space and followed by another
3. The name of the command that opened the window

In Figure 11, the window represents an object named SuperRivet. The
command that opened the window is Alloy Properties.

In property windows, format the title text as Object Name - Command, as

shown in Figure 11. Object Name stands for the name of the currently
displayed object. Precede the hyphen by one space and follow it by one space.
Command stands for the name of the command that opened the property
window.)

If a user might not know which application created a particular property

window, include the application's name in that window's title text. Format the
title text like this: Object Name - Command - Application Name.
(Precede each hyphen by one space and follow it by one space.)

In the title text of inspecting property windows, update the current object's

name each time you update the window's contents.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Command Buttons in Non-Inspecting Property Windows

Table 4 describes the command buttons you can place in non-inspecting
property windows.

Table 4 Command Buttons for Non-Inspecting Property Windows

Button Description

Apply Updates the properties of the associated object.

Reset
Discards any changes made in the window since the last "apply"
action. The Reset command then refills the window's fields with the
values from the associated object.

OK Updates the properties of the associated object and then closes the
window.

Close

Closes the property window but not the application. If a user has
changed the values in the window but has not applied them, the
Close button opens an alert box containing the following text: "Your
changes have not been saved. To save the changes, click Apply. To
discard the changes, click Discard. To cancel your Close request,
click Cancel."

Cancel Works like the Close button, except that the Cancel button does not
display an alert box before discarding changes.

Help Displays help text in another window while leaving the property
window open.

Before deciding which command buttons to place in a non-inspecting property
window, estimate how many times a user needs to use the window before
closing it.

If a user will use a property window only once before closing it, then place an
OK and a Cancel button--in that order--at the bottom right of the window, as
shown in Figure 12.

Figure 12 Required Buttons for a Single-Use Property Window

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Optionally, you can add a Help button to the right of the Cancel button, as
shown in Figure 13.

Figure 13 Required and Optional Buttons for a Single-Use Property Window

If a user will use a property window repeatedly before closing it, place an Apply
and a Close button--in that order--at the bottom right of the window, as shown
in Figure 14.

Figure 14 Required Buttons for a Repeated-Use Property Window

Optionally, you can place a Reset button between the Apply button and the
Close button, and place a Help button to the right of the Close button, as
shown in Figure 15.

Figure 15 Required and Optional Buttons for a Repeated-Use Property Window

The following guidelines apply only to non-inspecting property windows.

Place either an OK button or an Apply button in non-inspecting property

windows.

Make the OK button or the Apply button the default command button.(For

more information about default command buttons, see Chapter 10 of Java
Look and Feel Design Guidelines, 2d ed.)

Place the dismissal button to the right of the OK button or Apply button.

If a non-inspecting property window has an OK button, label its dismissal

button Cancel. Otherwise, label the dismissal button Close.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Ensure that clicking the title bar's close-window control has the same

effect as clicking the window's Close or Cancel button.

Open an alert box if a user clicks the Close button before applying

changes entered in the window. In the alert box (which includes a Discard
button), display the following text: "Your changes have not been saved. To
save the changes, click Apply. To discard the changes, click Discard. To
cancel your Close request, click Cancel."

If a non-inspecting property window has an Apply button, ensure that

clicking the Apply button updates the associated object, using the current
values from the property window.

If a non-inspecting property window has an OK button, ensure that

clicking the OK button updates the properties values of the associated object
and then closes the window.

If a non-inspecting property window needs a Reset button, place that

button between the window's Apply and Close buttons.

Ensure that clicking the Reset button performs the following operations, in

order:

1. Discards any changes made in that window since it opened, or since the last
"apply" operation

2. Refills the window's fields with the current values of its associated object

Command Buttons in Inspecting Property Windows

In inspecting property windows, place a Close button at the bottom right of the
window. Optionally, place a Help button to the right of the Close button.

The following guidelines apply only to inspecting property windows.

Ensure that clicking the Close button immediately closes the window.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Ensure that clicking the title bar's close-window control has the same

effect as clicking the window's Close button.

Some controls do not immediately send their updates to the object being

inspected. (For example, a text field does not send its updated text until it has
lost input focus.) In inspecting property windows, send all pending updates to
the window's object when a user clicks the window's Close button or close-
window control.

Action Windows

Action windows are dialog boxes that request information for completing an
action. Open an action window if a user activates a menu command or
command button that requires additional user input to complete an action.
Figure 16 shows an action window.

Figure 16 Action Window

As shown in Figure 16, an action window contains:

• Title bar
• Controls
• Button area

An action window has no menu, toolbar, or status bar.

The label of a menu command or command button that opens an action
window ends with an ellipsis (...). The ellipsis means that the command
requires additional user input.

Like property windows, action windows can be:

• Modal or modeless

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

• Single-use or multiple-use

For more information about these characteristics, see Chapter 8 of Java Look
and Feel Design Guidelines, 2d ed.

For information about positioning an action window in relation to its parent
window, see Positioning Secondary Windows.

Ensure that an action window has no menu, toolbar, or status bar.

Place an ellipsis (...) at the end of the label for a menu command or

command button that opens an action window.

Title Text in Action Windows

The title text of an action window helps users understand the window's
purpose. An action window's title text includes:

• The name of the object that the action window affects (if you know the name)
• The name of the menu item or command button that opened the action window

(omitting any trailing ellipsis)

Figure 17 shows the title text of an action window opened from a Print menu
item. The window affects an object named MySalesForecast.

Figure 17 Title Text in the Title Bar of an Action Window

If an action window enables a user to create an object, the window's title text
cannot include that object's name because the object does not yet exist.
Figure 18 shows the title text of such an action window, opened from a New
Rivet menu item.

Figure 18 Title Text of an Action Window That Creates a New Object

In Figure 18, the title text shows only the name of the menu item that opened
the action window.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

In the title text of an action window, include the name of the menu item or

command button that opened the action window. Omit the name's trailing
ellipsis, if there is one.

If an action window affects an existing object, format the title text like this:

Object Name - Menu Item. (Precede the hyphen by one space and follow it by
one space.)

If an action window creates a new object, make the window's title text the

name of the menu item or command button that opened the window.

If a user might not recognize the source of a particular action window,

format the title text like this: Object Name - Menu Item - Application Name.
(Precede each hyphen by one space and follow it by one space.)

In a modeless action window, ensure that the title text always reflects the

object that the window affects.

Command Buttons in Action Windows

Action windows have the following command buttons (in left-to-right order):

• One or more command buttons that perform actions
• One dismissal button
• One Help button (optional)

The command buttons are right-justified in the window's button area, as shown
in Figure 19.

Figure 19 Command Buttons in an Action Window (Multiple-Use)

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

An action window's leftmost command button performs an action using values
from the window's controls. For example, in Figure 19, the Replace button
performs an action using the value that the user enters in the input field labeled
Replacement.

The Help button, if there is one, is always rightmost in the button area, as in
Figure 19. (For more information about the Help button, see Chapter 8 of Java
Look and Feel Design Guidelines, 2d ed.)

An action window's rightmost command button (or the one directly to the left of
the Help button) closes the window.

If an action window has additional buttons, each one performs a different
action using the values from the window's controls. The additional buttons are
between the leftmost and rightmost buttons.

The correct labels to use for an action window's command buttons depend on
whether the window is for single-use or multiple-use:

• In a single-use action window, you can label the first button OK--although a more
specific label, such as Print, is better. The window's dismissal button must be
labeled Cancel.

• In a multiple-use action window, you should assign the first button a meaningful
label, such as Replace. The window's dismissal button must be labeled Close, as
in Figure 19.

In action windows with two or more buttons that can perform an action, each
button needs a unique action-specific label. Do not label a button OK in such a
window.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Ensure that each action window has (in left-to-right order) one or more

command buttons that perform actions, one dismissal button, and, optionally, a
Help button.

Action windows can be single-use or multiple-use. In a single-use action

window, ensure that all command buttons (except the Help button) perform
their action and then close the window. In a multiple-use action window,
ensure that all command buttons except the Close button perform their action
and leave the window open.

In a single-use action window, label the dismissal button Cancel. In a

multiple-use action window, label the dismissal button Close.

If users can perform only one action from a single-use action window,

label the window's command button OK, or preferably, provide a more specific
label. However, if the window has more than one button that can cause an
action, do not label any button OK. Instead, provide a more specific label for
each button.

In an action window, ensure that clicking the dismissal button immediately

discards all data entered in that window.

In an action window, ensure that clicking the title bar's close-window

control has the same effect as clicking the window's dismissal button.

Window Titles for Identically Named Objects and

Views

In applications with multiple windows, each window title should be unique. This
section helps you create unique window titles for:

• Multiple windows representing different objects whose names are identical
• Multiple windows representing different views of the same object

The title text of a primary window should be in the following format:

Document or Object Name - Application Name

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Figure 20 illustrates the conventions for titling windows that represent
identically named objects or multiple views of the same object.

Figure 20 Window Titles for Identically Named Objects and for Multiple Views

In primary windows that display identically named objects or views, the window
title includes a suffix to the Object Name. However, the suffix is not part of the
Object Name. For example, in Object 2, view 1, of Figure 20, the suffix " (2):1"
is not part of "User Accounts"--the Object Name.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Window Titles for Identically Named Objects

Applications can display more than one window at a time. As a result, different
windows can display objects whose names are identical. For example, two
windows might each display a different document named Report. To avoid
confusion and to help users distinguish between such windows, use the
following guideline.

If two or more objects have the same name, make their names unique in

window titles by appending a space and the suffix (n) to the Object Name in
each window's title text--where n is an increasing integer.

Window Titles for Multiple Views of the Same Object

Typically, applications show a particular object in only one window at a time.
Sometimes, however, an application needs to show two or more views of the
same object in different windows.

For example, at a user's request, an application might show the contents of a
folder or directory as a list in one window and as a set of icons in a different
window. In such windows, the correct format for the Object Name in the title
text depends on whether the window is a primary window, as described in the
following guidelines.

If multiple primary windows show views of the same object, distinguish

each of the windows by appending the suffix :n to the object name in the
window title--for example, Report:2. (The letter n stands for an increasing
integer.)

Do not place a view number in the title bar of property windows.

In action windows, place a view number in the title bar only if the action

produces a different result in different views.

If your application displays multiple objects with the same name and

multiple views of the same object, place the view number after the duplicate-
name identifier in each window title--for example, Report (2):3.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Setting the State of Windows and Objects

A typical window or object has properties whose value can change--for
example, its screen position and size. For each window or object, the set of
current values for all its changeable characteristics is known as its state.
Applications often need to initialize or restore the state of a window or object.
This section provides guidelines related to the state of windows and objects.

Positioning Secondary Windows

When displaying a secondary window for the first time, applications should
position that window in relation to its parent window, as shown in Figure 21.

Figure 21 Secondary Window Correctly Positioned in a Primary Window

In Figure 21, the secondary window is at the golden mean of the parent
window--a point directly on the parent's vertical midline and slightly above its
horizontal midline. A secondary window centered on its parent's golden mean
is generally considered more visually pleasing than the same window centered
on parent's exact center.

When a secondary window opens for the first time, ensure that it is at the

golden mean of its parent window. That is, ensure that the secondary window
is both:

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

• Centered on the vertical midline of its parent window
• Positioned so that its top is n pixels below the top of the parent window

The value of n can be derived from the following equation, in which h is the
height of the parent window:

When closing and reopening a secondary window during a single

application session, reopen that window where it was when it closed most
recently. (Alert boxes are an exception. Always reopen an alert box at its initial
position.)

Restoring the State of Property Windows

Users can change a property window's state by several means--for example,
by rearranging the window's tabbed panes or other organizing elements.

If a user reopens a property window after closing it during the same

application session, restore that window's state. In other words, make the
window look exactly as it did when the user last closed it--especially if the user
has manipulated the window's components.

Alerting Users After an Object's State Changes

In some applications, an object's state can change outside a user's control--even
while the user is editing the object's property window.

If the state of an object changes while a user is editing that object, display

an alert box if the user tries to apply changes to the object. In that alert box,
inform the user that the object's state has changed.

In alert boxes for informing users of object-state changes, provide text at

least as specific as this:

Object Name changed while you were editing it. To update it with the values you entered,
click Update. To discard the values you entered and use the new ones instead, click
Discard. To cancel your attempt to edit this object, click Cancel.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Replace Object Name with the actual name of the changed object. If your
application can detect how the object changed, display text that describes the
change precisely.

Multiple Document Interfaces

Avoid designing a Multiple Document Interface (MDI) application--an
application in which primary windows are represented as internal windows
inside a backing window.

Many users have trouble manipulating the windows of MDI applications. In
addition, an MDI application's main window can sometimes obscure a user's
view of other applications.

Use no internal windows in your application.

3: Menus

In most applications, menus are one of the main ways that users issue
commands. To provide maximum usability, menus must be logically ordered
and easily accessible.

This chapter helps you design usable menus. It provides guidelines for
designing:

• Menu elements--menu titles, menu items, mnemonics, and so on
• Common menus--menus found in most applications
• Contextual menus--menus whose items affect the object or area under the pointer

To understand this chapter, you should be familiar with the menu-related terms
(such as drop-down menu) in Java Look and Feel Design Guidelines, 2d ed.
This chapter is intended only for applications with menus.

Menu Elements

Figure 22 shows menus elements in a typical application.

Figure 22 Menu Elements

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

In Figure 22:

• Each menu title consists of exactly one word.
• The menu titles fit in a single line in the menu bar.
• The command name in each menu item is a single word or a short phrase, such

as "Save As."
• No menu item has a command name identical to the menu's title. (For example,

no item in the File menu is labeled "File.")
• All menu titles and menu items use headline capitalization style. (For more

information about headline capitalization, see Chapter 4 of Java Look and Feel
Design Guidelines, 2d ed.)

Menu elements in most applications should have these characteristics, each of
which promotes usability.

When a window is at its default size, ensure that the titles of its drop-down

menus all fit on a single line in the menu bar, without being truncated.

Ensure that the title of a drop-down menu consists of exactly one word.

In drop-down menus, ensure that the label of each menu item differs from

the menu title.

Keyboard Shortcuts and Mnemonics for Menu Items

Keyboard shortcuts and mnemonics are keyboard equivalents to menu items.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

• A keyboard shortcut is a keystroke combination (usually a modifier key and a
character key, like Control-C) that activates a menu item from the keyboard, even
if the relevant menu is not currently displayed.

• A mnemonic is an underlined alphanumeric character in a menu title or menu
item. A mnemonic shows a user which key to press (sometimes in conjunction
with the Alt key) to activate a menu item or navigate to it.

An item's mnemonic differs from its keyboard shortcut. Figure 22 shows
mnemonics and keyboard shortcuts for items in a typical File menu.

Table 5 lists mnemonics for typical menus and menu items. To use the
mnemonics in Table 5, users can simultaneously press the Alt key and the
character key that corresponds to the underlined letter or numeral. (For more
information, see Chapter 6 of Java Look and Feel Design Guidelines, 2d ed.)

Table 5 Common Mnemonics

Menu
Title

Menu Items

File
New, New Window, Open, Open in New Window, Open in Current Window, Close,
Save, Save As, Page Setup, Print, Preferences, File Properties1, Exit

Edit Undo, Redo, Cut, Copy, Paste, Delete, Find, Find Again, Select All

Format Bold, Italic, Underline, Align Left, Align Center, Align Right

View Large Icons, Small Icons, List, Details, Sort By, Filter, Zoom In, Zoom Out, Refresh

Help Contents, Tutorial, Index, Search, About Application-Name

1 Assign "e" as the mnemonic for the File Properties item only if the name represented by File
contains no
better letter for the mnemonic.

Table 6 lists common keyboard shortcuts.

Table 6 Common Keyboard Shortcuts

Sequence Equivalent Menu Item

Ctrl-N New (File menu)

Ctrl-O Open (File menu)

Ctrl-W Close (File menu)

Ctrl-S Save (File menu)

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Ctrl-P Print (File menu)

Ctrl-Z Undo (Edit menu)

Ctrl-Y Redo (Edit menu)

Ctrl-X Cut (Edit menu)

Ctrl-C Copy (Edit menu)

Ctrl-V Paste (Edit menu)

Delete Delete (Edit menu)

Ctrl-F Find (Edit menu)

Ctrl-G Find Again (Edit menu)

Ctrl-H Replace (Edit menu)

Ctrl-A Select All (Edit menu)

Ctrl-B Bold (Format menu)

Ctrl-I Italic (Format menu)

Ctrl-U Underline (Format menu)

Ctrl-J Justify (Format menu)

Ctrl-L Align Left (Format menu)

Ctrl-E Align Center (Format menu)

Ctrl-R Align Right (Format menu)

F1 Help

Shift-F1 Contextual help

F10 Refresh

For more information about keyboard shortcuts and mnemonics, see those
topics in Chapter 6 of Java Look and Feel Design Guidelines, 2d ed. and
elsewhere in that book.

Assign mnemonics to all menu titles and menu items. Use the mnemonics

in Table 5 if your application includes any of the menu titles and menu items
listed there.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Provide keyboard shortcuts for frequently used menu items. Use the

keyboard shortcuts in Table 6, if possible.

Available and Unavailable Items

A menu item is dimmed when its command is unavailable. In Figure 23, the
Paste and Paste Special items are unavailable and, therefore, dimmed.

Figure 23 Menu With Unavailable Items

Dim a menu item if it represents an unavailable command, and users can

make that command available without exiting the application. If the command
becomes available, undim the menu item. (For more information on available
and unavailable menu items, see Chapter 9 of Java Look and Feel Design
Guidelines, 2d ed.)

Additional Conventions for Menu Items

Like the conventions described so far in this chapter, the following conventions
help users to work with menus.

Separators

You can group menu items by inserting separators between groups. In
Figure 23, the Undo and Redo items of the Edit menu are a group, set apart
from the menu's other groups by a separator.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Ellipses

An ellipsis (...) at the end of a menu item indicates that an application needs
additional user input to execute the item's command. An ellipsis indicates that
the application will display a dialog box before executing the command.
However, not all menu items that open additional windows should have an
ellipsis. For example, the About item in a Help menu should not end in an
ellipsis.

Place an ellipsis (...) at the end of a menu item only if that item opens a

dialog box that requests user input for completing an action.

Do not place an ellipsis (...) after a menu item that opens a property

window.

Menu Item Graphics

You can place graphics before the leading edge of menu items, as in
Figure 22.

Provide menu item graphics only if there are corresponding toolbar button

graphics in your application. The graphics help users associate the toolbar
button with the corresponding menu command. Provide menu item graphics
for all the qualified menu items or for none of them.

 The recommended menu graphics are at the following web site:
http://developer.java.sun.com/developer/techDocs/hi/repository/

Common Menus

"Common menus" refers to the drop-down menus that are in most
menu-driven applications. The common menus are:

• File menu
• Edit menu
• View menu
• Help menu

Figure 24 shows the common menus and their usual menu items.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Figure 24 Common Menus

Use the common menus and usual menu items as a starting point when
designing menus.

In your application, provide a File menu and a Help menu. (You can change
the title of the File menu, as discussed in Typical File Menu.) The other
common menus are optional. When designing menus, include the optional
common menus only if your application needs them. Similarly, within each
menu, include optional items only if they fit your application's needs. Later
sections of this chapter explain which menu items are required in each
common menu and under which conditions they are required.

In applications with drop-down menus, include a File menu and a Help

menu in each application window. (You can rename the File menu, as
explained in the next section.)

When placing common menus in a menu bar, place them in this order: File,

Edit, View, Help. Place any additional menus between the Edit menu and the
View menu, or between the View menu and the Help menu.

Typical File Menu

An application's leftmost menu, typically titled "File," contains the following
types of menu items:

• Items that affect a window's top-level object type--the type of object that the
window represents, such as a file, mailbox, or computer.

• Items that affect the entire application--for example, application preferences.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

• Items by which users interact with external resources. For example, in Figure 25,
the Print menu item enables users to interact with a printer.

Figure 25 Example File Menu

Although the title of the leftmost menu is usually "File," you can instead name it
after the window's top-level object type--for example, "Console," "Mailbox," or
"Computer."

NOTE ¯ Except where noted, this chapter refers to an application's leftmost menu as the
"File menu," though the menu's actual title might differ.

Place a menu item in the File menu if that item enables users to interact with
an external resource, such as a printer.

Ensure that the File menu is always the leftmost menu of the menu bar. In

addition, ensure that the File menu's title is either "File" or the name of the
object type that the window represents.

New Item

The New item, shown in Figure 26, enables users to create an object of the
type that the window represents. (In contrast, the Open item, described on
page 45, reopens an existing object of that type.)

Figure 26 New Menu Item

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

The New item has several variants, each for a different type of application.
Some frequently used variants are:

• New...--Displays a dialog box.
• New (with a submenu indicator)--Opens a submenu, as in Figure 27.
• New File--Creates an object of type File.
• New Window--Creates a new primary window displaying, typically, a new view of

the same objects that the current primary window displays.

Figure 27 New Menu Item With Submenu

To determine which variant of the New item to use, decide whether your
application will enable users to create objects in the current primary window, in
a new primary window, or in either. A task analysis can help you make this
decision. (To learn about task analysis, see a book such as User and Task
Analysis for Interface Design, described in "Related Books" on page 4.)
Window Management and the File Menu can also help you decide which
variant of the New item fits your application.

If users can create more than one type of object, the File menu can list more
than one variant of the New item. For example, the File menu might list a
New Mailbox item and a New Message item. If users can create 10 or more
types of objects, consider using a New... menu item to display a dialog box
where users can choose a type of object.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Include the New item in a window's File menu if users can create objects

in that window.

If users can create at least three types of objects--but fewer than ten

types--ensure that the File menu's New item activates a submenu showing the
types of objects that users can create.

In a File menu, ensure that the New item (or any one of its variants, New...,

New File, or New File...) creates an object either in the current primary window
or in a new primary window.

In a File menu, ensure that the New Window item (if present) creates a

primary window--typically one containing a new view of the same objects
displayed in the current primary window. If a menu item behaves in this way,
label it New Window.

If users can set parameters of a new object, include a New... or New File...

item in the File menu. Display a dialog box to help users set the new object's
parameters before the application creates the object. For example, an email
application might display a dialog box to let users name a mailbox before the
application creates it.

In the File menu, if the New item has a submenu, assign the keyboard

shortcut Ctrl-N to the most frequently used submenu item.

Open Item

The Open item opens an existing object in the current primary window or a
new primary window. Typically, users choose the object in a dialog box for
choosing files or other objects.

The Open item has the following variants:

• Open (with a submenu indicator)
• Open... (displays a dialog box)
• Open in Current Window
• Open in Current Window...
• Open in New Window

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

• Open in New Window...

The correct form to use in your application depends on whether the application
can open objects in:

• The current primary window
• A new primary window
• Either the current primary window or a new primary window

For help in deciding which variant of the Open item fits your application, see
Window Management and the File Menu.

A File menu's New and Open items must manage windows in the same way.
For example, if the New item creates objects in the current window, the Open
item must also create objects in the current window.

If users can open at least three types of objects--but fewer than ten

types--ensure that the File menu's Open item activates a submenu showing
the types of objects that users can open.

In a File menu, if the Open item has a submenu, assign the keyboard

shortcut Ctrl-O to the most frequently used submenu item.

If your application needs a dialog box for choosing files, use the file-

chooser dialog box in the Swing API of the Java Foundation Classes.

Close Item

The Close item closes the current primary window. Include the Close item only
if your application can display more than one primary window. Group the Close
item with the New item and the Open item.

If your application supports more than one primary window, ensure that

each File menu includes a Close menu item.

In a File menu, ensure that the Close item closes an application's current

primary window and only that window.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

If only one primary window remains open, ensure that the File menu's

Close item behaves like that menu's Exit item. For a description of the
Exit item, see Exit Item.

If closing a window will discard a user's unsaved changes, warn the user

by displaying an alert box.

Print Item

The Print item prints the current object. The Print item ends in an ellipsis if it
will display a Print Options dialog box. Display a Print Options dialog box if
users can set print options.

If your application needs a Print Options dialog box, use the print- chooser

dialog box in the Swing API of the JFC (Java Foundation Classes).

Preferences Item

The Preferences item displays a property sheet that lists preference settings
for an entire application.

If your application's users can set preferences, include a Preferences item

in the File menu.

File Properties Item

The File Properties item sets properties of the application window's top-level
object (for example, a mailbox).

If a window's leftmost menu is named for the window's top-level object

type (referred to here as File), and that object type has properties that users
can display, ensure that the File menu includes an item labeled File Properties.

Most Recently Used (MRU) Menu List

Many applications provide a Most Recently Used (MRU) list so that users can
reopen objects. The MRU list is a dynamic list of a user's most recently opened

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

objects. The first object on the list is the one most recently used. If your
application has an MRU list, assign mnemonics to the MRU numbers in the list,
as shown in Figure 28.

Figure 28 Most Recently Used (MRU) List in a File Menu

If a File menu has a Most Recently Used list, place that list just above the

menu's Exit item. Place one separator above the list and another separator
below the list.

If a File menu has a Most Recently Used list, ensure that the list displays

no more than 10 objects.

Exit Item

The Exit item terminates an application, closing all its windows--no matter how
many primary windows are open. In applications that can display multiple
primary windows, the File menu includes an Exit item and a Close item. The
Close item closes only the current primary window and then terminates the
application if no other primary window is open. If just one primary window is
open, the Exit item and the Close item have the same effect. (For more
information on the Close item, see page46.)

In applications that can display only a single primary window, the Exit item is
the only way to close that window from the File menu. In such applications, the
File menu does not include a Close item.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Ensure that the Exit item is the final item in the File menu.

Ensure that the Exit item closes all associated windows and terminates

the application.

If terminating the application will discard a user's unsaved changes, warn

the user by displaying an alert box.

Typical Edit Menu

The Edit menu contains items with which users can modify an application's
objects. Some of the menu's items, such as the Find item, work on the current
window. Others, such as the Delete item, work on currently selected objects.
Figure 29 shows an example Edit menu.

Figure 29 Example Edit Menu

Updating Labels of Menu Items

In the Edit menu, you can continuously update the labels of some items to
reflect your application's state or the object type on which the menu item
operates. For example, you could continuously update an Undo
CommandName item--where CommandName changes to the name of the
most recent command, such as Undo Paste. Continuous updating is useful for
labeling Delete menu items, where the label can reflect the type of object that
will be deleted--for example, Delete Group or Delete Alias.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Paste Special Item

The Edit menu can include a Paste Special item that enables users to control
the format of pasted data. Optionally, this menu item can display a submenu or
dialog box from which users can choose one of the formats in which data can
be pasted. For example, text might be pasted as formatted text or as
unformatted text.

Properties Item

Many applications include a Properties item in the Edit menu. The Properties
item always works on the current selection. If no objects are selected, the
Properties item should be unavailable and dimmed. Putting a Properties item
in the Edit menu is appropriate if the application has no Object menu or when
the application has more than one Object menu. For more information about
Object menus, see Additional Menus.

A Properties item in the Edit menu differs from a File Properties item in the File
menu. A File Properties item sets properties of a window's top-level object (for
example, a word-processing document open in that window). In contrast, a
Properties item in the Edit menu sets the properties of an object that can be
selected in a window (for example, a table in an open word-processing
document.)

If your application has an Edit menu, place it second on the menu bar,

directly to the right of the File menu.

Continuously update the labels of items in the Edit menu so that the labels

indicate the object type on which the items act.

If you include an Undo item in the Edit menu, also include a Redo item in

that menu. Never use an Undo item to enable users to redo a command.

If users can paste data from the clipboard in different formats, include a

Paste Special item in the Edit menu. The Paste Special item should perform an
operation, display a submenu, or display a dialog box listing paste options. If
the item performs an operation, label the item Paste Format instead of
Paste Special. Replace Format with a word that suggests the format in which
data will be pasted--for example, Paste Unformatted or Paste Formula.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

If the Edit menu includes a Properties item, place that item last in the

menu and precede it with a separator.

When adding application-specific items to the Edit menu, place them after

the group of more typical items to which they relate most closely. (For example,
if your application has a Paste Special item, place it after the Paste item, as in
Figure 29.) Alternatively, place the application-specific items at the end of the
Edit menu, but before the Properties item (if there is one).

Typical View Menu

Many applications include a View menu, whose menu items alter the
presentation of data. For example, the View menu of some applications
include items such as Large Icons, Small Icons, List, and Details. Figure 30
shows an example View menu.

Figure 30 Example View Menu

The appropriate items for the View menu depend on which objects your
application contains. For example, the View menu of a network management
application might include:

• A List item--To display a network's computers as a list
• A Topology item--To display the same network's computers as a topological graph

Ensure that items in the View menu change only the presentation of data

in the current primary window. Ensure that the items do not change the data
itself.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

In the View menu, indicate which view the window currently displays. To

do so, place a radio button next to each item for choosing a particular view (as
shown in Figure 30). For information about radio button menu items, see
Chapter 9 of Java Look and Feel Design Guidelines, 2d ed.

Typical Help Menu

The Help menu enables users to open an application's online help system. In
addition, the Help menu provides access to the About box, which displays
information about the copyright, license, and version of the application. For
more information about the Help menu, see Chapter 9 of Java Look and Feel
Design Guidelines, 2d ed.

Figure 31 Example Help Menu

In a Help menu, place the About Application-name item last, and precede

it with a separator.

Additional Menus

When designing menus, use the common menus (described on page 42) as a
starting point. Your application might, however, need more menus if it has
more items than the common menus can display. When adding menus beyond
the common ones, start by adding a menu for the primary object types in the
application window. This chapter refers to such menus as Object menus.

Object Menus

Object menus contain menu items for creating, deleting, and modifying objects
of the type Object. Object refers to an object type within the window's top-level
object type, referred to here as File. An Object menu differs from a renamed
File menu. For information on File and renaming the File menu, see page 43.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Figure 32 shows examples of Object menus.

Figure 32 Example Object Menus

When including an Object menu in your application, place the New, Open, and
Save items for that object type in its Object menu, not in the File menu. For
example, an email application might define two Object menus labeled Mailbox
and Message. The Mailbox menu would include items for creating and
modifying mailboxes. The Message menu would include items for creating and
modifying mail messages.

Avoid creating too many Object menus. Decide which objects should be
prominent in your user interface and which ones are subordinate to other
objects. Most subordinate objects should not have their own menu. If a menu
item relates to a subordinate object, you can place that item in a menu
associated with the superior object. For example, if a window contains a table,
you can place table-related menu items (such as Delete Row) on the window's
Edit menu.

For guidelines about the correct order of menus in the menu bar, see Common
Menus.

When you include an Object menu, place the New, Open, and Save menu

items for that object type in that Object menu.

Do not use generic Object menus labeled either "Object" or "Selected."

Use specific labels for your Object menus.

Object Menus and the Action Menu

If your application has no maximum number of top-level object types, you
cannot create an Object menu for each top-level object type. Consider
including an Action menu instead of an Object menu.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

An Action menu is a menu whose title is "Action" and whose contents vary
depending on the application's context and the current selection. Also consider
including an Action menu if you expect your application's top-level object type
to change.

For example, an application consisting of two tools could load one set of menu
items in its Action menu when one tool was in current use, but load another set
of menu items when the other tool was in use. Each set of menu items would
be specific to the current tool.

In rare situations you might need Object menus as well as an Action
menu--Object menus for a few top-level objects used widely in your application
and an Action menu for other object-based menu items.

Provide an Action menu under either of the following conditions:

• Your application has no maximum number of top-level object types.
• The top-level object types can vary widely.

When providing an Action menu, place it directly to the left of the View

menu.

If you provide an Action menu, make the contents of the Action menu

dependent on your application's context and current selection.

Beyond Object Menus and the Action Menu

After you evaluate the common menus and, optionally, add Object menus or
an Action menu, you might still need more menus. Typically, the titles of such
additional menus are verbs--for example, "Insert," "Compose," or "Debug."
The items in these menus should relate to a task that users perform frequently.

If you application has additional menus, place them directly to the right of

the Object menus--if there are any--and directly to the left of the Help menu.

Contextual Menus

A contextual menu is a menu displayed when a user presses mouse button
2 while the pointer is over an object or area associated with that menu.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Contextual menus are one of two main types of menus--the other type being
drop-down menus, which users choose from a menu bar. Figure 33 shows a
contextual menu.

Figure 33 Contextual Menu (Displayed Over a Table)

Contextual menus provide quick access to menu items available elsewhere in
an application. A contextual menu should include only frequently used
menu items; otherwise, it will be hard to use.

Although contextual menus and drop-down menus are alike in most ways,
contextual menus differ from drop-down menus in the following ways:

• Contextual menus are displayed only when a user presses mouse button 2 or
Shift-F10.

• Contextual menus are composed of:

• Menu items that affect the object or selection under the pointer

o Menu items for the entire window
• Menu items that do not require a selection

The correct menu items for a contextual menu depend on where the pointer is
when a user opens that menu. Table 7 describes the correct types of menu
items for contextual menus opened from various pointer positions.

Table 7 Correct Menu Items for Contextual Menus

Pointer Position When
Menu Opens

Correct Menu Items

Not on an object or selection
• Items that do not require a selection
• Items that apply to the entire window

On a single object that is not
selected

• Items that operate on the object under the pointer
• Items that do not require a selection

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

• Items that apply to the entire window

On a selection

• Items that can operate each object in the selection (an
intersection, not a union)
• Items that do not require a selection
• Items that apply to the entire window

If a user opens a contextual menu for an object that is not selected, that object
becomes selected. The new selection cancels any previous selection.

Some objects have a default command, executed if a user double-clicks the
object. When displaying the contextual menu for such an object, use bold to
display the menu item that activates the default command. For an example,
see Figure 33, in which Open is the default command.

The following guidelines help you design contextual menus. These guidelines
supplement those in Chapter 9 of Java Look and Feel Design Guidelines,
2d ed.

Provide contextual menus only as conveniences that are redundant with

other controls--typically with items in your application's drop-down menus.
Each item in a contextual menu must be available elsewhere in your
application.

If your application has contextual menus, ensure that it has them for all its

objects.

Include only frequently used menu items in contextual menus.

If the object of a contextual menu has a default command, place that

command at the top of the contextual menu. In addition, display the command
in bold.

In an open contextual menu, dim unavailable menu items that can apply to

the current object. Do not display unavailable menu items that cannot apply to
the current object.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

In a contextual menu for a selection, ensure that each menu item that

operates on an object can be applied to each object in the selection. (That is,
ensure that the set of menu items for the selected objects is an intersection,
not a union.)

When designing contextual menus, follow the rules in Table 7.

Window Management and the File Menu

The correct design for an application's File menu depends on how the
application manages windows that display top-level objects. A window's
top-level object is the object that the window represents--such as a file,
mailbox, or computer.

In most applications, users create top-level objects or open them by choosing
the New item or Open item from the File menu. Some applications have one or
more variants of these menu items--for example, New, New..., New Object, or
New Window.

To determine whether your application's File menu needs one or more of these
variants, you need to decide how the application will manage windows that
display top-level objects. For example, your application might either:

• Open a new window for each top-level object
• Reuse a single window for all top-level objects

This section helps you decide which menu items to include for creating and
opening top-level objects. The section is based on several example
File menus, each for a different type of window management.

For general information and guidelines about the File menu, see Typical File
Menu.

When Window Reuse Is the Default

This section provides examples of window-management styles that, by default,
open and create objects in the primary window from which a user has chosen
the New or Open menu item. For examples of styles in which the default action
is to open a new window, see When Opening a New Window Is the Default.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Using a Single Primary Window

Figure 34 shows the File menu of an application with only one primary window.
The File menu's New and Open menu items always reuse that primary
window.

Figure 34 File Menu for an Application's Only Primary Window

Typically, such a File menu is suitable only for simple applications whose
users need to view only one object at a time.

Reusing the Current Window and Creating Windows

In Figure 35, the New and Open items always display objects in the current
primary window. To create more primary windows, users can choose the New
Window item. Typically, an application's New Window item displays the same
contents as the window from which it was created. Alternatively, the New
Window item can open a primary window containing nothing or a newly
created object.

Figure 35 File Menu for Reusing the Current Window and Creating Windows

The File menu in Figure 35 is suitable for applications that display one object
at a time, but whose users sometimes need to view two or more objects at the
same time--each object in its own primary window. For example, a user might
need to compare two documents.

In Figure 35, opening an object in a new window requires that users choose
two File menu items, in order--the New Window item followed by the Open
item. Design a File menu like the one in Figure 35 only if a task analysis has
shown that users rarely need to open an object in a new window. (To learn

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

about task analysis, see a book such as User and Task Analysis for Interface
Design, described in "Related Books" on page 4.)

Reusing the Current Window and Opening Objects in New

Windows

In Figure 36, the File menu enables users to open an object in the current
primary window or in a new primary window. The File menu's Open item
reuses the current primary window. The Open in New Window item opens an
object in a new primary window.

Figure 36 File Menu to Reuse the Current Window and Create New Windows

The File menu in Figure 36 is appropriate only if a task analysis has shown
both that:

• The application's users need an Open menu item and an Open in New Window
item--for example, to compare two objects by displaying one in the current primary
window and the other in a new primary window.

• Most of the users prefer to open an object in the current primary window.

In Figure 36, the New Window menu item always creates an object in a new
primary window.

When Opening a New Window Is the Default

This section illustrates window-management styles where the default action is
to open a new window for each newly created object or newly opened object.

Placing All Objects in Separate Primary Windows

In Figure 37, the New and Open items always create a primary window.

Figure 37 File Menu for Placing All Objects in Separate Windows

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

The File menu in Figure 37 is appropriate only if users often keep two or more
objects open at the same time. Such menus require a Close item because
more than one primary window can be open at the same time.

Displaying Objects in Separate Windows With Duplicate

Window Operation

The File menu in Figure 38 displays each new object in a new primary window.
The File menu includes a New Window item as a shortcut for creating a copy
of the current object. The New Window item always displays the same view of
the object as the window from which it was created.

Figure 38 File Menu to Display Objects in Separate Windows With Duplicate Window
Operation

In Figure 38, the File menu is identical to the one in Figure 35. The New menu
item and the Open menu item, however, behave differently in each menu. If
you have correctly matched the behavior of the menu items to the users' tasks,
users will notice no inconsistency between applications after using the menu
items a few times.

Displaying Objects in Separate Windows and Allowing Current

Window Reuse

In the File menu shown in Figure 39, the New and Open items create primary
windows.

Figure 39 File Menu to Display Objects in Separate Windows and Permit Current

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Window Reuse

The Open in Current Window item supports tasks where users do not want to
create an additional window. An application's New Window menu item can
show the same object as the window from which it was activated, or it can
show an empty window, depending on which operation users will perform more
often.

Each of the designs described in this section is suited to a different situation.
To determine which design is appropriate for your application, perform a task
analysis.

4: Behavior
"Behavior" refers to how applications interact with users. Java Look and Feel
Design Guidelines, 2d ed. discusses that topic. This chapter provides
additional information about the following aspects of behavior:

• Modes
• Selecting multiple objects
• Filtering and searching
• Tool tips

Modes

In some applications, the effects of a user's actions differ in different situations,
or modes, defined in the application. Often, a mode lets users perform only
certain actions. For example, in one mode of a drawing application, clicking
one object after another might select those objects. In a different mode of the
same application, clicking one object after another might draw a line between
those objects. In other words, the same action would have a different effect in
different modes.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

By limiting users' potential actions, modes make it easier for software
developers to translate those actions into code. Applications with modes can
be hard to use because:

• Users must remember which mode is in effect. If users are unaware of modes or
forget to change modes, the users' actions have incorrect effects.

• Users must switch between modes, which requires extra mouse actions or extra
keystrokes.

Sometimes, modes can help users, typically by preventing users from
accidentally performing unwanted actions--for example, activating a command
button in a graphical user interface while trying to lay out the interface.

Avoid defining modes in your application, especially if users are likely to

be hurried, as when responding to alarms.

Modal Secondary Windows

A modal secondary window prevents users from interacting with other
windows of an application until that modal window is closed. (In contrast, a
modeless secondary window does not prevent users from interacting with that
application.) Among the types of modal secondary windows are modal dialog
boxes and modal alert boxes. Chapter 8 of Java Look and Feel Design
Guidelines, 2d ed. describes modal and modeless dialog boxes as well as alert
boxes, which can also be modal or modeless.

Modal secondary windows can make it harder for users to complete their
current task. For example, a modal dialog box prevents users from copying
information from outside that dialog box--even if the information is needed to
fill in fields of the dialog box.

Use modeless secondary windows whenever possible. If your application uses
modal secondary windows, keep them in front of the application's other
windows. (An application's users can override this behavior by setting
preferences in the operating system.)

Use a modal dialog box only if a user might put the application in an

inconsistent state that the user cannot easily remedy. (A user might put the
application in an inconsistent state by making changes in other windows while
the dialog box is open.)

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Use a modal alert box only to alert users of a condition that requires user

input before the application can proceed. For example, create a modal alert
box to verify that a user wants to perform an action that will have irreversible
consequences.

Modes Set From Tool Palettes

Some applications, such as graphics applications, have tool palettes--internal
utility windows whose buttons enable users to choose a tool, such as a paint
brush, from a set of tools. Typically, each tool corresponds to a particular mode.
Clicking a button in a tool palette changes the current mode and, as a result,
changes the meaning of mouse operations--for example, causing each mouse
click to insert an object instead of selecting one.

In tool palettes, a mode can stay in effect until a user performs the next action
or until a user activates a different mode.

If a user chooses a tool from a tool palette, causing a different mode to

take effect, change the pointer's shape to indicate which tool and mode are in
effect. For as long as that tool's mode is in effect, visually emphasize the tool's
button in the palette by displaying it with the pressed appearance. (For
information about command buttons with the pressed, available, or unavailable
appearance, see Chapter 10 in Java Look and Feel Design Guidelines, 2d ed.)

Application-Wide Modes

Some applications have application-wide modes, which change the effect of
users' actions throughout the application. An example of an application-wide
mode is the Edit mode or Run mode of a typical GUI builder. The same mouse
actions that modify controls in Edit mode, activate controls in Run mode. For
example, clicking a Print button in Edit mode would select that button so that
the user could resize or otherwise modify it. Clicking the same Print button in
Run mode would issue a command to print a document.

If your application has application-wide modes, provide more than one

way for users to change from one to another. Examples of ways to change
between application-wide modes include menu items, command buttons, and
keyboard shortcuts. By providing more than one way to change between
modes, you make the modes more accessible.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

If your application has application-wide modes, provide visible cues so

that users know which mode is in effect. For example, in a GUI-building
application with an Edit mode and a Run mode, you might display a grid
background only in Edit mode so that users could distinguish it from Run
mode.

Selecting Multiple Objects

Users sometimes want to use a single command to perform the same action
on multiple objects--that is, on more than one object at a time. To provide this
capability in your application, you first need to provide multiple selection, the
ability to select more than one object at a time.

Follow these rules when enabling users to select multiple objects:

• When multiple objects are selected, each command that can apply only to a single
object is unavailable--for example, a command that renames an object.

• Clicking an object (with the primary mouse button) deselects any existing
selection and selects the object. An alternative is to press the spacebar while
keyboard focus is on an object. (For information on mouse operations, see
Chapter 6 of Java Look and Feel Design Guidelines, 2d ed.)

• Shift-clicking an object extends the selection from the most recently selected
object to the object under the pointer. An alternative is pressing Shift-spacebar
while keyboard focus is on the object.

• Control-clicking an object toggles its selection without affecting the selection of
any other objects. This operation can result in selecting more than one range of
objects. An alternative is pressing Control-spacebar while keyboard focus is on an
object.

• Dragging--moving the mouse while pressing a mouse button--selects the objects
inside the bounding box. (Dragging works this way only in a 2-dimensional
selection area, such as an icon pane.)

For more information about multiple selection in lists and in tables, see
"Selection Models and Editing Models for Tables" on page 72. In addition, see
Chapter 12 and Appendix A of Java Look and Feel Design Guidelines, 2d ed.

Enable users to select multiple objects in a component if any of the

component's commands can apply to more than one object at time.

If users can select multiple objects with the mouse, enable users to select

multiple objects with the keyboard as well.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

When users use the mouse to select multiple objects, select each object

whose center is within the bounding box.

Filtering and Searching a Set of Objects

When working with a large set of objects, users sometimes want to view only
objects with particular properties. For example, a user of an email application
might want to see only message headers representing unread messages.
Searching and filtering are application features that let a user specify which
objects a window should display, based on the user's criteria. A user's criteria
are called a filter (in filtering) or a query (in searching).

• Filtering starts from a window displaying a full set of objects, and then omits from
the window all objects except those that match the filter.

• Searching starts from an empty window, and then displays only objects that match
the query. (This does not apply to types of searching that select objects from a set
of objects currently displayed in a window.)

Providing filtering and searching can improve an application's scalability.

NOTE ¯ Sorting a set of objects can be an easier way to provide most of the benefits of
filtering the set. For information on sorting, see "Row Sorting" on page 86. In addition, see
Chapter 12 of Java Look and Feel Design Guidelines, 2d ed.

You can provide two kinds of filtering and searching in your application:

• Complex filtering and searching--Users use a dialog box to specify a filter or query,
which can specify any property or set of properties.

• Simple filtering and searching--Users manipulate a visible control (such as a list or
menu) to choose from a set of previously defined filters or queries.

Complex Filtering and Searching

When providing complex filtering or complex searching, follow these
guidelines:

Provide a filter or query for a set of objects if users cannot view the entire

set without scrolling it.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Unless your application takes less than 4 seconds to start displaying the

complete results of a filter or search, display the results a portion at a time.

Provide an easy way for users to execute a query or filter again after new

data becomes available.

Enable users to name, save, reuse, and modify custom filters and queries.

Enable users to construct a single request from multiple filter terms or

multiple query terms.

If the data displayed in a window is the result of a filter or query, indicate

that fact above the data. If possible, indicate which filter or query was used to
obtain the data.

Simple Filtering and Searching

If users will use certain filters or queries repeatedly, provide quick access to
those filters or queries through visible controls. Filters and queries accessible
in this way are called simple filters and simple queries.

To enable users to choose simple filters, you can place menu items on the
View menu or in a combo box, as in Figure 40.

Figure 40 Simple Filters

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

In Figure 40, the combo box includes the following items:

• A command to show all objects
• A set of simple filters defined by the application
• Simple filters that users have created, named, and saved
• A command to create and name a new filter

Filters can be more complex than the one in Figure 40. Figure 41 shows a
more complex filter.

Figure 41 Complex Filter

A task analysis can help you determine both:

• Whether simple filters and queries might be useful in your application
• Which types of filters and queries to provide

For references on task analysis, see "Related Books" on page 4.

Provide simple filters or simple queries if users need to refer to subsets of

information repeatedly.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Stopping Searches and Filter Operations

Users sometimes need to stop a search or filter operation before it is
complete--typically, because the operation is taking too long. Users should be
able stop a search or filter operation at any time by clicking a command button
that, typically, is labeled Stop, Stop Search, or Stop Filtering.

If a user stops a search or filter, your application should display a message
stating that any displayed search results are incomplete.

Indicate a stopped search or filter by placing a message outside the

results but near where they are described--for example, in the title area of a
table. Figure 42 shows a stopped search indicated by a message ("Stopped by
User") displayed above the results. (For more information, see "Letting Users
Stop Commands in Progress" on page 111.)

Figure 42 Stopped Search (Indicated by Text Above the Results)

Tool Tips

Tool tips are small rectangles of text that describe a component or area
whenever the pointer is over it. Among the properties of an application's tool
tips are:

• Onset delay--The amount of time before a tool tip is displayed
• Duration--The amount of time for which a tool tip is displayed

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

An application's settings for the onset delay and duration of tool tips apply to all
tool tips in the application.

Choosing an appropriate onset delay and duration for your application's tool
tips improves their usability. This section provides guidelines that help you
choose an appropriate onset delay and duration.

For additional guidelines about tool tips, see Chapter 9 of Java Look and Feel
Design Guidelines, 2d ed.

Provide a tool tip for each control in your application.

Set the tool tip duration to at least 15 seconds if any tool tip is longer than

10 words or if any tool tip provides information, such as numerical data, that
users need to analyze.

If either or both of the following statements are true, set the onset delay of

your application's tool tips to no more than 250 milliseconds:

• At least one tool tip provides information that all users need.
• At least one tool tip displays data that users can find only in tool tips--for example,

numerical values represented by bars in a bar graph.

If neither statement is true, consider using the JFC's default values for the
onset delay and duration of tool tips.

5: Idioms

One main characteristic of a well-designed user interface is consistency
among its parts. This characteristic helps users learn similar parts of the user
interface faster. You can help users learn your application's user interface
faster by creating its similar parts from the same sets of JFC components--that
is, by implementing the same patterns, or idioms.

This chapter explains what idioms are and then describes idioms for:

• Selecting and editing in tables provided by your application
• Arranging such tables
• Combining a tree component with a table
• Working with text fields and lists

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

• Displaying a hierarchy of containers in a split pane

Overview of Idioms

In user interfaces, an idiom is a set of components configured in a
standardized way to provide a particular appearance and behavior. Just as
idioms in a spoken language (such as "giving up" in English) have a meaning
that cannot be derived from that of their individual words, idioms in the Java
look and feel have usefulness that cannot be derived from that of their
individual JFC components.

If you provide idioms consistently throughout your application, users come to
recognize each idiom, even in new contexts, and can correctly infer what each
idiom enables them to do.

An example of an widely used idiom is the Browse idiom, shown in Figure 43.

Figure 43 Example of an Idiom (the Browse Idiom)

The Browse idiom enables users to type or choose the name of an existing
object, such as a file. This idiom always consists of a label, an editable text
field, and a command button. Each time users see the Browse idiom, they
know that they can fill in the text field by typing or by clicking the
command button to choose text from a list. (The Browse idiom is described in
detail on page90.)

Although the JFC provides the components that make up idioms, your
development team is responsible for implementing the idioms used in
your application. This chapter describes idioms that you can use in the
Java look and feel and provides guidelines to help your team implement
each idiom.

Idioms for Selecting and Editing in Tables

If your application provides tables in which users can select and edit, you can
make selecting and editing easier for users by consistently displaying the
same idioms. This section describes:

• Concepts for selecting and editing in application-provided tables
• Idioms that enable users to select and edit in such tables

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

For information on table layout and order, see Idioms for Arranging a Table.

Selection Models and Editing Models for Tables

To enable users to select and edit in a table, you need to provide:

• A selection model--A set of rules and techniques for selecting a portion of the
table, such as a cell or row

• An editing model--A set of rules and techniques for editing a portion of a table

This section provides guidelines to help you choose the correct selection
model and editing model for your application's tables.

For an introduction to selection models for tables, see Chapter 12 of Java Look
and Feel Design Guidelines, 2d ed. Of the selection models described in that
chapter, use a row selection model or a cell selection model.

Row selection differs from cell selection in that selecting a cell also selects the
entire row containing that cell. Tables using a row selection model are called
row-selection tables. Tables using a cell selection model are called
cell-selection tables.

The recommended types of row selection are:

• Single row
• Single range of rows
• Multiple distinct rows
• Multiple ranges of rows

The recommended types of cell selection are:

• Single cell
• Single range of cells

Choose the selection model that offers a table's users as much flexibility as
they need.

Use a row selection model in tables where rows need to be operated on

as a unit.

In tables, enable users to select one or more ranges of rows or cells.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Using Row Selection Models

You can use a row-selection table if users can operate on a row's contents
only as a unit. For example, you can use a row-selection table if users need to
update several interdependent cells at the same time--such as before
committing a record to a database that verifies whether the interdependent
values are consistent with one another.

You can associate commands with a row-selection table to enable users to
manipulate its rows. Figure 44 shows a table with such commands, each
represented as a command button to the right of the table.

Figure 44 Row-Selection Table With Associated Command Buttons

For a row-selection table, the correct set of commands depends on the table's
editing model. Some commands can be used with any row-selection table,
regardless of its editing model.

Table 11 describes those commands. For a list of commands and mnemonics
for each editing model, see Editing Row-Selection Tables.

Table 8 Commands for Any Row-Selection Table

Command Mnemonic Description

New Row N

Adds a new row directly above the uppermost row of
the selected rows or, if there is no selection, adds a
new row at the table's end. The New Row command
selects the new row, deselecting any previous
selection.

Delete
Row

R Deletes the selected rows.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Move Row
Up U

Moves the selected rows up by one row. If a user
applies the Move Row Up command to a selection
containing nonadjacent items, the command works as
if the user performed it on each of the items
separately. The items retain their positions relative to
one another.

Move Row
Down D

Moves the selected rows down by one row. If a user
applies the Move Row Down command to a selection
containing nonadjacent items, the command works as
if the user performed it on each of the items
separately.

If you use the default names for commands that manipulate row-selection

tables, assign the recommended mnemonics to those commands. (Table 8
lists the default names and the recommended mnemonics.)

In row-selection tables, command buttons for Move Row Up and

Move Row Down can sometimes be labeled Move Up and Move Down, as in
Figure 45. Use these short labels only if space is limited and if the purpose of
each button is clear to users. If you use the short labels, use them for both
buttons or for neither.

If a user deletes a row of a row-selection table, move the selection to a

different row. Follow these rules:

• If the deleted row was the table's only row, either:
o Display the table with a single empty row, which is selected.
o Display the table with no rows, if the user can add rows.

• If the deleted row was not the table's only row but was the table's bottom row,
select the row directly above the deleted row.

• If the deleted row was neither the table's only row nor the bottom row, select the
row directly below the deleted row.

Editing Row-Selection Tables

To enable users to edit in row-selection tables, you can use either the external
editing model or the internal editing model. Tables using one of these
models are called "externally editable" or "internally editable."

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

External Editing Model--In this model, users can edit a table row only by
entering values in an editing area, located outside the table and, typically, just
below it. The editing area includes editable text fields, combo boxes, or other
editable components that enable users to type or choose input values. Each
editable component in the editing area must correspond to a single column in
the table.

Use the external editing model in row-selection tables if users can edit a row's
contents only as a unit. For example, use the external editing model if, after
users edits a row, your application must perform actions--such as a database
update or a cell-interdependent validity check--that require the row's values to
be consistent with one another.

Figure 45 shows a row-selection table that uses the external editing model.

Figure 45 Row-Selection Table With External Editing

In Figure 45, the user has selected Jack Melville's row. Selecting a row
updates the editing area's input fields with values from the table's uppermost
selected row (in this example, only one row is selected). Selecting a row also
makes the Update Row button and the New Row button available. (The
Update Row button and the New Row button copy values from the editing
area's input fields into the table itself. The copied values remain displayed in
the input fields.)

If, in the editing area, the user edits the Project field, changing its value from
Moonbeam to, for example, Firedog, the change takes effect and is displayed in
the table only if the user clicks the Update Row button after editing.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

In tables with external editing, a user's changes to a row all take effect at the
same time--when the user clicks the Update Row button or the New Row
button. For this reason, the values in the row always stay consistent with one
another.

Table 9 describes commands for manipulating row-selection tables that are
externally editable.

Table 9 Commands for Row-Selection Tables With External Editing

Command Mnemonic Description

Delete
Row

R Deletes the selected rows.

Move Row
Up U Moves the selected rows up by one row.

Move Row
Down D Moves the selected rows down by one row.

Update
Row

P

Copies values from the input fields of the editing area
into the selected row. The copied values remain
displayed in the input fields. If the selection contains
more than one row, the Update Row command and
the input fields of the editing area are unavailable.

New Row N

Adds a new row directly above the uppermost
selected row or, if there is no selection, adds a new
row at the table's end. In either case, the New Row
command fills the new row with values from the
editing area's input fields and selects the new row.
(The values in the editing area remain displayed
there.) In addition, the New Row command deselects
any previous selection and moves the insertion point
to the first editable field of the editing area.

Clear
Form

C

Sets each editable component of the editing area to its
default value or, if there is no default value, clears the
field.

Typically, the commands for manipulating an externally editable row-selection
table are divided between two locations--below the table and to the right of it,
as shown in Figure 45.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

When labeling command buttons for an externally editable table, you can use
the names Update Row and so on, as in Table 9. Alternatively, you can
replace the word "Row" with the name of the object to which the row
corresponds.

Use the external editing model in row-selection tables if users must edit

each row as a unit.

For externally editable row-selection tables, ensure that table commands

work as described in Table 9.

If you use the default names for commands that manipulate externally

editable row-selection tables, assign the recommended mnemonics to those
commands. (Table 9 lists the default names and the recommended
mnemonics.)

For externally editable tables, open an alert box if a user changes values

in the table's editing area but then either:

• Selects a new row without first clicking Update Row or New Row.
• Clicks the Clear Form button without first clicking the Update Row button or

New Row button.

In the alert box, ask the user to confirm whether the pending changes should
be discarded.

Internal Editing Model--The internal editing model enables users to edit a
table row by entering values directly in the row's cells. A user's changes to a
row take effect one cell at a time, as the user moves keyboard focus from cell
to cell. As a result, the values displayed in the row's cells can become
temporarily inconsistent with one another while the user edits interdependent
cells one at a time.

Figure 46 shows a row-selection table with internal editing.

Figure 46 Row-Selection Table With Internal Editing

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Table 10 describes commands for manipulating row-selection tables that are
internally editable.

Table 10 Commands for Row-Selection Tables With Internal Editing

Command Mnemonic Description

New Row N

Adds a new row directly above the uppermost row of
the selected rows or, if there is no selection, adds a
new row at the table's end. In either case, the
New Row command selects the new row, deselecting
any previous selection, and moves the insertion point
to the first editable cell of the new row.

Delete
Row

R Deletes the selected rows.

Hide
Column C Hides the column that has keyboard focus.

Move Row
Up U Moves the selected rows up by one row.

Move Row
Down D Moves the selected rows down by one row.

Provide internally editable row-selection tables if your application must

process each row as a unit, but users can edit or copy cells individually.

For internally editable row-selection tables, ensure that table commands

work as described in Table 10.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

If you use the default names for commands that manipulate internally

editable row-selection tables, assign the recommended mnemonics to those
commands. (Table 10 lists the default names and the recommended
mnemonics.)

Using Cell Selection Models

You should use a cell selection model in an application-provided table only if
no row selection model is appropriate. A table that uses a cell selection model
is called a cell-selection table.

You can associate commands with a cell-selection table so that users can
manipulate its rows and columns. Figure 47 shows a table with such
commands, represented as buttons to the right of the table.

Figure 47 Cell-Selection Table With Associated Command Buttons

In Figure 47, each command applies to all the rows or columns that contain a
selected cell.

Table 11 describes the commands for manipulating cell-selection tables and
lists the commands' recommended mnemonics.

Table 11 Commands for Cell-Selection Tables

Command Mnemonic Description

New Row N

Adds a new row directly above the uppermost row of
the selected cells, or if there is no selection, adds a
new row at the table's end. In addition, the New Row
command moves the insertion point to the first

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

editable cell of the new row. (Your application should
enable users to add a new row at the end of the
table--typically, by clicking the Tab key in the final cell
of the final row.)

Delete
Row

R Deletes the rows containing the selected cells.

Hide
Column C Hides the columns containing the selected cells.

Move Row
Up U

Moves the rows containing the selected cells up by
one row.

Move Row
Down D

Moves the rows containing the selected cells down by
one row.

In Table 11, the commands are not for editing the contents of cells. For
information on editing cell contents, see the next section.

When providing commands for manipulating cell-selection tables, include only
the commands that users need.

Use a cell selection model in tables where actions can apply to cells or

groups of cells individually.

For cell-selection tables, ensure that table commands work as described

in Table 11.

If you use the default names for commands that manipulate cell-selection

tables, assign the recommended mnemonics to those commands. (Table 11
lists the default names and the recommended mnemonics.)

If a user deletes a row of a cell-selection table, move the selection to the

first cell of a different row. Follow these rules:

• If the deleted row was the table's only row, either:
o Display the table with a single empty row, in which the first cell is selected.
o Display the table with no rows, if the user can add rows.

• If the deleted row was not the table's only row but was the table's bottom row,
select the first cell of the row directly above the deleted row.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

• If the deleted row was neither the table's only row nor the bottom row, select the
first cell of the row directly below the deleted row.

Editing Cell-Selection Tables

You can enable users to edit the contents of cell-selection tables by entering
values directly in the cell that has keyboard focus. Figure 48 shows an editable
cell-selection table.

Figure 48 Editable Cell-Selection Table

Idioms for Arranging a Table

You can enhance the usability of application-provided tables in your
application by consistently using the same idioms. This section describes table
idioms for:

• Table appearance
• Table command placement
• Column reordering and resizing
• Row sorting
• Tree tables

Table Appearance

You can increase the visual appeal and readability of your application's tables
by using appropriate text formats, background colors, and line settings. This
section provides guidelines for defining the appearance of tables.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Figure 49 shows a table that follows the guidelines for appearance. Specific
guidelines on table sorting, primary-sort columns, sort indicators, and row
striping are provided later in this section.

Figure 49 Table Conforming to Guidelines for Appearance

Align the contents of table cells based on their information type. For cells

containing numeric values (not character strings with numerals), use decimal
alignment. For cells containing long text, use left alignment. For cells
containing graphics or short words (like keywords, such as on and off), use
center alignment.

Use headline capitalization in column headers of tables. (For a description

of headline capitalization, see Chapter 4 of Java Look and Feel Design
Guidelines, 2d ed.)

Center titles in the column headers of tables, except brief titles of wide text

columns that are mostly blank. Center or left-justify brief titles.

In column headers of tables, include the column's unit of measurement as

part of the title, and enclose the unit of measurement in parentheses--for
example, CPU Usage(%).

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

In tables, make each column wide enough by default to display the

column's title and the contents of typical cells without clipping. In columns
where a typical cell's contents are unusually long (for example, a file's full
pathname), make the default column width sufficient to display the column's
title and the main part of a typical cell's contents--for example, just the
file name, clipping the rest of the full pathname. Optionally, if a column header
is much longer than the typical contents of the column's cells, you can divide
the column header into two or more lines.

Place at least three pixels of blank space between a table cell's contents

and the cell's left edge. Likewise, place at least three pixels of blank space
between the cell's contents and the cell's right edge.

 Your application should provide the code for inserting blank space
between a table cell's contents and the cell's edges.

Grid Lines and Row Striping

You can often make tables easier to read by using grid lines or row striping.
Grid lines are horizontal or vertical lines that separate a table's rows or
columns. Row striping is the technique of using one background color for a
table's even-numbered rows and a different background color for its
odd-numbered rows.

Not all tables should have grid lines or row striping. For example, most tables
with editable fields should not have row striping. Short, noneditable tables
listing file names or properties rarely need grid lines or row striping.

The following guidelines help you decide whether to use grid lines, row striping,
or neither.

Do not use grid lines and row striping in the same table.

Use horizontal and vertical grid lines in cell-selection tables.

Use horizontal and vertical grid lines in internally editable row-selection

tables.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Do not use grid lines in row-selection tables that are noneditable or are

externally editable. Instead, use row striping if the table has approximately six
columns or more. If the table has fewer columns, use neither grid lines nor row
striping.

If a table has grid lines, display them in the color Secondary 2, as

described in Chapter 4 of Java Look and Feel Design Guidelines, 2d ed.

In tables without grid lines, ensure that there is no space between cells

where grid lines would otherwise be.

When striping a table, use light gray (RGB 230-230-230 and

Hex #E6E6E6) as the background color of the striped rows (the rows whose
background color will not be white).

When striping a table row, stripe all its components. For example, ensure

that the row's combo boxes (if any) have the same background color as the
rest of the row.

Drop-Down Arrows in Combo Boxes

In tables with cells that contain combo boxes, you can sometime enhance
table appearance by controlling when drop-down arrows are displayed. By
default, the drop-down arrow of each combo box is always displayed, as
shown in Figure 49. Although this default behavior is preferred in most tables,
displaying all the drop-down arrows continuously can create clutter in tables
with many combo boxes. To avoid clutter, display the drop-down arrow of each
combo box only while that box is selected.

For information about where to place table commands, see the next section.
For more information on defining the appearance of tables, see Chapter 12 of
Java Look and Feel Design Guidelines, 2d ed.

If most of a table's cells contain combo boxes, display the drop-down

arrow of each combo box only while that box is selected.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Table Command Placement

A table can have associated commands--such as New Row and Move Row
Up--that enable users to manipulate the table. Typically, the correct way to
represent such commands is as a command button row located either:

• Directly below the table
• Directly to the right of the table

Figure 50 shows a table with command buttons directly below it.

Figure 50 Table With Command Buttons Below

Figure 51 shows a table with command buttons directly on the right.

Figure 51 Table With Command Buttons on the Right

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Sometimes, representing table commands as buttons is not practical because
either:

• The available screen space is too small.
• The table is one of several in the same window (the commands' standard

mnemonics would be ambiguous).

Under such conditions, you can represent a table's commands as menu items
in the window's Edit menu, if there is one. Figure 52 shows table commands in
an Edit menu.

Figure 52 Table Commands in a Window's Edit Menu

If the Edit menu is too long to include the table commands, you can place them
instead in a Table menu in the window.

Figure 53 Table Commands in a Window's Table Menu

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

When providing commands for manipulating a table, place them in a

command button row directly below the table or directly to the right of it. If you
cannot, place the commands in the window's Edit menu or Table menu.

If you place table commands in a menu, also place appropriate

table commands in the contextual menus for the table's rows and cells. In
addition, you can place table commands in a toolbar.

Column Reordering and Column Resizing

Users sometimes need to reorder a table's columns (by moving them left or
right) or resize a table's columns (by changing their width). The following
guidelines on column reordering and column resizing supplement those in
Chapter 12 of Java Look and Feel Design Guidelines, 2d ed.

Enable users to reorder table columns.

If a user reorders a table's columns, use the new column order the next

time the user opens that table.

If users can reorder a table's columns, make each column's title unique

within the table.

Enable users to change the width of table columns.

If a user changes the widths of a table's columns, use the new widths the

next time the user opens that table.

Row Sorting

When viewing a sorted table, users need to know by which columns the table
is sorted. These columns are called sort keys. To indicate each of a table's
sort keys, your application can display a sort indicator--a small triangular
graphic in the column header. Figure 54 shows sort indicators in the columns
of an email application.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Figure 54 Sort Indicators in the Columns of a Table

A sort indicator shows that a column is sorted and in which
direction--ascending (for example, from A to Z) or descending (for example,
from Z to A). An upward-pointing sort indicator indicates an ascending sort. A
downward-pointing sort indicator indicates a descending sort.

A bold column header indicates the table's primary key, the main column by
which the table is sorted.

You can make each column header a control with the following behavior:

• Clicking a column header makes that column the primary key and sorts the
column in the direction that is more useful to users. (Typically, users find an
ascending sort more useful.)

• If the column is already the primary key, clicking the column header inverts the
current sort, toggling between an ascending sort and a descending sort.

For more information about row sorting, see Chapter 12 of Java Look and Feel
Design Guidelines, 2d ed.

Enable users to sort tables that typically contain more items than can be

displayed at one time.

If a column currently determines a table's sort order, use bold highlighting

to display that column's header text. If anything invalidates the sort order, omit
the bold highlighting from the column header text. (The column that currently
determines a table's sort order is a user's most recently sorted column or, if
rows are sorted automatically, the primary-key column).

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

In sorted tables, place a sort indicator in each column by which the table is

sorted.

In columns with sort indicators, place the sort indicator directly after the

column's title.

Omit sort indicators from table columns that, though previously sorted, are

no longer sorted.

When sorting a table already sorted by a different column, perform a

stable sort. In a stable sort, previously sorted rows (if any) retain their
positions relative to one another, if they have identical values in the new sort
column.

Provide explicit, keyboard-accessible commands for sorting. Ensure that

each command operates on the column containing the selection. In tables
where users can select a range of cells, make commands for sorting
unavailable when the selection includes more than one cell.

When providing sort commands, put them in places consistent with where

you put your application's other commands--for example, on buttons, in a
toolbar, in a drop-down menu, or in a contextual menu. (For more information,
see Table Command Placement.)

Automatic Row Sorting

Your application can provide tables that are automatically sorted each time
users edit a row or add one. This feature, called automatic row sorting, offers
users the convenience of knowing that a table's rows are always sorted.

When providing automatic row sorting, you can enable users to control which
table columns are sort keys. In each table, you can enable users to request
automatic sorting on a single column (1-column sorting) or on up to n columns
(n-column sorting). Your application sets the value of n.

You can enable users to specify the sort columns by, for example, clicking
column headers in the table. However, you must also provide a

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

keyboard-accessible alternative. For n-column sorting, you can enable users
to specify sort columns by opening a dialog box from a menu item or a button.

Tables with automatic row sorting should conform to all guidelines for
row sorting and to the following guidelines for automatic row sorting.

Provide automatic row sorting in tables unless doing so would slow your

application's response--as when tables are too large to sort quickly.

Sort a row automatically only if keyboard focus is not in that row.

In tables with automatic row sorting, enable users to choose which

columns are used as sort keys.

Tree Table Idiom

A tree table is a table in which the leftmost column is a tree of objects, one
object to a row, and the other columns consist of rows that describe the
corresponding object in the tree. Figure 55 shows a tree table. You can use a
tree table to display two or more properties of each object in a tree.

Figure 55 Tree Table

In tree tables, each object in the tree is either a leaf node (such as a file) or a
container (such as a folder). A container can contain leaf nodes and other
containers. Users can expand or collapse rows for containers to show or hide
rows for the container's contents.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Figure 56 shows containers and leaf nodes in tree table.

Figure 56 Containers and Leaf Nodes in a Tree Table

Tree tables have many features in common with other kinds of tables. For
example, you can enable users of tree tables to:

• Select a group of rows
• Resize columns
• Edit the contents of cells individually
• Sort rows

By default, tree tables enable users to select only a single row. Selecting a row
that corresponds to a container does not select rows for the container's
contents. Moving or copying a container's row within a tree table also moves or
copies the rows for the container's contents. Likewise, deleting a container's
row from a tree table also deletes the rows for the container's contents.

You can enable users to sort the rows of a tree table. The default sort is
hierarchical. It sorts leaf nodes and containers as a single set, with each
container's contents sorted under that container.

In some applications, users might need to sort all rows of tree table as a single
set, ignoring whether rows are for containers or leaf nodes. You can provide
this capability by enabling users to convert a tree table into a non-hierarchical
table. If you provide this capability, also provide a separate command for
performing the conversion.

The following guidelines apply to tree tables:

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Use a row selection model, typically with internal editing. (For more

information, see Using Row Selection Models and Editing Row-Selection
Tables.)

Enable users to sort the table by clicking its column headers. In addition,

provide a keyboard-accessible command for sorting the table.

When sorting tree tables, sort hierarchically, based on each object's level

in the tree.

Enable users to change the width of table columns.

If a user changes the width of a table column, use the new width the next

time the user opens that table.

Do not place vertical grid lines between the columns of a tree table. (You

can, however, place horizontal grid lines between a tree table's rows.)

 For information on tree tables, including example code, see:
http://java.sun.com/products/jfc/tsc/articles/treetable1/index.html

Idioms for Text Fields and Lists

You can use the following idioms to help users work with text fields and lists:

• Browse
• Key-Search
• Add-and-Remove

Browse Idiom

The Browse idiom enables users to specify an object--typically, a file, directory,
or web page. This idiom consists of a label, an editable text field, and a
command button, whose text begins with the word "Browse," as shown in
Figure 57.

Figure 57 Browse Idiom

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

In the Browse idiom, users can enter data into the text field by either:

• Typing in the text field
• Clicking the command button to choose text from a list in a dialog box

Clicking the command button opens a dialog box that enables users to
navigate through a hierarchy of locations and then choose a file, directory, web
page, or other object. Typically, choosing an object causes the text field to
display the full path to that object.

Use the Browse idiom to enable users to specify a file, directory, web

address, or other item in a very large set.

When using the Browse idiom for choosing a file, directory, or web

address, label the idiom's command button "Browse," and use "B" as its
mnemonic unless that letter is a mnemonic for different button or command.

In a window with more than one copy of the Browse idiom, assign different

button text and a different mnemonic to each copy's command button. For
example, you could make one button's text Browse For Template and another
button's text Browse For Message Folder Even if you cannot make each button's
text different from the others, use a different mnemonic for each button.

Key-Search Idiom

You can help users find list items faster in your application by using the
Key-Search idiom in lists, combo boxes, and trees. Figure 58 shows an
example use of the Key-Search idiom.

The Key-Search idiom enables users to find a list item by typing its first letter
(called the "search key" or "key"). The Key-Search idiom is case insensitive,
and it works on any list of text items, even an unsorted list.

To start a key search, a user types any printable character while keyboard
focus is in a list. In response, the application deselects the currently selected
list item and then scrolls down to the next list item that begins with that
character, highlighting that item. For example, if the user types the letter v, the

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

key search highlights the next item that begins with V or v, as shown on the left
in Figure 58.

Figure 58 Two Successive Key Searches on the Letter "v"

To find each subsequent list item that begins with V or v, the user types the
letter v again. The right side of Figure 58 shows the result of typing v after the
first search, shown on the left. Successive searches on the same key cause
the application to loop through the list until the user stops searching.

If a search key does not match the first character of any list item, the
application should alert the user--for example, by causing the user's system to
beep--but should leave the current highlighting and selection unchanged.

Use the Key-Search idiom in any list that might become long enough to

require vertical scrolling.

 As of version 1.4 of the Java 2 SDK, the key-search feature is part of
the standard behavior for components that extend the JList, JComboBox, or
JTree class.

Add-and-Remove Idiom

To enable users to choose a subset from a large list of objects, you can
provide the Add-and-Remove idiom. This idiom consists of two lists
separated by a command button row, as shown in Figure 59.

Figure 59 Add-and-Remove Idiom

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

The list on the left, called the original list, contains a set of objects that users
can add to the list on the right--the chosen list. The command buttons enable
users to control which items appear in the chosen list. In Figure 59:

• The original list is labeled "People to Choose From."
• The chosen list is labeled "Project Assignments."

Optionally, the chosen list can be a table, as in Figure 59. The table's leftmost
column, called the main column, displays items that come from the original
list. In Figure 59, the Name column is the main column.

The chosen list can have one or more supplementary columns to provide
more information about each item in the main column. In Figure 59, the Project
column is the only supplementary column.

Supplementary columns can be noneditable or editable:

• Noneditable supplementary columns display information about chosen-list items.
• Editable supplementary columns enable users to set parameters for this table's

use of each chosen-list item.

Provide the Add-and-Remove idiom if users need to choose a few objects

from a long list.

In the Add-and-Remove idiom, make the chosen list a table only if the

supplementary columns hold either:

• Noneditable data

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

• User-input fields for parameters regarding this table's use of each chosen-list item

In the Add-and-Remove idiom, if the chosen list is a table, use a row-

selection model. If the table is editable, use internal editing. (For more
information, see Using Row Selection Models and Editing Row-Selection
Tables.)

Commands in the Add-and-Remove Idiom

Table 12 describes the command buttons that you can include in the
Add-and-Remove idiom.

Table 12 Command Buttons for the Add-and-Remove Idiom

Button
Text

Mnemonic Description

Add A

Adds items to the chosen list. The Add command copies
all selected items from the original list and adds them to
the chosen list--at the end or, if the chosen list is sorted,
in their correct positions. If the items must be unique in
the chosen list, the Add command then deletes from the
original list all copied items. Finally, the Add command
selects the copied items in the chosen list and deselects
any previously selected items in the original list. The
Add command is available only while one or more items
are selected in the original list. Another way to activate
the Add command is to double-click an item in the
original list, thereby selecting it and immediately adding
it to the chosen list.

Add All L

(Optional) Moves or copies all items from the original list
to the chosen list and then selects them in the chosen
list. The Add All command is available only while the
original list is not empty. You should provide the Add All
command only if your users need it.

Remove R

Removes items from the chosen list. The Remove
command removes the selected items from the chosen
list, adds them to the original list (at the end or,
preferably, at their previous positions) and, finally,
selects the items in the original list, deselecting the
chosen list. Removing an item from the chosen list has
no effect on the original list if that item is already in the

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

original list. The Remove command is available only
while one or more items are selected in the chosen list.

Remove
All V

(Optional) Moves all items from the chosen list to the
original list. The Remove All command is available only
while the chosen list is not empty.

Move Up U

(Optional) Moves the selected items one row up in the
chosen list. If a user applies the Move Up command to a
selection containing nonadjacent items, the command
works as if the user performed it on each of the items
separately. As a result, the items retain their positions
relative to one another.

Move
Down D

(Optional) Moves the selected items one row down in
the chosen list.

In the Add-and-Remove idiom, ensure that the command buttons behave

as described in Table 12.

In the Add-and-Remove idiom, provide the Add All command only if you

also provide the Remove All command. (You can provide the Remove All
command without also providing the Add All command.)

Assign the mnemonics in Table 12 to the command buttons of the Add-

and-Remove idiom.

When adding list items in the Add-and-Remove idiom, display at least the

first newly added item, by scrolling the list if necessary.

Button Graphics in the Add-and-Remove Idiom

In the Add-and-Remove idiom, you can label command buttons with a graphic
and text, or with just a graphic. The correct choice depends on the type of
users and the amount of available space.

In the Add-and-Remove idiom, label the command buttons with a graphic

and text--especially if your application's users are inexperienced with

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

computers. Label the command buttons with just a graphic only if there is no
space for text and your application's users are experienced.

In the Add-and-Remove idiom, provide tool tips for the command buttons

if the buttons are labeled with just a graphic.

Layout of the Add-and-Remove Idiom

Typically, the command buttons of the Add-and-Remove idiom are between
the original list and the chosen list. The buttons are spaced as shown in
Figure 60. Measurements in the figure are in pixels.

Figure 60 Preferred Layout of the Add-and-Remove Idiom

In windows without enough vertical space for the typical layout, you can lay out
the Add-and-Remove Idiom as shown in Figure 61. In the figure, the Move Up
and Move Down buttons are to the right of the chosen list and apply only to
that list.

Figure 61 Layout of the Add-and-Remove Idiom With Limited Vertical Space

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

In the Add-and-Remove idiom, arrange and order the command buttons

as shown in Figure 60. In windows without enough vertical space, use the
layout shown in Figure 61.

In the Add-and-Remove idiom, make the vertical space for the original list

at least as long as the column of command buttons, as shown in Figure 61.
Provide the same amount of vertical space for the chosen list as for the original
list.

Container-and-Contents Idiom

Users sometimes need to view a hierarchy of containers--for example, a set of
file folders--while also viewing the contents of a selected container--for
example, the list of documents in a selected folder. You can provide this
capability by using the Container-and-Contents idiom, which consists of a
split pane displaying a different view in each of its two panes:

• The left pane contains a tree component displaying a hierarchy of containers,
one of which is selected. The left pane's selected container can contain leaf nodes
as well as subcontainers.

• The right pane contains a table or a set of icons representing the contents of the
left pane's selected container. (A set of icons in a pane is known as an icon pane.)

For a description of split panes, see Chapter 7 of Java Look and Feel Design
Guidelines, 2d ed.

Figure 62 shows the Container-and-Contents idiom used in the upper two
panes of an email application.

Figure 62 Container-and-Contents Idiom in an Email Application

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

In the Container-and-Contents idiom, the left and right panes work together.
Changing the selection in the left pane (the tree) changes which object's
contents are displayed in the right pane (the table).

In the right pane, if a user opens a subcontainer:

• That subcontainer becomes highlighted in the left and right panes.
• Highlighting is removed from the left pane's previously highlighted item.

In Figure 62, the right pane displays the contents of only one
container--labeled Inbox in the left pane--so this behavior does not apply to the
figure.

The container-and-contents uses a single-selection model--that is, the
selection can contain only one object at the time, although that object can be a
container.

The following guidelines apply to the Container-and-Contents idiom:

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Ensure that clicking a container in the left pane causes the right pane to

display that container's contents.

Ensure that double-clicking a collapsed container in the left pane expands

that container and makes its subnodes visible in the right pane. Likewise,
ensure that double-clicking an expanded container in the left pane collapses
that container and causes its subnodes to be become visible in the right pane.

6: Responsiveness

Responsiveness, as defined by Jeff Johnson in his book GUI Bloopers:
Don'ts and Do's for Software Developers and Web Designers, is "the
software's ability to keep up with users and not make them wait."
Responsiveness is often cited as the strongest factor in users' satisfaction with
software applications and has been linked to users' productivity, as well.

Poor responsiveness can render an otherwise well-designed application
unusable. Maximizing the responsiveness of your application is among the
best ways that you can improve its usability and help ensure its success.

This chapter provides guidelines for designing responsiveness into your
application. To help you understand the guidelines, the chapter also:

• Lists characteristics of responsive applications and problems of unresponsive
ones

• Explains how responsiveness relates to performance and response delay
• Describes ways to measure response delays
• Describes ways to improve responsiveness and provide operational feedback to

users

This chapter draws heavily from the work of usability expert Jeff Johnson. To
learn more about how to design for responsiveness, read his book
GUI Bloopers. This chapter also draws from the work of performance experts
Steve Wilson and Jeff Kesselman. For a discussion of responsiveness as it
relates to performance, read their book Java Platform Performance: Strategies
and Tactics. These books are described in "Related Books" on page 4.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Characteristics of Responsive Applications

Although highly responsive applications can differ widely from one another,
they share the following characteristics:

• They keep up with users, even when they cannot fulfill users' requests
immediately.

• They handle queued requests as users would expect--discarding requests that are
no longer relevant and reordering requests according to users' probable priorities.

• They let users do other work while long operations proceed to
completion--especially operations not requested by users, such as reclaiming
unused memory or other "housekeeping" operations.

• They provide enough feedback for users to understand what they are doing, and
they organize feedback according to users' abilities to comprehend and react to it.

• They let users know when processing is in progress.
• They let users know or estimate how long lengthy operations will take.
• They let users set the pace of work, when possible, and they let users stop

requested tasks that have begun but not finished.

Highly responsive applications put users in control by quickly acknowledging
each user request, by providing continuous feedback about progress toward
fulfilling each request, and by letting users complete tasks without
unacceptable delays.

Problems of Unresponsive Applications

Even applications with attractive, intuitive user interfaces can lack
responsiveness. Typically, unresponsive applications have at least one the
following problems:

• They provide late feedback--or no feedback--for users' requests, leaving users
puzzled about what the application has done or is doing.

• When performing extended operations, they prevent users from doing other work
or canceling the extended operation.

• They fail to display estimates of how long extended operations will last, forcing
users to wait for unpredictable periods.

• They ignore users' requests while doing unrequested "housekeeping," forcing
users to wait at unpredictable times--often without feedback.

Each of these problems can frustrate users and lower their productivity.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Responsiveness as Part of Performance

In Java Platform Performance, coauthors Steve Wilson and Jeff Kesselman
describe performance as a general term for several related measurements,
among them:

• Computational performance
• Scalability
• Perceived performance, which this chapter calls "responsiveness"

Computational Performance

Computational performance--what software engineers usually mean by
"performance"--focuses on fast algorithms, efficient data structures, and
economical use of processor time.

Responsiveness and computational performance are not always related.
Improving the computational performance of an application improves its
responsiveness only if users prefer the change or if the change increases
users' speed or accuracy.

It is sometimes possible to improve an application's responsiveness without
speeding up the application's code. For tips on how to make such
improvements, see Responding to User Requests.

Scalability

The term "scalability" has two meanings:

• In the context of computational performance, scalability is an application's ability
to perform under heavy loads--for example, large numbers of concurrent users.

• In the context of user interfaces, scalability is the ability of a user interface to
remain responsive as a user:

• Does increasingly complex work.
• Tries to gain access to increasing numbers of interface objects--for example, file

folders or device descriptions.

Without a scalable user interface and scalability in performance, an application
can quickly fall from being highly responsive to being extremely unresponsive.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Perceived Performance, or Responsiveness

Perceived performance, or responsiveness, is based on how fast an
application seems to its users--how well it responds to them, not necessarily
how fast it fulfills their requests.

Determining Acceptable Response Delays

The term response delay refers to how long an application takes to
acknowledge or fulfill a particular user request. Providing responsiveness in an
application depends on achieving response delays that are acceptable to
users. The longer an application's response delays are, the more time that its
users lose when they make errors--especially if those errors are hard to correct.
Anxiety about making time-consuming errors can frustrate users, causing them
to work more slowly yet make more errors because they lose their
concentration.

Inappropriately short response delays can cause problems, too. For example,
one such problem occurs if an application displays and erases a message
faster than users can read it. If an application displays and erases successive
sets of information faster than users can read them or respond to them, users
nonetheless try to keep up. As a result, they make more errors, because the
application, though fast, does not keep pace with its users.

Some user interface events require shorter response delays than others. For
example, an application's response to a user's mouse click or key press needs
to be much faster than its response to a request to save a file. Table 13 shows
the maximum acceptable response delay for typical interface events.

Table 13 Maximum Acceptable Response Delays for Typical Events

User Interface Events
Maximum Acceptable

Response Delay

Mouse click; pointer movement; window movement or
resizing; key press; button press; drawing gesture;
other user-input event involving hand-eye
coordination

0.1 second
(100 milliseconds)

Displaying progress indicators; completing ordinary
user commands (for example, closing a dialog box);
completing background tasks (for example,
reformatting a table)

1.0 second

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Displaying a graph or anything else that a typical user
would expect to take time (for example, displaying a
new list of all a company's financial transactions for
an accounting period)

10.0 seconds

Accepting and processing all user input to any task 10.0 seconds

In your application, make each response delay as short as possible, unless
users need time to see the displayed information before it is erased. Tools for
Measuring Response Delays describes techniques for measuring response
delays in your application.

The acceptable response delay for each event is based on a typical user's
sense that the event is a logical point at which to stop or pause. The greater
that sense is, the more willingly the user will wait for a response.

Verify that your application responds to users' requests within the limits listed
in Table 13. If the application cannot respond within those limits, it probably
has one or more general problems--ones caused by a particular algorithm or
module. To find such problems, analyze the entire application in detail.

For example, one problem might be that your application requires a more
powerful computer system than the one on which it was tested. If so, work with
your marketing representative to determine the true minimum system
requirements for your application.

Verify that your application provides feedback within 100 milliseconds

(0.1 second) after each key press, movement of the mouse, or other physical
input from the user.

Verify that your application provides feedback within 100 milliseconds

(0.1 second) after each change in the state of controls that react to input from
the user--for example, displaying menus or indicating drop targets.

Verify that your application takes no longer than 1 second to display each

progress indicator, complete each ordinary user command, or complete each
background task.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Verify that your application takes no longer than 10 seconds to accept and

process all user input to any task--including user input to each step of a
multistep task, such as a wizard.

Measuring Response Delays

An application's user interface must respond in real time. To measure
objectively how quickly your application responds, you need to measure its
response delays. This section describes techniques for quantitatively
measuring your application's response delays.

Setting Benchmarks for Response Delays

Measurements of response delays are useful only in relation to benchmarks.
A benchmark is a goal that you devise to determine whether your application
provides acceptable response delays for a specific task. Without benchmarks,
you cannot know for sure whether your application is responsive enough.

Establish benchmarks early in your project by reaching a consensus with
representative users and your development team--including management,
marketing, and engineers. Your goals for acceptable response delays should
be reachable on the minimum computer system that your application supports.

Establish qualitative goals only if your team cannot agree on quantitative goals.
For example, a qualitative goal might be to scroll smoothly.

Tools for Measuring Response Delays

One tool for objectively measuring response delays is a stopwatch. As Wilson
and Kesselman explain in Java Platform Performance, testing with a
stopwatch has advantages and disadvantages. It is easy to use but is hard to
use accurately. In addition, testing with a stopwatch is hard to automate.

A stopwatch is inadequate for measuring milliseconds--which you need to
measure when complying with the guidelines in the section Perceived
Performance, or Responsiveness. Typically, measuring response delays to the
millisecond requires that engineers include tests in the source code of their
applications. For text and code examples describing this technique, see the
book Java Platform Performance.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Responding to User Requests

If an application takes too long to respond, users become frustrated. Here are
some techniques that you and your development team can use to improve the
responsiveness of your application.

• Display feedback as soon as possible.
o If you cannot display all the information that a user has requested, display

the most important information first.
o Save time by displaying approximate results while calculating finished

results.
o If users are likely to repeat a time-consuming command in rapid

succession, save time by faking the command's effects instead of
repeatedly processing the command. For example, if a user adds several
rows to a table stored in a database, you might display each new row
immediately but delay actually creating each new row in the database until
the user finished adding all the rows.

• Work ahead. Prepare to perform the command that is most likely to follow the
current command. That is, use idle time to anticipate users' probable next
requests. For example, as the user of an email application reads the currently
displayed new message, the application might prepare to display the next new
message.

• Use background processing. Perform less important tasks--such as
housekeeping--in the background, enabling users to continue working.

• Delay work that is not urgent. Perform it later, when more time is available.
• Discard unnecessary operations. Discard operations that a user has requested

but that are not necessary. For example, to move back several pages in a
web browser, a user might click the browser's Back button several times in rapid
succession. To display the final requested page more quickly, the browser might
not display the pages visited between the current page and that final page.

• Use dynamic time management. At run time, change how your application
prioritizes user input and other processing, based on the application's current
state. For example, if a user is typing text in one word-processing document while
printing another, the word-processing application might delay the printing task if
the user shifts to an editing task (such as cutting and pasting text) that requires
greater resources. For more information on dynamic time management, see the
book GUI Bloopers.

Some user requests--for example, scrolling--require a high degree of
responsiveness. If your application includes scrolling controls, such as
scrollbars or panning controls, make sure that the application's scrolling lets
users easily detect in which direction scrolled information is moving. Scrolling
should be smooth and should keep pace with the user's ability to scan the

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

information. In addition, the user should be able to stop without overshooting
the intended target.

In your application, display an estimate of how long each lengthy

operation will take.

If a command might take longer than 5 seconds to complete its work on an

object, enable users to interact with any parts of the object and parts of the
application that are not directly affected by the command.

If a command provides lengthy output, show partial results as they

become available. Scroll the results (if necessary) until the user moves input
focus to a component (such as a scrollbar or text area) involved in the
scrolling.

Providing Operational Feedback

Responsive applications provide feedback--including visual feedback--about
the state of operations in progress. This section describes:

• How to decide whether to provide feedback for an operation
• Which types of visual feedback you can provide
• How to choose the correct type of visual feedback

For general information on how to provide operational feedback in your
application, see Chapter 6 of Java Look and Feel Design Guidelines, 2d ed.
Also see that chapter for general information about pointer feedback.

Deciding Whether to Provide Feedback

Whether your application should provide feedback on an operation depends
on how long that operation usually takes.

To decide whether to provide feedback on an operation, test how long the

operation usually takes on the minimum system configuration that your
application supports. Repeat the test at least 10 times, with different data sets
or network loads. Provide feedback if the operation takes longer than 1 second
in at least 10% of the tests.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Types of Visual Feedback

You can use two types of visual feedback for operations in your
application--pointer feedback and progress animations:

• Pointer feedback changes the shape of the pointer. (The pointer tracks
movements of the user's mouse or other pointing device). For example, a wait
pointer indicates that an operation is in progress and that the user cannot do other
tasks.

• Progress animations show either:

• How much of an operation is complete
• Only that an operation is ongoing (such animations are also known as "status

animations")

Progress Animations

To provide feedback with a progress animation, an application can display a
progress bar or a progress checklist.

• A progress bar shows how much of the operation is complete
(a measured-progress bar) or only that the operation is ongoing
(an indeterminate-progress bar). Measured- and Indeterminate-Progress Bars
describes each type of progress bar in detail.

• A progress checklist shows the sequence of stages in an operation but does
not display time estimates for those stages.

NOTE ¯ Except where noted, the term "progress bars" refers to measured-progress bars.

Figure 63 shows a progress bar in a wizard page.

Figure 63 Progress Bar (in a Wizard Page)

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Figure 64 shows a progress checklist, also in a wizard page.

Figure 64 Progress Checklist (in a Wizard Page)

Figure 65 shows an indeterminate-progress bar. (For information about
wizards, see Chapter 7. For information about feedback in wizards, see
"Providing Operational Feedback in Wizards" on page 147.)

Figure 65 Indeterminate-Progress Bar

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

When providing feedback with a progress checklist, you can include a
measured-progress bar directly below the checklist. The bar measures the
progress of the current step in the progress checklist.

When displaying a progress animation, your application should open it as
quickly as possible and close it automatically as soon as the associated
operation is complete.

When providing a progress animation, use a measured-progress bar if

your application can estimate either:

• How long the operation will take
• What proportion of the operation is complete

If your application can make neither estimate, use an indeterminate-progress
bar for operations with only one step. For operations with two or more steps,
use a progress checklist that dynamically displays a check mark for each
completed step.

Ensure that a measured-progress bar measures an operation's total time

or total work, not just that of a single step. An exception is a progress bar that
measures the total time or work of the current step in a progress checklist.

Measured- and Indeterminate-Progress Bars

You can use two main types of progress bars in your
application--measured-progress bars and indeterminate-progress bars.
Measured-progress bars can be classified into the following types:

• Time-remaining bars
• Proportion-completed bars
• Typical-time bars

There is only one type of indeterminate-progress bar.

Table 14 describes each type of progress bar.

Table 14 Types of Measured- and Indeterminate-Progress Bars

Type of Progress Bar Description

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Time-remaining

An animation consisting of:

• A bar whose changing length indicates how much time
remains in an operation.
• Text stating how much time remains before the operation
will be complete.

Time-remaining bars are the most useful type of
progress bar. Figure 63 shows a time-remaining bar.

Proportion-completed

A bar whose changing length represents the
completed proportion--typically a percentage--of an
operation's total units of work.

Proportion-completed bars are less useful than
time-remaining bars but more useful than
typical-time bars.

Typical-time

A bar whose changing length indicates how much
time remains if an operation takes as long as it
typically does.

Typical-time bars are the least precise type of
measured-progress bar, but they are more useful
than indeterminate-progress bars.

Indeterminate-progress

An animated bar indicating only that an operation is
ongoing.

Indeterminate-progress bars are the least precise
type of progress bar. Figure 65 shows an
indeterminate-progress bar.

The correct type of bar to use depends on how precisely your application can
estimate the duration of the operation in progress.

Progress Bars for More Predictable Durations

If your application can estimate how long a particular instance of an operation
will take, you can provide feedback with one the following types of progress
bar:

• A time-remaining bar
• A proportion-completed bar

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

You can use a time-remaining bar if your application will display an initial
estimate of an operation's remaining time and then periodically display
updated estimates. Each updated estimate should be based on changes that
have occurred and that will cause the operation to finish more quickly or more
slowly. If the operation will finish more slowly, your application can display an
updated estimate that is greater than the estimate previously displayed.

You can use a proportion-completed bar if your application will estimate an
operation's duration by counting the units of work completed so far, without
regard for changes that might affect how quickly the remaining units will be
completed. If the operation will process a known number of objects or a set of
objects whose total size is known, equate the length of the bar to the total
number of units of work that the operation will perform. At least every four
seconds, update the bar to show how much of the operation is complete.

Progress Bars for Less Predictable Durations

For some operations, you cannot estimate the time remaining or the proportion
of work completed. However, if you can estimate the typical time for that
operation, you can provide feedback with a typical-time bar.

If your application overestimates the completed amount of work, the length of
the bar can indicate "almost complete" until the operation is complete. If your
application underestimates how much work is complete, the application can fill
the remaining portion of the bar when the operation is complete.

You can use an indeterminate-progress bar to provide feedback on an
operation whose duration you cannot estimate at all.

For general information about progress bars, see Chapter 6 of Java Look and
Feel Design Guidelines, 2d ed.

Use the most precise type of progress bar for the operation that you are

timing. For a list and description of types, see Table 14.

Providing the Correct Type of Visual Feedback

To determine which type of visual feedback to provide for a particular
operation, consider these factors:

• Whether your application can provide an estimate of the operation's progress.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

• Whether the operation blocks the user from issuing further commands in your
application.

• Whether your application has a dedicated space--such as an area at the bottom of
a window--for indicating the status of operations.

Table 15 shows which type of feedback your application should provide for
operations that usually take at least 1 second to finish. In Table 15:

• Internal progress animations are progress animations displayed in an
application's dedicated status area.

• External progress animations are progress animations displayed somewhere
other than in a dedicated status area--typically, in an alert box.

Table 15 Visual Feedback Types for Operations That Take at Least 1 Second

Current
operation

usually takes
less than 5
seconds?

User blocked
from issuing

further
commands?

Application has
dedicated area

to show status?

Appropriate feedback
for current operation

is...

Internal progress
animation and
pointer feedback

 Pointer feedback

Internal progress
animation

Best provided by
adding a status area.

Internal progress
animation and
pointer feedback

External progress
animation and
pointer feedback

Internal progress
animation

External progress
animation

•

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

When providing feedback for operations that take at least one second,

follow the rules in Table 15.

Use a wait pointer in your user interface whenever users are blocked from

interaction with your application for 1 second or longer. Display the wait pointer
in less than 1 second.

Letting Users Stop Commands in Progress

Users sometimes need to stop a command--for example, because it is taking
too long. Your application should let users stop commands in progress--even if
stopping a command cannot undo, or "roll back," all the command's effects.

To let users stop a command, place a Stop button near the progress animation
for that command. (For more information, see Progress Animations.)
Alternatively, you can place the Stop button near the user-interface control with
which the user issued the command that needs to be stopped. Place the Stop
button in this alternative location only if either:

• There is no progress animation for command.
• The progress animation is in a window's status area or in another location that

lacks space for a Stop button.

If a user clicks the Stop button, the effect should depend on whether
terminating a command can have unwanted consequences--also known as
"side effects"--such as an incomplete rollback of changes.

Table 16 describes how to decide the correct behavior for the Stop button.

Table 16 Correct Behavior for a Stop Button That Stops a Command

Will terminating
the command have

unwanted
consequences?

Clicking the Stop button
should...

 No Immediately terminate the command.

 Yes

Open an alert box that warns of potential side effects.
The alert box should have only two buttons:

• A button for continuing the command's processing, canceling
the request to terminate it

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

• A button for immediately terminating the command's
processing, despite potential side effects

If clicking the Stop button opens an alert box, the button labels of the alert box
should be specific and precise. Ambiguous button labels can cause users to
terminate or continue a command unintentionally.

Figure 66 shows an alert box for terminating a command.

Figure 66 Alert Box for Terminating a Command

If a command will likely take 10 seconds or longer to finish, provide a Stop

button that lets users terminate the command's processing--even if your
application cannot undo the command's effects.

If stopping a partially completed command will not undo all the command's

effects, display an alert box to warn users. Ensure that the alert box includes
two buttons that enable users to choose between continuing the partially
completed command or terminating the command regardless of the side
effects. Label each button of the alert box as specifically as possible, for
example: Continue Deleting Files and Stop Deleting Files.

Part II: Special Topics

This part consists of:

• Chapter 7: Wizards
• Chapter 8: Events and Alarms

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

7: Wizards

Even in well-designed software, complex or unfamiliar tasks can be difficult.
You can make performing difficult tasks easier and quicker for users by
providing a kind of user interface known as a wizard.

A wizard is a window that leads a user through a task one step at a
time--requesting a series of responses from the user and then performing the
task based on those responses. Except for a user's responses, a wizard
provides all the information needed to perform the task. Typically, wizards are
intended to simplify a task so that inexperienced users can perform it easily, or
to expedite a complex task by grouping its steps in a single place. Often,
wizards both simplify a task and expedite it.

This chapter introduces wizards and then describes:

• How to decide whether users need a wizard
• How to design the layout and behavior of wizards

Wizards have much in common with other types of windows. For general
information on windows, see Chapter 2. For general information on layout,
visual alignment, and text in the user interface, see Chapter 4 of Java Look
and Feel Design Guidelines, 2d ed.

Fundamentals of Wizards

A wizard consists of a series of pages in a window. Each page represents a
step, or a portion of a step, in a user's task. Figure 67 shows a typical page.

Figure 67 Anatomy of a Wizard Page

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Each page consists of a title bar and three panes--right, left, and bottom--as
shown in the Figure 67.

• Title bar--Displays the wizard's title.
• Right pane--Typically contains user instructions and input fields for the current

step. Alternatively, the right pane can contain explanations about the wizard, for
example, an overview, operational feedback, or a summary of results.

• Left pane--Contains one of the following items:
o A list of the wizard's steps

 Help text about the object that has keyboard focus in the right
pane

o A graphic (a list of steps or help text is preferable)
• Bottom pane--Contains command buttons for navigating through the wizard.

A wizard can have several types of pages--for example, pages for collecting
user input and a page that summarizes results. Figure 68 lists these page
types and shows their order in a typical wizard.

Figure 68 Typical Order of Page Types in a Wizard

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Only user-input pages are required in every wizard. Other page types are
optional or are required only under certain conditions, explained in Types of
Wizard Pages.

Standalone Wizards and Embedded Wizards

Wizards can be classified into two types--standalone and embedded--based
on how users start them. A wizard that users can start directly--for example,
from a desktop icon, a command line, or a file viewer--is called
standalone wizard. A wizard that users can start only from within an
application is called an embedded wizard, because it is embedded in that
application. Typically, users start embedded wizards by choosing a menu item.
Except where noted, guidelines in this chapter apply to standalone wizards
and embedded wizards alike.

Typical Uses of Wizards

Although wizards vary widely in their purpose, most wizards are intended for
one of the following purposes:

• Installing software
• Entering large amounts of related data
• Creating complex objects
• Performing complex procedures

Installing Software

The most common use of wizards is to install software. Such wizards--called
installation wizards--collect data from a user and then install software
accordingly. A typical installation wizard might set values in the operating

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

system of a user's computer, move data from a CD-ROM to a hard disk, and
configure the software being installed. Installation wizards are used by both
computer novices and experienced users. (For more information about
installation wizards, see Designing Installation Wizards.)

Entering Large Amounts of Related Data

An example of this type of task is setting up a new user account. Even if an
application includes a dialog box for setting up user accounts, users who rarely
perform this task might prefer to use a wizard, which divides a task into steps
and explains each step. In contrast, system managers who set up new user
accounts often probably would not use a wizard for that task.

Creating Complex Objects

In many applications, users can create and customize complex objects, such
as charts, by choosing a series of menu items to create the object and then
choosing more menu items to set the object's properties. New users, however,
do not know which properties to set or in which order to set them.

Wizards help new users by:

• Presenting all the properties that a user needs to set
• Leading the user through setting each one

Typically, experienced users do not need such help.

Performing Complex Procedures

Many wizards perform complex procedures for users. For example, using
options and parameter values that a user supplies, a wizard could create
source code for an application that the user is writing. Typically, such wizards
save users time and effort over other ways of performing the same task. For
this reason, wizards that perform complex procedures are used by both
computer novices and experienced users.

Deciding Whether You Need a Wizard

Although wizards can simplify and expedite many kinds of tasks, creating a
wizard is not always the best solution for such tasks. To decide whether

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

creating a wizard is appropriate for a particular task, answer the following
questions:

• How complex is the task?

Simple tasks seldom require wizards. Users can perform such tasks just as easily,
if not more easily, with other kinds of user interfaces. For example, users might
perform a simple task more quickly with a dialog box than with a three-page
wizard.
Consider providing a wizard for a task if the task is at least moderately complex.

• Is the task performed by new users? Is the task performed rarely?

If you answered "yes" to either question, then providing a wizard might be
appropriate.
Even technically sophisticated users should be considered new users if they are
unfamiliar with your application or with its subject area--for example, accounting.

• Is the task usually performed in a fixed order?

If so, consider implementing a wizard. If not--for example, if users need to
organize data in different ways--consider another kind of user interface for the
task.

• Is the application automating a significant part of the task?

Wizards are most useful when they automate most of a user's task. For example,
after asking a software developer just a few questions, a wizard might create more
than 1,000 lines of customized source code for the developer's current project.

• Can you design a more direct or more efficient way for users to perform this
task?

Wizards are not always the best user interface for experienced users. Such users dislike
answering questions that seem irrelevant to the task. If you provide a wizard for a task
within an application, also provide alternative ways to perform the same task, unless the
wizard automates a significant part of the task--as when installing software or creating
complex objects.

A well-designed wizard helps users perform a task step-by-step and enables
them to customize how the wizard performs the task. If a task needs a wizard,
find out which parts of that task most users will perform. Then, design the
wizard to meet the needs of those users. Omit rarely needed steps if you can
provide another way to perform those steps.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Providing Alternatives to Wizards

Well-designed applications provide more than one way to accomplish
frequently performed tasks. Although wizards are an excellent user interface
for the new or infrequent user, they can sometimes be too slow for the
experienced user. In addition, because wizards are only for the most common
steps of a task, they do not include unusual steps that experienced users might
need.

In general, if you provide a wizard for a task, also provide other ways for
experienced users to accomplish the same task. For example, if there is a
command-line interface to your application, make it available in addition to
your wizard. All the ways to perform a task must provide information that is
accurate and mutually consistent.

Types of Wizard Pages

Wizards include two or more pages for collecting a user's input and can
include the following supplementary pages:

• Overview
• Requirements
• Confirmation
• Progress
• Summary

This section describes each type of wizard page. For information on laying out
wizard pages, see Designing Wizard Pages. For information on designing the
behavior of wizards, see Designing Wizard Behavior.

User-Input Pages

User-input pages enable users to customize how a wizard performs its task.
Each wizard has at least two user-input pages and can have as many such
pages as are needed for the task. In general, it is better for a wizard to have
several simple user-input pages than to have a few very complex ones.

Figure 69 shows a typical user-input page.

Figure 69 User-Input Page of a Wizard

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

A wizard's usability depends on the usability of its user-input pages. The
usability of those pages depends on the clarity of their text. The text should
state:

• Which information the wizard needs from users
• How users should format the information
• What the wizard will do as a result of a user's responses

Ensure that the text of user-input pages follows the conventions of good

technical writing. Ask your team's technical writers or editors to help you write
the text of your wizard's pages.

Overview Page

An overview page provides a brief introduction to the wizard and its steps.
Typically, an overview page is needed only in very complex wizards or in
wizards that do not display a list of steps in their pages. Figure 70 shows an
overview page.

Figure 70 Overview Page of a Wizard

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

An overview page can help users determine whether a wizard meets their
needs. In addition, an overview page can inform users about potential effects
of using the wizard--for example, about either:

• The estimated duration of steps in the wizard
• Wizard operations that might significantly change a user's computer system

Create an overview page as the first page of a wizard under any of the

following conditions: The wizard is complex; the wizard's left pane does not
display a list of steps; or the wizard takes actions that might affect a user's
system in unexpected ways.

Requirements Page

Some wizards have prerequisites that can make users abandon the
wizard--typically, to gather more information or to perform additional tasks.
Examples of such prerequisites are:

• Software that must be installed before starting the wizard
• A license number that must be entered before the wizard can complete its task

If your wizard will need information that a user might not have at the moment,
notify the user by displaying a requirements page immediately after the
overview page or as the first page of the wizard.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Figure 71 show a requirements page.

Figure 71 Requirements Page of a Wizard

Make sure that users can view the requirements page before they begin to use
your wizard. (For information relating to the requirements page of installation
wizards, see Helping Users Decide Whether to Install.)

If a wizard requires information or preconditions that might not be

available when it starts, display a requirements page as the first page of the
wizard or immediately after the overview page, if there is one.

Confirmation Page

A confirmation page shows all the data that the wizard has collected and
provides information about the actions the wizard is about to take. Most
wizards, except short ones, require a confirmation page.

Figure 72 shows a confirmation page.

Figure 72 Confirmation Page of a Wizard

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

A confirmation page can contain information such as:

• A concise listing of the data that a user has entered in prior pages.
• The set of actions that the wizard will perform upon leaving this page (beyond

creating an object with the parameters specified by the user's data).
• How the wizard will modify a user's system.
• Where the wizard will place items, such as in the installation directory.
• The amount of disk space that the wizard's actions use and how much disk space

will remain after the actions are complete.
• An estimate of how long the wizard's actions will take.

Provide a confirmation page for all wizards with more than three pages of

user input.

Progress Pages

A progress page provides feedback to users about the progress of a wizard's
current operation. Figure 73 shows a typical progress page.

Figure 73 Progress Page of a Wizard

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

A progress page has the same basic layout as other types of wizard pages--for
example, its right pane has a subtitle, and its bottom pane has navigation
buttons. The right pane of a progress page also contains a progress bar or a
progress checklist that reflects the state of the wizard's current operation.

In addition to providing feedback, a typical progress page enables users stop
the wizard's current operation by clicking the right pane's Stop button, as
shown in Figure 73.

Clicking the right pane's Stop button is not equivalent to clicking the bottom
pane's Cancel button (which cancels the wizard). On progress pages, the
Cancel button is unavailable until a user clicks the Stop button. (For more
information on the Cancel button, see Designing the Bottom Pane. For
information on the Stop button in progress pages, see Providing Operational
Feedback in Wizards.)

A wizard should display a progress page for each potentially time-consuming
operation that the wizard performs. (For more information about providing
feedback in wizards, see Providing Operational Feedback in Wizards.)

Summary Page

The summary page is an optional page that summarizes the work the wizard
has performed and lists any actions users should take after closing the wizard.
For example, the summary page can display an error log file, display a list of

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

the files that have been updated, or explain how to access the software that
has just been installed.

Figure 74 shows a summary page.

Figure 74 Summary Page of a Wizard

A summary page differs from a confirmation page. A confirmation page
prepares users for the work that the wizard is about to perform and provides an
opportunity for users to make changes. A summary page summarizes work
that has been performed.

Provide a summary page if a wizard has generated additional information

that a user might want to examine after the task is completed.

Designing Wizard Pages

Each page of a wizard consists of four parts--a title bar and three panes, as
described in Fundamentals of Wizards. Designing a page is a matter of
designing each of its parts--choosing the right user interface elements for the
page and then spacing them correctly.

Figure 75 shows the conventions for spacing and aligning the elements of
wizard pages. Measurements in the figure are in pixels.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Figure 75 Spacing Conventions for Wizard Pages

Spacing conventions are the same for all types of pages. (For a description of
page types, see Types of Wizard Pages.) Wizard pages should also conform
to the general conventions for spacing and alignment described in Chapter 4 of
Java Look and Feel Design Guidelines, 2d ed.

In each wizard page, include a title bar and three panes--left, right, and

bottom.

When designing wizard pages, follow the spacing conventions in

Figure 75.

In wizard pages, follow the spacing guidelines for dialog boxes, as

specified in Java Look and Feel Design Guidelines, 2d ed., except when those
guidelines are superseded by a more specific guideline for wizard pages.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

In the bottom pane of a wizard, align the left edge of the leftmost

navigation button (the Back button) with the vertical line separating the left and
right panes.

In wizards, ensure that the left pane occupies one-fourth to one-third of

the wizard's total width.

Designing the Title Bar

To design a wizard's title bar, you supply descriptive title text in the correct
format. Figure 76 shows title text in the title bar of a typical wizard.

Figure 76 Title Text in the Title Bar of a Wizard

A wizard's title text should be the same on all pages; it should not include a
subtitle that changes from page to page. (The unique subtitle of each page
belongs in the right pane, as described in Subtitles.)

The correct format for a wizard's title text differs for standalone wizards and
embedded wizards. For embedded wizards, the format also differs depending
on whether the wizard's purpose is to modify an existing named object--for
example, an existing file named MyConfiguration.txt. The following
guidelines explain the correct format for title text in each type of wizard.

Make an embedded wizard's title identical to the name of the menu item

for starting that wizard, unless the wizard's purpose is to modify an existing
named object. Do not end the title text with an ellipsis (...). You can append the
word "Wizard" to the title text--for example, New Chart Wizard or
Configure Database Wizard. However, do not append the word "Wizard" to
the name of the menu item.

If an embedded wizard's purpose is to modify an existing named object,

format the wizard's title text like this: Object Name - Command.
(Command stands for the text of the menu command used to start the wizard.
The hyphen is preceded by one space character and followed by another.
Here is an example: Firenze Cluster - Reconfigure)

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Use the following format for the title text of standalone wizards:

Wizard-Purpose Product-Name Product-Version, for example,
Install Cluster Foo 3.0.

Designing the Bottom Pane

The bottom pane of each wizard page displays a row of navigation buttons for
moving between the wizard's pages and for closing the wizard. Different types
of pages require different navigation buttons.

Figure 77 shows an example of navigation buttons for a wizard page.

Figure 77 Navigation Buttons in a Wizard

In Figure 77, notice the horizontal separator between the bottom pane and the
two upper panes. The separator indicates that the bottom pane's navigation
buttons relate to the entire wizard, not just to the contents of the current page.

The bottom pane can contain the following navigation buttons: Back, Next,
Last, Cancel, Help, Finish, and Close. No single page contains all these
buttons; the correct set of buttons depends on the type of the page.

Table 17 describes each navigation button that can be displayed in the bottom
pane.

Table 17 Navigation Buttons for Wizards

Button
Name

Description

Back Displays the previous page. The Back button is present but

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

unavailable on a wizard's first page and whenever a user cannot
return to the previous page.

Next Displays the next page.

Last
(Optional) Displays the wizard's final confirmation page. Include a
Last button if users can skip subsequent pages by accepting the
wizard's default values.

Cancel

Discards all user input and then closes the wizard without further
processing. (The keyboard shortcut for the Cancel button is the
Escape key.) On a progress page, the Cancel button is unavailable
and dimmed unless the user halts the action in progress by clicking
the Stop button in the right pane.

Help
(Optional) Displays help text outside the wizard window, using your
application's online help system. Include the Help button only if your
help text does not fit in the wizard's right or left pane.

Finish

Finishes all remaining parts of the wizard's task. Clicking the
Finish button then either closes the wizard or displays the
summary page, if there is one. Only the final confirmation page
has a Finish button.

Close Closes a wizard whose task is finished. Include the Close button
only on a wizard's summary page (if any).

All wizard pages of the same type should display the same navigation buttons,
in the same order.

Table 18 shows the correct order of navigation buttons for each page type.

Table 18 Order of Navigation Buttons in Wizard Pages

Page Type Navigation Buttons

Overview page

Requirements page

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

User-input pages

Confirmation page1

1. For a wizard without a Last button

Confirmation page2

2. For a wizard with a Last button

Progress page3

3. After a user presses the right pane's Stop button

Summary page

In Table 18, notice that:

• Each page type has a default navigation button, which users can identify by its
heavy border. (For more information about default buttons, see Chapter 10 of
Java Look and Feel Design Guidelines, 2d ed.)

• Unavailable navigation buttons, if displayed, are dimmed. For example, the Back
button is always dimmed on a wizard's first page, regardless of its page type.

• Each button's mnemonic (if any) is underlined, and the mnemonic is the one
recommended in Java Look and Feel Design Guidelines, 2d ed. (For more
information on recommended mnemonics, see Appendix A in that book.)

When designing the bottom pane of a wizard page, use the navigation

buttons specified in Table 18. Order and format the buttons as specified in the
table.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Place a horizontal separator directly above the bottom pane in a wizard. In

the bottom pane, align the left edge of the Back button with the left edge of the
right pane. Right-justify the Cancel button and the Help button (if any).

Make the Next button the default navigation button whenever it is

available. Make the Next button unavailable until a user has entered all the
required data for the page. (The default navigation button is also known as the
default command button.)

If feasible, provide a Last button in your wizard's bottom pane.

A Last button enables users to skip pages with default values and complete
the wizard more quickly.

Designing the Right Pane

The heart of a wizard page is its right pane, which can contain different kinds of
information, depending on the type of the page. For example, on user-input
pages, the right pane contains user-input areas and instructions for using them.
On other pages, the right pane can display information such as an overview,
operational feedback, or a summary of the wizard's results. Designing the right
pane involves creating appropriate information and then laying it out correctly.

The guidelines in this section are mainly for user-input pages--the most
important pages of a wizard. However, the topic Subtitles applies to all wizard
pages. For information about the right pane in progress pages, see Providing
Operational Feedback in Wizards.

As shown in Figure 78, the right pane of user-input pages can contain the
following parts:

• Subtitle
• Main instructions
• User-input area
• Additional instructions
• Navigation instructions

Figure 78 Right Pane of a Typical User-Input Page

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

The rest of this section introduces each of these parts and describes how to
design them.

Subtitles

In wizard pages, the right pane must have a subtitle that uniquely identifies the
page and its purpose. Figure 78 shows the subtitle in a typical page.

Ensure that the subtitle in a wizard's right pane identifies only the page

displayed, not the entire wizard.

Make the subtitle of each wizard page identical to the name of the wizard

step to which the page belongs. (Typically, that name is listed in the left pane.)
If the step has two or more pages, make each page's subtitle distinct by adding
a page count--for example, (1 of 3)--or the suffix (Continued). Add a page
count if you know the number of pages in the step.

Place the subtitle of a wizard page at the top of the page's right pane. Use

headline capitalization and left justification. (For a description of headline
capitalization, see Chapter 4 of Java Look and Feel Design Guidelines, 2d ed.)

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Underline the subtitle of a wizard page with a rule whose width is one pixel

and whose length equals that of the right pane, minus 12 pixels on the left and
6 pixels on the right. Display the rule in the color Secondary 2, as described in
Chapter 4 of Java Look and Feel Design Guidelines, 2d ed.

In a wizard's right pane, place a step number before the subtitle if the left

pane contains no list of steps. Do not place a step number before the subtitle if
the left pane contains a list of steps.

Main Instructions

Each user-input page displays main instructions that help users understand
which information the page is requesting. Figure 78 shows a user-input page
with main instructions.

On pages having only one user-input field, the main instructions can also serve
as the label of that input field. On pages having two or more user-input fields,
the main instructions must relate to all the fields. Each field must have its own
label.

When writing the main instructions of a page, use imperative sentences--for
example, "Enter your password." By using imperative sentences, which tell
users what to do, you ensure that your wizard's requests for input are clear and
concise.

Place the main instructions of a wizard page directly below the underlined

subtitle in the page's right pane, as shown in Figure 78.

Write wizard instructions as imperative sentences.

In wizard instructions, minimize the use of terms used solely for

politeness--for example, "please" and "thank you."

User-Input Areas

Each user-input page has one or more user-input areas, as shown in Figure 78.
Each user-input area consists of a label and a control (such as a text box) that
enables users to enter an input item (such as a user name).

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Display a page's user-input areas directly below its main instructions. If a page
has two or more user-input areas, they should request closely related input
items--for example, a user's name and address.

If possible, provide a default value for each requested input item, such as a
text entry or a radio-button setting. Verify that this value is valid and consistent
with the user's choices so far. Ideally, the default value is the one that a typical
user would choose.

Provide no default value for a requested input item if either:

• That item is optional.
• No reasonable default value exists.

A data item is optional if a user can omit it without the wizard's supplying a
default value.

No reasonable default exists if providing a default would confuse users. A
user name field, for example, has no reasonable default value, because each
user name must be unique. Instead of a default user name, you could provide
additional instructions explaining the required format for the user name.

In a wizard's user-input pages, place the user-input areas directly below

the main instructions.

In wizards, place the word "Optional" to the right of each user-input item

that has no default value and that requires no input value from users.

In wizards, provide a default value for each user-input value, unless no

reasonable default value exists. If you cannot supply a reasonable default
value for an item, ensure that the page's additional instructions explain the
valid formats for that item. In addition, request that input item early in the
wizard. (Thus, you enable users to complete the wizard faster by skipping
pages that have default values for all user-input fields. For more information
about enabling users to skip pages, see the description of the Last button in
Designing the Bottom Pane.)

In wizard pages, ensure that the Next button is available only after users

enter all the data required on that page.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Enable users to cut, copy, and paste between the wizard and text files,

and between the wizard and other opened applications. Use the keyboard
shortcuts specified in Appendix A of Java Look and Feel Design Guidelines,
2d ed.

In wizard pages, ensure that a user's choices and changes remain visible

and in effect until the user cancels them. Users can cancel choices and
changes explicitly or by making subsequent conflicting choices on pages
visited later. Ensure that navigating back and forth through the wizard does not
cancel the user's choices and changes.

Additional Instructions

Optionally, the right pane of a page can have additional instructions below its
user-input areas. These additional instructions can serve one or more of
following purposes:

• To describe the correct format for entering input items
• To explain the meaning or consequences of choices that users make in the

user-input area
• To explain command buttons or other controls displayed in the right pane

Figure 79 shows a page whose right pane contains additional instructions.

Figure 79 Additional Instructions in Wizard Page

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

When laying out additional instructions, place them below the user-input area,
so that experienced users can skip them.

In the additional instructions, you can use boldface type for text that you want
to emphasize, but do not overuse it. If you need to provide additional text about
an object displayed in the right pane, you can provide that text as help in your
page's left pane.

If a wizard page needs additional instructions, place them below the

user-input area of the right pane.

When describing how to perform an action in a wizard, state the outcome

before stating the means to achieve it--for example, "To stop the print job, click
Stop."

If a wizard's additional instructions describe command buttons, use the

following wording: "To perform-this-action, click button-name." For example,
the instructions might be "To display more names, click More." Do not enclose
the button name in quotation marks.

In the additional instructions of a wizard page, warn users if completing

the page will start actions that the wizard cannot completely undo.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Navigation Instructions

The bottom pane of a wizard contains navigation buttons for moving between
pages and performing other general actions. If your wizard's users are
unfamiliar with such buttons, you can place navigation instructions in the right
pane of your wizard, as shown in Figure 78. Do not provide navigation
instructions if your wizard is intended only for experienced computer users.

If a wizard will be used mainly by computer novices, provide instructions

explaining each of the wizard's navigation buttons. Place these instructions
only on the first page where each navigation button is displayed and available.

When providing navigation instructions for a wizard, place them at the

bottom of the right pane, directly above the wizard's navigation buttons, as
shown in Figure 78.

Use the following wording for instructions about navigation buttons: To

perform-this-action, click button-name. Do not enclose the button name in
quotation marks.

Designing the Left Pane

A wizard's left pane supplements the contents of the right pane by displaying
one or more kinds of information--for example, a list of the wizard's steps.
Within a particular wizard, the left pane always displays the same kind of
information. For example, if the left pane of one page displays a list of steps,
the left pane of each page displays a list of steps. Designing a wizard's left
pane involves choosing the appropriate type of information to display and then
laying it out correctly.

Deciding What to Display in the Left Pane

A wizard's left pane can display any one of the following items:

• A list of steps for using the wizard
• Help text about the object that has keyboard focus in the right pane
• Both a list of steps and help text
• A graphic (only if more-useful information is unavailable)

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

If possible, display steps and help text in the left pane of your wizard. A list of
steps helps orient users within the wizard. Help text enables you to coach
users without opening a help system outside the wizard.

If displaying steps and help text in the left pane is not practical, display either
steps or help text in that pane. Display help text if you cannot list your wizard's
steps--even its main steps. Display a list of steps if all your wizard's
instructions are short and simple enough to fit in the right pane.

Left Pane With a List of Steps

If possible, use the left pane to list the steps that users need to follow in your
wizard. Such a list helps users orient themselves within a wizard. Each step in
the list can correspond to one or more wizard pages. Figure 80 shows a list of
steps in the left pane of a typical page.

Figure 80 List of Steps in the Left Pane of a Wizard Page

In a wizard's left pane, display a list of steps for using the wizard.

If the list of steps in a wizard's left pane is longer than the wizard page,

display the list using a scroll pane with a vertical scrollbar. If resizing the wizard
narrows the left pane, re-wrap the text of the list items to fit the narrowed pane.
Do not provide a horizontal scrollbar.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

If the left pane of a wizard page displays a list of steps in a scroll pane,

make sure that each new step is visible in that list as users proceed through
the wizard. When changing the view in the scroll pane, position the current
step as the second one in the view, while displaying as many of the later steps
as possible.

When displaying a list of steps in a wizard's left pane, highlight the current

step, as shown in Figure 80. If a user navigates to a page in a different step,
highlight the new current step and remove the highlight from the old one.

When highlighting the current step in a wizard's left pane, use the color

Primary 3, as shown in Figure 80 and described in Chapter 4 of Java Look and
Feel Design Guidelines, 2d ed. The highlight should be a rectangle as tall as
the step and as wide as the left pane, minus 10 pixels on the left and on the
right. (This highlight differs from the normal one for text in the Java look and
feel.)

When defining the keyboard traversal order of a wizard page, omit the left

pane. Instead, if there is a list of steps, use the text of the steps as the value for
the page's accessible-description property. (For information about accessible
descriptions, see Chapter 3 of Java Look and Feel Design Guidelines, 2d ed.)

Left Pane With Steps That Branch or Loop

In some wizards, the sequence of possible steps splits into two or more
branches--for example, branches for typical and custom installations of
software. Users of different branches need to perform different steps, which
might not be consecutive in the sequence of possible steps. Displaying a list of
steps in the left pane of such wizards requires careful planning.

If your wizard has branches, consider using one of the following techniques
when designing the left pane:

• Display only your wizard's main steps, with each step corresponding to several
pages if necessary. For example, combine several pages into a single step if you
create several items of the same type.

• When a branch of your wizard skips several steps, move to the new current step
and highlight that step in the list of steps

• Change the list of steps dynamically, so that after a user chooses a step in a
particular branch, only steps of that branch are displayed.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

If none of these techniques would work for your wizard, omit the list of the
steps from the left pane. In its place, display help text. (For more information,
see Left Pane With Help Text.)

Number the steps in the left pane of a wizard only if the steps are

consecutive.

Left Pane With Help Text

If your wizard's instructions do not fit in the right pane, or if users might need
assistance entering requested data, you can display help text in the left pane,
as shown in Figure 81.

Figure 81 Left Pane With Help Text About a Field in the Right Pane

In the left pane of Figure 81, the help text describes the object that has
keyboard focus in the right pane. If a user moves keyboard focus to a different
object, the left pane displays help text about the object to which focus was
moved.

Help text can be the sole contents of the left pane in wizards that do not list
steps there.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

If you provide help text for any of your application's objects, provide help

text for all the application's objects. Provide help on all your wizard's pages or
on none.

If a wizard's left pane displays help text, ensure that the help text

describes a single object--the object that has keyboard focus in the right pane.

If resizing a wizard narrows its left pane, re-wrap any help text to fit the

narrowed pane. Do not provide a horizontal scrollbar.

Left Pane With Steps and Help Text

In wizards where the left pane displays both a list of steps and help text, you
can use a pane having two tabs at the bottom, as shown in Figure 82.

Figure 82 Left Pane With Tabs for Steps and Help

When using the left pane to display both a list of steps and help text, follow

the guidelines listed in Left Pane With a List of Steps and in Left Pane With
Help Text.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

To display a list of steps and help text in the left pane of a wizard, use a

pane having two tabs at the bottom. Label the tabs Steps and Help. Display
the Steps tab unless a user clicks the Help tab.

Ensure that, if a user clicks a tab in a wizard's left pane, the tab's

information is displayed until the user clicks the pane's other tab.

If a user clicks the Help tab of a wizard's left pane, display help text about

the object that has (or most recently had) keyboard focus in the right pane.

Left Pane With a Graphic

Typically, the most useful information to display in a wizard's left pane is a list
of steps or help text. Display a graphic in the left pane only if your wizard's
steps are too complex to summarize in that pane and if there is no suitable
help text. Figure 83 shows a graphic in the left pane of a page.

Figure 83 Graphic in Left Pane of a Wizard Page

Ideally, graphics in the left pane relate to a user's task and to the current step
of that task. For example, in a wizard that creates a complex object in several
steps, the left pane might reflect a user's progress with a different graphic on

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

each page. In a wizard that creates charts, the left pane might show an
example pie chart if the user chooses an option labeled Pie Chart.

Do not resize the graphic if the left pane or the wizard is resized. Instead adjust
the graphic as described in the following guidelines.

Ensure that the dimensions of a graphic in a wizard's left pane are equal

to the initial dimensions of that pane. Place the top of the graphic directly next
to the wizard's title bar.

Do not resize the graphic in a wizard's left pane if a user resizes that pane

or the wizard. If the left pane becomes longer, fill its additional space with the
background color of the graphic. If the wizard becomes narrower, reduce the
width of the left and right panes proportionally, clipping the graphic as needed.
If the wizard becomes wider, allocate the additional width to the right pane,
after the left pane reaches its default size.

If the left pane of your wizard's pages displays a graphic, provide

information about the wizard's current step by changing the graphic on each
page, if possible.

Designing Wizard Behavior

Just as important as a wizard's layout is its overall behavior: Is the wizard easy
to start? Does it enable users to complete their entire task? Can it be moved
and resized? Does it provide enough feedback? This section discusses each
of these topics.

Delivering and Starting Wizards

Some wizards are embedded in applications; others can be started directly.
But whether the wizard is embedded or standalone, users must be able to find
it and start it.

Most embedded wizards can be easily found and started, because they are
started from menus or other obvious places within an application. Standalone
wizards can be much harder to find and start--for example, wizards that install
software from a CD-ROM or other removable storage medium.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

On a CD-ROM, an installation wizard should be in an easy-to-find location. To
simplify starting an installation wizard, consider creating an autoplay screen,
which opens automatically when a user inserts the CD-ROM containing the
wizard.

An autoplay screen lists the tasks that users can choose from the CD-ROM. If
the only task is to install your software, the autoplay screen starts the first page
of your installation wizard. If your users can use the CD-ROM for two or more
tasks--such as installing software or viewing a "Read Me" file--precede your
wizard's first page with a screen from which a user can choose from among the
available tasks.

Place an installation wizard at the highest level of a CD-ROM. If the

application that the wizard will install is on a hard disk, place the wizard in the
top-level directory for the application.

Create an autoplay screen for a standalone wizard.

Supporting a User's Entire Task

When users begin a task in a wizard, they expect to complete the entire task
before leaving the wizard. Make sure that your wizard enables users to
perform their entire task without exiting or otherwise leaving the wizard. If the
task requires temporarily closing the wizard--for example, to restart a user's
computer--your wizard should reopen automatically at the correct wizard page.

If supporting a user's entire task is not possible, your wizard should tell the
user which actions need to be performed outside the wizard. For example, if
the user must temporarily exit the wizard to complete steps off line, the wizard
should enable the user to print a list of those steps--including restarting the
wizard.

When the user restarts the wizard, it should:

• Check that the user's computer system is in the required state
• Help the user correct any errors made during the offline steps

If your wizard cannot support a user's entire task, conduct a usability study. In
the study, verify that all the participants can complete the entire task by using a
combination of the wizard and steps performed outside the wizard.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Your wizard should enable users to perform follow-up actions that relate to the
main task. For example, users often want to save information about the
parameter values used in the wizard. Consider providing a way for users to
print your wizard's confirmation page or to save its contents to a file. Also
consider creating log files in a permanent location, so that users can have a
record of the wizard's actions.

Provide wizard support for the user's entire task.

If technical constraints prevent your wizard from supporting a user's entire

task, conduct a usability study to demonstrate that all participants can
complete the task successfully.

Positioning and Sizing Wizards

Among the characteristics that affect a wizard's usability and visual appeal are:

• The screen position and size at which the wizard opens (and reopens)
• The wizard's appearance after resizing

Wizards are windows, so general guidelines for positioning them are
discussed in "Setting the State of Windows and Objects" on page 33. This
section supplements that discussion with information specifically about
wizards.

A wizard must set its page size when opening for the first time. Typically, a
wizard should be 400 pixels tall and 660 pixels wide. However, a wizard's size
is determined by the layout manager used by the wizard's executable code.

If a user resizes a wizard, the resulting change in layout depends mostly on the
wizard's layout manager. You need to specify how resizing should affect the
contents of the wizard's left pane. The guidelines for resizing the left pane vary
depending on whether it currently displays a list of steps, help text, or a graphic.
(For more information, see Designing the Left Pane.)

Open standalone wizards in the center of the screen on a user's principal

video monitor.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Open embedded wizards over their parent window--the primary window

from which users invoke the wizard. (Position the wizard according to the
guidelines in "Positioning Secondary Windows" on page 33.)

If an embedded wizard's parent window contains information that must be

visible while the wizard is displayed, ensure that the wizard leaves that
information visible.

When reopening a wizard after a user has closed it, display the wizard at

the position it occupied when the user last closed it.

If a wizard is resized horizontally, allocate any additional space to the left

and right panes proportionally, unless the left pane contains a graphic. (For
guidelines on resizing graphics in the left pane, see Left Pane With a Graphic.)

Checking Wizard Dependencies and User Input

A well-designed wizard does not start operations that it cannot finish. Before
your wizard starts its task, it should verify that a user's computer system and
software configuration meet all the wizard's requirements and dependencies.
For example, the wizard should verify that the user's system has:

• Adequate disk space
• A compatible version of the operating system
• All required software patches
• All required Java technology classes, in the correct version

If possible, perform dependency checking at each wizard page, before the
user moves to the next page. Some dependency checks can require
information that the wizard collects across several pages. Perform such
dependency checks as soon as possible and before the user moves to the
wizard's confirmation page.

Before moving ahead from a page, your wizard should verify the user's input
and alert the user to an any invalid values. To alert the user, your wizard
should display an alert box. When the user closes the alert box, place
keyboard focus on the first invalid item, and select that item automatically, if
possible. Do not delete the user's input.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

A validity check can take a long time. To let the user continue working, your
wizard can delay displaying the results of the validity check until the check is
complete. However, if the check finds invalid values, your wizard will have to
recover from any errors caused by the user's invalid input.

Provide dependency checking in your wizard to ensure that the wizard

does not fail because of unsatisfied dependencies.

In wizards, perform each dependency check as soon as possible after a

user enters the relevant data. If a dependency does not involve user input,
check it when the wizard first opens.

Check all user input for errors before moving to a wizard's next page,

unless checking would take an unreasonably long time. In that case, check for
errors just before a user reaches the wizard's confirmation page.

Providing Operational Feedback in Wizards

Users interact more easily with a wizard if it keeps them informed about its
state. Your wizard should display a progress page when performing a
time-consuming operation. Figure 84 shows a typical progress page. (For a
description of progress pages, see Progress Pages. For general information
about appropriate response times, see Chapter 6.)

Figure 84 Progress Page With a Progress Bar

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

In a progress page, the right pane displays a underlined subtitle, formatted as
on all other pages. Below the subtitle is a progress animation, which can be a
progress bar (as in Figure 84) or a progress checklist (as in Figure 85).

Figure 85 Progress Page With a Progress Checklist

You can display a long progress checklist in a scrolling pane. A progress bar or
progress checklist is displayed in the right pane, not in a separate window. (For

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

general information about using progress bars and progress checklists, see
"Providing Operational Feedback" on page 105.)

Applications should let users terminate an operation in progress. To let users
terminate such an operation in your wizard, provide a Stop button on the
progress page. Figure 84 and Figure 85 show a Stop button used with a
progress bar and with a checklist. In both figures:

• The Stop button is right justified.
• The mnemonic for the Stop button is "S."
• The navigation buttons are dimmed (because the user has not clicked the Stop

button).

Not all progress pages should have a Stop button. Before adding a Stop button
to a progress page, consider whether terminating the operation could leave a
user's computer system in an inconsistent state. If it could, decide whether
your wizard can undo the completed portion of the operation.

Provide a Stop button only if your wizard can either:

• Undo the completed portion of operation
• Leave the user's computer system in a state less problematic than the one that

would result from completing an incorrect action

Before stopping an operation, display an alert box explaining how stopping the
operation will affect the task or the system--unless the system will be returned
to its pre-wizard state. In the alert box, allow the user to continue the task or
cancel the wizard.

If a wizard performs an operation that might last longer than 10 seconds,

show progress feedback in the right pane of the wizard.

If users can safely stop an operation in a wizard, provide a Stop button.

Follow these rules:

• Place the Stop button directly below the progress bar or checklist on the progress
page for the operation. Alternatively, place the Stop button directly to the right of
the progress bar or checklist.

• Align the Stop button with the right edge of the page's content.
• Use "S" as the Stop button's mnemonic.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

If a user stops an operation, return the system to the state it was in when

the operation started, or display an alert box that explains the state of the
system when the operation stopped. The alert box must let the user choose to
stop or continue the operation.

On a progress page, make the navigation buttons of the bottom pane

unavailable when an action is in progress. Unless the progress page is the
wizard's final page, make the Next button available when the action is
complete. Ensure that, after the action is complete, the Cancel button remains
unavailable.

Alerting Users in Wizards

Ideally, a wizard's panes display all the text needed for using the wizard. You
might need to alert users by displaying an additional text message--typically,
about a potential or actual problem. You can alert users by displaying an alert
box.

Display alert boxes only for errors that you cannot prevent. You can
sometimes prevent errors by providing better instructions in the preceding
wizard pages. Displaying alert box is required in the following situations:

• After the wizard detects an input error
• When a user is about to lose input data by canceling the wizard

with either:

• The window's close control
• The wizard's Cancel button

Figure 86 shows an alert box for confirming a close-window operation.

Figure 86 Alert Box for Closing or Canceling Wizard

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Display a wizard's status information within the wizard's right pane.

Display status information in an alert box only if you cannot display the
information in the right pane.

In wizards, display an alert box if a user provides input values but then

tries to cancel the wizard by clicking its Cancel button or the close control in
the wizard's title bar. In the alert box, display the message shown in Figure 86.
If the user clicked the Cancel button, use the word "Cancel" instead of
"Window Close" in the window title and message title.

Ensure that a wizard warns users before it starts any operation that a user

cannot stop. Typically, the warning is part of the additional instructions on the
wizard page from which the user could request the operation.

Designing Installation Wizards

One of the tasks for which wizards are most frequently used is installing
software. Although such installation wizards vary widely, all well-designed
installation wizards share these characteristics:

• They are easy for users to locate and start.
• They provide all the information that users need to decide whether to install the

software.
• They enable users to perform installation tasks completely, without exiting the

wizard.

Choosing a Location for a Wizard's Code

The correct location for an installation wizard's executable code depends on
whether the installation medium is portable--whether it is intended to be easily
moved from one computer to another.

If your installation wizard is intended to run from a portable medium, such

as a CD-ROM, store the wizard at highest-level directory of that medium.

If your wizard is for installing an application whose installation files are on

a hard disk, store the wizard at the highest-level directory of the application's
installation files.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Helping Users Decide Whether to Install

Installation wizards should provide the following information to help users
decide whether to proceed with an installation:

• The version of the software that the wizard installs and, if that version is not final
and supported, a description such as Beta Release or Unsupported Release.

• Pre-installation requirements, for example, the minimum hardware required.
• Dependencies on other software that can affect the installation and later use of the

software being installed.
• Descriptions of the software modules available for installation.
• The amount of disk space needed for the installation.
• The location of a log file of actions taken during the installation.
• A list of files that were modified or deleted by the installation.

Tasks That Installation Wizards Should Handle

In addition to describing prerequisites, dependences, and results, installation
wizards should enable users to perform the following tasks:

• Choose between a typical installation and a customized installation.
• Install one or more modules of the software that can work independently of

modules not installed.
• Choose the directory in which the software will be installed.
• Reinstall the software without losing data or application preferences.

8: Events and Alarms

Applications that monitor entities--such as variables, devices, or
services--must keep users informed of events involving those entities. An
event is a change in an application's state reflecting a change in the state of a
monitored entity. An application or its users define which kinds of state
changes are events. Some examples of events are:

• Starting a print job on a monitored printer
• Updating a monitored database
• Updating a variable that counts the bytes in a file

Most events do not require a user's attention. Such events are called
basic events, which applications sometimes record in an event log.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Each event that might require a user's attention is called an alarm event.
Applications display alarm events to users and record those events in an event
log. The circumstances that caused an alarm event are called an alarm. The
alarm event itself is also commonly called an alarm. Some examples of
possible alarms are:

• The failure of a print job on a monitored printer
• An unsuccessful attempt to update a monitored database
• The growth of a monitored file beyond the maximum size allowed

Alarms vary in their severity, which can range from minor to critical, and in
their status, which can progress from open to fixed. Each application or its
users define which kinds of events cause alarms and how serious, or severe,
each alarm is.

Applications that generate events should be able to:

• Record each alarm event in a log and inform users when a new alarm
event occurs

• Display alarm views (representations of one or more alarms)
• Manipulate alarm views (for example, by sorting them at a user's

request)

This chapter provides guidelines for designing your application's events and
alarms.

Alarm Conditions

To determine when an application should create alarm events, the
application's designer or users define alarm conditions, which when true,
cause the application to create alarm events. Applications constantly monitor
whether each alarm condition is true.

Each alarm condition defines either:

• A threshold on a monitored entity
• Thresholds on a set of monitored entities

A threshold is a value beyond which the alarm condition is true--or can be true,
if the alarm condition depends on more than one threshold.

When true, an alarm condition constitutes an alarm on each monitored entity
that the condition affects. A monitored entity for which an alarm condition is
true is called an alarmed entity.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Levels of Severity

Each alarm event has a level of severity--known as the alarm's "severity." An
alarm's severity indicates the order in which users should handle that event
relative to alarms of other severities.

Levels of severity can help an application's users prioritize their work,
especially if the application can display many alarms at the same time.
Table 19 lists the standard levels of severity for alarms.

Table 19 Levels of Alarm Severity

Severity Description

down There is no response from the monitored entity (or from the device
on which it resides).

critical An alarm condition occurred that seriously impairs service and
requires immediate correction.

major An alarm condition occurred, impairing service but not seriously.

minor
An alarm condition occurred that does not currently impair service,
but the condition needs to be corrected before it becomes more
severe.

Each level of severity has an corresponding alarm graphic, which you can
use to help users identify alarmed entities. (For information about alarm
graphics, see Alarm Graphics.)

Some applications can generate many alarms at the same time. To avoid
overwhelming users, such applications should enable users to control:

• Which events trigger alarms
• Which severity is assigned to alarms

These capabilities help users eliminate irrelevant alarms and notice important
alarms.

Enable users to modify alarm conditions and define new alarm conditions.

Provide only the levels of severity in Table 19. Of those levels, provide

only the ones that your application's users will need.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Enable users to adjust the thresholds that determine each alarm's

severity.

When displaying or logging an alarm, indicate its severity.

Alarm Status

Each alarm event has an alarm status that affects:

• Whether the application displays information about that event
• How the application displays that information

Table 20 describes the values for an alarm's status.

Table 20 Alarm Status Values

Status Description

open This alarm event is neither closed nor fixed and is not being
handled by another user.

acknowledged
This alarm event is neither closed nor fixed and is being
handled by the user who set the event's status to
acknowledged.

closed

Either the alarm condition associated with this alarm event is
no longer true, or a user did something that canceled the
alarm. (An alarm event's status can be closed even if nothing
has corrected the problem that caused the event.)

fixed The problem that caused this alarm event has been corrected.

An alarm whose status is open or acknowledged is called an active alarm. An
alarm whose status is closed or fixed is called an inactive alarm. Neither
"active" nor "inactive" is an alarm status.

Logging Events

To enable users to examine a record of events, your application can display an
event log--a complete or partial record of events. An application can have one
event log or several. For example, an application might have a log for each
monitored entity.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Make sure that users can easily find your application's event logs and
manipulate their contents--with, for example, an operating system's utility
program for sorting plain text.

If users might need event-related information after your application no

longer displays it, store that information in a persistent event log--for example,
a text file.

If your application has event logs, provide commands--within the

application--for displaying each log's name and location. Likewise, provide
commands for renaming and moving each log.

Displaying Alarm Views

An alarm view is a window or pane that displays representations of alarms.
For example, an alarm view might represent alarms in one of the following
forms:

• Badges on icons
• Badges on nodes in a tree
• Rows in a table

You can help users work with alarms more efficiently by providing different
alarm views for different user tasks. Provide at least the following alarm views:

• Monitored-entities view--A tree or pane that displays an icon and an alarm
graphic for one or more monitored entities and their containers. (For more
information, see Monitored-Entities View.)

• Detailed alarm view--A table of all active and inactive alarms that match certain
criteria--typically, alarms for a particular monitored entity. Each table row describes
a particular alarm in detail. (For more information, see Detailed Alarm View.)

The rest of this section describes how to design alarm views, including how to
use alarm graphics.

Alarm Graphics

An alarm graphic is an application graphic that indicates an alarm's existence
and severity. Alarm graphics help users notice alarms and respond to them in
the appropriate order.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

You can use each alarm graphic as either:

• An alarm badge (a badge on an icon)
• An alarm symbol (an alarm graphic displayed alone)

Figure 87 shows the same alarm graphic as a badge and as a symbol.

Figure 87 Alarm Graphic as a Badge and as a Symbol

Table 21 shows a recommended set of alarm graphics and the level of severity
that each graphic represents.

Table 21 Alarm Graphics for the Standard Levels of Severity

Severity Graphic Description

down
There is no response from the monitored entity (or from the
device on which it resides).

critical
An alarm condition occurred that seriously impairs service
and requires immediate correction.

major
An alarm condition occurred, impairing service but not
seriously.

minor

An alarm condition occurred that does not currently impair
service, but the condition needs to be corrected before it
becomes more severe.

In alarm views, display an alarm graphic on each representation of an alarmed
entity or of that entity's alarm events.

For example, display an alarm graphic:

• On the icon for each alarmed entity
• In each table row that describes an alarm event
• On the icon for each container that contains an alarmed entity

Display an alarm graphic wherever you refer to a collection of alarms having
the same level of severity. For example, display the alarm graphic in headings

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

and labels for such collections. Using alarm graphics in this way helps users
associate each graphic with its meaning.

You can display alarm graphics in different sizes. The correct size for each
alarm graphic depends on the view that displays the graphic.

If the alarm view is in an icon pane or a tree, place an alarm graphic as a
badge on the lower right corner of the icon for each alarmed entity, as shown in
Figure 88 (an icon pane) or Figure 89 (a tree). Use a small alarm graphic on
small icons; use a larger alarm graphic on large icons.

If the alarm view is in a table, place an alarm graphic in each row of a column
dedicated to alarm graphics, as shown in Figure 91.

In alarm views, place an alarm graphic on each representation of an

alarmed entity.

When displaying alarm graphics, use only the alarm graphics in Table 21.

When placing an alarm graphic on icons, ensure that the alarm graphic

covers no more than 25% of the icon.

In the standard locations for alarm graphics, display only alarm graphics.

Never display any other information in those locations. If an entity is not
alarmed, indicate that fact by displaying nothing in the standard locations for
alarm graphics.

When representing a monitored entity where more than one alarm exists,

display an alarm graphic only for the entity's most severe alarm.

When representing a container that contains alarmed entities, display only

one alarm graphic--the graphic for the most severe alarm among those for the
container's contents. If the container contains other containers, consider the
contents of the entire hierarchy when determining which graphic to display.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

Monitored-Entities View

A monitored-entities view displays an icon and alarm graphic for one or more
monitored entities or containers of such entities. Figure 88 shows a
monitored-entities view as an icon pane.

Figure 88 Monitored-Entities View as an Icon Pane

Figure 89 shows a monitored-entities view as a tree.

Figure 89 Monitored-Entities View as a Tree

A monitored-entities view enables users to determine:

• Whether any alarmed entities are in that view
• How severely each entity is alarmed

When examining monitored-entities views, users might need more information
about a particular entity. You can provide that information through
supplements such as:

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

• Tool tips for the entities in the view
• Context-sensitive help in an additional pane of the window containing the

monitored-entities view

Figure 90 shows a monitored-entities view with tool tips.

Figure 90 Monitored-Entities View With Tool Tips

In each tool tip, help pane, or other supplement to a monitored-entities view,
display:

• The name of the monitored entity
• The time at which the entity's status was most recently updated
• Brief information about the entity

Supplement each monitored-entities view with at least one form of

additional information about each entity in the view. For example, provide tool
tips, context-sensitive help, or both.

Detailed Alarm View

A detailed alarm view, or "detailed view," is a table of all active and inactive
alarm events that match certain criteria, defined by an application's designer or
by a user. Each table row provides detailed information about a particular
alarm event. Figure 91 shows a detailed alarm view.

Figure 91 Detailed Alarm View

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

The kinds of detailed views that you should provide depend on the tasks that
your application's users need to perform. For each monitored entity provide at
least one detailed view that displays all alarms for that entity.

For each alarm in a detailed view, display:

• Alarm's level of severity
• Time at which the alarm occurred
• Status of the alarm event
• Alarm condition that caused the alarm
• Notes that users have entered about the alarm

For each detailed view, enable users to manipulate the displayed alarms. For
example, enable users to:

• Sort alarms
• Filter alarms
• Delete an alarm
• Undo the deletion of an alarm
• Change an alarm's status--for example, by acknowledging or closing the alarm
• Add notes about an alarm

In a detailed alarm view, enable users to request information about each

active and inactive alarm for the monitored entities in that view.

When displaying alarms in a detailed view, show the severity of each

alarm.

In detailed alarm views, enable users to sort and filter alarms by their

status, level of severity, time of occurrence, and optionally, other criteria.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

In a detailed alarm view, display only alarms that match a user's criteria,

or by default, display only active alarms. By default, when displaying alarms,
sort them primarily by their severity (listing the most severe alarm first). In
addition, sort the alarms secondarily by their alarm status (listing open alarms
first).

If a detailed alarm view is filtered by default or at a user's request, clearly

indicate that the view is filtered and by which criteria.

Glossary

accessibility

The degree to which software can be used
comfortably by a variety of people, including those
who require assistive technologies or those who
use the keyboard instead of a pointing device. An
accessible JFC application uses the Java
Accessibility API and provides keyboard operations
for all actions that can be carried out by use of the
mouse.

action window

A dialog box that prompts a user for information
needed to perform an action the user
requested--for example, opening a file.

activation
Starting the operation of a component. See also
available, choose, select.

active alarm
An alarm whose status is open or acknowledged.
See also alarm event.

Add-and-Remove idiom
Enables users to choose a subset from a large list
of objects. See also idiom.

alarm See alarm event.

alarm condition
A condition that, when true, causes an application
to create an alarm event.

alarm event

In a user interface with events and alarms, an event
that might require a user's attention. The set of
circumstances that cause an alarm event is called
an alarm. The alarm event itself is also commonly
called an alarm. See also event, basic events.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

alarm graphic
An application graphic that indicates an alarm's
existence and severity.

alarm status
For an alarm event, a property that affects whether
an application displays information about that alarm
event and, if so, how.

alarm view
A window or pane that represents alarms as, for
example, badges on icons, rows in a table, or
nodes of a tree.

alarmed entity
A monitored entity for which an alarm condition is
true. See also monitored entity.

alert box

A secondary window used by an application to
convey a message or warning or to gather a small
amount of information from the user. Four standard
alert boxes (Info, Warning, Error, and Question) are
supplied for JFC applications. Alert boxes are
created using the JOptionPane component. See
also dialog box.

application

A program that combines all the functions
necessary for a user to accomplish a particular set
of tasks (for example, word processing or inventory
tracking). Unless stated otherwise, this book uses
"application" to refer to both applets and
standalone applications.

application-provided table

A table whose structure is provided by the
application, though users might be able to select or
edit the table's contents. Application-provided
tables differ from user-created tables, such as
spreadsheets, whose structure is determined by a
user.

application-wide mode

Changes the effect of users' actions throughout the
application. Examples of application-wide modes
are the Edit mode and Run mode of a typical GUI
builder. See also mode.

ascending sort
A sort in which values are arranged from lowest to
highest.

automatic row sorting
In tables, a feature that causes rows to be
automatically sorted each time users edit a row or
add one.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

available
Able to be interacted with. When a component is
unavailable, it is dimmed and is unable to receive
keyboard focus.

backing window
A container, a sort of "virtual desktop," for an MDI
application. See also internal window, MDI.

badge

A graphic added to an existing graphic to provide
additional information about that existing
graphic--for example, to indicate a change in the
action that a button represents or to indicate the
presence of a problem in the entity that an icon
represents.

basic events
In a user interface with events and alarms, events
that do not require a user's attention. See also
alarm event.

behavior
Refers to how applications interact with users. See
also mode, tool tip, filtering, searching.

benchmark
A goal that you devise to determine whether your
application provides acceptable response delays
for a specific task. See also response delay.

bounding box

In icon panes and other two-dimensional layouts,
the expanding rectangle that marks the starting
position and current position of the pointer as a
user drags the mouse.

Browse idiom

Enables users to specify an object (typically, a file,
directory or web page) by choosing it from a list.
This idiom consists of a label, an editable text field,
and a command button whose text begins with the
word "Browse." See also idiom.

cell selection model

A selection model in which users of a table can
select a single cell without selecting that cell's
entire row. See also row selection model,
selection model.

cell-selection table
A table which users can select a single cell without
selecting its entire row.

checkbox

A control, consisting of a graphic and associated
text, that a user clicks to turn an option on or off. A
check mark in the checkbox graphic indicates that
the option is turned on. Checkboxes are created

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

using the JCheckBox component.

choose

(1) In human interface design, refers narrowly to
turning on a value in a component that offers a set
of possible values, such as a combo box or a list
box.
(2) In technical documentation, refers generally to
the action of clicking a menu title or menu item. See
also activation, select.

click
To press and release a mouse button. Clicking
selects or activates the object beneath the button.

client

In the client-server model of communications, a
process that requests the resources of a remote
server, such as computation and storage space.
See also server.

combo box

A component with a drop-down arrow that the user
clicks to display a list of options. Noneditable
combo boxes have a list from which the user can
choose one item. Editable combo boxes offer a text
field as well as a list of options. The user can make
a choice by typing a value in the text field or by
choosing an item from the list. Combo boxes are
created using the JComboBox component.

command button

A button with a rectangular border that contains
text, a graphic, or both. A user clicks a command
button to specify a command to initiate an action.
Command buttons are created using the JButton
component. See also toggle button, toolbar button.

common menu

Any one of the drop-down menus present in most
menu-driven applications. The common menus are
the File menu, Edit menu, View menu, and Help
menu.

component

A subclass of java.awt.component or, by
extension, the interface element implemented by
that subclass. Most components--for example,
menus and toolbars--enable a user to control an
application.

computational performance
What software engineers usually mean by
"performance"-- focuses on fast algorithms,
efficient data structures, and economical use of

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

processor time.

confirmation page
In wizards, a type of page that enables users to
verify which actions a wizard is about to take and
then start or cancel those actions.

container
A component (such as an applet, window, pane, or
internal window) that holds other components.

Container-and-Contents
idiom

Allows users to view a hierarchy of containers--for
example, a set of file folders--while also viewing the
contents of a selected container--for example, the
list of documents in a selected folder. See also
idiom.

contextual menu

A menu displayed when a user presses mouse
button 2 while the pointer is over an object or area
associated with that menu. A contextual menu
offers only menu items that are applicable to the
object or region at the location of the pointer.
Contextual menus are created using the
JPopupMenu component. See also menu.

control

An interface element that a user can manipulate to
perform an action, choose an option, or set a value.
Examples include buttons, sliders, list boxes, and
combo boxes. See also component, object.

cross-platform

Pertaining to heterogeneous computing
environments. For example, a cross-platform
application is one that has a single code base for
multiple operating systems.

cursor See pointer.

dedicated property window

Affects only objects that were already selected
when the property window opened. The window
affects the same objects even if a user changes the
selection while the property window is displayed.
See also property window.

default command
For an object, the command that is executed if a
user double-clicks that object. See also object.

default command button

The command button that the application activates
if a user presses Enter or Return. Default buttons in
Java look and feel applications have a heavier
border than other command buttons. See also

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

command button.

deployment
The process of installing software into an
operational environment.

descending sort
A sort in which values are arranged from highest to
lowest.

designer

A professional who specifies how users will interact
with an application, chooses the application's
user-interface components, and lays them out in a
set of views. The designer might also be the
developer who writes the application code.

detailed alarm view

(Also called "detailed view.") A table of all active
and inactive alarm events that match certain
criteria, defined by an application or by a user.

dialog box

A secondary window displayed by an application to
gather information from users. Examples of dialog
boxes include windows that set properties of
objects, set parameters for commands, and set
preferences for use of the application. Dialog boxes
can also present information, such as displaying a
progress bar. A dialog box can contain panes, lists,
buttons, and other components. Dialog boxes are
created using the JDialog component. See also
action window, alert box, property window,
secondary window, utility window.

drop-down arrow

The triangular indicator that a user clicks to view
more options than are visible on screen--such as
the list attached to a combo box or the menu
provided by some toolbar buttons. See also badge.

drop-down menu

A menu that is displayed when a user activates a
menu title in the menu bar or toolbar. Drop-down
menus are created using the JMenu component.
See also menu, menu bar.

duration
For tool tips, the amount of time for which a tool tip
is displayed. See also onset delay, tool tip.

editing area

In tables using the row selection model and the
external editing model, an area outside the table
and, typically, just below it. The editing area
includes editable text fields, combo boxes, or other

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

editable components that enable users to type or
choose input values. See also editing model,
external editing model, row selection model.

editing model
In a table, a set of rules and techniques for editing a
portion of the table, such as a cell or row. See also
selection model.

ellipsis (...)

At the end of a menu item, indicates that an
application needs additional user input to execute
the item's command. An ellipsis indicates that the
application will display a dialog box before the
command is executed.

embedded wizard
A wizard that users can start only from within an
application. See also wizard, standalone wizard.

event
A change in an application's state reflecting a state
change in an entity that the application monitors.
See also alarm event, monitored entity.

event log A complete or partial record of events.

external editing model
In tables, a technique of editing the contents by
entering values in an editing area located outside
the table. See also internal editing model.

external
progress animation

An animation that indicates progress feedback but
not in a dedicated area for indicating the progress
or status of operations. See also internal
progress animation.

filtering

In user interfaces, a feature that enables users to
specify which objects in a currently displayed set
should be omitted from the display, based on the
user's criteria, known as a filter.

focus See keyboard focus.

glyph A small graphical symbol.

golden mean
A position on a window's vertical midline and
slightly above the window's horizontal midline.

grid line
In tables, a horizontal or vertical line separating
rows or cells.

host
A computer system that is accessed by one or
more computers and workstations at remote

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

locations.

icon
An on-screen graphic representing an interface
element that a user can select or manipulate--for
example, an application, document, or disk.

icon pane A set of icons in a pane. See also icon, pane.

idiom

A set of components configured in a standardized
way to provide a particular appearance and
behavior.

import
To bring an object or data file (for example, a
document created in another application, a text file,
or a graphics file) into an application.

inactive alarm
An alarm whose status is closed or fixed. See
also active alarm, alarm event.

indeterminate-progress bar

Used to provide feedback about an operation
whose duration you cannot estimate and whose
sequence of stages you cannot represent. See also
progress bar.

input focus See keyboard focus.

insertion point
The place, usually indicated by a blinking bar,
where typed text or a dragged or pasted selection
will appear. See also pointer.

inspecting
property window

Displays a continuously updated view of the
property values for the selected object, and
enables a user to change the displayed property
values (and the selected object) immediately. See
also property window.

installation wizard A wizard that installs software.

internal editing model
In tables, a technique of editing the contents by
entering a value directly in the cell that has focus.
See also external editing model.

internal progress animation
A progress animation in an application's dedicated
area for indicating the progress or status of
operations. See also external progress animation.

internal window

In MDI applications, a window that a user cannot
drag outside the backing window. In an MDI
application that uses the Java Look and feel,

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

internal windows have a window border, title bar,
and standard window controls with the Java look
and feel. Internal windows correspond to a
non-MDI application's primary windows. See also
backing window, MDI, primary window.

Java Accessibility API

A programming interface (part of the JFC) that
enables assistive technologies to interact and
communicate with JFC components. A Java
application that fully supports the Java Accessibility
API is compatible with such technologies as screen
readers and screen magnifiers.

Java Foundation Classes See JFC.

Java look and feel

The default appearance and behavior for JFC
applications, designed for cross-platform use. The
Java look and feel works in the same way on any
platform that supports the JFC.

JFC

(Java Foundation Classes) A part of the Java 2
platform that includes the Swing classes, pluggable
look and feel designs, and the Java Accessibility
API. The JFC also includes the Java 2D API, drag
and drop, and other enhancements.

JFC application An application built with the JFC. See also JFC.

keyboard focus
The active window or component where the user's
next keystrokes will take effect. Sometimes called
the "input focus." See also select.

keyboard operations

A collective term for keyboard shortcuts,
mnemonics, and other forms of navigation and
activation that utilize the keyboard instead of the
mouse. See also keyboard shortcut, mnemonic.

keyboard shortcut

A keystroke combination (usually a modifier key
and a character key, like Control-C) that activates a
menu item from the keyboard even if the relevant
menu is not currently displayed. See also keyboard
operations, mnemonic.

keyboard traversal order
The sequence of fields that will receive keyboard
focus if a user repeatedly presses the Tab key. See
also keyboard focus.

Key-Search idiom A feature that lets users find a list item by typing its

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

first letter (called the "search key" or "key"). Key
search is case insensitive, and it works on any list
of text items, even an unsorted list. See also idiom.

label

Static text that appears in the interface. For
example, a label might identify a group of
checkboxes. (The text that accompanies each
checkbox within the group, however, is specified in
the individual checkbox component and is therefore
not considered a label.) Labels are created using
the JLabel component.

layout manager

Software that assists the designer in determining
the size and position of components within a
container. Each container type has a default layout
manager.

list box

A set of choices from which a user can choose one
or more items. Items in a list can be text, graphics,
or both. List boxes can be used as an alternative to
radio buttons and checkboxes. The choices that
users make last as long as the list is displayed. List
boxes are created using the JList component.
See also combo box, selectable list.

list components
A collective term for the two components that
provide a one-column arrangement of data. See
also list box, selectable list.

look and feel
The appearance and behavior of a complete set of
GUI components. See also Java look and feel.

MDI
(multiple document interface) An interface style in
which primary windows are represented as internal
frames inside a backing window.

measured-progress bar
A progress bar that shows how much of an
operation is complete. See also
indeterminate-progress bar, progress bar.

menu

A list of choices (menu items) logically grouped and
displayed by an application so that a user need not
memorize all available commands or options.
Menus in the Java look and feel are "sticky"--that is,
they remain posted on screen after the user clicks
the menu title. Menus are created using the JMenu
component. See also contextual menu, drop-down

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

menu, menu bar, menu item, submenu.

menu bar

The horizontal strip at the top of a window that
contains the titles of the application's drop-down
menus. Menu bars are created using the JMenuBar
component. See also drop-down menu.

menu item

A choice in a menu. Menu items (text or graphics)
are typically commands or other options that a user
can select. Menu items are created using the
JMenuItem component.

menu separator See separator.

middle mouse button

The central button on a three-button mouse
(typically used in UNIX® environments). The Java
look and feel does not utilize the middle mouse
button. See also mouse button 2.

mnemonic

An underlined alphanumeric character, typically in
a menu title, menu item, or the text of a button or
component. A mnemonic shows the user which key
to press (in conjunction with the Alt key) to activate
a command or navigate to a component. See also
keyboard operations, keyboard shortcut.

modal dialog box

In a JFC application, a dialog box that prevents the
user's interaction with other windows in the current
application. Modal dialog boxes are created using
the JDialog component. See also dialog box,
modeless dialog box.

modal secondary window

Prevents users from interacting with other windows
of an application until that modal window is closed.
(In contrast, a modeless secondary window does
not prevent users from interacting with other
windows.) See also dialog box, modal dialog box.

mode

The effects of a user's actions differ in different
situations, or modes, defined in the application.
Often, a mode lets users perform only certain
actions. A mode is an operational state to which a
system has been switched. It implies that at least
two states are available.

modeless dialog box
In a JFC application, a dialog box whose presence
does not prevent the user from interacting with

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

other windows in the current application. Modeless
dialog boxes are created using the JDialog
component. See also dialog box, modal dialog box.

modifier key
A key (for example, the Control or the Shift key)
that does not produce an alphanumeric character
but rather modifies the meaning of other keys.

monitored-entities view
Displays an icon and alarm graphic for one or more
monitored entities and their containers (if any).

monitored entity An entity that the application monitors.

Most Recently Used (MRU)
list

In the File menu, a dynamic list of a user's most
recently opened objects. Users can reopen these
objects.

mouse button 1

The primary button on a mouse (the only button, for
Macintosh users). By default, mouse button 1 is the
leftmost button, though users might switch the
button settings so that the rightmost button
becomes mouse button 1. See also middle mouse
button, mouse button 2.

mouse button 2

On a two-button or three-button mouse, the button
that is used to display contextual menus. By
default, mouse button 2 is the rightmost button on
the mouse, though users might switch the settings
so that the leftmost button becomes mouse button
2. On mouse devices with only one button, users
get the effect of mouse button 2 by holding down
the Control key when pressing mouse button 1.
See also contextual menu, middle mouse button,
mouse button 1.

mouse-over feedback

A change in the visual appearance of an interface
element that occurs when the user moves the
pointer over it--for example, the display of a button
border when the pointer moves over a toolbar
button.

multiple document
interface

See MDI.

non-dedicated
property window

Affects only objects that are currently selected. The
window affects different objects if a user changes
the selection while the property window is

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

displayed. See also property window.

noneditable combo box See combo box.

non-inspecting
property window

Displays a static view, or "snapshot," of the
selected object's property values--accurate as of
the time that the property window opened. See also
property window.

object

(1) In user interface design, a logical entity that an
application presents in an interface and that users
manipulate--for example, a document, chapter, or
paragraph in a word- processing application, or a
mail server, mailbox, or mail message in a mail
program.
(2) In programming, the principal building block of
object-oriented applications. Each object is a
programming unit consisting of data (instance
variables) and functions (instance classes). A
component is a particular type of object. See
component.

onset delay
For tool tips, the amount of time before a tool tip is
displayed. See also duration, tool tip.

overview page

In wizards, provides an overview of the wizard's
steps. Typically, an overview page is needed only in
very complex wizards or in wizards that do not
display a list of steps in the left pane of their pages.

pane
A collective term for icon panes, scroll panes, split
panes, and tabbed panes.

panel

(1) A collective term for scroll panes, split panes,
and tabbed panes.
(2) A container for organizing the contents of a
window, dialog box, or applet. Panels are created
using the JPanel component. See also
tabbed pane.

password field

A special text field in which the user types a
password. The field displays a masking character
for each typed character. Password fields are
created using the JPasswordField component.

perceived performance
Based on how fast an application seems to its
users--how well it responds to them, not

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

necessarily how fast it fulfills their requests. See
also responsiveness.

plain window

An unadorned window with no title bar or window
controls, typically used for splash screens. Plain
windows are created using the JWindow
component. See also primary window,
window controls.

pointer

A small graphic that moves around the screen as
the user manipulates the mouse (or another
pointing device). Depending on its location and the
active application, the pointer can assume various
shapes, such as an arrowhead, crosshair, or clock.
By moving the pointer and pressing mouse buttons,
a user can select objects, set the insertion point,
and activate windows. Sometimes called the
"cursor." See also insertion point, pointer feedback.

pointer feedback
Visual feedback provided by changing the shape of
the pointer. See also pointer.

primary key
In a sorted table, the main column of values by
which the table is sorted.

primary window

A top-level window of an application, where the
principal interaction with the user occurs. The title
bar and borders of primary windows always retain
the look and feel of the user's native platform.
Primary windows are created using the JFrame
component. See also dialog box,
secondary window.

progress animation
A progress bar or progress checklist that shows
how much of an operation is complete or that an
operation is in progress. See also progress bar.

progress bar

An interface element that indicates one or more
operations are in progress and shows the user
what proportion of the operations has been
completed. Progress bars are created using the
JProgressBar component. See also control,
slider.

progress page
Provides feedback to users about progress of a
wizard's current operation.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

properties
For user interface objects, characteristics whose
values users can view or change. See also object.

property window

Enables a user to display or change the
characteristics of one or more objects, typically
objects displayed in the parent window.

requirements page
In wizards, a type of page that describes what the
user must know, do, or have in order to complete
the wizard.

response delay
The length of time that a user must wait before an
application acknowledges or fulfills a specific
request from the user.

responsiveness

As defined by Jeff Johnson in his book,
GUI Bloopers: Don'ts and Do's for Software
Developers and Web Designers, is "the software's
ability to keep up with users and not make them
wait."

row selection model

A selection model in which users of a table cannot
select a single cell without selecting that cell's
entire row. See also cell selection model,
selection model.

row-selection table
A table in which selecting a cell also selects that
cell's entire row. See also cell-selection table.

row striping
In tables, the technique of using one background
color for even-numbered rows and a different
background color for odd-numbered rows.

scalability

(1) An application's ability to let users easily find,
view, and manipulate widely varying numbers of
objects.
(2) As an aspect of performance, the ability of an
application to work under heavy loads--for
example, large numbers of concurrent users or
large sets of data.

scroll arrow

In a scrollbar, one of the arrows that a user can
click to move through displayed information in the
corresponding direction (up or down in a vertical
scrollbar, left or right in a horizontal scrollbar). See
also scrollbar.

scroll box A box that a user can drag in the channel of a

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

scrollbar to cause scrolling in the corresponding
direction. The scroll box's position in the scrollbar
indicates the user's location in the list, window, or
pane. In the Java look and feel, the scroll box's size
indicates what proportion of the total information is
currently visible on screen. A large scroll box, for
example, indicates that the user can peruse the
contents with just a few clicks in the scrollbar. See
also scrollbar.

scroll pane

A container that provides scrolling with optional
vertical and horizontal scrollbars. Scroll panes are
created using the JScrollPane component. See
also scrollbar.

scrollbar

A component that enables a user to control what
portion of a document or list (or similar information)
is visible on screen. A scrollbar consists of a
vertical or horizontal channel, a scroll box that
moves through the channel of the scrollbar, and
two scroll arrows. Scrollbars are created using the
JScrollBar component. See also scroll arrow,
scroll box, scroll pane.

searching

An application feature that lets users specify which
objects in a set will be displayed in a window,
based on the user's criteria, called a query. See
also filtering.

secondary window

A modal or modeless window created from and
dependent upon a primary window. Secondary
windows set options or supply additional details
about actions and objects in the primary window.
Secondary windows are dismissed when their
associated primary window is dismissed.
Secondary windows are created using either the
JDialog component (for dialog boxes and utility
windows) or the JOptionPane component (for alert
boxes). See also alert box, dialog box,
primary window.

selectable list

A one-column arrangement of data in which the
items that users select from the list are designated
for a subsequent action. Command buttons can
operate on this selection. When another selection
is made, any previous selection in the selectable

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

list is deselected. Selectable lists are created using
the JList component. See also list box.

select

(1) In user interface design, refers narrowly to
designating one or more objects, typically for a
subsequent action. UI components are activated
while user objects are selected.
(2) In technical documentation, refers generally to
the action of clicking list items, checkboxes, radio
buttons, and so forth. See also activation, choose.

selection model
In a table, a set of rules and techniques for
selecting a portion of the table, such as a cell or
row. See also editing model.

separator
A line graphic that is used to divide components
into logical groupings. Separators are created
using the JSeparator component.

server
A network device that manages resources and
supplies services to a client. See also client.

slider
A control that enables the user to set a value in a
range--for example, the RGB values for a color.
Sliders are created using the JSlider component.

sort indicator

A small triangular graphic that, when displayed in
the header of a table column, indicates that the
column is sorted and whether the sort is ascending
or descending.

sort key in tables, a column by which a table is sorted.

split pane
A container that enables the user to adjust the
relative size of two adjacent panes. Split panes are
created using the JSplitPane component.

stable sort
A sort in which previously sorted rows (if any) retain
their positions relative to one another, if they have
identical values in the new sort column.

standalone wizard
A wizard that users can start directly--for example,
from a desktop icon, a command line, or a file
viewer. See also wizard, standalone wizard.

status animation
An animation indicating only that an operation is in
progress, not how much of it is complete. See also
progress animation.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

status bar

An area at the bottom of a primary window. A
status bar is used to display status messages and
read-only information about the object that the
window represents. See also object,
primary window.

submenu

A menu that is displayed when a user chooses an
associated menu item in a higher-level menu.
(Such menu items are identified by a
rightward-facing triangle.) Submenus are created
using the JMenu component.

summary page
An optional page that summarizes the work a
wizard has performed and lists any actions users
should take after closing the wizard.

tabbed pane

A container that enables the user to switch between
several components (usually JPanel components)
that appear to share the same space on screen.
The user can view a particular panel by clicking its
tab. Tabbed panes are created using the
JTabbedPane component.

table
A two-dimensional arrangement of data in rows and
columns. Tables are created using the JTable
component.

task analysis

The process of observing users as they work. The
goal of the process is to discover which tasks make
up the user's work and how best to facilitate those
tasks through an application's user interface.

text area

A multiline region for displaying (and sometimes
editing) text. Text in such areas is restricted to a
single font, size, and style. Text areas are created
using the JTextArea component.

text field

An area that displays a single line of text. In a
noneditable text field, a user can copy, but not
change, the text. In an editable text field, a user can
type new text or edit the existing text. Text fields are
created using the JTextField component. See
also password field.

title bar
The strip at the top of a window that contains its title
and window controls. See also window controls.

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

toggle button

A button that alternates between two states. For
example, a user might click one toggle button in a
toolbar to turn italics on and off. A single toggle
button has checkbox behavior; a programmatically
grouped set of toggle buttons can be given the
mutually exclusive behavior of radio buttons.
Toggle buttons are created using the
JToggleButton component. See also checkbox,
toolbar button.

tool tip
Small rectangles of short text strings that appear on
screen to provide information about a component
or area whenever the pointer is over that area.

toolbar

A collection of frequently used commands or
options. Toolbars typically contain buttons, but
other components (such as text fields and combo
boxes) can be placed in toolbars as well. Toolbars
are created using the JToolBar component. See
also toolbar button.

toolbar button

A button that appears in a toolbar, typically a
command or toggle button. A toolbar button can
also display a menu. Toolbar buttons are created
using the JButton or JToggleButton component.
See also command button, toggle button.

top-level object type
For a window, the type of user-interface object that
the window represents, such as a file, a mailbox, or
a computer. See also object (1).

tool palette
An internal utility window whose buttons enable
users to choose a tool, such as a paint brush, from
a set of tools. See also utility window.

tree component

A representation of hierarchical data (for example,
directory and file names) as a graphical outline.
Clicking expands or collapses elements of the
outline. Tree components are created using the
JTree component.

tree table

A table in which the leftmost column is a tree of
objects, one object to a row, and the other columns
consist of rows that describe the corresponding
object in the tree.

turner A graphic used in the tree component. The user

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

clicks a turner to expand or collapse a container in
the hierarchy.

unavailable
Not applicable in the current system state. When a
component is unavailable, it appears dimmed and
is skipped by keyboard navigation.

user-input pages

In wizards, enable users to customize how a wizard
performs its task. Each wizard has at least two
user-input pages and can have as many such
pages as are needed for the task.

utility window

A modeless window that typically displays a
collection of tools, colors, fonts, or patterns. User
choices made in a utility window affect whichever
primary window is active. A utility window is not
dismissed when a primary window is dismissed.
Utility windows are created using the JDialog
component. See also tool palette,
secondary window.

view
A specific visual representation of information in a
window or pane.

wait pointer
Indicates that an operation is in progress and that
the user cannot perform other tasks.

window

A user interface element that organizes and
contains the information that users see in an
application. See also dialog box, plain window,
primary window, secondary window, utility window.

window controls
Controls that affect the state of a window (for
example, the Maximize button in Microsoft
Windows title bars).

wizard

A window that leads a user through a task one step
at a time--requesting a series of responses from
the user and then performing the task based on
those responses.

Colophon

LEAD WRITER
Marcus Jordan

Sun - Java Look and Feel Design Guidelines: Advanced Topics dotneter@teamfly

LEAD HUMAN INTERFACE DESIGNERS
Robin Jeffries and Chip Alexander

EDITOR
Louise Galindo

GRAPHIC DESIGNER AND COVER ILLUSTRATION
Coleen Baik

COVER DESIGN
Bruce G. Lee and Coleen Baik

GUIDELINE CONTRIBUTORS
David-John Burrowes, Helen Cunningham, Jeff Dunn, Brian Ehret,
Martine Freiberger, George Kaempf, Kim O'Brien, Nils Pedersen,
Teresa Roberts, Tom Spine, Kristin Travis, Harry Vertelney

Special thanks to Jeff Johnson for his insights on responsive applications and
to Chris Ryan for designing the Java look and feel.

Grateful acknowledgments to Michael Albers, Eileen Bugee, Patria Brown,
Sue Factor, Dave Mendenhall, Kartik Mithal, Lynn Monsanto, Bob Silva,
Jenny Shum, Maya Venkatraman, Andrea Vine, Steve Wilson, the
Sun Online Visual Evangelists, and the 85 reviewers of this book's preliminary
drafts.

This book was written on Sun Microsystems workstations using Adobe®
FrameMaker software. Line art was created using Adobe Illustrator. Screen
shots were edited in Adobe Photoshop.

Text type is SunSans and bullets are ITC Zapf Dingbats. Courier is used for
computer voice.

