

THE

DESIGN PATTERNS

JAVA COMPANION

JAMES W. COOPER

sal1ag sula)ed ubise As|sep\-UOSIPPY

October 2, 1998

Copyright © 1998, by James W. Cooper

Some Background on Design Patterns
Defining Design Patterns

This Book and its Parentage

The Learning Process

Studying Design Patterns

Notes on Object Oriented Approaches
The Java Foundation Classes

Java Design Patterns

1. Creational Patterns 17

The Factory Pattern

How a Factory Works

Sample Code

The Two Derived Classes

Building the Factory

Factory Patternsin Math Computation
When to Use a Factory Pattern
Thought Questions

The Abstract Factory Pattern

A GardenMaker Factory

How the User Interface Works
Consequences of Abstract Factory
Thought Questions

The Singleton Pattern

Throwing the Exception

Creating an Instance of the Class
Static Classes as Singleton Patterns
Creating Singleton Using a Static Method

10
11
13
13
14
14
15
15

18
18
18
19
20
22
24
25
26
26
28
30
30
31
32
32
33

Finding the Singletonsin a Large Program
Other Consequences of the Singleton Pattern
The Builder Pattern
An Investment Tracker
Calling the Builders
The List Box Builder
The Checkbox Builder
Consequences of the Builder Pattern
Thought Questions
The Prototype Pattern
Cloning in Java
Using the Prototype
Consequences of the Prototype Pattern
Summary of Creational Patterns
2. TheJava Foundation Classes 52
Installing and Using the JFC
Ideas Behind Swing
The Swing Class Hierarchy
Writing a Simple JFC Program
Setting the Look and Fesl
Setting the Window Close Box
Making a JxFrame Class
A Simple Two Button Program
More on JButtons
Buttons and Toolbars
Radio Buttons
The JT ool Bar
Toggle Buttons

35
35
37
38
40
42

ER&

45
47
50

51

52
53

I G U

55
56
57
59
59
59
60

Sample Code 61
Menus and Actions 62
Action Objects 62
Design Patterns in the Action Object 65
The JList Class 67
List Selections and Events 68
Changing aList Display Dynamically 69
The JTable Class 71
A Simple JTable Program 71
Cell Renderers 74
The JTree Class 77
The TreeModel Interface 78
Summary 79
3. Structural Patterns 80
The Adapter Pattern 81
Moving Data between Lists 81
Using the JFC JList Class 83
Two Way Adapters 87
Pluggable Adapters 87
Adaptersin Java 88
The Bridge Pattern 90
Building a Bridge 91
Consequences of the Bridge Pattern 93
The Composite Pattern 95
An Implementation of a Composite 96
Building the Employee Tree 98

Restrictions on Employee Classes 100

Conseguences of the Composite Pattern
Other Implementation Issues
The Decorator Pattern
Decorating a Cool Button
Using a Decorator
Inheritance Order
Decorating Bordersin Java
Non-Visual Decorators
Decorators, Adapters and Composites
Consequences of the Decorator Pattern
The Facgade Pattern
Building the Facade Classes
Consequences of the Facade
The Flyweight Pattern
Discussion
Example Code
Flyweight Usesin Java
Sharable Objects
The Proxy Pattern
Sample Code
Copy-on-Write
Comparison with Related Patterns
Summary of structural patterns
4. Behavioral Patterns 129
Chain of Responsibility
Applicability
Sample Code

100
101
103
103
105
107
107
109
110
110
111
112
115
117
117
118
122
122
124
124
127
127
128

130
130
131

The List Boxes 133
A Chainor aTree? 135
Kinds of Requests 137
Examplesin Java 137
Consequences of the Chain of Responsibility 138
The Command Pattern 139
Motivation 139
The Command Peattern 140
Building Command Objects 141
The Command Pattern in Java 142
Consequences of the Command Pattern 143
Providing Undo 144
The Interpreter Pattern 145
Motivation 145
Applicability 145
Sample Code 146
Interpreting the Language 147
Objects Used in Parsing 148
Reducing the Parsed Stack 150
Consequences of the Interpreter Pattern 153
The Iterator Pattern 155
Motivation 155
Enumerations in Java 156
Filtered Iterators 156
Sample Code 157
Consequence of the Iterator Pattern 159
Composites and Iterators 160

The Mediator Pattern 161

An Example System 161
Interactions between Controls 162
Sample Code 164
Mediators and Command Objects 167
Consequences of the Mediator Pattern 167
Implementation Issues 168
The Memento Pattern 169
Motivation 169
Implementation 169
Sample Code 170
Consequences of the Memento 175
Other Kinds of Mementos 176
The Observer Pattern 177
Watching Colors Change 178
The Message to the Media 181
Th JList as an Observer 182
The MV C Architecture as an Observer 183
Consequences of the Observer Pattern 184
The State Pattern 185
Sample Code 185
Switching Between States 190
How the Mediator Interacts with the State Manager 191
Conseguences of the State Pattern 192
State Transitions 192
Thought Questions 192
The Strategy Pattern 194
Motivation 194

Sample Code 195

The Context 196
The Program Commands 197
The Line and Bar Graph Strategies 198
Drawing Plotsin Java 198
Conseguences of the Strategy Pattern 201
The Template Pattern 202
Motivation 202
Kinds of Methods in a Template Class 203
Sample Code 204
The Triangle Drawing Program 207
Templates and Callbacks 208
Summary and Consequences 209
The Visitor Pattern 210
Motivation 210
When to Use the Visitor Pattern 211
Sample Code 212
Visiting Several Classes 214
Bosses are Employees, too 215
Double Dispatching 216
Traversing a Series of Classes 216

Consequence of the Visitor Pattern 216

10

SOME BACKGROUND ON DESIGN PATTERNS

The term “design patterns’” sounds a bit formal to the uninitiated and
can be somewhat off-putting when you first encounter it. But, in fact, design
patterns are just convenient ways of reusing object-oriented code between
projects and between programmers. The idea behind design patternsis
simple-- write down and catalog common interactions between objects that
programmers have frequently found useful.

The field of design patterns goes back at least to the early 1980s. At
that time, Smalltalk was the most common OO language and C++ was still in
itsinfancy. At that time, structured programming was a commonly-used
phrased and OO programming was not yet as widely supported. The idea of
programming frameworks was popular however, and as frameworks
developed, some of what we now called design patterns began to emerge.

One of the frequently cited frameworks was the Model-View-
Controller framework for Smalltalk [Krasner and Pope, 1988], which divided
the user interface problem into three parts. The parts were referred to as a
data model which contain the computational parts of the program, the view,
which presented the user interface, and the controller, which interacted
between the user and the view.

N

Data
mode!

Controller

Each of these aspects of the problem is a separate object and each has
its own rules for managing its data. Communication between the user, the
GUI and the data should be carefully controlled and this separation of
functions accomplished that very nicely. Three objects talking to each other
using this restrained set of connectionsis an example of a powerful design
pattern.

11

In other words, design patterns describe how objects communicate
without become entangled in each other’ s data models and methods. Keeping
this separation has always been an objective of good OO programming, and if
you have been trying to keep objects minding their own business, you are
probably using some of the common design patterns already. Interestingly
enough, the MV C pattern has resurfaced now and we find it used in Java 1.2
as part of the Java Foundation Classes (JFC, or the “Swing” components).

Design patterns began to be recognized more formally in the early
1990s by Helm (1990) and Erich Gamma (1992), who described patterns
incorporated in the GUI application framework, ET++. The culmination of
these discussions and a number of technical meetings was the publication of
the parent book in this series, Design Patterns -- Elements of Reusable
Software, by Gamma, Helm, Johnson and Vlissides.(1995). This book,
commonly referred to as the Gang of Four or “GoF’ book, has had a powerful
impact on those seeking to understand how to use design patterns and has
become an all-time best seller. We will refer to this groundbreaking book as
Design Patterns, throughout this book and The Design Patterns Smalltalk
Companion (Alpert, Brown and Woolf, 1998) as the Smalltalk Companion.

Defining Design Patterns

We all talk about the way we do thingsin our everyday work,
hobbies and home life and recognize repeating patterns all the time.

Sticky buns are like dinner rolls, but | add brown sugar and nut filling to
them.

Her front garden is like mine, but, in mine | use astilbe.

This end table is constructed like that one, but in this one, the doors
replace drawers.

We see the same thing in programming, when we tell a colleague
how we accomplished atricky bit of programming so he doesn’t have to
recreate it from scratch. We simply recognize effective ways for objectsto
communicate while maintaining their own separate existences.

Some useful definitions of design patterns have emerged as the
literature in his field has expanded:

“Design patterns are recurring solutions to design problems you see over
et. al., 1998).

12

“Design patterns congtitute a set of rules describing how to accomplish
certain tasks in the realm of software development.” (Pree, 1994)

“Design patterns focus more on reuse of recurring architectural design
themes, while frameworks focus on detailed design... and
implementation.” (Coplien & Schmidt, 1995).

“A pattern addresses a recurring design problem that arises in specific
design situations and presents a solution to it” (Buschmann, et. al. 1996)

“Patterns identify and specify abstractions that are above the level of
single classes and instances, or of components.” (Gamma, et al., 1993)

But whileit is helpful to draw analogies to architecture, cabinet
making and logic, design patterns are not just about the design of objects, but
about the communication between objects. In fact, we sometimes think of
them as communication patterns. It is the design of simple, but el egant,
methods of communication that makes many design patterns so important.

Design patterns can exist at many levels from very low level specific
solutions to broadly generalized system issues. There are now in fact
hundreds of patternsin the literature. They have been discussed in articles
and at conferences of al levels of granularity. Some are examples which have
wide applicability and afew (Kurata, 1998) solve but a single problem.

It has become apparent that you don’t just write a design pattern off
the top of your head. In fact, most such patterns are discovered rather than
written. The process of looking for these patternsis called “ pattern mining,”
and is worthy of a book of its own.

The 23 design patterns selected for inclusion in the original Design
Patterns book were ones which had several known applications and which
were on amiddle level of generality, where they could easily cross
application areas and encompass several objects.

The authors divided these patterns into three types creational,
structural and behavioral.

Creational patterns are ones that create objects for you, rather than
having you instantiate objects directly. This gives your program more
flexibility in deciding which objects need to be created for a given case.

Structural patterns help you compose groups of objects into larger
structures, such as complex user interfaces or accounting data.

13

Behavioral patterns help you define the communication between objects
in your system and how the flow is controlled in a complex program.

We' Il belooking at Java versions of these patterns in the chapters that
follow.

ThisBook and its Parentage

Design Patternsis a catalog of 23 generally useful patterns for
writing object-oriented software. It iswritten as a catalog with short examples
and substantial discussions of how the patterns can be constructed and
applied. Most of its examples are in C++, with afew in Smalltalk. The
Smalltalk Companion (Alpert, 1998) follows a similar approach, but with
somewhat longer examples, all in Smalltalk. Further, the authors present
some additional very useful advice on implementing and using these patterns.

This book takes a somewhat different approach; we provide at |east
one complete, visua Java program for each of the 23 patterns. This way you
can not only examine the code snippets we provide, but run, edit and modify
the complete working programs on the accompanying CD-ROM. You'll find
alist of al the programs on the CD-ROM in Appendix A.

The Learning Process
We have found learning Design patternsis a multiple step process.

1. Acceptance
2. Recognition
3. Internalization

First, you accept the premise that design patterns are important in your work.
Then, you recognize that you need to read about design patterns in order to
know when you might use them. Finally, you internalize the patternsin
sufficient detail that you know which ones might help you solve agiven
design praoblem.

For some lucky people, design patterns are obvious tools and they grasp their
essentid utility just by reading summaries of the patterns. For many of the
rest of us, there is a dow induction period after we' ve read about a pattern
followed by the proverbia “Ahal” when we see how we can apply them in
our work. This book helps to take you to that final stage of internalization by
providing complete, working programs that you can try out for yourself.

14

The examplesin Design Patterns are brief, and are in C++ or in some
cases, Smalltalk. If you are working in another language it is helpful to have
the pattern examples in your language of choice. This book attempts to fill
that need for Java programmers.

A set of Java examples takes on aform that is alittle different than in
C++, because Javais more strict in its application of OO precepts -- you can’t
have global variables, data structures or pointers. In addition, we'll see that
the Java interfaces and abstract classes are amajor contributor to how we
build Java design patterns.

Studying Design Patterns

There are severa alternate ways to become familiar with these
patterns. In each approach, you should read this book and the parent Design
Patterns book in one order or the other. We a so strongly urge you to read the
Smalltalk Companion for completeness, since it provides an alternate
description of each of the patterns. Finally, there are a number of web sites on
learning and discussing Design Patterns for you to peruse.

Notes on Object Oriented Approaches

The fundamental reason for using varies design patternsis to keep
classes separated and prevent them from having to know too much about one
another. There are a number of strategies that OO programmers use to
achieve this separation, among them encapsulation and inheritance.

Nearly al languages that have OO capabilities support inheritance. A
class that inherits from a parent class has access to all of the methods of that
parent class. It also has accessto al of its non-private variables. However, by
starting your inheritance hierarchy with a complete, working class you may
be unduly restricting yourself as well as carrying along specific method
implementation baggage. Instead, Design Patterns suggests that you always

Program to an interface and not to an implementation.

Purring this more succinctly, you should define the top of any class hierarchy
with an abstract class, which implements no methods, but smply defines the
methods that class will support. Then, in al of your derived classes you have
more freedom to implement these methods as most suits your purposes.

The other major concept you should recognize is that of object composition.
Thisis simply the construction of objects that contain others: encapsulation of

15

several objectsinside another one. While many beginning OO programmers
use inheritance to solve every problem, as you begin to write more elaborate
programs, the merits of object composition become apparent. Y our new
object can have the interface that is best for what you want to accomplish
without having all the methods of the parent classes. Thus, the second major
precept suggested by Design Patternsis

Favor object composition over inheritance.

At first this seems contrary to the customs of OO programming, but you will
see any number of cases among the design patterns where we find that
inclusion of one or more objects inside another is the preferred method.

The Java Foundation Classes

The Java Foundation Classes (JFC) which were introduced after Java
1.1 and incorporated into Java 1.2 are a critical part of writing good Java
programs. These were also known during development as the “Swing” classes
and il are informally referred to that way. They provide easy ways to write
very professional-looking user interfaces and allow you to vary the look and
feel of your interface to match the platform your program is running on.
Further, these classes themselves utilize a number of the basic design patterns
and thus make extremely good examples for study.

Nearly al of the example programs in this book use the JFC to
produce the interfaces you see in the example code. Since not everyone may
be familiar with these classes, and since we are going to build some basic
classes from the JFC to use throughout our examples, we take a short break
after introducing the creational patterns and spend a chapter introducing the
JFC. While the chapter is not a complete tutorial in every aspect of the JFC, it
does introduce the most useful interface controls and shows how to use them.

Many of the examples do require that the JFC libraries are installed,
and we describe briefly what Jar files you need in this chapter as well.

Java Design Patterns

Each of the 23 design patternsin Design Patterns is discussed in the
chapters that follow, along with at least one working program example for
that pattern. The authors of Design Patterns have suggested that every
pattern start with an abstract class and that you derive concrete working

16

classes from that abstraction. We have only followed that suggestion in cases
where there may be several examples of a pattern within a program. In other
cases, we start right in with a concrete class, since the abstract class only
makes the explanation more involved and adds little to the elegance of the
implementation.

James W. Cooper
Wilton, Connecticut
Nantucket, M assachusetts

17

Creational Patterns

All of the creational patterns deal with the best way to create
instances of objects. Thisisimportant because your program should not
depend on how objects are created and arranged. In Java, of course, the
simplest way to create an instance of an object is by using the new operator.

Fred = new Fred(); //instance of Fred cl ass

However, this really amounts to hard coding, depending on how you
create the object within your program. In many cases, the exact nature of the
object that is created could vary with the needs of the program and
abstracting the creation process into a special “creator” class can make your
program more flexible and general.

The Factory Method provides a smple decision making class that
returns one of several possible subclasses of an abstract base class depending
on the data that are provided.

The Abstract Factory Method provides an interface to create and
return one of several families of related objects.

The Builder Pattern separates the construction of a complex object
from its representation, so that several different representations can be created
depending on the needs of the program.

The Prototype Pattern starts with an initialized and instantiated
class and copies or clones it to make new instances rather than creating new
instances.

The Singleton Pattern is a class of which there can be no more than
one instance. It provides a single global point of access to that instance.

18

THE FACTORY PATTERN

Onetype of pattern that we see again and again in OO programsis
the Factory pattern or class. A Factory pattern is one that returns an instance
of one of several possible classes depending on the data provided to it.
Usually al of the classes it returns have a common parent class and common
methods, but each of them performs a task differently and is optimized for
different kinds of data.

How a Factory Works

To understand a Factory pattern, let’slook at the Factory diagram
below.

Xy Xz

Inthisfigure, x isabase class and classes xy and xz are derived from
it. The Factory is a class that decides which of these subclasses to return
depending on the arguments you give it. On the right, we define a getClass
method to be one that passes in some value abc, and that returns some
instance of the class x. Which one it returns doesn't matter to the programmer
since they all have the same methods, but different implementations. How it
decides which one to return is entirely up to the factory. It could be some very
complex function but it is often quite smple.

Sample Code

Let's consider a simple case where we could use a Factory class.
Suppose we have an entry form and we want to allow the user to enter his
name either as “firstname lasthame” or as “lastname, firstname’. We'll make

19

the further simplifying assumption that we will aways be able to decide the
name order by whether there is a comma between the last and first name.

Thisis a pretty simple sort of decision to make, and you could make
it with asimple if statement in asingle class, but let’suse it here to illustrate
how a factory works and what it can produce. We' Il start by defining asimple
base class that takes a String and splits it (somehow) into two names:
cl ass Namer {

/la sinple class to take a string apart into two nanes

protected String last; //store |ast nane here
protected String first; //store first nane here

public String getFirst() {
return first; //return first nane

}
public String getLast() {

return |ast; //return | ast nane
}

}
In this base class we don't actually do anything, but we do provide

implementations of the getFirst and getLast methods. We'll store the split
first and last namesin the Stringsfirst and last, and, since the derived classes
will need access to these variables, we'll make them protected.

The Two Derived Classes

Now we can write two very simple derived classes that split the name
into two parts in the constructor. In the FirstFirst class, we assume that
everything before the last space is part of the first name:

class FirstFirst extends Nanmer { /Ilsplit first |ast
public FirstFirst(String s)
int i = s.lastlndexCf(" "); //find sep space
if (i >0 {

Illeft is first nane

first = s.substring(0, i).trim);
[lright is last nane

| ast =s.substring(i+1).trinm();

}
else {
first =“"; /1 put all in last nanme
last = s; /1 if no space
}

20

And, in the LastFirst class, we assume that a comma delimits the last
name. In both classes, we aso provide error recovery in case the space or
comma does not exist.

cl ass LastFirst extends Namer { /lsplit last, first
public LastFirst(String s) {
int i = s.indexCf(","); //find comma
if (i >0 {

//left is last nane

last = s.substring(0, i).trim();
/lright is first name

first = s.substring(i + 1).trim();

}
el se
last = s; /1 put all in last nane
first =""; // if no conmma
}

}
}

Building the Factory

Now our Factory classis extremely simple. We just test for the
existence of a comma and then return an instance of one class or the other:

cl ass NanmeFactory {
//returns an instance of LastFirst or FirstFirst
/ / dependi ng on whether a comma is found

public Namer get Namer(String entry) {

int i = entry.indexOH(","); // comma det er mi nes nane
or der
if (i>0)
return new LastFirst(entry); //return one class
el se
return new FirstFirst(entry); //or the other
}
}

Using the Factory
Let’s see how we put this together.
We have constructed a simple Java user interface that allows you to

enter the namesin either order and see the two names separately displayed.
Y ou can see this program below.

21

Y ou type in a name and then click on the Compute button, and the
divided name appearsin the text fields below. The crux of this program is the
compute method that fetches the text, obtains an instance of a Namer class
and displays the results.

In our constructor for the program, we initialize an instance of the
factory classwith

NameFactory nfactory = new NaneFactory();

Then, when we process the button action event, we call the
computeName method, which calls the getNamer factory method and then
calsthefirst and last name methods of the class instance it returns:

private void conput eNane() {
/Isend the text to the factory and get a class back
nanmer = nfactory. get Namer(entryFi el d. get Text());

//compute the first and | ast nanes
/lusing the returned cl ass
t xFi r st Nane. set Text (naner.getFirst());
t xLast Nane. set Text (namer . get Last ());
}
And that’ s the fundamental principle of Factory patterns. Y ou create
an abstraction which decides which of several possible classes to return and

returns one. Then you call the methods of that class instance without ever

22

knowing which derived class you are actually using. This approach keeps the
issues of data dependence separated from the classes useful methods. Y ou
will find the complete code for Namer.java on the example CD-ROM.

Factory Patternsin Math Computation

Most people who use Factory patterns tend to think of them as tools
for ssimplifying tangled programming classes. But it is perfectly possible to
use them in programs that smply perform mathematical computations. For
example, in the Fast Fourier Transform (FFT), you evaluate the following
four equations repeatedly for alarge number of point pairs over many passes
through the array you are transforming. Because of the way the graphs of
these computations are drawn, these equations constitute one instance of the
FFT “butterfly.” These are shown as Equations 1--4.

R =R +R,cos(y)- I,sin(y) (1)
R, =R - R,cos(y) +1,sin(y))
I, =1, +R,sin(y) + 1, cos(y) 3)
|, =1,- Rysin(y)- |, cos(y) 4

However, there are a number of times during each pass through the
datawhere the angley is zero. In this case, your complex math evaluation
reduces to Equations (5-8):

R=R+R, ®)
R,=R - R, (6)
=1, +1, (7)
l,=1,-1, (8)

So it is not unreasonable to package this computation in a couple of
classes doing the simple or the expensive computation depending on the
angley. We'll start by creating a Complex class that alows us to manipulate
real and imaginary number pairs:
cl ass Conpl ex {

float real;
float inmg;
}
It also will have appropriate get and set functions.

23

Then we'll create our Butterfly class as an abstract class that we'll fill
in with specific descendants:

abstract class Butterfly {
float vy;
public Butterfly() {

public Butterfly(float angle) {
y = angl e;

}
abstract public void Execute(Conplex x, Conplex y);

}
Our two actual classes for carrying out the math are called

addBuitterfly and trigButterfly. They implement the computations shown in
equations (1--4) and (5--8) above.

class addButterfly extends Butterfly {
float oldrl, oldi1;

public addButterfly(float angle) {

}

public void Execute(Conplex xi, Conplex Xj) {
oldrl = xi.getReal ();
oldil = xi.getlmg();
xi .setReal (ol drl1 + xj.getReal
Xj .setReal (ol drl - xj.getReal
xi.setlmag(oldil + xj.getlnmg
xj .setlmag(oldil - xj.getlnmg

; //add and subtract

A~ NN~
— N
—

and for the trigonometic version:

class trigButterfly extends Butterfly {
float vy;
float oldrl, oldi1;
fl oat cosy, siny;
float r2cosy, r2siny, i2cosy, i2siny;

public trigButterfly(float angle) {
y = angl e;
cosy = (float) Math.cos(y); //preconpute sine and cosine
siny = (float)Math.sin(y);

}
public void Execute(Conplex xi, Conplex Xj) {
oldrl = xi.getReal (); //multiply by cos and sin
oldil = xi.getlmg();
r2cosy = xj.getReal () * cosy;
r2siny = xj.getReal () * siny;
i 2cosy = xj.getlmg()*cosy;

24

i 2siny = xj.getlmg()*siny;
xi.setReal (ol drl + r2cosy +i2siny); //store suns
xi.setlmag(oldil - r2siny +i2cosy);
Xj .setReal (oldrl - r2cosy - i2siny);
Xj.setlmag(oldil + r2siny - i2cosy);
}
}

Finally, we can make a simple factory class that decides which class
instance to return. Since we are making Butterflies, we'll call our Factory a
Cocoon:

cl ass Cocoon {
public Butterfly getButterfly(float y) {

if (y !'=0)
return new trigButterfly(y); //get multiply class
el se
return new addButterfly(y); /1 get add/sub cl ass
}
} . . .
Y ou will find the complete FFT .java program on the example
CDROM.

When to Use a Factory Pattern
Y ou should consider using a Factory pattern when

A class can't anticipate which kind of class of objects it must create.
A class uses its subclasses to specify which objectsit creates.
Y ou want to localize the knowledge of which class gets created.

There are severa similar variations on the factory pattern to
recognize.

1. Thebaseclassis abstract and the pattern must return a complete working
class.

2. The base class contains default methods and is only subclassed for cases
where the default methods are insufficient.

3. Parameters are passed to the factory telling it which of several class types
to return. In this case the classes may share the same method names but
may do something quite different.

25

Thought Questions

1. Consider a persona checkbook management program like Quicken. It
manages several bank accounts and investments and can handle your bill
paying. Where could you use a Factory pattern in designing a program
like that?

2. Suppose are writing a program to assist homeowners in designing
additions to their houses. What objects might a Factory be used to
produce?

26

THE ABSTRACT FACTORY PATTERN

The Abstract Factory pattern is one level of abstraction higher than
the factory pattern. Y ou can use this pattern when you want to return one of
several related classes of objects, each of which can return several different
objects on request. In other words, the Abstract Factory is a factory object
that returns one of several factories.

One classic application of the abstract factory is the case where your
system needs to support multiple “look-and-feel” user interfaces, such as
Windows-9x, Motif or Macintosh. Y ou tell the factory that you want your
program to look like Windows and it returns a GUI factory which returns
Windows-like objects. Then when you request specific objects such as
buttons, check boxes and windows, the GUI factory returns Windows
instances of these visual interface components.

In Java 1.2 the pluggable look-and-feel classes accomplish this at the
system level so that instances of the visual interface components are returned
correctly once the type of look-and-fedl is selected by the program. Here we
find the name of the current windowing system and then tell the PLAF
abstract factory to generate the correct objects for us.

String | af = U Manager . get Syst enlLookAndFeel C assNane() ;

try {
U Manager . set LookAndFeel (| af);

catch (Unsupport edLookAndFeel Excepti on exc)
{Systemerr.println("UnsupportedL&-: " + laf);}
catch (Exception exc)
{Systemerr.printin("Error loading " + |af);

}

A GardenMaker Factory

Let's consider a simple example where you might want to use the
abstract factory at the application level.

Suppose you are writing a program to plan the layout of gardens.
These could be annual gardens, vegetable gardens or perennial gardens.
However, no matter which kind of garden you are planning, you want to ask
the same questions:

1. What are good border plants?

27

2. What are good center plants?
3. What plants do well in partial shade?

...and probably many other plant questions that we'll omit in this
simple example.

We want a base Garden class that can answer these questions:

public abstract class Garden {
public abstract Plant getCenter();
public abstract Plant getBorder();
public abstract Pl ant get Shade();

}
where our simple Plant object just contains and returns the plant

name:

public class Plant {
String nane;
public Plant(String pnane) {
name = pnang; // save name

}

public String get Name() {
return namne;

}

}

Now in areal system, each type of garden would probably consult an
elaborate database of plant information. In our simple example we'll return
one kind of each plant. So, for example, for the vegetable garden we simply
write
public class Vegi eGarden extends Garden {

public Plant get Shade() {
return new Pl ant ("Broccoli");

}
public Plant getCenter() {
return new Plant ("Corn");

}

public Plant getBorder() {
return new Pl ant (" Peas")

}

}
Now we have a series of Garden objects, each of which returns one of

several Plant objects. We can easily construct our abstract factory to return
one of these Garden objects based on the string it is given as an argument:

cl ass Gar denMaker

// Abstract Factory which returns one of three gardens

28

private Garden gd;

public Garden getGarden(String gtype)
{
gd = new Vegi eGarden(); /I def aul t
i f(gtype.equal s("Perennial"))
gd = new Perenni al Garden();
i f(gtype. equal s("Annual "))
gd = new Annual Garden();
return gd;

}
This simple factory system can be used along with a more complex
user interface to select the garden and begin planning it as shown below:

How the User Interface Works

This simple interface consists of two parts: the left side, that selects
the garden type and the right side, that selects the plant category. When you
click on one of the garden types, this actuates the MakeGarden Abstract
Factory. This returns a type of garden that depends on the name of the text of
the radio button caption.

public void itenttateChanged(ltenEvent e)
Checkbox ck = (Checkbox) e. get Source();

//get a garden type based on | abel of radio button
garden = new Gar denMaker (). get Gar den(ck. get Label ());

29

/1 Clear nanes of plants in display
shadePl ant=""; centerPlant=""; borderPlant = "";
gar denPl ot . repai nt () ; /1 di splay enpty garden

Then when a user clicks on one of the plant type buttons, the plant
typeisreturned and the name of that plant displayed:

public void actionPerforned(Acti onEvent e) {
oj ect obj = e.getSource();//get button type
if(obj == Center) /'l and choose pl ant type

set Center();

i f(obj == Border)
set Border () ;

i f(obj == Shade)
set Shade();

i f(obj == Quit)
System exi t (0);

}
[
private void setCenter() {
if (garden !'= null)
center Pl ant = garden. get Center (). getNane();
gar denPl ot . repai nt () ;
}
private void setBorder () {
if (garden !'= null)
bor der Pl ant = garden. get Border (). get Nane() ;
gar denPl ot . repai nt () ;
}

private void set Shade() {
if (garden !'= null)
shadePl ant = gar den. get Shade() . get Nane() ;
gar denPl ot . repai nt () ;

}
The key to displaying the plant names is the garden plot panel, where

they are drawn.

cl ass GardenPanel extends Panel

{
public void paint (G aphics g)

/] get panel size
Di mension sz = getSize();
//draw tree shadow
g. set Col or (Col or. i ght Gray);
g.fillArc(O, O, 80, 80,0, 360);
/I draw pl ant nanes, sone nmay be bl ank strings
g. set Col or (Col or. bl ack) ;
g.drawRect (0,0, sz.width-1, sz.height-1);
g.drawstri ng(centerPl ant, 100, 50);

30

g.drawsStri ng(borderPlant, 75, 120);
g. drawst ri ng(shadePl ant, 10, 40);
}
}
}

Y ou will find the complete code for Gardene.java on the example
CDROM.

Consequences of Abstract Factory

One of the main purposes of the Abstract Factory isthat it isolates the
concrete classes that are generated. The actual class names of these classes
are hidden in the factory and need not be known at the client level at all.

Because of the isolation of classes, you can change or interchange
these product class families freely. Further, since you generate only one kind
of concrete class, this system keeps you for inadvertently using classes from
different families of products. However, it is some effort to add new class
families, since you need to define new, unambiguous conditions that cause
such a new family of classes to be returned.

While all of the classes that the Abstract Factory generates have the
same base class, there is nothing to prevent some derived classes from having
additional methods that differ from the methods of other classes. For example
a BonsaiGarden class might have a Height or WateringFrequency method that
is not present in other classes. This presents the same problem as occur in any
derived classes-- you don’t know whether you can call a class method unless
you know whether the derived classis one that allows those methods. This
problem has the same two solutions asin any similar case: you can either
define al of the methods in the base class, even if they don’t always have a
actual function, or you can test to see which kind of class you have:

if (gard instanceof Bonsai Garden)
int h = gard. Hei ght ();

Thought Questions

If you are writing a program to track investments, such as stocks,
bonds, metal futures, derivatives, etc., how might you use an Abstract
Factory?

31

THE SINGLETON PATTERN

The Singleton pattern is grouped with the other Creational patterns, although

it isto some extent a“non-creational” pattern. There are any number of cases
in programming where you need to make sure that there can be one and only

one instance of a class. For example, your system can have only one window

manager or print spooler, or asingle point of access to a database engine.

The easiest way to make a class that can have only one instance isto embed a
static variableinside the class that we set on the first instance and check
for each time we enter the constructor. A static variable is one for which there
is only one instance, no matter how many instances there are of the class.

static bool ean instance_flag = fal se;

The problem is how to find out whether creating an instance was successful
or not, since constructors do not return values. One way would be to call a
method that checks for the success of creation, and which simply returns
some value derived from the static variable. Thisisinelegant and prone to
error, however, because there is nothing to keep you from creating many
instances of such non-functional classes and forgetting to check for this error
condition.

A better way isto create a class that throws an Exception when it is
instantiated more than once. Let’s create our own exception class for this
case:

cl ass Singl et onExcepti on extends Runti neException

{

/I new exception type for singleton classes
public Singl et onException()

super () ;

public Singl etonException(String s)
super (s);

}

Note that other than calling its parent classes through the super () method,
this new exception type doesn’'t do anything in particular. However, it is
convenient to have our own named exception type so that the compiler will
warn us of the type of exception we must catch when we attempt to create an
instance of PrintSpooler.

32

Throwing the Exception

Let’swrite the skeleton of our PrintSpooler class; we'll omit al of the
printing methods and just concentrate on correctly implementing the
Singleton pattern:

cl ass Print Spool er

{

}

//this is a prototype for a printer-spool er class
//such that only one instance can ever exist
static bool ean

instance_flag=false; //true if 1 instance

public PrintSpooler() throws SingletonException

if (instance_flag)
t hrow new Si ngl et onException("Only one spool er all owed");
el se
instance_flag = true; //set flag for 1 instance
Systemout. printl n("spool er opened");

}
N e
public void finalize()
{

i nstance_flag = fal se; /lclear if destroyed
}

Creating an Instance of the Class

Now that we've created our simple Singleton pattern in the PrintSpooler
class, let’s see how we use it. Remember that we must enclose every method
that may throw an exceptioninatry - catch block.

public class singl eSpool er

{

static public void main(String argv[])
Pri nt Spool er prl, pr2;

/1 open one spool er--this should al ways work
System out . printl n("Qpeni ng one spool er");

try{
prl = new Print Spool er();

catch (SingletonException e)
{System out. println(e. get Message());}

//try to open another spooler --should fail
System out. println("Opening two spool ers");

33

try{
pr2 = new Print Spool er();

}
catch (SingletonException e)

{System out. println(e.get Message());}
}
} . . .
Then, if we execute this program, we get the following results:
Openi ng one spool er
printer opened

Opening two spool ers
Only one spool er al | owed

where the last line indicates than an exception was thrown as expected. Y ou
will find the complete source of this program on the example CD-ROM as
singleSpooler.java

Static Classes as Singleton Patterns

There already isakind of Singleton classin the standard Java class libraries:
the Math class. Thisisaclass that is declared final and all methods are
declared static, meaning that the class cannot be extended. The purpose of
the Math class is to wrap a number of common mathematical functions such
assin and log in a class-like structure, since the Java language does not
support functions that are not methods in a class.

Y ou can use the same approach to a Singleton pattern, making it afinal class.
You can’t create any instance of classes like Math, and can only call the static
methods directly in the existing final class.

final class PrintSpooler

/la static class inplenentati on of Singleton pattern
static public void print(String s)

Systemout. println(s);

}

}
11

public class staticPrint

public static void main(String argv[])

{
}

Printer.print("here it is");

}

One advantage of the final class approach isthat you don’t have to
wrap things in awkward try blocks. The disadvantage is that if you would like
to drop the restrictions of Singleton status, thisis easier to do in the exception
style class structure. We' d have alot of reprogramming to do to make the
static approach allow multiple instances.

Creating Singleton Using a Static Method

Another approach, suggested by Design Patterns, isto create
Singletons using a static method to issue and keep track of instances. To
prevent instantiating the class more than once, we make the constructor
private so an instance can only be created from within the static method of the
class.

cl ass i Spool er

//this is a prototype for a printer-spool er class
//such that only one instance can ever exist
static boolean instance_flag = false; //true if 1 instance

//the constructor is privatized-
[/ but need not have any content
private i Spooler() { }
//static Instance nethod returns one instance or nul
static public iSpooler Instance()

if (! instance_flag)

{
i nstance_flag = true;
return new i Spooler(); //only callable fromwithin
}
el se
return null; //return no further instances
}
R
public void finalize()
{
i nstance_flag = fal se;
}

}
One magjor advantage to this approach is that you don’'t have to worry

about exception handling if the singleton already exists-- you smply get a
null return from the Instance method:

i Spool er prl, pr2;

/1 open one spool er--this should al ways work

System out . printl n("Qpeni ng one spool er");
prl = iSpooler.Instance();

35

if(prl !'=null)

Systemout.println("got 1 spooler");
//try to open another spooler --should fail
System out. println("Opening two spool ers");

pr2 = i Spool er.Instance();
if(pr2 == null)
Systemout.println("no instance avail abl e");

And, should you try to create instances of the iSpooler class directly,
thiswill fail at compile time because the constructor has been declared as
private.

//fails at conpile tine because constructor is privatized
i Spool er pr3 = new i Spool er();

Finding the Singletonsin a L arge Program

In alarge, complex program it may not be simple to discover where
in the code a Singleton has been instantiated. Remember that in Java, global
variables do not really exist, so you can’'t save these Singletons conveniently
inasingle place.

One solution is to create such singletons at the beginning of the
program and pass them as arguments to the major classes that might need to
use them.

prl = i Spool er.|nstance();
Custoners cust = new Custoners(prl);

A more elaborate solution could be to create aregistry of all the
Singleton classes in the program and make the registry generally available.
Each time a Singleton instantiates itself, it notes that in the Registry. Then
any part of the program can ask for the instance of any singleton using an
identifying string and get back that instance variable.

The disadvantage of the registry approach is that type checking may
be reduced, since the table of singletonsin the registry probably keeps all of
the singletons as Objects, for example in a Hashtable object. And, of course,
the registry itself is probably a Singleton and must be passed to all parts of
the program using the constructor or various set functions.

Other Consegquences of the Singleton Pattern

1. It can bedifficult to subclass a Singleton, since this can only work if the
base Singleton class has not yet been instantiated.

36

2. You can easily change a Singleton to allow a small number of instances
where thisis allowable and meaningful.

37

THE BUILDER PATTERN

We have already seen that the Factory Pattern returns one of several
different subclasses depending on the data passed to in arguments to the
creation methods. But suppose we don’t want just a computing algorithm, but
awhole different user interface depending on the data we need to display. A
typical example might be your E-mail address book. Y ou probably have both
people and groups of people in your address book, and you would expect the
display for the address book to change so that the People screen has places for
first and last name, company, E-mail address and phone number.

On the other hand if you were displaying a group address page, you' d
like to see the name of the group, its purpose, and alist of members and their
E-mail addresses. You click on a person and get one display and on a group
and get the other display. Let’'s assume that all E-mail addresses are kept in
an object called an Address and that people and groups are derived from this
base class as shown below:

Address
Person Group

Depending on which type of Address abject we click on, we'd like to
see a somewhat different display of that object’s properties. Thisisalittle
more than just a Factory pattern, because we aren’t returning objects which
are simple descendents of a base display object, but totally different user
interfaces made up of different combinations of display objects. The Builder
Pattern assembles a number of objects, such as display widgets, in various
ways depending on the data. Furthermore, since Javais one of the few
languages where you can cleanly separate the data from the display methods
into simple objects, Javais the idea language to implement Builder patterns.

38

An Investment Tracker

Let’s consider a somewhat simpler case where it would be useful to
have a class build our Ul for us. Suppose we are going to write a program to
keep track of the performance of our investments. We might have stocks,
bonds and mutual funds, and we'd liketo display alist of our holdingsin
each category so we can select one or more of the investments and plot their
comparative performance.

Even though we can't predict in advance how many of each kind of
investment we might own at any given time, we'd like to have a display that
is easy to use for either alarge number of funds (such as stocks) or a small
number of funds (such as mutual funds). In each case, we want some sort of a
multiple-choice display so that we can select one or more fundsto plot. If
thereis alarge number of funds, we'll use a multi-choice list box and if there
are 3 or fewer funds, we'll use a set of check boxes. We want our Builder
classto generate an interface that depends on the number of itemsto be
displayed, and yet have the same methods for returning the results.

Our displays are shown below. The first display contains alarge
number of stocks and the second a small number of bonds.

39

Now, let’'s consider how we can build the interface to carry out this
variable display. We'll start with a multiChoice abstract class that defines the
methods we need to implement:

abstract class nulti Choice

{

//This is the abstract base class

//that the |listbox and checkbox choi ce panels

//are derived from

Vect or choi ces; /larray of |abels
e

public mul ti Choi ce(Vector choicelLi st)

{

choi ces = choi celLi st; //save |ist

//to be inplenmented in derived cl asses
abstract public Panel getU (); //return a Panel of conponents
abstract public String[] getSelected(); //get list of itens
abstract public void clearAll(); //clear selections

}

The getUI method returns a Panel container with a multiple-choice
display. The two displays we're using here -- a checkbox panel or alist box
panel -- are derived from this abstract class:

class |istboxChoi ce extends multi Choice
or

cl ass checkBoxChoi ce extends nul ti Choice
Then we create a simple Factory class that decides which of these
two classes to return:

cl ass choi ceFactory

{

40

mul ti Choi ce ui;

/1 This class returns a Panel containing

/la set of choices displayed by one of
//several U nethods.

publ i c mul ti Choi ce get Choi ceU (Vector choi ces)

i f(choices.size() <=3)
//return a panel of checkboxes
ui = new checkBoxChoi ce(choi ces);
el se
/lreturn a multi-select |ist box panel
ui = new |l istboxChoice(choices);
return ui;

}
}

In the language of Design Patterns, this factory classis called the
Director, and the actual classes derived from multiChoice are each Builders.

Calling the Builders

Since we're going to need one or more builders, we might have
called our main class Architect or Contractor, but since we' re dealing with
lists of investments, we'll just call it WealthBuilder. In this main class, we
create the user interface, consisting of a BorderL ayout with the center divided
into alx 2 GridLayout. The left part contains our list of investment types and
the right an empty panel that we'll fill depending on which kind of

investments are selected.
public weal t hBuil der ()
{
super ("Weal th Buil der"); //frame title bar
set QU (); //set up display
bui | dSt ockLi sts(); //create stock lists
choi ceFactory cfact; //the factory
}
Rt

private void set QU ()

set Layout (new Bor der Layout ());
Panel p = new Panel ();
add("Center", p);

//center contains left and right panels
p. set Layout (new GridLayout (1, 2));

Illeft is list of stocks
st ockLi st= new Li st (10);
st ockLi st. addl t enLi st ener (this);
p. add(st ockLi st);

/1Pl

41

st ockLi st. add(" St ocks");

st ockLi st. add("Bonds") ;

st ockLi st.add("Mutual Funds");
st ockLi st. addl t enLi st ener (this);

ot button al ong bottom of display

Panel pl = new Panel ();

pl. set Backgr ound(Col or. i ght Gray);

add(" Sout h", pl);

Pl ot = new Button("Plot");

Pl ot . set Enabl ed(fal se); //disabl ed until stock picked
Pl ot . addAct i onLi st ener (this);

pl. add(Pl ot);

[lright is enpty at first

choi cePanel = new Panel ();
choi cePanel . set Backgr ound(Col or. | i ght Gray);
p. add(choi cePanel) ;

w = new Wnder(); //intercepts Wndowd osi ng
addW ndowLi st ener (W) ;

set Bounds(100, 100, 300, 200);
setVisible(true);

In this simple pro gram, we keep our three lists of investmentsin

three Vectors called Stocks, Bonds and Mutuals. We load them with arbitrary
values as part of program initialization:

Mitual s = new Vector();

Mit ual s. addEl enent ("Fi delity Magel |l an");
Miut ual s. addEl enent ("T Rowe Price");

Miut ual s. addEl enent (" Vanguard PrinmeCap");
Mut ual s. addEl enent (" Li ndner Fund");

and so forth. In area system, we' d probably read them in from afile

or database. Then, when the user clicks on one of the three investment types
in the left list box, we pass the equivalent vector to our Factory, which returns
one of the builders:

private void stockList_dick()

{
Vect

i nt
choi
//1th

/] an
SW t

or v = null;
i ndex = stockLi st. get Sel ect edl ndex();
cePanel .removeAl | (); //renove previous ui panel

is just switches among 3 different Vectors
d passes the one you select to the Builder pattern
ch(i ndex)

42

case O:

v = Stocks; break;
case 1:

v = Bonds; br eak;
case 2:

v = Miutual s;
}
ncthoi ce = cfact. get Choi ceUl (v); //get one of the Us
choi cePanel . add(nthoi ce. get Ul ()); /linsert in right panel
choi cePanel . val i date(); //re-1ayout and display
Pl ot . set Enabl ed(true); /lallowplots

We do save the multiChoice panel the factory creates in the mchoice
variable so we can passit to the Plot dialog.

TheList Box Builder

The smpler of the two buildersisthe List box builder. It returnsa
panel containing alist box showing the list of investments.

class |istboxChoi ce extends multi Choice

List list; /linvestnent |ist goes here
& 11t boxchor ee(veetor chol ces)

{ super (choi ces) ;
L

public Panel getU ()

//create a panel containing a list box

Panel p = new Panel ();

list = new List(choices.size()); //list box
list.setMiltipleMde(true); /lmultiple
p. add(list);

//add investnents into list box
for (int i=0; i< choices.size(); i++)
list.addltem((String)choices.elenmentAt(i));
return p; /lreturn the panel
}
The other important method is the getSelected method that returns a

String array of the investments the user selects:
public String[] getSelected()
{

int count =0;
//count the selected |istbox |ines

}

for (int i=0; i < list.getltenCount(); i++)

{
if (list.islndexSelected(i))
count ++;

//create a string array big enough for those sel ected
String[] slist = new String[count];

//copy list elenents into string array
int j =0;
for (int i=0; i < list.getltenCount(); i++)

{
if (list.islndexSelected(i))
slist[j++] = list.getlten(i);

return(slist);

The Checkbox Builder

The Checkbox builder is even simpler. Here we need to find out how

many elements are to be displayed and create a horizontal grid of that many

divisions. Then we insert a check box in each grid line:

publ i ¢ checkBoxChoi ce(Vector choi ces)

{

super (choi ces) ;
count = O;
p = new Panel ();

public Panel getU ()

{

}

String s;

/lcreate a grid layout 1 colum by n rows
p. set Layout (new Gri dLayout (choi ces. size(), 1));

//and add | abel ed check boxes to it
for (int i=0; i< choices.size(); i++)

s =(String)choices.elementAt(i);
p. add(new Checkbox(s));
count ++;

}

return p;

The getSelected method is analogous to the one we showed above,

and isincluded in the example code on the CDROM.

43

Consequences of the Builder Pattern

1. A Builder letsyou vary the internal representation of the product it
builds. It aso hides the details of how the product is assembled.

2. Each specific builder is independent of the others and of the rest of the
program. Thisimproves modularity and makes the addition of other
builders relatively smple.

3. Because each builder constructs the final product step-by-step, depending
on the data, you have more control over each final product that a Builder
constructs.

A Builder pattern is somewhat like an Abstract Factory pattern in that
both return classes made up of a number of methods and objects. The main
difference is that while the Abstract Factory returns a family of related
classes, the Builder constructs a complex object step by step depending on the
data presented to it.

Thought Questions

1. Some word-processing and graphics programs construct menus
dynamically based on the context of the data being displayed. How could
you use a Builder effectively here?

2. Not al Builders must construct visual objects. What might you use a
Builder to construct in the personal finance industry? Suppose you were
scoring atrack meet, made up of 5-6 different events? Can you use a
Builder there?

45

THE PROTOTYPE PATTERN

The Protoype pattern is used when creating an instance of aclassis
very time-consuming or complex in some way. Then, rather than creating
more instances, you make copies of the original instance, modifying them as

appropriate.

Prototypes can also be used whenever you need classes that differ
only in the type of processing they offer, for example in parsing of strings
representing numbersin different radixes. In this sense, the prototypeis
nearly the same as the Examplar pattern described by Coplien [1992].

Let’s consider the case of an extensive database where you need to
make a number of queries to construct an answer. Once you have this answer
as atable or ResultSet, you might like to manipulate it to produce other
answers without issuing additional queries.

In a case like one we have been working on, we'll consider a
database of alarge number of swimmersin aleague or statewide
organization. Each swimmer swims several strokes and distances throughout
aseason. The “best times’ for swimmers are tabulated by age group, and
many swimmers will have birthdays and fall into new age groups within a
single season. Thus the query to determine which swimmers did the best in
their age group that season is dependent on the date of each meet and on each
swimmer’s birthday. The computational cost of assembling this table of times
istherefore fairly high.

Once we have a class containing this table, sorted by sex, we could
imagine wanting to examine this information sorted just by time, or by actual
age rather than by age group. It would not be sensible to recompute these
data, and we don’'t want to destroy the original data order, so some sort of
copy of the data object is desirable.

Cloningin Java

Y ou can make a copy of any Java object using the clone method.
Jobj j1 = (Jobj)j0.clone();

The clone method always returns an object of type Object. Y ou must
cast it to the actual type of the object you are cloning. There are three other
significant restrictions on the clone method:

46

1. Itisaprotected method and can only be called from within the same class
or the module that contains that class.

2. You can only clone objects which are declared to implement the
Cloneable interface.

3. Objects that cannot be cloned throw the CloneNotSupported Exception.

This suggests packaging the actual clone method inside the class
where it can access the real clone method:

public class Swi nData i npl enents C oneabl e

public Object clone()

{
try{
return super.clone();
cat ch(Exception e)
{System out . println(e.get Message());
return null;
}
}

This also has the advantage of encapsulating the try-catch block
inside the public clone method. Note that if you declare this public method to
have the same name “clone,” it must be of type Object, since the internal
protected method has that signature. Y ou could, however, change the name
and do the typecasting within the method instead of forcing it onto the user:

public Swi nData cl oneMe()

{

try{
return (Sw nDat a) super. cl one();

}
cat ch(Exception e)

{System out. println(e.get Message());
return null;

}

Y ou can also make specia cloning procedures that change the data or
processing methods in the cloned class, based on arguments you pass to the
clone method. In this case, method names such as make are probably more
descriptive and suitable.

}

47

Using the Prototype

Now let’s write a simple program that reads data from a database and
then clones the resulting object. In our example program, Swiminfo, we just
read these data from afile, but the original data were derived from alarge
database as we discussed above.

Then we create a class called Swimmer that holds one name, club
name, sex and time

cl ass Swi mer

{ String nang;
int age;
String club;
float tine;
bool ean femal e;

and a class called SwimData that maintains a vector of the Swimmers
we read in from the database.

public class Swi nData i npl enents d oneabl e
{
Vect or sSw nmers;
public Sw nData(String fil enane)
{
String s = ;
swi nmers = new Vector();
//open data file
InputFile f = new InputFile(filenane);

s= f.readLi ne(); //read in and parse each line
while(s !'= null)
{

swi nmer s. addEl ement (new Swi mmer (s)) ;
s= f.readLine();

f.close();

We also provide a getSvimmer method in SwimData and getName,
getAge and getTime methods in the Swimmer class. Once we' ve read the data
into Swiminfo, we can display it in alist box.

swLi st. renoveAl |l (); /lclear Ilist
for (int i =0; i < sdata.size(); i++)
{

sw = sdat a. get Swi nmer (i) ;
swLi st. addl t en(sw. get Nane() +" "+sw. get Tine());
}

48

Then, when the user clicks on the Clone button, we'll clone this class
and sort the data differently in the new class. Again, we clone the data
because creating a new class instance would be much dower, and we want to
keep the data in both forms.

sxdata = (Swi nDat a) sdat a. cl one();
sxdata.sortByTime(); //re-sort
clonelList.renoveAl | (); //clear |ist

/I now di spl ay sorted val ues from cl one
for(int i=0; i< sxdata.size(); i++)
{
sw = sxdat a. get Swi nmer (i) ;
cl oneLi st. addl t en(sw. get Name() +" “+sw. get Ti me());

}
In the original class, the names are sorted by sex and then by time,

while in the cloned class, they are sorted only by time. In the figure below,
we see the simple user interface that allows us to display the original data on
the left and the sorted data in the cloned class on the right:

The left-hand list box is|oaded when the program starts and the right-
hand list box is loaded when you click on the Clone button. Now, let’s click
on the Refresh button to reload the left-hand list box from the original data.

49

Why have the names in the left-hand list box aso been re-sorted?.
This occurs in Java because the clone method is a shallow copy of the original
class. In other words, the references to the data objects are copies, but they
refer to the same underlying data. Thus, any operation we perform on the
copied data will aso occur on the original datain the Prototype class.

In some cases, this shallow copy may be acceptable, but if you want
to make a deep copy of the data, thereis a clever trick using the serializable
interface. A classissaid to be serializable if you can write it out as a stream
of bytes and read those bytes back in to reconstruct the class. Thisis how
Java remote method invocation (RMI) is implemented. However, if we
declare both the Swimmer and SwimData classes as Serializable,

public class Sw nData
i mpl enents Coneable, Serializable

class Swimmer inplenents Serializable

we can write the bytes to an output stream and reread them to create a
complete data copy of that instance of aclass:

public oject deepd one()
{

try{
Byt eArrayQut put Stream b = new Byt eArrayQut put Streamn() ;

Obj ect Qut put Stream out = new Obj ect Qut put Strean(b);
out.witeQoject(this);
Byt eArrayl nput Stream bl n = new

Byt eArrayl nput St rean(b. t oByteArray());

50

oj ect I nput Stream oi = new Obj ect | nput Strean(bl n);
return (oi.readObject());

}
catch (Exception e)

{ Systemout.println("exception:"+e.getMessage());
return null;
}

}

This deepClone method allows us to copy an instance of a class of
any complexity and have data that is completely independent between the two
copies. The program Swimlnfo on the accompanying CD-ROM contains the
complete code for this example, showing both cloning methods.

Consequences of the Prototype Pattern

Using the Prototype pattern, you can add and remove classes at run
time by cloning them as needed. Y ou can revise the internal data
representation of a class at run time based on program conditions. Y ou can
also specify new objects at run time without creating a proliferation of classes
and inheritance structures.

One difficulty in implementing the Prototype pattern in Javais that if
the classes aready exist, you may not be able to change them to add the
required clone or deepClone methods. The degpClone method can be
particularly difficult if al of the class objects contained in a class cannot be
declared to implement Serializable. In addition, classes that have circular
references to other classes cannot really be cloned.

Like the registry of Singletons discussed above, you can also create a
registry of Prototype classes which can be cloned and ask the registry object
for alist of possible prototypes. Y ou may be able to clone an existing class
rather than writing one from scratch.

Note that every class that you might use as a prototype must itself be
instantiated (perhaps at some expense) in order for you to use a Prototype
Registry. This can be a performance drawback.

Finally, the idea of having prototype classes to copy implies that you
have sufficient access to the data or methods in these classes to change them
after cloning. This may require adding data access methods to these prototype
classes so that you can modify the data once you have cloned the class.

51

SUMMARY OF CREATIONAL PATTERNS

The Factory Pattern is used to choose and return an instance of a class
from a number of similar classes based on data you provide to the
factory.

The Abstract Factory Pattern is used to return one of several groups of
classes. In some casesit actually returns a Factory for that group of
classes.

The Builder Pattern assembles a number of objects to make a new
object, based on the data with which it is presented. Frequently, the
choice of which way the objects are assembled is achieved using a
Factory.

The Prototype Pattern copies or clones an existing class rather than
creating a new instance when creating new instances is more expensive.

The Singleton Pattern is a pattern that insures there is one and only one
instance of an object, and that it is possible to obtain global accessto that
one instance.

52

The Java Foundation Classes

The Java Foundation Classes (JFC or “Swing”) are a complete set of
light-weight user interface components that enhance, extend and to alarge
degree replace the AWT components. In addition to the buttons, lists, tables
and trees in the JFC, you will aso find a pluggable |look-and-feel that allows
the components to take on the appearance of several popular windowing
systems, as well asits own look and feel. The JFC actually uses afew
common design patterns, and we will be using the JFC for most of the
examples in this book. Thus, we are taking a short detour to outline how the
JFC components work before going on to more patterns.

We should note at the outset, that this package was called “ Swing”
during development and it was intended that it be referred to as* JFC” upon
release. However, the nickname has stuck, and this has led to the Java
programmer’ s explanation that “it’s spelled JFC, but it’s pronounced Swing.”

| nstalling and Using the JFC

All of the Swing classes arein 3 jar files, called swing.jar,
swingall.jar and windows,jar. If you are using Java 1.1, you can download the
Swing classes from java.sun.com site and install them by simply unzipping
the downloaded file. It is important that your CLASSPATH variable contain
the paths for these three jar files.

set CLASSPATH=. ;d:\javall\lib\classes. zip;d:\sw ng\sw ng.jar;
d: \ swi ng\ wi ndows. j ar; d: \ swi ng\ swi ngal | . j ar;

All programs which are to make use of the JFC, must import the
following files:

/'l swi ng cl asses

i mport com sun. java. swi ng. *;

i mport com sun.java. sw ng. event. *;

i mport com sun. j ava. swi ng. border. *;
i mport com sun.java. swW ng. text.*;

In the Java JDK 1.2, these change to “javax.swing”

i mport javax.sw ng. *;

i mport javax.sw ng. event.*;
i mport j avax.swi ng. border. *;
i mport javax.swi ng.text.*;

53

and so forth.

| deas Behind Swing

The Swing components are referred to as “lightweight” components,
because they don't rely on native user-interface components. They are, in
fact, 100% pure Java. Thus, a Swing JButton does not rely on a Windows
button or a Motif button or a Mac button to implement its functionality. They
also use fewer classes to achieve this interface than the previous heavier-
weight awt classes. In addition, there are many more Swing user-interface
components than there were awt components. Swing gives us image buttons,
hover buttons, tooltips, tables, trees, splitter panels, customizable dialog
boxes and quite a few other components.

Since Swing components create their look and feel completely within
the Swing class hierarchy, you can have a pluggable look and feel to emulate
Windows, Matif, Macintosh or the native Swing look.

In addition, Swing components make use of an architecture derived
from the model-view-controller design pattern we discussed in the first
chapter. Theidea of this MV C pattern you recall, is to keep the datain a
model class, display the datain aview class and vary the data and view using
acontroller class. We'll see that thisis exactly how the JList and Jable
handle their data.

The Swing Class Hierar chy

All Swing components inherit from the JComponent class. While
JComponent is much like Component in its position in the hierarchy,
JComponent is the level that provides the pluggable look and fedl. It also
provides

Keystroke handling that works with nested components.

A border property that defines both the border and the
component’ s insets.

Tooltips that pop up when the mouse hovers over the component.

Automatic scrolling of any component when placed in a scroller
container.

Because of this ineraction with the user interface environement, Swing's
JComponent is actually more like the awt’ s Canvas than its Component class.

WRITING A SIMPLE JFC PROGRAM

Getting started using the Swing classesis pretty simple. Application
windows inherit from JFrame and applets inherit from JApplet. The only
difference between Frame and JFrame s that you cannot add components or
set the layout directly for JFrame. Instead, you must use the getContentPane
method to obtain the container where you can add components and vary the
layout.
get Cont ent Pane() . set Layout (new Bor der Layout ());

JButton b = new Jbutton (“H");
Get Cont ent Pane() . add(b) ; //add button to |ayout

This is sometimes a bit tedious to type each time, so we recommend
creating a smple JPanel and adding it to the JFrame and then adding all the
components to that panel.

JPanel jp = new JPanel ();

get Cont ent Pane() . add(j p);
JButton b = new JButton(“H ");
j p-add(b);

JPanels are containers much like the awt Panel object, except that they are
automatically double buffered and repaint more quickly and smoothly.

Setting the Look and Fed

If you do nothing, Swing programs will start up in their own native
look and feel rather than the Windows, Motif or Mac look. Y ou must
specifically set the look and feel in each program, using a simple method like
the following:

private void setLF()

/! Force to cone up in the System L&F
String | af = U Manager . get Syst enlLookAndFeel C assNane() ;

try {
U Manager . set LookAndFeel (| af);

catch (Unsupport edLookAndFeel Excepti on exc)
{Systemerr.println("Unsupported: " + laf);}

catch (Exception exc)
{Systemerr.printIn("Error loading " + laf);

55

}
The system that generates one of severa look and feels and returns

self-consistent classes of visual objects for agiven look and feel isan
example of an Abstract Factory pattern as we discussed in the previous
chapter.

Setting the Window Close Box

Like the Frame component, the system exit procedure is not called
automatically when a user clicks on the close box. In order to enable that
behavior, you must add a WindowL istener to the frame and catch the
WindowClosing event. This can be done most effectively by subclassing the
WindowAdapter class:

private void setd oseCdick()

//create window |listener to respond to wi ndow cl ose click
addW ndowLi st ener (new W ndowAdapt er ()

public void wi ndowd osi ng(W ndowEvent e)
{Systemexit(0);}
1)

Making a JxFrame Class

Since we must always set the look and feel and must always create a
WindowA dapter to close the JFrame, we have created a JxFrame class which
contains those two functions, and which calls them as part of initialization:

public class JxFrane extends JFrane

{
public JxFranme(String title)

{
super (title);
setd osedick();
setLF();

}

The setLF and setCloseClick methods are included as well. It is this xFrame
classthat we usein virtualy all of our examplesin this book, to avoid
continually retyping the same code.

56

A Simple Two Button Program

Now with these fundamental s taken care of, we can write asimple
program with two buttons in a frame.

One button switches the color of the background and the other causes
the program to exit. We start by initializing our GUI and catching both button
clicks in an actionPerformed method:

public class SinplelFC extends JxFrane
i mpl enents ActionLi st ener

{
JButton OK, Quit; //these are the buttons
JPanel jp; [/ mai n panel
Col or color; / I background col or
[T R

public SinplelFC() {

super (" Si npl e JFC Progrant);

color = Color.yellow, //start in yellow
set@QUJ ();

private void set GU () {
jp = new JPanel (); /'l central panel
get Cont ent Pane() . add(j p);

//create and add buttons

K = new JButton("OX");

Quit = new JButton("Quit");
OK. addAct i onLi st ener (this);
Qui t. addActi onLi stener(this);
j p-add(OK);

jp-add(Quit);

set Si ze(new Di mensi on(250, 100));
setVisible(true);

}
R
public void actionPerfornmed(Acti onEvent e) {
oj ect obj = e.getSource();
i f(obj == OK)

swi tchCol ors();
i f(obj == Quit)

57

System exi t (0);
}
The only remaining part is the code that switches the background

colors. Thisis, of course, extremely simple as well:

private void sw tchCol ors() {
if(color == Col or.green)
col or = Col or.yell ow,
el se

col or = Col or. green;
j p- set Background(col or);
repaint();

That's all there is to writing a basic JFC application. JFC applets are
identical except for the applet’ sinit routine replacing the constructor. Now
let’slook at some of the power of the more common JFC components.

M ore on JButtons

The JButton has several constructors to specify text, an icon or both:

JButton(String text);
JButton(lcon icon);
JButton(String text, lcon icon);

Y ou can also set two other images to go with the button

set Sel ect edl con(lcon icon); /I shown when clicked
set Rol | overl con(lcon icon); /I shown when nouse over

Finally, like all other JComponents, you can use setTooltiptext to set
the text of a Tooltip to be displayed when the mouse hovers over the button.
The code for implementing these small improvementsis smply

K = new JButton("OK", new I magel con("color.gif"));

K. set Rol | over | con(new | magel con("overColor.gif"));
K. set Tool Ti pText (" Change background color");

Quit = new JButton("Qit", new I nagelcon("exit.gif"));
Qui t.setTool Ti pText ("Exit from progrant);

The resulting application window is shown below.

58

59

BUTTONS AND TOOLBARS

Swing provides separate implementations of both the JRadioButton
and the JCheckBox. A checkbox has two states and within a group of
checkboxes, any number can be selected or deselected. Radio buttons should
be grouped into a ButtonGroup object so that only one radio button of a group
can be selected at atime.

Radio Buttons

Both radio buttons and check boxes can be instantiated with an image
aswell as atitle and both can have rollover icons. The JCheckBox component
is derived from the ssimpler JToggleButton object. JToggleButton is a button
that can be switched between two states by clicking, but which stays in that
new state (up or down) like a 2-state check box does. Further the
JToggleButton can take on the exclusive aspects of aradio button by adding
it to a ButtonGroup.

/lcreate radio buttons in right panel
JRadi oButton Rep, Dem Flat;

right.add(Rep new JRadi oButton("Republicrat"));
ri ght.add(Dem = new JRadi oButton("Denmm can"));
right.add(Flat = new JRadi oButton("Flat Earth"));
Butt onGr oup bgroup = new ButtonG oup();

bgr oup. add(Rep) ; //add to button group

bgr oup. add(Den) ;

bgr oup. add(Fl at) ;

If you neglect to add the radio buttons to a ButtonGroup, you can
have several of them turned on at once. It is he ButtonGroup that assures that
only one at atime can be turned on. The ButtonGroup object thus keeps track
of the state of all the radio buttons in the group to enforce this only-one-on
protocol. Thisis a clear example of the Mediator pattern we'll be discussing
in the chapters ahead.

The JToolBar

JToolBar is acontainer bar for tool buttons of the type you seein
many programs. Normally, the JDK documentation recommends that you add
the JToolBar as the only component on one side of a Borderlayout typically
the North side), and that you not add components to the other 3 sides. The

60

buttons you add to the toolbar are just small JButtons with picture icons and
without text. The JToolBar class has two important methods: add and
addSeparator.

JTool Bar tool bar = new Jtool Bar () ;
JBUtton Open = new JButton(“open.gif”);
t ool bar . add(Qpen) ;

t ool bar . addSeparator () ;

By default, JButtons have a rectangular shape, and to make the usual
square-looking buttons, you need to use square icons and set the Insets of the
button to zero. On most toolbars, the icons are 25 x 25 pixels. We thus
develop the smple ToolButton class below, which handles both the insets and
the size:

public class Tool Button extends JButton

public Tool Button(lcon ing)

{
super (i ng);
set Margi n(new | nsets(0,0,0,0));
set Si ze(25, 25) ;

}
}

The JToolBar aso has the characteristic that you can detach it from
its anchored position along the top side of the program and attach it to another
side, or leave it floating. This alows some user customization of the running
program, but is otherwise not terribly useful. It aso is not particularly well
implemented and can be confusing to the user. Thus, we recommend that you
use the setFloatable(false) method to turn this feature off.

Toggle Buttons

The JToggleButton classis actually the parent class for check boxes
and radio buttons. It is a two-state button that will stay in an up or down
position when clicked, and you can use it just like a check box. While toggle
buttons look sort of strange on most screens, they look very reasonable as part
of toolbars. Y ou can use individual toggle buttons to indicate the state of
actions the user might select. By themselves, toggle buttons behave lick
check boxes, so you can press as many as you want, and you can “uncheck”
or raise toggle buttons by using the setSel ected(fal se) method.

Y ou can also add toggle buttons to a ButtonGroup so that they
behave like radio buttons: only one at atime can be pressed down. However,
once a ButtonGroup object is mediating them, you can’t raise the buttons

61

using the setSelected method. If you want to be able to raise them, but still
only allow one at atime to be pressed, you need to write your own Medator
classto replace the ButtonGroup object.

Sample Code

The simple program display below illustrates checkboxes, radio
buttons, toolbar buttons and toggle buttons:

Note the “b” JToggleButton is depressed permanently. While the user can
select any number of organizations in which he holds memberships, he can
only select one political party.

62

MENUS AND ACTIONS

The IMenuBar and JMenu classes in Swing work just about
identically to those in the AWT. However, the IMenultem class adds
constructors that allow you to include an image alongside the menu text. To
create a menu, you create a menu bar, add top-level menus and then add
menu items to each of the top-level menus.

JMenuBar nbar = new JMenuBar () ; // menu bar

set JMenuBar (nmbar) ; //add to JFrane
JMenu nFile = new JMenu("File"); //top-level nenu
nbar . add(nFi |l e); //add to nmenu bar
JMenul t em Open = new JMenul t en(" Open"); //menu itens
JMenultem Exit = new JMenulten("Exit");

nFi | e. add(Qpen) ; //add to nmenu

nFi | e. addSeparator () ; //put in separator

nFile. add(Exit);

JMenultems a so generate ActionEvents, and thus menu clicks causes
these events to be generated. As with buttons, you simply add action listeners
to each of them.

Open. addAct i onLi st ener (t his); //for exanple
Exi t. addActi onLi st ener (this);

Action Objects

Menus and toolbars are really two ways of representing the same
thing: asingle click interface to initiate some program function. Swing also
provides an Action interface that encompasses both.
public void putValue(String key, Object value);

public Object getValue(String key);
public void actionPerforned(Acti onEvent e);

Y ou can add this interface to an existing class or create a JComponent with
these methods and use it as an object which you can add to either a IMenu or
JToolBar. The most effective way is ssimply to extend the AbstractAction
class. The IMenu and JToolbar will then display it asamenu item or a button
respectively. Further, since an Action object has a single action listener built
in, you can be sure that selecting either one will have exactly the same effect.
In addition, disabling the Action object has the advantage of disabling both
representations on the screen.

63

Let’s see how this works. We can start with a basic abstract
ActionButton class, and use a Hashtable to store and retrieve the properties.

public abstract class ActionButton extends AbstractAction
i mpl enents Action
{

Hasht abl e properti es;

public ActionButton(String caption, Icon ing)
{

properties = new Hashtabl e();

properties. put (DEFAULT, caption);
properties. put (NAVE, caption);

properties. put (SHORT_DESCRI PTI ON, caption);
properties. put (SMALL_I CON, inmg);

}
public void putValue(String key, Object val ue) {
properties. put (key, value);

public Object getValue(String key) {
return properties. get (key);

public abstract void actionPerforned(Acti onEvent e);

}

The properties that Action objects recognize by key name are
String DEFAULT
String LONG_DESCRIPTION
String NAME
String SHORT_DESCRIPTION
String SMALL_ICON

The NAME property determines the label for the menu item and the button,
and in theory the LONG_DESCRIPTION should be used. This latter feature
is not implemented in Swing 1.0x, but is expected to be in Java 1.2. Theicon
feature does work correctly.

Now we can easily derive an ExitButton from the ActionButton like
this:

public class ExitButton extends ActionButton

{

JFrame fr;
public ExitButton(String caption, Icon ing, JFrane frm {
super (caption, ing);

fr =frm

public void actionPerformed(Acti onEvent e) {
System exi t (0);
}

and similarly for the FileButton. We add these to the toolbar and menu as
follows:

//Add File nenu
JMenu nFile = new JMenu("File");
nbar . add(nFi | e);

//create two Action bjects
Action Qpen = new Fil eButton("Open",

new | magel con("open.gif"), this);
nFi | e. add(Qpen) ;

Action Exit = new ExitButton("Exit",
new | magel con("exit.gif"), this);
nFi | e. addSeparator () ;
nFile. add(Exit);
/1 add sane objects to the tool bar
t ool bar = new JTool Bar () ;
get Cont ent Pane() . add(j p = new JPanel ());
j p- set Layout (new Bor der Layout ());
j p-add("North", tool bar);

//add the two action objects
t ool bar . add(Qpen) ;
t ool bar. add(Exit);

This code produces the program window shown below:

the menu or the text on the toolbar. Howev er, the add methods of the toolbar
nd menu have a unique feature when usedto add an ACTION OBJECT. They
return an object of type Joutton or Jmenultem respectively. Then you can use
these to set the features the way you want them. For the menu, we want to
removetheicon

Action Open = new Fil eButton("Cpen",

65

new | magel con("open.gif"), this);
nmenui tem = nFil e. add(Open) ;
nmenui tem setlcon(null);

and for the button, we want to remove the text and add a tooltip:

JButton button = tool bar.add(act);
button. set Text ("");

but t on. set Tool Ti pText (tip);

but t on. set Margi n(new I nsets(0,0,0,0));

This gives us the screen look we want:

Design Patternsin the Action Object

One reason to spend a little time discussing objects that implement
the Action interface is that they exemplify at least two design patterns. First,
each Action object must have its own actionListener method, and thus can
directly launch the code to respond that that action. In addition, even though
these Action objects may have two (or more) visual instantiations, they
provide a single point that launches this code. Thisis an excellent example of
the Command pattern.

In addition, the Action object takes on different visual aspects
depending on whether it is added to a menu or to atoolbar. In fact you could
decide that the Action object is a Factory pattern which produces a button or
menu object depending on whereit is added. In fact, it does seem to be a
Factory, because the toolbar and menu add methods return instances on those
objects. On the other hand, the Action object seemsto be a single object, and
gives different appearances depending on its environment. Thisisa
description of the State pattern, where an object seems to change class (or
methods) depending on the internal state of the object.

One of the interesting and challenging things about the design
patterns we discuss in this book is that once you start looking aiit, you

66

discover that they are represented far more widely than you first assumed. In
some cases their application and implementation is obvious, and in other
cases the implementation is a bit subtle. In these cases you srot of step back,
tilt your head, squint and realize that from that angle it |ooks like a pattern
where you hadn’t noticed one before. Again, being able to label the code as
exemplifying a pattern makes it easier for you to remember how it works and
easier for you to communicate to others how that code is constructed.

67

THE JLIST CLASS

The JList class is a more powerful replacement for the simple List
classthat is provided with the AWT. A JList can be instantiated using a
Vector or array to represent its contents. The JList does not itself support
scrolling and thus must be added to a JScrollPane to allow scrolling to take
place.

In the simplest program you can write using a JList, you
add a JScrollPane to the Frame, and then
create a Vector of data
create a JList using that Vector
add the JIList to the JScrollPane' s viewport
Thisis shown below

A w DN P

JPanel jp = new JPanel (); // panel in Frane
get Cont ent Pane() . add(j p);

//create scroll pane
JScrol | Pane sp = new JScrol | Pane();

j p- add(sp); //add to | ayout
Vector dlist = new Vector(); //create vector
dli st. addEl enent (" Anchovi es"); //and add data

dl i st. addEl enent (" Bananas") ;

dlist.addEl enent ("Gl antro");

dl i st. addEl enent (" Doughnut s") ;

dl i st. addEl enent (" Escarrol e");

JList list= new JList(dlist); //create list with data
sp. getViewport ().add(list); //add list to scrollpane

This produces the display shown below:

68

You could just as easily use an array instead of aVector and have the same
result.

List Selections and Events

You can set the JList to alow usersto select asingle line, multiple
contiguous lines or separated multiple lines with the setselectionMode
method, where the arguments can be
SI NGLE_SELECTI ON

SI NGLE_| NTERVALSELECTI ON
MULTI PLE_| NTERVAL_SELECTI ON

Y ou can then receive these events by using the
addListSelectionListener method. Y our ListSelectionListener must implement
the interface

public void val ueChanged(Li st Sel ecti onEvent e)

In our JListL Demo.java example we display the selected list item in atext
field:

public voi d val ueChanged(Li st Sel ecti onEvent e) {
text.setText ((String)list.getSel ectedVal ue());
}

Thisis shown below:

69

Changing a List Display Dynamically

If you want alist to change dynamically during your program, the
problem is somewhat more involved because the JList displays the dataiit is
initially loaded with and does not update the display unless you tell it to. One
simple way to accomplish thisis to use the setListData method of JList to
keep passing it a new version of the updated Vector after you change it. In the
JListADemo.java program, we add the contents of the top text field to the list
each time the Add button is clicked. All of this takes place in the action
routine for that button:

public void actionPerforned(Acti onEvent e)
dlist.addEl enent (text.getText()); //add text fromfield
list.setListData(dlist); /'l send new Vector to |ist
list.repaint(); /land tell it to redraw

}

One drawback to this ssmple solution is that you are passing the entire Vector
to the list each time and it must update its entire contents each time rather
than only the portion that has changed. This brings us to the underlying
ListModel that contains the data the JList displays.

When you create a JList using an array or Vector, the JList
automatically creates asimple ListModel object which contains that data. The
ListModel objects are an extension of the AbstractListModel class. This
model has the following simple methods:
voi d fireContentsChanged(Obj ect source, int index0O, int indexl)

voi d firelnterval Added(Obj ect source, int index0, int indexl)
voi d firelnterval Renoved(Obj ect source, int index0O, int indexl)

and you need only implement those fire methods your program will be using.
For example, in this case we really only need to implement the
firelnterval Added method.

70

Our ListModel is an object that contains the data (in a Vector or other
suitable structure) and notifies the JList whenever it changes. Here, the list
model isjust the following:

class JLi stData extends AbstractListMdel {
private Vector dlist; //the food nane |i st

public JListData() {
dlist = new Vector();
makeDat a() ; /lcreate the food nanes

public int getSize() {
return dlist.size();

private Vector nakeData()

// add food nanes as before
return dlist;

public Object getEl ement At (int index) {
return dlist.el enmentAt(index);

}
/ladd string to list and tell the list about it
public void addEl enent (String s) {
dl i st. addEl enent (s);
firelnterval Added(this, dlist.size()-1, dlist.size());

}
}
This ListModel approach isreally an implementation of the Observer

design pattern we discuss in Chapter 4. The data are in one class and the
rendering or display methods in another class, and the communication
between them triggers new display activity.

Lists displayed by JList are not limited to text-only displays. The
ListModel data can be a Vector or array of any kind of Objects. If you use the
default methods, then only he String representation of those objects will be
displayed. However, you can define your own display routines using the
setCellRenderer method, and have it display icons or other colored text or
graphics as well.

71

THE JTABLE CLASS

The JTable class is much like the JList class, in that you can program
it very easily to do simple things. Similarly, in order to do sophisticated
things, you need to create a class derived from the AbtractTableModel class
to hold your data.

A Simple JTable Program

In the simplest program, you just create a rectangular array of objects
and use it in the constructor for the Jable. Y ou can aso include an array of
strings to be used a column labels for the table.

publ i c Sinpl eTabl e()

super ("Sinmple table");
JPanel jp = new JPanel ();
get Cont ent Pane() . add(j p);
oject[] [] nusicbhata = {
{" Tschai kovsky", "1812 Overture", new Bool ean(true)},

{"Stravinsky", "Le Sacre", new Bool ean(true)},
{"Lennon", "El eanor Ri gby", new Bool ean(false)},
{"Wagner", "Gotterdamerung", new Bool ean(true)}
IE
String[] columNanmes = {"Conposer", "Title",
"Orchestral "};

JTabl e tabl e = new JTabl e(nusi cData, col utmNanes);
JScrol | Pane sp = new JScrol | Pane(tabl e);
tabl e. set PreferredScrol | abl eVi ewport Si ze(

new Di nensi on(250, 170));

i p.add(sp);

set Si ze(300, 200);
setVisible(true);

}
This produces the simple table display below:

72

Thistable has all cells editable and displays al the cells using the
toString method of each object. Of course, like the JList interface, this smple
interface to JTable creates a data model object under the covers. In order to
produce a more flexible display you need to create that data model yourself.

Y ou can create a TableModel by extending the AbstractTableM odel
class. All of the methods have default vales and operations except the
following 3 which you must provide:

public int getRowCount();
public int getCol umCount();
public Object getValueAt(int row, int colum);

However, you can gain a good deal more control by adding a couple of other
methods. Y ou can use the method

public bool ean isCell Editable(int row, int col)

to protect some cells from being edited. If you want to allow editing of some
cells, you must provide the implementation for the method

public void setVal ueAt (oject obj, int row, int col)

Further, by adding a method which returns the data class of each
object to be displayed, you can make use of some default cell formatting
behavior. The JTable's default cell renderer displays

Numbers as right-aligned labels
Imagel cons as centered labels
Booleans as checkboxes

Objects using their toString method

Y ou simply need to return the class of the objects in each column:

public O ass getColumd ass(int col) {
return getVal ueAt (0, col).getd ass();
}

Our complete table model class creates exactly the same array and
table column captions as before and implements the methods we just
mentioned:

cl ass Musi cModel extends Abstract Tabl eModel

{
String[] columNanmes = {"Conposer", "Title", "Orchestral"};

Qoject[] [] nusicData = {
{" Tschai kovsky", "1812 Overture", new Bool ean(true)},

{"Stravi nsky", "Le Sacre", new Bool ean(true)},
{"Lennon", "El eanor Ri gby", new Bool ean(fal se)},
{"Wagner", "Gotterdamerung", new Bool ean(true)}
b

i nt rowCount, columCount;

public Misi cModel () {
rowCount = 4;
col umCount =3;

public String getCol umNane(int col) {
return col umNanes][col];
}

R TP

public int get RowCount(){return rowCount;}

public int getCol umCount(){return col umCount;}

R TP

public d ass get Columd ass(int col) {
return getVal ueAt (0, col).getd ass();

}

R TP

public boolean isCell Editable(int row, int col) {
return (col > 1);

}

R TP

public void setVal ueAt (Qoj ect obj, int row, int col) {
nmusi cData[row] [col] = obj;

fireTabl eCel | Updat ed(row, col);

}

R TP

public Object getValueAt(int row, int col) {

return nusicData[row][col];

}

74

The main program simply becomes:
publ i c Model Tabl e()

{
super ("Sinmple table");
JPanel jp = new JPanel ();
get Cont ent Pane() . add(j p);
JTabl e tabl e = new JTabl e(new Musi cModel ());
JScrol | Pane sp = new JScrol | Pane(tabl e);
tabl e. set PreferredScrol | abl eVi ewport Si ze(

new Di nensi on(250, 170));

i p.add(sp);

set Si ze(300, 200);
setVisible(true);

}
Asyou can seein our revised program display, the boolean column is now

rendered as check boxes. We have also only allowed editing of the right-most
column y using the isCellEditable method to disallow it for columns 0 and 1.

Aswe noted in the JList section, the TableModel classis aclass
which holds and manipulates the data and notifies the Jtable whenever it
changes. Thus, the Jtable is an Observer pattern, operating on the TableModel
data.

Cdl Renderers

Each cell in atableisrendered by a cell renderer. The default
renderer isaJLabel, and it may be used for all the datain severa columns.
Thus, these cell renderers can be thought of as Flyweight pattern
implementations. The JTable class chooses the renderer accoring to the
object’ s type as we outlined above. However, you can change to a different

75

rendered, such as one that uses another color, or another visua interface quite
easily.
Cell renderers are registered by type of data:

t abl e. set Def aul t Renderer (String. cl ass, new our Renderer());

and each renderer is passed the object, selected mode, row and column using
the only required public method:

publ i ¢ Conponent get Tabl eCel | Render er Conponent (JTabl e jt,
Obj ect val ue, bool ean isSel ected,
bool ean hasFocus, int row, int columm)

One common way to implement a cell renderer isto extend the
JLabd type and catch each rendering request within the renderer and return a
properly configured JLabel object, usually the renderer itself. The renderer
below displays cell (1,1) in boldface red type and the remaining cellsin plain,
black type:

publ i c cl ass ourRenderer extends JlLabel
i mpl enents Tabl eCel | Render er
{
Font bol d, plain;

publ i ¢ our Renderer () {
super () ;
set Opaque(true);
set Backgr ound(Col or. whi te);
bol d = new Font ("SansSerif", Font.BOLD, 12);
plain = new Font ("SansSerif", Font.PLAIN, 12);
set Font (pl ai n);

publ i c Conponent get Tabl eCel | Render er Conponent (JTable jt,
Obj ect val ue, bool ean isSel ected,
bool ean hasFocus, int row, int columm)

set Text ((String)val ue);
if(row ==1 && col um==1) {
set Font (bol d) ;
set For eground(Col or. red);
}
el se
set Font (pl ai n);
set For egr ound(Col or . bl ack) ;
}

return this;

}

The results of this rendering are shown below:

76

In the simple cell renderer shown above the renderer isitself a JLabel
which returns a different font, but the same object, depending on the row and
column. More complex renderers are also possible where one of several

already-instantiated objects is returned, making the renderer a Component
Factory.

77

THE JTREE CLASS

Much like the JTable and JList, the JTree class consists of a data
model and an observer. One of the easiest ways to build up the tree you want
to display isto create a root node and then add child notes to it and to each of
them as needed. The DefaultMutableTreeNode classis provided as an
implementation of the TreeNode interface.

Y ou create the JTree with aroot node as its argument

root = new Defaul t Mut abl eTr eeNode(" Foods") ;
JTree tree = new JTree(root);

and then add each node to the root, and additional nodes to those to any
depth. The following simple program produces afood tree list by category:

public class TreeDenb extends JxFrane

{
Def aul t Mut abl eTr eeNode r oot ;

public TreeDeno()

{
super (" Tree Denp");
JPanel jp = new JPanel (); /'l create interior panel

j p- set Layout (new Bor der Layout ());
get Cont ent Pane() . add(j p);

//create scroll pane
JScrol | Pane sp = new JScrol | Pane();
j p-add("Center", sp);

//create root node

root = new Defaul t Mut abl eTr eeNode(" Foods") ;

JTree tree = new JTree(root); /lcreate tree

sp. getViewport().add(tree); //add to scroller

//create 3 nodes, each with three sub nodes
addNodes(" Meats", "Beef", "Chicken", "Pork");
addNodes(" Vegi es", "Broccolli", "Carrots", "Peas");
addNodes(" Desserts","Charl otte Russe",

"Bananas Fl anbe", "Peach Ml ba");

set Si ze(200, 300);
setVisible(true);

private void addNodes(String b, String nl, String n2,
String n3)
{

78

Def aul t Mut abl eTr eeNode base =

new Def aul t Mut abl eTr eeNode(b) ;
root . add(base);
base. add(new Def aul t Mut abl eTr eeNode(n1l));
base. add(new Def aul t Mut abl eTr eeNode(n2));
base. add(new Def aul t Mut abl eTr eeNode(n3));

Thetree it generates is shown below.

If you want to know if a user has clicked on a particular line of this
tree, you can add a TreeSelectionListener and catch the valueChanegd event.
The TreePath you can obtain from the getPath method of the
TreeSelectionEvent is the complete path back to the top of the tree. However
the getLastPathComponent method will return the string of the line the user
actually selected. Y ou will see that we use this method and display in the
Composite pattern example.
publ i c voi d val ueChanged(Tr eeSel ecti onEvent evt) {

TreePath path = evt.getPath();

String sel ectedTerm =
pat h. get Last Pat hConponent ().toString();

The TreeModel I nterface

The smple tree we build above is based on adding a set of nodesto
make up atree. Thisis an implementation of the DefaultTreeModel class
which handles this structure. However, there might well be many other sorts
of data structure that you'd like to display using this tree display. To do so,
you create a class of your own to hold these data which implements the
TreeModel interface. Thisinterface is very simple indeed, consisting only of

79

voi d addTr eeModel Li st ener (Tr eeModel Li stener 1);

Obj ect get Chil s(bject parent, int index);

int get Chil dCount (Cbj ect parent);

int getlndexOtY Child(Ohject parent, Object child);

bj ect get Root () ;

bool ean i sLeaf ((hj ect);

voi d renoveTr eeMbdel Li st ener (Tr eeModel Li stener 1);

voi d val ue For Pat hChanges(TreePath path, bject newal ue);

Note that this genera interface model does not specify anything about how
you add new nodes, or add nodes to nodes. Y ou can implement that in any
way that is appropriate for your data.

Summary
In this brief chapter, we've touched on some of the more common
JFC controls, and noted how frequently the design patterns we're discussing
in this books are represented. Now, we can go on and use these Swing
controlsin our programs as we develop code for the rest of the patterns.

80

Structural Patterns

Structural patterns describe how classes and objects can be combined
to form larger structures. The difference between class patterns and object
patternsis that class patterns describe how inheritance can be used to provide
more useful program interfaces. Object patterns, on the other hand, describe
how objects can be composed into larger structures using object composition,
or the inclusion of objects within other objects.

For example, we'll see that the Adapter pattern can be used to make
one class interface match another to make programming easier. We'll also
look at a number of other structural patterns where we combine objects to
provide new functionality. The Composite, for instance, is exactly that: a
composition of objects, each of which may be either simple or itself a
composite object. The Proxy pattern is frequently a ssimple object that takes
the place of a more complex object that may be invoked later, for example
when the program runs in a network environment.

The Flyweight pattern is a pattern for sharing objects, where each
instance does not contain its own state, but storesiit externally. This allows
efficient sharing of abjects to save space, when there are many instances, but
only afew different types.

The Facade pattern is used to make a single class represent an entire
subsystem, and the Bridge pattern separates an object’ s interface from its
implementation, so you can vary them separately. Finally, we'll look at the
Decorator pattern, which can be used to add responsibilities to objects
dynamically.

You'll seethat there is some overlap among these patterns and even
some overlap with the behavioral patterns in the next chapter. We'll
summarize these similarities after we describe the patterns.

81

THE ADAPTER PATTERN

The Adapter pattern is used to convert the programming interface of
one classinto that of another. We use adapters whenever we want unrelated
classes to work together in a single program. The concept of an adapter is
thus pretty smple; we write a class that has the desired interface and then
make it communicate with the class that has a different interface.

There are two ways to do this: by inheritance, and by object
composition. In the first case, we derive a new class from the nonconforming
one and add the methods we need to make the new derived class match the
desired interface. The other way isto include the origina class inside the new
one and create the methods to trand ate calls within the new class. These two
approaches, termed class adapters and object adapters are both fairly easy to
implement in Java.

Moving Data between Lists

Let’s consider a simple Java program that allows you to enter names
into alist, and then select some of those names to be transferred to another
list. Our initia list consists of a class roster and the second list, those who
will be doing advanced work.

In this ssimple program, you enter names into the top entry field and
click on Insert to move the names into the left-hand list box. Then, to move

82

names to the right-hand list box, you click on them, and then click on Add.
To remove a name from the right hand list box, click on it and then on
Remove. This moves the name back to the left-hand list.

Thisisavery smple program to writein Java 1.1. It consists of a
GUI creation constructor and an actionListener routine for the three buttons:

public void actionPerfornmed(Acti onEvent e)
{
Button b = (Button)e. getSource();
i f(b == Add)
addName() ;
if(b == MoveRi ght)
noveNaneRi ght () ;
if(b == MovelLeft)
noveNaneLeft ();

The button action routines are then ssimply
private voi d addNane()
if (txt.getText().length() > 0)

{
| eftList.add(txt.getText());
txt.setText ("");

}
}
e TP
private void noveNaneRi ght ()
String sel[] = leftList.getSelectedltens();
if (sel '= null)

{
rightList.add(sel[0]);
| eftList.renmove(sel[0]);

public void noveNaneLeft ()

String sel[] = rightList.getSelectedltens();
if (sel '=null)

{
leftList.add(sel[0]);
ri ghtList.remove(sel[0]);

}
}
This program is called TwolL.ist.java on your CD-ROM.

83

Using the JFC JList Class

Thisis al quite straightforward, but suppose you would like to
rewrite the program using the Java Foundation Classes (JFC or “Swing”).
Most of the methods you use for creating and manipulating the user interface
remain the same. However, the JFC JList classis markedly different than the
AWT List class. In fact, because the JList class was designed to represent far
more complex kinds of lists, there are virtually no methods in common
between the classes:

awt List class JFC JList class
add(String);
remove(String)
String[] getSelecteditems() Object[] getSelectedValues()

Both classes have quite a number of other methods and almost none
of them are closely correlated. However, since we have aready written the
program once, and make use of two different list boxes, writing an adapter to
make the JList class look like the List class seems a sensible solution to our
problem.

The JList classis awindow container which has an array, vector or
other ListModel class associated with it. It isthis ListModel that actually
contains and manipulates the data. Further, the JList class does not contain a
scroll bar, but instead relies on being inserted in the viewport of the
JScrollPane class. Datain the JList class and its associated ListModel are not
limited to strings, but may be aimost any kind of objects, as long as you
provide the cell drawing routine for them. This makes it possible to have list
boxes with pictures illustrating each choice in the list.

In our case, we are only going to create a class that emulates the List
class, and that in this simple case, needs only the three methods we showed in
the table above.

We can define the needed methods as an interface and then make sure
that the class we create implements those methods:

public interface awtList {
public void add(String s);
public void remove(String s);
public String[] getSelectedltens()

84

Interfaces are important in Java, because Java does not allow multiple
inheritance as C++ does. Thus, by using the implements keyword, the class
can take on methods and the appearance of being a class of either type.

The Object Adapter

In the object adapter approach, we create a class that contains a JList
class but which implements the methods of the awtList interface above. This
isapretty good choice here, because the outer container for a JList is not the
list element at all, but the JScrollPane that encloses it.

So, our basic JawtList class |ooks like this:

public class Jaw Li st extends JScroll Pane
i mpl enents aw Li st

{
private JList |istWndow,
private JListData |istContents;
e T T P
public Jaw List(int rows) {
listContents = new JListData();
i st Wndow = new JList(listContents);
get Viewport ().add(listWndow);
}
e T T P
public void add(String s) {
| i st Cont ents. addEl ement (s) ;
}
e T T P
public void remove(String s) {
| i st Contents.renoveEl enent (s);
}
e R T TP P
public String[] getSel ectedltens() {
oj ect[] obj = listWndow. get Sel ect edVal ues();
String[] s = new String[obj.length];
for (int i =0; i<obj.length; i++)
s[i] = obj[i].toString();
return s;
}
}

Note, however, that the actual data handling takes place in the
JistData class. This classis derived from the AbstractListModel, which
defines the following methods:

addListDatal istener(l) Add alistener for changesin the
data.

85

removel istDatal istener(l) Remove a listener

fireContentsChanged(obj, minmax) | Call this after any change occurs
between the two indexes min and
max

firel nterval Added(obj,min,max) Call this after any data has been
added between min and max.

firelnterval Removed(obj, min, max) | Call this after any data has been
removed between min and max.

The three fire methods are the communication path between the data
stored in the ListModel and the actual displayed list data. Firing them causes
the displayed list to be updated.

In this case, the addElement, removeElement methods are all that are
needed, although you could imagine a number of other useful methods. Each
time we add data to the data vector, we call the firel nterval Added method to
tell the list display to refresh that area of the displayed list.

cl ass JLi st Data extends AbstractLi st Model

{
private Vector data;
e R TP P
public JListData() {
data = new Vector();
}
e R TP P
public void addEl enent (String s)
{
dat a. addEl enent (s) ;
firelnterval Added(thi s, data.size()-1,
dat a. si ze());
}
e R TP P
public void renmoveEl ement (String s) {
dat a. renoveEl ement (s) ;
firelnterval Removed(this, 0, data.size());
}
}

The Class Adapter

In Java, the class adapter approach isn’t al that different. If we create
aclass JawtClassList that is derived from JList, then we have to create a
JScrollPane in our main program’s constructor:

86

| eftList = new Jcl assAwt Li st (15);
JScrol | Pane | sp = new JScrol | Pane();
pLeft.add("Center", |sp);
| sp. get Vi ewport (). add(l eftList);

and so forth.

The class-based adapter is much the same, except that some of the
methods now refer to the enclosing class instead of an encapsulated class:

public class Jcl assAwt Li st extends JLi st
i mpl enents aw Li st

{
private JListData |istContents;

public JclassAwt Li st (int rows)

listContents = new JListData();
set Mbdel (li st Contents);
set Prot ot ypeCel | Val ue(" Abcdef g Hi j krmop") ;

}

There are some differences between the List and the adapted JList
classthat are not so easy to adapt, however. The List class constructor allows
you to specify the length of the list in lines. Thereis no way to specify this
directly in the JList class. Y ou can compute the preferred size of the
enclosing JScrollPane class based on the font size of the JList, but depending
on the layout manager, this may not be honored exactly.

Y ou will find the example class JawtClassList, caled by
JTwoClassList on your example CD-ROM.

There are also some differences between the class and the object
adapter approaches, although they are less significant than in C++.

The Class adapter

Won't work when we want to adapt a class and al of its
subclasses, since you define the class it derives from when you
createit.

L ets the adapter change some of the adapted class's methods but
till allows the others to be used unchanged.

An Object adapter

Could allow subclasses to be adapted by simply passing them in
as part of a constructor.

87

Requires that you specifically bring any of the adapted object’s
methods to the surface that you wish to make available.

Two Way Adapters

The two-way adapter is a clever concept that allows an object to be
viewed by different classes as being either of type awtList or atype JList.
Thisis most easily carried out using a class adapter, since al of the methods
of the base class are automatically available to the derived class. However,
this can only work if you do not override any of the base class s methods with
ones that behave differently. Asit happens, our JawtClassList classis an ideal
two-way adapter, because the two classes have no methods in common. Y ou
can refer to the awtList methods or to the JList methods equally conveniently.

Pluggable Adapters

A pluggable adapter is one that adapts dynamically to one of severd
classes. Of course, the adapter can only adapt to classes it can recognize, and
usually the adapter decides which classit is adapting based on differing
constructors or setParameter methods.

Java has yet another way for adapters to recognize which of several
classesit must adapt to: reflection. You can use reflection to discover the
names of public methods and their parameters for any class. For example, for
any arbitrary object you can use the getClass() method to obtain its class and
the getMethods() method to obtain an array of the method names.

JList list = new JList();

Met hod[] methods = list.getd ass().getMethods();
//print out nethods
for (int i =0; i < nethods.length; i++)

Systemout. println(nethods[i].getName());
/lprint out parameter types

Class cl[] = methods[i]. getParaneterTypes();
for(int j=0; j < cl.length; j++)
Systemout.printin(cl[j].toString());

}

A “method dump” like the one produced by the code shown above
can generate avery large list of methods, and it is easier if you know the
name of the method you are looking for and simply want to find out which
arguments that method requires. From that method signature, you can then
deduce the adapting you need to carry out.

88

However, since Javais a strongly typed language, it is more likely
that you would simply invoke the adapter using one of several constructors,
where each constructor is tailored for a specific class that needs adapting.

Adaptersin Java

In abroad sense, there are already a number of adapters built into the
Javalanguage. In this case, the Java adapters serve to simplify an
unnecessarily complicated event interface. One of the most commonly used
of these Java adapters is the WindowAdapter class.

One of the inconveniences of Java is that windows do not close
automatically when you click on the Close button or window Exit menu item.
The general solution to this problem is to have your main Frame window
implement the WindowL istener interface, leaving all of the Window events
empty except for windowClosing.

public void mai nFrane extends Frame
i mpl enents W ndowLi st ener
{

public void mai nFranme()
addW ndowLi st ener (t hi s); /lframe |listens

//for wi ndow events
}

public void wi ndowd osi ng(WndowEvent wEvt) {
Systemexit(0); /lexit on Systemexit box clicked

public void wi ndowd osed(W ndowEvent wEvt){}
public void wi ndowOpened(W ndowEvent wEvt){}
public void wi ndow coni fi ed(W ndowEvent wEvt){}
public void wi ndowDei coni fi ed(W ndowEvent wEvt){}
public void wi ndowAct i vat ed(W ndowEvent wEvt){}
public void wi ndowDeacti vat ed(W ndowEvent wEvt){}
}
Asyou can see, thisis awkward and hard to read. The WindowAdapter class

is provided to simplify this procedure. This class contains empty
implementations of all seven of the above WindowEvents. Y ou need then
only override the windowClosing event and insert the appropriate exit code.

One such simple program is shown below:

/lillustrates using the WndowAdapter class
public class C oser extends Frane {
public C oser() {
W ndAp wi ndap = new W ndAp();
addW ndowLi st ener (wi ndap) ;
set Si ze(new Di nensi on(100, 100));

89

setVisible(true);

}

static public void main(String argv[]) {
new C oser();

}

/I make an extended wi ndow adapter which
//closes the frame when the closing event is received
cl ass WndAp extends W ndowAdapt er {
public void wi ndowd osi ng(WndowEvent e) {
System exi t (0);
}

}

Y ou can, however, make a much more compact, but |ess readable version of
the same code by using an anonymous inner class:

//create window |istener for w ndow cl ose click
addW ndowLi st ener (new W ndowAdapt er ()

public void wi ndowd osi ng(W ndowEvent e)
{Systemexit(0);}
1)

Adapters like these are common in Java when a simple class can be used to
encapsulate a number of events. They include ComponentAdapter,
ContainerAdapter, FocusAdapter, KeyAdapter, MouseAdapter, and
MouseM otionAdapter.

90

THE BRIDGE PATTERN

The Bridge pattern is used to separate the interface of class from its
implementation, so that either can be varied separately. At first sight, the
bridge pattern looks much like the Adapter pattern, in that a classis used to
convert one kind of interface to another. However, the intent of the Adapter
pattern is to make one or more classes' interfaces ook the same asthat of a
particular class. The Bridge pattern is designed to separate a class' s interface
from its implementation, so that you can vary or replace the implementation
without changing the client code.

Suppose that we have a program that displays alist of productsin a
window. The simplest interface for that display isasimple JList box. But,
once a significant number of products have been sold, we may want to
display the productsin atable along with their sales figures.

Since we have just discussed the adapter pattern, you might think
immediately of the class-based adapter, where we adapt the fairly elaborate
interface of the JList to our smpler needsin this display. In ssimple programs,
thiswill work fine, but as we'll see below there are limits to that approach.

Let’s further suppose that we need to produce two kinds of displays
from our product data, a customer view that isjust the list of products we've
mentioned, and an executive view which also shows the number of units
shipped. Well display the product list in an ordinary JList box and the
executive view in a JTable table display. To smplify peripheral programming
issues, we'll just show both displays as two lists in a single window, as we
see below:

91

At the top programming level, we just create instances of atable and
alist from classes derived from JList and Jtable but designed to parse apart
the names and the quantities of data.

pl ef t. set Layout (new Bor der Layout ());
pri ght. set Layout (new Bor der Layout ());

//add in customer view as |ist box
pl eft.add("North", new JLabel ("Custoner view'));
pl eft.add("Center", new productList(prod));

//add in execute view as table
pright.add("North", new JLabel ("Executive view'));
pright.add("Center", new product Tabl e(prod));

We derive the productList class directly from the JawtList class we
just wrote, so that the Vector containing the list of productsis the only input
to the class.

public class productlList extends Jawt Li st

publ i c productList(Vector products)

{
super (products. si ze()); //for conpatibility
for (int i =0; i < products.size(); i++)
{
//take each string apart and keep only
//the product nanes, discarding the quantities
String s = (String)products. el ement At (i);
//separate gty from name
int index = s.indexOh("--");
i f(index > 0)
add(s. substring(0, index));
el se
add(s);
}

}

Building a Bridge
Now suppose that we need to make some changes in the way these
lists display the data. For example, you might want to have the products
displayed in alphabetical order. In order to continue with this approach, you'd
need to either modify or subclass both of theselist classes. This can quickly
get to be a maintenance nightmare, especially if more than two such displays
eventually are needed. So rather than deriving new classes whenever we need

92

to change these displays further, let’s build a single bridge that does this work
for us:

Simple list

Data values Bridge

Table list

We want the bridge class to return an appropriate visual component
so we'll make it akind of scroll pane class:

public class |istBridge extends Jscroll Pane

When we design a bridge class, we have to decide how the bridge
will determine which of the several classesit isto instantiate. It could decide
based on the values or quantity of data to be displayed, or it could decide
based on some simple constants. Here we define the two constants inside the
listBridge class:

static public final int TABLE = 1, LIST = 2;

We'll keep the main program constructor much the same, replacing
specialized classes with two calls to the constructor of our new listBridge
class:

pl eft.add("North", new JLabel ("Custoner view'));
pl eft.add("Center",
new | i stBridge(prod, listBridge.LIST));

//add in execute view as table
pright.add("North", new JLabel ("Executive view'));
pright.add("Center",
new | i stBridge(prod, listBridge. TABLE));

Our constructor for the listBridge classis then smply

public listBridge(Vector v, int table_type)
{

Vector sort = sortVector(v); //sort the vector

93

if (table_type == LIST)
get Vi ewport (). add(makeLi st (sort)); //make table

if (table_type == TABLE)
get Vi ewport (). add(nmakeTabl e(sort)); //make |ist

The important difference in our bridge classis that we can use the JTable and
JList class directly without modification and thus can put any adapting
interface computations in the data models that construct the data for the list
and table.

private JLi st makeLi st (Vector v)
return new JLi st (new BridgeListData(v));

private JTabl e makeTabl e(Vect or v)
return new JTabl e(new prodModel (v));
}

The resulting sorted display is shown below:

Consequences of the Bridge Pattern

1. The Bridge pattern isintended to keep the interface to your client
program constant while allowing you to change the actual kind of class
you display or use. This can prevent you from recompiling a complicated
set of user interface modules, and only require that you recompile the
bridge itself and the actual end display class.

2. You can extend the implementation class and the bridge class separately,
and usually without much interaction with each other.

94

3. You can hide implementation details from the client program much more
easily.

95

THE COMPOSITE PATTERN

Frequently programmers develop systems in which a component may
be an individual object or it may represent a collection of objects. The
Composite pattern is designed to accommodate both cases. Y ou can use the
Composite to build part-whole hierarchies or to construct data representations
of trees. In summary, a composite is a collection of objects, any one of which
may be either a composite, or just a primitive object. In tree nomenclature,
some objects may be nodes with additional branches and some may be leaves.

The problem that develops is the dichotomy between having asingle,
simple interface to access al the objects in a composite, and the ability to
distinguish between nodes and |eaves. Nodes have children and can have
children added to them, while leaves do not at the moment have children, and
in some implementations may be prevented from having children added to
them.

Some authors have suggested creating a separate interface for nodes
and leaves, where aleaf could have the methods

public String getNane();
public String getVal ue();

and a node could have the additional methods:

public Enuneration el ements();

publ i c Node get Child(String nodeNane);
public void add(hject obj);

public void renove(Object obj);

This then leaves us with the programming problem of deciding which
elements will be which when we construct the composite. However, Design
Patterns suggests that each element should have the same interface, whether
itisacomposite or a primitive element. Thisis easier to accomplish, but we
are left with the question of what the getChild() operation should accomplish
when the object is actually aleaf.

Java makes this quite easy for us, since every node or leaf can return
an Enumeration of the contents of the Vector where the children are stored. If
there are no children, the hasMoreElements() method returns false at once.
Thus, if we simply obtain the Enumeration from each element, we can
quickly determine whether it has any children by checking the
hasMoreElements() method.

96

An Implementation of a Composite

Let’s consider a small company. It may have started with asingle
person who got the business going. He was, of course, the CEO, athough he
may have been too busy to think about it at first. Then he hired a couple of
people to handle the marketing and manufacturing. Soon each of them hired
some additional assistants to help with advertising, shipping and so forth, and
they became the company’ s first two vice-presidents. As the company’s
success continued, the firm continued to grow until it has the organizational
chart we see below:

CEO
Vp Mkt Vp prod
\ \
Sales mgr Mkt mgr Pro mgr Ship mgr
Sales Sales Secy Manu Manu Manu Ship Ship

Now, if the company is successful, each of these company members
receives asalary, and we could at any time ask for the cost of any employee
to the company. We define the cost as the salary of that person and those of
all his subordinates. Here is an ideal example for a composite:

The cost of an individual employeeis simply his salary (and benefits).

The cost of an employee who heads a department is his salary plus those
of al his subordinates.

We would like asingle interface that will produce the salary totals
correctly whether the employee has subordinates or not.

public float getSalaries();

At this point, we realize that the idea of al Composites having the
same standard interface is probably naive. We' d prefer that the public
methods be related to the kind of class we are actually developing. So rather
than have generic methods like getValue(), we'll use getSalaries().

97

The Employee Class

Our Employee class will store the name and salary of each employee,
and allow us to fetch them as needed.

public class Enpl oyee

{
String nang;
float salary;
Vect or subordi nat es;

public Enpl oyee(String _nane, float _salary) {
name = _nane;
salary = _sal ary;
subordi nates = new Vector ();

public float getSalary() {
return salary;

public String get Nanme() {
return name;
}

Note that we created a Vector called subordinates at the time the
class was instantiated. Then, if that employee has subordinates, we can
automatically add them to the Vector with the add method and remove them
with the remove method.

public voi d add(Enpl oyee e€) {
subor di nat es. addEl enment (e) ;

}

TR

public void renove(Enpl oyee e) {
subor di nat es. renoveEl enent (e);

}

If you want to get alist of employees of a given supervisor, you can
obtain an Enumeration of them directly from the subordinates Vector:

publ i c Enuneration el ements() {
return subordinates. el ement s()
}

The important part of the classis how it returns a sum of salaries for the
employee and his subordinates:

public float getSalaries() {

float sum = sal ary; //this one's salary
//add in subordinates salaries
for(int i = 0; i < subordinates.size(); i++) {

sum +=

98

((Enpl oyee) subor di nates. el enent At (i)). get Sal ari es();
return sum

}

Note that this method starts with the salary of the current Employee,
and then calls the getSalaries() method on each subordinate. Thisis, of
course, recursive and any employees which themselves have subordinates
will be included.

Building the Employee Tree

We start by creating a CEO Employee and then add his subordinates
and their subordinates as follows:

boss = new Enpl oyee(" CEQ', 200000);
boss. add(mar ket VP =
new Enpl oyee(" Mar keting VP', 100000));
boss. add(prodVP =
new Enpl oyee(" Production VP", 100000));
mar ket VP. add(sal esMyr =
new Enpl oyee("Sal es Mgr", 50000));
mar ket VP. add(advMgr =
new Enpl oyee(" Advt Mr", 50000));
//add sal esnen reporting to Sal es Manager
for (int i=0; i<5; i++)
sal esMyr . add(new Enpl oyee("Sales "+
new | nteger(i).toString(), 30000.0F
+(fl oat) (Mat h. randon()-0.5)*10000));
advMgr . add(new Enpl oyee(" Secy", 20000));

pr odVP. add(prodMgr =
new Enpl oyee("Prod Myr", 40000));
pr odVP. add(shi pMyr =
new Enpl oyee(" Ship Myr", 35000));
//add manufacturing staff
for (int i =0; i < 4; i++)
prodMgr. add(new Enpl oyee(" Manuf "+
new | nteger(i).toString(), 25000.0F
+(fl oat) (Mat h. randon{) - 0. 5) *5000)) ;
/' add shi ppi ng cl erks
for (int i =0; i < 3; i++4)
shi pMgr. add(new Enpl oyee("Shipdrk "+
new | nteger(i).toString(), 20000.0OF
+(fl oat) (Mat h. randon() - 0. 5)*5000)) ;

99

Once we have constructed this Composite structure, we can load a
visual JTreelist by starting at the top node and calling the addNode() method
recursively until al the leavesin each node are accessed:

private voi d addNodes(Def aul t Mut abl eTr eeNode pnode,

Enpl oyee enp) {
Def aul t Mut abl eTr eeNode node;

Enuneration e = enp. el enments();
whi | e(e. hasMor eEl enent s())

{
Enpl oyee newknp = (Enpl oyee) e. next El enent () ;

node = new Def aul t Mut abl eTr eeNode(newEnp. get Nane()) ;
pnode. add(node) ;
addNodes(node, newEnp);

}
}
The final program display is shown below:

In thisimplementation, the cost (sum of salaries) is shown in the
bottom bar for any employee you click on. This simple computation calls the
getChild() method recursively to obtain al the subordinates of that employee.

public voi d val ueChanged(Tr eeSel ecti onEvent evt)
//called when enployee is selected in tree |list

TreePath path = evt.getPath();
String sel ectedTerm =

100

pat h. get Last Pat hConponent ().toString();
/1find that enployee in the conposite
Enpl oyee enp = boss. get Chil d(sel ectedTern);
//di splay sum of salaries of subordinates(if any)

if(emp '= null)
cost. set Text (new Fl oat (enp.getSalaries()).toString());
}

Restrictions on Employee Classes

It could be that certain employees or job positions are designed so
that they never should have subordinates. Assembly workers or salesmen may
advance in the company by being named to a new position, but those holding
these leaf positions will never have subordinates. In such a case, you may
wish to design your Employee class so that you can specify that thisisa
permanent leaf position. One way to do thisisto set avariable whichis
checked before it allows subordinates to be added. If the position is leaf
position, the method returns false or throws an exception.

public voi d setLeaf (bool ean b)
i sLeaf = b; //if true, do not allow children

publ i ¢ bool ean add(Enpl oyee e) {

if (! isLeaf)
subor di nat es. addEl enment (e) ;
return isLeaf; //false if unsuccessful

}

Consequences of the Composite Pattern

The Composite pattern alows you to define a class hierarchy of
simple objects and more complex composite objects so that they appear to be
the same to the client program. Because of this simplicity, the client can be
that much simpler, since nodes and leaves are handled in the same way.

The Composite pattern also makes it easy for you to add new kinds of
components to your collection, as long as they support a similar programming
interface. On the other hand, this has the disadvantage of making your system
overly general. You might find it harder to restrict certain classes, where this
would normally be desirable.

The composite is essentialy a singly-linked tree, in which any of the
objects may themselves be additional composites. Normally, these objects do
not remember their parents and only know their children as an array, hash

101

table or vector. However, it is perfectly possible for any composite element to
remember its parent by including it as part of the constructor:

publ i ¢ Enpl oyee(Enpl oyee _parent, String _nane,

float _salary) {
name = _nane; /[save nane
salary = _sal ary; /land sal ary
parent = _parent; //and par ent
subordi nates = new Vector ();
i sLeaf = fal se; //allow children

}
This simplifies searching for particular members and moving up the

tree when needed.

Other Implementation | ssues

Implementing thelist in the parent. If there are avery large
number of leaves in a composite but only afew nodes, then keeping an empty
Vector object in each leaf has some space implications. An alternative
approach isto declare all of the objects of type Member, which implements
only getName() and getVValue() methods. Then you derive a Node class from
Member which implements the add, remove and elements methods. Now only
objects that are Node classes can have an enumeration of members. Y ou can
check for thisin the recursive loop instead of returning empty Vector
enumerators.

i f(enp instanceof Node) {
Enumeration e = enp. el enents();
whi | e(e. hasMor eEl enents()) {
Enpl oyee newknp = (Enpl oyee) e. next El enent () ;
/]l etc.

}
In most casesit is not clear that the space saving justifies this

additional complexity.

Ordering components. In some programs, the order of the
components may be important. If that order is somehow different from the
order in which they were added to the parent, then the parent must do
additional work to return them in the correct order. For example, you might
sort the original Vector alphabetically and return the Enumerator to a new
sorted vector.

Caching results. If you frequently ask for data which must be
computed from a series of child components as we did here with salaries, it
may be advantageous to cache these computed resultsin the parent. However,

102

unless the computation is relatively intensive and you are quite certain that
the underlying data have not changed, this may not be worth the effort.

103

THE DECORATOR PATTERN

The Decorator pattern provides us with away to modify the behavior
of individual objects without having to create a new derived class. Suppose
we have a program that uses eight objects, but three of them need an
additional feature. You could create a derived class for each of these objects,
and in many cases this would be a perfectly acceptable solution. However, if
each of these three objects require different modifications, this would mean
creating three derived classes. Further, if one of the classes has features of
both of the other classes, you begin to create a complexity that is both
confusing and unnecessary.

For example, suppose we wanted to draw a specia border around
some of the buttonsin atoolbar. If we created a new derived button class, this
means that all of the buttons in this new class would aways have this same
new border, when this might not be our intent.

Instead, we create a Decorator class that decor ates the buttons. Then
we derive any number of specific Decorators from the main Decorator class,
each of which performs a specific kind of decoration. In order to decorate a
button, the Decorator has to be an object derived from the visua
environment, so it can receive paint method calls and forward calls to other
useful graphic methods to the object that it is decorating. Thisis another case
where object containment is favored over object inheritance. The decorator is
agraphical object, but it contains the object it is decorating. It may intercept
some graphical method calls, perform some additional computation and may
pass them on to the underlying object it is decorating.

Decorating a CoolButton

Recent Windows applications such as Internet Explorer and Netscape
Navigator have arow of flat, unbordered buttons that highlight themselves
with outline borders when you move your mouse over them. Some Windows
programmers call this toolbar a CoolBar and the buttons Cool Buttons. There
is no analogous button behavior in the JFC, but we can obtain that behavior
by decorating a JButton. In this case, we decorate it by drawing plain gray
lines over the button borders, erasing them.

Let’s consider how to create this Decorator. Design Patterns suggests
that Decorators should be derived from some general Visual Component class
and then every message for the actual button should be forwarded from the

104

decorator. In Java, thisis completely impractical, because there are literally
hundreds of method calls in the base JComponent class that we would have to
reimplement. Instead, while we will derive our Decorator from the
JComponent class, we will use its container properties to forward all method
calls to the button it will contain.

Design Patterns suggests that classes such as Decorator should be
abstract classes and that you should derive all of your actual working (or
concrete) decorators from the abstract class. In this Javaimplementation, this
is scarcely necessary since the base Decorator class has no public methods at
all other than the constructor, since all of them are methods of JComponent
itself.

public class Decorator extends Jconponent {
publ i c Decorat or (JConponent c) {
set Layout (new Bor der Layout ());
// add conponent to contai ner
add("Center", c);

Now, let’slook at how we could implement a Cool Button. All we
really need to do is to draw the button as usual from the base class, and then
draw gray lines around the border to remove the button highlighting.

//this class decorates a Cool Button so that

//the borders are invisible when the npuse

//is not over the button

publ i c cl ass Cool Decorator extends Decorat or

{
bool ean nouse_over; //true when nouse over button
JConponent t hi sConp;

publ i ¢ Cool Decor at or (JConponent c)

{
super (c);
nouse_over = fal se;
thisConp = this; // save this conponent

//catch nouse novenents in inner class
c. addMbuseli st ener (new MouseAdapt er ()

public voi d nouseEnt er ed(MouseEvent e) {

nouse_over =t r ue; //set flag when nouse over
t hi sConp. repai nt();
}

public voi d nouseExited(MuseEvent e) {
nouse_over =f al se; //clear if nouse not over

t hi sConp. repaint();
}

105

1)

}
//paint the button

public void paint(Gaphics g)

{
super. pai nt (g); //first draw the parent button
i f(! nouse_over) {
/lif the nouse is not over the button
/l erase the borders
Di nensi on size = super.getSize();
g. set Col or (Col or. | i ght Gray);
g. drawRect (0, 0, size.w dth-1, size.height-1);
g.drawli ne(si ze.width-2, 0, size.w dth-2,
si ze. height-1);
g.drawLi ne(0, size.height-2, size.w dth-2,
si ze. hei ght - 2);
}
}

}

Using a Decorator

Now that we' ve written a Cool Decorator class, how do we use it? We
simply create an instance of the Cool Decorator and pass it the button it isto
decorate. We can do all of thisright in the constructor. Let’'s consider a
simple program with two Cool Buttons and one ordinary JButton. We create
the layout as follows:

super ("Deco Button");
JPanel jp = new JPanel ();

get Cont ent Pane() . add(j p) ;

j p. add(new Cool Decorat or (new JButton("Cbutton")));
j p. add(new Cool Decorat or (new JButton("Dbutton")));
jp.add(Quit = new JButton("Quit"));

Qui t. addAct i onLi st ener (this);

This program is shown below, with the mouse hovering over one of
the buttons.

106

Now that we see how a single decorator works, what about multiple
decorators? It could be that we' d like to decorate our Cool Buttons with
another decoration, say, ared diagonal line. Since the argument to any
Decorator isjust a JComponent, we could create a new decorator with a
decorator as its argument.

Let’s consider the SlashDecorator, which draws that diagonal red

line:
public class SlashDecorator extends Decorator
{
int x1, y1, wi, hil; // saved size and posn
publ i c Sl ashDecor at or (JConponent c) {
super (c);
e R T T
public void setBounds(int x, int y, int w, int h) {
x1l = x; yl=vy; / / save coordi nat es
wl =w hl = h;
super . set Bounds(x, y, w, h);
}
e R T T
public void paint(Gaphics g) {
super . pai nt (Qg); /1 draw button
g. set Col or (Col or. red); /'l set col or
g.drawLi ne(0, 0, wl, hl); //draw red line
}
}

Here we save the size and position of the button when it is created,
and then use those saved values to draw the diagonal line.

Y ou can create the JButton with these two decorators by just calling
one and then the other:

j p- add(new Sl ashDecor at or (
new Cool Decor at or (new JButton("Dbutton"))));

Thisgives us afinal program that displays the two buttons like this:

107

I nheritance Order

Some people find the order of inheritance in Decorators confusing,
because we are surrounding a button with a decorator that inherits from a
JComponent. We illustrate this inheritance tree below.

JComponent

Decorator

SlashDecorator CoolDecorator JButton

o—1 [o—7F

A JButton is achild of JComponent, and is encapsulated in a
Decorator, which not only is a child of JComponent but encapsulates one as
well. The JComponent it encapsulatesis, in this case, a JButton.

Decorating Bordersin Java

One problem with this particular implementation of Decoratorsis that
it is not easy to expand the size of the component you are decorating, because
you add the component to a container and alow it to fill the container
completely. If you attempt to draw lines outside the area of this component,
they are clipped by the graphics procedure and not drawn at all.

The JFC providesits own series of Border objects that are akind of
decorators. Like a Decorator pattern, you can add a new Border object to any
JComponent, and there also is away to add several borders. However, unlike
the Decorator pattern, it is not a JComponent and you do not have the
flexibility to intercept and change specific events.

The JFC defines several standard border classes:

BevelBorder(n) Simple 2-line bevel, can be LOWERED or RAISED

108

CompoundBorder Allows you to add 2 borders

(inner, outer)

EmptyBorder(top, Blank border width specified on each side.
left, bottom, right)

EtchedBorder Creates etched norder.

LineBorder(width,
color)

Creates simple line border,

M atteBorder Creates a matte border of asolid color or atiled icon.
SofBeveledBorder Creates beveled border with rounded corners.
TitledBorder Creates a border containing atitle. Usethisto

surround and label a JPandl.

These borders are simple to use, in conjunction with the setBorder
method of each JComponent. The illustration below shows a normal JButton
with a 2-pixel solid line border, combined with a 4-pixel EmptyBorder and an

EtchedBorder.

This was created with the following ssimple code:

get Cont ent Pane() . add(j p);

j p. add(Chutton = new JButton("Cbutton"));

j p-add(Dbutton = new JButton("Dbutton"));
Enpt yBorder ep = new EnptyBorder (4, 4,4, 4);

Li neBorder |Ib = new Li neBorder (Col or. bl ack, 2);
Dbut t on. set Bor der (new ConpoundBor der (I b, ep));
jp.-add(Qit = new JButton("Quit"));

Et chedBorder eb = new Et chedBorder();

Qui t. addAct i onLi st ener (this);

Qui t. setBorder(eb);

109

One drawback of these Border objectsis that they replace the default
Insets values that determine the spacing around the component. Note that we
had to add a 4-pixel EmptyBorder to the Dbutton to make it similar in size to
the CButton. We did not do this for the Quit button, and it is therefore
substantially smaller than the others.

Non-Visual Decorators

Decorators, of course, are not limited to objects that enhance visual
classes. You can add or modify the methods of any object in asimilar
fashion. In fact, non-visua objects are usually easier to decorate, because
there are usually fewer methods to intercept and forward.

While coming up with a simple example is difficult, a series of
Decorators do occur naturaly in the java.io classes. Note the following in the
Java documentation:

The class FilterInputStream itself simply overrides
all methods of InputStream with versions that pass all
requests to the underlying input stream. Subclasses of
FilterInputStream may further override some of these
methods as well as provide additional methods and fields.

The FilterlnputStream class is thus a Decorator that can be wrapped
around any input stream class. It is essentially an abstract class that doesn’t
do any processing, but provides a layer where the relevant methods have been
duplicated. It normally forwards these method calls to the enclosed parent
stream class.

The interesting classes derived from FilterlnputStream include

BufferedinputStream Adds buffering to stream so that every call does
not cause 1/0O to occur.

CheckedInputStream Maintains a checksum of bytes as they are read
Datal nputStream Reads primitive types (Long, Boolean, Float, etc.)
from the input stream.

DigestInputStream Computes a MessageDigest of any input stream.
Inflaterl nputStream Implements methods for uncompressing data.

PushbacklnputStream Provides a buffer where data can be “unread,” if
during parsing you discover you need to back up.

110

These decorators can be nested, so that a pushback, buffered input
stream is quite possible.

Decorators, Adaptersand Composites

There is an essential similarity among these classes that you may
have recognized. Adapters also seem to “decorate” an existing class.
However, their function is to change the interface of one or more classes to
one that is more convenient for a particular program. Decorators add methods
to particular instances of classes, rather than to al of them. You could aso
imagine that a composite consisting of asingle item is essentially a decorator.
Once again, however, the intent is different

Consequences of the Decor ator Pattern

The Decorator pattern provides a more flexible way to add
responsihilities to a class than by using inheritance, since it can add these
responsibilities to selected instances of the class. It also alows you to
customize a class without creating subclasses high in the inheritance
hierarchy. Design Patterns points out two disadvantages of the Decorator
pattern One is that a Decorator and its enclosed component are not identical.
Thus tests for object type will fail. The second is that Decorators can lead to a
system with “lots of little objects’ that all look aike to the programmer trying
to maintain the code. This can be a maintenance headache.

Decorator and Facade evoke similar images in building architecture,
but in design pattern terminology, the Fagade is away of hiding a complex
system inside a simpler interface, while Decorator adds function by wrapping
aclass. We'll take up the Fagade next.

111

THE FACADE PATTERN

Frequently, as your programs evolve and develop, they grow in
complexity. In fact, for all the excitement about using design patterns, these
patterns sometimes generate so many classes that it is difficult to understand
the program’s flow. Furthermore, there may be a number of complicated
subsystems, each of which has its own complex interface.

The Facade pattern allows you to simplify this complexity by
providing a simplified interface to these subsystems. This simplification may
in some cases reduce the flexibility of the underlying classes, but usually
provides al the function needed for all but the most sophisticated users.
These users can till, of course, access the underlying classes and methods.

Fortunately, we don’t have to write a complex system to provide an
example of where a Facade can be useful. Java provides a set of classes that
connect to databases using an interface called JDBC. Y ou can connect to any
database for which the manufacturer has provided a JDBC connection class --
almost every database on he market. Some databases have direct connections
using JDBC and afew alow connection to ODBC driver using the JDBC-
ODBC bridge class.

These database classes in the java.sgl package provide an excellent
example of a set of quite low level classes that interact in a convoluted
manner, as shown below.

ResultSet

oot
Metadata get ResultSet
Exetute
Database get Connection ereate Statement
Metadata
Create

To connect to a database, you use an instance of the Connection
class. Then, to find out the names of the database tables and fields, you need

112

to get an instance of the DatabaseM etadata class from the Connection. Next,
to issue a query, you compose the SQL query string and use the Connection
to create a Statement class. By executing the statement, you obtain a
ResultSet class, and to find out the names of the column rows in that
ResultSet, you need to obtain an instance of the ResultsetM etadata class.
Thus, it can be quite difficult to juggle all of these classes and since most of
the calls to their methods throw Exceptions, the coding can be messy at least.

‘ Database ‘ ‘ resultSet ‘
| |
ResultSet X
Metadata get ResultSet
Execute
oapase get Connection create Statement
Metadata
Create

However, by designing a Fagade consisting of a Database classand a
resultSet class (note the lowercase “r”), we can build a much more usable
system.

Building the Facade Classes

Let’s consider how we connect to a database. We first must load the
database driver:
try{d ass.forNanme(driver);} //load the Bridge driver

catch (Exception e)
{System out . println(e.get Message());}

and then use the Connection class to connect to a database. We also obtain
the database metadata to find out more about the database:

113

try {con = Driver Manager. get Connection(url);
drma =con. get Met aDat a() ; //get the neta data

catch (Exception e)
{System out . println(e.get Message());}

If we want to list the names of the tables in the database, we then
need to call the getTables method on the database metadata class, which
returns a ResultSet object. Finally, to get the list of names we have to iterate
through that object, making sure that we obtain only user table names, and
exclude internal system tables.

Vector tnanme = new Vector();

try {
results = new resul t Set (dma. get Tabl es(cat al og,

null, "%, types));

catch (Exception e) {Systemout.println(e);}
whil e (results. hasMoreEl enents())
t nane. addEl enment (
resul ts. get Col umVal ue(" TABLE_NAME")) ;

This quickly becomes quite complex to manage, and we haven't even
issued any queries yet.

One smplifying assumption we can make is that the exceptions that
all these database class methods throw do not need complex handling. For the
most part, the methods will work without error unless the network connection
to the database fails. Thus, we can wrap all of these methods in classesin
which we simply print out the infrequent errors and take no further action.

This makes it possible to write two simple enclosing classes which
contain all of the significant methods of the Connection, ResultSet, Statement
and Metadata classes. These are the Database class:

Cl ass Dat abase {
publ i c Database(String driver)()//constructor
public void Open(String url, String cat);
public String[] getTabl eNames();
public String[] getCol umNanes(String table);
public String getColumVal ue(String table,
String col umNane) ;
public String getNextVal ue(String col utmNane) ;
public resultSet Execute(String sql);
}
and the resultSet class:

cl ass result Set

public resul tSet (ResultSet rset) /'l constructor

114

public String[] getMetabData();

publ i c bool ean hasMor eEl enent s();

public String[] nextEl enment();

public String getColumVal ue(String col unmmNane) ;
public String getCol umVal ue(int i);

}
These ssimple classes alow usto write a program for opening a

database, displaying its table names, column names and contents, and running
asimple SQL query on the database.

The dbFrame.java program accesses a simple database containing
food prices at 3 local markets:

Clicking on atable name shows you the column names and clicking
on a column name shows you the contents of that column. If you click on Run
Query, it displays the food prices sorted by store for oranges:

115

This program starts by connecting to the database and getting a list of
the table names:

db = new Dat abase("sun. j dbc. odbc. JdbcQdbcDriver");
db. Open("j dbc: odbc: Grocery prices", null);

String tnanes[] = db. get Tabl eNanes();

| oadLi st (Tabl es, tnanes);

Then clicking on one of the lists runs a smple query for table column
names or contents:

public void itenStateChanged(ltenEvent e) {
//get list box selection
Obj ect obj = e.getSource();
if (obj == Tabl es)
showCol ums() ;
if (obj == Colums)
showbat a() ;
}
e R T
private void showCol ums() {
/1 di splay columm nanes
String cnanes[] =
db. get Col umNanes(Tabl es. get Sel ectedlten());
| oadLi st (Col utmms, cnanes);
}
e R T
private void showbata() {
/1 di splay columm contents
String col nane = Col umms. get Sel ectedl ten();
String colval =
db. get Col umVal ue(Tabl es. get Sel ect edl t enq(),
col name) ;
Dat a. renoveAl | (); /lclear |ist box
col val = db. get Next Val ue(Col unms. get Sel ectedl ten());

whil e (colval.length()>0) {
//load list box
Dat a. add(col val) ;
col val = db. get Next Val ue(Col umms. get Sel ectedlten());

}
}

Consequences of the Facade

The Facade pattern shields clients from complex subsystem
components and provides a simpler programming interface for the general
user. However, it does not prevent the advanced user from going to the
deeper, more complex classes when necessary.

116

In addition, the Facade allows you to make changes in the underlying
subsystems without requiring changes in the client code, and reduces
compilation dependencies.

117

THE FLYWEIGHT PATTERN

There are cases in programming where it seems that you need to
generate a very large number of small class instances to represent data
Sometimes you can greatly reduce the number of different classes that you
need to instantiate if you can recognize that the instances are fundamentally
the same except for afew parameters. If you can move those variables outside
the class instance and pass them in as part of a method call, the number of
separate instances can be greatly reduced.

The Flyweight design pattern provides an approach for handling such
classes. It refers to the instance' s intrinsic data that makes the instance
unique, and the extrinsic data which is passed in as arguments. The Flyweight
is appropriate for small, fine-grained classes like individua characters or
icons on the screen. For example, if you are drawing a series of icons on the
screen in afolder window, where each represents a person or datafile, it does
not make sense to have an individual class instance for each of them that
remembers the person’s name and the icon’ s screen position. Typically these
icons are one of afew similar images and the position where they are drawn
is calculated dynamically based on the window’s size in any case.

In another example in Design Patterns, each character in afontis
represented as a single instance of a character class, but the positions where
the characters are drawn on the screen are kept as external data so that there
needs to be only one instance of each character, rather than one for each
appearance of that character.

Discussion
Flyweights are sharable instances of a class. It might at first seem that

each classisa Singleton, but in fact there might be a small number of
instances, such as one for every character, or one for every icon type. The
number of instances that are allocated must be decided as the class instances
are needed, and thisis usually accomplished with a FlyweightFactory class.
Thisfactory class usually is a Singleton, since it needs to keep track of
whether or not a particular instance has been generated yet. It then either
returns a new instance or areference to one it has already generated.

To decide if some part of your program is a candidate for using
Flyweights, consider whether it is possible to remove some data from the
class and make it extrinsic. If this makes it possible to reduce grestly the

118

number of different class instances your program needs to maintain, this
might be a case where Flyweights will help.

Example Code

Suppose we want to draw a small folder icon with a name under it for
each person in aan organization. If thisis alarge organization, there could be
alarge number of such icons, but they are actualy all the same graphical
image. Even if we have two icons, one for “is Selected” and one for “not
Selected” the number of different iconsis small. In such a system, having an
icon object for each person, with its own coordinates, name and selected state
is awaste of resources.

Instead, we'll create a FolderFactory that returns either the selected or
the unselected folder drawing class, but does not create additional instances
once one of each has been created. Since thisis such a simple case, we just
create them both at the outset and then return one or the other:

cl ass Fol der Factory

Fol der unSel ect ed, Sel ected;
public Fol der Factory()

{

Col or brown = new Col or (0x5f 5f 1c) ;

Sel ected = new Fol der (br own);

unSel ected = new Fol der (Col or. yel | ow) ;

publ i c Fol der get Fol der (bool ean i sSel ect ed)

if (isSelected)
return Sel ected;
el se
return unSel ect ed;

For cases where more instances could exist, the factory could keep a
table of the onesit had already created and only create new onesif they
weren't already in the table.

The unique thing about using Flyweights, however, is that we pass
the coordinates and the name to be drawn into the folder when we draw it.
These coordinates are the extrinsic data that allow us to share the folder
objects, and in this case create only two instances. The complete folder class
shown below simply creates a folder instance with one background color or

119

the other and has a public Draw method that draws the folder at the point you
specify.
cl ass Fol der extends JPanel
{
private Col or color;

final int W= 50, H = 30;
publ i c Fol der (Col or c)

{
color = c;
e
public void Drawm Graphics g, int tx, int ty, String nanme)
{
g. set Col or (Col or. bl ack); //outline
g.drawRect (tx, ty, W H);
g.drawString(nane, tx, ty + H+15); //title

g. set Col or(col or); /1fill rectangle
g. fill Rect (tx+1, ty+1, W1, H1);

g. set Col or (Col or. i ght Gray); //bend line
g.drawLi ne(tx+1, ty+H5, tx+W1l, ty+H5);

. set Col or (Col or. bl ack) ; /I shadow I i nes
.drawLi ne(tx, ty+H+1, tx+W1, ty+H+1);
.drawli ne(tx+W1, ty, tx+W1l, ty+H);

Q@

.set Col or (Col or.white); /1 highlight |ines
.drawLi ne(tx+1, ty+1, tx+W1, ty+1);
.drawLi ne(tx+1, ty+1, tx+1, ty+H1);

QQaQ

To use a Flyweight class like this, your main program must calculate
the position of each folder as part of its paint routine and then pass the
coordinates to the folder instance. Thisis actually rather common, since you
need a different layout depending on the window’ s dimensions, and you
would not want to have to keep telling each instance where its new location is
going to be. Instead, we compute it dynamically during the paint routine.

Here we note that we could have generated an array or Vector of
folders at the outset and simply scan through the array to draw each folder.
Such an array is not as wasteful as a series of different instances because it is
actually an array of references to one of only two folder instances. However,
since we want to display one folder as “selected,” and we would like to be

120

able to change which folder is selected dynamically, we just use the
FolderFactory itself to give us the correct instance each time:

public void paint (G aphics g)

Fol der f;
String nang;

int j = 0; // count nunber in row
int row= Top; //start in upper left
int x = Left;

/1go through all the nanes and fol ders
for (int i = 0; i< nanes.size(); i++)
{
name = (String)nanes. el ement At (i);
i f (nane. equal s(sel ect edNane))
f = fact.getFol der(true);
el se
f = fact.getFol der(fal se);
/lhave that folder draw itself at this spot
f.Dram g, X, row, nane);

X = X + HSpace; // change to next posn
j ++;
if (j >= HCount) //reset for next row
j =0
row += VSpace;
X = Left;
}
}

}

Selecting A Folder

Since we have two folder instances, that we termed selected and
unselected, we' d like to be able to select folders by moving the mouse over
them. In the paint routine above, we ssmply remember the name of the folder
which was selected and ask the factory to return a“selected’ folder for it.
Since the folders are not individua instances, we can't listen for mouse
motion within each folder instance. In fact, even if we did listen within a
folder, we' d have to have away to tell the other instances to deselect
themselves.

Instead, we check for mouse motion at the window level and if the
mouse is found to be within a Rectangle, we make that corresponding name
the selected name. This allows us to just check each name when we redraw
and create a selected folder instance where it is needed:

121

public voi d nouseMoved(MouseEvent e)

{

int j =0; // count nunber in row
int row = Top; //start in upper left
int x = Left;

/1go through all the nanes and fol ders
for (int i = 0; i< nanes.size(); i++)
{

//see if this folder contains the nouse
Rectangl e r = new Rectangl e(x, row, WH);
if (r.contains(e.getX(), e.getY()))

sel ect edNane=(Stri ng) nanes. el enent At (i) ;

repaint();
}
X = X + HSpace; /I change to next posn
j ++;
if (j >= HCount) //reset for next row
{
i =0;
row += VSpace;
X = Left;
}

The display program for 10 named folders is shown below:

122

Flyweight Usesin Java

Flyweights are not frequently used at the application level in Java
They are more of a system resource management technique, used at a lower
level than Java. However, it is useful to recognize that this technique exists
S0 you can use it if you need it.

One place where we have already seen the Flyweight isin the cell
renderer code we use for tables and list boxes. Usually the cell renderer isjust
aJLabel, but there may be two or three types of |abels or renderers for
different colors or fonts. However, there are far fewer renderers than there are
cellsin the table or list.

Some objects within the Java language could be implemented under
the covers as Flyweights. For example, if there are two instances of a String
constant with identical characters, they could refer to the same storage
location. Similarly, it might be that two Integer or Float objects that contain
the same value could be implemented as Flyweights, athough they probably
are not. To prove the absence of Flyweights here, just run the following code:

Integer five = new I nteger(5);

I nt eger nyfive = new I nteger(5);
Systemout.println(five == nyfive);

String fred=new String("fred");
String fredl = new String("fred");
Systemout.printin(fred == fredl);

Both cases print out “false.” However it is useful to note that you can
easily determine that you are dealing with two identical instances of a
Flyweight by using the “==" operator. It compares actual object references
(memory addresses) rather than the “equals’ operator which will probably be
slower if it isimplemented at all.

Sharable Objects

The Smalltalk Companion points out that sharable objects are much
like Flyweights, although the purpose is somewhat different. When you have
avery large object containing alot of complex data, such as tables or
bitmaps, you would want to minimize the number of instances of that object.
Instead, in such cases, you'd return one instance to every part of the program
that asked for it and avoid creating other instances.

A problem with such sharable objects occurs when one part of a
program wants to change some data in a shared object. Y ou then must decide

123

whether to change the object for al users, prevent any change, or create a
new instance with the changed data. If you change the object for every
instance, you may have to notify them that the object has changed.

Sharabl e objects are a so useful when you are referring to large data
systems outside of Java, such as databases. The Database class we developed
above in the Fagade pattern could be a candidate for a sharable object. We
might not want a number of separate connections to the database from
different program modules, preferring that only one be instantiated. However,
should several modules in different threads decide to make queries
simultaneoudly, the Database class might have to queue the queries or spawn
extra connections.

124

THE PROXY PATTERN

The Proxy pattern is used when you need to represent a complex
object by asimpler one. If creating an object is expensive in time or computer
resources, Proxy allows you to postpone this creation until you need the
actual object. A Proxy usually has the same methods as the object it
represents, and once the object is loaded, it passes on the method calls from
the Proxy to the actual object.

There are several cases where a Proxy can be useful:
If an object, such as alarge image, takes along time to load.

2. If the object is on aremote machine and loading it over the network may
be dow, especially during peak network load periods.

3. If the object has limited access rights, the proxy can validate the access
permissions for that user.

Proxies can aso be used to distinguish between requesting an
instance of an object and the actual need to accessit. For example, program
initialization may set up a number of objects which may not all be used right
away. In that case, the proxy can load the real object only when it is needed.

Let’s consider the case of alarge image that a program needsto load
and display. When the program starts, there must be some indication that an
image isto be displayed so that the screen lays out correctly, but the actual
image display can be postponed until the image is completely loaded. Thisis
particularly important in programs such as word processors and web browsers
that lay out text around the images even before the images are available.

An image proxy can note the image and begin loading it in the
background, while drawing a simple rectangle or other symbol to represent
the image’ s extent on the screen before it appears. The proxy can even delay
loading the image at al until it receives a paint request, and only then begin
the process.

Sample Code

In this example program, we create a smple program to display an
image on a JPanel when it is loaded. Rather than loading the image directly,
we use a class we call ImageProxy to defer loading and draw a rectangle
around the image area until loading is completed.

125

public class ProxyDi splay extends JxFrane
{
public ProxyDi splay()
{
super ("Di spl ay proxied inage");
JPanel p = new JPanel ();
get Cont ent Pane() . add(p) ;
p. set Layout (new Bor der Layout ());
I mageProxy i mage = new | mageProxy(this, "elliott.jpg",
321, 271);
p. add("Center", image);
set Si ze(400, 400);
setVisible(true);
}
Note that we create the instance of the ImageProxy just as we would

have for an Image, and that we add it to the enclosing JPanel as we would an
actual image.

The ImageProxy class sets up the image loading and creates a
MediaTracker object to follow the loading process within the constructor:

public I mageProxy(JFranme f, String filenane,
int w, int h)

{

hei ght = h;
width = w
frame = f;

tracker = new Medi aTracker (f);
img = Tool kit.getDefaultTool kit().getlmage(fil enane);
tracker. addl nage(ing, 0); //wat ch for inmage | oading

i mgeCheck = new Thread(this);
i mgeCheck. start(); //start 2nd thread nonitor

//this begins actual inage |oading

try{
tracker.waitForl D0, 1);

}
catch(I nterrupt edException e){}
}

The waitForID method of the MediaTracker actually initiates
loading. In this case, we put in a minimum wait time of 1 msec so that we can
minimize apparent program delays.

The constructor also creates a separate thread imageCheck that
checks the loading status every few milliseconds, and starts that thread
running.

126

public void run()

//this thread nonitors i mage | oadi ng
/land repaints when the image is done

try{
Thr ead. sl eep(1000) ;

whi | e(! tracker. checkl D(0))
Thr ead. sl eep(1000) ;

cat ch(Exception e){}
repaint();

For the purposes of thisillustration program, we sowed the polling
time down to 1 second so you can see the program draw the rectangle and
then refresh the final image.

Finally, the Proxy is derived from the JPanel component, and
therefore, naturally has a paint method. In this method, we draw arectangle if
the image is not loaded. If the image has been loaded, we erase the rectangle
and draw the image instead.

public void paint (G aphics g)
i f (tracker.checkl D(0))

{

hei ght = i ng. get Hei ght (frane); /1 get hei ght
width = ing.get Wdth(frane); /land w dth
g. set Col or (Col or. li ght Gay); /'l erase box
g.fill Rect (0,0, width, height);

g.drawl mage(ing, 0, 0, frame); /] draw i mage
}

el se

{

//draw box outlining inmage if not | oaded yet
g.drawRect (0, 0, width-1, height-1);
}

The program’ stwo states are illustrated below.

}

127

Copy-on-Write

You can also use proxiesis to keep copies of large objects that may
or may not change. If you create a second instance of an expensive object, a
Proxy can decide there is no reason to make a copy yet. It simply uses the
original object. Then, if the program makes a change in the new copy, the
Proxy can copy the origina object and make the change in the new instance.
This can be a great time and space saver when objects do not always change
after they are instantiated.

Comparison with Related Patterns

Both the Adapter and the Proxy constitute a thin layer around an
object. However, the Adapter provides a different interface for an object,
while the Proxy provides the same interface for the object, but interposes
itself where it can save processing effort.

A Decorator also has the same interface as the object it surrounds, but
its purpose is to add additional (usually visual) function to the original object.
A proxy, by contrast, controls access to the contained class.

128

SUMMARY OF STRUCTURAL PATTERNS

In this chapter we have seen the

The Adapter pattern, used to change the interface of one class to that of
another one.

The Bridge pattern, intended to keep the interface to your client program
constant while allowing you to change the actual kind of class you
display or use. Y ou can then change the interface and the underlying class

separately.

The Composite pattern, a collection of objects, any one of which may be
either itself a Composite, or just a primitive object.

The Decor ator pattern, a class that surrounds a given class, adds new
capabilitiesto it, and passes al the unchanged methods to the underlying
class.

The Facade pattern, which groups a complex object hierarchy and
provides a new, smpler interface to access those data.

The Flyweight pattern, which provides away to limit the proliferation of
small, similar class instances by moving some of the class data outside
the class and passing it in during various execution methods.

The Proxy pattern, which provides a simple place-holder class for amore
complex class which is expensive to instantiate.

129

Behavioral Patterns

Behavioral patterns are those patterns that are most specifically
concerned with communication between objects. In this chapter, we'll see
that:

The Observer pattern defines the way a number of classes can be notified
of achange,

The Mediator defines how communication between classes can be
simplified by using another class to keep all classes from having to know
about each other.

The Chain of Responsihility allows an even further decoupling between
classes, by passing a request between classes until it is recognized.

The Template pattern provides an abstract definition of an algorithm, and

The Interpreter provides a definition of how to include language elements
in aprogram.

The Strategy pattern encapsulates an algorithm inside a class,
The Visitor pattern adds function to a class,
The State pattern provides a memory for a class' s instance variables.

The Command pattern provides a smple way to separate execution of a
command from the interface environment that produced it, and

The Iterator pattern formalizes the way we move through alist of data
within aclass.

130

CHAIN OF RESPONSIBILITY

The Chain of Responsihility pattern allows a number of classesto
attempt to handle a request, without any of them knowing about the
capabilities of the other classes. It provides aloose coupling between these
classes; the only common link is the request that is passed between them. The
request is passed along until one of the classes can handleit.

One example of such a chain pattern is a Help system, where every
screen region of an application invites you to seek help, but in which there are
window background areas where more generic help is the only suitable result.
When you select an areafor help, that visual control forwardsits ID or name
to the chain. Suppose you selected the “New” button. If the first module can
handle the New button, it displays the help message. If not, it forwards the
request to the next module. Eventually, the message is forwarded to an “All
buttons’ class that can display a general message about how buttons work. 1
thereis no general button help, the message is forwarded to the general help
modul e that tells you how the system works in general. If that doesn’t exist,
the message islost and no information is displayed. Thisisillustrated below.

New button File button All buttons

All controls General help

There are two significant points we can observe from this example;
first, the chain is organized from most specific to most general, and that there
is no guarantee that the request will produce a response in al cases.

Applicability
We use the Chain of Responsihility when

Y ou have more than one handler that can handle a request and
there is no way to know which handler to use. The handler must
be determined automatically by the chain.

131

Y ou want to issue a request to one of several objects without
specifying which one explicitly.

Y ou want to be able to modify the set of objects dynamically that
can handle requests.

Sample Code

Let’s consider a simple system for display the results of typed in
requests. These requests can be

Image filenames
General filenames
Colors

Other commands

In three cases, we can display a concrete result of the request, and in
the last case, we can only display the request text itself.

In the above example system, we typein “Mandrill” and see adisplay
of the image Mandrill.jpg. Then, we type in “FileList” and that filenameis
highlighted in the center list box. Next, wetypein “blue” and that color is
displayed in the lower center panel. Finaly, if we typein anything that is

132

neither a filename nor a color, that text is displayed in the final, right-hand list
box. Thisis shown below:

Image I Color File
file name name

To write this simple chain of responsibility program, we start with an
abstract Chain class:

public interface Chain

{
public abstract void addChai n(Chain c);

public abstract void sendToChai n(String mesg);
publ i c Chain get Chain();
}
The addChain method adds another class to the chain of classes. The

getChain method returns the current class to which messages are being
forwarded. These two methods allow us to modify the chain dynamically and
add additional classesin the middle of an existing chain. The sendToChain
method forwards a message to the next abject in the chain.

Our Imager classis thus derived from JPanel and implements our
Chain interface. It takes the message and looks for “.jpg” files with that root
name. If it finds one, it displaysit.

public class |Imager extends JPanel
i mpl enents Chain
{

private Chai n next Chain;
private | mage ing;
private bool ean | oaded;

public void addChai n(Chain c) {

next Chain = c; /I next in chain of resp
}
R e
public void sendToChai n(String nesg)
{

/lif thereis a JPEGfile with this root nane
//1oad it and display it.
if (findl mage(nesgq))
| oadl rage(nmesg + ".jpg");
el se
/1 O herwi se, pass request along chain
next Chai n. sendToChai n(mesg) ;

133

publ i c Chain getChain() {
return next Chain;

}
R TR
public void paint(Gaphics g) {
i f (loaded)
g.draw mage(inmg, 0, 0, this);
}
}

In asimilar fashion, the Colorimage class simply interprets the
message as a color name and displaysit if it can. This example only interprets
3 colors, but you could implement any number:

public void sendToChai n(String nmesg) {
Col or ¢ = get Col or (nesgq);
if(c !'=null) {
set Background(c);

repaint();
else {
if (nextChain != null)
next Chai n. sendToChai n(mesg) ;
}
}
L R T

private Col or getColor(String nmesg) {
String | mesg = mesg.tolLower Case();
Color ¢ = null;

i f(lmesg.equal s("red"))
c = Color.red;

i f(1mesg.equal s("blue"))
c = Col or. bl ue;

i f(lmesg.equal s("green"))
c= Col or.green;

return c;

}
ThelList Boxes

Both thefile list and the list of unrecognized commands are JList
boxes. Since we developed an adapter JawtList in the previous chapter to give
JList asimpler interface, we'll use that adapter here. The RestList classisthe
end of the chain, and any command that reachesit is smply displayed in the
list. However, to allow for convenient extension, we are able to forward the
message to other classes aswell.

134

public class RestList extends Jaw Li st
i mpl enents Chain
{

private Chain nextChain = null;
e R TR
public RestList() {
super (10); /larg to Jaw Li st
set Bor der (new Li neBor der (Col or. bl ack));
}
e T T
public void addChai n(Chain c) {
next Chain = c;

public void sendToChai n(String nesg) {
add(nesg) ; //this is the end of the chain
repaint();
if(nextChain !'= null)
next Chai n. sendToChai n(nesgq) ;

public Chain getChain() {
return next Chain;

}
}

TheFileList classis quite smilar and can be derived from the
RestList class, to avoid replicating the addChain and getChain methods. The
only differences are that it loads a list of the filesin the current directory into
the list when initialized, and looks for one of those files when it receives a
request

public class FileList extends RestList

{

String files[];

private Chai n next Chain;
e R T T P

public FileList()

{

super () ;

File dir = new File(System getProperty("user.dir"));

files = dir.list();

for(int i = 0; i<files.length; i++)

add(files[i]);

public void sendToChai n(String nesg)

bool ean found = fal se;
int i = 0;

135

while ((! found) & (i < files.length)) {
XFile xfile = new XFile(files[i]);
found = xfile. mat chRoot (nesq);
if (! found) i++

}
i f(found)

set Sel ect edl ndex(i);
el se {

if(nextChain !'= null)

next Chai n. sendToChai n(mesg) ;

}
}
The Xfile class we introduce above is a smple child of the File class

that contains a matchRoot method to compare a string to the root name of a
file.

Finally, we link these classes together in the constructor to form the
Chain:
//set up the chain of responsibility
sender . addChai n(i nager) ;
i mager . addChai n(col or | mage) ;

col or I mage. addChai n(fil eLi st);
filelList.addChain(restList);

This program is called Chainer.java on your CD-ROM.

A Chainor aTree?

Of course, a Chain of Responsibility does not have to be linear. The
Smalltalk Companion suggests that it is more generally atree structure with a
number of specific entry points al pointing upward to the most general node.

General
help

1

Window
help

Button help

%

Menu help

%

136

List box
help

OK Quit

File New

Files

Colors

However, this sort of structure seemsto imply that each button, or is
handler, knows where to enter the chain. This can complicate the design in
some cases, and may preclude the need for the chain at all.

Another way of handling a tree-like structure is to have a single entry
point that branches to the specific button, menu or other widget types, and
then “un-branches’ as above to more general help cases. Thereislittle reason
for that complexity -- you could align the classes into a single chain, starting
at the bottom, and going left to right and up arow at atime until the entire
system had been traversed, as shown below:

137

General
help

1

Window
help

A

List box
help

Button help —®» Menu help ————

OK P Quit B File | New —» Files —® Colors

Kinds of Requests

The request or message passed along the Chain of Responsibility may
well be agreat deal more complicated than just the string that we
conveniently used on this example. The information could include various
data types or a complete object with a number of methods. Since various
classes along the chain may use different properties of such a request object,
you might end up designing an abstract Request type and any number of
derived classes with additional methods.

Examplesin Java

The most obvious example of the Chain of Responsibility is the class
inheritance structure itself. If you call for a method to be executed in a deeply
derived class, that method is passed up the inheritance chain until the first
parent class containing that method is found. The fact that further parents
contain other implementations of that method does not come into play.

138

Consequences of the Chain of Responsibility

1.

3.

The main purpose for this pattern, like a number of others, isto reduce
coupling between objects. An abject only needs to know how to forward
the request to other objects.

This approach also gives you added flexibility in distributing
responsihilities between objects. Any object can satisfy some or all of the
reguests, and you can change both the chain and the responsibilities at run
time.

An advantage is that there may not be any object that can handle the
request, however, the last object in the chain may smply discard any
requests it can’t handle.

Finally, since Java can not provide multiple inheritance, the basic Chain
class needs to be an interface rather than an abstract class, so that the
individual objects can inherit from another useful hierarchy, aswe did
here by deriving them all from JPanel. This disadvantage of this approach
isthat you often have to implement the linking, sending and forwarding
code in each module separately.

139

THE COMMAND PATTERN

The Chain of Responsibility forwards requests along a chain of
classes, but the Command pattern forwards a request only to a specific
module. It encloses arequest for a specific action inside an object and gives it
aknown public interface. It lets you give the client the ability to make
regquests without knowing anything about the actual action that will be
performed, and allows you to change that action without affecting the client
program in any way.

M otivation

When you build a Java user interface, you provide menu items,
buttons, and checkboxes and so forth to allow the user to tell the program
what to do. When a user selects one of these controls, the program receives an
ActionEvent, which it must trap by subclassing, the actionPerformed event.
Let's suppose we build a very simple program that allows you to select the
menu items File | Open and File | Exit, and click on a button marked Red
which turns the background of the window red. This program is shown
below.

The program consists of the File Menu object with the mnuOpen and
mnuExit Menultems added to it. It aso contains one button called btnRed. A
click on any of these causes an actionPerformed event that we can trap with
the following code:

public void actionPerforned(Acti onEvent e) {
oj ect obj = e.getSource();
i f(obj == muOpen)
fileOpen(); /lopen file
if (obj == muExit)
exi tdicked(); /lexit from program

if (obj == btnRed)

140

redd i cked(); //turn red

The three private methods this method calls are just

private void exitdicked() {
System exi t (0);
}

e R TP P

private void fileQpen() {

FileDialog fDIg = new FileDi alog(this, "Open a file",
Fi | eDi al og. LOAD) ;

fDl g. show();
}
e T T T P
private void reddicked() {

p. set Backgr ound(Col or. red);
}

Now, as long as there are only a few menu items and buttons, this
approach works fine, but when you have dozens of menu items and severad
buttons, the actionPerformed code can get pretty unwieldy. In addition, this
really seems alittle inelegant, since we'd really hope that in an object-
oriented language like Java, we could avoid along series of if statements to
identify the selected object. Instead, we'd like to find away to have each
object receive its commands directly.

The Command Pattern

One way to assure that every object receives its own commands
directly isto use the Command object approach. A Command object always
has an Execute() method that is called when an action occurs on that object.
Most simply, a Command object implements at |east the following interface:

public interface Command {
public void Execute();
}

The aobjective of using this interface is to reduce the actionPerformed
method to:

public void actionPerfornmed(Acti onEvent e) {
Commrand cnd = (Command) e. get Sour ce() ;
cnd. Execute();

}
Then we can provide an Execute method for each object which

carries out the desired action, thus keeping the knowledge of what to do
inside the object where it belongs, instead of having another part of the
program make these decisions.

141

One important purpose of the Command pattern is to keep the
program and user interface objects completely separate from the actions that
they initiate. In other words, these program objects should be compl etely
separate from each other and should not have to know how other objects
work. The user interface receives acommand and tells a Command object to
carry out whatever duties it has been instructed to do. The Ul does not and
should not need to know what tasks will be executed.

The Command object can also be used when you need to tell the
program to execute the command when the resources are available rather than
immediately. In such cases, you are queuing commands to be executed later.
Finally, you can use Command objects to remember operations so that you
can support Undo requests.

Building Command Objects

There are severa ways to go about building Command objects for a
program like this and each has some advantages. We'll start with the simplest
one: deriving new classes from the Menultem and Button classes and
implementing the Command interface in each. Here are examples of
extensions to the Button and Menu classes for our simple program:

cl ass bt nRedCommand ext ends Button

i mpl enents Conmand {
public bt nRedCommand(String caption) {
super (caption); /linitialize the button

public void Execute() {
p. set Backgr ound(Col or. red);

}
}
P
class fileExitCommand extends Menultem
i mpl enents Conmand {
public fileExitCommand(String caption) {
super (caption); /linitialize the Menu
public void Execute() {
System exi t (0);
}
}

This certainly lets us simplify the calls made in the actionPerformed
method, but it does require that we create and instantiate a new class for each
action we want to execute.

muQpen. addAct i onLi st ener (new fil eOpen());

142

muExi t . addActi onLi stener(new fileExit());
bt nRed. addAct i onLi st ener (new bt nRed());

We can circumvent most of the problem of passing needed
parameters to these classes by making them inner classes. This makes the
Panel and Frame objects available directly.

However, interior classes are not such a good idea as commands
proliferate, since any of them that access any other Ul components have to
remain inside the main class. This clutters up the code for this main class with
alot of confusing little inner classes.

Of course, if we are willing to pass the needed parameters to these
classes, they can be independent. Here we pass in the Frame object and a
Panel object:

muQpen = new fil eQpenCommand(" Open...", this);

muFi | e. add(muQpen) ;

muExit = new fil eExitCommand("Exit");

muFi | e. add(muExi t);

p = new Panel ();

add(p) ;

bt nRed = new bt nRedCommand(" Red", p);

p. add(bt nRed) ;

In this second case, our menu and button command classes can then be
external to the main class, and even stored in separate files if we prefer.

The Command Pattern in Java

But there are still a couple of more ways to approach this. If you give
every control its own actionListener class, you are in effect creating
individua command objects for each of them. And, in fact, thisisreally what
the designers of the Java 1.1 event model had in mind. We have become
accustomed to using these multiple if test routines because they occur in most
simple example texts (like mine) even if they are not the best way to catch
these events.

To implement this approach, we create little classes each of which
implements the ActionListener interface:
class btnRed inplements ActionLi stener {

public void actionPerfornmed(Acti onEvent e) {
p. set Backgr ound(Col or. red);
}

143

}
R R
class fileExit inplements ActionListener {
public void actionPerforned(Acti onEvent e) {
System exi t (0);
}
}

}
and register them as listeners in the usua way.

muQpen. addAct i onLi st ener (new fil eQpen());
muExi t . addActi onLi stener(new fileExit());
bt nRed. addAct i onLi st ener (new bt nRed());

Here we have made these inner classes, but they also could be external with
arguments passed in, as we did above.

Consequences of the Command Pattern

The main disadvantage of the Command pattern is a proliferation of
little classes that either clutters up the main class if they are inner or clutters
up the program namespace if they are outer classes.

Now even in the case where we put all of our actionPerformed events
in asingle basket, we usually call little private methods to carry out the actual
function. It turns out that these private methods are just about as long as our
little inner classes, so there is frequently little difference in complexity
between inner and outer class approaches.

Anonymous Inner Classes

We can reduce the clutter of our name space by creating unnamed
inner classes by declaring an instance of a class on the spot where we need it.
For example, we could create our Red button and the class for manipulating
the background all at once
bt nRed. addAct i onLi st ener (new Acti onLi st ener () {

public void actionPerfornmed(Acti onEvent e) {
p. set Backgr ound(Col or. red);
}

Yo

144

Thisis not very readable, however, and does not really improve the
number of run-time classes since the compiler generates a class file even for

these unnamed classes.

In fact, there is very little difference in the compiled code size anong
these various methods, as shown in Table 1, once you create classes in any

form at all.

Table 1- Byte code size of Command class implementations

Program type Byte code size
No command classes 1719
Named inner classes 4450
Unnamed inner classes 3683
External classes 3838

Providing Undo

Another of the main reasons for using Command design patternsis

that they provide a convenient way to store and execute an Undo function.
Each command object can remember what it just did and restore that state

when requested to do so if the computational and memory requirements are

not too overwhelming.

145

THE INTERPRETER PATTERN

Some programs benefit from having alanguage to describe
operations they can perform. The Interpreter pattern generally describes
defining agrammar for that language and using that grammar to interpret
statements in that language.

M otivation

When a program presents a number of different, but somewhat
similar cases it can deal with, it can be advantageous to use a simple language
to describe these cases and then have the program interpret that language.
Such cases can be as simple as the sort of Macro language recording facilities
anumber of office suite programs provide, or as complex as Visua Basic for
Applications (VBA). VBA isnot only included in Microsoft Office products,
but can be embedded in any number of third party products quite ssmply.

One of the problems we must deal with is how to recognize when a
language can be helpful. The Macro language recorder simply records menu
and keystroke operations for later playback and just barely qualifiesasa
language; it may not actually have awritten form or grammar. Languages
such as VBA, on the other hand, are quite complex, but are far beyond the
capabilities of the individual application developer. Further, embedding
commercial languages such as VBA, Javaor SmallTak usually require
substantial licensing fees, which make them less attractive to all but the
largest developers.

Applicability
Asthe Small Talk Companion notes, recognizing cases where an
Interpreter can be helpful is much of the problem, and programmers without
formal language/compiler training frequently overlook this approach. There
are not large numbers of such cases, but there are two general places where
languages are applicable:

1. When the program must parse an algebraic string. This caseisfairly
obvious. The program is asked to carry out its operations based on a
computation where the user enters an equation of some sort. This
frequently occurs in mathematical-graphics programs, where the program

146

renders a curve or surface based on any equation it can evaluate.
Programs like Mathematica and graph drawing packages such as Origin
work in thisway.

2. When the program must produce varying kinds of output. This case
isalittle less obvious, but far more useful. Consider a program that can
display columns of datain any order and sort them in various ways.
These programs are frequently referred to as Report Generators, and
while the underlying data may be stored in arelational database, the user
interface to the report program is usually much simpler then the SQL
language which the database uses. In fact, in some cases, the smple
report language may be interpreted by the report program and trandated

into SQL.

Sample Code

Let’s consider asimplified report generator that can operate on 5
columns of datain atable and return various reports on these data. Suppose
we have the following sort of results from a swimming competition:

Amanda McCart hy 12 WCA 29. 28
Jam e Fal co 12 HNHS 29. 80
Meaghan O Donnel | 12 EDST 30. 00
G eer G bbs 12 CDeV 30.04
Rhi annon Jeffrey 11 wWww 30. 04
Sophi e Connol |y 12 WAC 30. 05
Dana Hel yer 12 ARAC 30. 18

where the 5 columns are frname, Iname, age, club and time. If we consider
the complete race results of 51 swimmers, we realize that it might be
convenient to sort these results by club, by last name or by age. Since there
are anumber of useful reports we could produce from these data in which the
order of the columns changes as well as the sorting, alanguage is one useful
way to handle these reports.

We Il define avery ssimple non-recursive grammar of the sort

Print | name frname club tine sortby club thenby time

For the purposes of this example, we define the 3 verbs shown above:

Print
Sor t by
Thenby

147

and the 5 column names we listed earlier:

Fr name
Lnanme
Age

C ub
Ti me

For convenience, we'll assume that the language is case insensitive.
We Il aso note that the smple grammar of this language is punctuation free,
and amounts in brief to

Print var[var] [sortby var [thenby var]]

Finally, thereis only one main verb and while each statement is a declaration,
thereis no assignment statement or computational ability in this grammar.

| nter preting the Language
Interpreting the language takes place in three steps

1. Parsing the language symbols into tokens.
2. Reducing the tokensinto actions.
3. Executing the actions.

We parse the language into tokens by smply scanning each statement
with a StringTokenizer and then substituting a number for each word. Usualy
parsers push each parsed token onto a stack -- we will use that technique here.
We implement the Stack class using a Vector, where we have push, pop, top
and nextTop methods to examine and manipulate the stack contents.

After parsing, our stack could look like this:

Type Token

Var Ti me <-top of stack
Verb Thenby

Var C ub

Ver b Sor t by

Var Ti me

Var C ub

148

Var Fr nane

verb Lname

However, we quickly realize that the “verb” thenby has no real
meaning other than clarification, and it is more likely that we'd parse the
tokens and skip the thenby word altogether. Our initial stack then, looks like
this
Ti me
C ub
Sor t by
Ti me
C ub
Fr nanme
Lname
Print

Objects Used in Parsing

Actually, we do not push just a numeric token onto the stack, but a
ParseObject which has the both a type and a value property:

public class Parse(bj ect

public static final int VERB=1000, VAR = 1010,
MULTVAR = 1020;
protected int val ue;
protected int type;

public int getValue() {return value;}
public int getType() {return type;}

These objects can take on the type VERB or VAR. Then we extend
this object into ParseVerb and ParseVar objects, whose value fields can take
on PRINT or SORT for ParseVerb and FRNAME, LNAME, etc. for
ParseVar. For later use in reducing the parse list, we then derive Print and
Sort objects from ParseVerb.

This gives us a simple hierachy:

ParseObject

v v

ParseVerb

| '

ParseVar

The parsing processis just the following smple code, using the
StringTokenizer and the parse objects:

public Parser(String |ine) {
stk = new Stack();
actionLi st = new Vector();

StringTokeni zer tok = new StringTokeni zer(line);
whi | e(t ok. hashor eEl enent s())
Par se(hj ect token = tokenize(tok. next Token());
if(token !'= null)
st k. push(token);

}
}
e R T
private ParseObj ect tokenize(String s) {
Par seCbj ect obj = getVerb(s);
if (obj == null)
obj = getVar(s);
return obj;
}
e T

private ParseVerb getVerb(String s) {
Par seVerb v;
v = new ParseVerb(s);
if (v.isLegal ())
return v.getVerb(s);
el se
return null;

149

150

private ParseVar getVar(String s) {
Par seVar v;
v = new ParseVar (s);
if (v.isLegal ())
return v;
el se
return null;
}

The ParseVerb and ParseVar classes return objects with isLegal set to
true if they recognize the word.

public class ParseVerb extends Parse(j ect
{
static public final int PRI NT=100,
SORTBY=110, THENBY=120;
protected Vector args;

public ParseVerb(String s) {

args = new Vector();

s = s.tolLower Case();

value = -1;

type = VERB;

if (s.equals("print")) value = PRINT,;

if (s.equal s("sortby")) value = SORTBY;
}

Reducing the Par sed Stack

The tokens on the stack have the form

Var
Var
Ver b
Var
Var
Var
Var
Ver b

We reduce the stack atoken at atime, folding successive Varsinto a
MultVar class until the arguments are folded into the verb objects.

151

Verb
Time

Multvar

-

Var
Club

Verb

Verb
SortBy

Var
Time

r

Multvar

Var
Club

Multvar

var | P
Frname

Verb

Var
Lname

When the stack reducesto a verb, this verb and its arguments are
placed in an action list; when the stack is empty the actions are executed.

This entire processis carried out by creating a Parser classthat isa
Command object, and executing it when the Go button is pressed on the user
interface:

public void actionPerfornmed(Acti onEvent e)

{

Parser p = new Parser(tx.getText());
p. set Dat a(kdata, ptable);
p. Execute();

The parser itself just reduces the tokens as we show above. It checks for
various pairs of tokens on the stack and reduces each pair to a single one for
each of five different cases.

152

/I execut es parse of conmand |ine
public void Execute() {
whi | e(st k. hashor eEl enent s()) {
i f(topStack(Parseject. VAR, Parse(bject. VAR))

//reduce (Var Var) to Miltvar
ParseVar v = (ParseVar)stk. pop();
ParseVar vl = (ParseVar)stk. pop();
Mul tVar nv = new Ml t Var (v1, v);
st k. push(nv);

//reduce MILLTVAR VAR to MULTVAR
i f(topStack(Parsehject. MILTVAR, Parse(oject. VAR))

MultVar nv = new MultVar();
Mul t Var mvo = (Ml tVar)stk. pop();
ParseVar v = (ParseVar)stk. pop();

nv. add(v) ;
Vector nmvec = nvo. getVector();
for (int i = 0; i< nvec.size(); i++)

nv. add((ParseVar) nvec. el ement At (i));
st k. push(nv);

}
i f(topStack(Parsehject. VAR Parsehj ect. MILTVAR))

{

//reduce (Miultvar Var) to Ml tvar
ParseVar v = (ParseVar)stk. pop();
Mil t Var v (Mul t Var) st k. pop();
nv. add(v) ;
st k. push(nv);

//reduce Verb Var to Verb containing vars
if (topStack(ParseChject. VAR ParseObject.VERB))

{
addAr gsToVer b() ;

//reduce Verb MultVar to Verb containing vars
if (topStack(Parsehject. MILTVAR, Parse(oject.VERB))

{
addAr gsToVer b() ;

/I nmove top verb to action list
if(stk.top().getType() == Parse(hject. VERB)
{

actionLi st. addEl enent (st k. pop());

}

Y/ while

/I now execute the verbs

for (int i =0; i< actionList.size() ; i++) {

Verb v = (Verb)actionList.elenmentAt(i);

153

v. Execut e();
| }
We also make the Print and Sort verb classes Command objects and Execute
them one by one as the action list is enumerated.

The final visual program is shown below:

Consequences of the Interpreter Pattern

Whenever you introduce an interpreter into a program, you need to
provide a simple way for the program user to enter commands in that
language. It can be as smple as the Macro record button we noted earlier, or
it can be an editable text field like the one in the program above.

However, introducing alanguage and its accompanying grammar
also requires fairly extensive error checking for misspelled terms or
misplaced grammeatical elements. This can easily consume a great deal of
programming effort unless some template code is available for implementing
this checking. Further, effective methods for notifying the users of these
errors are not easy to design and implement.

In the Interpreter example above, the only error handling is that
keywords that are not recognized are not converted to ParseObjects and
pushed onto the stack. Thus, nothing will happen, because the resulting stack

154

sequence probably cannot be parsed successfully, or if it can, the item
represented by the misspelled keyword will not be included.

Y ou can also consider generating a language automatically from a
user interface of radio and command buttons and list boxes. While it may
seem that having such an interface obviates the necessity for alanguage at all,
the same requirements of sequence and computation still apply. When you
have to have away to specify the order of sequential operations, alanguageis
agood way to do so, even if the language is generated from the user interface.

The Interpreter pattern has the advantage that you can extend or
revise the grammar fairly easily one you have built the general parsing and
reduction tools. Y ou can also add new verbs or variables quite easily once the
foundation is constructed.

In the simple parsing scheme we show in the Parser class above,
there are only 6 casesto consider, and they are shown as a series of smple if
statements. If you have many more than that, Design Patter ns suggests that
you create a class for each one of them. This again makes language extension
easier, but has the disadvantage of proliferating lots of similar little classes.

Finally, as the syntax of the grammar becomes more complex, you
run the risk of creating a hard to maintain program.

While interpreters are not all that common in solving general
programming problems, the Iterator pattern we take up next is one of the most
common ones you'll be using.

155

THE ITERATOR PATTERN

The Iterator is one of the simplest and most frequently used of the
design patterns. The Iterator pattern allows you to move through alist or
collection of data using a standard interface without having to know the
details of the internal representations of that data. In addition you can also
define special iterators that perform some special processing and return only
specified elements of the data collection.

M otivation

The Iterator is useful because it provides a defined way to move
through a set of data elements without exposing how it doesit. Since the
Iterator is an interface, you can implement it in any way that is convenient for
the data you are returning. Design Patterns suggests that a suitable interface
for an Iterator might be

public interface Iterator

{

public Object First();
public Object Next();

publ i ¢ bool ean i sDone();
public Qoject Currentlten();

}
where you can move to the top of the list, move through the list, find out if

there are more elements and find the current list item. Thisinterface is easy to
implement and it has certain advantages, but the Iterator of choicein Javais
Java s built-in Enumeration type.

public interface Enuneration

publ i ¢ bool ean hasMor eEl enent s();
publ i c Qbj ect nextEl enment();

}
While not having a method to move to the top of alist may seem

restrictive afirgt, it is not a serious problem in Java, because it is customary
to obtain a new instance of the Enumeration each time you want to move
through alist. One disadvantage of the Java Enumeration over similar
constructs in C++ and Smalltalk is the strong typing of the Java language.
This prevents the hasMoreElements() method from returning an object of the
actual type of the data in the collection without an annoying requirement to
cast the returned Object type to the actua type. Thus, while the Iterator or

156

Enumeration interface is that is intended to be polymorphic, thisis not
directly possible in Java.

Enumerationsin Java

The Enumeration type is built into the Vector and Hashtable classes.
Rather than the Vector and Hashtable implementing the two methods of the
Enumeration directly, both classes contain an elements method that returns an
Enumeration of that class' s data:

public Enuneration el ements();

This elements() method isreally a kind Factory method that produces
instances of an Enumeration class.

Then, you move through the list with the following ssimple code:

Enuneration e = vector. el enents();
whi |l e (e. hasMoreEl enents())

{

String name = (String)e.nextEl enent();
System out. printl n(nane);

}

In addition, the Hashtable also has the keys method, which returns an
enumeration of the keysto each element in the table:

publ i c Enuneration keys();

Thisisthe preferred style for implementing Enumerationsin Java and
has the advantage that you can have any number of simultaneous active
enumerations of the same data.

Filtered Iterators

While having a clearly defined method of moving through a
collection is helpful, you can aso define filtered Enumerations that perform
some computation on the data before returning it. For example, you could
return the data ordered in some particular way, or only those objects that
match a particular criterion. Then, rather than have alot of very similar
interfaces for these filtered enumerations, you simply provide a method
which returns each type of enumeration, with each one of these enumerations
having the same methods.

157

Sample Code

Let'sreuse the list of swimmers, clubs and times we described in the
Interpreter chapter, and add some enumeration capabilities to the KidData
class. This classis essentially a collection of Kids, each with aname, club
and time, and these Kid objects are stored in a Vector.

public class KidData
Vect or ki ds;

public KidData(String fil ename) {

/lread in the kids fromthe text file
ki ds = new Vector();
InputFile f = new I nputFile(fil enane);
String s = f.readLine();
while(s !'= null)

if(s.trim).length() > 0) {

Kid k = new Kid(s);

ki ds. addEl erment (k) ;

s = f.readLine();

}

}

e

publ i c Enuneration el ements() {
//return an enuneration of the kids
return kids.elements();

}

To obtain an enumeration of al the Kids in the collection, we simply
return the enumeration of the Vector itself.

The Filtered Enumeration

Suppose, however, that we wanted to enumerate only those kids who
belonged to a certain club. This necessitates a special Enumeration class that
has access to the data in the KidData class. Thisis very smple, because the
elements() method we just defined gives us that access. Then we only need to
write an Enumeration that only returns kids belonging to a specified club:

public class kidd ub
i mpl enents Enumeration

{
String cl ubMask; /I name of club
Kid kid; //next kid to return
Enuner ati on ke; /lgets all kids
Ki dDat a kdat a; //class containing kids
[e

public ki dd ub(Ki dData kd, String club) {

158

cl ubMask = cl ub; //save the club
kdata = kd; [/ copy the class
kid = null; / / def aul t
ke = kdata.elenments(); //get Enunerator
}
e T
publ i ¢ bool ean hasMor eEl ement s() {
/lreturn true if there are any nore kids
/I bel onging to the specified club
bool ean found = fal se;
whi | e(ke. hasMor eEl enents() && ! found) {
kid = (Kid)ke. nextEl enent();
found = kid. getd ub().equal s(cl ubMask);
}
i f(! found)
kid = null; //set to null if none |eft
return found;
}
R T
publ i c Obj ect nextEl enment () {
if(kid !'= null)
return kid;
el se
/lthrow exception if access past end
t hr ow new NoSuchEl ement Excepti on();
}
}

All of the work is done in the hasMoreElements() method, which
scans through the collection for another kid belonging to the club specified in
the constructor, and saves that kid in the kid variable, or setsit to null. Then,
it returns either true or false. The nextElement() method either returns that
next kid variable or throws an exception if there are no more kids. Note that
under normal circumstances, this exception is never thrown, since the
hasMor eElements boolean should have aready told you not to ask for another
element.

Finally, we need to add a method to KidData to return this new
filtered Enumeration:

publ i c Enuneration kidslnC ub(String club) {
return new ki dC ub(this, club);
}

This simple method passes the instance of KidClub to the
Enumeration class kidClub along with the club initials. A simple program is
shown below, that displays al of the kids on the left side and those belonging
to asingle club on the right.

159

Consequence of the Iterator Pattern

1. Data modification. The most significant question iterators may raise is
the question of iterating through data while it is being changed. If your
code is wide ranging and only occasionally moves to the next element, it
is possible that an element might be added or deleted from the underlying
collection while you are moving through it. It is also possible that another
thread could change the collection. There are no simple answers to this
problem. Y ou can make an enumeration thread-safe by declaring the loop
to be synchronized, but if you want to move through aloop using an
Enumeration, and delete certain items, you must be careful of the
consequences. Deleting or adding an element might mean that a particular
element is skipped or accessed twice, depending on the storage
mechanism you are using.

2. Privileged access. Enumeration classes may need to have some sort of
privileged access to the underlying data structures of the original
container class, so they can move through the data. If the datais stored in
a Vector or Hashtable, thisis pretty easy to accomplish, but if itisin
some other collection structure contained in a class, you probably have to
make that structure available through a get operation. Alternatively, you
could make the Iterator a derived class of the containment class and
access the data directly. The friend class solution available in C++ does

160

not apply in Java. However, classes defined in the same module as the
containing class do have access to the containing classes variables.

3. External versusInternal Iterators. The Design Patterns text describes
two types of iterators: external and internal. Thus far, we have only
described external iterators. Internal iterators are methods that move
through the entire collection, performing some operation on each element
directly, without any specific requests from the user. These are less
common in Java, but you could imagine methods that normalized a
collection of data values to lie between 0 and 1 or converted all of the
strings to a particular case. In general, external iterators give you more
control, because the calling program accesses each element directly and
can decide whether to perform an operation on.

Compositesand lterators

Iterators, or in our case Enumerations, are also an excellent way to
move through Composite structures. In the Composite of an employee
hierarchy we developed in the previous chapter, each Employee contains a
Vector whose elements() method allows you to continue to enumerate down
that chain. If that Employee has no subordinates, the hasMoreElements()
method correctly returns false.

161

THE MEDIATOR PATTERN

When a program is made up of a number of classes, the logic and
computation is divided logically among these classes. However, as more of
these isolated classes are developed in a program, the problem of
communication between these classes become more complex. The more each
class needs to know about the methods of another class, the more tangled the
class structure can become. This makes the program harder to read and harder
to maintain. Further, it can become difficult to change the program, since any
change may affect code in severa other classes. The Mediator pattern
addresses this problem by promoting looser coupling between these classes.
Mediators accomplish this by being the only class that has detailed
knowledge of the methods of other classes. Classes send inform the mediator
when changes occur and the Mediator passes them on to any other classes
that need to be informed.

An Example System

Let’s consider a program which has severa buttons, two list boxes
and atext entry field:

When the program starts, the Copy and Clear buttons are disabled.

162

1. When you select one of the namesin the left-hand list box, it is copied
into the text field for editing, and the Copy button is enabled.

2. When you click on Copy, that text is added to the right hand list box, and
the Clear button is enabled.

3. If you click on the Clear button, the right hand list box and the text field
are cleared, the list box is deselected and the two buttons are again
disabled.

User interfaces such as this one are commonly used to select lists of
people or products from longer lists. Further, they are usualy even more
complicated than this one, involving insert, delete and undo operations as
well.

| nter actions between Controls

The interactions between the visual controls are pretty complex, even
in this simple example. Each visual object needs to know about two or more
others, leading to quite a tangled relationship diagram as shown below.

name text

Kid list

Copy

Clear

Picked list

163

The Mediator pattern simplifies this system by being the only class
that is aware of the other classesin the system. Each of the controls that the
Mediator communicates with is called a Colleague. Each Colleague informs
the Mediator when it has received a user event, and the Mediator decides
which other classes should be informed of this event. This simpler interaction

schemeisillustrated below:

name text

Copy

Clear

Kid list

Picked list

Mediator

The advantage of the Mediator is clear-- it is the only class that
knows of the other classes, and thus the only one that would need to be
changed if one of the other classes changes or if other interface control

classes are added.

164

Sample Code

Let’s consider this program in detail and decide how each control is
constructed. The main difference in writing a program using a Mediator class
is that each class needs to be aware of the existence of the Mediator. Y ou start
by creating an instance of the Mediator and then pass the instance of the
Mediator to each classin its constructor.

Medi at or med = new Medi ator ();

ki dLi st = new Ki dLi st(ned);

tx = new KText Fi el d(ned) ;

Move = new MoveButton(this, med);
Clear = new O earButton(this, ned);
med.init();

Since, we have created new classes for each control, each derived
from base classes, we can handle the mediator operations within each class.

Our two buttons use the Command pattern and register themselves
with the Mediator during their initialization. Here is the Copy button:

public class CopyButton extends JButton
i mpl enents Conmand

Medi at or ned; [/ copy of the Medi ator
publ i ¢ CopyButton(ActionListener fr, Mediator nd)
super (" Copy"); //create the button
addActionListener(fr); //add its listener
nmed = nd; //copy in Mediator instance

ned. r egi ,sterl\/bve(thi s); /lregister with the Mediator

}
public void Execute()

/ | execut e the copy
med. Copy() ;

}
The Clear button is exactly analogous.

The Kid name list is based on the one we used in the last two
examples, but expanded so that the data loading of the list and registering the
list with the Mediator both take place in the constructor. In addition, we make
the enclosing class the ListSelectionListener and pass the click on any list
item on to the Mediator directly from this class.

public class KidList extends Jaw Li st
i mpl enent s Li st Sel ecti onLi st ener

165

Ki dDat a kdat a; //reads the data fromthe file
Medi at or ned; // copy of the nediator

public KidLi st (Mediator nd)

super (20); /lcreate the JLi st
kdata = new KidData ("50free.txt");
fillKidList(); /1fill the list with names
med = nd; // save the nedi at or

ned. regi sterKi dLi st (t his);
addLi st Sel ecti onLi stener(this);
}
R R
public void val ueChanged(Li st Sel ecti onEvent 1|5s)

/1if an itemwas sel ected pass on to nedi ator
JList obj = (JList)ls.getSource();
i f (obj.getSelectedl ndex() >= 0)
ned. sel ect () ;

}
Rt
private void fillKidList()
{
Enuneration ekid = kdata. el enents();
whi | e (ekid. hashoreEl enents()) {
Kid k =(Kid)ekid. nextEl ement ();
add(k. get Frname() +" "+k.getLname());
}
}

}
Thetext field iseven simpler, since al it doesis register itself with
the mediator.

public class KTextField extends JTextField

Medi at or ned;
publ i c KTextField(Mediator nd) {
super (10);
med = nd;
nmed. regi st er Text (thi s);
}
}

The general point of al these classesis that each knows about the
Mediator and tells the Mediator of its existence so the Mediator can send
commands to it when appropriate.

The Mediator itself is very simple. It supports the Copy, Clear and
Select methods, and has register methods for each of the controls:

166

public class Mediator

{
private C earButton clearButton;
private CopyButton copyButton;
private KTextField ktext;
private KidLi st klist;
private PickedKi dsLi st picked;

public void Copy() {
pi cked. add(kt ext. get Text()); //copy text
cl earButt on. set Enabl ed(true); //enabl e O ear

}
e R T
public void dear() {
kt ext.set Text(""); //clear text
pi cked. cl ear () ; /land list

// di sabl e buttons
copyBut t on. set Enabl ed(f al se);
cl ear But t on. set Enabl ed(f al se);
klist.clearSelection(); / /I desel ect i st

public void Select() {
String s = (String)klist.getSel ectedVal ue();
kt ext . set Text (s); /'l copy text
copyButton. set Enabl ed(true); //enable Copy

I copy incontrols--------mmmmmmmana o

public void registerCear(d earButton ch) {
clearButton = cb; }

public void registerCopy(CopyButton nmv) {
copyButton = nv,

public void registerText(KTextField tx) {
ktext = tx; }

public void registerPicked(Pi ckedKi dsList pl) {
picked = pl; }

public void registerKidList(KidList kl) {
klist = kl; }

}

Initialization of the System

One further operation that is best delegated to the Mediator is the
initialization of all the controls to the desired state. When we launch the
program, each control must be in a known, default state, and since these states
may change as the program evolves, we ssimply create an init method in the
Mediator, which sets them all to the desired state. In this case, that state is the
same asis achieved by the Clear button and we simply call that method:

public void init() {

167

Cear();

Mediatorsand Command Objects

The two buttons in this program are command objects, and we
register the main user interface frame as the ActionListener when we initialize
these buttons. Just as we noted earlier, this makes processing of the button
click events quite smple:
public void actionPerforned(Acti onEvent e) {

Command cond = (Conmand) e. get Source() ;
comd. Execut e() ;

Alternatively, we could register each derived class asits own listener and
pass the result directly to the Mediator.

In either case, however, this represents the solution to one of the
problems we noted in the Command pattern chapter; each button needed
knowledge of many of the other user interface classes in order to execute its
command. Here, we delegate that knowledge to the Mediator, so that the
Command buttons do not need any knowledge of the methods of the other
visual objects.

Consequences of the M ediator Pattern

1. The Mediator makes |oose coupling possible between objectsin a
program. It also localizes the behavior that otherwise would be
distributed among severa objects.

2. You can change the behavior of the program by simply changing or
subclassing the Mediator.

3. The Mediator approach makes it possible to add new Colleaguesto a
system without having to change any other part of the program.

4. The Mediator solves the problem of each Command object needing to
know too much about the objects and methods in the rest of a user
interface.

5. The Mediator can become monolithic in complexity, making it hard to
change and maintain. Sometimes you can improve this situation by
revising the responsibilities you have given the Mediator. Each aobject
should carry out it’s own tasks and the Mediator should only manage the
interaction between objects.

168

6. Each Mediator is a custom-written class that has methods for each
Colleague to call and knows what methods each Colleague has available.
This makesit difficult to reuse Mediator code in different projects. On the
other hand, most Mediators are quite smple and writing this code is far
easier than managing the complex object interactions any other way.

| mplementation | ssues

The Mediator pattern we have described above acts as a kind of
Observer pattern, observing changes in the Colleague elements. Another
approach is to have a single interface to your Mediator, and pass that method
various constants or objects which tell the Mediator which operationsto
perform. In the same fashion, you could have a single Colleague interface that
each Colleague would implement, and each Colleague would then decide
what operation it wasto carry out.

Mediators are not limited to use in visual interface programs,
however, it istheir most common application. Y ou can use them whenever
you are faced with the problem of complex intercommunication between a
number of objects.

169

THE MEMENTO PATTERN

Suppose you would like to save the internal state of an object so you
can restore it later. Idedlly, it should be possible to save and restore this state
without making the object itself take care of this task, and without violating
encapsulation. Thisis the purpose of the Memento pattern.

M otivation

Objects frequently expose only some of their internal state using
public methods, but you would still like to be able to save the entire state of
an object because you might need to restore it later. In some cases, you could
obtain enough information from the public interfaces (such as the drawing
position of graphical objects) to save and restore that data. In other cases, the
color, shading, angle and connection relationship to other graphical objects
need to be saved and thisinformation is not readily available. This sort of
information saving and restoration is common in systems that need to support
Undo commands.

If al of the information describing an object is available in public
variables, it is not that difficult to save them in some external store. However,
making these data public makes the entire system vulnerable to change by
external program code, when we usually expect data inside an object to be
private and encapsulated from the outside world.

The Memento pattern attempts to solve this problem by having
privileged access to the state of the object you want to save. Other objects
have only a more restricted access to the object, thus preserving their
encapsulation. This pattern defines three roles for objects:

1. TheOriginator isthe object whose state we want to save.
2. The Memento is another object that saves the state of the Originator.

3. The Caretaker manages the timing of the saving of the state, saves the
Memento and, if needed, uses the Memento to restore the state of the
Originator.

| mplementation

Saving the state of an object without making all of its variables
publicly available is tricky and can be done with varying degrees of success

170

in various languages. Design Patterns suggests using the C++ friend
construction to achieve this access, and the Smalltalk Companion notes that it
isnot directly possible in Smalltalk. In Java, this privileged accessis possible
using alittle known and infrequently used protection mode. Variables within
aJava class can be declared as

1. Private

2. Protected

3. Public, or

4. (private protected)

Variables with no declaration are treated as private protected. Other
classes can access public variables, and derived classes can access protected
variables. However, another class in the same module can access protected or
private-protected variables. It is this last feature of Javathat we can use to
build Memento objects. For example, suppose you have classes A and B
declared in the same module:

public class A {

int x, y:

public Square() {}

X = 5; /linitialize x

}

R R P TP PP

class B {

public B() {
A a = new A(); /lcreate instance of A
Systemout.println (a.x); //has access to variables in A

}
}
Class A contains a private-protected variable x. In class B in the same

module, we create an instance of A, which automaticaly initializesx to 5.
Class B has direct access to the variable x in class A and can print it out
without compilation or execution error. It is exactly this feature that we will
use to create a Memento.

Sample Code

Let’s consider a simple prototype of a graphics drawing program that
creates rectangles, and alows you to select them and move them around by
dragging them with the mouse. This program has a toolbar containing three
buttons: Rectangle, Undo and Clear:

171

The Rectangle button is a JToggleButton which stays selected until
you click the mouse to draw a new rectangle. Once you have drawn the
rectangle, you can click in any rectangle to select it;

and once it is selected, you can drag that rectangle to a new position using the
mouse:

172

The Undo button can undo a succession of operations. Specifically, it can
undo moving arectangle and it can undo the creation of each rectangle.

There are 5 actions we need to respond to in this program:
Rectangle button click
Undo button click
Clear button click
Mouse click

o A~ DN

Mouse drag.

The three buttons can be constructed as Command objects and the
mouse click and drag can be treated as commands as well. This suggests an
opportunity to use the Mediator pattern, and that is, in fact, the way this
program is constructed.

Moreover, our Mediator is an ideal place to manage the Undo action
list; it can keep alist of the last n operations so that they can be undone. Thus,
the Mediator also functions as the Caretaker object we described above. In
fact, since there could be any number of actions to save and undo in such a
program, a Mediator is virtually required so that there is a single place where
these commands can be stored for undoing later.

In this program we save and undo only two actions:. creating new
rectangles and changing the position of rectangles. Let’s start with our
visRectangle class which actually draws each instance of the rectangles:

public class visRectangle

{

}

int x, y, w h;
Rect angl e rect;
bool ean sel ect ed;

public visRectangl e(int xpt, int ypt) {

X Xpt; y = ypt; / /I save | ocati on
w = 40; h = 30; //use default size
saveAsRect () ;
}
e T R R

public void set Sel ect ed(bool ean b) {
sel ected = b;
}

e T R R

private voi d saveAsRect () {

//convert to rectangle so we can use the contains nethod
rect = new Rectangle(x-w 2, y-h/2, w, h);

}

[] = e e e e e

public void draw G aphics @) {
g.drawRect (x, y, w, h);
if (selected) { [//draw “handl es”
g. fill Rect(x+w' 2, y-2, 4, 4);
g.fill Rect(x-2, y+h/2, 4, 4);
g.fill Rect(x+w' 2, y+h-2, 4, 4);
g.fill Rect(x+w2, y+h/2, 4, 4);

}
[] = e e e i

publ i c bool ean contains(int x, int y) {
return rect.contains(x, y);
}

e R R P
public void nove(int xpt, int ypt) {

X = xpt; y = ypt;
saveAsRect () ;

}

Drawing the rectangle is pretty straightforward. Now, let’s look at

our simple Memento class, which is contained in the samefile,
visRectangle,java, and thus has access to the position and size variables:

cl ass Menent o

{

vi sRectangl e rect;
//saved fields- renenber internal fields
/1 of the specified visual rectangle

173

174

int x, y, w h;
publ i c Menento(vi sRectangle r) {

rect = r; /| Save copy of instance

X = rect.x; y =rect.y; // save position

w=rect.w, h =rect.h; //and size
}
e
public void restore() {

/lrestore the internal state of

//the specified rectangle

rect.x = x; rect.y =vy; //restore position

rect.h =h; rect.w=w //restore size
}

When we create an instance of the Memento class, we passit the
visRectangle instance we want to save. It copies the size and position
parameters and saves a copy of the instance of the visRectangle itself. Later,
when we want to restore these parameters, the Memento knows which
instance it has to restore them to and can do it directly, aswe seein the
restore() method.

Therest of the activity takes place in the Mediator class, where we
save the previous state of the list of drawings as an Integer on the undo list:

public void createRect(int x, int y)

{
unpi ck(); //make sure no rectangle is selected
if(startRect) //if rect button is depressed
{
I nt eger count = new I nteger(draw ngs. size());
undoLi st . addEl ement (count) ; /| Save previous |list size
vi sRectangl e v = new vi sRectangl e(x, y);
dr awi ngs. addEl enent (V) ; //add new el ement to |ist
start Rect = fal se; //done with this rectangle
rect.set Sel ect ed(fal se); /Tunclick button
canvas. repaint();
}
el se

pi ckRect (x, y); //if not pressed |look for rect to select

and save the previous position of arectangle before moving it in a Memento:

public void remenber Position()

i f(rectSelected){
Mement o m = new Menent o(sel ect edRect angl e) ;
undoLi st . addEl ement () ;

}

175

}
Our undo method simply decides whether to reduce the drawing list

by one or to invoke the restore method of a Memento:
public void undo()

i f (undoLi st. size()>0)

{

//get last elenent in undo |ist

oj ect obj = undoList.|astEl enent();

undolLi st . removeEl enent (obj) ; //and renove it

/lif this is an Integer,

//the last action was a new rectangl e

if (obj instanceof Integer)
//remove | ast created rectangle
Obj ect drawCbj = drawi ngs. | astEl enent ();
dr awi ngs. r enoveEl enent (drawdj) ;

}

/lif this is a Menento, the last action was a nove

i f(obj instanceof Menento)

{
/1 get the Menento
Memento m = (Menent o) obj ;
mrestore(); /land restore the old position

repaint();

}

Consequences of the Memento

The Memento provides away to preserve the state of an object while
preserving encapsulation, in languages where this is possible. Thus, data that
only the Originator class should have access to effectively remains private. It
also preserves the simplicity of the Originator class by delegating the saving
and restoring of information to the Memento class.

On the other hand, the amount of information that a Memento has to
save might be quite large, thus taking up fair amounts of storage. This further
has an effect on the Caretaker class (here the Mediator) which may have to
design strategies to limit the number of objects for which it saves state. In our
simple example, we impose no such limits. In cases where objects change in a
predictable manner, each Memento may be able to get by with saving only
incremental changes of an object’s state.

176

Other Kinds of M ementos

While supporting undo/redo operations in graphical interfacesis one
significant use of the Memento pattern, you will also see Mementos used in
database transactions. Here they save the state of data in a transaction where
it is necessary to restore the data if the transaction fails or isincomplete.

177

THE OBSERVER PATTERN

In our new, more sophisticated windowing world, we often would
like to display data in more than one form at the same time and have al of the
displays reflect any changesin that data. For example, you might represent
stock price changes both as a graph and as atable or list box. Each time the
price changes, we' d expect both representations to change at once without
any action on our part.

We expect this sort of behavior because there are any number of
Windows applications, like Excel, where we see that behavior. Now there is
nothing inherent in Windows to alow this activity and, as you may know,
programming directly in Windows in C or C++ is pretty complicated. In Java,
however, we can easily make use of the Observer Design Pattern to cause our
program to behave in this way.

The Observer pattern assumes that the object containing the datais
separate from the objects that display the data, and that these display objects
observe changesin that data. Thisis smple to illustrate as we see below.

Graphic List
Display Display

Data

User

When we implement the Observer pattern, we usually refer to the
data as the Subject and each of the displays as Observers. Each of these
observersregistersitsinterest in the data by calling a public method in the
Subject. Then, each observer has a known interface that the subject calls
when the data change. We could define these interfaces as follows:

abstract interface Cbserver {

178

/Inotify the Cbservers that a change has taken place
public void sendNotify(String s);
}

/1

abstract interface Subject {

/ltell the Subject you are interested in changes
public void registerlnterest(Qoserver obs);

}

The advantage of defining these abstract interfacesis that you can
write any sort of class objects you want as long as they implement these
interfaces, and that you can declare these objects to be of type Subject and
Observer no matter what el se they do.

Watching Colors Change

Let’swrite asmple program to illustrate how we can use this
powerful concept. Our program shows a display frame containing 3 radio
buttons named Red, Blue and Green as shown below:

This main window is the Subject or data repository object. We create
this window using the JFC classes in the following simple code:

public class Watch2L extends JFrane
i mpl enents ActionLi stener, Itenlistener, Subject {
Button d ose;
JRadi oButton red, green, blue;
Vect or observers;

public Watch2L() {
super (" Change 2 other frames");
/11ist of observing frames
observers = new Vector();
// add panel to content pane
JPanel p = new JPanel (true);
p. set Layout (new Bor der Layout ());
get Cont ent Pane() . add("Center", p);

/lvertical box |ayout
Box box = new Box(BoxLayout.Y_AXlS);

179

p. add("Center", box);

//add 3 radio buttons
box. add(red = new JRadi oButton("Red"));
box. add(green = new JRadi oButton(" G een"));
box. add(bl ue = new JRadi oButton("Bl ue"));

/llisten for clicks on radio buttons
bl ue. addl t enLi st ener (this);
red. addl t enli st ener (this);
green. addl t enli st ener (this);

/I make all part of sane button group
Butt onG oup bgr = new ButtonG oup();
bgr . add(red);
bgr . add(green);
bgr . add(bl ue) ;

Note that our main frame class implements the Subject interface. That
means that it must provide a public method for registering interest in the data
in this class. This method is the registerInterest method, which just adds
Observer objectsto a Vector:

public void registerlnterest(Qoserver obs) {
// adds observer to list in Vector
obser vers. addEl enent (obs) ;
}
Now we create two observers, once which displays the color (and its

name) and another which adds the current color to alist box.

[[-aeeee- create observers---------
Col or Franme cframe = new Col or Frane(this);
ListFrane | frane = new ListFrame(this);

When we create our ColorFrame window, we register our interest in
the data in the main program:

cl ass Col or Frane extends Jfrane
i mpl enents Cbserver {
Col or color;
String col or _nanme="bl ack";
JPanel p = new JPanel (true);

publ i c Col or Frame(Subj ect s) {
super (" Col ors"); //set frame caption
get Cont ent Pane() . add(" Center", p);
s.registerinterest(this); //register wth Subject
set Bounds(100, 100, 100, 100);
setVisible(true);

180

public void sendNotify(String s) {

|/ Cbserver is notified of change here

col or _nane = s; // save col or nane

/I set background to that col or

i f(s.toUpperCase().equal s("RED"))

color = Color.red;

i f(s.toUpperCase().equal s("BLUE"))
col or =Col or. bl ue;

i f(s.toUpperCase().equal s("GREEN'))
color = Col or. green;

set Backgr ound(col or);

public void paint(Gaphics g) {
g. drawst ri ng(col or _nanme, 20, 50);

Meanwhile in our main program, every time someone clicks on one
of the radio buttons, it calls the sendNotify method of each Observer who has
registered interest in these changes by simply running through the objectsin
the observers Vector:

public void itenttateChanged(ltenEvent e) {
//responds to radio button clicks
//if the button is selected
i f(e.getStateChange() == ItenEvent. SELECTED)
noti f yCbser ver s((JRadi oBut t on) e. get Source());

private void notifyCbservers(JRadi oButton rad) {
//sends text of selected button to all observers
String color = rad.getText();
for (int i=0; i< observers.size(); i++) {

((Qoserver) (observers. el ement At (i))).sendNotify(color);

}

In the case of the ColorFrame observer, the sendNotify method
changes the background color and the text string in the frame panel. In the
case of the ListFrame observer, however, it just adds the name of the new
color to the list box. We see the final program running below:

181

The Message to the Media

Now, what kind of notification should a subject send to its observers?
In this carefully circumscribed example, the notification message is the string
representing the color itself. When we click on one of the radio buttons, we
can get the caption for that button and send it to the observers. This, of
course, assumes that all the observers can handle that string representation.
In more redlistic situations, this might not always be the case, especialy if the
observers could also be used to observe other data objects. Here we undertake
two simple data conversions:

1. weget the label from the radio button and send it to the
observers, and

2. we convert the label to an actual color in the ColorFrame
observer.

In more complicated systems, we might have observers that demand specific,
but different, kinds of data. Rather than have each observer convert the
message to the right data type, we could use an intermediate Adapter class to
perform this conversion.

182

Another problem observers may have to deal with is the case where
the data of the central subject class can change in severa ways. We could
delete points from alist of data, edit their values, or change the scale of the
data we are viewing. In these cases we either need to send different change
messages to the observers or send a single message and then have the
observer ask which sort of change has occurred.

Th JList asan Observer

Now, what about that list box in our color changing example? We
saved it for last because as we noted earlier in the Adapter class discussion,
the JList is rather different in concept than the List object in the AWT. You
can display afixed list of datain the JList by ssimply putting the datainto a
Vector or String array. However, if you want to display alist of data that
might grow or otherwise change, you need to put that data into a special data
object derived from the AbstractListModel class, and then use that classin
the constructor to the JList class. Our ListFrame class looks like this:

cl ass ListFrane extends JFrane
i mpl enents Cbhserver {
JList list;
JPanel p;
JScrol | Pane | sp;
JListData |istData;

public ListFrame(Subject s) {
super (" Col or List");
[/ put panel into the frnae
p = new JPanel (true);
get Cont ent Pane() . add(" Center", p);
p. set Layout (new Bor der Layout ());
/1 Tell the Subject we are interested
s.registerinterest(this);

//Create the Ilist

listData = new JListData(); //the list nodel
list = new JList(listData); //the visual |ist
I sp = new JScrol | Pane(); //the scroller

| sp. get Viewport ().add(list);

p.add("Center", |sp);

| sp. set PreferredSi ze(new D nensi on(100, 100));
set Bounds(250, 100, 100, 100);
setVisible(true);

public void sendNotify(String s) {
| i st Dat a. addEl ement (s) ;

183

We name our ListModd class JListData. It holds the Vector that
contains the growing list of color names.
class JLi stData extends AbstractListMdel {
private Vector data; //the color nane |i st

public JListData() {
data = new Vector();

}
public int getSize() {

return data.size();

}
public Object getEl enent At (int index) {
return data. el ement At (i ndex);

}
/ladd string to list and tell the list about it

public void addEl enent (String s) {
dat a. addEl enent (s) ;
firelnterval Added(this, data.size()-1, data.size());

}
}
Whenever the ColorList classis notified that the color has changed, it

calls the addElement method of the JListData class. This method adds the
string to the VVector, and then calls the firel nterval Added method. This base
method of the AbstractListModel class connects to the JList class, telling that
classthat the data have changed. The JList class then redisplays the data as
needed. There are also equivalent methods for two other kinds of changes:
firel ntervalRemoved and fireContentsChanged. These represent the 3 kinds of
changes that can occur in alist box: here each sends its own message to the
JList display.

The MV C Architecture asan Observer

Aswe noted in Chapter 3, the JList, JTable, and JTree objects all
operate as observers of adatamodd. In fact, al of the visua components
derived from JComponent can have this same division of labor between the
data and the visual representation. In JFC parlance, thisis referred to as the
Model-View-Controller (MVC) architecture, where the data are represented
by the Model, and the View by the visual component. The Controller isthe
communication between the Model and View objects, and may be a separate
class or it may be inherent in either the model or the view. Thisisthe case for
the JFC components, and they are all examples of the Observer pattern we've
just been discussing.

184

Consequences of the Observer Pattern

Observers promote abstract coupling to Subjects. A subject doesn’t
know the details of any of its observers. However, this has the potential
disadvantage of successive or repeated updates to the Observers when there
are a series of incremental changes to the data. If the cost of these updatesis
high, it may be necessary to introduce some sort of change management, so
that the Observers are not notified too soon or too frequently.

When one client makes a change in the underlying data, you need to
decide which object will initiate the notification of the change to the other
observers. If the Subject notifies al the observers when it is changed, each
client is not responsible for remembering to initiate the notification. On the
other hand, this can result in a number of small successive updates being
triggered. If the clients tell the Subject when to notify the other clients, this
cascading notification can be avoided, but the clients are |eft with the
responsibility of telling the Subject when to send the notifications. If one
client “forgets,” the program ssimply won’'t work properly.

Finally, you can specify the kind of notification you choose to send
by defining a number of update methods for the Observersto receive
depending on the type or scope of change. In some cases, the clients will thus
be able to ignore some of these notifications

185

THE STATE PATTERN

The State pattern is used when you want to have an enclosing class
switch between a number of related contained classes, and pass method calls
on to the current contained class. Design Patterns suggests that the State
pattern switches between internal classes in such away that the enclosing
object appearsto change its class. In Java, at least, thisis abit of an
exaggeration, but the actual purpose to which the classes are put can change
significantly.

Many programmers have had the experience of creating a class which
performs dlightly different computations or displays different information
based on the arguments passed into the class. This frequently leads to some
sort of switch or if-else statements inside the class that determine which
behavior to carry out. It is this inelegance that the State pattern seeks to
replace.

Sample Code

Let’s consider the case of adrawing program similar to the one we
developed for the Memento class. Our program will have toolbar buttons for
Select, Rectangle, Fill, Circle and Clear.

Each one of the tool buttons does something rather different when it
is selected and you click or drag your mouse across the screen. Thus, the state

186

of the graphical editor affects the behavior the program should exhibit. This
suggests some sort of design using the State pattern.

Initially we might design our program like this, with a Mediator
managing the actions of 5 command buttons:

Pick

Mediator

Fill

Circle

Clear

However, thisinitial design puts the entire burden of maintaining the
state of the program on the Mediator, and we know that the main purpose of a
Mediator is to coordinate activities between various controls, such as the
buttons. Keeping the state of the buttons and the desired mouse activity inside
the Mediator can make it unduly complicated as well as leading to a set of if
or switch tests which make the program difficult to read and maintain.

Further, this set of large, monolithic conditional statements might
have to be repeated for each action the Mediator interprets, such as mouseUp,
mouseDrag, rightClick and so forth. This makes the program very hard to
read and maintain.

Instead, let’ s analyze the expected behavior for each of the buttons:

1. If the Pick button is selected, clicking inside a drawing element
should cause it to be highlighted or appear with “handles.” If the
mouse is dragged and a drawing element is aready selected, the
element should move on the screen.

2. If the Rect button is selected, clicking on the screen should cause
a new rectangle drawing element to be created.

187

3. If theFill button is selected and a drawing element is already
selected, that e ement should be filled with the current color. If
no drawing is selected, then clicking inside a drawing should fill
it with the current color.

4. If the Circle button is selected, clicking on the screen should
cause anew circle drawing element to be created.

5. If the Clear button is selected, all the drawing elements are
removed.

There are some common threads among severa of these actions we
should explore. Four of them use the mouse click event to cause actions. One
uses the mouse drag event to cause an action. Thus, we really want to create a
system that can help us redirect these events based on which button is
currently selected.

Let’s consider creating a State object that handles mouse activities:

public class State {

public void nouseDown(int x, int y){}
public void nouseUp(int x, int y){}
public void nouseDrag(int x, int y){}

}
We'll include the mouseUp event in case we need it later. Since none

of the cases we've described need all of these events, we'll give our base
class empty methods rather than creating an abstract base class. Then we'll
create 4 derived State classes for Pick, Rect, Circle and Fill and put instances
of al of them inside a StateManager class which sets the current state and
executes methods on that state object. In Design Patterns, this StateM anager
classisreferred to as a Context. This object isillustrated below:

188

StateManager
currentState
A A
Pick Rect Fill Circle
State

A typical State object ssmply overrides those event methods that it
must handle specially. For example, thisis the complete Rectangle state
object:

public class RectState extends State

{
private Mediator ned; /] save t he Medi at or
publ i c Rect St at e(Mediator nd) {
med = nd;
}
R
//create a new Rectangl e where nouse clicks
public void nouseDown(int x, int y) {
ned. addDr awi ng(new vi sRectangl e(x, y));
}
}

The RectState object smply tells the Mediator to add arectangle
drawing to the drawing list. Similarly, the Circle state object tells the
Mediator to add acircle to the drawin list:

public class CircleState extends State

{
private Mediator ned, // save Medi at or
public CrcleState(Mdiator nd) {

189

//Draw circle where nouse clicks

public void nouseDown(int x, int y) {
med. addDr awi ng(new visCrcle(x, y));

}

}
The only tricky button is the Fill button, because we have defined

two actions for it.
1. If an object isaready selected, fill it.
2. If themouseis clicked inside an object, fill that one.

In order to carry out these tasks, we need to add the select method to
our base State class. This method is called when each tool button is selected:

public class State

public void nouseDown(int x, int y){}
public void nouseUp(int x, int y){}
public void nouseDrag(int x, int y){}
public void select(Drawing d, Color c){}

}
The Drawing argument is either the currently selected Drawing or

null if none is selcted, and the color is the current fill color. In thissimple
program, we have arbitrarily set the fill color to red. So our Fill state class
becomes:

public class Fill State extends State

{
private Mediator ned; // save Medi at or
private Col or color; //save current col or
public Fill State(Mdiator nd) {
med = nd;
}
e
/I/Fill dranwing if selected
public void select(Drawing d, Color c) {
color = c;
if(d=null)
{
d.setFill(c); //fill that draw ng
}
e LR T
/IFill drawing if you click inside one
public void nouseDown(int x, int y) {

Vector drawi ngs = ned. get Drawi ngs();
for(int i=0; i< drawi ngs.size(); i++)

190

{
Drawi ng d = (Draw ng)draw ngs. el enent At (i) ;
i f(d.contains(x, y))
d.setFill(color); //fill draw ng
}

}
}

Switching Between States

Now that we have defined how each state behaves when mouse
events are sent to it, we need to discuss how the StateManager switches
between states; we simply set the currentState variable to the state is indicated
by the button that is selected.

import java.awt.*;

public class StateManager

{

private State current State;

Rect State r State; //states are kept here
ArrowSt ate aStat e;

CircleState cState;

Fill State fState;

public StateManager (Medi ator ned)

{

rState = new Rect St at e(ned) ; //create instances
cState = new CircleState(ned); //of each state
aState = new ArrowSt at e(med);

fState = new Fill State(nmed);

currentState = aState;

// These nmethods are called when the tool buttons
//are sel ected

public void setRect() { currentState = rState; }
public void setCrcle(){ currentState = cState; }
public void setFill() { currentState = fState; }
public void setArrow() { currentState = aState; }

Note that in this version of the StateManager, we create an instance
of each state during the constructor and copy the correct one into the state
variable when the set methods are called. It would also be possible to use a
Factory to create these states on demand. This might be advisable if there are
alarge number of states which each consume afair number of resources.

The remainder of the state manager code smply calls the methods of
whichever state object is current. Thisisthe critical piece -- thereisno

191

conditional testing. Instead, the correct stateis aready in place and its
methods are ready to be called.

public void nouseDown(int x, int y) {
current St at e. nrouseDown(x, y);

public void nouseUp(int x, int y) {
current St at e. nouseUp(x, Y);

public void nouseDrag(int x, int y) {
current St at e. nouseDrag(x, y);

public void select(Drawing d, Color c) {
current State. sel ect(d, c);
}

}

How the M ediator Interactswith the State M anager

We mentioned that it is clearer to separate the state management from
the Mediator’ s button and mouse event management. The Mediator is the
critical class, however, since it tells the StateManager when the current
program state changes. The beginning part of the Mediator illustrates how
this state change takes place:

public Mediator() {
startRect = fal se;
dSel ected = fal se;
drawi ngs = new Vector();
undoLi st = new Vector();
st Mgr = new St at eManager (this);

public void startRectangle() {
st Mgr. setRect (); //change to rectangle state
arrowBut t on. set Sel ect ed(fal se);
circButton. set Sel ected(fal se);
fillButton. setSel ected(false);

public void startGrcle() {
stMgr.setGrcle(); //change to circle state
rect Button. set Sel ect ed(fal se);
arrowBut t on. set Sel ect ed(f al se);
fillButton. setSel ected(false);

192

These startXxx methods are called from the Execute methods of each
button as a Command object.

Consequences of the State Pattern

1.

The State pattern localizes state-specific behavior in an individual class
for each state, and puts al the behavior for that state in a single object.

It eliminates the necessity for a set of long, look-alike conditional
statements scattered through the program’s code.

It makes transition explicit. Rather than having a constant that specifies
which state the program isin, and that may not always be checked
correctly, this makes the change explicit by copying one of the statesto
the state variable.

State objects can be shared if they have no instance variables. Here only
the Fill object has instance variables, and that color could easily be made
an argument instead.

This approach generates a number of small class objects, but in the
process, smplifies and clarifies the program.

In Java, dl of the States must inherit from a common base class, and they
must all have common methods, although some of those methods can be
empty. In other languages, the states can be implemented by function
pointers with much less type checking, and, of course, greater chance of
error.

State Transitions

The transition between states can be specified internally or externally.

In our example, the Mediator tells the StateM anager when to switch between
states. However, it is also possible that each state can decide automatically
what each successor state will be. For example, when arectangle or circle
drawing object is created, the program could automatically switch back to the
Arrow-object State.

Thought Questions

1. Rewrite the StateManager to use a Factory pattern to produce the
states on demand.

193

2. While visua graphics programs provide obvious examples of
State patterns, Java server programs can benefit by this approach.
Ouitline a simple server which uses a state pattern.

194

THE STRATEGY PATTERN

The Strategy pattern is much like the State pattern in outline, but a
little different in intent. The Strategy pattern consists of a number of related
algorithms encapsulated in a driver class called the Context. Y our client
program can select one of these differing algorithms or in some cases the
Context might select the best one for you. The intent, like the State pattern, is
to switch easily between algorithms without any monolithic conditional
statements. The difference between State and Strategy is that the user
generally chooses which of severa strategies to apply and that only one
strategy at atimeislikely to be instantiated and active within the Context
class. By contrast, as we have seen, it islikely that al of the different States
will be active at once and switching may occur frequently between them. In
addition, Strategy encapsulates severa algorithms that do more or less the
same thing, while State encapsul ates related classes that each do something
somewhat different. Finally, the concept of transition between different states
is completely missing in the Strategy pattern.

M otivation

A program which requires a particular service or function and which
has several ways of carrying out that function is a candidate for the Strategy
pattern. Programs choose between these algorithms based on computational
efficiency or user choice. There can be any number of strategies and more can
be added and any of them can be changed at any time.

There are a number of cases in programs where we'd like to do the
same thing in several different ways. Some of these are listed in the Smalltalk
Companion:

Save files in different formats.

Compress files using different algorithms

Capture video data using different compression schemes
Use different line-breaking strategies to display text data

Plot the same data in different formats: line graph, bar chart or
pie chart.

195

In each case we could imagine the client program telling a driver module
(Context) which of these strategies to use and then asking it to carry out the
operation.

The idea behind Strategy is to encapsulate the various strategies in asingle
module and provide a simple interface to allow choice between these
strategies. Each of them should have the same programming interface,
although they need not all be members of the same class hierarchy. However,
they do have to implement the same programming interface.

Sample Code

Let’s consider a simplified graphing program that can present data as
aline graph or a bar chart. We'll start with an abstract PlotStrategy class and
derive the two plotting classes from it:

Plot
Strategy

o

LinePlot BarPlot
Strategy Strategy

Since each plot will appear in its own frame, our base PlotStrategy
class will be derived from JFrame:

public abstract class PlotStrategy extends JFrame
{

protected float[] x, v;

protected Col or col or;

protected int w dth, height;

public PlotStrategy(String title) {
super (title);
wi dth = 300; hei ght =200;
col or = Col or. bl ack;
addW ndowLi st ener (new W ndAp(this));

public abstract void plot(float xp[], float yp[]);
e T T
public void set PenCol or (Col or c) {

196

color = c;
}
The important part isthat al of the derived classes must implement a

method called plot with two float arrays as arguments. Each of these classes
can do any kind of plot that is appropriate.

Note that we don’t derive it from our special JxFrame class, because
we don’t want the entire program to exit if we close one of these subsidiary
windows. Instead, we add a WindowAdapter class that just hides the window
if itisclosed.

cl ass WndAp extends W ndowAdapt er
{

JFranme fr;
public WndAp(JFrane f) {
fr = f; / /I copy Jfrane instance

}
public void Wndowd osi ng(WndowEvent e) {
fr.setVisible(false); //hide w ndow

}
}

The Context

The Context class is the traffic cop that decides which strategy isto
be called. The decision is usually based on a request from the client program,
and all that the Context needs to do isto set a variable to refer to one concrete
strategy or another.

public class Context

/1this object selects one of the strategies

//to be used for plotting

//the plotStrategy variable points to sel ected strategy
private PlotStrategy plotStrategy;
float x[], VYy[]; //data stored here

public Context() {
setLinePlot(); //make sure it is not null

/I make current strategy the Bar Pl ot
public void setBarPlot()
{ plotStrategy = new BarPl ot Strategy(); }

/I make current strategy the Line Plot
public void setLinePlot()
{ plotStrategy = new LinePlotStrategy(); }

197

//call plot method of current strategy
public void plot() {
pl ot Strategy. pl ot (x, y);

public void setPenCol or(Color c¢) {
pl ot Strat egy. set PenCol or(c);

public void readData(String fil enanme)
//read data fromdatafile sonehow

{
%
The Context class is aso responsible for handling the data. Either it
obtains the data from afile or database or it is passed in when the Context is
created. Depending on the magnitude of the data, it can either be passed on to

the plot strategies or the Context can pass an instance of itself into the plot
strategies and provide a public method to fetch the data

The Program Commands

This simple program is just a panel with two buttons that call the two
plots:

Each of the buttons is a command object that sets the correct strategy and
then calls the Context’ s plot routine. For example, here is the complete Line
graph button class:

public class JG aphButton extends JButton
i mpl enents Conmand
{

Cont ext context;
public JG aphButton(ActionListener act, Context ctx)

{

super ("Li ne graph"); //'button | abel
addAct i onLi st ener (act); /ladd |i stener
context = ctx; / /I copy cont ext
}

N

public void Execute()
cont ext. set PenCol or (Col or.red); //set color of plot
cont ext. setLinePl ot (); //set kind of plot

198

context.readData("data. txt"); //read the data
context. plot(); //plot the data
}
}

TheLineand Bar Graph Strategies

The two strategy classes are pretty much the same: they set up the
window size for plotting and call a plot method specific for that display panel.
Here isthe Line graph Strategy:

public class LinePlotStrategy extends Pl ot Strategy

{
Li nePl ot Panel | p;
public LinePlotStrategy()
{
super ("Line plot");
I p = new Li nePl ot Panel ();
get Cont ent Pane() . add(I p);
}
e R TR
public void plot(float[] xp, float[] yp)
{
X = Xp; Yy = yp; //copy in data
fi ndBounds() ; //sets maxes and mns
set Si ze(wi dth, height);
setVisible(true);
set Backgr ound(Col or. whi te);
| p. set Bounds(mi nX, mnY, maxX, nmaxyY);
| p. pl ot (xp, yp, color); //set up plot data
repaint(); /lcall paint to plot
}
}

Drawing Plotsin Java

Since Java GUI is event-driven, you don’'t actually write aroutine
that draws lines on the screen in direct response to the plot command event.
Instead you provide a panel whose paint event carries out the plotting when
that event is called. The repaint() method shown above ensures that it will be
called right away.

We create a PlotPanel class based on JPanel and derive two classes
from it for the actual line and bar plots:

199

Plot
Panel

ot

LinePlot BarPlot
Panel Panel

The base PlotPanel class contains the common code for scaling the
data to the window.

public class Pl otPanel extends JPanel

{
float xfactor, yfactor;
int xpmn, ypmn, xpmax, ypnax;
float m nX, maxX, mnY, maxy;
float x[], VYy[];
Col or color;
[e T

public void setBounds(float mnx, float m ny,
float maxx, float maxy) {

m nX=m nx; maxX= maxx;
m nY=mi ny; maxY = maxy;
}
e T
public void plot(float[] xp, float[] yp, Color c) {
X = Xp; //copy in the arrays
y =Yyp;
color = c; /! and col or

/I conput e bounds and sclaing factors
int w= getWdth() - getlnsets().left -
getlnsets().right;
int h = getHeight() - getlnsets().top -
getlnsets().bottom

xf act or
yfact or

(0.9f * w) / (maxX - mnX);
(0.9f * h)/ (maxY - mnyY);

xpmn = (int)(0.05f * w; ypmin = (int)(0.05f * h);
Xpmax = w - Xpmn; ypmax = h - ypmn;
repai nt(); //this causes the actual plot

protected int cal cx(float xp) {
return (int)((xp-mnX) * xfactor + xpmn);

protected int calcy(float yp) {
int ypnt = (int)((yp-mnY) * yfactor);
return ypmax - ypnt;

}

}

200

The two derived classes simply implement the paint method for the

two kinds of graphs. Here is the one for the Line plot.

public class LinePl ot Panel extends Pl ot Panel

public void paint(Gaphics g)

{

int xp = calcx(x[0]); //get first point

int yp = calcy(y[0]);

g. set Col or (Col or. whi te); /11 ood background

g.fill Rect(0,0,getWdth(), getHeight());

g. set Col or (Col or. bl ack) ;

/1 draw boundi ng rectangl e

g. drawRect (xpm n, ypmin, Xpmax, ypmex);

g. set Col or(col or);

//draw |ine graph

for(int i=1; i< x.length; i++)

{
int xpl = calcx(x[i]); /] get n+lst point
int ypl = calcy(y[il);
g. drawLi ne(xp, yp, xpl, ypl); //draw line
Xp = xpl; //copy for next |oop
yp = ypl;

}

}
}

The final two plots are shown below:

201

Consequences of the Strategy Pattern

Strategy allows you to select one of several algorithms dynamically.
These agorithms can be related in an inheritance hierarchy or they can be
unrelated as long as they implement a common interface. Since the Context
switches between strategies at your request, you have more flexibility than if
you simply called the desired derived class. This approach also avoids the
sort of condition statements than can make code hard to read ad maintain.

On the other hand, strategies don’t hide everything. The client code
must be aware that there are a number of aternative strategies and have some
criteriafor choosing among them. This shifts an algorithmic decision to the
client programmer or the user.

Since there are a number of different parameters that you might pass
to different algorithms, you have to develop a Context interface and strategy
methods that are broad enough to alow for passing in parameters that are not
used by that particular algorithm. For example the setPenColor method in our
PlotStrategy is actually only used by the LineGraph strategy. It isignored by
the BarGraph strategy, since it sets up its own list of colors for the successive
barsit draws.

202

THE TEMPLATE PATTERN

Whenever you write a parent class where you leave one or more of the
methods to be implemented by derived classes, you are in essence using the
Template pattern. The Template pattern formalizes the idea of defining an
algorithm in a class, but leaving some of the details to be implemented in
subclasses. In other words, if your base classis an abstract class, as often
happens in these design patterns, you are using a simple form of the Template
pattern.

M otivation

Templates are so fundamental, you have probably used them dozens
of times without even thinking about it. The idea behind the Template pattern
isthat some parts of an algorithm are well defined and can be implemented in
the base class, while other parts may have severa implementations and are
best |eft to derived classes. Another main theme is recognizing that there are
some basic parts of a class that can be factored out and put in a base class so
that they do not need to be repeated in several subclasses.

For example, in developing the PlotPanel classes we used in the
Strategy pattern examples, we discovered that in plotting both line graphs and
bar charts we needed similar code to scale the data and compute the x-and y
pixel positions.

public class PlotPanel extends JPanel
{
float xfactor, yfactor;
int xpmn, ypmn, xpmax, ypnax;
float m nX, maxX, mnY, maxy;
float x[], y[l;
Col or color;
[e
public void setBounds(float mnx, float m ny,
float maxx, float maxy) {

m nX=m nx; maxX= maxx;
m nY=m ny; maxY = maxy;
}
T
public void plot(float[] xp, float[] yp, Color c) {
X = Xp; //copy in the arrays
y =Yyp;
color = c; /! and col or

/ /I conput e bounds and scaling factors

203

int w= getWdth();
int h = getHeight();
xfactor = (0.9f * w) / (maxX - mnX);
yfactor = (0.9f * h)/ (maxY - mnY);

xpmn = (int)(0.05f * w; ypmin = (int)(0.05f * h);
Xpmax = w - Xpmn; ypmax = h - ypmn;
repai nt(); //this causes the actual plot

}
[] w e e e e e i

protected int cal cx(float xp) {
return (int)((xp-mnX) * xfactor + xpmn);

protected int calcy(float yp) {
int ypnt = (int)((yp-mnY) * yfactor);
return ypmax - ypnt;

}
}

Thus, these methods all belonged in a base PlotPanel class without
any actual plotting capabilities. Note that the plot method sets up al the
scaling constants and just calls repaint. The actual paint method is deferred to
the derived classes. Since the JPanel class aways has a paint method, we
don’t want to declare it as an abstract method in the base class, but we do
need to override it in the derived classes.

Kindsof Methodsin a Template Class

A Template has four kinds of methods that you can make use of in
derive classes:

1. Complete methods that carry out some basic function that all the
subclasses will want to use, such as calcx and calcy in the above
example. These are called Concrete methods.

2. Methods that are not filled in at all and must be implemented in
derived classes. In Java, you would declare these as abstract
methods, and that is how they are referred to in the pattern
description.

3. Methods that contain a default implementation of some
operations, but which may be overridden in derived classes.
These are called Hook methods. Of course this is somewhat
arbitrary, because in Java you can override any public or

204

protected method in the derived class, but Hook methods are
intended to be overridden, while Concrete methods are not.

4. Finaly, a Template class may contain methods which themselves
call any combination of abstract, hook and concrete methods.
These methods are not intended to be overridden, but describe an
algorithm without actually implementing its details. Design
Patterns refers to these as Template methods.

Sample Code

Let’s consider asimple program for drawing triangles on a screen.
We'll start with an abstract Triangle class, and then derive some special
triangle types from it.

Abstract
triangle
A
Standard Isoceles Right triangle
triangle triangle

Our abstract Triangle classillustrates the Template pattern:

public abstract class Triangle

{
public Triangle(Point a, Point b, Point c)
|/ save
pl = a; p2 = b; p3 = c;
public void drawm G aphics g)
//This routine draws a general triangle
drawLi ne(g, pl, p2);

Poi nt current = draw2ndLi ne(g, p2, p3);
closeTriangl e(g, current);

205

public void drawLi ne(G aphics g, Point a, Point b)

g.drawLi ne(a.x, a.y, b.x, b.y);

//this routine has to be inpl enented
//for each triangle type.
abstract public Point
draw2ndLi ne(Graphics g, Point a, Point b);
T
public void closeTriangl e(Gaphics g, Point c)

//draw back to first point
g.drawli ne(c.x, c.y, pl.x, pl.y);
}
}
This Triangle class saves the coordinates of three lines, but the draw

routine draws only the first and the last lines. The all important draw2ndLine
method that draws a line to the third point is |eft as an abstract method. That
way the derived class can move the third point to create the kind of rectangle
you wish to draw.

Thisis ageneral example of a class using the Template pattern. The
draw method calls two concrete base class methods and one abstract method
that must be overridden in any concrete class derived from Triangle.

Another very similar way to implement the case triangle classisto
include default code for the draw2ndLine method.
publ i c Poi nt draw2ndLi ne(G aphics g, Point a, Point b)
g.drawLine(a.x, a.y, b.x, b.y);
return b;

}

In this case, the draw2ndLine method becomes a Hook method that can be
overridden for other classes.

Drawing a Standard Triangle

To draw agenera triangle with no restrictions on its shape, we
simple implement the draw2ndLine method in a derived stdTriangle class:

public class stdTriangl e extends Triangle

public stdTriangl e(Point a, Point b, Point c)
{

super(a, b, c);
public Point draw2ndLi ne(G aphics g, Point a, Point b)

g.drawli ne(a.x, a.y, b.x, b.y);
return b;

}

Drawing an Isoceles Triangle

This class computes a new third data point that will make the two

sides equal and length and saves that new point inside the class.

public class IsocelesTriangle extends Triangle

Poi nt newc;
int newcx, newcy;
int incr;

public Isocel esTriangl e(Point a, Point b, Point c)
{
super(a, b, ¢);
doubl e dx1 b.x - a.x; doubl e dy1l
doubl e dx2 c.X - b.x; doubl e dy2

O T
<<

doubl e sidel = cal cSide(dx1, dyl);

doubl e side2 = cal cSi de(dx2, dy2);
if (side2 < sidel)

incr = -1;
el se

incr = 1;

doubl e sl ope = dy2 / dx2
double intercept = c.y - slope* c.x;

//nove point ¢ so that this is an isoceles triangle
newcx = C.X; hewcy = c.Y;
whi | e(Mat h. abs(sidel - side2) > 1) {
newcx += incr; /literate a pixel at a tine
newcy = (int)(slope* newcx + intercept);
dx2 = newcx - b.x;
dy2 = newcy - b.y;
si de2 = cal cSi de(dx2, dy2);
}

newc = new Poi nt (newcx, newcy);

[lcalculate |l ength of side
private doubl e cal cSi de(doubl e dx, double dy)

206

207

{

}
When the Triangle class calls the draw method, it calls this new version of

draw2ndLine and draws a line to the new third point. Further, it returns that
new point to the draw method so it will draw the closing side of the triangle
correctly.

return Math.sgrt(dx*dx + dy*dy);

//draws 2nd |ine using saved new poi nt
public Point draw2ndLi ne(G aphics g, Point b, Point c)

g. drawli ne(b.x, b.y, newc.x, newc.y);
return newc;

}

The Triangle Drawing Program

The main program simple creates instances of the triangles you want
to draw. Then, it adds them to a VVector in the TPanel class.

public Triangl eDraw ng()
{
super ("Draw triangl es");
TPanel tp = new TPanel ();
t = new stdTri angl e(new Poi nt (10, 10), new Poi nt (150, 50),
new Poi nt (100, 75));
t1l = new stdTriangl e(new Poi nt (150, 100), new Poi nt (240, 40), \
new Poi nt (175, 150));
tp. addTri angl e(t); /ladd to triangle list
tp. addTri angl e(t1); /1in the TPanel

get Cont ent Pane() . add(tp);
set Si ze(300, 200);

set Backgr ound(Col or. whi te);
setVisible(true);

}

It isthe paint routine in this class that actually draws the triangles.

cl ass TPanel extends Jpanel {
Vector triangles;
public TPanel () {

triangles = new Vector(); /1list of triangles
}
T
public void addTriangl e(Triangle t)

triangl es. addEl enent (t); //add nore to Ilist
}
T

/ldraw all the triangles

208

public void paint(Gaphics g)
for (int i =0; i <triangles.size(); i++) {
Triangle tngl = (Triangle)triangles.elementAt(i);
tngl.draw(Qg);
}

}
}

An example of two standard triangles is shown below in the left
window, and the same code using an isoceles triangle in the right window.

Templates and Callbacks

Design Patterns points out that Templates can exemplify the
“Hollywood Principle,” or “Don’t call us, we'll call you.” Theideahereis
that methods in the base class seem to call methods in the derived classes.
The operative word here is seem. If we consider the draw code in our base
Triangle class, we see that there are 3 method calls:
drawLi ne(g, pl, p2);

Poi nt current = draw2ndLi ne(g, p2, p3);
closeTriangle(g, current);

Now drawLine and closeTriangle are implemented in the base class.
However, as we have seen, the draw2ndLine method is not implemented at all
in the base class, and various derived classes can implement it differently.
Since the actual methods that are being called are in the derived classes, it
appears as though they are being called from the base class.

If this idea make you uncomfortable, you will probably take solace in
recognizing that all the method calls originate from the derived class, and that
these calls move up the inheritance chain until they find the first class which
implements them. If this classis the base class, fine. If not, it could be any

209

other classin between. Now, when you call the draw method, the derived
class moves up the inheritance tree until it finds an implementation of draw.
Likewise, for each method called from within draw, the derived class starts at
the currently class and moves up the tree to find each method. When it gets to
the draw2ndLine method, it finds it immediately in the current class. So it
isn't “really” called from the base class, but it does sort of seem that way.

Summary and Consequences

Template patterns occur all the time in OO software and are neither
complex nor obscure in intent. They are normal part of OO programming and
you shouldn’t try to make them more abstract than they actually are.

The first significant point is that your base class may only define
some of the methods it will be using, leaving the rest to be implemented in
the derived classes. The second major point is that there may be methods in
the base class which call a sequence of methods, some implemented in the
base class and some implemented in the derived class. This Template method
defines a general agorithm, although the details may not be worked out
completely in the base class.

Template classes will frequently have some abstract methods that you
must override in the derived classes, and may also have some classes with a
simple “place-holder” implementation that you are free to override where this
is appropriate. If these place-holder classes are called from another method in
the base class, then we refer to these overridable methods are “ Hook”
methods.

210

THE VISITOR PATTERN

The Visitor pattern turns the tables on our object-oriented model and
creates an externa class to act on data in other classes. Thisisuseful if there
are afair number of instances of a small number of classes and you want to
perform some operation that involves all or most of them.

M otivation

While at first it may seem “unclean” to put operations that should be
inside a classin another class instead, there are good reasons for doing it.
Suppose each of a number of drawing object classes has similar code for
drawing itself. The drawing methods may be different, but they probably all
use underlying utility functions that we might have to duplicate in each class.
Further, a set of closely related functions is scattered throughout a number of
different classes as shown below:

drawObject
Rectangle Circle Triangle
draw draw draw

Instead, we write a Visitor class which contains all the related draw
methods and have it visit each of the objects in succession:

211

drawObject

Recrcgle Cirsle T/riowgle

draw

The question that most people who first review this pattern ask is
“what does visiting mean?’ There is only one way that an outside class can
gain access to another class, and that is by calling its public methods. In the
Vigitor case, visiting each class means that you are calling a method already
installed for this purpose, called accept. The accept method has one
argument: the instance of the visitor, and in return, it calls the visit method of
the Visitor, passing itself as an argument.

visited.accept(this);

Visited

Visitor v.visit(this); instance

Putting it in simple code terms, every object that you want to visit must have
the following method:

public void accept(Visitor v)

{

}
In thisway, the Visitor object receives a reference to each of the instances,

one by one, and can then call its public methods to obtain data, perform
calculations, generate reports, or just draw the object on the screen.

v.visit(this); /lcall visitor nethod

When to Usethe Visitor Pattern

Y ou should consider using a Visitor pattern when you want to
perform an operation on the data contained in a number of objects that have

212

different interfaces. Visitors are also valuable if you have to perform a
number of unrelated operations on these classes.

On the other hand, as we will see below, Visitors are a good choice
only when you do not expect many new classes to be added to your program.

Sample Code

Let’s consider a simple subset of the Employee problem we discussed
in the Composite pattern. We have a smple Employee object which
maintains a record of the employee’ s name, salary, vacation taken and
number of sick daystaken. A simple version of thisclassis:

public class Enpl oyee

{
int sickDays, vacDays;
float Salary;
String Nang;

public Enpl oyee(String nanme, float salary,
int vacdays, int sickdays)
{

vacDays = vacdays; si ckDays = si ckdays;
Sal ary = sal ary; Nane = nane;

public String getNane() { return Naneg; }
public int getSickdays() { return sickDays; }
public int getVacDays() { return vacDays; }
public float getSalary() { return Sal ary; }

r)

public void accept(Visitor v) { v.visit(this }

Note that we have included the accept method in this class. Now let’s
suppose that we want to prepare areport of the number of vacation days that
all employees have taken so far this year. We could just write some code in
the client to sum the results of calls to each Employee’ s getVacDays function,
or we could put this function into a Visitor.

Since Javais a strongly typed language, your base Visitor class needs
to have a suitable abstract visit method for each kind of class in your
program. In this first smple example, we only have Employees, so our basic
abstract Visitor classis just

public abstract class Visitor

public abstract void visit(Enpl oyee enp);
}

213

Notice that there is no indication what the Visitor does with teach
classin either the client classes or the abstract Visitor class. We can in fact
write awhole lot of visitors that do different things to the classesin our
program. The Visitor we are going to write first just sums the vacation data
for al our employees:

public class VacationVisitor extends Visitor

{

protected int total _days;

public VacationVisitor() { total _days = 0; }
e

public void visit(Enpl oyee enp)

total _days += enp. get VacDays();

}
e
public int getTotal Days()
{
return total _days;
}
}

Visiting the Classes

Now, all we have to do to compute the total vacation taken isto go
through alist of the employees and visit each of them, and then ask the
Visitor for the total.

VacationVisitor vac = new VacationVisitor();
for (int i = 0; i < enployees.length; i++)

enpl oyees[i].accept(vac);

System out. printl n(vac. get Tot al Days());

Let’ s reiterate what happens for each visit:
We move through aloop of all the Employees.
The Visitor calls each Employee’ s accept method.
That instance of Employee calls the Visitor's visit method.
The Visitor fetches the vacation days and adds them into the total.

o~ W DN

The main program prints out the total when the loop is complete.

214

Visiting Several Classes
The Visitor becomes more useful, when there are a number of

different classes with different interfaces and we want to encapsul ate how we
get data from these classes. Let’s extend our vacation days model by
introducing a new Employee type called Boss. Let’ s further suppose that at
this company, Bosses are rewarded with bonus vacation days (instead of
money). So the Boss class as a couple of extra methods to set and obtain the
bonus vacation day information:

public class Boss extends Enpl oyee

{

private int bonusDays;

public Boss(String name, float salary,
int vacdays, int sickdays) {
super (nane, sal ary, vacdays, sickdays);

public void set BonusDays(int bonus) { bonusDays = bonus; }
public int getBonusDays() { return bonusDays; }
public void accept(Visitor v) { v.visit(this); }

}
When we add a class to our program, we have to add it to our Visitor

aswell, so that the abstract template for the Visitor is now:

public abstract class Visitor

public abstract void visit(Enpl oyee enp);
public abstract void visit(Boss enp);

}
This says that any concrete Visitor classes we write must provide

polymorphic visit methods for both the Employee and the Boss class. In the
case of our vacation day counter, we need to ask the Bosses for both regular
and bonus days taken, so the visits are now different. We'll write a new

bV acationVisitor class that takes account of this difference:

public class bVacationVisitor extends Visitor
int total _days;

public bVacationVisitor() { total _days = 0; }
public int getTotal Days() { return total _days; }
e
public void visit(Boss boss) {
total _days += boss. get VacDays();
total _days += boss. get BonusDays();

public void visit(Enpl oyee emp) {

215

total _days += enp. get VacDays();
}
}

Note that while in this case Boss is derived from Employeg, it need
not be related at al aslong asit has an accept method for the Visitor class. It
is quite important, however, that you implement a visit method in the Visitor
for every class you will be visiting and not count on inheriting this behavior,
since the visit method from the parent class is an Employee rather than a Boss
visit method. Likewise, each of your derived classes (Boss, Employee, etc.
must have its own accept method rather than calling one in its parent class.

Bosses ar e Employees, t0o

We show below a simple application that carries out both Employee
visits and Boss visits on the collection of Employees and Bosses. The origina
VacationVisitor will just treat Bosses as Employees and get only their
ordinary vacation data. The bVacationVisitor will get both.

VacationVisitor vac = new VacationVisitor();

bVacationVi sitor bvac = new bVacationVisitor();
for (int i = 0; i < enployees.length; i++)

enpl oyees[i].accept(vac);
enpl oyees[i].accept (bvac);

total . set Text (new I nt eger (vac. get Total Days()).toString());
bt ot al . set Text (
new | nt eger (bvac. get Total Days()).toString());

The two lines of displayed data represent the two sums that are computed
when the user clicks on the Vacations button.

216

Double Dispatching

No article on the Visitor pattern is complete without mentioning that
you are redlly dispatching a method twice for the Visitor to work. The Visitor
calls the polymorphic accept method of a given object, and the accept method
calls the polymorphic visit method of the Visitor. It this bidirectional calling
that allows you to add more operations on any class that has an accept
method, since each new Visitor class we write can carry out whatever
operations we might think of using the data available in these classes.

Traversing a Series of Classes

The calling program that passes the class instances to the Visitor
must know about all the existing instances of classes to be visited and mus
keep them in a simple structure such as an array or Vector. Another
possibility would be to create an Enumeration of these classes and passit to
the Visitor. Finally, the Visitor itself could keep the list of objectsthat it isto
visit. In our simple example program, we used an array of objects, but any of
the other methods would work equally well.

Consequence of the Visitor Pattern

The Visitor pattern is useful when you want to encapsulate fetching
data from a number of instances of several classes. Design Patterns suggests
that the Visitor can provide additional functionality to a class without
changing it. We prefer to say that a Visitor can add functionality to a
collection of classes and encapsul ate the methods it uses.

The Visitor is not magic, however, and cannot obtain private data
from classes: it is limited to the data available from public methods. This
might force you to provide public methods that you would otherwise not have
provided. However, it can obtain data from a disparate collection of unrelated
classes and utilize it to present the results of aglobal calculation to the user
program.

It is easy to add new operations to a program using Visitors, since the
Visitor contains the code instead of each of the individua classes. Further,
Visitors can gather related operations into a single class rather than forcing
you to change or derive classes to add these operations. This can make the
program simpler to write and maintain.

Vigitors are less helpful during a program’s growth stage, since each
time you add new classes which must be visited, you have to add an abstract

217

visit operation to the abstract Visitor class, and you must add an
implementation for that class to each concrete Visitor you have written.

Visitors can be powerful additions when the program reaches the point where
many new classes are unlikely.

Visitors can be used very effectively in Composite systems and the
boss-employee system we just illustrated could well be a Composite like the
one we used in the Composite chapter.

218

Alexander, Christopher, Ishikawa, Sara, et. al., A Pattern Language, Oxford University Press,
New York, 1977.

Alpert, S., Brown, K. and Woolf, B., The Design Patterns Smalltalk Companion, Addison-
Wesley, 1998.

Buschman, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M., A System of Patterns, John
Wiley and Sons, New Y ork, 1996.

Cooper, J. W., Principles of Object-Oriented Programming in Java 1.1 Coriolis (Ventana), 1997.

Coplien, James O. Advanced C++ Programming Styles and Idioms, Addison-Wesley, Reading,
MA., 1992.

Coplien, James O. and Schmidt, Douglas C., Pattern Languages of Program Design, Addison-
Wesley, 1995.

Gamma, E., Helm, T., Johnson, R. and Vlissides, J., Design Patterns: Abstraction and Reuse of
Object Oriented Design. Proceedings of ECOOP ' 93, 405-431.

Gamma, Eric; Helm, Richard; Johnson, Ralph and Vlissides, John, Design Patterns. Elements of
Reusable Software., Addison-Wesley, Reading, MA, 1995

Krasner, G.E. and Pope, S.T., A cookbook for using the Model-View-Controller user interface
paradigm in Smalltalk-80. Journal of Object-Oriented Programmng I (3)., 1988

Kurata, Deborah, “Programming with Objects,” Visual Basic Programmer’s Journal, June, 1998.

Pree, Wolfgang, Design Patterns for Object Oriented Software Development, Addison-Wesley,
1994.

Riel, Arthur J., Object-Oriented Design Heuristics, Addison-Wesley, Reading, MA, 1996

