Developing Enterprise Java Applications with J2EE and UML
by Khawar Zaman Ahmed, Cary E. Umrysh

- Paperback: 288 pages ; Dimensions (in inches): 0.66 x 9.28 x 7.32

- Publisher: Addison-Wesley Pub Co; ISBN: 0201738295; 1st edition
(December 15, 2001)

- Average Customer Review: ¥t Based on 6 reviews.

A
vy

1JEVELOPING ENTERPRISE
JAVA APPLICATIONS
wiTH J2EE AND UML

e

KHAWAR ZAMAN AHMED
CARY E. UMRYSH

Foreward by Grady Booch

B-!]I]EH |
JACOBSON
RUMBAUGH

e SERJES EDITORS

Table of Contents

L©0] 077 o | | P 6
=T [o= 11 0] o A PPN 7
FOBWOIQ. ...ttt benees 8
PIEIACE. ...ttt 10
Ta1e=T e o l=To I AU Lo [T=T oot TP 10
HOW t0 USE ThiS BOOK.uuuuiiiiiiiiiiiiiiiiiiiiitiiibibiiit bbb u
Chapter SUMMATIESc.uuuiiiii et e e et s aeeaaeeaes 12
CONVENLIONS ... 13
ACKNOWIEAGMENTS ..t e e e e 15
Chapter 1. Introduction to Enterprise Softwarecoceeeeiii, 17
What IS ENterprise SOftWaAIE?cvi i i e e e e 17
Evolution of ENterprise SOMWArEcouuuiiiiiiiiiieeiii e 20
Enterprise Software and Component-Based Software...........cccccceevvveeevveennnnnnn, 22
SUIMIMABIY ..ttt e et e e et e et et e e e et e e e et e e e e eban s 23
Chapter 2. Introduction to the J2EE ..., 24
What Is the Java 2 Platform, Enterprise Edition?........cccooeevviviiiiei i, 24
A Brief HIStOry Of J2EEoouuiiiiiiee et 25
WY J2EE? ..ottt bbb bbb bbb bbb annnee 27
A Brief OVErvieW Of J2EEuuuiiiiiiiiiiiiiiiiiiiiiiiiiiireieiieeiebeeenenebebe e 30
SUIMIMIAIY ..ttt ettt e ettt e e e e e ettt ettt e e e e e e e eee bbb s e e e eeeeeebeban s e aeaaaeenes 39
Chapter 3. Introduction t0 the UMLccoiiiiiiiiiiiics e e e e 40
UML OVEIVIEW ...ttt et e et e e s e et e e et e e s e et e e e e et e e e eraaaeeeanan 41
Why Use the J2EE and the UML Together?ooouveiiiiieieiieeee e 43
Challenges in Modeling J2EE in the UMLccooiiiiiiiiiiiieeceiicc e 45
Extension Mechanisms in the UMLuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiieeeneneeen 46
The Approach to J2EE UML Modelingccouuveiiiiiiiiiieiicis e e e 49
SUMIMABIY ottt ettt ettt e e et et e e et et e e et et e e e e et e e e eebannes 50
Chapter 4. UML @nd JAVA.......cccoeeiiiieeiiiiie e eee e s e e e et s s e e e e e e eeataan e e e eaaaeans 51
RePresenting STrUCTUIE..........vuuuiiii e e e 51
Representing RelationNShiPsS.uuuuuiiuiiiiiiiiiiiiiiiiiiiiiiiiiiiieieiieeiieeeeiebeeeeeeeeeeeeee 57
ST U] 01 4= 1Y PP 69
Chapter 5. OVerview Of ACHVITIESc.uuuuiiiiieiiiieiiiie e eeees 70
What Is a Software Development ProCeSS?.......ccovvvuviiiiiieeeieeeiiiii e e eeeeieinnnn 70
Overview of Popular Approaches to Software Development..........cccccoovveeeeens 70
Approach Used in ThiS BOOKuuuuiiieiereeereeeeenennes 79
Overview Of Major ACHVILIESoeeuuiir i e e e e e e 80
SUIMIMABIY ..ttt e et e e et e et e e et et e e e eba e e e e enannes 82
Chapter 6. ArChItECIUNE........uviii e e e e e e e e aeaes 83
What IS Software ArChiteCtUIre?..........uuuuuiiiiiiiiiiiiiiiiiiiie e 83
AT A AN 11 (=T ed (U =TT 85
Key Concepts in Enterprise Application Architecture...........cccccccveeevvieeeveeeinnnnnn, 86

Approaches to Software ArchiteCture............uevviiieiiiiiiee e 99

SUMIMABIY ottt e e e e et e et et e e e et r e e e et e e e e eba s 102
Chapter 7. Analyzing Customer Needs ... 103
Why Software Analysis and DeSIGN?cuuueiiiiie e e e e e e e eaenns 103
Problem ANAIYSIS......... e eaaaa 104
Use Case MOAEIINGcooveeiiiiii e e e e e e 105
Identifying the ACLOIS......coe i e e e e e e e e eaeees 106
FINAING the USE CaASES ...uuuuuruiiiiiiiiiiiiiiiiiiiiiiiiiititiiaiieitebeaeeeeeseeesaeeeneeessnennnnnnnen 107
(0L OF= TSI B = To] = T L 109
Use Case RelatioNShiPSuvuiiiiiiiiici e 110
SEQUENCE DIAGIAIMSccvviiiii e e e e e e e e e e e e e e e e e e ar e eee e 113
ACHIVILY DIBOIAIMS....eiitiiie e eee e e e s s e e e e e et e s e e e e eeeaetne s e s eeeeeeennnes 115
SUMIMABIY ..ttt e et et e e et e et e e e s e e e eaa e e e e nna e e e ennans 118
Chapter 8. Creating the DeSIgNuvuiiiiii e e e eaenes 120
USE CASE ANAIYSIS ...ttt ettt e et a e 120
Use Case RealiZAtiONS ... 120
Refined Use Case DeSCHPUON.cii i it e et e e e eeeean e e e e e e eeeeees 122
SequUENCE DIagramsSccooie i 124
(070][F=ToTo] = 1o T g 1 =T | =T 41 129
(01 F= LS D T To | =10 - TSRS 130
Coalescing the Analysis ClasSSeS.......coiviiiiiiiiiiiiis e e 134
e Tod = T 11 o OSSPSR 138
SUMIMABIY ..ttt e et et e e et e et e e e s e e e eaa e e e e nna e e e ennans 140
Chapter 9. Overview of J2EE Technologies..........cccovveeiiiviiiiiiiiie e 142
THE Big PICIUIE.....iieeiiiiii e e et e e e e eeaees 142
SEIVIBTS ... 143
JavaServer Pages (JSP) ...ocooiiiiiiiiiis e 143
Enterprise JavaBeans (EJB)..........uuuuuuuuruuuieiiiiiiiiiiiiininnnennennnnnennennnennnennnnnnnenne 144
SESSION BEANS ... 144
ENTLY BEANS.. ..ottt eaaae 144
MESSAQE-DIVEN BEANS......uuuiiiiiiiiiiiiiiiititibitib bbb 145
Assembly and DeployMENT...........iiiiiiiii i 145
CASE SUAY....co oo 145
ST U] 0] 4= 1Y PR 145
Chapter 10. SEIVIELS. ..ot eaaae 146
INtrOdUCTION 10 SEIVIELS. .. uutiiiiiiiiiiiiiiit it 147
Servlet Life CYCIE ..o 149
R =To [U LTSy o F= U o | [TV T 152
[YCTS] oJo] Y =T o 1= - Ui To] o O TPR 153
HTTP Request HandIErS..........uuuuiiiiiee et eeeies 155
The RequestDispatcher INterfaceooovuvviiiiiiiieiic e, 156
Modeling ServIets iN UMLuuiiiieiiiiieiis e e e e e e eaenes 157
Modeling Other Servliet ASPECESuuuuuiuriiiiiiiiiiiiiiiieiireiaeeeieeeeeeeeeeeeeeeeeeennees 159

Servlet Deployment and Web Archives............coeiiiiiiiiiieicii e 164

YU] 0] 4= 1Y PP 169
Chapter 11. JaVaServer PAgesS.......ccoou i 170
INEFOAUCHION 1O JSP ...ttt 171
ANAIOMY OF B ISP ..ttt e et e e e e e e eaane 174
I T T I o] = U3 =PRI 178
JSP and the UMLcooiiiiiiiiiiiiiiiiiiiiitieeee ettt 180
JSP in Enterprise APPlICAtiONS.........cevviiiiiiiiiiiiiiiiiieieeeeeeeeeeee e 185
ST U] 4]0 4= 1Y PR 189
Chapter 12. SESSION BEANS........cciiiiiiiiiiiii ettt e e e eeeaes 190
Introduction to Enterprise JAvaBeanscccoveeeviieiiiiiiiiii e 190
EJB Views and the UMLuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiebee e 192
SESSION BEANS ... 197
Types of Session Beans and Conversational State...............cccccvvveiinieeeinennnnn, 198
INSTANCE PASSIVALION ...ttt e e e e eeenes 202
TrANSACTHIONS.ceiiiiiiiiiiii ittt e e 203
Session Bean TeChNOIOgYcoovvviiiiiiiiic e 209
Modeling Interface BENAVIOr............uuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeenees 213
Session Bean Life CYCIE ..o 216
Session Bean COMMON SCENAIIOS ..uuuuuiiieiiiiiiiiiies e e et eeeiit e ee i 218
Modeling Session Bean Relationships.........cccooveeeiiviiiiiiiiiccccceeeie e 221
Managing PerfOrManCe.........ccuuuuiiiiie i e e e e e e e eaenes 226
The LOCal CHENLot e e e e e eaaans 227
Identifying Session Beans in Enterprise ApplicationS...........cccccevvveiiiiieevevennnns 227
SUMIMABIY ..ottt et et e b e e e e et e e e enaa e e e enaans 230
Chapter 13. ENtity BEaANS.......cooieiiiiieiiici e e et e e e e eanans 232
Introduction to ENtity BEANS.........coiiiiiiiiiiiiiiin e e 232
Entity Bean Views and the UMLuuuiuiiiiiiiiiiiiiiiiiiiiiiiieieneeeeennenenees 235
P OISISTEICE ...ttt 238
ADSITACT PeISISIENCE. ... ittt e eeeaes 240
Container-Managed Relationships............ccovvviiiiiii e 243
Entity Bean TeChNOIOGYcuuuuiiiiieiiieiics e e e e e eeeees 246
Entity Bean Life CYCIE.......uuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeennnees 254
Entity Bean COMMON SCENAIIOScciiieiiiiiiieieeeeeeeeeiies e eeeeeeaain e e eeeeenenn 256
Modeling Entity Bean Relationships.............oiiiiiiiiiiiiiiiiiceeiii e 256
Identifying Entity Beans in Enterprise Applicationscccvvvvvviiiiiieeeneeennnn, 263
YU] 0] 4= 1Y PSPPI 267
Chapter 14. Message-Driven BEaNS.........ccooveveeiiiiiiiieeeeeeeeeeeee e 268
Introduction to Message-Driven BEaNS............ooeevvveeeiuiiniieeeeeeeeiiiisineeeeeeeennnns 268
Message-Driven Bean Views and the UMLcouiiiiiiiiiiiiiiiiic e 271
Message-Driven Bean Technologyuieiiiiiiiiiiiiiiiiii e 275
Message-Driven Bean Life CYCIe.........ooveuiiiiiiiii e 277
Message-Driven Bean COMMON SCENAIO........uuuuururururnnirernrirnnieinnennnennnnnnnnnens 278

Modeling Message-Driven Bean Relationships...........ccccovviviiiiiiiiiiiiiiie e 279

Chapter 15. Assembly and Deployment.............uuueiiiiieiiiiiiiiiiieie e 281
Component MOelINGccooeeiieieeeeee 281
Component Modeling of J2EE Technologies...........cccovvvvviiiiiiiiieiceeicei e 282
Deployment Modeling.........oooouuiiiiiii e 288
Traceability REVISITEAccoviiiiiiiie e e e e e 290
Assembly and Deployment of Enterprise Java Applications................cccevveeees 291
SUMIMIBITY ettt e e e et et e e e e et e e e e et e e e e et e e e e enan s 294

Chapter 16. Case StUAYuuuuii i e e e s e e e e e e e e e eeeeanne 296
Case Study BacKgrOUNdccouviiiiiiiiieie et 297
Problem StatemMeENt...........uu ittt 297
Rationale and ASSUMPLIONS........uuiiieeeiiieiiiiiis e e e e e e e e e eeeeaene 298
HOMEDIreCt REQUIFEMENTS .. .uutuiitiiiiiiiiiiiiiiiiiieeitibetibeeeeebeeebeeeeeeeeeeeeneeeeenennnee 298
g oT=T o] (o g = F= L= PR 302
Elaboration PRaSecoovi i 312
REMAINING PhaSESuuuiiiiiiiiiee e e e e e e e aaaens 326
Y0 0] 0= 1 PSPPI 327

BlOS SaIY et 328

REFEIBINCES. ... 346
BOOKS ..t 346

Copyright

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and Addison-Wesley
Inc. was aware of a trademark claim, the designations have been printed with initial capital

letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection with

or arising out of the use of the information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for special sales. For

more information, please contact:

Pearson Education Corporate Sales Division

201 W. 103rd Street

Indianapolis, IN 46290

(800) 428-5331

corpsales@pearsoned.com

Visit AW on the Web: www.awl.com/cseng/

Library of Congress Cataloging-in-Publication Data

Ahmed, Khawar Zaman.

Developing Enterprise Java applications with J2EE™ and UML / Khawar Zaman Ahmed, Cary

E. Umrysh.

p. cm.

Includes bibliographical references and index.

ISBN 0-201-73829-5

1. Java (Computer program language) 2. Business—Data processing. |I. Umrysh, Cary E. II.

Title.

QA76.73.J38 A35 2001

005.13'3—dc21 2001046452

Copyright © 2002 by Addison-Wesley

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher. Printed in the United

States of America. Published simultaneously in Canada.

Text printed on recycled paper

1234567 89 10—CRS—0504030201

First printing, October 2001

Dedication

To my late father and my mother, and to Heike and Yasmeen.

—Khawar

To my wife Socorro for her support during this lengthy project, and to my sons Jordan and

Joshua.

—Cary

Foreword

The history of software engineering is, in effect, the history of abstraction. As complexity
rises, we respond by raising the level of abstraction in our programming languages and in our
methods. Thus, we have seen the move from C to Java, from structured methods to

object-oriented design, and from classes to design patterns to architectural frameworks.

J2EE, the Java 2 Platform, Enterprise Edition, is such a framework. J2EE is a comprehensive
platform for deploying complex systems. It raises the level of abstraction for the

development team by offering a set of mechanisms (JSP, Enterprise JavaBeans, servlets) and
services (JDBC, JNDI, JMS, and RMI to name a few), enabling the team to focus on its core

business value instead of building infrastructure.

As good as J2EE is, however, there is a large semantic gap between what J2EE provides and
what must be crafted for the business. Bridging that gap can only be achieved given a strong,
foundational understanding of J2EE together with a sound architecture for the
domain-specific system. The Unified Modeling Language (UML) comes into play here, for the
UML is essentially the language of blueprints for software. Visualizing, specifying,
constructing, and documenting the key elements of a system are essential as complexity

rises, and this is the very reason for the UML's existence.

Khawar and Cary bring all of these elements together in this book to help you bridge that
semantic gap. Not only do they cover all of the essential pieces of J2EE thus helping you build
a foundational understanding, they also explain how best to use J2EE's mechanisms and
services. This book will also guide you in applying the UML to model your systems built upon
J2EE, thus enabling you to better reason about and communicate the analysis and design

decisions your team must make in building quality software.

The authors have a deep understanding of J2EE and the UML and a strong sense of the best
practices that can lead you to the effective use of both. Their experience in building
production systems comes through in their writing, and especially in their comprehensive

case study.

There is an essential complexity in building enterprise systems; this book will help you master

much of that complexity.

—Grady Booch
Chief Scientist

Rational Software Corporation

Preface

Developing complex software requires more than just churning out lines of code. As a
software architect or developer involved in an industrial project, you must understand and be
able to leverage critical software subdisciplines such as architecture, analysis and design

techniques, development processes, visual modeling, and the underlying technology to be

successful.

This book brings all these diverse elements together from the Java 2 Platform, Enterprise
Edition (J2EE) development perspective to provide a holistic approach for the reader.

Specifically, this book tries to answer the following key questions:

What is the Unified Modeling Language (UML), and how is it relevant to J2EE
development?

How do Java and UML relate to each other?

What are the key concepts in software architecture?

How does a software development process fit into the J2EE software development
equation?

How can analysis and design help you to arrive at a better J2EE application design?
What are the key J2EE technologies, and how do they fit together?

How can you leverage the UML for J2EE development?

Rather than reinvent the wheel, the approach taken in this book is that of bringing together
known works, such as Jim Conallen's Web Modeling Profile and the Sun Java Specification

Request-26 for UML/EJB Mapping Specification.

To provide a practical illustration of the topics discussed, this book guides you through a
sample J2EE application development project using the Rational Unified Process (RUP) and
the UML. A working implementation is provided. Suggestions for further enhanceme nts are

also listed to assist you in continuing your exploration of the UML and J2EE technologies.

Intended Audience

This book is suitable for anyone interested in learning about the UML and how it can be
applied to J2EE development. Current J2EE application developers will learn how to apply the
UML to J2EE application development. UML practitioners will benefit from learning about the

J2EE in the context of the UML. And software professionals interested in learning both the

UML and J2EE will be able to get to a productive state faster facilitated by the intertwined

contextual discussion.

After reading the book, you will

Be able to effectively utilize the UML for developing J2EE applications

Learn about the key J2EE technologies (EJB, JSP, and servlets) at a technical level
Know when to use Model 1 versus Model 2 architecture, and identify situations where
patterns such as value object and session bean chaining may be appropriate
Understand software architecture concepts such as decomposition, layering,
components, frameworks, patterns, and tiers

Be able to apply techniques such as use case analysis, analysis object discovery, and
analysis to design transformation to your J2EE project

Understand the notion of software development processes and the fun damentals of
some of the currently popular processes

Learn how to start using the RUP for your J2EE project

This book only covers the Java language to the extent of providing a mapping of key Java
concepts to the UML. Consequently, some familiarity with Java is assumed (knowing C++ or
a similar language should be sufficient to get the basics from the examples). Prior knowledge
of, or experience with, the UML, J2EE, or enterprise application development is not a

prerequisite, but is certainly helpful.

How to Use This Book

If you are new to the UML and J2EE, you will get the most out of this book by reading it

completely in a sequential manner.

Those who are comfortable with the UML and are primarily interested in learning about J2EE

(or how to apply the UML to J2EE) can jump directly to chapters 9—16.

On the other hand, if you know J2EE and mostly want to learn about UML, you should

concentrate on chapters 1—8, and then skim through the remaining portions of the book.

You will get the best results if you get your hands on a good modeling tool and try to apply

visual modeling to a problem of your own!

Chapter Summaries

Chapter 1: Introduction to Enterprise Software provides a high-level overview of enterprise software

development and related technologies.

Chapter 2: Introduction to the J2EE covers the basics of the Java 2 Platform, Enterprise Edition. It

provides an overview of the basic technologies and the APIs, which form the J2EE.

Chapter 3: Introduction to the UML provides an overview of the UML and a quick introduction to the

UML basics.

Chapter 4: UML and Java provides an overview of the Java language's mapping to the UML and

covers some of the basic UML constructs.

Chapter 5: Overview of Activities introduces the notion of software development processes and

outlines the approach taken in the book.

Chapter 6: Architecture, Which is an important aspect of good software, introduces the notion of

software architecture and provides an overview of some of the concepts in software

architecture.

Chapter 7: Analyzing Customer Needs Shows you how to apply UML use cases to better understand

customer requirements. No matter how cool the software, if it does not meet the customer's

requirements, it is a failure!

Chapter 8: Creating the Design focuses on analyzing the requirements further and creating the initial

design for the case study. This chapter discusses how to translate the requirements you have

gathered into software.

Chapter 9: Overview of J2EE Technologies lays the groundwork for the J2EE technologies we discuss in

the remaining chapters.

Chapter 10: Servlets provides an overview of the Java servlet technology, discusses how they are

modeled in the UML, and then shows a representative application of UML and servlets to the

case study. Java servlets are ideal for the request-response oriented Web paradigm.

Chapter 11: JavaServer Pages teaches you about JSPs, when to use them, and how to use them in

the sample project. JavaServer Pages (JSP) combine the power of servlets with the flexibility

of HTML pages.

Chapter 12: Session Beans discusses how session beans are used in the middle tier and how to best

model and utilize them. Session beans are one of the three types of enterprise beans
provided in the J2EE. The chapter concludes with the usage of session beans in the context of

the case study.

Chapter 13: Entity Beans focuses on the entity bean concept, its advantages and issues, and how

to effectively model it in the UML. Entity beans provide a convenient way to objectify the

stored data.

Chapter 14: Message-Driven Beans covers the technology and how to model them in the UML.

Message-driven beans are a new addition to the J2EE Enterprise JavaBean specification.

Chapter 15: Assembly and Deployment discusses how UML can help assembly and deployment of a

distributed application.

Chapter 16: Case Study discusses the details of the example used in this book including general

requirements, restrictions, and such.

References for further reading include books, articles, and online sources.

A clossary containing specialized terms and their meanings is provided for quick reference. An

Index is provided for quick lookup and reference.

Conventions

We use several notational conventions throughout this book. A short list is provided for your

reference:

Italicized words are used to highlight key concepts or terminology.

References to terms such asjavax.servilet.http.HttpServiletResponse are used to
identify the exact J2SE or J2EE classes for further details. For example, in the
preceding term the user is being referred to the HttpServletResponse class, which is

found in the http package located in the servlet package of the javax package.

Boldface text is used to identify keywords and reserved words in the context of
Java/J2EE, for example, ejbCreate.
Code samples are shown in a slightly different format to distinguish them from plain

text, for example, public void acceptOrder() {

Acknowledgments

We would like to acknowledge the contributions of all those who helped make this book

possible.

Our sincere thanks to Kirk Knoernschid, Todd Dunnavant, Dave Tropeano, Atma Sutjianto,
Kevin Kelly, Terry Quatrani, Carolyn Hakansson-Johnston, Ingrid Subbotin, Jim Conallen,
Lo® Julien, Dave Hauck, James Abbott, Simon Johnston, Tommy Fannon, Hassan Issa, and
all others who provided direct or indirect input, clarifications, ideas, feedback, guidance, and
reviews at various stages, from before inception through to completion. Their help was
instrumental in defining and redefining the work, in eliminating inaccuracies, in creating

additional material, and in the end, the result is a better product overall.

A special thank you to Todd Dunnavant. He not only reviewed multiple drafts cover to cover,
he also generously provided in-depth written explanations, suggestions, and comments on

various topics that we were only too happy to incorporate in the book.

Kirk Knoernschid's succinct review was most helpful in getting us to focus and remedy some

of the key deficiencies in an earlier, draft version. Thank you for that.

Khawar would like to acknowledge and thank Kevin Kelly for his guidance and mentoring.

Kevin's insights and ideas were immensely useful throughout this project.

Dave Tropeano's review of a very early draft directly led to a revectoring of our overall
approach and the addition of at least two full chapters. The final version is better because of

it, and we have Dave to thank.

Our thanks to Rational Software and its management for fostering a work environment in
which such endeavors can be undertaken. We would especially like to thank Steve Rabuchin
for his willingness to go the extra mile to help others pursue their ideas and achieve their
goals. We would also like to thank Jim McGee, Roger Oberg, Magnus Christerson, John
Scumniotales, Matt Halls, and Eric Naiburg. Had it not been for the encouragement and

support of these individuals, this book would neither have been conceived nor written.

We are very grateful to the staff at Addison-Wesley for their support throughout this project.
We especially thank Paul W. Becker and his assistant Jessica Cirone who assisted, reminded,

guided, and prodded us through the publishing process. Many thanks to Anne Marie Walker

who, through her thoughtful editing, transformed our semi-coherent passages into readable
paragraphs. Thanks also to Kathy Glidden of Stratford Publishing Services, Inc. for her skilled

project management in the critical production stage.

We benefited immensely from others who have worked on or written about the UML, J2EE,
and related topics. To that end, we would like to thank the various authors whose books,

articles, and Web sites are listed in the References section. Their works helped expand our

understanding of the subjects.

Last but most importantly, we would like to thank our families for their patience and support
throughout these last several months. Khawar would like to thank his wife Heike and his
daughter Yasmeen for their cheerful and understanding attitude and for their support during
this long commitment. Heike's diligent proofreading and corrections to the draft at various
stages were invaluable and resulted in the elimination of numerous late-night typos and
incoherent sentences. Cary would like to thank his wife Socorro for all her support and

helpfulness during this lengthy project.

—K.Z.A.

—C.E.U.

Chapter 1. Introduction to Enterprise Software

What Is Enterprise Software?

Evolution of Enterprise Software

Enterprise Software and Component-Based Software

Summary

If you have heard of terms such as Business-to-Business (B2B) and Business-to-Consumer
(B2C), you are already familiar with enterprise software at some level. B2B and B2C are just

some of the more popular manifestations of enterprise software.

This introductory chapter offers a more in-depth exploration of enterprise software and the

challenges and opportunities that accompany it.

What Is Enterprise Software?

The term enterprise refers to an organization of individuals or entities, presumably working
together to achieve some common goals. Organizations come in all shapes and sizes, large

and small, for-profit and nonprofit, governmental and nongovernmental.

Chances are, however, that when someone uses the term enterprise, they mean a large,

for-profit organization, such as Intel, General Motors, Wal-Mart, Bank of America, or eBay.

Enterprises generally have some common needs, such as information sharing and processing,
asset management and tracking, resource planning, customer or client management,
protection of business knowledge, and so on. The term enterprise software is used to
collectively refer to all software involved in supporting these common elements of an

enterprise.

Figure 1-1 depicts enterprise and enterprise software graphically.

Figure 1-1. Enterprise and enterprise software

HR —I and Apps

The figure shows an enterprise software setup that is essentially a collection of diverse
systems. Software is organized along the various functions within the organization, for
example, sales, human resources, and so on. A firewall is provided to safeguard enterprise
data from unauthorized access. Some software systems such as those for sales and inventory

management interact; however, most are fairly isolated islands of software.

Enterprise software may consist of a multitude of distinct pieces today, but enterprises have
gradually come to realize that there is a strong need for their diverse syste ms to integrate
well and leverage each other wherever appropriate for maximum enterprise benefit. B2B and

B2C are good examples of such integration and leveraging.

Some of the potential ways an enterprise hopes to leverage integrated enterprise software

follows:

By integrating its customer support and in-house product knowledge, an enterprise

could provide new and better services to its customers via the Web.

By linking its marketing machine with the online world, an enterprise could reach a
much larger audience online.

By linking its sales management and inventory, an enterprise may be able to devise
specific, lower cost Web sales channels to reach an untapped market segment.
By providing a front end to one of the services used by its employees, such as the
internal office supply ordering system, and tying it into the account ing system, the
enterprise could lower the overall cost and improve employee efficiency.

Making the enterprise HR system available online could be used as a way to give
employees more control over their health and 401(k) choices and reduce the overall
administrative costs to the enterprise.

By automating one of its human resource intensive operations and making it
available on an anytime, anywhere basis, an enterprise could provide better service

to its customers while reducing the overall operational costs.

Challenges in Developing Enterprise Software

Successful enterprises tend to grow in size, hire more people, have more customers and
more Web site hits, have bigger sales and revenues, add more locations, and so on. In order
to support this growth, enterprise software must be scalable in terms of accommodating a

larger enterprise and its operations.

Enterprises encounter constraints as they grow. One common constraint is the computer
hardware's inability to scale as the enterprise's processing needs increase. Another
constraint is the enterprise's ability to put more people in the same physical or even
geographical location. Thus, the challenge of distribution comes into the picture. Multiple
physical machines solve the processing needs but introduce the challenge of distributed
software. New building or geographical locations address the immediate need, but they
introduce the challenge of bringing the same level of services to a diversely located

enterprise.

Connecting previously separate systems in order to gain enterprise-scale efficiencies can be
a major challenge. Legacy systems were typically designed with specific purposes in mind
and were not specifically conceived with integration with other systems in mind. For example,
human resource management perhaps was treated as a distinct need without much

interaction with financial management, and sales management had little, if anything, to do

with customer support. This disjointed approach to software development often resulted in
excellent point products being purchased to address specific needs, but it commonly resulted

in software architectures that were difficult to integrate.

A related challenge is the need to deal with a multivendor environment. Partly out of
evolution, and partly out of necessity, enterprise software has often ended up with similar
products from multiple vendors used for the same purpose. For instance, although the HR
application might be built on an Oracle 8i database, the customer support application might

rely on Microsoft SQL Server.

Enterprise software also typically requires some common capabilities, such as security
services to safeguard the enterprise knowledge, transaction services to guarantee integrity of
data, and so on. Each of these requires specific skills and knowledge. For instance, proper
transaction handling requires strategies for recovering from failures, handling multiuser
situations, ensuring consistency across transactions, and so on. Similarly, implementing
security might demand a grasp of various security protocols and security management

approaches.

These are just some of the common challenges that must be addressed when dealing with

enterprise software development.

Evolution of Enterprise Software

Not too long ago, mainframes ruled the world, and all software was tied to this central entity.
The advantages of such a centralized approach included the simplicity of dealing with a single
system for all processing needs, colocation of all resources, and the like. On the disadvantage
front, it meant having to deal with physical limitations of scalability, single points of failure,

limited accessibility from remote locations, and so on.

Such centralized applications are commonly referred to as single tier applications. The

Random House dictionary defines atier as "one of a series of rows, rising one behind or above
another."” In software, a tier is primarily an abstraction and its main purpose is to help us
understand the architecture associated with a specific application by breaking down the

software into distinct, logical tiers. See chapter 6 for a more detailed discussion of tiers.

From an application perspective, the single most problematic aspect of a single tier

application was the intermingling of presentation, business logic, and the data itself. For

instance, assume that a change was required to some aspect of the system. In asingle tier
application, all aspects were pretty much fused; that is, the presentation side of the software
was tied to the business logic, and the business logic portion had intimate knowledge of the
data structures. So any changes to one potentially had a ripple effect and meant revalidation
of all aspects. Another drawback of such intermingling was the limitations it imposed on the

reuse of business logic or data access capabilities.

The client-server approach alleviated some of these major issues by moving the presentation
aspects and some of the business logic to a separate tier. However, from an application
perspective, the business logic and presentation remained very much intermingled. As well,
this two-tier approach introduced some new issues of its own, for instance, the challenge of

updating application software on a large number of clients with minimal cost and disruption.

The n-tier approach attempts to achieve a better balance overall by separating the

presentation logic from business logic and the business logic from the underlying data. The
term n-tier (as opposed tothree-tier) is representative of the fact that software is not limited
to three tiers only, and can be and indeed is, organized into deeper layers to meet specific

needs.

It should be noted that each tier in an n -tier does not imply a separate piece of hardware,
although that is certainly possible. A tier is, above all, a separation of concerns within the
software itself. The different tiers are logically distinct within the software but may physically

exist on the same machine or be distributed across multiple machines.

Some examples of the types of advantages and benefits offered by n-tier computing are

Faster and potentially lower cost development: New applications can be developed
faster by reusing existing, pretested business and data access components.
Impact of changes is isolated: As long as interfaces remain unchanged, changes on
one tier do not affect components on another tier.

Changes are more manageable: For example, it is easier to replace one version of a
business component with a new one if it is residing on a business tier (on one or a few
dedicated servers) rather than having to replace hundreds or thousands of client

applications around town, or around the globe.

Figure 1-2 illustrates enterprise software organized along these single, two, and n-tiers.

Figure 1-2. Architectural evolution of enterprise software

Single Bumt Mainframe
Tier Tanminal (Single Tier)

Two Lan

Tier Client Server

MN-Tier

Web Web Application
Browser Server Server Database

Enterprise Software and Component-Based Software

When the object-oriented software approach burst onto the software development scene, it
was widely expected that adoption of object-oriented software development techniques
would lead to reuse, but this hope was only partially realized. One of the reasons for this
partial success was the fine granularity of the objects and the underlying difficulty of
achieving large-scale reuse at that level due to the more strongly coupled nature of

fine-grained objects.

Software components are designed to address this precise issue. Unlike a n object, a software
component is designed at a much higher level of abstraction and provides a complete

function or a service. Software components are more loosely coupled. Using interfaces the
components have deliberately exposed, they can be combined together rapidly to build larger

applications quickly and are more cost-effective.

Component-based software, of course, requires that components from different sources be
compatible. That is, an underlying common understanding, a contract if you will, is required

on which the components are to be developed.

Various component models have been developed over the years to provide the common
understanding. Microsoft's ActiveX, later COM, and Sun Microsystem's applets and JavaBeans

are examples of such component models.

Distributed component models have also been developed to address component-based
software in the context of distributed enterprise software and associated challenges

discussed earlier. Such component models essentially provide an "operating system" for
distributed and component-based software development. Examples of these include DCOM,
Microsoft DNA (nowwicrosoft.NET), and Sun Microsystem's Enterprise JavaBeans (EJB), which is

part of the Java 2 Platform, Enterprise Edition (J2EE).

Summary

Enterprise software has undergone a gradual evolution in pursuit of providing ever-greater
value to the enterprise. Enterprise software faces some distinct challenges. These include,
among others, scalability, distribution, security, and the need to work with a diverse set of
vendor technology. Various evolutionary architectural approaches have been tried over the
years to meet such challenges. An increasingly popular solution revolves around using a
distributed component model to develop superior enterprise software. Such distributed

component models hold promise, but they are still in their infancy.

Chapter 2. Introduction to the J2EE

What Is the Java 2 Platform, Enterprise Edition?

A Brief History of J2EE

Why J2EE?

A Brief Overview of J2EE

Summary

Sun Microsystems has organized the Java 2 Platform along three specific focused areas, or

editions: Micro Edition (J2ME), Standard Edition (J2SE), and Enterprise Edition (J2EE).

Of those products, J2EE is the most relevant to developing enterprise Java applications.

What Is the Java 2 Platform, Enterprise Edition?

The J2EE defines an architecture for developing complex, distributed enterprise Java

applications.

J2EE was originally announced by Sun Microsystems in mid-1999 and was officially released
in late 1999. The J2EE, being relatively new, is still undergoing significant changes from

release to release, especially in the area of Enterprise JavaBeans (EJB).

The J2EE consists of the following:

Design guidelines for developing enterprise applications using the J2EE

A reference implementation to provide an operational view of the J2EE

A compatibility test suite for use by third parties to verify their products' compliance
to the J2EE

Several Application Programming Interfaces (APIs) to enable generic access to
enterprise resources and infrastructure

Technologies to simplify enterprise Java development

Figure 2-1 illustrates the relationship between the J2EE platform elements graphically.

Figure 2-1. The J2EE platform elements

Technologies \ A

Q
S
Q Write Once %

Run Anywhere ®

Reference Implementation

The platform builds on the Java mantra of "Write Once, Run Anywhere" via a group of
technologies and a set of APIs. These are, in turn, supported and bound by three key
elements, namely the reference implementation, the design guidelines, and the compatibility

suite.

A Brief History of J2EE

How J2EE came about is quite interesting. Java, originally named Oak, was conceived as a
software language for developing applications for household appliances and other such
devices. With the Internet revolution, Java gradually evolved into a language for client-side
development with capabilities such as applets and JavaBeans. Along the way, several Java
APls, such as Java Database Connectivity (JDBC), were developed to address market needs
for generic access and usage of resources typically required by enterprise software

applications.

It was clear soon after Java's introduction that the use of Java on the client side in a

browser-based systems environment faced some serious challenges, such as the latency

involved in the loading of Java libraries over the Internet before a client-side Java application
could start up. However, Java's relative simplicity, platform-independent architecture, and
rich set of APIs as well as its Web enabled nature were strong positives for its use in

enterprise software development.

This ease of use and Web enabled nature of Java led to a relatively wide adoption of Java for
Web-centric development. Developers used Java technologies, such as applets, for visuals

and dynamic output that could easily be added into standard HTML pages on Web sites.

Although Java applications could be run on servers, Java initially did not offer any specific
capabilities for server-side use. Sun realized the potential for using Java as a language for
Web-based applications and sought to adapt it for the server side via the Java Servlet

specification. Once the adaptation occurred, the Web client could call into a Java program
running on a remote server, and the server program could process the request and pass back
meaningful results. The concept of theservlet was born and has been utilized fairly heavily for
enterprise application development. Servlets, however, were never really designed to handle
complex issues related to customer transactions, session concurrency, synchronization of

data, and so on.

EJB, originally released as an independent specification by Sun Micro systems, was intended
to simplify server-side development by providing a very large set of out-of-the-box services

to handle the key enterprise application development issues.

The concept of n-tier architecture has been around a long time and has been successfully
used for building enterprise-scale applications. Sun's embracement of the n-tier development
model for Java, and introduction of specific functionality to permit easier server-side

development of scalable Web-based enterprise applications, gave Java the critical missing

ingredient it needed in this arena.

The J2EE is the result of Sun's effort to align the disparate Java technologies and APIs
together into cohesive Java development platforms for developing specific types of
applications. Three Java platforms currently exist. Each successive one listed can
conceptually (but not necessarily technologically) be considered a superset of the previous

one:

Java 2 Platform, Micro Edition (J2ME): Platform for the development of software for
embedded devices such as phones, palm tops, and so on.

Java 2 Platform, Standard Edition (J2SE): Most familiar of the Java 2 platforms. It is
also known as the Java Development Kit (JDK) and includes capabilities such as

applets, JavaBeans, and so on.

Java 2 Platform, Enterprise Edition (J2EE): Platform for developing enterprise-scale

applications. It is designed to be used in conjunction with the J2SE.

Figure 2-2 provides an overview of the three existing Java 2 platforms.

Figure 2-2. Overview of the Java 2 platforms

Mission-critical Metwork-centric Memory/'computing

Tﬁ;ﬁ ik enterprise applications. applications resource constrained
AppRcEl Web connectivity applications
Specialized

P . Enterprise JavaBeans
terminology

Serviets
Ad JSPs
technology
Components
Typical App Servers
structure M
035
Hardware

Plattorm | 1.2 2. Enterprise Edition || Java 2, Standard Edition | Java 2, Micro Edition
name

Application scale
Platform size

Why J2EE?

You are probably asking: So, why use the J2EE? Isn't it too new and unproven? What does it

really offer? Is it just another fad?

Let's start with the newness aspect. Although the J2EE packaging is new, specific pieces that
make up the J2EE have been around for a while. For instance, the JDBC APl is well established.
Servlet technology has also been used for some time as a lightweight and maintainable

alternative to the Common Gateway Interface (CGI)! scripts.

[T An older approach used for processing user input provided via the Web and for providing
dynamic content based on the input.

J2EE also offers some promising benefits. As described in the following paragraphs, these
include features that enable developers to focus on developing business logic, on

implementing the system without prior detailed knowledge of the execution environment,
and on creating systems that can be ported more easily between hardware platforms and

operating systems (0Ss).

Enterprise software development isa complex task and can require extensive knowledge of
many different areas. For instance, a typical enterprise application development effort might
require that you be familiar with interprocess communication issues, security issues,
database specific access queries, and so on. J2EE includes built-in and largely transparent
support for these and similar services. As a result, developers are able to focus on
implementing business logic code rather than code that supports basic application

infrastructure.

The J2EE enterprise development model also encourages a cleaner partition between system
development, deployment, and execution. Because of this, developers can defer deployment
details, such as the actual database name and location, host specific configuration properties,

and so on, to the deployer.

J2EE supports hardware and OS independence by enabling system ser vices to be accessed
via Java and J2EE rather than underlying system APIs. For this reason, enterprise systems
that conform to the J2EE architectural specification can be ported fairly easily between

different hardware systems and different OSs.

Perhaps one of the greatest J2EE benefits is its support for componentization.
Component-based software has numerous advantages over traditional, custom software

development:

Higher productivity: Fewer developers can achieve more by putting together an
application from prebuilt, pretested components rather than implementing a custom
solution from scratch.

Rapid development: Existing components can be put together rapidly to create new
applications.

Higher quality: Rather than testing entire applications, component-based application
developers can concentrate on testing the integration and the overall application
functionality achieved via the prebuilt components.

Easier maintenance: Because components are stand-alone to begin with,
maintenance such as upgrades to individual components is much easier and more

cost-effective.

Although some level of software componentization does exist, it is a far cry from the typ e of
componentization prevalent in other industries, such as electronics or automobiles. Imagine
the diminished electronics industry if each and every chip required needed to be handcrafted

in order to put together a new electronic gadget.

J2EE facilitates componentization in many ways. A few examples follow:

The "Write Once, Run Anywhere" nature of Java makes it appealing for developing
components for a diverse set of hardware systems and operating systems.
J2EE offers a well thought-out approach for separating the development aspects of a
component from its assembly specifics and its assembly aspects from its deployment
details. Thus, components developed independently can be readily integrated into
new environments and applications.

J2EE offers a wide range of APIs that can be used for accessing and integrating
products provided by third-party vendors in a uniform way, for example, databases,
mail systems, messaging platforms, and so on.

J2EE offers specialized components that are optimized for specific types of roles in an
enterprise application. For example, enterprise components can be developed in

different "flavors,"” depending on what they are expected to accomplish.

Component marketplaces have already started to emerge. A recent Gartner Group study
forecasted that by 2003, 70 percent of all new applications would be built from components.
J2EE, with its support for component-based development (CBD), rapid adoption, and broad

industry support, should play a prominent role in this switch to CBD.

A Brief Overview of J2EE

The J2EE technologies and APIs cover a broad spectrum of enterprise Java development. Itis
unlikely you will use each and every aspect of the J2EE in your enterprise Java development
effort. But it is always helpful to have the big picture in mind, so the intent in this section is

to make you aware of what is in the J2EE.

In the rest of the book, we cover the technologies in the context of modeling them with the
Unified Modeling Language (UML). We also cover some, but not all, of the APIs. If you are
interested in a specific API, see the References section at the end of this book for a list of

resources for further reading.

Technologies

To understand the J2EE technologies, you must first understand the role of the container in
the J2EE architecture. All current technologies in the J2EE rely on this simple yet powerful

concept.

Figure 2-3 illustrates the role of the container within the J2EE.

Figure 2-3. The container concept

o —
Service Service
AP Component AP
e M
— —
Service Service
API API
) S
oy ™
Service Service
API API
- Container -
Server

A container is a software entity that runs within the server and is responsible for managing
specific types of components. It provides the execution environment for the J2EE
components you develop. Itis through such containers that the J2EE architecture is able to
provide independence between development and deployment and provide portability

between diverse middle tier servers.

A container also is responsible for managing the life cycle of components deployed within it
and for things such as resource pooling and enforcing security. For instance, you can restrict
the ability to access a specific method to a small group of callers. The container would then
enforce this restriction by intercepting requests for that method and ensuring that the entity

requesting access is in the privileged list.

Depending on the container type, it may also provide access to some or all of the J2EE APIs.

All J2EE components are deployed and executed within some kind of a container. For instance,
EJBs run within the EJB container, and servlets run in the Web container. In all, the J2EE has

four different kinds of containers:

Application container: Hosts stand-alone Java applications

Applet container: Provides an execution environment for applets

Web container: Hosts the Web components, such as servlets and JavaServer Pages
JSP)

Enterprise container: Hosts EJB components

Servlets

Servlets are Web components capable of generating dynamic content. They are one of the
most frequently used J2EE components found on the World Wide Web today. They provide an
effective mechanism for interaction between the server-based business logic and the

Web-based client, and they provide a lightweight and more manageable alternative to the

popular CGI scripting approach.

Because servlets are simpler and require fewer resources in general, some develo pers prefer
to use these components along with JSPs almost exclusively in their implementations rather
than making use of the more complex EJB components. This practice might make sense for
very simple enterprise applications, but quickly becomes a less than optimal choice whenever

transaction support is needed in the application.

Servlets are best used to handle simpler tasks, like gathering and checking for valid inputs
from the entry fields of a Web page. When the preliminary checks are done, the data should

then be passed to a more suitable component to perform the actual task at hand.

Servlets run inside the servlet container (also referred to as the servlet engine) hosted on a
Web server. The servlet container manages the life cycle of a servlet and translates the Web
client's requests, made via protocols such as the Hypertext Transfer Protocol (HTTP), into
object-based requests. Likewise, the container translates the response from a servlet and

maps the response object to the appropriate Web protocol.

JSP

JSPs are another type of J2EE Web component and have evolved from servlet technology. In
fact, portions of JSPs are compiled into servlets that are then executed within the servlet

container environment.

JSPs came into being to make it easier for members of a Web team to maintain the portions

of the system that support Web page presentation without requiring them to be traditional

programmers. Nonprogrammers typically maintain the presentation code in the HyperText
Markup Language (HTML). This is harder to do when that HTML is generated by Java

statements contained within servlets.

JSPs permit Java code to be embedded within a structured document such as HTML or
eXtensible Markup Language (XML). This allows the presentation code to be easily
maintained as regular HTML code and shields nontechnical contributors from code editors,

and so on.

Because JSPs allow for very complex Java code to be embedded within these HTML or XML
documents, some developers chose to use this method during the early days of JSP
technology. However, it is generally good practice to keep the Java code within a JSP

relatively simple.

Some other Java technologies that have been around for a while, like JavaBeans, also tie into
the use of JSPs. They help to make it less complicated to display larger amounts of data for

things like tables in Web pages.

EJB

The EJB specification is at the very core of the J2EE platform. It defines a comprehensive
component model for building scalable, distributed server-based enterprise Java application

components.

There are three types of EJBs:

Session beans are best used for transient activities. They are nonpersistent and often
encapsulate the majority of business logic within an enterprise Java application.
Session beans can be stateful, meaning they retain connections between successive
interactions with a client. The other type of session bean is stateless. In the case of
a stateless session bean, each successive invocation of the session bean by the same
client is treated as a new, unrelated activity.

Entity beans encapsulate persistent data in adata store, which is typically a complete
or partial row of information found in a database table. They provide automated
services to ensure that the object-oriented view of this persistent data stays

synchronized at all times with the actual data residing in the underlying database.

Entity beans also are often used to format this data, either to assist in the business
logic of the task at hand or to prepare the data for display in a Web page. As an
example, in a database table of employees, each record could map to an instance of
an entity bean.

Message-driven beans are designed to be convenient, asynchronous consumers of
Java Messaging Service (JMS) messages. Unlike session and entity beans,
message-driven beans do not have published interfaces. Rather, message-driven
beans operate anonymously behind the scenes. Message-driven beans are stateless

and are a new type of EJB component introduced in J2EE 1.3.

The Model-View-Controller (MVC) architecture, originally used in the Smalltalk programming
language, is useful in understanding how these different J2EE technologies fit and work
together. For those unfamiliar with MVC architecture, the basic idea is to minimize the

coupling among objects in a system by aligning them with a specific set of responsibilities in
the area of the persistent data and associated rules (Model), presentation (View), and the

application logic (Controller). This is illustrated in Figure 2-4.
Figure 2-4. Model-View-Controller architecture
Model l
View Queries Model

l Change

Notification

Controller

The Model is responsible for maintaining the application state and data. It can receive and
respond to queries from the View and can provide notifications to the View when things have

changed.

The Controller updates the Model based on execution of application logic in response to user
gestures (e.g., dialog buttons, form submit requests, etc.). Itis also responsible for telling

the View what to display in response to user gestures.

The View is responsible for the actual rendering of the data provided by the Controller.

To illustrate, consider a simple clock application developed using the MVC approach. The
Model in this case is essentially responsible for keeping track of time. Time is automatically
updated at predefined intervals (a microsecond, millisecond, or some other unit) through
some built-in mechanisms in the Model. It also provides operations so other entities can
query the Model and obtain the current time, but it does not care or know how the time is to

be displayed.

The responsibility for displaying the time falls on the View; however, the View can take

different forms. For example, it may take the form of an analog display whereby two (or three)
hands are used to display the time. It can easily be a digital display consisting of several digits
as well. As time changes, the Model notifies the View, and the View updates to reflect the new

time.

Keep in mind that clocks require some mechanism for updating the time, for example, when
daylight savings time goes into effect. On a clock rendered in a Web browser, the user may
have the capability to indicate a change in time by using some Graphical User Interface (GUI)
controls or by typing in a new time. The Controller receives the user gestures for such

changes and updates the Model by calling the appropriate operations defined on the Model to

reflect the new time.

A Model may have several simultaneous Views. For instance, a clock application running on
the Web may have several users utilizing it at the same time, using different representations,

such as analog, digital, and so on.

APIs

There are several APIs within the J2EE. Some of the more popular ones are discussed in the

following sections.

JDBC

Interaction with databases is an integral part of an enterprise Java application. The JDBC API

is squarely focused on making this aspect easier for the enterprise Java developer.

The JDBC API, which is similar in spirit to Microsoft's Open Database Connectivity (ODBC) API,
simplifies access to relational databases. It consists of a generic, vendor independent
interface to databases. Using the JDBC makes your applications portable and your database

skills applicable across a wider range of vendor platforms.

The majority of the JDBC API already exists as part of the J2SE. It is not limited to use only
with the J2EE. There are however a few extensions that the J2EE version adds, mostly to
support some advanced functions for the J2EE containers to use, like connection pooling as

well as some additional support for JavaBeans.

The JDBC API provides a common interface in order to shield the user from vendor specific
differences as much as possible. JDBC implementations are suppliedby the database vendor,

so different databases can act differently under the covers.

In enterprise applications, you do not necessarily need to use JDBC directly. For example, you
can use entity beans to make the necessary database calls for you. The practice of using JDBC
directly is expected to become less common as application servers provide more

sophisticated and well-tuned support for entity beans.

Java Naming and Directory Interface (JNDI)

In the context of JNDI, "naming" actually refers to a naming service. Naming services allow

you to look up, or refer to, an object. A file system is an example of a naming service.

A directory service is similar to a naming service and provides enhanced searching

capabilities. In fact, a directory service always has a naming service (but not vice versa).

There are various naming and directory services available, so the challenges on this front are
quite similar to those in the area of databases. JNDI is designed to address those challenges

by providing a generic and uniform way to access the services.

The complete JNDI APl already exists as part of J2SE, although it is listed as an enterprise
feature. Most distributed enterprise applications make use of this service at some point. For
example, any use of EJBs in an enterprise application necessitates that JNDI be used to find

the associated EJB Home interfaces.

JMS

A messaging service allows communication among distributed applications using

self-contained entities called messages. Such communication is typically asynchronous.

Various vendors provide messaging oriented middleware. The JMS provides a uniform and

generic interface to such middleware.

JMS can be used directly in an enterprise application or via a type of EJB known as a

message-driven bean. Message-driven beans are new in J2EE 1.3.

Remote Method Invocation (RMI)

RMI enables access to components in a distributed environment by allowing Java objects to
invoke methods on remote Java objects. The method is actually invoked on a proxy object,
which then arrangesto pass the method and parameters onto the remote object and provides

the response from the remote object back to the object that initiated the remote method

invocation.

RMI is not exclusive to J2EE. However, RMI is at the heart of some J2EE technologies, such as

EJB.

Other J2EE Technologies and APIs

In this section, we list some other J2EE technologies and APIs that are either in existence now

or are expected to become part of J2EE in the future.

J2EE Connectors

J2EE Connectors provide a common architecture to use when dealing with Enterprise
Information Systems (EIS) as the data store. These large systems tend to be prevalent in

huge enterprises, and they can be very complex to deal with.

Java Transaction API (JTA)

A transaction refers to a grouping of multiple operations into a single "atomic" operation.
Thus, if part of a transaction fails, the other, previously executed operations are "rolled back,"

that is, undone, to ensure sanity of the system.

The JTA provides a generic, high-level API for transaction management. It is primarily used
for large, distributed, often complex transaction processing, usually involving a number of

large, remotely connected systems.

Java IDL

The Java Interface Definition Language (IDL) provides interoperability support for the
Common Object Request Broker Architecture (CORBA) and the industry standard Internet
Inter-Orb Protocol (I10P). It includes an IDL-to-Java compiler and a lightweight Object

Request Broker (ORB).

RMI-IIOP

RMI-110P refers to RMI using the I1OP as the communication protocol under the covers. I10P
is an Object Management Group (OMG) standard. Because CORBA uses IIOP as the
underlying protocol, the use of RMI-110P makes interoperability between RMI and CORBA
objects simpler. RMI-IIOP is typically also more efficient than RMI over the Java Remote

Method Protocol (JRMP).

Java Transaction Service (JTS)

JTS is a transaction manager service that supports JTA and makes use of I10P to
communicate between remote instances of the service. Like JTA, itis used in large distributed

system situations.

JavaMail

JavaMail provides an API to facilitate interaction with e-mail messaging systems in a vendor
independent fashion. This API consists primarily of a set of abstract classes that model a

Java-based e -mail system. It is intended for building sophisticated e -mail-based applications.

Note, however, that it is possible to provide e -mail support in an application without using the

JavaMail API.

Summary

J2EE offers a well thought-out architecture for developing complex enterprise Java

applications.

J2EE's combination of technologies—namely EJB, servlets, and JSPs—and its generic API
(JDBC, JavaMail, JMS, etc.) give its users various advantages. Thus, developing a J2EE

application simplifies the overall task of developing large-scale distributed applications.

Some of the key challenges that are simplified by J2EE include distribution of applications
across multiple processes and processors, security, transactions, persistence management,

and deployment.

Chapter 3. Introduction to the UML

UML Overview

Why Use the J2EE and the UML Together?

Challenges in Modeling J2EE in the UML

Extension Mechanisms in the UML

The Approach to J2EE UML Modeling

Summary

The Unified Modeling Language (UML) is a graphical language for the modeling and
development of software systems. It provides modeling and visualization support for all
phases of software development, from requirements analysis to specification, to construction

and deployment.

The UML has its roots in several preceding object-oriented notations !t The most prominent
among them being the notations popularized by Booch, Rumbaugh, et al. and Jacobson, et al.
So, even though the UML has been formalized for just a few years, its predecessors have

been used to design and specify software-intensive systems since the early 1990s.

[11 The distinction between notation and methodology is a common source of confusion. The
UML is a notation that can be applied using many different approaches. These approaches are

the methodologies.

The unification of the competing notations came about in the mid to late 1990s. In early 1997,
several consortia submitted responses to an Object Management Group (OMG) Request for
Proposal for a common metamodel to describe software-intensive systems. A consortium
headed by Rational Software submitted the UML 1.0 specification. This incorporated the
leading features of several modeling notations including those of Booch, Rumbaugh, and
Jacobson. At the request of the OMG, most of the competing consortia cooperated with the
group led by Rational to refine UML 1.0 into UML 1.1, which was accepted by the OMG in late
1997.

UML continues to evolve under the direction of the OMG. For example, recently proposed
extensions provide common notations for data modeling, Web application modeling, and

mapping J2EE constructs to UML.

The UML has broad industry support. By virtue of being the specification supported by the
850+ member OMG, it is the de jure software industry standard for visual modeling and
development. The fact that all leading tools for modeling software-intensive systems now

support UML makes it the de facto standard as well.

UML Overview

The central idea behind using the UML is to capture the significant details about a system
such that the problem is clearly understood, solution architecture is developed, and a chosen

implementation is clearly identified and constructed.

A rich notation for visually modeling software systems facilitates this exercise. The UML not
only provides the notation for the basic building blocks, but it also provides for ways to

express complex relationships among the basic building blocks.

Relationships can bestatic or dynamic in nature. Static relationships primarily revolve around
the structural aspects of a system. Inheritance relationship between a pair of classes,
interfaces implemented by a class, and dependency on another class are all examples of

static relationships.

Dynamic relationships, on the other hand, are concerned with the behavior of a system and
hence exist at execution time. The messages exchanged within a group of classes to fulfill
some responsibility and flow of control within a system, for example, are eachcaptured in the

context of the dynamic relationships that exist within a system.

Both static and dynamic aspects of a system are captured in the form of UML diagrams. There
are several types of UML diagrams. They are organized along specific focal areas of visual

modeling called views.

The following types of diagrams are provided by the UML:

Use case diagram: A use case diagram shows use cases, actors, and their
relationships. Use case diagrams capture the precise requirements for the system
from a user's p erspective. See chapter 7 for a detailed discussion of use cases in the
context of enterprise Java application development.

Class diagram: A class diagram shows the static relationships that exist among a

group of classes and interfaces in the system. Some common relationship types are

inheritance, aggregation, and dependency. Seechapter 8 for more details on classes,
interfaces, and class diagrams.

Object diagram: An object diagram provides a snapshot view of the relationships that
exist between class instances at a given point in time. An object diagram is useful for
capturing and illustrating, in a static fashion, complex and dynamic relationships
within the system. See chapters 12 and 13 for additional coverage of how object
diagrams are used in the context of enterprise application design and development.
Statechart diagram: State machines are excellent for capturing the dynamic behavior
of the system. They are particularly applicable to eventdriven, reactive systems or
objects where event order is important. State charts are also useful for modeling the
behavior of interfaces. For more information on using statecharts in the context of
J2EE, see chapter 12.

Activity diagram: An activity diagram is an extension of a statechart diagram and is
similar in concept to a flowchart. An activity diagram allows you to model the
system's behavior in terms of interaction or flow of control among distinct activities
or objects. Activity diagrams are best used for modeling workflows and flow within
operations. See chapter 7 for further discussion of activity diagrams.

Interaction diagram: Interaction diagrams are used for modeling the dynamic
behavior of a system. There are two kinds of interaction diagrams in the UML:

0 Sequence diagram: Used for modeling the message exchange between
objects in a system. Sequence diagrams also capture the relative time
ordering of messages exchanged.

0 Collaboration diagram: The message exchange is captured in the context of

the overall structural relationships among objects.

The two diagrams are equivalent, and it is possible to convert from one to the other
easily. Interaction diagrams are commonly used to model the flow of control in a use
case and to describe how objects interact during the execution of an operation, such
as the realization of an interface operation. Interaction diagrams are discussed in

Chapter 8.

Component diagram: A component represents the physical manifestation of a part of
the system, such as a file, an executable, and so o n. A component diagram illustrates

the dependencies and relationships among components that make up a system. A

component typically maps to one or more classes, subsystems, and so on.
Components and component diagrams are discussed in chapter 15.

Deployment diagram: A deployment diagram shows the architecture of a system
from the perspective of nodes, processors, and relationships among them. One or
more components typically map to a deployment node. In the context of J2EE,
deployment diagrams are useful for modeling and developing the distributed system

architecture. Deployment diagrams are discussed in chapter 15.

The UML is a comprehensive subject worthy of a book itself (and in fact, several good ones
have already been written!). Only the most relevant aspects are covered in this book. Refer
to the References section at the end of this book for a list of some excellent books on the UML

that provide a more in-depth discussion of specific areas of the UML.

Why Use the J2EE and the UML Together?

Any reasonably proficient programmer can develop a piece of software that will do the
job—for a while. But building an enterprise system that is maintainable, scalable, and
evolvable is a different matter altogether. And these days, when a system must evolve at a
breakneck pace or face obsolescence, it is all the more important to take the long term view

because you will need to maintain, scale, and evolve the system you are building!

Itis possible to survive and thrive for a while by coding, compiling, fixing, and deploying your
application. Sooner rather than later, you will most likely find that your system is not able to
scale to the new growth demands. This is because your system probably was not architected

and designed so that it could evolve easily in the face of new requirements.

The UML provides the tools necessary for architecting and building complex systems, such as
those required for an enterprise. It supports, among other disciplines, requirements
engineering, architecture-level design, and detailed design. In addition, UML modeling tools
are evolving to where they can be used to impose consistent design patterns upon a
J2EE-based system model and to generate a significant portion of the system's executable

source code.

UML's support for requirements engineering is mainly manifested in its support for use cases,
which are used to understand and communicate functional requirements. Using UML for

requirements modeling, in conjunction with a use case driven development process,

facilitates traceability from requirements to design. Traceability, in this context, implies the
ability to determine the elements in a design that exist as a result of a specific requirement.
In a use case driven development process, specific design elements are created for the

purpose of satisfying a use case. Thus, traceability is often achieved implicitly.

Such traceability has various benefits. For example, the ability to identify the impact of

changes in requirements on the design can not only simplify the task of modifying a system
to meet new requirements, but also help focus testing of the system after the changes are
complete. Similarly, the ability to determine the requirements that led to the existence of

specific design elements can assist in eliminating unnecessary design elements.

Let's walk through a simple scenario to illustrate this. Imagine that your project has a
requirement R1. In the use case model, you create a use case named deliver in response to
R1. In the analysis model, two classes compute and route are created to fulfill the use case.
The use case is realized by a deliver use case realization and classes compute.java and
route.java are created to fulfill the deliver use case realization. If there is a change toR1,
can you easily determine which classes will likely need to be tested? Conversely, can you

justify the existence of compute.java in the implementation model?

As the functional requirements change or new ones are added, the system model can be
examined to determine which portions of the system's architecture and detailed design are

impacted by the changes.

UML includes modeling constructs that can help developers understand how large-scale
portions of the system interact at runtime and depend upon each other at compile time.
Additionally, UML modeling tools can include checks to ensure that design details do not
violate architecture -level constraints. Such tools thereby can help ensure that the quality of

the system's architecture is maintained through multiple releases.

UML diagrams, such as interaction diagrams, activity diagrams, and class diagrams, can be
used to understand and document complex interactions within the system. These help in the
analysis of the problem and also provide a detailed record of the as-designed behavior and
structure of the system. So when it is time to incorporate new functionality in the system, you

know what the design intent was and what the inherent system limitations are.

In addition to supporting the ability to create generic UML models, UML modeling tools are
evolving rapidly to a point where they will help impose consistent, accepted patterns of object
interaction into a system design. For example, consider the challenge of determining when to
make use of session beans versus entity beans, when to use stateful versus stateless session
beans, and when to use JavaServer Pages (JSP) versus servlets. In the future, thesetypes of

design decisions may be codified within a tool and applied upon demand.

Finally, using UML enables developers to move to a true visual development paradigm. In
addition to enabling developers to impose consistent modeling patterns into their designs,
modern UML modeling tools generate an increasing amount of highly functional J2EE source
code. As a result, developers can concentrate on higher value design activities and leave
much of the labor-intensive coding to the modeling tools. A visual representation is also
excellent for communicating the design among the team. In addition, it can be used

effectively to ramp-up new team members rapidly.

Challenges in Modeling J2EE in the UML

One of the authors recalls trying to replace a leaky rear differential seal on his car. The repair
manual called for a specialized tool to remove the seal, but he took one look at it and decided
the job could be done with his wrench set and pliers. He eventually managed to replace the

seal, but it took him weeks, and somehow the oil never stopped leaking!

The challenge in using unadulterated UML for J2EE modeling is somewhat similar. You may

get the job done, but your efficiency and likelihood of success will be diminished.

More specifically, the specifications that make up the J2EE offer some distinct modeling

challenges, for instance:

An Enterprise JavaBean (EJB) class implements the business methods in the Remote
interface, but not the interface itself. This is contrary to the standard UML concept of
interface realization.

An EJB, by definition, is related to a Home and Remote interface. It is necessary that
a UML modeler consistently honor this architectural pattern.

Servlets and EJBs have deployment descriptors associated with them.

Unlike most other Java classes, EJBs, servlets, and JSPs are packaged in a specific

type of archive file along with their deployment descriptors.

Entity bean attributes map to elements in a database.

EJBs have the notion of transactions and security.

Session EJBs can potentially have significant dynamic behavior.
Different persistence schemes can be employed by entity beans.

JSPs are logically a hybrid in that they have both client and server aspects to them.

Given the drive to deliver better software in less time, another objective in modeling J2EE is
to be precise enough to permit UML-based modeling tools to be able to process your model

and provide value-added capabilities related to J2EE.

Extension Mechanisms in the UML

We are quite sure the cre ators of UML did not have J2EE on their minds when they created the
UML. Fortunately for us, they had enough foresight to recognize that in order for the UML to
last any length of time, it would have to be capable of evolution and adaption to new

languages and constructs.

The UML provides three mechanisms for extending the UML: stereotype, tagged value, and

constraint.

Stereotype

A stereotype allows you to create a new, incrementally different model element by changing
the semantics of an existing UML model element. In essence, this leads to the addition of new

vocabulary to the UML.

In the UML, a stereotyped model element is represented by the base model element
identified with a string enclosed within a pair of guillemets (<<>>). A pair of angle brackets (<<

or >>) can also represent a guillemet.

The use of stereotypes is fairly common in everyday UML usage, and it is quite acceptable to
create stereotypes to model concepts/constructs if the stereotype adds clarity. As an
example, the UML itself describes the extend and include relationships via the <<extend>>

and <<include>> stereotypes.

A stereotype can be defined for use with any model element. For instance, stereotypes can be

used with associations, classes, operations, and so on. An example of a stereotype is shown

in Figure3-1. A stereotype may optionally be shown via an icon. An example is shown infigure3-2.

Note that Figure 3-1 and Figure 3-2 are equivalent. We make extensive use of the iconic

representation in this book.

Figure 3-1. A class with stereotype

<<interface>>
Control

Figure 3-2. Representing an interface using an icon

O

Control

Tagged Value

UML model elements typically have properties associated with them. For ex ample, a class
has a name. A tagged value can be used to define and associate a new property for a model

element in order to associate additional information to the model element.

A tagged value is defined as a tag, value pair in the following format: { tag=value} . For
instance, the UML construct class has a name, but normally there is no way to identify the
author of the class. A tagged value of { author=Khawar} could be used to associate the

author's name to the class model element.

An example of a tagged value is shown in Eigure 3-3.

Figure 3-3. Tagged value example

Account
{persistence = True}

Constraint

As its name implies, a constraint in the UML allows you to specify restrictions and
relationships that cannot be expressed otherwise. Constraints are great for specifying rules of

how the model can or cannot be constructed.

A constraint is expressed as a string placed between curly braces such as { constraint}.

For example, if the order of the associations within a group of interconnected classes was
important, you could use a constraint on each association to clearly identify its order in the

relationship. An example of a constraint is shown in Figure 3-4.

Figure 3-4. An example of a constraint

Employee

-Balance : Decimal t---------- {Balance cannot be negative}

It's one thing to have the facilities to do something, and quite another to actually do it. The
whole point of having the UML is to provide a common vocabulary, so extending the language

at anyone's whim is counter to the purpose as well as the spirit of the UML.

Generally, when a need arises to adapt the UML for a specific purpose, the suggested process
is to create a new UML profile, and at an appropriate point, submit it to the OMG, which is the
body responsible for the UML and for standardization. This allows other interested parties to
contribute to the profile and ensure its adequacy for the specialized needs from all points of

view.

A UML profile does not actually extend the UML. Instead, it uses the UML extension
mechanisms to establish a uniform way of using the existing UML constructs in the context of
a new domain. Thus, a UML profile is essentially a collection of stereotypes, constraints,

tagged values, and icons along with the conventions for using them within the new domain.
Some examples of UML profiles that already exist or are in the works include

UML profile for Software Development Processes
UML profile for Business Modeling

Data Modeling

Real-Time Software Modeling

XML DTD Modeling

XML Schema Modeling

UML EJB Modeling

Web Modeling

The first two profiles in the list are documented in the OMG UML specification document. The
remaining profiles are either published or submitted, or are being used in the industry, or are

under consideration for development.
The Approach to J2EE UML Modeling

The approach we've taken in this book is to reuse existing and proven approaches for
modeling specific concepts in the UML and reduce the extensions to the absolute minimum

necessary.

Significant work has already been done in the form of a proposed UML profile for EJBs,
developed via the Java Community Process (JSR 26). The UML notation for J2EE reuses that

work to a large degree. Effort has also been put forth on the Web Modeling profile 2l

[21 As documented in Building Web Applications with UML by Jim Conallen, Addison-Wesley,
1999.

So, rather than focus on the mechanics and intricacies of J2EE UML mapping, we attempt to
highlight how specific facilities within the UML can be effectively used to model J2EE

applications and derive the most benefits in the process.

Consequently, our modeling focus is on activities such as:

Understanding and identifying the overall role a specific J2EE technology may play in
an enterprise application

ldentifying strategies for dealing with intertechnology relationships
Understanding dynamic behavior of components

Developing a suitable architecture for the enterprise application

ldentifying and maintaining the dependencies

Summary

The UML provides a rich set of constructs for modeling complex systems and is ideally suited

for modeling enterprise Java applications.

UML modeling is more than the visual presentation of a specific J2EE technology. The true
value of UML becomes apparent as it is applied to solving challenges that are hard to solve
without the aid of modeling. Such challenges include, among others, behavioral modeling,
identification of dependencies, significant relationships, and development of a resilient

architecture for the enterprise application.

Chapter 4. UML and Java

Representing Structure

Representing Relationships

Summary

UML and Java may be languages for software development, but they exist in different planes

of reality. UML occupies the visual world, whereas Java is textual in nature.

UML is also richer than Java in the sense that it offers more abstract and powerful ways of
expressing a particular concept or relationship. However, there is generally only one way to

represent that concept or relationship in the Java language.

For example, a Java variable declaration can be expressed in multiple ways in UML.

This chapter provides an overview of some key UML concepts related to classes and how they
relate to the implementation world. The primary purpose is to review the basic mapping for
the benefit of those who may be new to the UML world. A secondary purpose is to identify
ways in which the use of UML notation can effectively enhance the significance of a specific

piece of Java code without actually altering the equivalent Java code.

Representing Structure

Structural concepts, such as class and interface, are fundamental to both Java and the UML.

This section identifies how these concepts map to Java and the UML.

Class

In the UML, a Java class is represented via a compartmentalized rectangle. Three horizontal

compartments are used:

Name compartment: Shows the Java class name
Attribute compartment: Lists variables defined on the class, if any

Operations compartment: Shows methods defined on the class, if any

Figure 4-1 shows a simple Java class without any variables and methods.

Figure 4-1. A class in Java and the UML

Java UML
public class Account{ Account
}

An abstract class is identified by italicizing the class name.

A stereotype may be used alongside a class name to unambiguously identify it as a specific
type of Java class, such as an applet (we discussed the concept of stereotypes inchapter2). You
can also use stereotypes to identify specific types of classes (such as <<Business Entity>>)

in your particular domain vocabulary to make the classes more meaningful wherever they

appear.

A word of caution: if you are using a UML tool for Java code generation, note that the tool may

use the stereotyping mechanism to affect code generation.

Figure 4-2 shows a stereotyped class.

Figure 4-2. A stereotyped class

Java UmML

public class Clock extends Applet{ <<Applet>>

Clock

Variable

Java variables may manifest themselves in various ways in the UML. This is one instance

where modeling adds a dimension not apparent in the source code.

The simplest form of variable declaration is to list it within a class's attri bute compartment.
Underlining the attribute indicates the static nature of the variable. The visibility of an
attribute is indicated by preceding the attribute with + for public, # for protected, and- for

private. Figure 4-3 shows a class with attributes.

Figure 4-3. A class with attributes

Java UML
public class Employee Employee
{ -yearsOfService : float

-lastMame : String
-firstName : String

public String lastName; -socSecNum : String
-employeelD : String

private float yearsOfService;

public String firstName;

public String socSecNum;

public String employeelD;

This form of declaration may come about for basic data that is needed for the class. Such
variables do not generally have any specific significance from a broader modeling perspective.
Examples include variables you require for storing basic pieces of information that make an
object what it is, variables required for internal logic, and so on. Such variables are based on

objects that usually cannot be decomposed further.

Variables may also manifest themselves due to an object's relationships with other objects
(for example, a collection of some sort). We discuss such relationships and their usage in the

"Representing Relationships" section later in this chapter.

Method

Methods are the equivalent of operationson a class in the UML. They are shown in the third
compartment for a class. Visibility scope of UML operations is defined using the same

convention used for class attributes, as described in the "Variables" section.

Underlining the operation's name is used to differentiate a static method. Listing the
operation in italics in the operation compartment shows that the method is abstract. You can,
of course, hide or show details depending on the significance of the detail. For instance, in

Figure 4-4, the full operation signatures are not shown by choice.

Figure 4-4. A class with attributes and operations

Java umL
public class Account Account
{ -balance : float
-type :int
private float balance; -linked : boolean

private int type; +withdraw() : boolean

+deposit() : boolean

private boolean linked;

public boolean withdraw(float amount)
{
}
public boolean deposit(float amount)
{
}

Object

Although both Java and UML have the concept of an object, there is no direct mapping
between a UML object and Java code. This is so because objects are dynamic entities, which
are based on class definitions. Java applications are written in terms of Java classes that

result in the creation of Java objects when the application is actually executed.

In the UML, objects are used to model dynamic aspects of the system via interaction

diagrams. A rectangle with an object name, and/or a class name, is used as the notation for
an object. Sometimes it is desirable to show the attribute values for the object in a given
situation. This can be done using a rectangle with two partitions showing the attributes of the

class. See Figure 4-5.

Figure 4-5. An object

Java UML

N ival :
o Java code equivalent checking : Account

balance : float
type :int
linked : boolean

Interface

In the UML, a Java interface is depicted as a class stereotyped with <<interface>>.
Stereotyped classes may optionally have icons associated with them. In the case of an
interface, the UML iconic representation is a small circle. This iconic representation is

commonly used for representing Java interfaces when modeling in the UML.

Figure 4-6 shows the standard interface representation.

Figure 4-6. An interface

Java UML

public interface Control{ <<interfacess
Control

}

Figure 4-7 shows an alternate and more compact form of representation.

Figure 4-7. Alternate representation of an interface in the UML

Java UML
public interface Control{ Control ()——
}

Either approach is acceptable from a modeling perspective and really comes down to your
individual preference. This book makes extensive use of the icon representation for diagrams

presented.

Package

A Java package maps to a UML package. Packages may be logical, meaning you may only use
them as a grouping mechanism. Packages can also be physical, meaning they result in a

physical directory in the file system.

The UML package is represented as a folder, as shown in Figure 4-8. Packages may be
stereotyped to distinguish the type of package, for example, using <<subsystem>=> to
identify the package as a subsystem. (A subsystem refers to a group of UML elements and

represents a behavioral unit in a model. It can have interfaces as well as operations.

Subsystems are typically significant from an analysis and design perspective. There is no

direct mapping between a subsystem and a Java language construct.)

Figure 4-8. A package

Java UML
Package Widgets;
Widgets

Representing Relationships

Relationships play a key role in capturing and modeling the important structural aspects of a

Java application.

Some of these relationships, such as inheritance, can be explicitly identified in the Java
language via predefined keywords. Others are not as easily identifiable in Java code but can

nonetheless be represented.

Inheritance

The UML concept of generalization is analogous to inheritance in Java. Generalization maps
directly to the extends keyword and is shown visually via a line with a triangle at the end

nearest the super class. See Figure 4-9.

Figure 4-9. Representing the inheritance relationship

Java UML
ublic class Emplovee extends
P ploy Person
Person{
}
Employee
Realization

In Java, a class may implement one or more interfaces. The Java keywordimplements maps

to the concept of realization in UML.

In the UML, realization can be shown in two different ways. If the stereotyped class approach
is used for representing an interface, realization is shown via a dashed line with a triangle at
the end touching the interface. If the circle notation is used for an interface, a plain, solid line

connecting the interface and the implementing class is used.

These approaches are shown infigure 4-10 andFigure 4-11. Note that the approach shown inFfigure

4-11 is shorthand for the approach shown infigure 4-10. Itis inappropriate to mix the two. For
example, showing an interface via a circle and using the dashed line with a triangle would be

inappropriate.

Figure 4-10. UML realization

Java UML

public class Vehicle implements ,
=<interface>>

VehicleControl VehicleControl

JAN

{

¥ Vehicle

Figure 4-11. Alternate representation of interface realization

Java UML

public class Vehicle

Vehicle VehicleControl (O—

implements

VehicleControl

Dependency

Anytime a class uses another class in some fashion, a dependency exists between the two.
The relationship is that of the user depending on the class that it is using. In the UML, a

dependency is shown via a dotted line with an arrow touching the class that is causing the

dependency.

A dependency exists if a class:

Has a local variable based on another class
Has a reference to an object directly
Has a reference to an object indirectly, for example, via some operation parameters

Uses a class's static operation

Dependency relationships also exist between packages containing classes that are related.
Dependencies between packages are shown via a dotted line with an arrowhead. SeeFigure

4-12 and Figure 4-13.

Figure 4-12. Dependency between classes

Java UML
Dependencies between classes
Account
(AccountList depends on Account) A
AccountList

Figure 4-13. Dependency between packages

Java UML
Dependencies between packages | [|
Services
{Services depends on '
Platform) E
—

Platform

Association

Conceptually, an association between two classes signifies that some sort of structural

relationship exists between the classes.

In the UML, an association is shown by drawing a line between the classes that participate in
the relationship. Associations may be unidirectional or bidirectional. Bidirectional association

is shown with a simple line. Unidirectional association is shown with an arrow on one end.

A unidirectional association implies that an object of the class from which the arrow is
originating (i.e., the class that has the nonarrowhead side of the association) may invoke

methods on the class towards which the arrow is pointing. In Java, this manifests itself as an

instance variable on the class that may invoke methods.

Figure 4-14 shows a unidirectional association example.

Figure 4-14. An example of a unidirectional association

Java UML
public class Employee
Employee
{ -yearsOfService : float
private float yearsOfService; | | -lastName : String
-firstName : String
public String lastMName; -socSecNum : String
-employeelD : String
public String firstName;
public String socSecurityNum;
public String employeelD; -homehAddress
public Address homeAddress; R
- Address
}

public class Address{

Most associations are of the unidirectional kind, but it is possible for some associations to be
bidirectional. A bidirectional association simply means that either object in the association
may invoke methods on the other. In Java, this results in an instance variable on each class

based on the type of the other class.

A bidirectional association example is shown in Figure 4-15.

Figure 4-15. An example of a bidirectional association

Java UmML
public class Team

Team
{
LinkedList members = new LinkedList({);
members.add({new Member(..)); 1
} 2
public class Member Member
{
Team member0f;

What about showing associations with primitive types, such as int or boolean? Clearly, it
could be done that way if you are so inclined. In fact, you may start out showing associations
with a large number of entities in the analysis phase, but as you proceed through design and
implementation, and identify the significance of each association, the number may be

reduced significantly. In practice, if it doesn't really add much value to understanding the
design, aside from adding some visual clutter to the model, there really is no point in showing

the relationship visually. It is preferable to use associations to show only relationships that

are significant and nontrivial.

Each end of the association is a role in UML terminology and may be named. For example,
consider that a person may have a bidirectional association with a company that is employing
the person. In this case, the roles may be named employer and employee, respectively. From

an implementation perspective in Java, the roles may be appropriate as the names of the

instance variables in the respective classes. It is usually helpful to name a role if it adds value
to understanding the model. If not, it is perfectly reasonable to leave it unnamed. In such a

case, the role name can simply be based on the name of the class.

An example of roles on a bidirectional association is shown in Figure 4-16.

Figure 4-16. An example of roles on bidirectional association

Java UmML
public class Corporation{
Corporation
private Person employee ;
a
-employer
}
-employee
ki
public class Person Person

private Corporation employer;

Of course, objects in a class may have multiple associations with objects in another class. For
instance, a corporation typically has many employees and a person may work for more than
one corporation. This is modeled by assigning a multiplicity to the role(s). Multiplicity may be
depicted as a specific value (e.g., 0, 1, 7) or as a range (e.g., 0..1, 1..5, 1..*). An asterisk is
used to indicate an unlimited range. For example, "*" means zero or more or simply many,

and "500..*" indicates 500 or more, up to an unlimited number.

In terms of Java implementation, multiplicity manifests itself as a multivalued instance
variable. For example, assume that a corporation employs several persons, and a person can
work for a maximum of three corporations. For the variable multiplicity without a fixed upper
limit, this may translate to a collection representing the persons who work for a single
corporation. For the person who works for three different corporations, this would resultin an

array of three elements.

A multiplicity example is shown in Figure 4-17.

Figure 4-17. An example of multiplicity

Java UML
public class Corporation
Corporation
{
private Person employees[];
7
s 3 | -employers
¥
0..* | -employees
W
Person

public class Person

private Corporation employers([];

employers = new Corporation[3];

Information relevant to the association roles cannot always reside with the classes involved
in the association. For instance, it would be inappropriate to store the session between a
shopper and the virtual shopping cart in either class. In such a case, an association class may

be used to model this situation. See Figure 4-18.

Figure 4-18. An association class

Cart

Session

Shopper

Aggregation

Aggregation is a stronger form of an association. It is used to show a logical containment
relationship, that is, a whole formed of parts. Although the parts may exist independently of
the whole, their existence is primarily to form the whole. For example, a computer may be
modeled as an aggregate of a motherboard, a CPU, an 1/0 controller, and so on. Note that the
1/0 controller may exist independently (e.g., in a computer store); however, its existence in

the context of the whole is more appropriate.

Aggregation is modeled as an association with a hollow diamond at the class forming the
whole. Because it is an association, an aggregation supports the concept of roles and

multiplicity. In terms of implementation in Java, an aggregation maps to instance variables

on a class.

An example of an aggregation is shown in Figure 4-19.

Figure 4-19. An aggregation example

Java UML
public class Order

Order
{
private OrderItem items[];
private OrderDetails details; ?‘?

-details * | -items
} W \
OrderDetails Orderltem

The semantics and constraints of aggregation are not substantially different from those for

basic association. In spite of this, everyone considers aggregation necessary.

Unlike association instances, instances of an aggregation cannot have cyclic links. That s, an
object may not directly or indirectly be part of itself. For example, if an instance of A

aggregates an instance of B, then that instance of B cannot itself aggregate that same

instance of A.

In general, unless you believe that using aggregation adds value or clarifies something, you

should use association. (Composition, discussed next, is another alternative.)

Composition

Composition is another form of association and is similar to aggregation to some degree.

However, it is less ambiguous.

Composition is appropriate for modeling situations that call for physical containment. It

implies a much stronger whole -part coupling between the participants such that parts cannot

exist without the whole. That is, parts share the life cycle of the whole. They are created when

the whole comes to life and destroyed when the whole ceases to exist.

When working with an implementation language, such as C++, use of aggregation versus
composition does map to different code. For example, aggregation implies pass by reference,
whereas composition implies pass by value. However, this distinction is not applicable to Java.
Hence, the code mapping of aggregation versus composition is the same even though you
may still want to model them differently to communicate the intent of the design and

highlight elements in an implementation independent fashion.

Composition is shown in the same way as aggregation except that the diamond is filled in.

Reflexive Relationships

A class may have an association with itself. For example, if a person employs another person,
the Person class may have an association with itself with the role names of employer and

employee. Such a relationship is called a reflexive relationship.

This notation can be considered a modeling shorthand. Only one class icon rather than two is
used to illustrate the relation. In Figure 4-20, it would be perfectly acceptable to show two
separate Person class icons with the relation drawn between them. However, to do so

consumes space on a diagram.

Figure 4-20. An example of a reflexive association

Java UML
public class Person + -employer
{
Person 1employes
private Person employer[];

private Person employee[];

Summary

The use of the appropriate UML constructs can add significant value to the overall design. It

can actas an aid in not only documenting the design but also making it more understandable.

In this chapter, we focused on the key concepts related to the class diagram. The key

concepts discussed were

Classes, attributes, and operations, and their relationship to Java implementation
Package as a means of grouping things and its relation to Java
Different kinds of relationships between classes and when to use which:
0 Association
0 Aggregation
0 Composition
Inheritance representation in the UML
The role of realization in the UML and how it relates to extends in the Java

implementation language

Good modeling is not a trivial task. Like any other skill-based task, it requires significant
effort and practice to become proficient in UML and modeling. In the next few chapters, we

explore application of these concepts in the context of J2EE development.

Chapter 5. Overview of Activities

What Is a Software Development Process?

Overview of Popular Approaches to Software Development

Approach Used in This Book

Overview of Major Activities

Summary

Is software development an art or a science? The answer really depends on whom you talk to.
But there is one thing about which everyone will agree: software continues to become bigger,

more complex and harder to develop, and more difficult to manage.

In this chapter, we briefly explore some of the more popular approaches to software

development and highlight their perceived strengths and weaknesses.

This is followed by a high-level overview of the approach we have chosen to follow for this

book. The idea is to provide you with a roadmap for the rest of the book.

What Is a Software Development Process?

A software development process provides guidance on how to develop software successfully.
Such guidance may cover the entire spectrum of activities associated with software
development. The process might manifest itself in the form of proven approaches, best

practices, guidelines, techniques, sequencing, and so on.

Whether formal or informal, the software development process ultimately employed has a
profound impact onthe success of a software project. An ad hoc approach might work well for
a small project, but it might lead to chaos for a large project and hence greatly impact the
overall schedule. Similarly, a bureaucratic software development process may lead to

frustration and bog down even the best team.

Overview of Popular Approaches to Software Development

There are numerous processes for developing software. Some of the more prevalent/popular

ones are discussed in the following sections.

The Just-Develop-It Approach

The just-develop-it approach is characterized by a general lack of formality and almost

nonexistent process or ceremony surrounding software development activities. The software
developer has the key role, which is perhaps differentiated by experienceand expertise in the
area. The sole focus of the development team is to complete the software project in the best
way it can, using whatever means are afforded by the technologies at its disposal. Some
up-front design work might be undertaken, but that islargely dependent on the initiative and

preferences of the software developer who is responsible for the project.

In such an approach, the overall design of the software exists as part of the software. In other
words, there is a one-to-one bidirectional mapping between the architecture, design, and
implementation. The overall quality of the software is largely dependent on the developers
involved in the project. Documentation, in general, is relatively unimportant. Instead, the
project relies on the continued availability of the same or equally skilled developers, so they

can continue to evolve or maintain the software.

Overall, this means that the software may range from an excellent piece of work that is highly
flexible and evolvable to very poor quality software that is inflexible and unable to

accommodate even the simplest changes in requirements. In a nutshell, the overall success
rate is unpredictable at best and repeatability from one project to the next (or even from one

project phase to the next) is mostly dependent on luck.

As it turns out, a large number of software development efforts today still rely on this
development approach! Perhaps this is a manifestation of the compressed Internet delivery
time pressures or simply the result of the software industry being in its infancy. Either way,

the phenomenon is very real.

The Waterfall Process

The waterfall approach has been used extensively in the past and continues to be popular.
The idea is to segment the development into sequential phases (e.g., requirements, analysis,
design, implementation, test). This works well for small projects and for projects where the
requirements are stable and relatively fixed, the problem domain is well understood, and the

solution has been proven on similar projects in the past.

Figure 5-1 depicts the waterfall process.

Figure 5-1. The waterfall process

Requirements
Analysis

Design

v

Implement

Unit
Test

System
Test

Time
The Iterative Process

Unfortunately, most software projects nowadays do not meet the criteria for utilizing the
waterfall approach. Requirements are constantly changing; projects often break new ground
by tackling novel problems and trying out cutting-edge technology, and so on. The iterative
development approach, which is based on Boehm's spiral model, is primarily aimed at

addressing these issues. The idea is to reduce risk early in the project by going through the

identified sequence of activities (requirements, analysis, design, etc.) multiple times and

revisiting each of the key activities in a planned manner. Each iteration ends with an
executable release. Among other advantages, this approach permits early identification of
issues with respect to inconsistent requirements, enables end user involvement and feedback,

provides a higher confidence level in the state of the project, and so on.

Figure 5-2 depicts the iterative process graphically.

Figure 5-2. The iterative process (used with permission from Phillippe Kruchten,
author of The Rational Unified Process: An Introduction. p. 7, Reading, MA:

Addison-Wesley, 1999.)

Requirements
Analysis and Design

Planning
Implementation

Initial

Planning Deployment

Evaluation

We discuss the iterative approach in further detail in the context of the other approaches

explained in this chapter.

The Rational Unified Process

The Rational Unified Process (RUP) is an evolution of the Objectory process, which was
acquired by Rational Software a few years ago and was merged with the Rational Approach.
It has been enhanced over time via the incorporation of other aspects of software

development as well as best practices identified by the software industry over the years.

At the heart of the RUP lie the software best practices:

Develop software iteratively: A major issue with traditional (i.e., waterfall) software
development effort is the discovery of design defects late in the development cycle
and the prohibitive cost to fix them at that stage. Iterative development follows a
more continuous and cyclic process, allowing easier course corrections along the way.
Thus, high risk issues can be focused on and the risk eliminated early on. Problems
are identified continuously and can be overcome in a more cost-effective manner
rather than being discovered at the very end of the effort when they can threaten the
entire project.

Manage requirements: Requirements are often evolutionary in nature. That is, a
project never starts with all its requirements already captured and outlined. Instead,
the process is one of gradual identification, understanding, and refinement. As such,
requirements need to be managed carefully to ensure project success.

Use component-based architectures: Component-based software offers the
advantage of true modular development. Such modular development leads to better
overall architecture. Components, whether in house or commercially obtained, also
promote reuse both in "as is" and customized forms.

Visually model software: In the words of Grady Booch, "A model is a simplification of
reality that completely describes a syste m from a particular perspective." 2l Building
models leads to better understanding of the problem and improves communication
about it, thereby making complex systems more manageable. Visual modeling is the
preferred way to do modeling because it allows you to work at a higher level of

abstraction.

[11 Kruchten, P. The Rational Unified Process: An Introduction. Chapter 1 "Software
Development Best Practices"” by Grady Booch, p. 11, Reading, MA: Addison-Wesley,
1999.

Continuously verify software quality: Studies have proven that the earlier you
identify a problem, the cheaper it is to fix. In fact, studies have proven that fixing
problems reported after the product is deployed are always several times costlier to
fix. Continuous testing means early testing, which can be much more cost-effective.
Such ongoing testing can also offer a more objective assessment of the true status of
the project.

Control changes to software: Today's large software projects are typically distributed

across multiple geographical sites, involving several teams with a large number of

developers. The probability of conflicting changes, resulting in chaos, is very high.

Thus, there is a strong need to control changes for effective progress on the project.

The RUP has two basic dimensions. One RUP dimension groups activities logically according

to the disciplines that are responsible for executing them.

The RUP identifies six core disciplines:

Business modeling: As the name suggests, the purpose of this discipline is to develop
a model of the business. The idea is to better understand the overall business so the
software application can fit into it more appropriately. Business modeling is most
suitable in situations where a large amount of information is expected to be managed
by the system, and a relatively large group of people is expected to use the system.
A business use case model and abusiness object model are typically produced as part
of the business modeling discipline.

Requirements: The requirements discipline aims to develop a solid understanding of
the requirements. The intent is to achieve agreement with customers as well as to
provide guidance to developers. A use case model is produced as part of the
requirements discipline. A user interface prototype may also be produced.
Analysis and Design: Requirements captured in the requirements discipline are
analyzed and transformed into the design in the analysis and design discipline. An
architecture is developed to guide the re maining development effort. Analysis and
design models are developed as part of this discipline.

Implementation: In this discipline, the design is transformed into the actual
implementation code. A strategy is developed for layering and partitioning the
system into subsystems. The end result is a set of implemented, unit tested
components that form the product.

Test: As is obvious from its name, the test discipline is all about verifying the system.
Among other things, this typically means verifying that all requirements have been
met, confirming that components work together as expected, and identifying any
defects remaining in the product. The primary outputs of this discipline are atest
model and a set of defects generated as a result of the testing.

Deployment: The deployment discipline makes the product available to the end users.
As such, it covers details such as packaging of the software, installation, user training,

and distribution of the product.

There are also three supporting disciplines: configuration and change management, project

management, and environment.

The other RUP dimension deals with giving structure to the iterations in a software project.
The RUP groups the iterations into four phases. Each phase ends with a milestone that is a

management-level decision point.

As Figure 5-3 shows, each phase (and each iteration within a phase) usually touches multiple
disciplines. Depending on the specific iteration, a specific discipline may provide the
emphasis for a phase, whereas the other disciplines play a minor role in the iteration. For
instance, an earlier iteration is likely to spend more time in the requirements discipline,
whereas a later iteration is likely to spend more time in the test discipline and a much smaller

portion of time in the requirements discipline.

Figure 5-3. The Rational Unified Process (used with permission from Phillippe
Kruchten, author of The Rational Unified Process: An Introduction. p. 23 [modified
to reflect RUP terminology changes circa 2001], Reading, MA: Addison-Wesley,

1999.)

Phases
Disciplines Inception Elaboration l Construction Transition

Business Modeling

1
Analysis and Daesign M_

[i i
I |

Implamentation m
T]

Teot | b e e e T

|

Deploymant

Configuration and
Change Mgmt

Project Management WW

I
I

Enviranmant |———— i N o
!

initial || Elab #1 | E1ab #2 || Cgnst || Const || Const || Tran | Tran

Itterations

The four phases defined by the RUP are

Inception phase: The inception phase revolves around the scoping of the projectin
terms of the product, understanding of the overall requirements, costs involved, and
key risks. The emphasis during the inception phase is on creating a vision document,
identifying an initial set of use cases and actors, developing a business case for the
project, and developing a project plan showing the phases and planned iterations.
Elaboration phase: The elaboration phase is perhaps the most significant phase. In
this phase, the requirements are analyzed in detail, and an overall architecture is
developed to carry the project through to completion. Stability in requireme nts and a
stable overall architecture are basic expectations for the end of this phase. Emphasis
is on developing a use case model, an analysis model, a design model, an
architecture prototype, and a development plan.

Construction phase: The focus of the construction phase is on design and
implementation. This is achieved by evolving the initial prototype into the actual
product. The key deliverable for the end of the construction phase is the product
itself.

Transition phase: In the transition phase, the product is readied for the users. This
may involve fixing defects identified during beta testing, adding any missing
capabilities, training end users, and so on. The final product is delivered to the

customer at the end of the transition phase.

The RUP can also be customized to meet specific needs of an organization or project.

Figure 5-3 combines the various elements of the RUP and visually shows the relationships

between phases and disciplines.

The ICONIX Process

The ICONIX process offers an approach that is similar to the RUP. This process emphasizes
"robustness analysis" and formalizes that analysis into a robustness diagram. Robustness
analysis revolves around analyzing use cases and establishing a first cut at the objects that
participate in each use case. These objects are classified into control, boundary, and entity
objects. Practically speaking, the difference is a matter of semantics. The RUP notion of use
case analysis is essentially the same as ICONIX robustness analysis. In addition, the RUP
addresses all aspects of the software development life cycle, whereas the ICONIX process

focuses on analysis and design.

The OPEN Process

The Object-oriented Process, Environment, and Notation (OPEN) p rocess was developed by
the OPEN consortium. Like the RUP, it evolved from a merger of earlier efforts in the area. It
is primarily intended for use in an object-oriented or component-based software

development environment.

OPEN is defined as a process framework known as the OPEN Process Framework (OPF). OPF
provides a set of components, which are divided into five groups: Work Units, Work Products,

Producers, Stages, and Languages.

Producers are typically people. Producers work on Work Units and produce Work Products.
Languages, from the Unified Modeling Language (UML) to Structured Query Language (SQL),
are used for creating the Work Products. All this happens in the context of Stages, such as

phases, milestones, and so on, which provide the organization for the Work Units.

Extreme Programming/Feature-Driven Development

Extreme Programming (XP), originally proposed by Kent Beck, has gained much attention
lately. XP is often positioned as a "lightweight software development process" and in fact can

be almost construed as an antiprocess in the traditional sense.

The main idea behind XP is to keep things as simple as possible to get the job done. XP
activities are organized around four major undertakings: planning, designing, coding, and

testing.

Planning is organized around a "Planning Game." Requirements are collected in the form of
user stories, which can be used for discussion with customers and provide sufficient detail for
estimates and scheduling trade-offs. Requirements are captured on index cards. Thisis

followed by identifying a "metaphor" for the overall system, which provides the overall shared
vocabulary for the team. Requirements are partitioned into small tasks, each of which can be

implemented in a very short amount of time (weeks).

Because requirements can change rapidly, XP does not spend any time on up-front analysis.
Instead, the design and coding begins immediately. In XP, the code is the design; hence, the

design phase consists of discussing features with the customer, identifying the test cases for

successful implementation, and then implementing the simplest solution that will meet the
requirements. Developers always work in pairs and focus on implementing the tasks, doing
any refactoring of existing code as required along the way. Integration with other parts of the

system may take place several times a day.

Primary testing is centered on unit testing, and functional testing is dictated by the customer

to determine acceptability of the software product.

Feature -Driven Development (FDD), developed by Jeff de Luca and Peter Coad, is based on
XP. It primarily differs from XP in that FDD includes a requirement to develop a domain object
model as part of an early design as a way to compensate for the relative absence of an overall
architecture/design. FDD further constrains the definition of XP tasks to user-consumable

features and elevates features to a central notion within the overall development process.

Approach Used in This Book

As you may have already deduced from the depth of the process descriptions given thus far,

the approach in this book is largely based on the RUP.

The decision to do so was based on the following:

The RUP is a proven process and is currently being used successfully in a large
number of projects.

We strongly believe that architecture, analysis, and design are essential to a project's
long-term success. Unlike other processes, for example, FDD and XP, the RUP
provides excellent coverage of these key aspects.

There are enough similarities between the RUP and other processes (e.g., ICONIX) to
make the work presented in this book useful to even those not using the RUP in its
pure form.

The RUP can be customized to suit specific needs.

Of course, this decision was not based, by any means, on an exhaustive comparison of the

different approaches and was no doubt influenced by our own familiarity with the RUP.

We should point out that in this book, we have chosen to use a customized version of the RUP

tailored for the needs of this specific book and case study. In addition, we donot attempt to

cover each and every artifact, deliverable, or element outlined in the RUP. This is primarily

due to space and time limitations imposed by the book.

For instance, we condense what would realistically be done over several iterations with
multiple increments, each into a seemingly single iteration. We also do not cover all
disciplines identified in the RUP, limiting ourselves to those most directly relevant to

illustrating specific aspects of analysis, design, and development.

Figure 5-4 graphically illustrates the relationship between the different RUP workflows, artifacts

produced during the workflows, and how the chapters in this book relate to them.

Figure 5-4. The RUP workflows, artifacts, and related book chapters

Business Analysis and
Modeling Requirements Design Implementation Test

Business Use Use Case | _| Analysis

Case Model Model Model
Business Object Design | | Implementation Test
Model Model Model Model

Chapters 6, 7 Chapters 8-15
+

+
Case Study Case Study

Refer to the References section at the end of this book for additional sources of information

about the RUP.
Overview of Major Activities

We limit our discussion in the book to some key activities. Each topic spans one or more

chapters.
Chapter 6: Architecture

chapter 6 introduces the notion of architecture and discusses some of the key concepts of
architecture, such as decomposition, layering, and so on. These concepts are then applied

and elaborated upon in the remaining chapters.

Chapter 7: Analyzing Customer Needs

chapter 7 focuses on understanding what is required to be implemented. We start by capturing
the requirements in the form of a use case model. This involves identification of actors and
use cases and articulation of the requirements concisely in the form of sequence diagrams

and activity diagrams.

Chapter 8: Creating the Design

chapter 8 revolves around developing a high-level design. We start by developing a better
understanding of the specific use cases. Each use case is refined using the concept of
boundary, control, and entity classes, and the system responsibilities aredistributed to these
classes. Sequence diagrams are used to capture the refined use case scenarios, and
collaboration diagrams are used to better understand the interactions. We also develop the
initial class diagram representing the structural relationships in the model. As well, we start

to identify the dependencies and packaging requirements.

Chapters 10—15: Detailed Design

Chapters10—25 focus on bringing the Java 2 Platform, Enterprise Edition (J2EE) technologies and
UML together. We use the design model developed inchapter9 as the starting point and evolve
it as we cover specific technologies. For ex ample, inchapter10, we partition the control classes
further and evolve a subset of those classes into servlets. In chapter 11, we introduce
JavaServer Pages (JSP) and cover some of the presentation related aspects of the

application.

In these chapters, we make use of class diagrams, interaction diagrams, state chart diagrams,

and activity diagrams as well as component and deployment diagrams.

Chapter 16: Case Study

Chapter 16 recaps the various activities undertaken as part of the first iteration inchapters 6—25.
The idea is to provide a consolidated view of the case study used throughout the book. We fill
in the holes using detailed UML diagrams for scenarios not covered in the rest of the book. We
further talk about the second and subsequent iterations of the case study and highlight some

of the key considerations in moving forward with the project.

Summary

There are various aspects of software development. Some of the key elements are

architecture, understanding requirements, analysis and design, and implementation.

Over time, numerous approaches have been developed for software development. Although
there are differences among the specific software development processes, there are also a lot

of similarities. In this chapter, we highlighted some of the current popular processes.

To provide a framework for the discussions to come in the remaining chapters, we provided

a high-level overview of the activities undertaken in chapters 6—216.

Chapter 6. Architecture

What Is Software Architecture?

Why Architecture?

Key Concepts in Enterprise Application Architecture

Approaches to Software Architecture

Putting It All Together

Summary

Software architecture is one of those terms that everyone claims to understand but no one

can define precisely—or at least, not precisely enough to satisfy everyone else.

This is partly because of the relatively short existence of the software profession itself and

partly due to the newness of the concept of architecture in the context of software.

In this chapter, we take a closer look at software architecture and some of the key concepts

involved in it.

What Is Software Architecture?

Most software architecture definitions involve references to one or more of the following:

Static structure of the software. Static structure refers to how elements of software
relate to each other.

Dynamic structure of the software, meaning the relationships that change over the
lifetime of the software and determine what the software looks like when it is
running.

Composition (or decomposition) of the software. This refers to the type of significant
but smaller pieces, such as subsystems and modules, that can be part of the
software.

Components and interaction among them. This refers to the various pieces that make
up the software and how they interact with each other.

Layers and interaction among them. Layering allows imposition of a specific ordering
or structure upon the software, thereby permitting and/or preventing certain

relationships as deemed appropriate for the software.

Organization of the physical software pieces to be deployed. The physical source code
must be organized into appropriate types of deployable units, for example, .jar, .war,
and .exe files, for optimal usage

Constraints on the software. Limitations, either natural or self-imposed. For example,
the requirement for software to be written in the Java language.

Rationale for the software. That is, why does the software look the way it does? This
is important because from an architectural perspective, if something cannot be
explained, then it isn't really part of the architecture.

Style that guides the software development and evolution.

Functionality of the software. In other words, what does the software do?

Set of significant decisions about the organization of the software system.

Other considerations such as reuse, performance, scalability, and so on.

The following definition perhaps best captures the essence of software architecture:

The software architecture of a program or computing system is the structure or structures of
the system, which comprise software components, the externally visible properties of those

components, and the relationships among them [Bass 1997].

Software architecture is additionally concerned with:

...usage, functionality, performance, resilience, reuse, comprehensibility, economic and

technological constraints and trade-offs, and aesthetics [kruchten 1999].

Some of these latter aspects of software architecture, of course, have a somewhat more
ethereal nature and do not lend themselves easily to precise analysis as do structure and

decomposition, for example.

It should be clear from the preceding definitions that architecture is multifaceted. As such, no
single diagram or drawing can be viewed as representing the architecture of given software.
Nor is architecture just a representation of the underlying infrastructure or the detailed

design of the system.

Architecture is only concerned about the internal details of the software to the extent that
these internal details are manifested externally (for example, how a component behaves

when viewed from the outside).

Why Architecture?

Every piece of software ever created has architecture. The architecture exists regardless of

whether the designer of the software created it knowingly or even knew what the term

software architecture meant.

So, the real question is not whether your software needs to have architecture but whether

you need to create it in a deliberate fashion.

The following list contains a few reasons why it is important to focus on software architecture:

An ad hoc approach to software structure will eventually lead to a soft ware system
that is brittle and hard to add to because no consideration was given to the need to
adapt to new or changed requirements.

Decomposition of the software into smaller pieces makes the software easier to
understand, manage, develop, and maintain. If done properly, it can also
significantly improve reusability across projects.

Software architecture aids in component-based software development.
Performance can be managed by architecting the software properly from the start.
Consider a project that requires a service throughout the software system. Whereas
in a haphazard and unplanned version of the project, the same code may be redone
over and over again leading to unpredictable performance, a properly architected
software that pro vides the service via a single component would have more
predictable performance.

Better reuse can be achieved via proper architecture. Consider a product line
requiring the same basic services with slight variations. With a layering approach,
only the topmost layers may need to be replaced. Without layering, extensive
changes may be necessary to support multiple products.

lll-conceived constraints can hamper the software evolution, for instance, a
constraint to have a monolithic, nondistributed system because distributed software
systems are harder to build.

Failure to understand and identify beforehand how the software could be modified to
accommodate more users and heavier data processing, provide newer services, take
advantage of new technologies, and so on, can lead to a situation where the software

has to be rewritten because the original architecture did not consider scala bility and

evolution needs. Availability and reliability of the software system are largely
dependent on the scalability of the system.

Having a documented architecture makes it easier to understand and communicate
the intent and substance of the software system to the development team.
Security built into the software, testability of the software, maintainability, and
overall manageability of the software are also strongly influenced by the architecture

of the software system.

Key Concepts in Enterprise Ap plication Architecture

In this section, we discuss some concepts that are central to arriving at good software
architecture. The notion of architecture, of course, is broader than the items discussed, but

we focus on these because of their growing role in the development of large-scale software.

Decomposition

Decomposition refers to the partitioning of a system into smaller, logical pieces to make it
easier to manage the complexity. Modules, subsystems, and components are all examples of

decomposition.

Decomposition helps define and clarify interfaces between different pieces of a system. It can
also be helpful in situations where you must integrate legacy or externally purchased

applications.

Decomposition can also help with distribution of the software across multiple processors. The
drawback, of course, is that inappropriate or over decomposition can easily lead to serious

performance degradation due to the communication overhead.

A side benefit of decomposition is that it provides a natural partitioning o f the development

tasks and makes them easier to distribute among a larger team.

In the Unified Modeling Language (UML), decomposition is modeled via packages, modules,
and subsystems. Within the Java 2 Platform, Enterprise Edition (J2EE), decomposition can be

accomplished via Web components and Enterprise JavaBeans (EJB) components.

Figure 6-1 shows a simple system decomposed into several subsystems.

Figure 6-1. System composed of several subsystems

[]

<<system=>
Online Banking

¢

1 [] [1
<<subsystem>> <<subsystem>> <<subsystem>>
Presentation Reporting Administration
Components

A component is a cohesive unit of software that provides a related set of functions and

services.

Components can be developed and delivered independently of other components; that s,
they are inherently modular in nature, but are useful only in the context of a component
model. A component model provides the underlying infrastructure for component

composition, interaction, and so on. EJB, Java Bean, and COM are examples of component

models.

A component has well-defined interfaces that permit it to interact with other components.
Components conforming to the same component model that offer the same interfaces can be
substituted. In essence, the interfaces of a component provide the contracts between the

component and the application.

It is possible for a component to contain other components.

Some reasons for using components include

Compared to traditional software, components are easier to maintain and modify for

future needs.

Components have the potential to increase productivity in the software industry by
allowing rapid assembly and completion of applications from prebuilt components.
Applications built from components can potentially be more flexible. For example, it
is easier to distribute applications to meet higher load and so on.

Components that perform specific tasks can be bought and sold. These can be
assembled together into larger applications. This reduces time to market,2 overall

resource requirements, expertise required, and so on.

['1 On the other hand, this is a potential risk factor as well if you are relying on an

external source to deliver a critical component.

Components facilitate a natural partitioning of the software system into cohesive

units.

Coarse-grained components map well to high-level subsystems arrived at via a functional
decomposition of the system. As they are at a higher level of abstraction, coarse-grained
components may have fewer well-defined dependencies. Coarse-grained components aim to
deliver discrete and complete business capability. In the context of J2EE, single or multiple
EJBs and associated Java classes may be used to implement a coarse-grained component.
Examples of coarse-grained components include a warehouse module that keeps track of all
aspects of items received and distributed, a life insurance policy processing module, a contact

management module, and so on.

Fine-grained components, on the other hand, are comparable to traditional objects in
functionality and scope. Unlike coarse-grained components, fine-grained components may
have a large number of dependencies. In the Java arena, a fine-grained component maps to

elements such as JavaBeans.

EJBs can be modeled as UML subsystems. SeeFigure 6-2 for one possible representation of an

EJB component in the UML.

Figure 6-2. An EJB component as a UML subsystem

AccountHome ()
<<EJBEntityBean>>

Account

Account ()

Given the importance of interfaces in terms of components and their relationships, it is useful
to model these explicitly. A statechart diagram can be used to model the interface and the

valid sequence of operations supported by the component.

Components also typically have complex behavior. It is usually helpful to explicitly model
component behavior via an activity diagram or a statechart diagram to understand it in more

detail.

We discuss both these modeling aspects in further detail in Chapter 12.

Frameworks

In its simplest form, a framework can refer to any piece of developed and tested software that

is reused in multiple software development projects.

More formally, a framework provides a generalized architectural template that can be used to
build applications within a specific domain. In other words, a framework permits you to
specify, group together, and reuse elements to effectively build some specific software

system.

Consider the example of a software company that builds some service software systems that
always include customer billing and account management functionality. It could start each
software system from scratch and rewrite the billing and account management portions.
More realistically, the software company would be better off taking the billing/accounting
pieces from one of its earlier implementations and developing a formal framework to provide

the foundation for each new software system.

A framework can be used in two basic ways. In the first approach, the library approach, you
use a framework for establishing a set of reusable components. In the alternate approach, a
framework is used for creating a template for new projects or for defining the architecture of
specific types of systems. Each approach has its advantages, and requires different levels of

advance planning and effort.

The library approach consists of using a framework to create a set of reusable components
and is the easier approach in the sense that it is very much like using a library. Referring back
to the system with the billing and account management capabilities, you would simply take all
the relevant classes, put them together, and create a framework containing the classes of
interest. When it is time to implement your next system, it is simply a matter of using the
framework and reusing the desired pieces within it to develop the billing and account

management functionality.

In the framework as template approach, you create a framework that contains assembled
pieces of your typical system. Creating a new system simply requires you to use the
framework as the basis for the new application, and then implement abstract methods or use
some other form of customization (e.g., subclassing) to implement the new software system.
Clearly, this is more work than simply putting some classes into a loosely organized library,
and it requires some advanced planning. However, it also yields superior results in terms of
reuse because you use the framework to capture and reuse key, exceptionally scarce
knowledge of the system architects. The template approach allows you to develop new
systems faster because not only do you get the implementation code for the pieces, but you
also get an authentic blueprint for putting it together in a consistent and usable manner. For
instance, if you are putting together a framework for developing Internet-based applications,
such a framework might provide pieces for security, simple query interactions, interactions
involving transactions, user confirmation services, and so on along with instructions on
supported configurations and how to quickly assemble the different pieces to create a new
Internet application. Brokat Financial Framework by Brokat Technologiest?! is an example of
such a commercial framework based on the J2EE technology that can be reused and rapidly

extended to develop new financial applications.

[?1 see http://www.brokat.com/ for details

Regardless of the approach, the end result of using frameworks is an increase in the relative

amount of time you can spend on developing the features and functionality and less relative

time spent on rehashing what you have already done. In the process, you also decrease the

overall software development time because you create less new source code.

Some considerations in developing a framework:

The framework should be simple to understand. Deep inheritance hierarchies and
inconsistent APIs and such make for poor frameworks. Remember, the idea is to get
the user to start using the framework quickly and effectively.

Provide adequate documentation. Keep in mind that others will use the framework
you are developing over a long period of time. The more you can clarify the intent of
the framework, document the assumptions, and show how you meant it to be used,
the longer the framework will last.

Identify concrete framework extension mechanisms. Frameworks grow over time to
meet new needs. By providing built-in extension mechanisms or identifying the
proper way of extending the framework, the framework will evolve into a more
versatile and cohesive framework rather than deteriorate into a hodge-podge of code.
For the Internet-based application framework example mentioned earlier, a
consideration might be to iden tify framework extension points to easily support new
connection types in the future, for example, wireless instead of line-based

connections.

Patterns

A software pattern is a reusable design that has been captured, distilled, and abstracted out

through experience and has been proven successful in solving specific types of problems.

Patterns are useful because:

They convey proven knowledge captured through years of experience. Using
patterns can reduce the overall risk of failure due to specific types of mistakes.
They can help in solving difficult problems that have been encountered in similar
situations.

Use of well-established software patterns enhances communication within the team

by providing the basic context for discussion among team members.

Software patterns are generally classified into, among others, the following categories:
analysis patterns, architectural patterns, design patterns, and coding patterns. The primary

difference between the categories of patterns is the level of abstraction.

For instance, architectural patterns deal with the structure of software systems, subsystems,
or components and how they relate to each other. Design patterns, on the other hand,
operate at the class and objectlevel. They are based on proven solutions to problems that

arise when designing software in a specific context.

Design patterns are typically classified into three broad categories:

Creational: Creational design patterns provide solutions to configuration and
initialization design problems. A singleton pattern, which provides for a pattern for
restricting the class to a single instance, is an example of a creational design pattern.
Structural: Structural design patterns solve design problems by structur ing the
interfaces and their class relationships in specific ways. Proxy pattern, discussed later
in this section, is an example of a structural design pattern.

Behavioral: Behavioral patterns identify ways in which a group of classes interact
with each other to achieve a specific behavior. An example is the Observer pattern

discussed later in this section.

Design patterns can be applied to existing elements within a design to improve a solution, or
a new set of elements can be constructed using a design patte rn to solve a problem that has

been recognized through analysis.

Figure 6-3 shows a simple design pattern commonly referred to as the Proxy pattern. In this
pattern, an object (Proxy) is essentially providing an indirect access mechanism to another
object (RealSubject). This is identified via the association between the Proxy and the
RealSubject. The Subject provides a common interface to Proxy and RealSubject, thereby
allowing them to work closely. This relationship is captured via the common interface

realization.

Figure 6-3. A design pattern

<<interface>>
Subject

£ : : n
b
b
£ L

Proxy RealSubject

For instance, a Proxy may be useful in situations where access to the actual resource cannot

be allowed due to security reasons.

We identify and refer to some existing and emerging patterns relevant to J2EE development

in the J2EE technology chapters.

Patterns are represented in the UML using a collaboration. A collaboration is a description of
a general arrangement of objects and links that interact within a context to implement a
behavior. It has a static and a dynamic part. The static part describes the roles that objects
and links may play in an instance of the collaboration. The dynamic part consists of one or

more interactions that show message flows over time in the collaboration.

A parameterized collaboration, that is, a collaboration made of generic model elements, is
used for design patterns that can be applied repeatedly. This is accomplished by binding the
generic model elements in the parameterized collaboration to specific model elements when

the collaboration is instantiated.

Collaboration supports specialization; hence, it is possible to create collaborations that inherit

from other collaborations.

In the UML, the use of a collaboration is represented by a dashed ellipse. Relationships with
classes participating in the collaboration are shown via a dashed line from the collaboration to

the class.

Figure 6-4 shows a UML collaboration representation for the Subject-Observer pattern. The
pattern is properly represented together with the structural specification in the form of a class

diagram, and the behavioral specification is indicated using a sequence diagram or statechart

diagram.

Figure 6-4. A collaboration representing the Subject-Observer pattern

Subject
Orders | -cmeens !

! Subject \
\ Observer /

Chart = |-—--—————-__

The class and sequence diagrams for the Subject-Observer design pattern are shown inFfigure

6-5 and Figure 6-6, respectively.

Figure 6-5. Class diagram for Subject-Observer pattern

Subject +observers s Observer
1.”°
ConcreteSubject |_ +subject | ConcreteObserver

Figure 6-6. Sequence diagram illustrating the Subject-Observer pattern

L

Product : Customerd : Customer2 : Customer3 :
ConcreteSubject ConcreteCbserver| |ConcreteCbserver| |ConcreteCbserver
E ! ! i
1 notify | | !
1]] i
;% 1 1 |
i update o : :
i _.r: : i
o ootsme | ! s
=] i]
[] 1 i]
; iode) |
[i i 1
1 . 1 1
4 get_state ' I
' i i

i 1

update ! 2
H “i

get_state | !
i i

i i

i i

i !

i 1

i i

-

The general idea is that observers register with a subject for notification when there is a
change to the subject, and the observers are notified when there is a change so they can

update their information accordingly. Consider this simple real-life example: You and several

others are interested in updates to a specific product and have indicated this to the

manufacturer by registering for updates. When the product is updated, you and the other

observers are notified of the change to the product. At that time, all observers can

individually query the product to find out the details of the update.

Layering

Large-scale enterprise software can be complex and difficult to develop and manage.

Layering is a pattern for decomposition. Decomposition leads to a log ical partitioning of the
system into subsystems and modules, and layers group and separate those subsystems,
thereby constraining who can use the subsystems, components, and modules. Layers create

separation of concerns within the software by abstracting specific types of functionality into

functional layers and providing conceptual boundaries between sets of services.

The Rational Unified Process (RUP) identifies two common approaches to layering:

Responsibility-driven layering

Reuse-driven layering

In responsibility-driven layering, layers have well-defined responsibilities, meaning they
fulfill a specific role in the overall scheme of things. Such layers are also referred to as tiers.

See the next section for more details on tiers.

In reuse-driven layering, layers are crafted so as to provide the most reuse of elements of the
system. In such a setup, layers typically provide services to other layers. This permits layers
to be understood individually without necessitating understanding or significant prior

knowledge of the layers above or below them, which leads to lower coupling between the

layers.

For example, a software system may have, among other layers, a presentation services layer
to provide capabilities that allow the display of information to the user and a general services

layer to provide services such as logging, error handling, and so on.

A user should be able to use the presentation services capabilities without regard to the

layers below it.

The relationship among layers is strictly hierarchical in nature. That is, a layer may rely on the
layer below it, but not vice versa. From the standpoint of reducing coupling, it is also

desirable to not have any dependencies between layers that are not immediate neighbors.
Indeed, J2EE provides an example of layering itself, where the container is a layer built on top

of the operating system.

Depending on the complexity of the software system, layers can also contain other sublayers.
Layers should generally not bypass layers immediately below them to access other layers,
but this is acceptable if the intermediate layers only act as bystanders, that is, simply pass
along the request to the next layer and so on. For example, for services such as error

reporting, it may make sense to directly access them throughout the application.

Layers are typically structured such that the lowest layer is most tightly coupled to the
hardware and operating system. Middle layers provide the foundation for building a wide
variety of software systems requiring similar capabilities. The top layer contains the software

elements required for meeting slightly varying end user requirements, for example, specific

business services available in the application to specific customers or customization of the

application for European versus Asian customers.

Layers should be an important structural consideration in any enterprise application design.
Generally speaking, smaller software systems will require fewer layers, whereas larger
systems may require more layers. However, even large applications do not generally have

layers in the double digits.

In the UML, layers are represented as a package with the <<layer>=> stereotype. Figure 6-7
shows an example of a UML layered architecture. Seechapter 13 for additional discussion in the

context of the sample application.

Figure 6-7. A layered architecture in UML

[]

<<layer>>
Applications

<<layer>> <<layer>>
Database Services Comms Services

- -
-]

<<layer>>
Common

Tiers

Tiers are primarily concerned with distribution of a software system over mul tiple, separate
processes. Processes may be physically distributed over multiple processors or reside on the

same physical device.

Tiers can be mapped to responsibility-driven layers in which case a tier becomes synonymous
with fulfilling a specific role within the system, such as presentation, business logic, data

access, and so on.

Mainstream computing has evolved over time into the multitiered architectures in use today.
In the early days of computing, mainframes and dumb terminals characterized the computing
environment. Two-tiered, LAN-based client-server systems were the norm for a long time.
And although n -tier architectures have been utilized in specific industries for a long time, it is

only recently that n-tier architectures are becoming mainstream in the industry.

Tiered architectures are desirable from the point of view of increasing throughput, availability,
or functionality of the system by increasing the overall, physical processing power. Tiered
architectures can also play a role in separating out different areas of application concerns to

improve overall maintainability.

Such distribution introduces

Communication efficiency and reliability issues between tiers

The need for identification and location of components in a distributed environment
Security issues due to a potentially diverse and geographically distributed system
Synchronization issues between tiers

Failure recovery issues

The need for additional interfaces to accommodate the tier architecture

Additional resource needs due to the distributed nature of the software

As discussed earlier, one way to achieve distribution in an n-tier architecture is to align

specific layers with each tier. J2EE follows this approach.

In the J2EE tiered architecture:

Client tier is primarily concerned with user interaction.

Presentation tier deals with presenting the results of business queries.
Business tier contains the key business rules.

Data tier provides the interface to the persistent data store.

The J2EE approach is shown graphically in Figure 6-8.

Figure 6-8. J2EE tiers

[]] 1] 1
cctigr>>) wetigrs> o) cctigra= N wotiers»
Client Presentation Business Data

Approaches to Software Architecture

Numerous approaches to software architecture have been proposed and utilized over time. In
this section, we highlight some published approaches to software architecture to provide you

with a broader perspective.

Each of these approaches has its strong points and weaknesses as well as its advocates and

critics.

The J2EE View of Architecture

Tiers + components + services are key to understanding the J2EE architectural philosophy.

Given that the J2EE is predominantly focused on providing a viable proposition for building
large-scale enterprise applications that are scalable, it should come as no surprise that it
advocates partitioning the application into multiple tiers. The J2EE platform provides

mechanisms to decompose the system into relatively coarse-grained components. J2EE also
advocates a services-based architecture that is characterized by a collection of cooperating

and communicating services. The services rely on well-defined APIs for interoperability.

The J2EE official guidelines shy away from a strict recommendation of adherence to a

layer-like hierarchical view of the tiers, opting instead for a more accommodating stance. The
suggestion is to use the tiers and associated technologies if it makes sense for the specific
situation. For example, it is perfectly appropriate to access the data tier directly from the

presentation tier.

J2EE recommends using the Model-View-Controller (MVC)El architectural paradigm for
developing enterprise applications. As discussed briefly inchapter2, the basic idea behind the
MVC is to minimize the coupling among objects in a system by aligning them with a specific
set of responsibilities in the area of the persistent data and associated rules (Model),

presentation (View), and the application logic (Controller).

31 For more details and the J2EE perspective on the MVC paradigm, see

java.sun.com/j2ee/blueprints/design_patterns/model_view controller/index.html.

Additional sources are listed in the References section at the end of this book.

The 4+1 View Model of Architecture

The primary motivation behind using different views for architecture is to reduce the overall

complexity.

A view is essentially a look at the model from a specific vantage point or perspective, such

that only the details that are relevant and important are included and all else is ignored.

Originally proposed as the 4+1 View Model of Architecture [kruchten1995], it is now part of the

RUP. It has been widely used as the basis for architectural analysis and design of systems.

The basic premise behind the 4+1 View of Model Architecture is that a software system can

be modeled well with the following interlocking views:

The Logical View models design packages, subsystems, and classes.

The Implementation View describes the physical organization of the software, for
example, executables, libraries, source code, and so on.

The Process View is concerned with the concurrency aspects of the software. For
example, processes, tasks, and threads that are part of the software system.
The Deployment View focuses on the mapping of the executables onto physical nodes
and computing hardware.

The Use Case View is a special view in that it ties all other views together.

This list does not imply that there can be no other views. For instance, it would be reasonable

and desirable to have a security or a transaction view for J2EE-based software.

Hofmeister et al.: Four Views of Architecture

Hofmeister, Nord, and Soni present a slightly different view for achieving software
architecture [Hofmeister 2000] based on four views, some of which partially overlap the 4+1

Views discussed earlier:

The Conceptual View is primarily concerned with conceptually sound decomposition
of the system into very coarse-grained components called capsules.?l These
capsules interact with each other via conceptual connectors. Capsules and

connectors form the basis for the eventual software system.

[l The concept of capsules is based on the concept of active objects called actors
(which are to be distinguished from use case actors), proposed for real-time software

systems [Selic 1994].

The Module View deals with the realization of capsules and connectors. The
coarse-grained components are mapped to actual subsystems and modules in the
context of the specific technology to be employed for the project.

The Execution View deals with the flow of control within the runtime system. This
includes issues such as concurrency, distribution, and performance.

The Code View embodies how the components are mapped to source files and

executables as well as concerns such as build times and development tools.

Putting It All Together

Which comes first—software architecture or analysis? The answer, of course, partly depends

on to whom you talk.

Architecture provides the blueprint for the software, but without proper analysis, the

requisite understanding of the system—required for the blueprint—cannot be developed.
Thus, it is very much an iterative process in that requirements form a key input into the
software architecture, but there may be a need to adjust or clarify the requirements as the

architect works through them to arrive at the architecture.

Defining a software architecture is very much an evolutionary process. Although an architect
may want to start with some basic notions about what may be appropriate or inappropriate

based on past experience, he cannot simply take the requirements and expect to arrive at the

final architecture overnight. The architecture gradually takes shape as deliberate, informed

decisions are made with specific requirements and trade-offs in mind.

It should be emphasized that the concepts discussed in this chapter are primarily tools at the
disposal of an architect. Like all tools, they are useful only when used in the proper context
rather than for the sake of using the concepts. For example, if no particular pattern exists to
address the problem faced, it wouldn't make sense to alter the design so you could apply

some patterns.

We further discuss aspects of architecture in their proper conte xt, that is, alongside analysis

and design as we face specific problems and address particular concerns.

Summary

Software architecture is an all-important but often neglected, or at least mis understood,

aspect of enterprise software development.

Software architecture is multifaceted and covers more than software structure. No single

diagram can be used to describe software architecture.

Some key concepts in the area of software architecture are decomposition, layering, tiers,
patterns, frameworks, and component-based software. These are essentially tools at the

disposal of an architect rather than "must apply" concepts for all software projects.

Discovery of the software architecture is an evolutionary process and must be done in the
context of therequirements and in conjunction with the analysis. This approach is followed in

this book.

Chapter 7. Analyzing Customer Needs

Why Software Analysis and Design?

Problem Analysis

Use Case Modeling

Identifying the Actors

Einding the Use Cases

Use Case Diagrams

Use Case Relationships

Sequence Diagrams

Activity Diagrams

Summary

Process Check: We spend a majority of this chapter in the
'&i‘

Rational Unified Process (RUP) requirements discipline.

In this chapter, we look into the need for software analysis and design and how to go about

it.

To keep the examples relevant, we have chosen to use portions of the case study

documented in chapter 16. The case study describes the development of an online banking

system. To get the most out of the examples, you should review the "HomeDirect Requirements"

section in Chapter 16.

Why Software Analysis and Design?

Let's start by trying to answer a basic question: Why even talk about analysis and design?
After all, analysis seems to have fallen off the favorites list of some developersl and has

even been labeled as leading to nothing more than "analysis paralysis."
11 Extreme Programming (XP), for example, does not give much credence to analysis.

There is always the possibility that some teams may get bogged down in the analysis phase.
However, skipping analysis and design altogether and jumping straight into implementation

hardly appears to be the best alternative.

Suppose you want to go from Point A to Point B. If A and B are fairly close, and you are
generally familiar with the area, it should be relatively straightforward to undertake the

journey without bothering to look at a map and doing some advance planning.

On the other hand, if A and B happen to be a great distance apart, and you are dealing with
uncharted territory, your chances of success are greatly improved if you do some prior

planning.

Software development is no different. For small software projects using familiar technology in
a comfortable domain, perhaps you can get by without analysis and design. But it is essential
in large, unfamiliar territory type projects if you are to avoid the pitfalls and disasters to which

a vast majority of projects fall victim.2

[21 According to the Standish Group's Chaos Report, 1998; only "26 percent of software proj

ects succeed."

Problem Analysis

Requirements come in all shapes and forms and from a variety of sources. For example, they
may be presented in the form of written documents by an end user, via meetings with

visionaries in the company, or via direct customer interaction and face-to-face visits.

Projects often fail because the requirements were not accurately understood. This is not too
surprising in light of the fact that language, whether written or oral, is imprecise by nature
and open to multiple interpretations. So, the first thing to do is to make sure the basic
requirements are understood; that is, go beyond what is obvious and stated in the
requirements document. It is only through such an approach that you can really identify the

essential usage patterns for the software system you will be developing.

This is where use cases come in. You can apply use case modeling to develop a precise model
of what is required of the system, and then utilize the use cases as the basis for driving other
aspects of your enterprise system development. In effect, a use case acts as the string that
binds the beads of a necklace together. Use cases bridge the gap between the end user and
the requirements of the system. They can be used to establish tractability between functional

requirements and the system implementation itself.

The analysis is best done in a group setting. It helps to have different people looking at the
same requirements from their individual points of view. It is usually also helpful to have a
domain expert take part in the discussions. Participation of the customer, or author of the
requirements, is also beneficial so that you can gain firsthand knowledge of the intent. All this
deliberation may save you a lot of rework later. Some techniques that can be used at this
stage to get to the bottom of a problem include brainstorming sessions and fishbone

diagrams.

When going through this stage, it is helpful to try to reduce duplicate requirements and distill
the overall set of requirements into a smaller number. Avoid the temptation to do the design
at the same time as gathering requirements. Requirement-creep (similar to feature-creep
where features continue to grow way beyond the original intent) should also be avoided by

exerting a vigorous attempt at traceability to the customer needs.

For a more thorough discussion of this topic, see Object-Oriented Analysis and Design with
Applications, by Grady Booch, Addison-Wesley, 1994, and Use Cases-Requirements in

Context, by Daryl Kulak et al., Addison-Wesley, 2000.

Use Case Modeling

Ivar Jacobson et al.L2l popularized the application of use cases for understanding the
functional system requirements in the early 1990s. Later, use case notation was incorporated
into the Unified Modeling Language (UML). It is seemingly simple in concept but highly useful,

especially in understanding the functional requirements for large and complex systems.

31 Jacobson, lvar, et al. Object-Oriented Software Engineering. Addison-Wesley, 1992.

In the context of this book, use cases are very important as the RUP is very much a use
case-driven development process. Not only are use cases used to capture the requirements,

but they also provide the foundation for activities from analysis through testing.

There are two fundamental concepts in use case modeling:

Actor: An actor represents something (or someone) outside the system, typically a
user of the system. Actors interact with the system, which results in some action by

the system. Each distinct role is represented by an actor.

Use case: A use case encapsulates a sequence of steps performed by the system on
behalf of an actor. Use cases provide something of value to the actor. A use case
consists of a primary sequence of events and may have one or more alternate

sequences of events.

Requirements come in two primary flavors: functional and nonfunctional. Functional
requirements, which are focused on what the system must be able to do, lend themselves
easily to use case modeling. Nonfunctional requirements are focused on things such as

usability and performance, and are harder to model using use cases.

Let's put use case modeling into practice by applying these concepts to the HomeDirect

system case study—requirements of which are detailed in chapter 16.

To get the most out of the remaining discussion, you should review the " HomeDirect Requirements"

section in chapter 16 before continuing on.

We will focus on the functional requirements to derive the use cases.

Identifying the Actors

Actors are usually easier to identify than use cases. The difficulty in identifying actors is
twofold. First, it is easy to fall into the trap of creating multiple actors for the same role.
Second, actors can be implicit in the requirements; that is, they may not be identified as

users of the system; and therefore, you must look beyond the obvious to find them.

As you read the description or gather requirements for a project, ask yourself a few important
questions: Who will use this functionality? Who is supplying or obtaining information? Who
can change the information? Are there any other systems that interact with the system being

developed?

As we examine the HomeDirect related information, the following terms qualify as roles:
customer, user, administrator, account holder, bank employee, vendor, HomeDirect service,

the system, Mail system, LoansDirect system, BillsDirect Service, and ACMEBank.

Based on the requirements and coupled with our common understanding of how online
banking systems typically work, it is easy to establish that customer, user, and account

holder almost definitely all refer to the same role. So, we can eliminate the redundant user

and account holder. Vendor sounds like a customer, but is really more than a customer
because, unlike a customer, it can also receive payments. Similarly, bank employee and
administrator, although different roles within the bank (i.e., a bank employee may not

necessarily be a HomeDirect administrator) almost certainly refer to the administrator role.

Recall that actorsare outside the system. Suffice it to say that after similar reasoning with the
remaining items on the list, we are left with a much shorter candidate actor list for the

HomeDirect system:

Customer
Administrator
Vendor

Mail system
LoansDirect system

BillsDirect system

Finding the Use Cases

Use cases are always expressed from the perspective of the actor (that is, the user of the
system). The idea is to capture a sequence of events performed by the system at the request

of the actor, such that they yield some observable, valuable result to the actor.

Take a look at the "HomebDirect Requirements" section inchapter 16, which deals with the transfer of

funds. The following sequence of steps describes the transfer of funds:

1. The customer requests a funds transfer.

2. The system asks the user to identify the accounts between which funds are to be
transferred and the transfer amount.

3. The customer selects the account to transfer funds from, the account to transfer
funds to, and then indicates the amount of funds to transfer.

4. The system checks the account from which funds are to be transferred and confirms
that sufficient funds are available.

5. The amount is debited to the account from which funds are to be transferred and

credited to the account previously selected by the customer.

This is essentially the main sequence of events for a use case, which wewill call "Transfer
funds.” An alternate sequence of steps in this case may detail the steps performed when

insufficient funds are available.

An easy way to start discovering the use cases is to take each actor you have identified and
try to identify the b ehavior or information the actor under consideration requires from the
system. The challenge in discovering use cases is to avoid going to too fine a granularity,

leading to a proliferation of use cases.

Applying this method to the HomeDirect case study and using the customer actor as the
starting point yields the following raw list of candidate use cases: login, logout, change
password, view account balances, list transactions, download transactions, transfer funds,
add vendor, delete vendor, pay bills, check security account balances, browse securities, buy

security, and sell security.

Recall that each use case must produce an observable result and provide something of value
to the actor (i.e., the customer actor). The login and logout candidate use caseswe have
identified do produce observable results (i.e., successful login/logout), but there really is not
much value in them for the customer. A HomeDirect customer would never just login or just
logout. Most likely, a customer would login and logout in the context of performing some
action, like paying bills or checking account balances. So login and logout are not good

candidates for use cases.

In fact, login and logout form part of all use cases associated with the customer role. For
instance, in the transfer funds use case detailed earlier, you would first login, transfer funds,

and then having completed the transfer, logout.

The view account balances and browse security account summary look very similar in that
both really just show you what is available in specific types of accounts. Perhaps it would be
better to abstract them out as a browse account balances scenario, which applies to all types

of accounts equally well.

Actors as well as use cases can utilize the inheritance relationship. So, another p ossibility
would be to create a browse account balances use case, and then have two specializations,
one focused on the investment accounts and the other on the remaining types of accounts. To

keep it simple for now, we will just utilize a single use case, "Browse account balances."

Another set of use cases where some relationship likely exists is in the list transactions and
download transactions. The only real difference between the two is that in the first, the listis

displayed on screen, whereas the second "displays" the list in a file.

Itis debatable whether add and delete vendor should be two separate use cases or lumped
into a single use case called modify vendor list. You can even argue that they are really part
of the pay bills use case. After all, would a customer really ever login to the HomeDirect

system to just add a vendor? This may be a case where further clarification is needed. Some
real-life online banking systems actually require the customer to add a vendor to the list at
least several business days prior to making a first online payment. If such is the case, it is
reasonable to expect a customer to login, add one or more vendors, and then logout without
necessarily making a bill payment. For simplicity, we will use this as the clarification obtained

from ACMEBank and model the use cases as a single "Modify vendor list"use case.

The refined list of candidate use cases follows:

Change password
Browse account balances
List transactions
Download transactions
Transfer funds

Edit profile

Pay bhill

Buy security

Sell security

The complete set of use cases for the HomeDirect system is documented in Chapter 16.

Use Case Diagrams

In the UML, actors are represented by a stick figure, and use cases are shown as ellipses. A
use case diagram simply shows the structural relationships between the actors and the use
cases, not the dynamic relationships. The relationship between actors and use cases is shown
via a directional association indicating the source of invocation. Figure 7-1 shows the Browse
account and Transfer funds use cases for the HomeDirect system. Both are invoked by the

customer.

Figure 7-1. A simple use case diagram

E ? Ae account balances
Customer \O

Transfer funds

Use Case Relationships

You may recall that we decided that login and logout do not meet the litmus test of being use
cases because they do not provide something of value to the customer. They are really part
of the various HomeDirect use cases, such as Browse account balances and Transfer funds.

So, we somehow have to reuse the sequence of events required for login and logout.

The UML notation provides "include" and "extend" relationships, which can be used to model

such reuse within use cases.
Include

An include relationship allows you to capture a common piece of functionality in a separate
use case, and then "include" the use case in another use case via the include relationship. The
include relationship is shown as a dependency relationship stereotyped as <<include>>. See

Eigure 7-2.

Figure 7-2. An example of an include relationship

~._<<include>>

l-‘--‘
.

Browse account balances RS

Login
Extend

An extend relationship allows you to model optional behavior for a use case. That is, you can
capture some behavior in a separate use case and, within another use case, indicate the
exact points (called extension points) where the separate use case may optionally be invoked

as part of the use case. An extend relationship is modeled as a dependency and stereotyped

as <<extend>>. See Figure 7-3.

Figure 7-3. An example of an extend relationship

.-~ Update profile
<<extend>>
Display profile

Figure7 -4 shows another, more detaileduse case diagram for the Browse account balances and

List transactions use cases for the HomeDirect system.

Figure 7-4. Use case relationships for HomeDirect

C_D

Browse account balances

II"--.

%
b . g<include>>
<<includes>" ' o

7 Logout
Customer 4 Login
<<include>> /
,r _-"=<include>>

LIEt transactions
Display transactions Download transactions

Chapter 16 provides a complete use case model for the HomeDirect case study.

Typical problems encountered by those new to use cases revolve around the following:

Creating use cases that are too coarse-grained. For instance, "Process order” may be
too coarse if it represents "Create new order," "Submit order," and "Change o rder"
from the user's perspective.

Creating use cases that are too fine-grained. Continuing with the preceding order
example, "Change zip code for order," might be an example of a fine-grained use
case.

Writing the use cases from a system perspective. For example, "Obtain catalog from
database" versus "Browse catalog."

Getting bogged down in extend versus include relationships. An extend relationship

can easily be expressed as an include relationship, so choose one, and move on.

Getting carried away with use case and actor generalizations. Neither is essential, at
least not initially. Keep in mind that you can always add an actor or use case

generalization later in a subsequent iteration once you understand the details better.

Sequence Diagrams

A use case is still very much a textual description and is subject to interpre tation. A sequence
diagram is used to express the use case in more precise, technical terminology. This is

achieved by depicting the use case in terms of interaction between the actor and the system.

A sequence diagram is a type of interaction diagram in the UML. The other kind of interaction
diagram is called a collaboration diagram. Sequence diagrams capture a specific scenario,
with a use case typically consisting of one or more scenarios (for example, main workflow and
alternate workflows). The emphasis in a sequence diagram is on the time ordering of the

interaction. Thus, the vertical axis represents the time dimension in a sequence diagram.

A sequence diagram utilizes the description of a use case. Figure7 -5 shows a sequence diagram
for the Transfer funds use case discussed earlier. To create a sequence diagram, each step
from the textual description for the use case is placed on the left side. Two vertical lines are
used to show the lifeline of the actor and the system. The actor is represented by the actor

stick figure symbol, and the system is simply shown as a rectangle.

Figure 7-5. Transfer funds sequence diagram

% System

: Customer

1. The customer requeasts a funds

transfar. request funds transfer

2. The system asks the user to
identify the accounts batweean
which funds are to be transferred
and the transfer amount,

which accourts, amount?

e EE

select accounts
3. Customer selects the account 1o F_{..:l

transfer funds from, the account to
transfer to, and then indicates the
amount of funds to transfer.

TR T NG, | PERE YR

transfer funds 35

confirm funds availability

debit and credit respective account

o

4, The system checks the account
from which funds are to be
transferred and confirms that
sufficient funds are available.

5. The amount is debited to the
account from which funds are to be
fransferred and cradited to the
account previously selected by the
customer.

The interactions between the actor and the system are shown as arrows, with the direction of
the arrow indicating the direction of interaction. Specifi cally, a request from the actor to the
system is shown as an arrow from the lifeline of the actor to the lifeline of the system, with
the arrow pointing to the system lifeline. A response from the system to the actor is shown

with an arrow drawn from the system lifeline to the actor lifeline and points to the actor.

The first arrow labeled "select accounts" routes back to the customer lifeline, indicating that
the customer performs account selection at the start of the scenario. This is followed by a

funds transfer request from the customer to the system, and so on.

Sequence diagrams simply show the dynamic interaction among participants in the scenario
and do not show the s tructural relationship between them. If a use case has several flows,

several sequence diagrams may be required to capture all aspects of the use case.

The question often comes up as to how complete the sequence diagrams should be. In this
early phase of requirements' capture and analysis, the sequence diagrams, by necessity, are
relatively simple and may be incomplete. This changes as you progress through use case
analysis and refine these sequence diagrams with further details. It is useful to have the main

flow of each use case captured as a sequence diagram; however, capturing each and every

alternate flow, especially when there may be a large number of them, is not necessary. The
main idea is to capture enough of them to have confidence that you have sufficient

information for the next phase of the project.

Activity Diagrams

An alternate, and some would argue a more powerful, tool in the UML arsenal for such use
case analysis is the UML activity diagram. For instance, activity diagrams can more easily
show multiple paths taken as a result of actor decision and system exceptions. This is difficult
to show in a sequence diagram as sequence diagrams are intended to show interaction

among objects in the context of a single scenario.

An activity diagram is similar in concept to a flowchart and is useful for modeling workflow as

well as illustrating dynamic behavior of a use case and the detailed design of an operation.

An activity diagram shows the flow of control for the use case from one activity to the next.
An activity represents some action that takes place during the execution of the use case. This
typically maps to some work that has to be done as part of the workflow or execution of an

operation in the context of a class.

Activities are represented by a round-ended rectangle. An activity may be decomposed

further into other activities, represented on another activity diagram.

Once an activity has completed, execution moves to the next state as determined by the
available transitions on the activity. Activity diagrams also support decision points. In
addition, it is possible to show parallel work required as part of an activity diagram by using

the concept of synchronization bars.

A simple activity diagram representing the act of placing a phone call is shown inFigure 7-6.

Figure 7-6. A simple activity diagram

I

Lift handset

%dl<one

Dlal numbers

J\Ermglng

Walt for answer

%answered

Talk

no
answer

no
ring

no
dialtone

Swim lanes can be used to show multiple objects on an activity diagram and how they work

together to fulfill the overall use case.

Figure 7-7 shows an activity diagram for the Transfer funds scenario. The vertical lines indicate
the boundary for the actors within the system. This is an initial activity diagram and does not

show all the details, such as conditional activity, and so on.

Figure 7-7. Activity diagram for the transfer funds scenario

Customer System

Request transfer

Initiate transfer
request

Select accounts

Specify amount

Verify fund
availability
NG

Debit from
account

W

Credit to
account

Summary

Properly capturing requirements is essential to a system's success and its long-term viability.
In the UML, use case modeling offers a simple yet powerful means of capturing your

requirements.

In the use case model, actors are the primary instigators of use cases and represent entities
outside the system. Use cases can be thought of as a sequence of steps required to achieve
something useful to an actor. That is, a use case must yield something useful to the end user
of the use case. Sequence diagrams and activity diagrams are useful for precisely identifying

and understanding the behavior of a use case.

Chapter 8. Creating the Design

Use Case Analysis

Use Case Realizations

Refined Use Case Description

Sequence Diagrams

Collaboration Diagrams

Class Diagrams

Coalescing the Analysis Classes

Packaging

Summary

@ Process Check: In this chapter, we focus on analysis as we
...* progress through the Rational Unified Process (RUP) analysis and

design discipline.

Once you have captured the use cases, you should then analyze them further and begin the

process of transforming requirements into system design. This involves developing a better

understanding of the details of a use case via a refinement of the use case.

In this chapter, we discuss how to go from use cases to the initial design of the system.

Use Case Analysis

The initial exploration of the internal workings of the system is calledUse Case Analysis. Use
Case Analysis provides an initial, high-level definition of how internal elements interact in
order to satisfy the system's functional requirements, and how they relate to each other
statically. This activity can involve much trial and error before satisfactory solutions are

created. For this reason, time should not be spent creating refined descriptions of internal
elements. "Analysis classes," for which behaviors are often described abstractly using natural
language, suffice. Analysisclasses are not implemented in software. Rather, analysis classes
are refined later in the overall design process into precisely defined design classes and

subsystems.

Use Case Realizations

Thus far, our focus has been on capturing the requirements and making sure we understand
what we need to build. Everything we have done is generic in that no consideration has been

given to how we will actually design or implement our solution.

The same set of functional requirements can lead to vastly different systems that are
functionally equivalent but are totally different in the way they solve specific problems. For
example, the online banking system could be offered to the customer base as two different
products: an application that actually dials into the banking system or a Web-based
application that uses the Internet (perhaps the bank wants to market the direct dial version
as a more upscale and secure version). The functional requirements are the same, but the

implementations are vastly different for the two solutions.

Use case realizations can be used to carry forth the design of multiple implementations for
the same set of requirements. They allow the same use case to be implemented in different
ways while maintaining a link with the original requirements. Use case realizations therefore
offer a concrete link through which you can trace back to the original requirement for all the

different models that might exist for a given set of requirements.

We represent use case realizations graphically using a dotted-line ellipse. A Unified Modeling
Language (UML) "realize" relationship is drawn between the realization and its use case. Figure

8-1 shows a use case realization for a Transfer funds use case.

Figure 8-1. Use case realization for Transfer funds

Fi ” = N\
................. i{
)
\
Y = - _ - f
Transfer funds Transfer Funds Realization

(from Use Case View)

Each use case realization can have object interaction diagrams and class diagrams associated
with it. Each object interaction diagram we develop during Use Case Analysis shows the
interactions between actors and instances of analysis classes that are needed to support one
flow of events through a use case. Theclass diagrams illustrate the static structural relations

between these internal system elements.

Refined Use Case Description

The Use Case Analysis process is often jump-started by taking the customer-consumable
"black box" use case textual descriptions and adding "gray box" details that reveal some of
the system's internal processing activities. The black box use case description might be

sufficient from a customer perspective, but it certainly is not a sufficient level of detail to allow

developers to implement the system.

As an example, consider the Transfer funds use case that was outlined in the previous chapter.
Although the use case is accurate in that it covers the inter action that takes place, some
details are missing. For example, how does the customer choose the account? Does the
system provide a list of accounts? When the customer indicates the amount of funds, does it
have to be a whole number or can it be in decimal format? How does the system verify that
the account from which funds are to be transferred has sufficient funds? These kinds of

questions facilitate refinement of the use cases during the Use Case Analysis phase.

The following sequence of events provides a more elaborate version of this use case:

1. The customer selects the transfer operation.

2. The account information is sent over the Internet to the system.

3. The system retrieves the customer's profile.

4. The system builds a list of accounts from the customer's profile and provides specific
details about each account, such as the current balance, overdraft limit, and any fees
that might apply to the transfer funds action. This information is displayed to the
customer.

5. The customer selects the accounts to transfer funds between and the amount to
transfer. Transfer amounts are allowed in any amount specified in dollars and cents.

6. The system verifies that the amount entered for the transfer is numerical and is a
valid amount.

7. The system prompts the customer for confirmation prior to proceeding with the
transaction.

8. Upon confirmation, the system begins the transfer funds transaction.

9. The system retrieves the current balance for the account from which funds are to be
transferred.

10. The system subtracts the total amount of transfer from the account balance, along

with any applicable fees, to confirm that sufficient funds are available.

11. The amount is debited to the account from which funds are to be transferred and
credited to the account to which funds are being transferred.

12. The system logs the transfer in the daily transactions register and obtains areference
identification number.

13. The system provides the reference number to the customer, confirming that the

transfer has taken place.

A more detailed sequence diagram for the updated use case is shown in Figure 8-2.

Figure 8-2. Sequence diagram for the revised transfer funds use case

% System

: Customer

1. The custormer salects the transfer aperation. request funds transfer

. S

| retrieve
! customer profile
]

2. The account information is sent over the
Internat to the systerm.

3. The system retrieves the customer's profile.

4, The system bailds a kst of accounts from the
customer's profile and specific datails about
each account such as the current balance,
overdraft limit, and any fees that might apply
to tha transter lunds action. This information
is displayed to the customer.

5. The customer salacts the accounts to transfer
funds between, and the ameunt to transfer, ! selact accounts, amount
Transfer amounts are allowed in any amaount -E |
specified In dollars and cents. 1

[l
1 build accounts
! information

st of accounts and information

6. The systems verifies that the ameount : transfer .
aentered for the transfer is numenical and =)
i5 a valid amount. ! verify data

7. The systam prompts the customear for
confirrmation prior 1o proceeding with the
ranSacHon.

8. Upon confirmation, the system begins the
transder funds transaction,

9. The system retrieves the current balance for
the account from which lunds are to be

confirm transfar

M

confirmed

N

| debit transfer funds

transerred. 1 from account
10. The system subtracts the total amount of E
transfer from the account balance along with !
any applicable fees, to confirm that sulficient 1 .
funds are available, 1 credit funds to
1 account

11. Tha amoumt is debited 1o the account from
which funds are to be transferred and is
cradited to the accouwnt 1o which funds are 1o
be transbarred.

12. The system logs the transfer 1o the daily
transactons register and obtains a reference
identification number.

13. The system provides the reference number to
the customer confirmang that the ransier has
taken place.

i

log transfar

e aatat T

1
[}
i
reference number !
L]
n
L]

Sequence Diagrams

Once gray-box details have been added to the textual use case description, more elaborate
sequence diagrams can be created to reveal the internal work ings of the system. Instead of
showing the interaction between actors and a monolithic system, the system is split into
analysis level objects. The responsibilities of the system are divided among the analysis level

objects to achieve a finer grained sequence diagram.

There are three kinds of analysis objects, and each plays a specific role in the refined model

of the system.

Boundary Objects

As the name suggests, boundary objects exist at the periphery of the system. They are on the

front line, interacting with the outside world.

In the refined model, boundary objects represent all interactions between the system's inner
workings and its surroundings. These include interaction with a user via a graphical user
interface, interactions with other actors (such as those representing other systems),

communications with devices, and so on. An example of a boundary object in the online

banking example would be the user interface for the logon scenario.

One of the advantages of using boundary objects is that they serve to isolate and shield the

rest of the system from external concerns.

Boundary objects are identified via the <<boundary>=> stereotype. Alternately, a circle with
a perpendicular T can be used as the icon representation of a boundary object. Boundary
objects are transitional in nature and usually, though not always, only last for the lifetime of
a use case. Generally speaking, each actor-use case interaction pair maps to a boundary

object. This is shown in Figure 8-3.

Figure 8-3. Each use case-actor relationship is a potential boundary object

User \ Order Employee

Each of these
relationships map a
boundary object.

Entity Objects

Entity objects represent information of significance to the system. They are usually persistent
and exist for an extended duration. Their primary purpose is to represent and manage

information within the system.

Key concepts within a system manifest themselves as entity objects in the model. For
example, in the online banking case study, information about the customer, the accounts,

and so on would be suitable for modeling as entity objects.

Entity objects are stereotyped as <<entity>> or shown as a circle with a tangential line at the
bottom of the circle. Entity objects usually span multiple use cases and might even exist
beyond the existence of the system itself. Information needs vary radically between systems,

and so do the number of entity objects in a use case or a system.

See Figure 8-4 for an example of a use case to entity mapping.

Figure 8-4. Entity objects and use cases

b

Customer Browse account balances

Information about the
customer, account,
and so on are all
candidates for entity
objects and may span
multiple use cases.

Control Objects

Control objects are used to model behavior within the system. Control objects do not
necessarily implement the behavior, but may instead work with other objects to achieve the

behavior of the use case.

The idea is to separate the behavior from the underlying information associated with the

model, making it easier to deal independently with changes in either later on.

Control objects are usually transient in nature and cease to exist once the use case has been
completed. They are identified via the <<control>> stereotype or as a circle with an arrow

icon.

An example of a control object within the system may be an object that coordinates secure
access to the online banking system. There may be one or more control objects per use case.

The mapping is shown in Figure 8-5.

Figure 8-5. Control object and use case

Q
75

Customer Browse account balances

N

Each use case may
have one or more
control objects.

Figure 8-6 shows a composite view of the Transfer funds use case and the analysis objects
identified for the use case thus far. Note the iconic representation of the boundary, control,

and entity objects.

Figure 8-6. Transfer funds use case and associated analysis objects

Q@
7

Customer Transfer tunds

O O O O O

TransferPage TransferFunds Account Profile TransactionsRegister

An updated version of the sequence diagram for the Transfer funds use case, this time with

the system decomposed into analysis objects, is shown in Figure 8-7.

Figure 8-7. Refined sequence diagram for the transfer funds scenario

x O O Q QO Q O

I
credit ransfer amont

necord tra'nsacﬁon

confirmaticn number

Customer TransferPage TransferFunds account T accoun! TransactionsRegister
I [} | I 1 I (]
| transfer requﬂ . i i E i i
! itransher request | : ; : E

2
: : | rtrieve profie_ ! : ! :
[]
a s A s a -
i] accounts I“s.“] i :
! : — : | :
i i promgt kor aoml.inls, armount E E i E
1 I I (] I]
! salect accoums, ameunt : ! 1 ! !
1]] i |]
! | tansler | .' : : :
1 I 1 I i
i i verity entries | i i i
i i] I (] I []
| ! | : | j
i i E get balance ! o i I
i i i i o] | I
| ' verify funds available ! . i '
1 (] | i I []
: : — | | : |
! 1 confinm transher ' ! : i
| confitm 1 i i i
% i i i i
| confirmed 1 i | i
—_— 1 1 | i
debit transter amount _JI I i
+ = 1 1
- | :
=l i
Fall []
I []
I ~
| “1
1 |]
i []
) []
I (]
; H

There are a few things to note in the refined sequence diagram shown inFfigure 8-7. If you
compare it to Figure 8-2 at the beginning of the chapter, the overall scope or detail of the
sequence diagram has not changed. Instead, different pieces of the system are now

collectively responsible for the same set of responsibilities. For instance, the interaction with
the customer is the responsibility of the TransferPageXl boundary object. The boundary
object in turn interacts with a controller that coordinates the activities within the use case.
Several entity objects are involved in fulfilling the use case. It should be noted that a separate
sequence diagram, perhaps involving interactions between a different set of objects, should
be created for each significant complete path (flow of events) that can be taken through the
use case. These paths, or scenarios, might be generated as the actors deviate from the most

expected behavior or if exceptional conditions occur within the system. The collection of

these sequence diagrams can be part of the same use case realization. They collectively show

the possible internal interactions that can occur as the use case is performed.

[T The term "page" is used generically in this context. This may manifest itself as an HTML

page, a client dialog, and so on at a later time.

Collaboration Diagrams

Collaboration diagrams are the other type of object interaction diagram in UML. Unlike
sequence diagrams, which are focused on the time ordering of the interaction, collaboration
diagram emphasis is on showing the relationships and communication links among the
participants. Collaboration diagrams provide a better picture of the overall interactions for a

given class.

Sequence diagrams allow you to convey some information, for example, timing information,
which cannot be conveyed via collaboration diagrams. Collaboration diagrams also tend to
become difficult to comprehend once you exceed a few objects onthe diagram, whereas
sequence diagrams have proven to be capable of handling scenarios involving a large number

of objects.

The preceding caveats aside, for all practical purposes, the distinction is really one of
preference. It is relatively straightforward to derive a sequence diagram from a collaboration

diagram and vice versa.

Figure 8-8 shows a collaboration diagram version of the sequence diagram for the Transfer

funds use case shown in Figure 8-7.

Figure 8-8. Transfer funds collaboration diagram

1: Transfer request
6: Select accounts, amount

12: Confirm
Q —> |
/\ |
: Customer TransferPage
5: Prompt for accounts, amount
11: Confirm transfer
17: Confirmation number
2: Transfer request
4: Build accounts list /Z

: . 7: Transfer
8: Verify entries R — k_/ 13: Confirm
10: Veerify funds available

~

9: Get balance
—>= 14: Debit transfer amount

2 15: Credit transfar

[e amount F account

J

3: Retrieve profile

o 16: Record
transaction

T account

Profile TransactionsRegister

Class Diagrams

Thus far, we have focused on identifying the analysis classes that participate in a use case
and distributing the responsibilities of the use case tothe identified classes. This has been
done in the context of interaction diagrams, which primarily capture the dynamic behavior of

a use case.

Classes often participate in several use cases, and it is equally important to understand their

static relationships to ensure consistency across the system.

We now turn our attention to this aspect by defining the classes and their relationships more
precisely based on the Use Case Analysis work done thus far. We use the Transfer funds use

case as a means to illustrate these static relationships.

The UML class diagram is useful for capturing the static relationships between different
structural elements. A single class diagram, referred to as the View of Participating Classes
(VOPC) diagram, is created for each use case. The purpose of the VOPC diagram is to
illustrate in a single diagram all aspects of the system architecture that are exercised by a

specific use case.

All interaction diagrams created for the use case realization are examined for classes,

operations, relations, and so on to be included on the VOPC.

As a first step, we identify and place all the classes that participate in the use case on a class
diagram. Because we have already distributed the behavior of the use case to the classes, it
is a relatively simple exercise to create analysis operations for the responsibilities assigned to
the class. Each analysis operation maps to one of the system responsibilities borne by the
analysis class. That is, there is a one-to-one mapping between each unique message inan

analysis-level interaction diagram and an analysis operation.

It is important to note that these are analysis operations, meaning that these operations will

most likely need to evolve as we continue with our analysis and design efforts.

Figure 8-9 shows the TransferFunds control class with analysis operations representing the

responsibilities assigned to the class.

Figure 8-9. TransferFunds control class with analysis operations

<<control>>
TransferFunds

+ transfer()

+ startTransfer()

+ buildAccountList()

+ verifyEntities()

+ verifyFundAvailability()

Another aspect of fleshing out each individual class is to identify attributes for the class.
Attributes represent information that may be requested of the class by others or that may be

required by the class itself to fulfill its responsibilities.

Attributes are often identified via requirements through knowledge of the domain and

through an understanding of the information that is required to fulfill the responsibilities.

At this stage in the analysis, it is appropriate to identify attributes as generic types, such as
number, string, and so on. The exact type can be sorted out ata later time as dictated by
implementation parameters. Figure 8-10 shows the attributes for the customer Profile analysis

class.

Figure 8-10. Customer Profile entity class with attributes

<<entity>>
Profile

customerlD

- userName
- fullName

- password
- salutation

Keep in mind that information modeled as attributes should require only relatively simple
behavior, such asget or set operations. If this is not the case or if two or more classes share

the information, it is better to model that information as a separate class.

We complete the class diagram for the use case by identifying the relationships between the
classes. The relationships we are specifically interested in are association and inheritance

(see chapter 3 for a discussion on association and aggregation).

A good starting point for identifying such relationships is the collaboration diagram. If there
are links between classes on a collaboration diagram, a need for communication exists, so a

relationship is warranted.

The direction of communication s hould also be identified. This may be unidirectional such that
an instance of class A can send a message to class B but not vice versa, or bidirectional,
meaning that either can send a message to the other party in the relationship. Each

relationship should also be analyzed for multiplicity. For example, if up to four instances of a

class can participate in an association, that end of the association should be identified with

the multiplicity of 0..4.

Itis always tempting to add additional relationships to the class diagram because you believe
they are required or may be required down the road. Just remember that this analysis is use

case driven and unless it is part of the use case, it would not make sense to add relationships.

Figure 8-11 shows the TransferFunds use case class diagram.

Figure 8-11. TransferFunds use case class diagram

<<entity>>
Account

<<boundary>> <<control>> <<entity>>
TransferPage TransferFunds [~=—- > Profile

<<entity>>
Transactions
Register

Some notes about the class diagram for the TransferFunds scenario: First, note that the
controller does not need to keep references to the customer Profile and the
TransactionsRegister for repeated access. Instead, these are retrieved each time based on
the customer involved and upon completion of the transaction itself. As such, these
relationships are captured as dependencies instead of associations. Second, in a transfer
funds scenario, there are two accounts involved (from, to). This involvement of two accounts
(as opposed to a simple account) is captured via a multiplicity of two for the TransferFund

control class and the Account entity class.

Coalescing the Analysis Classes

Having analyzed all the use cases and having created the class diagrams for each use case,
it is time to merge the various analysis classes to arrive at a unified analysis model. This is an
important activity, as we want to arrive at a minimal set of classes and avoid unnecessary

redundancy in the final analysis model.

The key task at this stage revolves around identifying classes that may be duplicated across
use cases or masquerading in slight variations. For example, control classes that have similar
behavior or represent the same concept across use cases should be merged. Entity classes
that have the same attributes should also be merged, and their behavior combined into a

single class.

Figure 8-12 shows the preliminary analysis model for the HomeDirect case study after an initial
merge of the major use cases. Note the consolidation of the various control classes identified
for several individual use cases into three control classes. The revised control classes were

arrived at by merging control classes for closely related use cases (e.g., login, bills, etc.).

Figure 8-12. Class diagram representing a preliminary version of the merged

analysis model

Login 4 Profile

Il-l #
- #
e
o #
i+
;
i

Logoff LoginControl

Account
TransferFunds

O

BrowseBalances

SessionControl

Transaction

ListTransactions

ChangeProfile

BillControl Bill

PayBills

ModifyVendor Vendor

At this stage, things are still in flux as some details remain to be resolved. It is not uncommon
to go through some reflection and walkthroughs to arrive at an analysis model that everyone

is comfortable with.

For more details of specific scenarios and related issues, see chapter 16.

Packaging

In the relatively simple HomeDirect online banking case study used in this book, we have
identified about a dozen use cases. Each use case has in turn resulted in two, three, or more
analysis classes, which easily adds up to 30+ classes just in the very first iteration. Clearly,

as we delve deeper into the design and implementation, this number will likely increase.

Furthermore, as projects move to design and implementation, the team grows, and it
becomes necessary to make arrangeme nts so that work can be allotted, and everyone can

work simultaneously.

This is where packaging comes in. It allows you to manage complexity by grouping like

classes or related classes into separate packages.

The argument for placing like classes in a package is that of convenience. You can easily
locate all the classes that are similar in concept or purpose. If you were to group all your
control classes in a package, for example, you would be using the first approach-grouping by

likeness or similarity.

Grouping related classes has the advantage of the packages being somewhat more
self-contained. If a team is responsible for delivering a specific set of functionality, they could

develop, test, and deliver the package fairly independently.

In the UML, the folder icon represents a package. A package can contain model elements such

as classes and interfaces. Packages can also be nested.

One of the key challenges in large and complex projects is to understand the dependencies
between the various pieces of software. A dependency exists between packages if class X in
package A depends on a class Y in package B. Thus, a change in class Y can potentially have

a ripple effect on class X and any other classes that depend on it.

The role of packaging becomes more important as the size and complexity of the project

increases because even the smallest ripple can have a dramatic effect when multiplied.

Package dependency is shown on a diagram by drawing a dashed arrow from the package
that has the dependency to the package it has the dependency on. It is a good idea to adopt
a convention of drawing all dependency arrows in the same direction (e.g., top to bottom, left

to right, etc.). This makes it easier to understand the chain of dependencies.

Figure 8-13 shows a simple diagram involving packages. The approach taken is that of grouping

like classes in packages.

Figure 8-13. Package dependency

Userlinterface

Controllers

Data

The package dependency diagrams for the HomeDirect case study are shown inchapter 16.

Summary

Use Case Analysis provides an initial, high-level definition of how internal elements interact in
order to satisfy the system's functional requirements and how they relate to each other

statically. This is a fundamental activity on the way to design and development.

Use Case Analysis is supported via sequence diagrams. Instead of showing the interaction
between actors and a monolithic system, the system is split into analysis level objects. The
responsibilities of the system aredivided among the analysis level objects, which are referred
to as boundary, control, and entity objects, to achieve a finer grained sequence diagram.

Collaboration diagrams are another aid in such analysis.

Once the dynamic behavior has been captured in the form of sequence diagrams and
collaboration diagrams, class diagrams can be developed to capture the static relationships

between the various elements participating in fulfilling the use case.

Packaging provides a convenient mechanism for managing complexity and allotment of team
effort. Another critical aspect where packaging can be leveraged deals with understanding

the impact of changes in the project via dependency analysis.

Chapter 9. Overview of J2EE Technologies

The Big Picture
Servlets

JavaServer Pages (JSP)

Enterprise JavaBeans (EJB)

Session Beans

Entity Beans

Message-Driven Beans

Assembly and Deployment

Case Study

Summary

Up to this point, we have focused on the Unified Modeling Language (UML) and analysis
without giving much thought to the design details of these Java 2 Platform, Enterprise Edition
(J2EE) technology components. Over the next few chapters, we'll switch gears and move the
discussion to a more detailed level to discuss each of the major J2EE component types,

highlighting the different roles the UML plays in dealing with them.

In this short chapter, we outline how the different J2EE technologies fit together, and then
highlight the contents of the remaining chapters. This will allow you to develop a better
understanding of the big picture and give you the opportunity to focus your attention only on
those chapters that best suit your needs. Five different J2EE component types and

technologies will be covered in the remaining chapters.

The Big Picture

Each of the J2EE technologies is intended for a specific purpose and ideally suited for solving

specific types of challenges.

Figure 9-1 provides a 50,000-foot view of how the various technologies fit together.

Figure 9-1. The J2EE big picture

Web Tier Business Tier EIS Tier

Client Tier

Internet

Applet Serviets EJBs Databases
JavaBeans JSPs JavaBeans
HTML JavaBeans

The main point to note is that each technology is designed to be used in a specific tier, and
each tier is designed to be very focused on the role that it plays in the overall J2EE application
development paradigm. This limits the roles individual components can play, even though

surpassing these limits may be feasible from a technology perspective.

Servlets

In chapter 10, we examine these typically compact components. Servlets are most often used
as a conduit for passing data back and forth between a Web client and an enterprise
application running on a server. This is especially true when there are no specific presentation

details required of the information being passed back.

Servlets come in two flavors: GenericServiet and HttpServlet. We discuss both servlet types
to a necessary level of technology detail, and then talk about how to model them and gain the
most from their UML representation, for ex ample, via modeling of servlet-to-servlet

communication, relationships, session management, and so on.

This chapter is equally applicable to both J2EE 1.3 (Servlet specification 2.3) and J2EE 1.2

(Servlet specification 2.2).

JavaServer Pages (JSP)

In chapter 11, we look at the newer J2EE technology of JSP. The key advantage of JSP
technology is that it allows for better separation of presentation content and logic, thereby

simplifying development and maintenance.

Although JSPs get compiled into servlets, they are best suited to a role that is fundamentally
different. We discuss this in the context of UML modeling of JSP to understand how to best

model this hybrid technology and where to best utilize it.

Enterprise JavaBeans (EJB)

Chapters 13, 14, and 15 deal with the different types of EJB components. The chapters discuss
these components for both J2EE 1.3 (EJB specification 2.0) and J2EE 1.2 (EJB specification

1.1).

Session Beans

In chapter 12, we discuss this first type of EJB component. Because this isthe first chapter that
deals with EJBs, we cover several general details that apply to all EJB types; later chapters

simply reference this one where necessary.

Session beans are currently the most often deployed EJB type, and they are often used as the
main controller in an enterprise application, commonly tying servlets or JSPs to entity beans

or other enterprise application components.

We discuss how to model their design with the UML, go into the technology details, and then
discuss further how UML modeling can assist in the area of bean-to-bean relationships,

session management, transactions, and so on.

Entity Beans

In chapter 13, we highlight how entity EJBs help your enterprise application by providing more
than just methods to access your database. UML modeling and more technology details are

covered.

We also touch on why entity beans have a bright future and why EJB developers might be
more compelled to use them nowadays with recent technology enhancements and

improvements.

In addition, we cover EJB relationships in this chapter and discuss how the UML can simplify
the task of dealing with more complex combinations of EJB components. We also talk briefly
about the EJB Query Language, what Persistence Managers do, and how they both relate to

the Abstract Persistent Schema.

Message-Driven Beans

In chapter 14, we discuss these compact EJBs, which were newly introduced in J2EE 1.3.
Intended for use with loosely coupled systems, we discuss the UML and technology details as

well as give some insight on where to gain the most from using message-driven beans.

Assembly and Deployment

In chapter 15, we discuss more of the eXtensible Markup Language (XML) deployment

descriptor aspects as they apply to the various J2EE components.

We also cover how UML component and deployment diagrams can help in the whole

enterprise application assembly and deployment process.

Case Study

In chapter 16, we step through the HomeDirect example in further detail—parts of which we
have been referring to throughout the chapters. Several use cases are elaborated fully and
completed down to the implementation level. Also included is a discussion of some key

decisions taken in the transition from analysis to implementation and trade-offs made in the

process.

Summary

This chapter provided an overview of the J2EE technologies and components that will be

covered in the remaining chapters of the book.

Specifically, we will cover servlets, JSPs, session beans, entity beans, and message-driven

beans as well as assembly and deployment aspects applicable to these technologies.

The final chapter in the book provides a detailed case study that shows how to apply the UML

to the sample project that has been used throughout the book.

Chapter 10. Servlets

Introduction to Servlets

Servlet Life Cycle

Request Handling

Response Generation

HTTP Request Handlers

The RequestDispatcher Interface

Modeling Servlets in UML

Modeling Other Servlet Aspects

Servlet Deployment and Web Archives

Identifying Servlets in Enterprise Applications

Summary

& Process Check: In this chapter, we focus on design as we progress
’." through the Rational Unified Process (RUP) analysis and design
discipline. We also discuss some aspects of implementation in the

context of the servlet technology.

Recall the control object TransferFunds from the discussion in chapter 6. If you look closely at
the final sequence diagram presented in chapter 6, you'll notice two very distinct types of

interactions performed by this class:

Interactions with boundary objects to obtain information and perform some basic
work

Interactions with entity objects

Implementing a control class with a dual set of responsibilities and a large scope would make
the control class less maintainable and less scalable. To make the control class more
maintainable and scalable, it is preferable to partition the control class into two classes, one
focused on the external interaction and the other responsible for carrying out the internal

coordination and logic.

As it turns out, the externally focused part of TransferFunds evolves to a Java serviet. We
introduce the servlet in the next section, and then discuss how you actually determine the

responsibilities of the servlet in the context of the HomeDirect case study.

Introduction to Servlets

Historically speaking, servilets have been around longer and have seen much wider use than
other Java 2 Platform, Enterprise Edition (J2EE) technologies. In the past, they tended to be
large in size and complicated to maintain in comparison to the level of Web functionality they
actually provided. Going forward, servlets will likely continue to see wide use for some time.
However, their typical size is shrinking, and the level of complexity they tend to deal with is

consistently becoming less.

The biggest benefit servlets offer developers is that they are designed specifically to process
Hypertext Transfer Protocol (HTTP) requests coming from the Web client and pass back a
suitable response. They perform this function well and require few resources to deliver this

functionality.

In terms of structure, servlets are specialized Java classes that closely resemble the structure

of Java applets, but they run on a Web server instead of a client.

An interesting point to note is that servlets can never have their own graphical user interface.
Web servers host these components through the use of a Web container that manages all

aspects of their life cycle.

Common Usage

Servlets have the distinction of being the most frequently used J2EE components currently
found on the World Wide Web. As stated earlier, they typically involve a compact, lightweight
architecture and design. They also tend to work well in cases where the requirements placed

on this type of Web component are relatively small.

Most Web developers use servlets as the main point of entry to their server application from
the Web client, and in this way, they are simply used as a conduit to pass information back
and forth between the client and the server. Allowing client control to add or remove Web
pages or files from the server can also be a good use for servlets, as long as the client has

sufficient security clearance. Understandably, this usage is less frequently seen in practice.

Best Served Small

In theory, servlets are capable of doing just about anything possible that can be done with
Java. The question arises as to why Web developers don't just build everything they need
using these components. The problem is that building large servlets to handle complex Web
interactions, transactions, database synchronization, and other internal logic isnot a very
scalable approach. Developers would spend most of their time working out the intricacies of

low-level transactions, state management, connection pooling, and so on.

In the past, servlets were often built to perform most or all of the following tasks:

Check and process user input

Handle significant business logic

Perform database queries, updates, and synchronization
Handle complex Web transactions

Generate dynamic Web page content as output

Handle Web page forwarding

More advanced J2EE solutions make use of JavaServer Pages (JSP), Enterprise JavaBeans
(EJB), and JavaBeans to split up and offload much of this work, often using new mechanisms
built into J2EE to simplify the more difficult tasks for the developer. Servlets are then

responsible for a more manageable set of tasks:

Gathering and validating user input, but little or no actual processing
Coordination of output, but with little or no direct generation of dynamic Web page
content

Minimal business logic

As you can see, servlets are best served small.

If constant demand for new Web site functionality did not exist, huge servlets could be built
with all the accompanying aches and pains, and they might even stand a reasonable chance
of being adequately maintained. However, the fact is that demands on Web sites keep
increasing. Every service provider on the Web must continually update and upgrade to give
their customers that new bit of data, that new cool feature, or that prized extra that

differentiates their service from everyone else’'s service.

Unfortunately, the bigger servlets come at the cost of an increased challenge of providing
adequate code maintenance, not to mention the increased risk of breaking some of the
existing functionality. The blessing of a lightweight architecture at the outset can easily turn

into a wretched curse later on if you are not careful.

J2EE Versions

The information in this chapter applies equally well to servlets using J2EE 1.3 or J2EE 1.2. The
differences between these two specifications are insignificant with respect to the basic Unified

Modeling Language (UML) modeling of these particular Web components.

Servlet Life Cycle

As stated earlier, servlets are deployed within a servlet container, which in turn is hosted by
a Web server. The particular capabilities and level of compliance of the Web server

determines which version of the servlet specification you need to be working with.

The basic behavior of a servlet involves a request-response type model derived from the way
the HTTP works; thus, the inherent applicability as a Web component. This behavior is

illustrated via a statechart diagram in Figure 10-1.

Figure 10-1. Servlet life cycle

init() service() --____ Process
~==| request and
send response

ready

destroy()

Servlets are built as Java classes that extend one of two basic servlet implementation classes:
HttpServiet and GenericServlet. The former is the most often used, yet slightly more

complex of the two. Both servlet types employ the same basic life cycle.

Life Cycle Methods

The servlet life cycle makes use of three basic request handler methods, of which any or all

can be implemented within the extended servlet class:

init: Initializes the servlet
service: Services the client request

destroy: Destroys the servlet

Of these three methods, the service method is the most interesting because it actually does

the majority of the necessary processing. It typically does the following:

Receives the request from the client

Reads the request data

Writes the response headers

Gets the writer or output stream object for the response

Writes the response data

The service method is at the heart of the GenericServlettype. However, it is almost never
overridden and instead is split into lower level HTTP request handlers when used with the

HttpServlet type.

The init and destroy life cycle methods are always available to be over ridden, but in several
cases might not be used if the servlet has no specific objects or connections it needs to

initialize or terminate.

A sequence diagram inFfigure 102 shows a simple example of a servlet. This diagram applies to
both the GenericServlet and HttpServlet. It highlights a simple example where a database
query is made to formulate the response to the client. Note that the service method is

further refined into a specific HTTP request in the case of HttpServlet.

Figure 10-2. Sequence diagram showing servlet life cycle

Client Web Server Serviet
request()] i
| init() J

| 1
! service() M:
i i
i | Process request
: ' | and formulate
! ' | response
1 i
i{{ ____________________ i

destroy()

Convenience Method

Besides the life cycle methods, servlets commonly make use of what are referred to as
convenience methods. One such convenience method that applies for all servlets is
getServietinfo, which returns a general info string about the particular servlet—normally

author, version, usage, and so on.

Required Methods and Tagged Values

When building a servlet that extends the GenericServlet class, the service life cycle
method must be implemented; otherwise, the servlet is invalid. All other methods are

optional.

Multiple threads may call a generic servlet instance'sservice method concurrently. To avoid
this, the servlet can implement the SingleThreadModel interface, which is really a method
of typing the servlet and indicating to the Web container that only a single thread should be

allowed to call the method at any given time.

Implementing the SingleThreadModel can have a very significant effect on how the
container decides to allocate resources when the servlet is deployed on the Web server,

which can greatly impact the total number of concurrent servlet instances allowed.

Using this approach may be appropriate if you are dealing with a situation in which the servlet
may need to alter information that is not thread safe or access resources that are not thread

safe.

It is not recommended that you attempt to serialize any of the servlet methods other than by

implementing this interface. The interface itself introduces no new methods.

Request Handling

Servlets are request-driven and have specific capabilities available to them that simplify

handling of incoming requests.

Recall that a request to a servlet may consist of several pieces of data (for example, when a

form consisting of several fields is filled in and submitted).

When the Web container receives a request intended for a servlet, it encapsulates the

incoming data into a ServletRequest object (commonly referred to as the request object)
and passes it on as a parameter to the servlet'sservice method. The servlet can then use the
methods available in the ServletRequest interface to query the request object. Some of the

queries are contained in the following list:

getCharacterEncoding obtains information about the encoding format used for the
request.

isSecure finds out if the request was made over a secure channel.
getParameterNames obtains a list of all parameter names in the request.
getRemoteAddr determines the IP address of the client that sent the request.
getParameter is used to retrieve the first parameter value associated with a named
parameter type.

getParameterValues is used to retrieve multiple parameter values associated with

a named parameter type.

Several other methods are provided for querying different aspects of the request object. See

javax.servlet.ServletRequestitl for more information. A specialized version,

HttpServietRequest, for HTTP based servlet requests is also available. See

javax.servlet.http.HttpServiletRequest for more information.

11§ you are new to Java or unsure about this reference, see the "Conventions™ section in the

Preface of this book.

Figure 10-3 shows a simple usage scenario involving a request object.

Figure 10-3 Using the request object

Ht t pSessi on session = request. get Sessi on(true);

/1l obtain the values for UserlD and password
String loginlD = rquest. getParaneter ("USERID");
String | ogi nPassword = request. get Paraneter ("PASSWORD');

Response Generation

A request generally warrants a response, and servlets are no exception in this regard.

Servlets make use of ServletResponse to simplify this common task. The
ServletResponse object, commonly referred to as the response object, is in fact provided to

a servlet alongside the request object as a parameter to the service method.

Output can be written in either binary or character format by obtaining a handle to either a
ServiletOutputStream object or a PrintWriter object, respectively. Some of the other

methods provided by the ServletResponse interface are contained in the following list:

getOutputStream obtains the handle to aServietOutputStream object for binary
data.

getWriter obtains the handle to a PrintWriter object for character data.
setBufferSize can be used to establish the buffer size for the response to enable
better performance tuning.

flushBuffer flushes the current contents of the buffer.

For more information, see javax.servlet.ResponseObject and javax.servlet.

ServletOutputStream.

An HTTP specific response object is also available and provides additional capabilities related
to HTTP response header formulation. See javax.servlet. http.HttpServletResponse for

more information.
Figure 10-4 shows a simple usage scenario involving a response object.

Figure 10-4 Generating the response

PrintWiter out;

/'l set content type
response. set Cont ent Type("text/htm ") ;

out = response.getWiter();
out.println("<HTM.><HEAD><TI TLE>");

out.println("Login Unsuccessful");

out.flush();
out.close();

Alternatives for Response Generation

If you take a good look atFigure 104, you will see several HTML tags involved in the generation
of output from the servlet. This represents only one approach for generation of dynamic

output.

Another similar but more structured approach is to use libraries of HTML files to generate
common headers and footers for the necessary response Web pages, with the dynamic

portion of the page still generated much like what was shown in Figure 10-4.

A third and cleaner approach is to use the power of JSP and JavaBeans whenever possible. In
this approach, the servlet simply needs to forward to a JSP page that contains all of the
necessary presentation information and use JSP technology and JavaBeans to fill in the
dynamic content portions of the page. Other than the forward, the servlet has little else to do
with presentation except perhaps coordinating the necessary items for the JSP page to

successfully do its work.

We discuss this approach further in chapter 11.

HTTP Request Handlers

The HttpServlet class extends the GenericServlet class and therefore inherits all of the
standard servlet capabilities. In addition to the basic servlet life cycle methods and
convenience method, the more complex HttpServlet class adds methods to aid in the

processing of HTTP requests. These commonly used handler methods are

doGet: Handles HTTP GET requests

doPost: Handles HTTP POST requests

In the case of doGet, there is an additional method used for conditional HTTP GET support
(the different HTTP request types are explained later in this section). The getLastModified
method is like HTTP GET, but only returns content if it has changed since a specified time.
This method can only be used if doGet has also been overridden and is intended to be used
in cases where you are dealing with content that does not change much from request to

request.

Advanced Handler Methods

There are several advanced handler methods that are defined as well:

doPut: Handles HTTP PUT requests
doDelete: Handles HTTP DELETE requests
doOptions: Handles HTTP OPTIONS requests

doTrace: Handles HTTP TRACE requests

Unlike the GenericServletclass, servlets based onHttpServilet have almost no valid reason
to override the service method. Instead, you typically override these request handlers,
which the base service method implementation calls when appropriate. ThedoOptions and
doTrace methods also have virtually no valid reason to be overridden and are present only
for full HTTP support. An HttpServiet must override at least one method, which usually

means one of the remaining life cycle methods or request handlers.

Quick Guide to HTTP Requests

For the most commonly used request handler methods, the following list provides a quick

guide of what the HTTP requests are for:

GET: A call to get information from the server and return it in a response to the client.

The method processing this call must not have any side effects, so it can be repeated
safely again and again. A GET call is typically used when a servlet URL is accessed
directly from a Web browser or via a forward from a form on an HTML or JSP page. A
GET call shows the data being passed to the servlet as part of the displayed URL on
most Web browsers. In certain cases, this might not be very desirable from a security
perspective.

POST: A call to allow the client to send data to the server. The method processing
this call is allowed to cause side effects, such as updating of data stored on the server.
A POST call can be used instead of a GET when forwarding from a form on an HTML
or JSP page. Unlike GET, the use of POST hides from view any data being passed to
the servlet. Some developers choose to process GET and POST exactly the same, or
simply ignore one or the other if they do not want that particular call to be supported.
PUT: This call is similar to POST, but allows the client to place an actual file on a

server instead of just sending data. It is also allowed to cause side effects, just like
POST. Although available, the use of a PUT call is not very common.

DELETE: This call is similar to PUT, but allows the client to remove a file or Web page
from the server. It is also allowed to cause side effects in the same way as PUT.

Although available, the use of a DELETE call is not very common.

There is another request not specifically mentioned in the preceding list called HTTP HEAD.
This request, although valid in the context of theHttpServlet class itself, is actually handled
internally by making a call to thedoGet method, which you might have overridden. It differs
in that it only returns the response headers that result from processingdoGetand none of

the actual response data.

The RequestDispatcher Interface

Given the simplicity of servlets, it makes sense to keep each servlet focused on a specific task,
and then set u p multiple servlets to collaboratively achieve a more complex task. Servlets can
take care of the mechanical aspects of such collaborative efforts easily by implementing the

RequestDispatcher interface.

The RequestDispatcher interface provides two key capabilities:

forward: This method allows a servlet to forward a request to another Web

component. The servlet forwarding the request may process the request in some way
prior to the forwarding. Forward can effectively be used to achieve servlet chaining
where each link in the chain produces some output that can be merged with the
original request data, and then be used as the input to the next servlet in the chain.

This is essentially similar to the concept of pipes in the UNIX world.

Note that the term "redirect"” is sometimes used interchangeably with "forward,"
intending the same meaning. However, this should not be confused with the

sendRedirect method found on the servlet response. A sendRedirect call does not
guarantee preservation of the request data when it forwards to a new page, so it does

not allow for the same servlet chaining capabilities.

include: This method permits the contents of another Web component to be included
in the response from the calling servlet. The first servlet simply includes the other
servlet at the appropriate point in the output, and the output from the servlet being
included is added to the output stream. This is similar in concept to Server Side

Includes (SSI).12

[21 sS1 allows embedding of special tags into an HTML document. The tags are
understood by the Web server and are translated dynamically as the HTML document

is served to the browser. JSPs build on this idea.

Modeling Servlets in UML

The GenericServlet class is usually modeled as a standard Java class with the

<<Generic_Servlet>=> stereotype applied. The presence of the stereotype allows for the
servlet to be represented in a compact form and still be easily distinguished as a generic
servlet without the need to show the inheritance tree on the same diagram. A generic servlet

can include any of the life cycle methods or the convenience method discussed earlier.

A more expanded view of the servlet class showing the inheritance from theGenericServiet
class can also be used. In most cases, though, the more compact stereotyped class view is

sufficient. The compact and expanded representations of the servlet are shown infigure 10-5.

Figure 10-5. Compact and full representation of a generic servlet

GenericServiet
(from servlet)

<<@Generic_Servlet>> Amortizer
RateCalculator

+ Amortizer()

+ RateCalculator() + service()

+ init() + init()

+ service() + destroy()

+ destroy() + getServletinfo()
+ getServletinfo() + update()

+ calculator() + createTable()

If the serviet implements the SingleThreadModel interface, which controls serialization of
the service method, the servlet can be shown with the interface to highlight this aspect.
Optionally, the servlet can be tagged with { Single ThreadServlet=True} instead to clearly

identify this on the diagram in a somewhat more compact format.

An example of a servlet that implements the SingleThreadModel is shown in Figure 10-6.

Figure 10-6. Servlet supporting the SingleThreadModel

<<Generic_Servlet>>
RateCalculator

+ RateCalculator()
O + init()

+ service()
SingleThreadModel | * destroy()

(fl’Dm SerVIEt) + getSEW|etlnf0()
+ calculator()

The HttpServlet class is modeled similarly to GenericServlet, but with the
<<Http_Servlet>=> stereotype applied. It can also include the life cycle methods, the

convenience method, and any of the HTTP request handlers previously discussed.

The SingleThreadModel details as well as the tagged value forSingleThreadServletapply
in the HttpServlet class exactly the same way as they did for GenericServlet. As stated
earlier, you should not attempt to serialize any of the servlet methods other than by

implementing this interface. This interface does not introduce any new methods.

Modeling Other Servlet Aspects

Other aspects of servlets that warrant modeling are servlet forward, servlet include,

ServletContext, and Servlet Session Management. The following sections discuss these

aspects in more detail.

Servlet Forward

Servlet forward is a special kind of relationship, and modeling it explicitly can help clarify the
overall application logic. For example, it can shed light on the flow of the processing logic. In

complicated forward chains, the relationship may be indicative of some algorithm being

implemented. Two specific approaches help to identify the overall application logic in this

regard.

First, on the class diagram, label the relationships between the servlets that invoke forward

on other Web components with the <<forward>> relationship. An example is shown in Figure

10-7.

Figure 10-7. Modeling servlet forwarding on a class diagram

<<Http_Serviet>=>
Amaortizer

+ Amortizer()

+ service()

+ init()

+ destroy()

+ getServietinfo()
+ update()

+ createTable()

<<forward>>

<<Http_Serviet>>
RateCalculator

+ RateCalculatar()
+ init()

+ service()

+ destroy()

+ getServletinfo()
+ calculator()

For more complicated servlet chaining, an activity diagram can be used to show the overall
interaction. If desired, request and response objects with attributes appropriately updated at

specific points can be shown to demonstrate the overall algorithm. See Figure 10-8.

Figure 10-8. Modeling servlet forwarding with activity diagram

Obtain request
details

Perform mortgage | <<forward>> Caleulate . forwards>
analysis interest

Create

5 amortization
- ! table
response L
- analysis results response

- APR calculated

response

- amortization
table

In this case, we have labeled the transition with the <<forward>> stereotype to emphasize
that it represents a forward relationship between the elements involved. The comments
shown for each occurrence of the response object identify what happens as the request and

response objects pass through the chain.

Servlet Include

Include is another significant and special relationship as it affects the results produced by a
servlet. In fact, include may be used as a means to structure and organize the overall output
in a modular fashion. Servlet include relationships are modeled in the same fashion as the
forward relationship, that is, as a unidirectional association stereotyped <<include>>. The
direction of the association is from the including servlet to the resource being included. An
example is shown inFigure 10-9. In the example, a servlet responsible for creating a mortgage
amortization table includes header and footer servlets whose sole purpose is to generate the

page header and footer, respectively.

Figure 10-9. Servlet include relationship

<<Http_Serviet>>
Header
5 + Header()
<<Http_Serviet>> X + service
Amortizer il B !
+ destroy()
+ Amortizer()
+ service()
+ init()
+ destroy() cditakidoms <<Http_Servlet>>
+ getServietinfo() Footer
+ update()
+ createTable() + Footer()
+ service()
+ init()
+ destroy()
+ getServletinfo()

ServletContext

Each servlet runs in some environment. TheServletContext provides information about the
environment the servlet is running in. A servlet can belong to only one ServletContext as
determined by the administrator. Typically, oneServletContextis associated with each Web
application deployed in a container. In the case of distributed containers, one

ServiletContext is associated with one Web application per virtual machine.

The ServletContext interface can be used by servlets to store and retrieve information and
share information among servlets. A servlet obtains the ServiletContext it is running in by

using the getServietContext method.

Some of the basic services provided by the ServletContext interface are

setAttribute: Stores information in the context
getAttribute: Retrieves information stored in the ServietContext

getAttributeNames: Obtains the names of attributes in the context

removeAttribute: Removes an attribute in the context

An approach similar to the one discussed for servlet forwarding and shown infigure 10-8 can be

employed to model servlet interactions with the ServletContext.

Servlet Session Management

Given the stateless nature of the HTTP protocol, managing repeat interaction and dialog with
the same client (such as that required for an ongoing shopping session) poses some serious

challenges. There are various means of overcoming these challenges:

Hidden fields: Hidden fields are embedded within the page displayed to the client.
These fields are sent back to the client each time a new request is made, thereby
permitting client identification each time a client makes a request.

Dynamic URL rewriting: Extra information is added to each URL the client clicks on.
This extra information is used to uniquely identify each client for the duration of the
client session, for example, adding a "?sessionid=97859" to the end of each URL the
client clicks to identify that the request is associated with session id 97859.
Cookies: Stored information can later be passed back to the client repeatedly. The
Web server provides the cookie to the browser. Cookies are one of the more popular
means of setting up a servlet session.

Server-side session object: Cookies and URL encoding suffer from limitations on how
much information can be sent back with each request. In server-side session
management, the session information is maintained on the server in asession object
and can be accessed as required. Server-side session objects are expensive to use,

so it is best to use them sparingly.

The Java Servlet Application Programming Interface (API) provides abstractions that directly

support some of the session management techniques discussed in the preceding list.

The core abstraction provided by the servlet API is the HTTP session, which facilitates

handling of multiple requests from the same user.

Figure 10-10 gives an example of servlet session management.

Figure 10-10 Servlet session usage

i mport.javax.servlet.http.*;

/'l locate a session object
Ht t pSessi on theSession = request. get Session (true);

/1l add data to the session object
t heSessi on. put Val ue(" Session.id", "98579");

/1 get the data for the session object
sessionid = theSession. getVal ue("Session.|D");

Activity diagrams can be used to model the servlet and session interaction. This is similar to

the approach discussed for servlet forwarding and shown in Figure 10-8.

Servlet Deployment and Web Archives

A descriptor based on XML is used in the deployment of servlets on a Web server. The
compiled servlet class, additional supporting Java classes, and the deployment descriptor are

packaged together into a Web archive file, also known as a ".war" file.

The deployment descriptor is an XML-based file that contains specific configuration and

deployment information for use by the servlet container.

Figure 10-11 shows an example of a vanilla XML deployment descriptor for an HttpServlet.
Additional required fields in the descriptor are filled in during configuration and deployment

on the Web server.

Figure 10-11 A simple vanilla XML deployment descriptor for a sample HttpServiet

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE web-app PUBLIC "- / / Sun M crosystens, |nc.
/[| DTD Web Application 2.2
/ [/ EN' "http: / / java.sun.com j2ee/dtds/web-app_2 2.dtd">
<web- app>
<servlet>
<servl et - nanme>Logi nSer vl et </ servl et - nanme>
<servl et-class>Logi nServl et </servl et-cl ass>
</servlet>

</ web-app>

We discuss servlet deployment descriptors and Web archive files and their role in the context

of modeling in chapter 15.

Identifying Servlets in Enterprise Applications

Now that you have become intimately familiar with servlets, it is time to return to building the

HomeDirect online banking example.

At the beginning of this chapter, we identified the need to evolve the control object in the
Transfer funds use case by splitting it into two, one focused on the external interaction and

the other focused on the internal interaction.

Of course, the question remains: How do you actually arrive at this division of responsibilities?
The answer is partly based on understanding what a servlet is capable of doin g and the rest
on judgment and experience. In general, the role of the servlet is that of a coordinator
between the boundary objects and the rest of the system. All the interaction between the
boundary object and the composite control class belongs in thenew servlet. How you split the
interaction that is shown between the control object and the entity objects is somewhat less
clear. The key factor to remember is that the servlet is primarily a coordinator; and hence, it
should only take on lightweight responsibilities, which could include initiating some business
logic. However, actual business logic, computations, interaction with entity objects, and so on

would all fall outside of these responsibilities.

With this in mind, let's take another look at the interactions involving the control object as

shown in Figure 10-12.

Figure 10-12. Control object interactions

%@OQQQQ

:Cuslomer TransferPage Control F account T account Transact
i i] i] i i
| stant transfer _| i | i | i
pemn i i i i i
! 1 start transtar 1 ! ' ! i
| 1 | reteve profie | : | :
I i l%l] [}]
1 i] i]] L]
! ! 'build accounts list ! ! !
l l ‘K:' i i i i
' : l : : : :
i ler'blml for accownts, amount : 1 : :

L]

i I i i i
I select accounts, amount ' ! ; : :

(] I] i 1)
: | tanster ! | ! :
: T Thug | ! | :
I i 'UGI'. en.m I] 1]
i ! F | ' i E

1 1
: : ' get balance 21 : :
| 1 1 | 21 1 1
! ! 1 werity funds available b ! .
| % — | ! | !
! iconfinm transfar : ! | !
|]F:—I; 1 1 I 1
L ook : : : : :
—_—
| | confimed _| | 5 | 5
i

| H | debit transfer amount i | i
: 4' 1 i 1 : :
| | ! credit transfer amount ! H
| .' : | : i :
! i i ! re¢ord ﬁﬂfﬂ&ﬁiﬁ"l i !
i i i i] i =l
: | confirmeation number ! 1 : 1
I ! 1 | i i i
! ! ! ! i ! !

If we look at all of the control object responsibilities, we see that the lower half is comprised
of several actions that together form a complete transaction. We decide to separate this part
and have it be handled by an internally focused control object, leaving the rest to be taken

care of by a servlet. Figure 10-13 shows the result of this division of duties.

Figure 10-13. Division of responsibilities between the servlet and internal control

%@mOQQQQ

: Custorner TransferPage Control Profile F account Transact
: I I : L] I I I
| start transfer _| H . : :] i
—_—
i | start lranster | : i : i i
) I 1 i I 1
: ! Irtrieve profe. | : : '. :
I 1 [i [} 1
1 1 i |] i] 1
! : | il @ccounts list ! : ! !
I 1 I] i] 1
I 1 1] 1 i] 1
i | prompl for acoounts, amount i E i E i
ot acooumms, amout | ! g : g 5
I%‘i i i] :] i
; | transfer X l ; i I It I
) | [} i 1
i | Lverity eniries | i : i I
1] i [] i]]
I i |] 1 [1
: i | transfer | i : i i
i i l%’l i i i i
[} 1 1 [L 1 [} 1
: ! ; : stbekece o) : :
I | 1 I] “ I |
: i 1 1 verify funds availability 1 H 1
| i i i i !] i
i i | confirm | | l] |
i | confirm M i : i |
I r%‘u i] i] i
(confiem tansteg : : : : : :
]] i i i i] i
I I eonfirmed 1 I] i I |
I I—.}I I] 1 1 |
I | | confirmed | : : ' |
I I L] i] I
i I i I] i (] i
- ! : | dedit transfer amount ' !]
—
| | : | : « : :
| | i [cradit transfer Elml:ll.ﬂt I i
i i i i M i et | i
I 1] []] -y 1
: I | . record transaction : o
1]]
| i | ganfirmation nambssr | | i r:
I I] i] I
- | confirmation number I ! ! !]
I [} []] (]]
] i L |] i i 1

In this scenario, the servlet is an example of what the RUP calls afront component. A front
component s typically a servlet or a JSP that is primarily responsible for processing user input
but is not itself responsible for presentation. Rather, it acts simply as an entry point to the
application and as a coordinator with other components. Note that the term "TransferPage" is
used to generically represent a user interface. We might decide to make this a static HTML

page or something more dynamic.

We discuss what to do with the other, internal focused control object in the next chapter.

Of the two types of servlets discussed, an HttpServlet appears ideally suited to take on the

external interaction role due to the Web-based nature of the HomeDirect interface.

Figure 10-14 expands further on this scenario. There are really two customer actions involved in
this use case. The first is where the customer decides to do a transfer action. This invokes
MainServlet, which coordinates the retrieval of the pertinent accounts data and displays this
via the TransferPage boundary object. The customer then selects the desired accounts and
enters the amount to transfer. Control at this point is forwarded to a secondary
TransferServlet, which coordinates the actual transfer action via the internally focused

control object.

Figure 10-14. MainServlet and TransferServlet division of responsibilities

ONORONONG

% : |Mam$arru4ﬂ TrangiarServiet
Customer TranslerPage Control Profile Faccount Taccount Transact
]] i I i i] i I
| start transfer _| i i i H i | i
———
; | start transfer | | i i i i :
| b I !
| : : toviawe profic 4 1 b
I I I T T | 1 I I
] I 1 1 [} L] 1 I I
i I 1build accounts list i 1 [| 1
I I . i]] I I
[}] I i]] i I
i [i i (]] i I
i] i i i i i i i
! ' for agcounts, amouent i 1 i i i
| ke : : : : | |
| saloct acoounts, amount i i E j i i i
[} I] I i] i I I
n
: =& S : S
| : : | very antries I
: ; : 1| A T
i 1 [} 1 1
: | : | tmnekr ! : : : :
1 1
| { : | P S | |
I]] I L i Sl I I
I]] I [] '| =1 I I
- i i | | verity funds avaitability | | i
i i i | H i | |
| : ! | _confim | : ! | |
: | confirm transter I‘-’:—: 1 : I I
o
|eonfifn lranster | i i E E i i i
—_—
! ! ——— : :' i i i
i E i "'i confirmed 1 ! i i :
I]] 1]]
E | ! : ! dabit transfer ameunt ! ! :
i [} [} 1 1 1 i |] [}
' i i l - credit transber amount ‘\l I
i I i I F + + —> I
I I] I I 1] . I I
: : : : : | recondtansacion |
i i i i r T T T Fadl
[1 i 1 i i i I I
! ! : | confiematon rumber | ! | |
| A e T

Figure 10-15 shows the details of the servlets for this example. We purposely have the servlets

handling as little processing as possible, offloading most of the work to the other J2EE

components, which we discuss in more detail in later chapters covering JSP and EJB

technology.
Figure 10-15. MainServlet and TransferServlet details
<<Http_Serviet>> <<Http_Serviet>>
MainSerlet TransferServiet
<<forward>>
L e
+ MainServiet() “| + TransferServlet()
+ doGet() + doPost()

The decision to split up the servlet responsibilities will vary depending on specific needs. In
this case, our preference was to minimize the responsibilities of the MainServlet to being a

coordinator only. A secondary level of servlets was therefore developed to handle the details

of individual use cases.

Summary

Servlets have a lightweight architecture and are ideally suited for request-response
paradigms. Servlets are like ordinary Java classes with the exception that specific life cycle
methods must exist in the servlet. Specific HTTP request handler methods are used for

HttpServlet. Two types of servlets, GenericServilet and HttpServlet, are defined in the

J2EE.

Servlets are modeled as stereotyped Java classes. UML modeling techniques can bring
special focus on some aspects of servlets, such as forwarding, including, and session

management by servlets.

An XML deployment descriptor is required for deploying a servlet.

Chapter 11. JavaServer Pages

Introduction to JSP

Anatomy of a JSP

Tag Libraries

JSP and the UML

JSP in Enterprise Applications

Summary

& Process Check: In this chapter, we focus on design as we progress
’." through the Rational Unified Process (RUP) analysis and design
discipline. We also discuss aspects of implementation in the

context of the JSP technology.

Until a few years ago, the term thin client was unheard of. That changed with the advent of
the Web browser and the subsequent rush to create sophisticated Web-based applications in

virtually every industry.

Thin clients, as we all know, utilize a markup language for presentation. Sophisticated
server-side applications written in languages such as Java are thus used to generate the

markup language for presentation to the client.

This intermingling of the programming side of the application with the presentation side has

some drawbacks:

Presentation can change frequently. This means a lot of recompilation and rebuilding
for reasons that have nothing to do with the application logic.

The presentation has to be coded in the context of the programming language using
constructs such as println. This means the presentation layout is not as readily
intelligible as it is encoded within the application programming language and cannot
really be previewed until runtime. From the servlet designer perspective, it is equally
hard to read line after line of HTML code embedded within println statements.

In most large organizations, the Web presentation developer role is distinct from the
software developer role. This coupling has created a drawback such that the Web

developers now must understand the programming side to create the presentation

layout, and they can no longer use specialized tools available to them for developing

the presentation.

The JavaServer Pages (JSP) technology was conceived specifically to address these issues.

Introduction to JSP

Like servlets, JSP is a type of Java 2 Platform, Enterprise Edition (J2EE) Web component. JSP
is similar to server-side scripting technology, but there is a key difference —JSP is compiled,
whereas scripts are interpreted. JSP allows a program to be embedded in HTML documents,
which can later be parsed by a Web server. JSP utilizes the Java Servlet technology to achieve

server-side processing.

A JSP consists of Java code embedded within a structured document such as HTML or XML.
The idea is to use the markup language for the static portions of the presentation and embed
special tags within the page to markup the dynamic content. The tags are also used to
process incoming requests from a client and generate responses as a result. When a JSP is
requested, the JSP code is processed on the server, and the combined results of the

processing and the static HTML page are sent back to the client.

Use of JSP allows the presentation code to be easily maintained as regular HTML code and

shields the Web developer from having to deal with an unfamiliar language and tools.

Some may argue that because Java is still embedded within a JSP, the separation of
presentation from business logic is not a reality. The key point to keep in mind is that it is a
difference of perspective. In servlets, the presentation side is forced to absolutely live in the
software development world, whereas JSPs are presentation-centric components with

carefully packaged Java pieces embedded within them to handle the dynamic aspects.

Typical Uses of JSP

The JSP specification provides the JSP with the same capabilities as the servlet, and it is
indeed possible to create a very confusing but legal JSP that has all the code normally put in
a servlet. Similarly, it is equally possible to totally ignore the JSP technology and use servlets

exclusively.

The proper usage is a combination of the two. The idea is to leverage the JSP for

presentation-centric tasks and utilize the servlets where logic is paramount. A JSP is ideally
suited for use in situations where dynamic content must be presented to the client. In general,
JSP should be focused on presentation, and any Java code embedded within the JSP should

primarily be for communication with servlets and/or other control/data entities.

A JSP does consume extra system resources (e.g., requires compilation), so it should not be
used where presentation content is static. A plain HTML page should be used in such

situations.

Model 1 and Model 2 Architectures

Two architectures, generally referred to asModel 1 and Model 2, were especially dominant in
the JSP developer community when JSPs were first introduced. Today, most development
efforts make use of Model 2; however, there are still some simpler cases where a Model 1

approach has merit.

Model 1 architecture is simple in that it involves using JSPs for presentation as well as the
business logic. The advantage of this approach lies in its simplicity and its ease of
implementation. Unfortunately, Model 1 can quickly lead to bloated and brittle code that is

hard to manage and evolve.

Model 2 architecture follows the Model-View-Controller (MVC) paradigm. It is more

programmer friendly as it involves using one or more servlets as controllers. Requests are
received by the frontline servlet(s), and then redirected to JSPs as warranted and required.
The key to success with Model 2 is identifying the right number of servlets required to fulfill
the tasks (extreme cases being a single servlet for everything and a servlet for each use case
or possible action!). Another key element of this strategy is the use of JavaBeans as the
model. The JavaBean acts as the "communication" vehicle between the controller serviet(s)
and the JSPs. The controller fills in the JavaBean based on the request, and the JSP can then
compose the actual page using values from the JavaBean. In this case, the JSP typically uses
the jsp:useBean tag to access the JavaBean. Model 2 provides a cleaner separation of the
presentation from the logic. Although the Model 2 approach is harder to implement, code

developed using the Model 2 approach is easier to manage.

Some developers erroneously believe that Model 1 is obsolete and has essentially been
displaced by Model 2. In fact, you can employ either of the two models depending on what
you are trying to achieve. Deciding between the two models should be driven by the following

guidelines:

Model 1: Use this model when you are trying to build a simple Web application that
does not have significant processing requirements.
Model 2: Use this model when requests typically kick off extensive processing, which

can result in diverse responses.

In the end, though, the best approach is to use whichever model you are comfortable with

and whatever works for your development team and style [

11 You might also come across references to Model 1.5. This is similar to Model 1 except that
most of the logic is placed in the JavaBean instead of the JSP. See the References section at

the end of the book for additional sources of information.

JSP versus Servlet

All JSPs are compiled into servlets and then executed within the servlet container
environment. So, from a technical perspective, JSPs and servlets are quite similar in

capabilities and what they can be used for.

The following list contains some key JSP advantages over servlets:

JSPs are presentation-centric and offer a more natural development paradigm to
Web presentation developers.

JSPs make it possible to separate presentation from content (we discuss this further
in the context of JSP tags and tag libraries in the "Tag Libraries” section). This means a
project's presentation development can proceed in parallel with that of the logic.

JSPs help in organizing the physical aspect of a Web application.

JSPs are compiled automatically, typically as part of the standard deployment process.
Servlets, on the other hand, are a bit more manual in nature and require a manual compile
step whenever they are changed unless your server tools or development environment takes

care of this for you.

JSPs are often preferred over servlets if the presentation is expected to change frequently.
Servlets, on the other hand, are preferred for more complex logical tasks, as they are
typically easier to debug during the development process. This is primarily because you
actually see the code for the servlet you are executing. Because a JSP is automatically
compiled to servlet code for you, the code that is executed is in a different form than the code
you originally provided in the JSP, which makes JSPs a little harder to debug. However, if you

are just having the JSP do presentation tasks, this usually isn't a big problem.

The servlet versus JSP consideration is not always an either-or scenario in the context of a
specific software system. It is reasonable to have a mix of both to achieve a balanced system.
For example, you may want to use a servlet as a controller such that the requests get handled
by the servlet. Once the servlet has taken care of the request processing (either directly or by
working with other elements of the software such as EJBs), it could forward the results on to

a JSP to display the results to the user.

Anatomy of a JSP

A JSP consists of two basic items: template data and JSP elements. Template data provides

the static aspects, and JSP elements are used for the dynamic aspects of a JSP.

Template Data

Template data refers to the static HTML or XML content of the JSP. Although it is essential for

the JSP presentation, it is relatively uninteresting from a JSP programming point of view.

Aside from the usual substitutions, such as those based on quoting and escape sequences,

the template data is written verbatim as part of the JSP response.

JSP Elements

JSP elements represent the portion of the JSP that gets translated and compiled into a servlet
by the JSP compiler. In syntax, JSP elements are similar to HTML elements in that they have

a begin and an end tag (for example, bold text).

There are three types of JSP elements defined in the JSP specification: directive elements,

action elements, and scripting elements.

Directive Elements

Directive elements provide global information for the translation phase. These directives are
general in nature, that is, not related to a specific request and thus do not directly impact the

output to the client.

Directive elements take the following form:

<% @li rective-nane directive-attribute="attribute-val ue" other-
attri bute-value-pairs ... %

An example of a directive element follows:

<% include file="Header.jsp" %

A page directive and its attributes provide a convenient mechanism for instructing the
environment on the configuration of various things, such as libraries to be imported, content
type of the page, buffer size, and so on. With the exception of the import attribute, other page

attributes can only be defined once in the JSP.

Action Elements

Unlike directive elements, action elements come into play during the request-processing
phase. JSP actions eleme nts are written using an XML syntax in one of the following two

formats:

<prefix:tag attribute=value attribute-value-list.../>

or

<prefix: tag attribute=value attribute-value-list> body
</ prefix:tag>

The idea is to establish an association between tags and have a "tag handler" defined for each

tag, which gets invoked to handle the tag when the tag is encountered. Tag handlers are

essentially pieces of code, for example:

<jsp:forward page="/errorPage" />

Actions prefixed with "jsp" are standard actions. Some standard actions are

Include responses sent by other JSPs
Forward requests to others

Query and update properties of a JavaBean residing on the server

Actions may create objects that are made available to scripting elements via certain

variables.

Scripting Elements

Scripting elements bring everything together in a JSP. These elements can be declarations
used for defining variables and methods, blocks of code called scriptlets, and expressions for

evaluation during request processing.

Declarations

Declarations define variables and methods. The syntax for declarations is <%! Declaration

%> where declaration can be a variable or a function, for example:

<% private static MyLogi nCount =0; %>

Expressions

Expressions are evaluated during the request-processing p hase of the JSP, and the results
are converted to a string and intermixed with the template data. The result is placed in the

same place where the expression was located in the JSP page.

The syntax of expressions is <% = Some expression %>.

In the XML syntax, the same is expressed as:

<j sp: expressi on>Sonme expressi on</jsp: expressi on>

For example:

Login Count: <% results %

Scriptlets

A scriptlet is a mini "script” of code embedded within the JSP. It can contain, among other
things, declaration of variablesand methods, expressions, and statements. Like expressions,
scriptlets get executed at request-processing time, and any resulting output is placed in the

response object.

The syntax for declaring scriptlets is <% Java Code %>.

The XML equivalent is

<jsp:scriptlet>Java Code</jsp:scriptlet>

For example:

<% i nt guessNum = request. get Paranet er (" GUESS") ;

if (guessNum == W nni ngNum) { % >
Congrats, you win!!!

<% }

el se

{ %>

Sorry, try again.
<%} %>

Objects Accessible to a JSP Implicitly

Each JSP has access to some objects without explicitly declaring them in the JSP. These
objects are created by the container for use within JSPs and can be assumed to exist by the

JSP developers.

These implicit objects are

request: Represents the incoming request that initiated the processing
response: Represents the response to the current request

pageContext: Provides access to page attributes and convenience methods
session: Session object for the current client

application: Identifies the associated ServletContext

out: Object for writing to the output stream
config: lIdentifies the associated servlet config for the JSP
page: Similar to this in the context of the current JSP

exception: Identifies the exception that led to the error page

Tag Libraries

One of the challenges in meeting the objectives of the JSP technology is to minimize the

programming logic complexity to which content developers are exposed.

The JSP 1.1 specification introduced a new capability for creating custom JSP tag libraries,
which allow for the reduction of complexity. The idea is for the developer to provide simple
and easy to use custom tags that can be used by the content developers to invoke complex

logic.

A Tag Handler Class

A custom tag is composed of a tag handler class. The tag handler class is responsible for
telling the system what should be done when a specific tag is encountered. The class file

contains the actual Java code that is executed during the request.

Tags can optionally have one or more attributes and a body, but neither is required. The
simplest tag is one without a body or attributes; the most complex tag has a body as well as

one or more attributes.

The following list shows examples of a tag without a body, a tag without a body but with

attributes, and a tag with attributes and a body:

A tag without a body:
<nytaglib: MyTag/ >
A tag without a body but with an attribute:
<nytaglib: \yTag count="11"/>
A tag with a body and an attribute:
<nytaglib: MyTag count="10">
Thisis the body. It can contain actions, directives and ot her things
</ nytaglib: MyTag>

For tags without a body, the tag handler class must implement thedoStartTag method. Tags
without a body are useful when you just want relatively fixed content (that is, something that

is not very customizable from one reference in the tag to another) accessible to the content

developer.

Attributes can be used with tags without a body to facilitate customization of the results. In
such cases, the tag handler class must also implement a setter method corresponding to the
attribute name and be prefixed with "set". This permits the setting of the relevant attribute(s)

prior to the call to thedoStartTag method, thereby allowing different results based on the

value of the attributes.

For tags with a body, the tag handler class must also implement the doEndTag method. The
doEndTag generally does nothing more than instruct the system to continue on; however, it

is possible for it to take other actions, such as abort the execution of the JSP.

The code example in Figure 11-1 shows a tag handler class for a tag without a body.

Figure 11-1 An example of a simple tag handler class

i mport java.io.*;
i mport javax.servlet.jsp.*;
i mport javax.servlet.sp.tagext.*;

public class MyTag extends TagSupport

{
public int doStartTag()
{
try {
JspWiter out = pageContext.getQut();
out.print("A sinple tag exanple");
} catch | OException e)
{
/' handl e exception
}
return (SKI P_BODY);
}

}

A Tag Library Descriptor

Tags are organized into tag libraries. The tag library descriptor (.tld) file contains the list of

tag names and names of associated tag handler classes.

A tag library descriptor example is shown in Figure 11-2.

Figure 11-2 Tag library descriptor example

<?xm version="1.0" encodi ng="1S0O 8859-1" ?>

<IDOCTYPE taglib PUBLIC "-//Sun M crosystenms, Inc.//DTD JSP
Tag Library 1.2//EN'" "http://java.sun.conm j2ee/ dtd/ web-
jsptaglibrary 1 2.dtd">

<taglib>
<tlibversion>1l.1</tlibversion>
<j spversion>1. 2</j spversi on>
<short name>exanpl e</ shor t name>

<t ag>
<nanme>Bl ankLi ne</ nane>

<tagcl ass>com taglib. honedi rect. Bl ankLi ne</t agcl ass>
<bodycont ent >EMPTY</ bodycont ent >

<info>lnserts a blank |ine
</ i nfo>
</tag>

</taglib>

Figure 11-3 shows how a custom tag is used from within a JSP.

Figure 11-3 Using a custom tag from within a JSP

<v@taglib uri="MUtils-taglib.tld">
<Y<htm >

<utils: Bl ankLi ne />
<l--inserts a blank |ine-->

</htm >

JSP and the UML

Modeling of JSP in the UML is somewhat complicated by the fact that a JSP is really a hybrid

between a Web page for the client side and some logic that executes on the server side.

JSPs can of course be modeled as a single class in the logical view; however, this means an
unclear separation of responsibilities between the client and the server sides and results in
some confusion. For example, how d o you establish whether an operation will be executed on
the client or the server? You also do not know what kind of relationships make sense for such

a class and in what context they are meaningful.

Modeling a JSP as a single class also defeats an objective of modeling, namely to clearly

identify the architecturally significant pieces within the model in their appropriate context.

To get around this limitation, we use UML extension mechanisms to partition each JSP into

two conceptual elements:[2l

[21 Originally proposed in Building Web Applications with UML [Conallen, 99].

<<ClientPage>=>: This represents the behavior of the JSP on the client side, that is,
the externally visible presentation aspects of the JSP. Client pages have associations
with client-side resources, such as other client pages, applets,JavaBeans, and such.
<<ServerPage>>: This represents the behavior of the JSP on the server side. It
primarily focuses on the internal logic associated with processing a request and
providing a response. Server pages have relationships with other server-side

resources, such as external systems, databases, and controllers in the system.

The relationship between a client page and a server page is also special and is defined as a
<<Build>> relationship where the server page builds a client page. When a server page
builds a client page, the result is an HTML or XML stream that is sent to the browser through
which the request was originated. The build relationship between a server page and client

page is shown in Figure 11-4.

Figure 11-4. Server page and client page

<<Build>>

W/

=

ServerPage ClientPage

A reminder about the icons used in the diagram in Figure 11-4. As you may recall from our
discussion in chapter 3, UML allows the use of stereotypes or icons for representing model
elements. The icons used in the diagramtl and in subsequent chapters take advantage of this

facility.

Bl These icons are based on the Web Application Extension icons as supported in Rational

Rose.

Modeling Client-Side Relationships

The conceptual client page of a JSP can have relationships with several types of entities in

addition to the associated server page:

Other client pages: A client page may have incoming or outgoing <<link>>
relationships with other client pages in the model.

Applets: A client page may have applets associated with it. An applet is modeled as
a class with the <<Java Applet>=> stereotype. Relationships between a client page
and an applet are modeled as an aggregation relationship or as a plain association.
Forms: Forms are a common mechanism for accepting input via a browser. A form is
modeled as a class with the <<Form>=> stereotype. Input fields on a form map to
attributes on the class. Forms are really a part of the client page, so this relationship
is modeled as an aggregation relationship with the client page. Forms do not exist

independently from a client page.

Figure 11-5 shows an example of JSP client page relationships.

Figure 11-5. Client page relationships

L Is]
<<Link>> —
Checkout <<Use Bean>> ShoppingCart
<<Build>>
ShoppingCartBean

)
=<

Checkout_Client Form

Modeling Server-Side Relationships

Server-side JSP relationships fall into the following categories:

Other server pages: A server page may be associated with other server pages. Such
relationships are modeled as either <<forward>> or <<include>> relationships.
Servlets: Servlets are comparable to JSP behavior in this context. As such, they are
modeled via the approach used for other server pages (outlined in the preceding
bullet item).

Implicit objects accessible to the server page: The objects that are utilized by the
server page manifest themselves as unidirectional associations between the server
page and the implicit object classes.

JavaBeans: A page may access, or use, JavaBeans. In such situations, the
relationship is modeled as an association relationship stereotyped as <<Use Bean>=>.
This represents a jsp:useBean tag in the JSP. By having this relationship, the
JavaBean can be accessed from within the JSP.

Other classes: A server page may have other classes that are important for showing
the full scope of the server page. Relationships with such classes are shown using

associations as required.

Dependency on other classes or libraries: A server page may import other classes
and libraries required to achieve its functionality. Such relationships are modeled as
dependency relationships using the usual UML notation of a dashed line with an
arrowhead.

Taglibs: A server page may use custom defined tag libraries. You model this
relationship by showing a dependency relationship from the server page to the tag
library descriptor file. Optionally, the tag library descriptor can show dependency on
the associated tag handler classes.

Enterprise JavaBeans (EJBs): A server page may invoke methods on an EJB. This
relationship is modeled as a directional association from the server page to the EJB

Home and Remote interfaces for the subsystem representing the EJB.

Figure11-6 shows an example of JSP server page relationships. In this example, the user begins
at the PayBills JSP. Upon entry of the necessary bill payment details, the BillForm is
submitted to the BillServlet, which coordinates with the control component to actually
perform the bill payment transaction. Note how the BillPayer JSP includes the Banner and
Footer JSPs. This is an example of what the RUP terms a presentation component. This
approach is useful because it provides for a template-like approach to the user interface.
Directives are used to include other JSPs and HTML pages to provide a consistent yet dynamic

user interface throughout.

Figure 11-6. Server page relationships

<<Build>>

PayBills_Client <<Include>>

Footer
<<Submit>>
\ __.---7 ControlHome
<<Http_Servlet>> | <<subsystem>>
BillServiet | ___ QO// ControlEJB

Control

JSP in Enterprise Applications

In chapter 8, we discussed the use of boundary objects to capture and isolate interaction
between a use case and external entities such as with other sub systems and with users. JSPs

provide an effective yet simple vehicle for the interaction of the latter type, that is, with users

of the system.

For instance, consider the HomeDirect use cases identified inchapter 16. Each use case that
interacts with the customer actor means that some sort of user interface is required. There is

also some form of interface required for the Login/Logout use cases, which are included by

the other use cases.

To understand how JSPs are used in enterprise apps, let's start with the Login use case. A
login Web page, representing the login boundary object, would be appropriate for

presentation to the user when the user attempts to use the banking system initially and
initiates the Login use case. Additionally, there is a need for the user to enter a username and

password via the Web page for validation by the system.

A controller is also required for the Login use case, as identified via the login control object
during the analysis. Because we want to have the ability to change the presentation easily,
we have chosen to follow the Model 2 architecture for our application and will use the JSPs

primarily for presentation rather than as replacements for servlets.

In light of this decision, we will create a servlet to handle the processing of the login form.
Although use case control objects often merge at design time, this use case acts as a

"gatekeeper" of sorts in the sense that none of the other use cases can be executed until this
one is successful. Given this prerequisite, it is appropriate to keep the login validation isolated

from the rest of the application.
Figure 11-7 shows the overall structure of the Login use case.
Figure 11-7. Login use case design

|

Login.jsp_Client
(from Login.jsp)

<<Build>>

g | | \
Banner.jsp Footer.jsp
<<Forward>>
<<Submit>>
LoginFarm

(from Login.jsp_Client) <<Http_Serviet>>
LoginServlet

(from web)

Let's take a quick walkthrough to clarify what is occurring infigure 11-7. The Login.jsp is the
entry point into the use case. It builds the login client, which includes a LoginForm to allow
the user to enter information. When the form is filled in and submitted by the user, the

LoginServlet processes it by interacting with the appropriate entity objects to verify the

information entered (we discuss the entity objects mapping to the solution domain in chapter
13). If the login fails, the login servlet displays an error message, and then restarts at

Login.jsp. If the login is successful, it is forwarded to another entity (not shown).

Note the use of Banner.jsp and Footer.jsp. Although we could have included the information
directly into individual JSPs, we have chosen this approach as it permits better reuse across

the entire application and also serves to keep these details isolated.

A common technique in Model 2 is to use a JavaBean as a means of passing information
between a servlet and a JSP. The idea is for the servlet to obtain and set the informationin a
JavaBean, and then forward the request on to the JSP. The JSP in turn uses the JavaBean to
obtain and publish the information to the end user of the information. We use this technique
for communication between the centralized controller for the remaining use cases and the

various pages for displaying the results to the end user.

Figure 11-8 shows an example of this technique in the context of the List transactions use case.

Figure 11-8. Using JavaBeans to share information

Main.jsp

==Build>=

<<Http_Servigt>=
MainServlet

— -e:-:Sub-mib-} } {ffﬂm 'I'I"Ehl_i
Main.jsp_Client
{from Main.jsp) <<Forward>>

e

P <<Build>> 0;9% <<lse Bean>> Transactinfo
g = . - (from web)

ListTr ts.] - tableData : Stri
ListTransact.jsp_Client stTransacts.jsp ng
(from ListTransacts.jsp) + Transactinfo()
+ getTransactTable()

In the figure, Main.jsp provides the anchor page for invoking the various commands available

to HomeDirect users. Any commands invoked by the user are submitted to the MainServlet,

which then coordinates the activities with the control and entity objects (not shown but

discussed in detail inchapter 12 andchapter 13, respectively). When MainServlet has gathered all

the information required for the response, it places the information in the JavaBean and
forwards the request on to the JSP. The JSP then accesses the bean using the jsp: useBean

tag and publishes it to the end user.

Figure 11-9 illustrates the dynamics associated with this scenario via a sequence diagram.

Figure 11-9. Sequence diagram detailing the login scenario

build and display results

M

% : Main.| : MainServiet : ListTransacts.jsp

: Customer —EE — :
i i i i
| List Transactions _| | |
i - : :
! i doGel o]
] [o |
E E :,,':I obtain transactions :
i) | <<creates> : i
: ! : T : Transactinfo
1 i i i —
E l le—1 store Transactinfo in session !
i ' : <<forward=> 2 |
I i I =1 :
i - 1 | getTransactTable |
s | | T
i
]
i
]
]
(]
]

The code fragment associated with setting up the Transactinfo bean for use by the

ListTransacts.jsp is shown in Figure 11-10.

Figure 11-10 Using a JavaBean to share information with a JSP

/'l Get the user session
Ht t pSessi on session = request. get Sessi on(true);

/1 Find collection of transacts
/'l Create bean to pass info to JSP page
TransactInfo transactlnfo = new Transact|nfo(transacts);

session.set Attri bute("Transact!lnfo", transactlnfo);

/1 Forward to next JSP page

Request Di spat cher di spatcher =
get Servl et Cont ext (). get Request Di spat cher ("/Li st Transacts.jsp");
di spat cher. forward(request, response);

Summary

JSPs are intended to separate content from presentation. They are conceptually very similar
to servlets. JSPs are essentially similar to a server-side scripting technology, the key

difference being that JSPs are compiled, whereas scripts are interpreted.

Although a JSP is equivalent to a servlet, a JSP is not intended as a replacement for a servlet.
Two development paradigms, generally referred to as Model 1 and Model 2, provide the

underpinnings for effective use of servlets and JSPs.

A JSP consists of Java code embedded within a structured document such as HTML or XML.
Tags are used to mark up specific pieces of JSP code. Users can also create their own tag

libraries in the form of taglib libraries.

In the UML, JSPs and associated technology relationships are modeled by stereotyping

existing UML constructs. A JSP is modeled as being composed of two distinct conceptual
elements: the client page and the server page. The relationship between the client page and
the server page is modeled as a build relationship. Client and server pages can also have

relationships with other client and server pages.

Chapter 12. Session Beans

Introduction to Enterprise JavaBeans

EJB Views and the UML

Session Beans

Types of Session Beans and Conversational State

Instance Passivation

Transactions

Session Bean Technology

Modeling Interface Behavior

Session Bean Life Cycle

Session Bean Common Scenarios

Modeling Session Bean Relationships

Managing Performance

The Local Client

Identifying Session Beans in Enterprise Applications

Summary

& Process Check: Once again our focus is on design as we progress
.‘* through the Rational Unified Process (RUP) analysis and design
discipline. We also discuss some aspects of implementation in the

context of the EJB technology.

In chapter 10, we decided to evolve the control object into a pair of servlets and have another
control object focus on the internal interaction and business logic. That internal interaction
and business logic is the domain of a specific type of Enterprise JavaBeans (EJB) known as a

session bean.

In this chapter, we start with a general discussion of EJB, and then look at how session beans
are modeled in the Unified Modeling Language (UML). We later dig into the key technological
aspects of session beans, and then finish with a discussion of where they fit into our evolving

HomeDirect online banking example.

Introduction to Enterprise JavaBeans

The EJB specification is at the very core of the Java 2 Platform, Enterprise Edition (J2EE)
platform. It defines a compre hensive component model for building scalable, distributed

server-based enterprise Java application components.

The main ideas behind the EJB specification are to:

Enable third parties, such as application server vendors, to provide as much of the
commonly required underlying infrastructure (such as dis tributed communication,
security, transactions, etc.) as possible in a uniform manner, thereby significantly
simplifying the task of the distributed application developer.

Provide the means to create reusabl components that can be shared across
platforms to reduce the overall development effort.

Provide a blueprint for the implementation of Enterprise Java applications.
Provide a model for the development of Enterprise Java applications such that the

development, assembly, and deployment aspects are decoupled.

In order to deliver on this vision, EJBs rely on several key concepts:

Container: Rather than deploying directly onto the application server, EJBs are

deployed within a container. A container provides t he execution environment for EJBs,
manages its life cycle, and provides additional services. (We discussed the container
concept in chapter 2.)

Proxy pattern: Rather than a monolithic component, EJBs take an approach based on
the proxy pattern. The idea is to separate out the component into client and remote
objects. Thus, an EJB user only sees the client object represented by the EJB

interfaces, and the remote object is free to change im plementation details, such as
network location, underlying transport, and so on, as required.

Deployment descriptor: To facilitate a decoupling of the development from
deployment, that is, to enable customization of the component post-development,
EJBs use the concept of a deployment descriptor. The deployment descriptor acts as
a means of declarative customization of the EJB without requiring modification to the

EJB code itself.

Using EJBs just because you think they are cool or because everyoneelse is using them can
get you in trouble down the road. There may be perfectly good solutions to the problem you

are trying to tackle that do not require EJBs.

The following list contains some possible reasons to consider using EJBs:

You need to support multiple client types, for example, a Java application and
browser-based front end. In this situation, the use of EJBs makes sense because you
can put the business logic and data in a set of EJB components that can be accessed
by multiple client types.

Multiple sources need to access and update data in a concurrent fashion. EJBs
provide built-in capabilities to address this issue.

Your application requires the use of database transactions. This capability is built into
EJBs and you can expect to see enhanced support in this area.

Your application requires fine-grained security such as the ability to restrict access at
the class operation level. This is again provided by EJBs.

Your application must be scalable to a very large number of users. EJBs are designed
for building large-scale distributed systems, so using EJBs will make the task of
adding additional servers much easier.

High availability is required or will be required for the application. If you anticipate
the need for zero or very little downtime, you will prob ably require some kind of
redundancy mechanism. This is not directly supported as such by EJBs, but coupled

with a good application server, it becomes easier to achieve this with EJB technology.

There are currently three different kinds of EJBs. We now focus our attention on EJBs known

as session beans.

EJB Views and the UML

Structurally, EJBs consist of a main Java class, often called theimplementation class or the
bean class, and two interfaces: Home and Remote. In the case of entity beans (discussed in
chapter 13), there is also aprimary key class. The relationships between these items, as well as
the particular J2EE base objects these items extend and implement, give the EJB its particular

functionality and usefulness as a J2EE component.

All EJBs make use of a deployment descriptor to hold additional information pertaining to the
component. This includes information like transaction settings on business methods, settings

for the bean type, security settings, and more.

EJB component types are deployed within an EJB container with the help of a deployment
utility. An EJB server hosts the EJB container. An EJB server is often referred to as an

enterprise application server, or most commonly as an application server. The particular
capabilities and level of compliance of the EJB server determine which version of the EJB

specification you need to be working with.

Representing an Enterprise JavaBean in UML

Given UML's breadth, it should not come as a surprise that there are seemingly multiple
potential ways to represent an EJB in the UML. Obvious candidates appear to be the two UML

constructs: class and component.

A UML class is deficient in that unlike an EJB, a class is typically fine-grained. In addition, a
class does not offer a very self-contained representation of an EJB by itself and requires

additional modeling support (such as packaging) to achieve that.

You could possibly me rge the different elements that make up an EJB and represent them as
a single UML class, for example, in a fashion similar to that shown infigure12-1. In such a case,
the class would need to have several different compartments, each containing design

information pertaining to a different aspect of the complete EJB.

Figure 12-1. Example of a class-based EJB representation

ShoppingCartBean

+ ejbActivate(): void
+ ejbPassiveate(): void
+ ejpRemove(): void Home methods

+ ejbCreate(): void

+addltem(): void gl — Remote methods
+ checkout(): void

This approach might first appear to present a more compact EJB model, but the large number
of necessary compartments can make working with this representation harder to understand
and more prone to error. It also exposes far more information to an EJB client than is

necessary or desirable.

Similarly, although the UML has the notion of component, it is not quite the same as an EJB
component. The UML component is more closely associated with implementation, for
example, representing a physical artifact such as a source code file. Furthermore, UML

components are not typically modeled during analysis and design {1

[1 Note that UML 1.4 will change the notion of a UML component and bring it closer to the
J2EE definition of a component.

Another approachZl is to use something that combines the capabilities of a class (more
precisely, aclassifier in general) as well as a package, namely asubsystem. As mentioned in
Chapter4, a subsystem isessentially a group of UML elements that represent a behavioral unit
in a model. It can have interfaces as well as operations. Subsystems, unlike components, are
typically significant from an analysis and design perspective and do not suffer from the

fine-grained nature of classes.

[?1 proposed by the UML EJB mapping team in response to JSR 26, Sun Community Process
(available at java.sun.com). For a good discussion of the rationale for this approach, see
Modeling Components and Frameworks with UML by Cris Kobryn, Communications of the
ACM, October 2000.

Given the sound rationale for using a subsystem for representing an EJB, the advantages it
offers, and the fact that this approach is likely to become the de facto standard, we have

chosen to use the subsystem construct to represent EJBs in this book.

It is best to look at EJBs from different perspectives relevant to specific roles (e.g., user,

developer, etc.). Let's take a look at these different views of anEJB. We'll discuss session

beans and technology details thereafter to elaborate further on these views.

Client View

The client view of an EJB includes what the client can access, which consists of the Home and
Remote interfaces. In a UML class diagram, the client view of an EJB is represented by a UML

subsystem for reasons discussed earlier.

An advantage of using the subsystem approach is the ability to expose those aspects that are
of particular relevance or hide irrelevant details. Figure 12-2 gives an example of a client view
showing elements inside the subsystem. Note the specific stereotypes shown on the different
elements. The stereotypes indicate that the UML constructs have been extended in their
meaning to support special needs of the J2EE architecture. Such stereotyping also offers a
simple and compact means of identifying the specific role played by a specific model element

that is part of an EJB.

Figure 12-2. Full client view representation of a session bean in a UML class

diagram

<<EJBSessionBean>>
ShoppingCart
(from Internet)

<<EJBSessionHomelnterface>>
ShoppingCartHome

+ create()

<<instantiate>>

<<EJBRemotelnterface>>
ShoppingCart

+ additem()
+ checkout()

In practice, it is often desired to just use one of the more compact representations of the UML
subsystem for the client view. This has the advantage of avoiding unnecessary clutter in your

model diagrams. In this case, the preferred client view representation is shown in Figure 12-3.

Figure 12-3. Compact client view representation of a session bean in a UML class

diagram

<<EJBSessionBean>>
ShoppingCart

O—

ShoppingCartHome

ShoppingCart

Internal View

The internal view of an EJB includes all components of the client view, the implementation
class and its associated relationships, and any other classes the user may have added to the
design of the EJB. In a UML class diagram, these elements appear as normal classes and

interfaces.

The client view is the fa@de for an EJB. The internal view of an EJB is obtained by exposing

the UML package contents completely, as shown in Figure 12-4.

Figure 12-4. Internal view representation of a session bean in a UML class diagram

=<EJBSessionBeanz>
ShoppingCart
{from Internal)
<<EJBSessionHomelnterface=>
ShoppingCartHome <<EJBImplementation>>
Shoppin rtEJB
<zEJBRealizeHomea>> ppingta
+ create() -
+ ejbCreate()
+ gjbRemove()
. iiat + ejbActivate()
<<instantiates= + ejbPassivate()
+ setSessionContext()
addit
<<EJBRemoteinterface>> |__E jBRealizeRemotes> : D"‘I.E-L‘.F?,Dnllﬁ}
ShoppingCart
+ additemi)
+ checkout()

Session Beans

The areas we have discussed thus far apply equally well to all EJBs. Now we'll focus our

attention specifically on the session bean type of EJB.

Session beans were the first EJB type to receive wide adoption and general use. In many J2EE
development projects today, session beans are the only EJB type actually being used. This is
likely to change in the future as the EJB specification enhances existing capabilities and

introduces additional bean types, and as enterprise application servers improve their support

for both the currently existing and newly defined types.

Popular Beans

Session beans are currently used primarily to handle client transactions or, as the name

implies, client sessions.

The key advantages of using session beans are

Built-in transaction management capabilities

Built-in state management capabilities

The beauty of using EJB components is that many additional benefits, such as automated

resource management, concurrency, and security, are also provided by the EJB container.

Every time you shop at a Web site built on the J2EE platform, there is a high likelihood that
a session bean is handling much of the state and transaction management aspects of your
shopping experience. Likewise, when dealing with your online trading brokerage, an Internet
banking account, or any number of services you can imagine on the Web, session beans are

most often being used to handle your transactions.

J2EE Versions

The topics covered in this chapter apply equally well to session beans using J2EE 1.3 as well
as J2EE 1.2. There are very few differences between the two specifications with respect to
session beans, and from a UML modeling point of view, they are essentially identical. As you
will see in later chapters, there are other EJB component types where this is not necessarily

the case.

Types of Session Beans and Conversational State

Session beans are designed to handle as many of the low-level state and transactional
aspects of a client session as possible. However, there are several levels of control that Web
developers may choose from to determine how much of the EJB container capabilities they

want to use, and how much they still want to code manually.

Session beans come in two major varieties, stateful and stateless. This determines whether

or not the component can retain what is known as conversational state.

Conversational state is defined as the data describing the conversation represented by a

specific client pairing with a session object.

If the session bean retains this state, it provides the client with the ability to work with a
particular session object, leave for some arbitrary amount of time (seconds, minutes, hours,
days, etc.), and then return at a later time and pick up exactly where he or she left off with

the same session object. This is called a stateful session bean.

In the opposite case, a client works with a given session object, and then leaves for some

random amount of time. Immediately upon leaving, the session object is dropped and no

conversational state is retained. If the client returns, a new session object is created and

everything starts from the beginning. This is called a stateless session bean.

Because stateless session beans take up less system resources, they tend to be deployed
more often than the stateful variety. As the requirements and client expectations for a
session bean grow and EJB containers provide more efficient resource management
capabilities, it becomes more compelling to use stateful session beans and reap the additional

benefits.

The most common characteristics for a stateful session bean include

Created for use by one client only

Callable by a unique identifier

Retain state across methods and transactions
Retain state through instance passivation

May implement session synchronization

The most common characteristics for a stateless session bean include

Created for use by many clients, one at a time
No unique identifier; usually part of a bean pool
No state kept across methods and transactions
No state kept through instance passivation

Cannot implement session synchronization

Modeling Session Bean Conversational State

UML statechart diagrams can be used effectively to model the conversational state of a
stateful session bean. Such modeling is useful in understanding the overall flow of the

conversation and helps simplify the design of the bean business logic.

An example is shown in Figure 12-5.

Figure 12-5. Modeling session bean conversational state

MakeReservations

SeLemer e getFlightOptions

\\‘{ ReadyForReservations]

.
cancelCutboundSelection
startOver setOutbound Ticketed
[CuthoundSelected l
" i
cancellnboundSelection sminRound /
Fl
[InboundSelected] Wiakerayment
exit
finalize
A
[AllSegmentsSelected J @

This example depicts the conversational state for a TravelReservations bean, a version of

which is commonly encountered on most Web-based flight reservations portals.

Making flight reservations involves several steps including setting up user preferences, such
as the number of seats required, desired flight times, airline preferences, price range, and so
on. The user then typically provides a pair of dates and to/from cities, which are used as the

outbound (starting city to destination) and return (inbound) segments.

The user is presented with the flight selections for the outbound segment and asked to
choose a flight. The process continues until the user has identified suitable flights and decides
to have the ticket issued or start over with different dates. A successful scenario leading to

the issuance of a ticket is shown in Figure 12-6.

Figure 12-6. TravelReservations bean reservation scenario

X

: Shopper TravelReservationsHome TravelReservations
I i |
I [} |
] create " !
i i :
l setUserPrefs %
I T 1
: : :
! getFlightOptions .
: ! g
Outbound flight : |
options list ' !
; I
] |
: setOutbound %
I] |
1] I
B 1 |
Inbound flight ' !
options list ' :
provided i |
] |
: setinbound !
e,
: : I
Presented with E |
chosen flights and I !
asked for confirmation ! :
] |
] finalize &
[T |
_ I i :
Payment options ; !
selection page ! !
; I
o i |
: makePayment o
: ! o
Ticket confirmation 0 E i
| I
] I
| !

As you can see from this statechart and sequence diagram, the use of the statechart to model
the conversational state makes the TravelReservations bean easier to comprehend and
implement. For instance, it is easy to see that the user can only set up the preference prior to
initiating the request for suitable flights. Any change in the user preferences requires the user
to start over. This may or may not have been the design intent but modeling the

conversational state in this fashion makes this very obvious.

Each of the states has specific implications for the data. That is, the states explicitly identify
the data required by the session bean as it moves through the conversational states. For
example, when the session bean is in the Ready state, it does not have any information
related to the flight segments. Similarly, when the session bean is in the
AllSegmentsSelected state, you know that it must have complete and valid information

related to all flight segments.

Instance Passivation

Passivation is a useful feature the EJB container provides specifically for stateful session
beans. Passivation occurs when the EJB is not currently in the middle of a client transaction,
and the EJB server decides it needs to swap out the bean to free up some memory or other
system resources. The swapped out EJB can then be activated again, usually on the next

client interaction that requires it.

For stateful session beans, the client is always returned to the same unique session object
once itis activated again. Only the particular client that initially created this session object
can do so. This is necessary to retain the conversational state as well as to provide security

for the information the client has placed within the particular session object.

In the stateless case, instance passivation is not specifically needed because it is inherent in
the way the EJB container works for beans of this type. When the client is finished with this
type of session object, it is cleaned and released back to a bean pool. The next time the
session object is activated, it is used by whichever client session needs it at the time, but note
that the session object has effectively been recycled to appear as good as new each time.
While in the bean pool, these objects are still in an active state, and if the EJB server decides
it needs to free up some resources, it just removes some of the idle session beans from the
pool, effectively destroying them. So passivation in this case is really just destruction, which

is okay because there is really no conversational state to hold on to.

Using the bean pool concept allows for many more clients to be handled than there are
session beans available; however, keep in mind the limitations that this case can impose,
especially for longer and more involved Web transactions. You don't want to choose stateless
beans only to find that the amount of reinitialization time required by the session bean greatly

outweighs any re source benefits you otherwise gain.

Cleanup and Removal

There are limits to the amount of time a session bean can hold on to resources on the EJB
server without doing any useful work. For example, perhaps the client left the Web site to do
something else and forgot to come back, or the network may be down, or the session object
is holding information for a shopping cart that the client never came back to purchase after a

given number of days. For such cases, the EJB container uses a bean removal mechanism.

Removal can occur for all session bean types. This is usually the result of a session bean
either being in the passivation state for longer than the EJB timeout setting allows, or the EJB
server is starving for resources and needs to destroy some idle beans. In very odd cases, this
can also be the result of an EJB server failure or crash, so Web developers need to design

their session beans to be able to withstand this scenario.

For stateful sessions, Web client scenarios like those previously described will typically result
in removal. If the Web client that created the session object never comes back, the session

must be destroyed because no one else can ever make use of it.

For stateless sessions, the reasons for removal are tied more to the particular EJB server
implementation. In this case, the server might notice that the pool of session beans is
underused, and that some other components being hosted need more system resources. So

in this case, the size of the session bean pool would be condensed as required.

Itis important to note that removal of a session object can never occur while a clientis in the
middle of using it. Removal can only happen while in the passivation or idle state. Of course
a server crash or other catastrophic failure can give you the roughequivalent of removal, but

this is clearly undesirable.

Transactions

Consider the Transfer funds use case discussed in earlier chapters. The use case boils down

to debiting one account and crediting the equivalent amount to another account.

A problem arises when a failure occurs after the funds have been debited from the first
account but not yet credited to the second account. This is problematic because, in general,
you would want both the debit and credit to take place or, if one failed, neither to takeplace.

In other words, the set of activities is closely tied to each other, and you want them to be

carried out as if they were a single unit-of-work .2l This unit-of-work is commonly referred to

as a business transaction or simply transaction.

31 From Richard Monson-Haefel's Enterprise JavaBeans, O'Reilly Press, 1999. Recommended

reading.

Another reason for transactions is the inherent distributed nature of enterprise software and
the need to not o nly minimize exception handling logic in the client, but also to have it applied
consistently without repetitious coding in multiple tiers. For example, exceptions do not offer
a lot of information about the state of the requested activity. Use of transactions avoids

reliance on exception handling to determine the future course of action.

Systems are generally expected to use transactions that follow the ACID principles:

Atomic: Transactions must execute completely or not at all. Transactions
successfully completed are committed (data updated); otherwise, the entire
transaction is rolledback.

Consistent: Proactively ensure that the system is in a consistent state. For example,
in the case of the Transfer funds use case, if the transaction fails for whatever reason,
the system retains consistency by reverting back to the state prior to the start of the
failed transaction. If the transaction completes successfully, the consistency check
requires that the balance of the debited account and the balance of the credited
amount be adjusted exactly by the transfer amount.

Isolated: While the transaction is executing, the data being accessed by the
transaction cannot be interfered with or accessed by another process or transaction
until after the transaction is complete.

Durable: Changes made as a result of the transaction are written to permanent data
store. This allows recovery of the system without loss of committed transactions in

the case of system crashes.

The ACID principles can serve as a guiding light in the design of ses sion beans. A properly
designed bean should meet the ACID test. You can compare a session bean design against

each of the principles to see whether it complies.

Transaction Demarcation

Session beans are designed primarily to be transactional in nature. Business methods defined
in the session bean are executed either as transactional methods or not, depending on the
attributes set in the deployment descriptor for the bean. When a method is defined as being
transactional, it must be called with atransaction context, which is either provided by the

client using the session or by the EJB container itself.

A transaction context provides access to specific calls used to indicate critical points in the
processing of a transaction. Depending on the demarcation type used, these calls are either
made manually by the developer of the EJB or automatically by the EJB container. They are

usually referred to as delimiters, or transaction demarcation methods:

begin: Indicates the transaction is about to begin processing.

commit: Indicates the transaction completed successfully and should now be
committed to the database.

rollback: Indicates the transaction failed for some reason and should not be
committed. An effective rollback implies that the session object is returned to the

state it was in before transaction processing started.

The transaction context can be used within a single business method or across any number of
session bean calls. Note that the transactions must be flat, meaning a transaction cannot be

nested within another in a session bean.

Bean-Managed Transactions

The first type of transaction demarcation is referred to as bean-managed trans action
demarcation. This is also commonly referred to as client-managed or bean-managed
transactions. In any case, this setting in the deployment descriptor implies that a client will
write its own transaction handling code, possibly making use of the
javax.transaction.UserTransaction interface, and demarcate the transaction by making

the appropriate begin, commit, and rollback calls as necessary.

This type of demarcation provides the most control to the user, but in many cases where the

transactional needs are fairly standard, this could cause the EJB developer to do more work

than is necessary. In fact, it could eliminate one of the primary benefits for using a session

bean in the first place.

Having transactional boundaries that cross more than a single business method can be a

reason for using bean-managed transactions.

Container-Managed Transactions

In most cases, clients prefer to have the EJB container take care of these transaction
demarcation calls. In the case of container-managed transactions, the container knows how
and when to invoke the begin and commit requests as well as when to perform some

standard processing to effectively do a rollback operation when it becomes necessary.

Using this method causes the EJB developer to have less control over what is actually done at
different points during the transaction. But the major benefit is that low-level transaction
details are taken care of for you, and this in itself is usually reason enough to use session

beans in this mode of operation.

In some cases, the EJB developer might determine there is still some special processing that
needs to be done just whenthe transaction is about to start or just after it completes. In this
case, the developer can still choose to use container-managed transactions while at the same

time make use of the special methods called out by the SessionSynchronization interface.

The SessionSynchronization Interface

With container-managed transaction demarcation, the EJB developer has the additional
choice of implementing the SessionSynchronization interface. This choice is only valid for
session beans. In this case, the EJB container still makes the demarcation calls for you, but

it also provides you with access to overload the following three methods in your bean class:

afterBegin: Issued immediately after the begin call for the transaction being made
and before any part of the business method actually executes.
beforeCompletion: Issued immediately after a commit call for the trans action
being made and before the commit is actually performed on the transaction. This is
the last point where a session can decide torollback the transaction just before it

completes.

afterCompletion: Issued after a commit call for the transaction being made and
immediately after the commitis actually performed on the transaction. This method
provides a boolean argument that determines if the commit call actually succeeded

or not.

In this way, the session bean can use the advantages provided by the EJB container of
already knowing how to make the transaction demarcation calls, but at the same time allow
the session bean to handle specific situations in a nonstandard fashion. All three of the

methods shown in Figure 12-7 are treated like any other session bean life cycle method.

Figure 12-7. Sequence diagram showing some typical session bean transactions

-

failed to updateQrder

L]
1
1
i
i
i
L
L
1
i
i
[T pmm————————————
1

OrderSassion ChargeProcessing Order Shipping
i) i i i
First o |] !
transaction i processCharge _ | i |
H i i i
] { [i
! updatgﬂrder . :
i i A i
; | requestShipping : -\.:
1 i i “i
i i i i
] | 1 :
}‘(:l commit | H i
I [} 1
] I] 1
3 I [] i
Next el : :
transaction processCharge h! E i
- i i
updateOrder ! !
i
[}
i
1
i

:

Note that in Figure 12-7 the begin/commit/rollback operations are not invoked on the

OrderSession EJB itself, but are shown as such for brevity. The methods are in fact defined by
the userTransaction object obtained from the ejbContext object. The ejbContext object
provides methods that can be used by an EJB to access the runtime environment details from

the container in which it is running.

Limitations for Stateless Session Beans

Note that for stateless session beans, both bean-managed and container-manager
transaction demarcation are possible, but implementing the SessionSynchronization
interface is specifically not allowed in this case. Also, there is an inherent limitation where
session objects that do not retain conversational state cannot possibly allow for transactions
to span more than one business method. For these reasons, we find in practice that stateless
session beans can only really be used successfully when the transactions involved are
relatively small and simple. Transactions that are more complicated demand the full

capability of a stateful session bean.

Transaction Attributes

As mentioned earlier, for container-managed demarcation, a transaction attri bute is
associated with each EJB method and is indicated in the deployment descriptor for theEIB.
These values instruct the EJB container on how it should manage the client transaction
whenever a given EJB method is called. Just about all user-defined methods in the EJB
require this value, whereas several of the inherited methods that are always found in an EJB

cannot use this setting.

Transaction attribute settings basically tell the EJB container whether you want to run the
method in the client's transaction, create a new transaction, or run the method with no
transaction. Running within a transaction implies that you are running with a transaction
context. This context is specifically required for cases where your EJB method requires access

to resource managers or where the persistent state of the EJB is also involved.

For session beans, transaction attributes are used with all of the business methods added to

the Remote interface. The following list contains the relevant values and their meaning:

NotSupported: This method is run without a transaction context. If one has been
passed in, it is ignored for the life of the method call and restored upon completion.
Required: This method is run with a transaction context. If none has been supplied,
a new one is created to use during the method call.

Supported: If the method is called without a context, it works just like

NotSupported. If called with a context, it runs exactly like the Required case.

RequiresNew: This method is run with a new transaction context created and used
during the call. If one has been passed in, it is ignored for the life of the method call,
and the new context is used instead and is restored upon completion.
Mandatory: This method is run with a transaction context. If none has been passed
in, an exception is thrown.

Never: This method is run without a transaction context. If one is supplied, an

exception is thrown.

Modeling Transactions

EJB transactions may be bean-managed or container-managed. Although both utilize the
same approach at a micro level, that is, from the perspective of what is happening

underneath the covers, the visibility and control at the bean developer level is different.

In the case of bean-managed transactions, the transaction boundaries can be made obvious
by showing the use of the appropriate operations in a sequence or collaboration diagram. For

an example, See Figure 12-7.

But no such possibility exists for container-managed transactions, as the identification of a

transaction is of a declarative nature.

One possible approach that can be used consistently across both types of transactions is to
use sequence diagram messages with appropriate stereotypes to identify the transaction

requirements.

Session Bean Technology

For the client, a session bean is seen as an object that implements some particular business
logic that the client needs and typically is involved with some sort of transactional or state
management requirements. Any given session object is only ever available to a single client;
however, as you have just seen, session objects can be recycled and reused if they are

stateless.

Home Interface

Every session bean needs to provide a Home interface. This is the interface used by the client

program to invoke the basic bean life cycle methods. The Home interface of every session

bean must define at least one method, create<METHOD=>, which creates an instance of the
session object, where <METHOD=> can be any method name usingcreate as the prefix plus

any combination of arguments.

For stateful session beans, any number of these create methods can bedefined with any
valid number of argument combinations. For stateless sessions, there can only be a single

create method with nothing else added to the name, and it must take no arguments.

For both session bean types, there are also remove life cycle methods that are already

present in the base EJB interfaces; therefore, they don't need to be defined again.

An example of session bean Home interface code follows:

package com honedi rect.ejb.control;

i mport java.rm .RenoteException;
i nport javax.ejb.*;

i mport com honedirect.ejb.profile.Profile;

public interface Control Home extends javax.ejb. EJBHone

{

public com honedirect.ejb.control.Control create()
throws java.rm . Renpt eExcepti on,
j avax. ej b. Creat eExcepti on;

Remote Interface

Every session bean also needs to provide a Remote interface. This is the interface used by the
client program to invoke all of the specific business methods that the session bean has been
built to support. Just about any method names and arguments can be used, but of course it's
a good idea to stay away from names that already have an alternate meaning in the

implementation class.

Both types of session beans require a Remote interface and the details for both are similar.

An example of session bean Remote interface code follows:

package com honedirect.ejb.control;

i mport java.rm . RenoteException;
i mport javax.ejb.*;

public interface Control extends javax.ejb.EJBObject

{
public Profile getProfile() throws java.rni.RenoteException;
public void setProfile(Profile profile) throws java.rm .RenoteException;

public String TransferFunds(String fromAccount,
String toAccount,
[ong | Anpunt)
throws java.rm . Renpt eException, Account Exception, GeneratorException;

Implementation Class

Additionally, each session bean has an implementation class or session bean class. It consists
of the actual implementations for all methods called out in the Home interface and the

Remote interface as well as the required session bean life cycle methods.

The implementation class must contain these methods:

ejbCreate<METHOD=>: For every create method called out in the Home interface,
there must be a matching method in the implementation class that differs only in that
the prefix used on the method name is ejbCreate instead of create. Arguments
must also match, but note that the return types are different. This method is often
minimal in size, perhaps performing just a few simple initialization steps for the EJB.
ejbRemove: This method must exist with no arguments and gets called when one of
the interface remove methods is invoked or when the EJB container initiates a
remove action on its own. This method does any final cleanup of the EJB—the
opposite of the initialization steps.

setSessionContext: This method must exist and is called by the EJB container to
allow the session bean to store the session context information in a local instance
variable. In most cases, this method consists of just one line to store the context.
Business methods: All business methods defined in the Remote interface must

have an exact match in the bean class in terms of method name and arguments. The

bulk of the logic for the EJB will exist in these methods. Accessor methods, like simple
gets and sets, also fall into this category.

ejbPassivate/ejbActivate: Because they are inherited from an interface, these
methods must always be present for all session beans, but should actually be
implemented only for stateful session beans. They are called during instance
passivation/activation actions. Often these methods will be left empty unless some

special initialization/cleanup routine is needed for when the EJB is passivated or

activated later on.

There can be additional methods in the session bean class that are there simply as utilities to
assist in supporting all of the other bean methods that are present. The session bean class is
also the place where you would typically store all of your instance variables to hold specific
information about the session object. In addition, the implementation class is also where the

SessionContext field is kept. An example of a session bean implementation class follows:
package com honedi rect.ejb.control;
i mport java.rm . RenoteException;

public class Control EJB i npl enments javax. ejb. Sessi onBean

{
/1 EJB cont ext

public javax.ejb. Sessi onCont ext EJB Cont ext;

/'l Private fields
private Profile profile = null;

/1 Lifecycle nmethods
public void ejbCreate()
{

account Hone = LookupHore. get Account Home() ;

}
/1 Other lifecycle nmethods

/1 Busi ness nethods
public Profile getProfile()
{

return profile;

}
public String TransferFunds(String fromAccount,

String toAccount,
| ong | Anpunt)
t hrows Account Exception, GeneratorException
{ /1 logic for TransferFunds

Modeling Interface Behavior

One of the challenges in component-based development is understanding how to properly
use the component. Although the interfaces of components, such as EJBs, do define services

provided by the component by exposing the relevant methods, not every combination or

ordering of the methods is valid.

For example, consider the Remote interface defined for a ShoppingCart session bean as

shown in Figure 12-8.

Figure 12-8. ShoppingCart session bean Remote interface

<<EJBRemotelnterface>>
ShoppingCart
(from Logical View)

+ showCartContents|()
+ addltem()

+ removeltem()

+ removeAll()

+ checkout()

+ cancelCheckout()

+ confirmCheckout()

Now consider the sequence diagram shown in Figure 12-9.

Figure 12-9. Sequence diagram showing usage of session bean

- Shopper : ShoppingCart

addltem()

|

|

|

|

e
:
; removeAll() -J
; i
i
addltem() <
o
:
; addltem() ‘x;
; i
i
' showCartContents() e
7
.
:
: checkout() \:
: g
confirmCheckout() i
=
:

The sequence diagram shows how the session bean will be used. But in order to confirm that
the bean can in fact be used in this way, you would need to read written documentation for
the bean or perhaps go through all the usage scenarios for the bean or examine the source of

the code itself.

A simple way to communicate how the bean is intended to be used is to use a statechart
diagram to model and document the interface!®. A statechart for the ShoppingCart Remote

interface is shown in Figure 12-10.

[l Based on [Selic 1994].

Figure 12-10. Statechart diagram for the ShoppingCart remote interface

removeAll

addlitem

shm-uGartGﬂntants

checkout

cancelCheckout :

removeltemn confirmCheckout

This statechart specifies all valid sequences in which this session bean can be used. If you
evaluate the sequence diagram infrigure 12-9 against the statechart, itis easy to see that the
sequence diagram contains a valid scenario. On the other hand, it is also easy to see that if
the same sequence diagram were modified so that it contained an additem() message

between the checkout() and confirmCheckout() messages, it would be an invalid scenario

based on this specific implementation of the ShoppingCart.
Session Bean Life Cycle

The session bean life cycle includes all of the concepts discussed thus far in this chapter. Figure
1211 shows a UML state diagram for the stateful session bean life cycle. Figure 12-12 shows the

significantly different (and simple) life cycle for a stateless session bean.

Figure 12-11. Stateful session bean life cycle

create nontransactional
business method

ejbActivate

transactional
method

_ ejbPassivate
(afterBegin)

timeout

C[Transactional
transactional
method nontransactional

method or
different method

Figure 12-12. Stateless session bean life cycle

newlnstance()
setSessionContexi()

ejbCreate()
(‘Yusiness method

Ready

ejpbRemove

Session Bean Common Scenarios

A standard scenario for using a session bean is for the client to proceed as follows:

1. Call the javax.rmi.PortableRemoteObject.narrow(...) method to get a reference
to the Home interface.

2. Using the Home interface reference, call the desiredcreate method for the session
object. A reference to the Remote interface for the session is returned.

3. Invoke any number of business methods using the Remote interface reference.

4. Call remove on either the Home interface or the Remote interface.

Some UML sequence diagrams showing the typical usage for a couple of different session
beans are illustrated in the following figures. Figure 12-13 shows a common scenario for a
stateless session bean. Figure 12-14 shows a more compllicated scenario inherent in a stateful

session bean. Both are shown using container-managed transaction demarcation.

Figure 12-13. A sequence diagram showing the typical usage of a stateless session

instance returned
to pool

bean
Client Home Remote Stateless Session
Implementation

H : H |
] i) I
| create 5 | |
1 1 1 I
! : getinstance g
[] T T Fai
] i] I
! : setSessionCix I

S
[] r T =
i : | I
o | moleintedace | i
]]] I
n i] I
- business method - l
I - = i
[] | (] |
] I : |
X] Container :
i : begins l
i : transaction \
i : . I
] i) I
] i] I
1 i] I
i i] I
] i] I
] 1 . |
L] Container :
| : commits :
i : transaction |
' I . I
- IEESEEASE. UEEESS St T J
1 i] I
] i] I
' remove %4 ' :
i =1] I
] I
" Session bean :
' I
] I
] I
1 !

Figure 12-14. A sequence diagram showing the typical usage of a stateful session

bean
Client Home Remote Stateful Session
Implementation
I)) 1]
| create o H |
[Py | |
! ! getinstance 2l
I i]]
: : setSessionCix :
| L A |
| i 1 |
I 1] I
| l ejbCreate |
| L L ::l
| 1 1 |
l | remotelnterface | l
T e T i
: business method iy |
: | i :
| E Container |
] [begins :
| \ transaction |
| 1 |
l l | business method _|
I 1 F -
: : bercomeonmacnn] :
1 1] I
| 1 I
: : Container !
I I commits :
i i transaction i
rre— pommmmm |
! : ejbPassivate and :
: - gjbActivate may occur | |
| 1 |
: other business method . :
: | = |
I : Sequence repeated - !
I I as above I
- — SR, T |
] remove ., | l
: =1 ejbRemove ! N
i i])

The example infigure 12-13 shows a successful transaction with boundaries across a single
business method. Note also that the client in this case only deals with the interfaces and
doesn't know, or need to know, any details of the implementation class. The physical location
of the implementation class has no impact on the client. This provides great flexibility in that
the implementation can be updated at a later date without affecting the client. The client is

only impacted if the interfaces themselves change.

The example inFigure 12-14 shows two successful transactions in the session, each with single
business method boundaries. Also note it is implied that the client waited a long time with no

call after the first result, causing the passivation sequence to occur.

Modeling Session Bean Relationships

A session bean can have relationships with other components and classes, for example,
JavaBeans, other session beans, servlets, and so on. Modeling of such relationships is

discussed in this section.

Session Beans and Plain Java Classes

A session bean is just a pattern application to a set of Java classes, and there is nothing
inherently unique about the individual elements that collectively make up a session bean. As
such, the relationships between a session bean element and other Java classes are quite
ordinary. For instance, an EJB implementation class could utilize a number of Java classes to
fulfill its needs. In such cases, a session bean would invoke methods on a Java class just as

another Java class would.

Figure 12-15 shows an example of modeling a session bean and other Java classes.

Figure 12-15. Session bean and Java classes

<<EJBSessionHomelnterface>>
QuerySessionHome
+ create()
[E. -5
. <<EJBRealizeHome>>
<<EJBSassion>>
: QuerySessionEJB
i QueryDetails
: + QuerySessionEJB() _ o
- + ejbRemove(Details | - St :javalang.String
{-:mst.?nilate:-:- . e:b i te{]} + theQuery >{-id:int
+ ejbPassivate() = priority ; int
i + setSessionContext() :
' + ejbCreate() + QueryDetails()
+ runCluery()
v .~"<<EJBRealizeRemote>>
z<EJBRemotelnterface=>
QuerySassion
+ runCluery()

Session Beans and JavaBeans

Session beans and JavaBeans can be used together in various fashions. For ex ample, a
JavaBean may be used as a way of exchanging information between session beans and other

JavaBeans in an enterprise application.

An interesting pattern®l is to use a JavaBean as an accessor to a session bean. This has the
advantage of providing a very simple interface to the client yet hides the full power of the EJB

architecture behind the simple JavaBean.

[51 Qutlined in Using JavaBeans as Accessors to Enterprise JavaBeansby Andre Tost, October,
1999, published by IBM Developerworks.

Session Beans and Servlets

Servlets are often used as intermediaries between session beans and the user interface. For
example, a servletgets invoked to handle the incoming HTTP request. The servletin turn calls

upon a session bean to perform some specific tasks.

In such a situation, it is the servlet that invokes the session bean. As such, the servlet may
also be responsible for locating the session bean on behalf of the client and instantiating the

bean to handle incoming requests.

On a class diagram, such relationships are shown as dependencies or unidirectional

associations from a servlet to a session bean. If the servlet doesn't needto be associated with
the same session bean over time (e.g., a stateless session bean instance that is different each
time), a dependency is appropriate for modeling the relationship. Otherwise, a unidirectional

association would better serve the modeling.

An example is shown inFigure 12-16. Optionally, a servlet to session bean association may be
stereotyped as <<instantiates>> to clearly identify that the servlet uses the session Home

interface to create the session bean.

Figure 12-16. Servlet and session bean relationships

<<Htp_Serviet>> 1
AppHandler
—eeeeeel > <<EJBSessionBean>>
+ init() CreditAutorization
+ destroy()
+ doGet()

Some J2EE practitioners have argued{fl that servlets, rather than processing the request and
response, should primarily focus on identifying and instantiating the appropriate session
beans suitable for the task at hand, and then simply forward the request and response
objects onward for the session bean to process. The argument is that it makes sense to use
servlets when you are dealing with a Web browser, but as the clients become diverse, it

makes sense to make the presentation logic client-agnostic and independent.

[¢1 see, for example, "Presentation Logic and EJBs: Using session beans to help bridge the

Java-HTML gap" by Michael Lacy, Java Developers Journal, May, 2000.

Session Bean and JavaServer Pages (JSP)

A JSP relationship with a session bean is essentially similar to that of a servlet and a session

bean. An example is shown in Figure 12-17.

Figure 12-17. JSP and session bean relationship

<<EJBSessionBean>>
CreditAuthorization
checkout
(from shopping)
<<Build>>

\/
E—

checkout_Client

However, even though a JSP gets compiled into a servlet, itis generally preferred to use a JSP
for presentation aspects and not embed detailed logic within the JSP as you would in a servlet.
One approach is to use a JSP to call upon a servlet, which is then responsible for interacting

with the session and/or entity beans.

Session-to-Session Relationships

A session bean may need to interact with other session beans to fulfill its responsibilities. For
instance, you may use a stateful session bean to manage the subcontractor order placement
session, and the stateful session bean may need to interact with a stateless session bean to

obtain authorization for accepting the order.

As another example, consider a possible implementation of a shopping session. The user
shopping session may be managed by a session bean, whichhas a one-to-one relationship

with a cart bean.

Such relationships are modeled as association or dependencies between session beans. If a
session bean needs to retain information about the other bean for an extended period of time,
that is, in between business methods, the appropriate method is to use an association.

Otherwise, a dependency is sufficient.

Using bean-to-bean relationships of this sort is sometimes referred to as session bean
chaining. Session bean chaining involving a single stateful session bean and multiple
stateless session beans is reasonable; however, caution is warranted if you are chaining
several stateful session beans together. Due to the stateful nature of the session beans, it
may take significant effort to set up the chain, so recmvering from failure in the chain can be

very time -consuming.

Figure 12-18 shows an example of a session bean-to-session bean relationship.

Figure 12-18. Session bean-to-session bean relationship

<<EJBSessionBean>> <<EJBSessionBean>=
OrderPlacementSession OrderAuthorization

Session Bean Inheritance

The current version of the EJB specification does not specify a mechanism for EJB component
inheritance. That is, subclassing of an entire EJB at once, such that you benefit from the
interfaces as well as the implementation class. Some server vendors may support such EJB

inheritance, but use caution if portability is a consideration.

The current recommendation is to subclass the Home and Remote interfaces and the
implementation class separately, and then use them as the basis for creating new session

beans.

Managing Performance

The decision touse EJB components in an enterprise application brings with it many benefits,
as previously described. However, one area which you always need to keep an eye on when

dealing with EJBs is their affect on the overall performance of the enterprise application.

EJBs in general make use of Remote Method Invocation (RMI) under the covers to effectively
arrive at the separation of interface and implementation. The benefit is easier development of
distributed applications and the ability to split the EJB workload o ver any number of different
machines. Your enterprise application might have a session EJB instance running on one
machine, whereas the entity objects and databases are somewhere else. By using EJBs with
this remote capability automatically built in, the developer doesn't need to know how

everything will eventually be deployed.

The drawback to this scheme is that a remote call is always more expensive, both time - and
resource-wise, as compared to a call to a local object. As far as J2EE 1.2 is concerned, there
are no alternatives to remote access. However, J2EE 1.3 is expected to support the concept

of a local client, which we discuss in "The Local Client" section below.

Minimizing Remote Calls

So if remote calls are expensive, and there is no way around using them, how do you

maximize your performance?

The primary rule to follow is to keep the number of EJB calls that you need to make to an
absolute minimum. For example, if your session bean has three different tasks it needs to
handle to support a request from a servlet, these should be rolled together into a single
business method on the session bean for the servlet to call. Often this means that internally
all this new business method does is call the other three methods directly. The pointis you

have now dropped the number of remote calls necessary to support this task by two.

The use of JavaBeans, as described earlier, can assist in lowering the total number of

necessary remote calls as well.

In addition, different application servers also offer several different mechanisms to
preallocate and pool resources, tune settings, and balance server loads to try to maximize the

overall performance of your application.

The Local Client

Up to this point, it has been assumed that we are always dealing with a remote client. J2EE

1.3 introduces the concept of the local client for both session beans and entity beans.

The local client was introduced as a way to improve performance when the required EJB
components are known to exist locally, running on the same Java Virtual Machine. When

referring to the local client, there are several differences that apply:

Remote client becomes local client

Remote interface becomes local interface

Home interface becomes local Home interface

The objects that implement these two interfaces must be Java objects that are local
to the client.

The arguments and results of all methods on these interfaces are now passed by

reference instead of by value.

By choosing to implement using the local client approach, you are potentially limiting the
ability to split up the processing of significant portions of your enterprise application over
multiple servers. In most cases, this drawback is greatly superseded by the gain in

performance this approach can have. This approach might be suitable as a starting point.
However, if you choose to follow the local client approach, it is a good idea to minimize the
number of calls made to local EJB components in preparation for the day they need to be

transformed into remote EJB components.

The local client is also recommended for most cases involving EJB-to-EJB relationships.
However, the local client will not be valid to use in cases where target EJBs exist in different
Java archive files or where a different transport mechanism is used to communicate with a

non-Java implementation.

Keep in mind that at the time of this writing the local client approach is still not finalized.
However, it is generally expected that this new feature will be carried over to the final version

of the J2EE 1.3 specification.

Identifying Session Beans in Enterprise Applications

In the previous chapter, we split up the control object behavior into externally focused
servlets and an internally focused control object with the main responsibility for business

logic and handling interactions with entity objects.

Based on the discussion so far, you can probably already see that the ses sion bean concept

is ideally suited for being that internally focused control object.

In the context of using the session bean for the internally focused control object in the

Transfer funds scenario, there are several details left to sort out:

Is the session bean responsible for a single act, that is, to transfer funds, or does it
have other responsibilities?

Is this a stateless or stateful session bean?

What kind of transactions does it have?

Should it employ container-managed transactions or bean-managed transactions?

We could make it a single purpose EJB focused on just transferring funds, but recall from our
earlier discussions that the EJBs are less granular in nature than a single operation. One way
to determine this is to ask whether it would make sense for you to buy or sell the EJB as a
component so it could be used by another similar enterprise Java application. Clearly,

Transfer funds would not stand by itself as a whole component, but if you consider a session
bean that handles the business logic required to support a banking customer's requests,
packaging the functionality as a component makes more sense. So, during this first pass, we
decide that Transfer funds, at least in this case, is one of several responsibilities of a session

bean that handles a banking session.

The stateful versus stateless decision is not always easy. As a general rule of thumb, if the
session bean needs to remember a significant number of items during the course of a
complete transaction and those items are not already being held in a database object, it

needs to have conversational state and should be a stateful session bean.

In this specific case, the request to transfer funds involves only a few pieces of data, namely
the amount to transfer and the accounts involved. Some might argue that all of the account
data should be held in the session bean as well to prevent having to gather this information
every time. In fact, this usually isn't necessary or even desirable because this data is readily

accessible through entity objects. You would run the risk of using data that is out of date if

you did this, or you would be dealing with data synchronization issues that were otherwise

unnecessary.

So in this case, we'll use the stateless session bean.

The next question is whether bean-managed or container-managed transactions are desired.
The general answer is container-managed unless the particular application server you are
working with somehow prevents you from accomplishing what you need or if your needs fall
outside of any normal transaction processing. We are not doing anything strange or unusual

in this scenario, so we'll use container-managed transactions.

Also keep in mind that each call to an EJB is potentially a remote network call, which is much
more costly than just a function call. We want to minimize the number of calls required to
accomplish each customer request for best performance. In the Transfer funds scenario, it is
not practical to have several interactions with the session bean to transfer funds. Rather, this

should be limited to a single request to transfer funds.

Based on the preceding discussion and choices, the revised sequence diagram for the

Transfer funds use case is shown in Figure 12-19.

Figure 12-19. Revised Transfer funds with control EJB details

X SEagen e

ey | versens | rateens v et

Prodile Faccount Taccound transact
1 1 - : . : i
1 : h I [i 1
! | | i [L]]
[i r 1 1] L] L)
; : E i | i : '
; : 1| when the user logs | | :] ' { i
i i i | in, Shown herefor | | ! ' H : i
1 : 1| completenass | i ; ' : :
1 i I 1 i [4 L]
! tansler _| : I : | : r : :
.' > transfer request ! I | i : i i
1 i i] i = 4 £ 1
: ! ibuild account list | ; ; ' : '
1 i 1 1 [[! ! x
1 1 1 1 [[! ' H
: | Sor BeCoUNtE: Mot : : : : ! :
E <R : E E : :‘ 5 ;
! salect accounts, amound | ! : : | i i '
—_— T i i 1 | [! H '
‘ | tansfer ! o | i i ' : '
: : ; Ty oniies | | -‘ ! :
! L : 3 I ¥ ¥ i [
; ! : : : l l = ! :
' : E | transler | N | : i i
i | i i | | gel balance o ; '
' : i ! | T e H H
:] i || Transter confirmation ! ! : H
H . i 1| dotails not shown ! : 1 :
1 1] 1 | - I H
1 1] i T H r i 1 1
H 1] ! ! - i