Table of
Contents

Micro Java™ Game Development

By David Fox, Roman Verhosek

Publisher : Addison Wesley

Pub Date : April 18, 2002
ISBN : 0-672-32342-7
Pages: 576

Wireless games are always on and always with you, and can reach a more massive
audience than any other gaming platform in history. No programming languageis as
suited for micro games as Java 2 Micro Edition (J2ME).

Micro Java Game Development is your step-by-step guide to creating games for devices
that support 2ME/MIDP. The material coversafull range of topics, from atour of al
available micro devices (PDAS, cell phones, and pagers) to a discussion of software
standards that support 2ME (WAP, SMS, i-mode, and wireless enhancements such as
Bluetooth) to an overview of 2ME extensions (Siemens Game API, NTT DoCoMo I-
Appli). Chapter by chapter, this book will guide you through the development of Micro
Racer, a professional-level game.

http://www.informit.com/safari/author_bio.asp?ISBN=0672323427
http://www.informit.com/safari/author_bio.asp?ISBN=0672323427

Brought to you by ownSky!!

Table of Content

Table Of CONENT ...ttt ettt e te e e eeseeennens [
(0] o)/ | o | [
QL= 10 (=10 =T TSRS [
Warning and DISCIAIMETc.oci ot s [
(O3 (=T 11 TSP i

D =T0 [[ox= 1110 o HOO PSSP iii
ADOUL the AULNOT ... bbb iii
ACKNOWIEAGMENLS ... ettt re e i
Chapter 1. Introduction (or Everything | Wanted to Know About Micro Java Gaming
BUL WaAS AFFaid 10 ASK)....ccui oottt sttt et s e e 1
A NeW Era of GamiNg.......cccooeeiiiiee ettt st a e st sne s 1
THiIS BOOK'S IMISSION ...ttt 3

A Bit ADOUL GAME DESIGN ...cveeieciece ettt s et naenns 6
Show Me the Money: Micro Game Business Models.........c.ccccoovvveviviecceicceenene, 16
SUMIMIATY ©.teiuteeieeiteesieeeeeete e ste et e st e s e st e e ste e te e beesbeesseeeseessseeseeaseeaneesseesasesnseensenseessenns 18
Part I: SMall DEVICEScoiiiiiiiese sttt nae s 19
Chapter 2. The Mobile WOrld............coe e 20
A NEW Era Of GamMING......ooeiieii et ettt see e eenne s 20
High-End Java Devices: Set-Top Boxes, Phones, Consoles..........cccccevvreeenenee. 22
Personal Digital ASSIStANtS (PDAS)cccviiieeieiieee ettt ns 24
Mobile PhoNES and PAgEIScoceeiiiieece ettt st sne s 31
Low-End Java Devices: Smart Cards and Embedded Chips.........ccccceevvrvennee. 40
SUMIMIATY ©.teiuteeieeiteesieeeeeete e ste et e st e s e st e e ste e te e beesbeesseeeseessseeseeaseeaneesseesasesnseensenseessenns 41
Chapter 3. Big Games, Small SCreENScccocceeveiieie e 42
(0181 G @ 0] g g1 o =] 111] o IS 42
WAP GAITIES ...ttt ettt e e bt e s b e e eae e sabeebeesbe e saeesaeesnnesnnas 43
I=MOAE GAIMES ...ttt et et e e e e seeseeeneesbeereeneesneeneessesneeneeneen 54
SIMS GAIMIES ...ttt ettt e bt e e ae e s abe e bt s be e eae e saeesabesabeenbeenbeanteans 55
J2ME MIDP GAMES ...c.eiienieiieiieesiesiese e see e eese e tessestesaessesseseeseeneesessessessessessnnsenensens 57
J2ME PalM GaAIMES ...ttt ettt et e e eesee e e saeseeeneenne s 65
7AYo o] TR CT= U 41 S 67
What Are YOU WatiNng FOI?.....c.ooeoiiiiceee ettt sttt nne 74
Part II: Before, Between, and Beyond J2ZMEccccoveveeievceesecie e 75
Chapter 4. Wireless Standards: How Data Goes To And Fro.........cccocveiencicinenne 76
WIrElESS NEIWOIKS ...t nne s 76
The Wireless Application ProtoCol (WAP) ..o 78
SEIVEI-SIAE WAP ...ttt sttt et te e teseeensesneeneeeeane 95
Handheld Device Markup Language (HDML)........ccocoeoiiiriennniereseeeese e 102
WAP 2.0 and XHTML BASICcceviriiriiriiieieiecsiesesie st 105
YU 0 0= S 106
Chapter 5. Let's Talk: Instant Wireless Messagingcccccuveeeveieeveesiesieesesieesiennens 107
[V ISTSEST= To [TaTo JAN Lo M CT= T 41T USSR 107
Short Message ServiCe (SIMS)....o i 108
Actually Sending SMS MESSAQJES.c..couemrrririerieie e 112
SMS AN J2ME ...ttt ettt ae st et e e e e e e nsessestesaenseneeneas 113
Multimedia Messaging Service (MMS) ... 115
SUIMIMIATY <.ttt ettt et ae e bt e ae e s st e et e e e e et e e beesbe e eae e eaeeeaeeeabeaabeesaeesanesanesnnas 117
Chapter 6. Wireless in Asia: i-mode and CHTML ... 118
L LT o o' T T [USSR 118
Compact HTML (CHTML) c..oveeieie ettt s s 119
DeVEIOPMENT TOOISottt aesreenrenre s 125
Testing and EMUIALOISccciiiiiee et 125

SUMIMIATY <ettiteeieeiteesteesee e et e e s e s s e s seesaeeeate e teebe e beesbeesseesseeenseenteenseesseesseesneesnns 128

Chapter 7. The WirelesSs LandSCapecccvvvireereiiese e sieseeste s eree e sre e enesne s 129
BIUBTOOTN ...ttt e 129
MODIlE POSITIONING ...t 131
R O] 0010 T=T (o] SO R PSRRI 135
Voice and TelePRONY ... 137
Unified MeSSaging (UM).......coiiiiiieieeeeeeeesese s 138
SUMIMAIY ..t r e s r e e e s e e e e e e nr e nesrennn e reaneenenris 138

Part 11l: The Java 2 MiICro EditioN..........cocveeiriiiine e 140

Chapter 8. J2ME OVEIVIEWcceiuieieiieciieie st eee st seeste e eaeste e ste e sae e snaessesreennensens 141
The Trinity of Java PlatfOrms.........cccocieiiieeese e 141
[t's @ SMall World AFtEr Allc.o e 142
Profiles and ConfigUrationscoceoiereineninesese e 143
Connected in a Limited Way: The CLDCccoooeiiiieeseeere e 147
The Mobile Profile ... e 148
SUIMIMIATY <.ttt ettt et ae e bt e ae e s st e et e e e e et e e beesbe e eae e eaeeeaeeeabeaabeesaeesanesanesnnas 149

Chapter 9. Creating & MIDIBL..........cccoiiieeee e 150
Command-Line MIDlet DeVEeIOPMENL........ccccceiiieececeee e 150
Development ENVIFONMENTSccc.eiiieeiiiiieiese et sae e sae e enenne s 152
LifeCycCle Of @ MIDIEL ..o st nre s 156
DiSPIaying STUFT......coeie e e e nre s 157
Menus and COMMANGSccoiriiiiireieee et 161
Creating Help and About Alert SCreeNS.ccooi e 164
(€1 (0] o F= 1IN =] 0] 1= 4 1 T= TR 168
SUIMIMIATY <.ttt t et ae e ae e ae e s st e et e e b e et e e be e sbe e sae e eaeeeaeeeabeaabeesaeasaeesanesnnas 169

Chapter 10. Making the Most of Limited RESOUICEScccceceeririeieneniese e 171
BN L= I 1= o] 3SR 171
MEMOFY LIMITATIONSceiieieiee ettt seeenee e 172
11 0] = 1SS 174
Breaking Through the LimitationS..........ccccceeceieiieni s 175
YU 0 = SRR 176

Chapter 11. Making the Maost of It: Optimizationscccccccvvveviiiieve e 177
A LIMIEA WOTT ..ot 177
Making Code OPUIMAL.........ccooiiieeee et nee s 177
Code Size REAUCTIONSc..i ittt ee e 178
Speeding UP the COUEo e 182
USING LESS MEIMOIY ..ttt ettt sae e e sae e e neeseeeneenneas 185
POWeEr CONSUMIPTIONeiiiieiee ettt e e te e e seeseeenee e 187
SUMIMIATY <.ttiteeieeieesteesee s ee e ee et et s e s b e s e saee e te e teebe e beesteesseeeseeenseenteenseesneesseesnnesnns 187

Chapter 12. Multithreaded Game Programming...........ccccceveeeereieeieesiesseeseseeseennens 188
LI L= 0 TV 188
Extending the Thiread ODJECT ..o 189
Implementing the Runnable Interface.........ccoeovviecececececeer e 190
BN (= To I o 0] 1= 192
QI (= 1o S - (= SR 192
Synchronizations and DeadlOCKsScccveeiiieeve e 192
WaTE(Q) and NOTTTY () s e 193
LI L= VPP 194
Making Threads BELENcccviveeeciceee ettt nre s 195
SUIMIMIATY <.ttt ettt et ae e bt e ae e s st e et e e e e et e e beesbe e eae e eaeeeaeeeabeaabeesaeesanesanesnnas 196

Part IV: Let the Games Begin! ... 198

Chapter 13. High-Level Graphical User Interfacescccoceoeroinieirniencenn e 199
The SCre@N ClaSS.....c.coii et nee e 199
FOIrMS @N0 ALBITS ...ttt sttt 200

TEXE BOXES ...ttt b et bbb e e a e e ne e 204
1] 0L TP PO ORPRRRT 205
I 1= SR 212
P20 [0 [1iTo] g F= U I o =T g = S 212
SUMIMABIY ..ttt r e s s r e e s e s e e e e sr e e e e s renneenresneenenris 213
Chapter 14. Working with Graphics: Low-Level Graphical User Interfaces.......... 214
THE CANVAS ClASS ..ottt s 214
Painting 0N the SCrEENcc.ece e 217
D= YT o T g g F= To =SSR 223
YU 0 = SRR 226
Chapter 15. Entering the Land of SPrit€s ..o ieceeie e 227
S] 1 (= 227
IMAGE FIlES ... 231
(O70] 11157 (0] g I 1= (=Tox 1 o] o [233
Creating Child SPrITESocoiieeeee e 235
IMAGE TTrANSPAIENCYcoivirieeririeeeesre et sr e sr e nesre e nne e 236
YU 0 = SRR 239
Chapter 16. Managing YOUr SPILESccccciiieieeieiieresieeiesteseeste s esee s e seesresreenesnens 240
Networked Game COMPONENLS........ccceeceiieierie e e st e e sreeeesreas 240
Advanced ColliSioN DEeECHIONcccuveiirieeireeerese e 242
The SPrite MANAGETeccue ettt stesreeeesre e eee e 245
YU 0 = SRR 248
Chapter 17. SPrite MOVEMENT.........ccciiiieeiiee et seeenee e 249
Floating-Point iN J2ZME ...t nee s 249
Game INILANZALIONooiiieeee et 255
IMOVEIMENT......eee ettt bbb b e e sbe e see e sateebe e sbeesneesnnesnnas 256
Piecing It All TOGEINETooeeeeee e 258
YU 0 = SRR 261
Chapter 18. J2ME AUIO BASICScccciieeieii et 262
Sounds Are (Barely) POSSIDIE!cci i 262
YU 0 = SRR 263
Chapter 19. Be Persistent: MIDP Data Storageccccevevveeeveieeieeseseeseesieenesnens 265
RECOIASTONE OVEIVIEWoouiiiiiiiieiiiieie ettt st st 265
RECOrdSTOre iN PracCtiCecoiiiiiieeeieese e 266
MOre RECONASTONE JOV ..ottt 273
YU 0= ST 278
Chapter 20. Connecting Out: Wireless Networkingccccoevvvvievevienceeieceeciennns 279
J2ME NEetWOrKing OVEIVIEWccccciiuieiierieeeesesieeiesreeeeste e esae e saeste e esesresneense e 279
MIDP NEIWOIKING ..ottt et enee e 281
Setting Up YOUr GAME SEIVENcocuiiiiieieieeeieesesie st 285
DaAta FOIMIALottt sbe e s ae e et e e be e sbe e neesaeesnnas 286
Making a Multiplayer Car Racing Game........cccoeeiereerere e 289
SUMIMABIY ..ttt r e s s r e e s e s e e e e sr e e e e s renneenresneenenris 315
Part V: J2ME EXIENSIONScciiiiiiiiieniiriee et 316
Chapter 21. PersonalJava, Connected Device Configuration, and Other Micro Java
2 1= o LU 317
Connected Device Configuration (CDC)ccceoeirerinireseneeieeiesesiese s 317
PeISONAIJAVAeeeeee ettt ae et et e e eeseeenee e 318
PDA PrOfilE ..ottt sttt e e seeenee e 323
Java Game Profile ... e 324
The J2ME Multimedia Profile ... 324
YU 0 = SRR 325
Chapter 22. iAppli: Micro Java With @ TWISt........ccccceeviiiieeiese e 326

The ArChitECtUIE OFf TE Al oottt et e e e e s s e ee e s e ere e e e e erre e s s enees 326

IAppli: Like MIDP, But NOt QUIE.......cccceiiiieeesie e e 330

D TSAVZ (o] o] g o AN o] o] OSSR 341
SUIMIMIATY <.ttt ettt ettt et a e he e ae e st e et e e e e et e e beesbe e eaeeeaeeeaeeeabeaabeasaeesanesmnesnnas 343
Chapter 23. SIiemens Game AP 345
LT AT ST = A o TR 345
The Game SDK OVEIVIEWcccoeeiiiiieeeieeie et e st eee e e see e e steseeeeesneeneeneenns 348
IMAGES ANA SPIIES .. .ot e e e e e e 348

LT =T o] a1 To3 @] o] 1T o £ 350

S] 1 (=SS 350
IR =To | 27= Tod 2 | o 18 o o I 353
=TS 11 o USSR 356
(€00 o IV 4T o] =11 o] o =3 357
MUSIC, SWEEE IMIUSIC ...ttt ettt e e e s s br e e s s et e e s s ebr e e s s eabae e s s aanees 357
L] 1Y/ I U] ox o] o R 360
1T o TU @ U1 o U | OSSR 361
SUMIMIAIY 1.teiteeieeiteesteesee e eee et et s e s b e s e saeeeate e te e be e beesteesseesseeenseenseeaseesseesneesneesnes 362
Part VI: MICITO RACET......c.coiiiiie ettt 364
Chapter 24. Micro Racer: Putting It All Together.........ccooeivieciiicceccece e 365
BN L= = 7= 1o I = S 365
BN L= €T T Lo I AN = S 366
Putting Together the PIECESoo e 366
One Game RUNNING EVEIYWRNEIE.......ccooiiieeere et 383
SUIMIMIATY <.ttt ettt ettt et a e he e ae e st e et e e e e et e e beesbe e eaeeeaeeeaeeeabeaabeasaeesanesmnesnnas 385
e A AN o] 01T [0 [(=S 386
Appendix A. LOW-Level GUI CIaSSESccccveeeriiiieie ettt 387
GAME CIASSES ...ttt ettt sttt ettt bt st n e e neas 387
Javax.microedition. Icdull .ALertTYPe .. 388
Javax.microedition. Icdul .Command.........ccccooeviviieveieciese e 389
Javax.microedition. lcdull .DIsplay ... 389
Javax.microedition. lcdui .Displayable.........ccooiiviiiicciiece, 389
Javax.microedition. Icdull .CanVascccccooeiiiiiene s 389
Javax.microedition. Icdull .SCreenN ... 390
Javax.microedition.lcdull _Alert.. ... 390
Javax.microedition. Icdull cFOIrM. ... 390
Javax._microedition. Bcdull (LIS ..o 390
Javax.microedition. Icdull . TEXTBOX......ccccoveieviiicie e 391
Javax.microedition. Icdull _FONT ... 391
Javax.microedition. lcdul .GraphiCs ..o 392
Javax.microedition. Icduli . IMage.......cocoviiiieiiciece e 392
Javax.microedition. Fcdull - TEemM ... 393
Javax.microedition. lcdul .ChoICeGroupcccccvveveiecieve e, 393
Javax.microedition. lcduil .DateField.........cooiiiiiiiiiie e 393
Javax.microedition. Icdull .GaUge........ccoceiieieiiiiece e 393
Javax.microedition. lcdul . Imageltem.......iiiiniennnceeene e 394
Javax.microedition. lcdul .Stringltem......ccooviiiievie e, 394
Javax.microedition. lcdul . TextField........ccoiiiiiii e 394
Javax.microedition.lcdull - TICKer ... 394
APPENIX B. MIDP 1.1 ..ottt sae st aeneenens 395
Y T o= Tod 1= o =SOSR 395
Java. 10 Class HIerarChy ... e 395
Java.io Interface HierarChy ... 396
Java. lang Class HIerarChy ... 396

Java. lang Interface HierarChy. ... 397

Java.util Class HIierarChy ... 397
Java.util Interface HierarChy......cooeie e 397
Javax.microedition. 10 Class Hierarchy.......ccccoveveiinceve e 397
Javax.microedition.io Interface Hierarchy ..o 397
Javax.microedition. lcdui Class Hierarchy........cccoooiiiiiiiiiii 398
Javax.microedition. Icdui Interface Hierarchy........ccccooevvieeiiincee 398
Javax.microedition.midlet Class Hierarchycccccoovvevivieecececeenene, 398
Javax.microedition.rms Class Hierarchy ... 398
Javax.microedition.rms Interface Hierarchy ... 398
Appendix C. SIEMENS GaAME AP ... 400
LCT= 1 g[S O F= 1] LR 400
SIEMENS GSM CIASSES ...ueiieeieee ettt ene et sneeneeseas 402
INPUL/OULPUL CIASSES ...ttt 402
AppendiX D. THe IAPPIE APt 404
o 0] T = PSSRSO 404
com._NEtEdoComMO .- 10 INTEITACES ..o 404
Ccom.NEEAOCOMO. 10 INTEITACESocuiriiriiiiee e 404
(oo 1 I o w(o [oToTo 110 TN IF- g Vo [P 405
COM_NEEAOCOMO -NET ... eeas 405
(oZo] 111 o} u w(o [oT Yo] 1110 NN U 1 I PSSRSO 405
com._NEtEdocomO UK INEIfACES ..o 406
COM_NEEAOCOMO UTE T e 407
com.Nttdocomo. ULE] INTErfaCEeS ... 407
[V o] o I o= o o o S 408

Vi

Copyright

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book and Addison-Wesley was
aware of atrademark claim, the designations have been printed ininitial capital letters or in all
capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of
the information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for special sales.
For more information, please contact:

Pearson Education Corporate Sales Division

201 W. 103rd Street

Indianapolis, IN 46290

(800) 428-5331

corpsal es@pearsoned.com

Visit AW on the Web: www.awl.com/cseng/

Copyright © 2002 by Pearson Education

All rights reserved. No part of this publication may be reproduced, stored in aretrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
other-wise, without the prior consent of the publisher. Printed in the United States of America.
Published simultaneously in Canada.

050403024321

First printing, April 2002

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Addison-Wesley cannot attest to the accuracy of thisinformation. Use
of atermin this book should not be regarded as affecting the validity of any trademark or service
mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitnessisimplied. The information provided ison an "asis" basis.

mailto:corpsales@pearsoned.com
http://www.awl.com/cseng/

Credits
Associate Publisher
Rochelle J. Kronzek
Acquisitions Editor
Carol Ackerman
Development Editor
Bryan Morgan
Managing Editor
Matt Purcell
Project Editor
George E. Nedeff
Copy Editor

Seth Kerney
Indexers

Ginny Bess

Sharon Shock
Proofreader
Harvey Sanbrough
Technical Editor
Bryan Morgan
Team Coordinator
Denni Bannister
Interior Designer
Anne Jones

Cover Designer
Aren Howell

Page L ayout

Michelle Mitchell

Dedication

To Charlotte,

This Futureis Yours

—David

To Lina, the princess of my heart, and Dixie, the silly cat

—Roman

About the Author

David Fox works for Next Game, Inc., creating Web and wireless multiplayer games. Prior to that,
his design and development credits include Michael Crichton's "Westworld 2000," Fox
Interactive's " X-Files: Unauthorized Access,” and PlayLink's real-time strategy "Citizen 01." Heis
the author of several best-selling books about Internet technol ogies, and his writing frequently
appearsin publications such as Salon.com, Gamasutra, and Devel oper.com. David has presented
topicsin Java gaming at Sun Microsytem's JavaOne conference for the past three years, and has
been the winner of the Motorola-Nextel Developer Challenge for the past two years.

Roman Verhovsek is CEO and co-founder of Cocoasoft Ltd., where heisleading ateam of J2ME
developers. He holds a bachelor's degree in electrical engineering from the University of Ljubljana,
and isworking on his master's degree of computer science. Since early 1996, he has focused
primarily on Java technologies, and for last two yearsin particular on Java-enabled small devices.
In 2001 he held alecture on 2ME game development at the JavaOne conference. In his other life,
Roman enjoys cooking, mountaineering, jogging, and traveling with his girlfriend, Lina.

Acknowledgments

Writing abook is like alittle saga—Iots of comedy, some moments of tragedy, and a veritable
revolving door of plot turns. The Pearson Technology Group folks are among the most
professional and resourceful 1've had the privilege of working with, and ultimately responsible for
this saga's success. Thanks to Shelly Kronzek for launching things off, Carol Ackerman for
fearlessly navigating through muddy and rocky waters, Bryan Morgan for truly excellent advice
and insight, Seth Kerney for kicking thingsinto fighting shape, and George Nedeff for actually
caring. Andy Langton, as he iswont to do, lent a surefire hand when one was desperately needed.
And apologiesto Louise for typing myself into oblivion all those unexpected weekends—
especially the sunny ones.

—PDavid

http://salon.com/
http://developer.com/

Chapter 1. Introduction (or Everything | Wanted to
Know About Micro Java Gaming But Was Afraid to
AsK)

INTHISCHAPTER

A New Eraof Gaming

This Book's Mission

A Bit About Game Design

Show Me the Money: Micro Game Business Models

Summary

A New Era of Gaming
Ah, games.

Games have almost areligious, ritual aspect to them. They allow people to enter together into a
higher state of being, pushing skills to new limits and experiences to new heights. They alow
ordinary people to experience extraordinary emotions—the emotions of the warrior, the king, the
spy, and the lover—while remaining protected in a safe environment.

Now al this might sound like a bit of a heavy-handed way to describe Frogger, but it'sfair to say
that games transport us and amuse us in ways that no other form of entertainment can.

A Brief History of Games

Games have been with humanity since the beginning. A 5000-year-old Mancala-like game board,
carved from stone, was recently unearthed in the Sahara. The game of Go, popular in Oriental
countries, has reportedly been around since 2000 B.C. Backgammon-like games such as Tabula
and Nard are talked about in ancient Roman scripts, and even in the Bible. And Tarot decks,
initially used to help predict the future, evolved into today's Bicycle playing cards.

A decade or two ago, the only games that people spent much time with were professional sports,
board games like Monopoly and Chess, paper and dice games such as Dungeons and Dragons, and
card games like Poker or Hearts. Some games were for heavy money, some were bone-jarringly
competitive, but most were just about good clean fun.

With the advent of computers, games entered a new era. Games became one of the main reasons
many people brought these strange beige boxes called computers into their homes. Whether
battling through a simple graphical tennis game such as Pong, or arich, text-only world such as
Zork, these were wholly new types of games that could be played anytime against a most
formidable opponent: a game designer who had programmed your computer, long ago, showing it
how to defeat you.

The arcade wave of the '70s and '80s, led by hits such as Pac-Man, captured the hearts and ate the
guarters of millions of youths. Console systems such as the Magnavox Odyssey, the Atari 2600,
Mattel Intellivision, and ColecoVision brought the fun of the arcade to the players own living
rooms. Then, in 1985, a box known as the Nintendo Entertainment System blew people away with
stunning graphics and intricate gameworlds, typified by such hits as Super Mario Brothers.

Computer gaming entered awhole new stratum of mass popularity and acceptance with bestsellers
such as Doom, followed by Quake, and later Tomb Raider. Clearly, ultra-realistic 3D worlds were
ahit. The more a game made a player feel asif she were actually inside another reality, the better.

Graphics became richer and richer as 3D cards and engines doubled in speed and performance
with each passing year. Super Nintendo gave way to the Sony PlayStation, and currently the
Nintendo GameCube faces off against the PlayStation 2, not to mention Microsoft's daunting new
Xbox.

Multiplayer Mania

A funny thing happened on the way to virtual reality-ville. In the late '90s and early 2000s, with
games like Ultima Online, Everquest, and Age of Empires |1, not to mention the spread of casua
game Web sites such as Pogo, Y ahoo Games, and Microsoft's MSN Gaming Zone, it became clear
that what mattered to awhole slew of gamers wasn't only the richness of graphics or the detail of
blood and gore—but the presence of other, real people. Multiplayer gaming, long popular with the
geek crowd, had entered the mainstream.

In away, games had come full circle. Once again, games were serving a social purpose, becoming
away for two or more people to enter new worlds and test new skillstogether, relating to each
other in entirely new ways.

Micro Devices, Micro Lifestyles

While multiplayer gaming continues to grow in popularity, another big paradigm shift is
happening.

It's becoming harder and harder to find people who don't carry network-enabled embedded devices
with them wherever they go. Whether it'sa PDA such as a Palm device or iPag, or a mobile phone
such as those crafted by companies like Nokia or Motorola, people are getting used to connecting
and communicating with each other anytime, anyplace, and anywhere.

Today, there are more than 600 million mobile-phone users worldwide. In the United States and
Europe, mobile phone users generally tend to be affluent, educated, and they often have lots of
time on their hands. The picture is different on different continents. In Africa, Asia, and South
Americathe masses have flocked to mobile phones because land-line access and Internet service
are too expensive.

According to the Y ankee Group, people in the United States spend 50% more time commuting
than in any other country. Thisis the perfect time to pull out a mobile phone and play some quick
games.

Additionally, Datamonitor has researched people's game-playing behaviorsin Asia, Europe, and
the United States, and has concluded that most people like to play wireless games on evenings and
weekends.

In the near future, we will likely see micro devices become even smaller and more specialized.
Phones the size of earplugs, voice-activated assistants on wristwatches, and smart chips on credit
cards are all becoming aredlity.

Thisis a continuation of the paradigm shift that began in the 1970s, with microcomputers taking
the power away from huge, monolithic mainframes. Clearly, millions of small devices working
together yields much more distributed power than one big, central device.

Unsurprisingly, games are keeping up and even helping to lead this paradigm. While it might
seem silly to try to achieve arich, meaningful immersion on atiny 100x100 pixel screen, there's
one thing mobile phone games give you that even the best consoles can't provide: They're aways
with you, and can be played anywhere you go. This not only means that games can now be more
convenient, but wholly new types of games can be designed that take advantage of new lifestyles.

Enter Micro Java

The Java language, created by Sun Microsystems, is another example of a paradigm shift. Asa
language that had no pointers or complicated memory operations, was object-oriented, secure, and
could run on most any browser or platform, application development suddenly opened up to the
masses in away that never seemed possible before. Java made it possible for millions of
programmers to create quality applicationsin record time and quantities.

The Java 2 Micro Edition (J2ME), or Micro Java, aswell call it in this book, is an attempt to take
the best aspects of Java and pare them down for smaller devices such as mobile phones; set-top
boxes that add interactivity to television, pagers, handheld organizers and personal data assistants
(PDAYS); aswell as embedded chips that you find in devices such as refrigerators, microwaves,
"smart" credit cards, and automobiles.

Most every major mobile phone and handheld device manufacturer immediately realized the
potential of I2ME: If Java were to be placed on the gadget, hundreds of thousands of developers
would immediately be able to create applications and add value. Furthermore, because it's Java, a
program written for one device would be able to run on another device with little or no
modifications. That certainly makes more sense than trying to force developers to learn a native
language and API in order to create programs for your phone.

Seeing the opportunity for Java on the handset, amost every major mobile phone manufacturer
joined with Sun to create something called the CLDC: The Connected, Limited Device
Configuration, along with the MIDP: The Mobile Information Device Profile. In later chapters,
well get into greater detail about what all these wacky acronyms really mean. But the point to
remember here isthat mobile phone manufacturers have embraced Javain away that not even PC
manufacturers and browser makers have. Javais clearly the future platform of choice for mobile
devices, and an ideal platform for mobile games.

This Book's Mission

We have attempted to write the most in-depth guide showing you how to craft the most cutting-
edge Micro Java games possible.

Whether you are a professional game designer hoping to expand your knowledge of various
platforms, a game programmer who wants to port a game to a smaller device, aMicro Java
enthusiast looking for a more entertaining book about more entertaining apps, or just amicro
gamer hoping to catch a glimpse of what goes on behind the scenes, this book is for you.

The Game Plan
This book is divided into six sections:

Part I: Small Devices

The book begins with atour of current Java-enabled devices, showing the full canvas upon which
you'll be able to paint. These devices include powerful, full-featured computer systems, set-top
television boxes, and tiny, smart credit cards.

Next, well look at the current state of micro gaming. We'l go on awhirlwind tour of some of the
most popular and revolutionary games out there. Because most of these games are not written in
Java, welll try to distill the most successful element of these games so that you can take the best
ideas and run with them.

Part Il: Before, Between, and Beyond J2ME

In many cases, handheld games will not be written in Java alone. Rather, games will be built atop
older mohile phone technologies. In the second section of this book well look at the technologies
that surround and support 2ME gaming, such as the Wireless Application Protocol (WAP) and
Standard Messaging System (SMS). Furthermore, well cover specific enhancements to the current
crop of phones from brands such as Nokia, Siemens, Motorola, Ericsson, and NTT DoCoMo,
allowing you to take games to a new level no matter what your target platform happens to be.

For example, some carriers provide location-based information. Thisis an extremely exciting and
relevant tie-in to gaming. Thiswill alow peopleto literaly use their mobile phones to hunt down
or otherwise play with each other through the physical, bricks-and-mortar world.

Part lll: The Java 2 Micro Edition

This section dissects the 2ME in al its gory detail. You'll learn how to build J2ME applications,
which tools to use, and key programming techniques.

Programming for handheld devices is often much different than coding for a full-blown desktop
computer. However, it doesn't have to be more difficult.

Part IV: Let the Games Begin!

Thisiswhere things start getting deep. Well thoroughly cover the nooks and crannies of J2ME,
along with in-depth discussions on graphics, sounds, animation, multiplayer networking, and other
game-related topics.

Additionally, one of the most important things this book will show you are the limitations of
Micro Java and, in certain cases, how to get around them.

Each section will include lots of source code, so that you can immediately begin compiling,
tweaking, and testing things out.

Part V: J2ME Extensions

J2ME is across-platform standard. Any program you write in 2ME should work, more or less, on
any other mobile phone or handheld device. However, every device hasits own specialties and
intricacies.

This section will cover other forms, profiles, and configurations of J2ME. For example, you'll
learn alittle bit about coding for a set-top television box. In addition, we'll focus on two popular
Application Programming Interfaces (APIs) from the world's largest handheld hardware platforms.

Finaly, this section will show you the best ways to take game elements from one platform and
port them to others.

Part VI: Micro Racer

Every good thing must reach its end. But rather than just stuff you full of knowledge and then
leave you aonein the vast, dry desert to figure everything out, this book includes the full codeto
asuperior Micro Java game that we call Micro Racer. Check out Figure 1.1 for a sneak preview.

Figure 1.1. You will learn how to build this game.

Micro Racer is afast moving, multiplayer experience. The game pushes the enveloper on Micro
Java's graphical, sound, and networking abilities.

Y ou begin the game with a simple racecar. Y ou can race around all you want, picking up bonus
points, avoiding crashes, and exploring new tracks.

Over time, however, your car will experience wear and tear and might even break down. Y ou will
need to log into The Garage to fix up your car.

At The Garage (see Figure 1.2), you'll be able to buy new parts, trade away old parts, and compare
your score and standing. As you gain more and more money, you'll be able to soup up your car
with turbo boosters, nitro packs, monster tires, spiked whedls, il dlicks, smoke screens, and other

extras.

Figure 1.2. The Garage: Where you log online and trade car parts with other users.

The people you trade with at The Garage are not artificial intelligences; rather, they are other
actual players.

Although Micro Racer is an advanced game, we believe you'll be able to do even better.

It is our hope that you will take this game, and the knowledge learned throughout this book, and
go on to create bigger and better things.

A Bit About Game Design

Before you can begin the fun/tedious/interminable process of actually typing Java code, compiling
it, testing it, debugging it, and so on, you'll actually need to design the game you're interested in.

If you already have a game design written, or are working based on somebody el se's game design,
you can skip this section.

But if you'reinterested in a brief discussion of how the heck people think up new types of games,
you've come to the right place.

Game design is always hard. Designing for a medium as new as maobile phones is even harder. But
it isthe best of worlds, aswell as the worst of worlds. Although the devices you'll be designing for

are limited compared to game consoles or PCs, they are also an entirely new phenomenon being
used in entirely new ways.

If you can understand the way mobile phone users really think and act, you might be able to create
atype of game that nobody has ever thought of before.

The Game Design Process

Every game designer develops his or her game using a different process. Some people like to jump
in and begin coding straight away; others like to create a monolithic 500-page design document
outlining every last variable and button.

The type of process you use depends on the size and experience of the development team, as well
as your personal philosophy on what makes a good game.

No matter what approach you choose, pretty much every game goes through the four P's:

Preproduction
Prototyping
Programming
Playtesting

PO

Preproduction
Preproduction usually involves generating awhole lot of paperwork.

Different game designers work in different ways. Some are technically minded, and like to jump
right into the thick of things and create use-case diagrams, specifications, and so on.

Others are more artistically minded, and enjoy storyboarding the graphics, letting somebody else
worry about how to make nitty-gritty interactions happen.

But pretty much everybody, at some point, needs to use regular pen and paper (or Microsoft Word)
and just spell out the story of the game—the feel, the depth, the breadth, and the intent.

Taking the time to write clear design documents and storyboards during preproduction will pay off
later during devel opment. The more you can describe every bit of art, sound, and interaction, the
easier it will beto put all these pieces together during the frantic phase of actual development.

The bigger your design team, the more helpful a solid design document will be in keeping
everyone speaking the same language, understanding the same goals, and working on the same
product.

Answering Questions

Good design documents usually answer an implicit question. No matter how or when exactly you
doit, every game designer will need to and answer the following questions:

What is the game's genre?

What are the limitations of the game?

What is the game's central mission?

What are the inputs, and what are the outputs?
How will the game play out?

Picking a Game Genre

There are literally millions of games in the world, and tens of thousands of computer games. But
all these games can be broken down into genres.

A genreis more than a style of gameplay; it is also amood. Different genres appeal to wholly
different audiences. Clearly, agory first-person shooter is expected to have a different interface,
feel, sound effects, and speed than along, drawn-out, and detailed military simulation game.

Genre will help define how the game looks, how it feels, how it plays, and who it is targeted to.
This section will briefly cover various genres, helping you to hone in on a gameplay experience.
Copying, Stealing, and Cloning

A sad fact of lifeisthat most games on the market are basically clones of other, more successful
games.

When Java applets first came out, most of the games that people created were exact copies of old
hits from the Apple 1, Atari 2600, or Commodore 64 era. Often, the only thing that a programmer
would change would be the name and afew graphics. Pac-Man might become something like
Pork Man.

Likewise, it istempting to take existing games and create Micro Java versions of them.
Furthermore, there's nothing wrong with it. After all, classic games have been time-tested and
proven to be popular with the masses.

CAUTION

If you are creating games as a hobby, then there's no problem with taking your favorite arcade
games and squeezing them into a mobile phone so that you, and others, can enjoy them
portably.

However, if you are creating games commercially, not only is copying an existing game
illegal, but you'll likely find that there won't be a big market for it. As much as people like to
play their standard favorites, the world is thirsting for something new. History has shown us
that the company or person that uses Micro Javato design a game genre that nobody has ever
seen before will be the one that triumphs in the end.

All that being said, some of the best games ever created borrow familiar elements from one or
more forgotten genres and breath new life into them. For example, real-time strategy games—
games in which the player controls many discrete units, al at once—have existed for the past few
decades. But it took Westwood Studios to create a game in the genre with a strong story, well-
balanced play, and distinctive military units. The game was Command and Conquer, and it
became an instant hit.

Because Micro Java game designers are stuck writing to such alimited platform, you are forced to
think about unique game design itself, and not rely on fancy graphics and sounds to make sales.
Some of the best games were black and white, 8-bit, and had less than 64K of memory. Try to
analyze those games and understand what made them great. Using classic games for inspiration is
not only acceptable, it is essential.

What Types of Games Are Possible?

Ultimately, the most successful games will combine genresin entirely new ways. For example, the
Tomb Raider seriesis so popular because it blends action, adventure, puzzles—and the shapely
Lara Croft.

Thefollowing list of genresisjust a starting point to get you thinking. Thislist isin no way
complete.

e Action Games—These are games that involve fast reflexes. The graphics are generally as
realistic as possible, and the audio is usually rich and loud. The play is usually fast paced,
and multiplayer versions are usually very responsive. The audience consists generally of
adolescent males.

Because of the speed, responsiveness, and powerful graphics, action games are probably
the hardest genre to implement on mobile phones and other handheld devices. This book
will show you how to do it, anyway.

Examples of such games include first-person shooters such as Quake, space games such
as Defender or Missile Command, maze games such as Pac-Man, and paddle games such
as Pong.

e Combat Games—These games usually involve two characters facing off against each
other and trying to beat each other up. Often, the characters will have specia powers.
Winning the game requires that the player have quick reflexes as well as memorize all the
possible "moves."

Examplesinclude Virtua Fighter, Street Fighter, and Mortal Kombat.

e Adventure Games—These are games that involve a quest of discovery through new
worlds. These are usualy structured similarly to a good movie or book, with a strong
sense of story, character, plot, and locations.

Originally, these games were wholly text-based, such as Zork; but more modern games
such as Monkey's Island and Riven use advanced 3D graphics, strong artificial
intelligence, and rich audio to flesh out the game worlds.

e Puzzle Games—These games require the player to use logic, and often involve the
arrangement or matching of symbols. Tetrisisthe king of al puzzle games.

The audience for puzzle games is usually made up of intelligent, crafty adults.

e Strategy Games—These games often involve lots of pieces, lots of possibilities, and
rewards for thinking ahead.

War games such as Panzer General are a popular type of strategy game in which you try
to recreate a famous battle and pit various armies against each other. The audience for
war games is very enthusiastic, but very small.

Real-time strategy games such as Command and Conquer and War craft are much more
popular with the masses. These games often involve more tactics than long-term strategy.
Players must manage resources such as electricity and money while assembling
specialized armies consisting of many different units. Quick reflexes are asimportant as
long-term planning.

Finaly, classic two-player board games such as chess, Reversi, Connect Four, and
checkers are strategy games. The audience for this type of classic turn-based gameis truly
mass market.

Role Playing Games (RPG)—These games generally alow you to fill arole. Your
character has certain attributes such as Strength and Wisdom, and these attributes can
change over time as your character explores new dungeons and fights new monsters.

Paper and dice games such as Dungeons and Dragons invented this genre. The typical
audience for this type of gameis similar to those who read science fiction—usually
intelligent, male adolescents.

With more graphical RPGs such as Diablo I11, Everquest, and Ultima Online, the genre
has moved online as the basis for arich, social, active community.

Simulation Games—These games allow the player to control a character, a machine, or
system. Often, these games rely upon ultra-realistic graphics and control panels.

The more specialized the simulation, the smaller the audience. A very detailed flight
simulator may only appeal to real pilots. Real-life simulation games such as SmCity or
The Sms, however, are widely popular with males and females, children and adults.

Trivia Games—These games are tests of (often useless) knowledge. Trivia games can be
played in a straightforward gquestion-answer format, such as Who Wantsto Be A
Millionaire? or You Don't Know Jack, or by using a more sophisticated game board, as
with Trivial Pursuit.

Most game shows are based on trivia. The audience for trivia games is the mass market.

Word Games—These games involve the creation of words, based on specific rules. The
more words the player knows and is able to build, the better the player does. Examples of
this genre are word builders such as Scrabble or word searches such as Boggle.

Word games often appeal to an intelligent, middle-aged femal e audience.

Card Games—Card games usually combine chance with skill. A player is dealt out a hand
and must play out the hand, given a set of rules.

A card game such as poker involves bluffing and betting, appealing to a much more hard-
core gaming crowd than social trick games such as Hearts or Spades.

Additionally, collectible card games such as Pokemon or Magic: The Gathering combine
elements of the RPG, alowing playersto collect decks of cards, battle the decks against
other players, and combine cards to achieve unexpected results. This type of game usually
appeals to adolescents or hard-core RPG gamers.

Games of Chance—Any game based upon random result. Most casino games are games
of chance, with alittle skill thrown on top. Roulette, slot machines, or the card game War
are the most basic games of chance.

Games such as Backgammon involve chance, but also require a great amount of strategy.

Sports Games—T hese games allow the player to experience physical sports such as
football, basketball, wrestling, or skateboarding. The games usually have excellent

10

graphics and highly realistic physics. These games usually appeal to the same fans that
enjoy the sport itself.

Some sports games are coaching or managing games, and allow the player to take a more
strategic, top-down, and sideline approach to team building, player trading, or game-

playing.

A special subset of sports games worth singling out is racing games. These games usually
involve very detailed roads and landscapes, very specialized user input, and very
responsive physics.

e Toys—Thisistherarest category of games, but also one of the most interesting. These
games generally have no winner or loser, but allow the player to build or play with virtual
pieces.

Virtual pets, virtual mousetraps, virtual robots, digital musical instruments, and other
educational and kids games often fall into this category.

Know Thy Limits

The most important part of the game design process is to know the limitations of the medium. This
book, especialy Chapter 2, "The Mobile World," will help you to define exactly what your target
platform can achieve.

Designing Within Restrictions

In this book we're focusing on handheld devices such as mobile phones. A mobile phone typically
has atiny black and white screen, tiny bins of memory, ultra-slow screen refresh rates, turtle-like
processor speed, and painfully limited sound.

So agame with instant trigger finger reactions, endless 3D dynamically shaded passageways, a
massive multiplayer environment, and with a soundtrack by Green Day is not going to be possible
on mobile phones. Not today, at least. There will definitely be a day—even relatively in the near
future—when chipsets are fast enough and small screens are colorful enough for thisto be
possible.

In away, designing a game for a mobile phoneis a blast back to the olden days of game design,
for platforms such as the Apple II and Commodore 64. Y ou're now back in aworld where every
bit counts, only worse: Y ou now havetofit it all on a postage-stamp size screen.

There is another drastic difference: One thing most J2M E-equipped mobile phones enable is easy
interactivity with other mobile phones. For the first time, communication might become more
important than gameplay.

Designing Around Restrictions

It is useful to remember here that no matter how good a game's graphics are, the real action always
occurs inside the player's head.

A game's graphics and other elements are only useful if they transport a player to adifferent
mindset, and allow the player to experience a believable fantasy.

Y our challenge, then, isto transport the player to arich, believable, exciting, and emotional
fantasy world while using minimal graphics and audio. Sound hard? Not really. Novelists and
storytellers have been doing just that for centuries, using no graphics at al.

11

That isthefirst clue: Good writing in Micro Java games becomes more essential than ever.

A good Micro Java game designer is also about turning lemons into lemonade. Good designers
can actually take new devices such as mobile phones and use them in ways that nobody has ever
imagined or expected, but that are wholly intuitive and logical.

For instance, one of the most ingenious mobile phone games out there is a Japanese game called
Turibaka Kibun (which means Crazy for Fishing), created by Dwango. To go fishing, you pick
your bait, choose afishing hole, and then literally extend the antenna of your phone and hold it out.
Eventually your phone will vibrate, which means you have afish on the line. If you get lucky,
you'll be able to reel in anice trout or bass.

While the game, shown in Figure 1.3, might sound alittle strange to Western audiences, it is
wildly popular in Japan. In fact, DoCoMo had to limit the number of fish one could catch each day
because consumers were spending too much time and money with the game.

Figure 1.3. Turibaka Kibun: A game that would only be possible on a mobile phone.

More information about this and other games can be found in Chapter 3, "Big Games, Small
Screens.”

Ancther example of a game-like event that could only happen in today's mobile phone erais a
performance called Diatones. Thisis a symphony concert performed entirely though the ringing
of the audience's mobile phones! Visit http://www.flong.com/telesymphony/ for more information
and sample songs.

The Game's Mission

After you've decided what the genre will be, one of the first tasks of the game designer isto define
the game's mission.

Most good games can be summed up using a simple sentence. The sentence should evoke an
entire mood, and explain the central challenge of your game from the player's perspective.

For example, Tomb Raider can be summed up like this: Y ou are a hot, sexy adventurer who must
explore secret passageways within ancient tombs, collecting treasures while fighting off deadly
creatures.

Tetris could be summed up this way: Different-shaped puzzle pieces are falling down a chute; you
must rotate and arrange the shapes so that they land at the bottom forming complete rows.

Every design, artwork, and programming decision must then stem from this mission statement.

Inputs and Outputs

12

http://www.flong.com/telesymphony/

A game, at its core, consists of user input, followed by some sort of output. Y ou should try to list
every type of input, and what the effect will be.

Some input occurs because the player does something. Other types of input occur just because the
game state has reached a specific point.

Typical input and other events to keep track of and define include the following:

e Thekeyboard: Which keys on the handset will be used, when, and for what?

e Themouse or joystick: Most handheld devices do not have a mouse, but some do have a
touch screen or stylus. How will this affect the input?

e Menus. What main and top menus will there be in your game?

e Buttons; What buttons will there be?

e Form widgets: How will elements such as pull-down menus, radio buttons, checkboxes,
and text fields work together?

e Time: Will there be any countdown timers? How does time play arolein the game?

e Collisions: What happens when graphical elements collide?

Next, you should try to create alist of every element that will actually be in the game. These
elements vary widely. Some will be visible on screen, and some will be hidden game state
variables that your program will need to juggle:

Graphica elements: What will the user see? These are usually 3D models or sprites.
Sound effects: What audio effects should play, and when?

Background music: What music will be playing?

Background art: What will the environment look like, and how should it be rendered?
Levels: Will the game have multiple levels? If so, what will differentiate them?
Interface: In order for input to happen, there will need to be an interface. How will this
interface look, roughly speaking? The interface also usually includes a readout of
variables such as score, number of lives remaining, amount of ammunition, and so on.
What information needs to be here?

o Artificia intelligence: Will there be any computer players? What will they look like?
e Global variables: Try to create alist of global variables that will change asthe gameis
played. Thisincludes the score, the round number, and so on.

Often, a design document will list each input and output element in a table and explain how
different elements interact with each other. Y ou should also try to explain the different classes and
subclasses of elements, and how they all relate.

This document can often be used to define exactly how the program should be structured in an
object-oriented manner. Thiswill help the object-oriented Java programmer design the actual
software. For example, atypical unit in your game may be a DeathM osquito. This DeathM osquito
may be part of the FlyingUni t class, which may descend from the WarriorUnit class, which
will be derived from the generic Uni t class, which in turn may be a child of the Sprite class.

Gameplay

The next step isto actually define the rules of the game. Thisiswhere you can begin to determine
all the variables, graphical elements, and other gameplay elements.

Ultimately, you should be able to create a game state—al list of variables, or perhaps just an array
of bytes, that defines the exact state of the game. Strip away the fancy graphics, graceful
animations, streaming TCP/IP sockets, and eardrum-beating sound effects, and you'll notice that
games—no matter their genre or complexity—amount to nothing more than a pile of bytes. Every

13

player's move and every artificial intelligence decision eventually expressesitself as achangeto
this core game state data.

Y ou should be able to stop the game at any time, restart it, plug in the game state, and be at the
exact same place you left off.

Javamakes it quite easy to keep an abstract notion of game state. Just create a class with all the
data structures you need, tap in methods to access or change that data, and you're off and running.
By designing state as an object, various parts of the state can quickly be accessed and altered.

Multiplayer games often keep the main copy of the state on the server side, with additional copies
in each client. This permits the server to be the final judge of what the "game" actualy is. The
client, meanwhile, can contain just enough information to be responsive. In other words, the client
should be able to tell whether a player's moveislegal or illegal, but the server will actually
register the move and make changes to the game state accordingly.

The other important piece of this picture is how the game is won, and exactly how to determine
winners and losers. Y ou should be able to analyze the game state variables and determine whether
the game has reached the winning condition.

For multiplayer games, it is usually useful to draw a client-server diagram and show which
messages will need to be sent over the network. This can help you create use-case scenarios to
take care of any eventuality.

Other Resources

There are many books, magazines, and Web sites that discuss game design. Some of the best
resources can be found online:

e http://www.gdse.com/
e http://www.gamasutra.com/
e http://www.gamedev.net/

Prototyping

The more original your game idea, the more important it is to prototype it. Until you and some
friends are actually playing the game, you will never have any idea how successful your genius
idearedly is.

To prototype a game, one can commonly use a notepad, afew index cards, and some pencils. Each
index card can be a game output element. Y ou can position these relative to each other, or move
them around accordingly.

Get afew friends together, explain the rules of the games, and "play it." Y ou can act as the
computer and game master, keeping track of the score and making sure everybody is playing
correctly.

After afew minutes of play, it will become remarkably evident what the weaknesses and strengths
of your game design are. Continue redesigning the game and retesting it, until your friends get
sick of it or until you're happy with the results.

Additionally, you can easily prototype most games using Java Standard Edition (J2SE). Thisis
another joy of Java—it is extremely easy to create a simple application that takes in command line
input, processes some simple rules, and then spits out an outpuit.

14

http://www.gdse.com/
http://www.gamasutra.com/
http://www.gamedev.net/

For example, if you are creating a new type of card game, you can have your Java prototype
shuffle the cards, deal them out, accept valid moves, and keep track of who has what.

Eventually, if you only use text for input and output, it will be easy to transport the prototypein
the Java 2 Micro Edition environment. The prototype can become the actual rules engine for your
final game.

Programming

This part of game development is similar to developing any other application. Y ou've got a
specification and you've got to carry it out, on time and on budget.

Y ou've got to create your Java classes, possibly create a server, create any artwork or audio assets,
and fold it al together.

Most games are basically an endless loop. Speaking in the most general terms, the loop works as
follows:

Paint the screen.

Get any user input.

Make any game state changes.

Redraw the graphics or sounds accordingly.

pPWONE

Most games also have engines for each major multimedia aspect. The advantage of having a
generalized engineisthat it can be reused for future game products. Typical enginesinclude some
of the following:

e Graphics engines are a quick way of drawing the graphics. 3D games will have a special
graphics 3D engine that knows how to take three-dimensional X, Y, and Z coordinates
and transform them onto aflat screen. Other games will have sprite engines that enable
you to take many graphical components and animate them and move them around the
screen relative to each other. Still other games will have isometric engines that draw 3D-
looking graphics from a set perspective, actually using a series of two-dimensional
overlays.

e Audio engineswill play the soundtrack or other audio effects. Often, the engine will mix
together different effects and be smart about fading music in or out depending on what is
currently happening in the game.

o Artificial intelligence (Al) engines act as a separate player in the game. The Al player is
able to compete in the game, often head-to-head against human players.

e Physics engines simulate real movement. Making aball fall and then bounce
appropriately takes a very complicated series of equations. A physics engine can provide
this.

e Multiplayer engines will communicate with the network, often through a central server,
and enable game sessions to speak with each other.

Playtesting
After the entire game has been coded, debugged, and released, the development has just begun.

Because agameis not a cut-and-dry business application, there is usually no right or wrong. There
isonly fun and not fun. Y ou may think your game is highly entertaining, but you're biased—
you've been working on the sucker for the past few months. Y ou also may not be representative of
the market you're trying to appeal to.

15

Big game companies often hire focus groups to playtest their game. They also might release the
gameto asmall group of betatesters. They'll try to get as much feedback as possible.

Many of the most popular games became huge successes because beta testers loved the game so
much they worked hard trying to communicate small regquests that would make the game even
better. When the game company fulfilled these requests, beta testers felt a sense of ownership.
They told al their friends to buy the game, and the news spread like wildfire.

Thefirst playtester should be you. Be honest with yourself. What improvements can be made?
What strategies are too hard, and why isit so easy to gain pointsif you know a certain trick?

Continue to tweak the game until you're absolutely certain there's nothing wrong with it. You
should then have some friends of yours play your game. Thiswill be more useful if your friends
are avid gamers, and if they are game designers themselves. Watch them closely while they play,
and ask them many open-ended questions about their experience. Notice when they get frustrated
or bored. Notice when they get angry, or when they laugh.

In nearly every case, you will need to go back to redesign and reprogram your game. This might
be as simple as changing a few values, adding a few power-ups, or removing afew restrictions. Or
you might need to totally redo your graphics engine to make it animate more smoothly.

Often times, you'll need to drastically change your game design. And you will need to go through
the entire prototyping and programming process again before you can be absolutely sure your new
design idea works. Fun, huh?

Asarule of thumb, professional game companies often spend as much as athird of the game
development cycle on playtesting and redesign.

Show Me the Money: Micro Game Business Models

If you are acommercial game developer, then you are lucky indeed. Y ou get to spend your days
hacking, designing, and creating objects of joy and entertainment. Y ou get to be akid for aliving.

But if you want to stay in business, you'll need to make money. Clearly, the business model you
choose will differ depending on your end platform and upon your target audience.

Additionally, business models are strikingly different in the United States, Asia, and Europe. In
Europe and Asia, for example, carriers such as NTT DoCoMo offer a profit split with content
providers: The more a user chooses a particular piece of content, the more the content provider
gets paid. This model is exciting, because it encourages thousands of developersto take their best
shot at entertaining the masses.

To date, few North American carriers have been able to offer such adeal. Instead, most content
providers must approach specific carriers and strike specific content deals. This makes it difficult
for small developers to compete or earn any real revenues.

NOTE

United States carriers such as Cingular Wireless, Sprint PCS, and Nextel have expressed
interest in creating profit-splitting services within the next year.

The Business Outlook

16

Datamonitor predicts that the wireless gaming market in the United States will have grown to $3
billion in 2006, with 125 million players hungry for good new games.

Advertising and Sponsorships

Advertising and sponsorships are probably the easiest business models to implement, but the most
difficult in which to achieve solid revenues.

Theideais simple and well-known: Find a company that has a message, put that company's name,
logo, or other creative elements within your game, and you've created a valuable vehicle for the
company's message.

In fact, many companies have opted to create their own mobile phone gamesin order to deliver
their brand to a cutting-edge audience.

Often, advertisements change from day to day. Ads appear below or to the side of game content.
Alternatively, afull screen ad "interstitial" can be shown to the player before or after the game
session.

Some of the best advertisements don't even seem like ads at all. For example, many racing games
include logos "painted" on the racecars, and football games often include ad banners on the side of
the stadium. This touch of realism actually makes the game better, while providing a permanent
and well-seen home for alucky advertiser.

The problem with micro devices, of course, isthat thereis not alot of room for ads. Company
logos are often small and washed out, and it is often hard to track the number of times agiven ad
IS seen.

As screen resolutions improve, however, advertisements and sponsorships will likely become a
smart choice. Top games will be able to charge hefty fees for ad placement. After al, if amobile
phone game really takes off, it has the potential to be experienced by more people, and more
regularly, than any television, radio, or print ad campaign.

Content Deals

Wireless service providers, cable companies, and other companies that provide the infrastructure
for small devices have alot to gain if a popular game comes along.

Because most mobile phone providers charge their users per minute, the longer a user is connected
and playing a favorite game, the more minutes are being used up.

In addition, games could come with incentives. For example, if you pass a certain level in agame,
you could get a coupon for 50 free minutes of mobile airtime. Players would work on the game for
hundreds of minutes trying to earn a dight discount.

WARNING

Because some carriers charge a flat monthly fee for Internet use, these carriers desire games
that don't stay connected and waste precious bandwidth!

But the point remains that carriers have invested more than $100 billion to create a faster, next-
generation wireless infrastructure known as third-generation (3G). Current networks run 9.8
kilobits per second. A 3G network will run up to 50 kilobits per second—almost asfast asa
computer's modem.

17

Clearly, carriers are counting on faster and richer applications, such as games, to attract new users
and get agood return on their investment.

Currently, there are an estimated 16 million wireless game playersin the United States aone. The
ARC Group predicts that by 2006 there will be 280 million players. In Japan, NTT DoCoMo
recently announced that 52% of wireless Internet revenues are due to games.

Several game companies have been able to strike content deals with major wireless carriers. If you
have created a game that you believe will appeal to the masses, it's definitely worth talking with
major carriers and figuring out a deal that makes sense for everyone.

Pay-For-Play or Subscription

Charging players for a subscription to play agame is a clear path to revenues. For example, a
player may be willing to pay $10 per month, $1 per game, or an additional 10 cents per minute.

However, most current users aren't willing to pay anything for mobile phone games. The main
reason for this, of course, isthat while there are many nice micro games out there, there are few
that are so darn fun, so darn special, so darn enthralling, and so darn exciting that users would be
willing to part with their cash.

Thiswill change.

Bigger and more colorful screens, better audio capabilities, quicker network access times, and
faster processors will alow for better games.

Additionally, carriers will begin to offer content providers more ways to bill users. Carriers and
phone manufacturers are aready beginning to create portals whereby users can use their credit
cards to purchase and download Micro Java applications.

Someday soon, a company will create a micro game so good and so addictive that people will
have to play it. Paying a buck or two per game will become second nature. The company that does
thiswill make afortune, and the world of micro gaming will be changed forever.

Perhaps that company will be yours.

Summary

It is our hope that readers of this book will go on to do more than create an excellent crop of new
games. We believe that given the paradigm shifts of always-on networking and in-pocket
interactivity, the J2M E games of tomorrow have the potential to redefine the whole medium. In
fact, given the pervasiveness of handheld devices and the potential for reaching awider audience
than ever before, atruly original game concept can revolutionize the world.

18

Part I: Small Devices

IN THIS PART

2 The Mobile World
3 Big Games, Small Screens

19

Chapter 2. The Mobile World
INTHISCHAPTER

A New Eraof Gaming

High-End Java Devices: Set-Top Boxes, Phones, Consoles
Personal Digital Assistants (PDAS)

M obile Phones and Pagers

Low-End Java Devices. Smart Cards and Embedded Chips

Summary

A New Era of Gaming

Get ready for atour of the micro device world. This chapter will show you the attributes,
limitations, and specifications behind the latest crop of gadgets capable of running Java 2 Micro
Edition (J2ME). Thelist includes Personal Digital Assistants (PDAS), television set-top boxes,
automotive navigation systems, home appliances, two-way pagers, credit cards, and mobile
phones.

As you begin to think about developing games and other entertaining applications, this chapter
will help you focusin on atarget platform and give you some idea of your game design
parameters.

NOTE

Keep in mind that new Java devices are constantly being introduced. While some of the
devices listed here may amaze you, others will seem laughably out-of-date within the next
year or so. An up-to-date list can be found on Sun's Web site:
http://wireless.java.sun.com/device/.

Micro Devices

While the definition of what exactly amicro deviceis may vary, 2ME focuses on everything
from set-top boxes to tiny chips embedded in appliances—devices nearly as powerful as any
desktop compuiter.

Although we will touch on all relevant 2ME platforms, this book focuses on mobile phones using
the MIDP. Thisisfor several reasons:

e Itisexpected that the vast mgjority of games written for 2ME will be for devicesthat are
portable, have a screen for visual output, offer some amount of network access, and have
akeypad for user input. In other words, a mobile phone. Although it is theoretically
possible to create a game for a smart Java credit card—for example, a game wherein you
guess the price of items before you purchase them—such situations will be rare.

e More advanced devices—such as set-top boxes that mix interactive content with TV
video—will most definitely be popular platforms for many games. In fact, dedicated
gaming consoles such as Sony's PlayStation 2 may actively support Javain the near future.
However, games written for such appliances will likely use special graphics APIsand
more advanced Java 2 Standard Edition (J2SE) libraries. At thistime, there are few high-
end devices focusing on 2ME.

20

http://wireless.java.sun.com/device/

Most cell phones use the MIDP profile of 2ME. However, bigger mobile phones with PDA
functionality usually run the more advanced Personal Java. Additionally, some phones—especially
in Asia—run proprietary versions of Java. All of these standards will be discussed in Chapter 4,
"Wireless Standards: How Data Goes To and Fro."

The Micro Revolution Begins

When Sun Microsystems decided to create the Java 2 Micro Edition, many companies wanted to
be a part of it. These companies all wanted to be able to add J2ME capabilities to their products.

Java holds many advantages:

Most phones come with a set bundle of applications such as silly games, organization
tools, and basic calculators. Maobile phone manufacturers realize that in order to stay
competitive, phones will need to become expandable, and be able to support tons of
different business and entertainment apps. Users will want to be able to download new
software on-the-fly and erase old or irrelevant programs. A fully functional programming
language such as Java makes that possible.

Itis estimated that 2.5 million developers around the world already know and love Java.
Release a 2ME product and people can start developing for it right away, with little or no
additional training.

Lots of good stuff is already written in Java. There are already scads of cool Java
applications and applets out there, making it easy to convert the best apps to amicro
format.

By supporting a de facto standard, hundreds of applications will be available for new
devices the moment they hit the market. For example, if somebody creates a kick-butt
shooter game in 2ME, then it will work on any current and future J2M E devices with
few or no changes.

Java has awell-defined security model. This means that manufacturers don't have to
worry about a Melissa-like virus getting into a mobile phone's address book and
automatically calling everybody up and sending them the virus.

Instead of developing and maintaining a proprietary programming language across
various devices, manufacturers would much rather license a stable, known language such
as Java. The same language can now work across various processors and operating
systems.

Wide Support

Just some of the companies that are developing J2ME products and services include the following:

Far EasTone

Fujitsu

M atsushita/Panasonic
Mitsubishi

Motorola

NEC

Nokia

One 2 One

Philips

Research In Mation (RIM)
Siemens

SmarTone

Sony

Symbian

Telefonica

21

Micro Javais rapidly taking hold al over the world.
Asia

The first region of the world to adopt the Java 2 Micro Edition was Asia. In Japan especialy, there
has been massive acceptance and penetration of Java phones. According to Nikkei BP, there were
4.65 million 2ME phones in Japan in the first quarter of 2001—out of atotal of 14.8 million
mobile phones. That means that 31% of phonesin Japan will be Java phones. As handsets become
more functional, it is expected that more than 40% of phones will support Java by the fourth
quarter of 2001. Many different manufacturers—M atsushita/Panasonic, NEC Corp., Mitsubishi,
Sony, and Fujitsu—are creating phones for Japan's NTT DoCoMo wireless service.

Other mobile network operators, such as Japan's JPHONE GROUP, are unrolling third-
generation wireless networks with Java-phones as the central component. In South Korea, LG
Telecom introduced Java with their i-Book mobile phone.

Europe

The European market was next to fall prey to the Javainvasion. Many of the latest phones are
being built atop the Symbian EPOC platform, which supports Java technology. V arious companies
will roll out anywhere from 40 to 60 million Java devices. Companies that have signed up to
license the Symbian platform include Ericsson, Motorola, Nokia, Philips, and Psion.

In addition, manufacturers such as Siemens, Nokia, and Motorola released J2M E phones during
the summer of 2001.

North America

The first mobile phone to support J2ME was released in the spring of 2001 by Motorola. The i85s
and i150sx phones, using the Nextel service and the Motorola iDen network, are predicted to be just
the beginning of Motorola's new product line. The Motorola Accompli 008, released in July of
2001, isthefirst J2ME mobile phone for GSM networks. To understand more about GSM
networks, check out Chapter 4.

Nokia has al so recently announced that it will support Java technology in most of its future mobile
terminals, with plans to sell more than 50 million Java handsets in 2002 and 100 million Java
phones by the end of 2003. Nokia phones will support various flavors of Java, ranging from MIDP
to Personal Java and JavaPhone.

In addition, many North American wireless services already support Java, or are planning to
support Java network traffic in the near future. These companies include Nextel, Cingular, and
Sprint PCS.

High-End Java Devices: Set-Top Boxes, Phones,
Consoles

Most high-end devices run a special version of J2ME known as Personal Java. In addition, many
devices implement the JavaTV APIs.

Set-top box manufacturers that support 2ME include Motorola and Philips.

PersonalJava

22

PersonalJava is an application environment for network-connected, resource-limited devices.
Basicaly, it isasimplified, pared-down version of the Java 2 Standard Edition that everybody
knows and loves. The ideais to take the most popular features and libraries of Java and squeeze
them into asmaller footprint.

Some features of the latest Personal Java 3.0 include the following:

Java Native Interface (INI) 1.2 support

JavaVirtua Machine Debugging Interface (JVMDI) 1.2 support

JavaVirtua Machine Profiler Interface (JVMPI) 1.2 support

The Truffle Graphical Toolkit—This allows for platform-independent, customized look
and feel components. This includes the Touchable user interface, specially designed for
touch screen devices. For example, Figure 2.1 shows a sample mail application designed
using Truffle.

Figure 2.1. A visually appealing PersonalJava application.

The Personal Java application environment is an additional set of libraries that sits atop the
Connected Device Configuration (CDC) of J2ME. For more information about all this, see
Chapter 8, "J2ME Overview."

More information, including a Personal Java emulation environment and software for ensuring that
your Java code is Personal Java compatible, can be found at
http://www.javasoft.com/products/personaljaval.

JavaTV

JavaTV isan Application Program Interface (API) specifically designed for adigital television
receiver. It sits atop Personal Java and includes special functions for

e Streaming audio and video

23

http://www.javasoft.com/products/personaljava/

e Accessing in-band and out-of-band data channels
e Changing channels
e On-screen graphical overlays

For more information on the Java TV API, visit http://java.sun.com/products/javatv/.

JavaPhone

The JavaPhone 1.0 specifications are a set of routines with access to typical phone capabilities
such as specific phone functionality, scheduling, contacts and phone books, power monitoring,
and serial communications.

PingTel xpressa Phone

Thisis not amobile phone, but an actual digital desktop phone. All voice comes through over IP,
allowing for amazing versatility and functionality. For example, the phone supports up to 1,024
simultaneous calls and can easily perform multi-party conferencing, forwarding, call logging,
cdler ID, and other advanced tasks.

The phoneis entirely Java-based. It runs the Personal Java environment, along with a host of other
APIsto control calls and audio systems. It comes with its own xpress Window Toolkit (xWT) for
user interface design, and supports Java Management Extensions (JM X), Java Naming and
Directory Interface (JNDI), Java Database Connector (JDBC), Remote Method Invocation (RMI),
Java Dynamic Management (JDMK), and Java Beans.

Display Size: 160x160

URL : http://www.pingtel.com/homepage.php3

Sharp NC-10 IP Phone

This multimedia voice-over-IP phone is more than a cordless phone. It has fax, Web browsing,
and e-mail services built in. All input occurs through the touch screen. It can also run Java applets.

URL: http://www.sharp.co.jp/sc/eihon/ncl0/text/sys.html

Personal Digital Assistants (PDAS)

Personal Digital Assistants commonly focus on storing a database of contacts with phone numbers,
a calendar with schedules, amemo pad, and ato-do list. But PDASs such as the iPag and Palm have
become more than fads—after you start to rely on them, carrying them becomes almost as
necessary as breathing.

In addition, most PDAs support third-party applications. This means that your PDA can have word
processors, image drawing tools, and spreadsheets. One of the most popular categories of PDA
appsis, of course, games.

J2ME PDA Profile

Thereis currently a specification being written using the Java Community Process to extend and
enhance the 2ME CLDC. The specification is called JSR-000030: The PDA Profile.

24

http://java.sun.com/products/javatv/
http://www.pingtel.com/homepage.php3
http://www.sharp.co.jp/sc/eihon/nc10/text/sys.html

Companies working on the profile include Sun Microsystems, Palm Computing, Siemens,
Motorola, Nokia, Sharp, and Sony. After this specification is complete, we can likely expect to see
Java pre-installed on many more PDAS.

This profile will focus on handheld devices with the following attributes:

¢ Nolessthan 512KB total memory (ROM and RAM combined) available for Java runtime
and libraries, and no more than 16MB.

e Limited power (typically battery operated).

e Userinterfaces having at least atotal resolution of at least 20,000 pixels, a pointing
device, and character input.

The PDA profile adds a special display toolkit with special classes and objects for small screens.
Thiswill be subset of Standard Java's Abstract Window Toolkit (AWT). More information about
the profile can be found at http://jcp.org/jsr/detail/75.jsp.

PalmOS

Many handheld devices support the Palm Operating System (PalmOS). Palm Computing has a
whole line of different devices—Palm V, the wireless Palm VI1I, Palm Vx, Palm m500, and Palm
m505. There are also numerous modems available for Palms, made by companies such as Minstrel.
Visit http://www.palm.com/ for more details.

In addition, companies have licensed the PAlmOS. Handspring, for example, created the Visor, the
Prism, and the Visor Edge (shown in Figure 2.2). Handspring specializes in an expansion slot
called the Springboard, which enables you to plug-in components such as digital cameras, global
positioning systems (GPS), and more memory. Visit http://www.handspring.conv for more info.

Figure 2.2. The Handspring Visor Edge.

Sony aso has aline of organizers using PalmOS. The Sony CLIE (pronounced klee-ay), for
example, has afull color display, supports the Sony memory stick, and comes with a built-in MP3
player. Read more about the CLIE at http://www.sonystyle.com/micros/clie/.

Several new phones actually support the PAlmOS. Handspring has a VisorPhone that clipsinto the
Springboard slot on their Visor products, as shown in Figure 2.3. Kyocera has a device called the
6035 SmartPhone (previously known as the Qualcomm pdQ), with CDMA digital wireless access.

25

http://jcp.org/jsr/detail/75.jsp
http://www.palm.com/
http://www.handspring.com/
http://www.sonystyle.com/micros/clie/

Figure 2.3. The VisorPhone.

Microsoft Windows CE

Microsoft's handheld operating system, formerly known as PocketPC, looks and acts similarly to
desktop versions of Windows such as Windows 95 and Windows NT. Many devices, ranging from
micro-notebook computers to small cell phones, run atop the Windows CE environment. Windows
CE supports micro versions of popular Windows software such as Pocket Outlook 2000, Pocket
Internet Explorer, and Microsoft Money for PocketPC.

The Compaq iPaq series of handhelds is perhaps the most popular CE device, shown in Figure 2.4.
Sleek, light, and with a beautiful back-lit color screen, it allows for 32MB of RAM and can
support plug-in devices such as monitors, keyboards, and modems. It also has excellent sound
quality and enables you to record voice memos or play MP3s. More details can be found at
http://athome.compag.com/showroonvstatic/iPA Q/handheld jumppage.asp.

Figure 2.4. The Compag iPag.

The range of Casio Cassiopeia series of handhelds have the capability to display more than 64,000
colors. Many use IBM's microdrive technology for additional storage and come with 32MB of

26

http://athome.compaq.com/showroom/static/ipaq/handheld_jumppage.asp

RAM. More information can be found at
http://www.cas 0.com/personal pcs/section.cfm?section=19.

Hewlett Packard's Jornada series of handheld PCs and organizers also runs atop Windows CE.
More info can be found at http://www.hp.com/jornadal.

Siemens SIMpad SL4
This tablet-shaped computer, shown in Figure 2.5, offers organization tools and instant connection
to the Internet. It is built atop Windows CE. To jump online, the pad need only point towards any

infrared-capable mobile phone. It comes with 16MB of memory and can be expanded to 64MB.
Most navigation occurs with your fingertip, touching the screen.

Figure 2.5. The SIMpad SL4.

The SIMpad comes loaded with Insignia's Jeode KV M, alowing for full Personal Java
compatibility.

More info can be found at http://www.siemens.ie/News/simpad.htm.

Siemens SX45
This is amobile phone with the capabilities of a full-blown Windows CE computer. Although

Siemens plans to add Java functionary to the SX45, the current crop of devices will not have Java
installed.

Symbian EPOC

Symbian's EPOC operating system is a popular operating system that supports full-featured
applications that fit on small devices.

Symbian OS Version 6.0 includes Personal Java built in, and is the first commercia JavaPhone
implementation on wireless devices. Future Symbian rel eases will support MIDP and CLDC, and
be able to instantly run and deploy MIDlets.
Smartphones with Symbian will come with aMIDP and CLDC-capable KV M. Higher-end
devices such as communicators and handheld computers will use a combination of Personal Java
and JavaPhone.

NOTE

Note that not every device with EPOC currently supports Personal Java out of the box. Adding

Java support is available, but up to the device manufacturer.

27

http://www.casio.com/personalpcs/section.cfm?section=19
http://www.hp.com/jornada/
http://www.siemens.ie/news/simpad.htm

More information about Javas role at Symbian can be found at
http://www.symbian.com/technol ogy/keytech-bigjava.html.

Psion netBook (Series 7)

This device, created by Psion Teklogix, is somewhere between a sub-notebook sized computer
and aPDA. It is geared for the mobile workforce, and comes with full Java (J2SE) 1.1.4 support.

The netBook is very popular in Europe, and runs the Symbian EPOC platform along with the
Psion Teklogix Java Platform.

URL : http://www.psionteklogix.com/main/netbook.htm

Psion RevoPlus

This sleek pocket-sized EPOC device has 16MB of RAM, full WAP and HTML browsing, and
full organizer personal functionality. The screen is touch sensitive, and you can write or select
objects using a stylus. Check it out in Figure 2.6.

Figure 2.6. The Psion RevoPlus.

Although Javaisn't pre-installed, you caninstall it with an included CD-ROM.

Y ou can hold up an infrared-compatible mobile phone to instantly fire up the RevoPlus wireless
functionality.

Display Size: 480x160 pixels

URL : http://www.psion.com/revoplus/

Sharp Zaurus SL-5000

Thisdeviceisreadly nifty! It hasafull pop-out keyboard, CompactFlash expansion dots, a
beautiful color screen, and alight, slim casing. Even better, it runs Linux as its operating system,
and has the Personal Java 1.2 environment pre-installed!

Display Size: 240x320

URL: http://devel oper.sharpsec.com/

Other Linux Handhelds

28

http://www.symbian.com/technology/keytech-bigjava.html
http://www.psionteklogix.com/main/netbook.htm
http://www.psion.com/revoplus/
http://developer.sharpsec.com/

Several other handhelds are coming out that run the Linux operating system.

For example, the Samsung Y opy, designed by asmall company called GMate, has Linux at its
core. More information can be found at http://www.yopy.com/. Any Linux device can be easily
loaded with Personal Java.

Micro Java Virtual Machines

While most PDASs do not have Java pre-installed on them, it is almost always possible to get Java
support. Some devices are even capable of running the full Java 2 Standard Edition. This section
will show you some of the ways to fit a Java virtual machine (JV M) onto various devices.
Javasoft's KVM for the Palm

Y ou can download afull Software Development Kit (SDK) enabling you to develop Java
applications on your desktop and then deploy them on your Palm.

URL : http://java.sun.com/products/cldc/

Javasoft's MIDP for the PalmOS

Sun also offers a special version of MIDP for the PalmOS. Y ou can download a binary release of
the CLDC and MIDP libraries, along with a desktop utility that converts MIDletsinto Palm's PRC
files. In addition to all of MIDP's standard features, the library also includes some expanded
PamOS-only features:

e Pam preferences
e HotSync support
e MIDlet beaming support

URL : http://java.sun.com/products/midp/palmOS.html/

Javasoft's PersonalJava for Windows CE

A binary version of the PersonalJava environment is available for Windows CE Version 2.11. A
version for the latest Windows CE Version 3.0 or better is not available yet.

URL: http://java.sun.com/products/personaljaval

IBM J9 VM

IBM's J9 Virtual Machine supports PAlmOS, Windows CE, as well as pretty much every other
major operating system out there. The Visual Age Micro Edition product enables devel opersto
create CLDC as well as Connected Device Configuration (CDC) programs for 2ME.

URL : http://www.embedded.oti.com/learn/vaesvm.html

Esmertec Jbed Micro Edition CDLC

Esmertec has created a small and fast VM specially tailored to the Palm Operating System.
Unlike many other VM, the JbedVM CLDC compiles Java bytecode to native code on the
deviceitself, making execution times an order of magnitude faster than standard, interpreted
NVMs.

29

http://www.yopy.com/
http://java.sun.com/products/cldc/
http://java.sun.com/products/midp/palmos.html/
http://java.sun.com/products/personaljava/
http://www.embedded.oti.com/learn/vaesvm.html

URL : http://www.esmertec.com/p jbed cldc long.html

kAWT Extended KVM (xKVM)

Formerly known as the ColorK VM, this KVM version runs on color versions of the PAdmOS 3.5
or better. This team has taken Sun's KVM 1.0.2 source code and added support for advanced Pam
devices:

e Color and grayscale graphics, including 16-bit color for Handspring and other devices
that support high resolutions.

e JogDia support for the Sony CLIE devices.

e HandEra 330s 240x320 QV GA high-resolution screen and support for minimizing and
maximizing the silkscreen.

A specia micro version of Standard Java's Abstract Window Toolkit can also be included in the
KVM.

URL: http://www.kawt.de/

Kadasystems Kada VM

ThisVM is a clean-room implementation of PersonalJavafor the VM. The VM comes packaged
with the Kada APIs, which support PersonalJava 1.1.8 as well asjava.sgl and java.math for more
advanced applications. The Kada APIs have atotal footprint of 460KB.

There are two sizes of KadaVM you can download: The Kada Compact VM for smple AWT or
network applications running on smaller devices; and the Kada Standard VM, which has support
for database functionality.

Both versions of the KadaVM are available for PalmOS 3.5 or Windows CE.

URL : http://www.kadasystems.com/kada vm.html

MicroJBlend

Using the technology behind JBlend, which is a well-known and very quick embedded Java
system, MicroJBlend isaKVM for Windows CE that supports the full 2ME MIDP specification.
The latest version also supports NTT DoCoMo'si-Appli standard.

URL: http://www.jblend.com/en/overview/microJBlend.html

Jeode EVM

The Jeode Embedded Virtual Machine (EV M) is a Personal Java-compliant runtime environment
available for many processors and devices, including the Windows CE 2.12 and 3.0. Jeode has
created one of the fastest virtual machines out there.

A special iPaqg version called JeodeRuntime is available, including plug-in support for Pocket
Internet Explorer.

URL: http://www.insignia.com/products/default.asp

NSIlcom CrEme

30

http://www.esmertec.com/p_jbed_cldc_long.html
http://www.kawt.de/
http://www.kadasystems.com/kada_vm.html
http://www.jblend.com/en/overview/microJBlend.html
http://www.insignia.com/products/default.asp

CrEme is an augmented Java Virtual Machine, specially designed for Windows CE devices. The
VM is easy-to-install and has a small footprint.

URL: http://www.nsicom.com/products/creme.asp

HP chaiVM for Pocket PC

This virtual machine supports the full version of JDK 1.1.8 along with JNI. A version of Chai for
the Jornadais freely available, and needs 16MB of memory to run.

A CLDC/MIDP version of chaiVM is expected out by the end of the year.

URL: http://www.hp.com/productsl/embedded/products/pl atf orm/chaivm.html

SAVAJE XE Operating System

Thisisafull-blown JVM for the StrongARM processor. It allows the full Java 2 Standard Edition
with JDBC, Jini, RMI, and so on to run on the iPag, the Psion netBook, and other such devices.

Savale XE has a 12MB footprint and requires a minimum hardware configuration of a 190MHz
Intel StrongARM processor (SA1100/1110) with 32MB of RAM.

URL: http://www.savaje.com/products/savajexe.html

Transvirtual Kaffe

Kaffeis aclean-room, open source implementation of the Java virtual machine and class libraries.
Started by Tim Wilkinson and added to by dozens of contributors, Kaffe enables Personal Java 3.0
programs to be run on nearly any platform or operating system. In addition to the full JDK 1.3
Personal Java functions, Kaffe handles graphics, file management, and networking. A Windows
CE version is available.

URL: http://www.kaffe.org/

Mobile Phones and Pagers

Following are alist of known J2ME mobile phones and pagers. Each listing includes information
about the phone's manufacturer, operating platform, and mobile network type.

Most phones will have links to Web sites where you can find more information about pricing and
availability.

Casio CdmaOne C452CA

This shock-resistant and water-resistant device runs the MIDP along with JBlend and EZPlus. It is
available in Japan, utilizing the JDDI network.

Wireless Network: CDMA

Display Size: 120x133

31

http://www.nsicom.com/products/creme.asp
http://www.hp.com/products1/embedded/products/platform/chaivm.html
http://www.savaje.com/products/savajexe.html
http://www.kaffe.org/

URL : http://www.casi0.co.jp/gzone/

Ericsson R380

ThisisaPDA and phone. The screen is a huge, extremely roomy 360 pixels wide. The top of the
phone flips open to reveal the screen as well as afull keyboard. Available in Europe and the
United States.

Platform: Symbian EPOC
Wireless Network: GSM
Display Size: 360x120

URL : http://www.ericsson.com/WA P/products/r380.shtml

Fujitsu F503i

Thisis Fujitsu's stab at the 503 line of phones. Like all DoCoMo phones, it runs using the
J2ME/CLDC with special i-Appli classlibraries.

Wireless Network: i-mode (PDC)
Display Size: 120x130/8 bits
Limits: 50 JAR files, with amaximum file size of 10KB

URL: http://pr.fujitsu.com/jp/news/2001/01/18-3.html

Hitachi CdmaOne C451H

This device runs the MIDP along with JBlend and EZPlus. It is available in Japan, utilizing the
KDDI network.

Wireless Network: CDMA
Display Size: 120x143 pixels/8 bits

URL : http://www.hitachi.co.jp/Prod/vims/mobilephone/

LG Telecom p510 (i-Book)

LG Telecom'si-Book runs a special version of 2ME CLDC called Kittyhawk. Kittyhawk is
similar to some of the older versions of MIDP. The phone is available only in South Korea.

Wireless Network: CDMA
Display Size: 128x128/4 grayscale
Limits: 10 JAR files, with amaximum file size of 60KB (45KB recommended).

URL: http://java.ez-i.co.kr

32

http://www.casio.co.jp/gzone/
http://www.ericsson.com/wap/products/r380.shtml
http://pr.fujitsu.com/jp/news/2001/01/18-3.html
http://www.hitachi.co.jp/prod/vims/mobilephone/
http://java.ez-i.co.kr/

Other LG Telecom Phones

LG Telecom's has several next generation phones running MIDP. These include the C-nain 200,
CX-300L, Cyber-ez-X 1. The other phones use the Kittyhawk Java profile, but the C-nain 2000 not
only has a4906-color screen, but runs pure MIDP.

Wireless Network: CDMA

URL: http://java.ez-i.co.kr

Matsushita/Panasonic P503i

Thisis Matsushita's version of the 503 line of DoCoMo phones. It too uses the 2ME/CLDC, with
specia i-Appli classlibraries.

The predecessor to this phone, the 503i, was the first Java phone to be released in the world. A
glitch forced DoCoMo to recall more than 100,000 units.

Wireless Network: i-mode (PDC)
Display Size: 120x130/8 bits
Limits: 7 JAR files, with amaximum file size of 10KB

URL : http://www.mci.panasonic.co.jp/pcd/p503i/

Matsushita/Panasonic P503iS

This beautiful DoCoM o phone folds up and has adlick color display. It too runsi-Appli.
Wireless Network: i-mode (PDC)

Display Size: 120x130/8 bits

URL : http://www.mci.panasonic.co.jp/pcd/p503is/

Matsushita/Panasonic FOMA P2101V

This advanced phone actually has a video camera. Because it works with a third-generation
mobile network, it is capable of real-time video conferencing! FOMA, by the way, stands for
Freedom of Mobile Multimedia Access.The display isfull, startling color. It is available only in
Japan. It runsusing NTT DoCoMo'si-Appli class library.

Wireless Network: 3G (W-CDMA)

Display Size: 176x220/18 bits

URL : http://foma.nttdocomo.co.jp/monitor/term/n-e-p2101v.html

Mitsubishi D503i and D503iS

Mitsubishi weighs in with this 503 line of phone. It has a color display and runs on DoCoMo,
using the 2ME/CLDC with special i-Appli classlibraries.

33

http://java.ez-i.co.kr/
http://www.mci.panasonic.co.jp/pcd/p503i/
http://www.mci.panasonic.co.jp/pcd/p503is/
http://foma.nttdocomo.co.jp/monitor/term/n-e-p2101v.html

Wireless Network: i-mode (PDC)
Display Size: 132x142/10 bits

URL : http://www.docomo-kansai.co.jp/text/mova/products/d503i/

Mitsubishi J-D05

This advanced phone runs the full CLDC/MIDP using JBlend. It aso includes JPHONE-specific
classlibraries (JSCL). The phone not only has active-matrix color displays, but alarge IMB
memory capacity and built-in digital camera. It is available only in Japan.

Wireless Network: i-mode (PDC)

Display: 12 hits

URL: http://www.j-phone-east.com/company/n/2001/010614 3.htm

Motorola i85s

The Motorolai85s was the first 2ME/MIDP phone to be released in the United States, and has
been available since March 2001. It is also available in Canada, Brazil, Isragl, and the Middle East.
The phone a so features Nextel's popular two-way radio service. Y ou see what it looks likein

Figure 2.7.

Figure 2.7. Motorola's i85s: The first Java phone in the United States.

Currently, Nextel's Java service does not allow for network communications, so multiplayer
games are not possible. Nextel plans to enable network access by the end of 2001, however.

34

http://www.docomo-kansai.co.jp/text/mova/products/d503i/
http://www.j-phone-east.com/company/n/2001/010614_3.htm

Motorola also offers a service whereby MIDlets for the phone can be downloaded at
www.motorola.com/idenupdate

Wireless Network: iDen
Display Size: 110x102/2 bits

URL : http://www.mot.com/LM PS/iDEN/products/i85¢/i85s.html

Motorola i50sx

Thei50sx has all the features of the i85s phone such as voice activation and speaker phone, but is
intended more for the consumer market than the business market. It has interchangeable, colored
faceplates, seen in Figure 2.8.

Figure 2.8. Motorola's i50sx.

Wireless Network: iDen
Display Size: 110x102/2 bits

URL: http://www.mot.com/L M PS/iDEN/products/i50sx/i50sx.html

Motorola Accompli 009 PIC

The Accompli 009 PIC isacute little pager with acolor display and afull tiny keyboard capable
of running Java applications. See Figure 2.9.

Figure 2.9. Motorola's Accompli 009 PIC.

35

http://www.motorola.com/idenupdate
http://www.mot.com/lmps/iden/products/i85s/i85s.html
http://www.mot.com/lmps/iden/products/i50sx/i50sx.html

Wireless Network: GSM 900Mhz, GSM 1800Mhz, GSM 1900Mhz, GPRS
Display Size: 240x160 pixels

URL : http://commerce.motorola.com/consumer/QWhtml/a009.html

Motorola, Accompli 008/6288

This advanced little device, shown in Figure 2.10, offers all the functionality of an organizer in the
package of aphone. The screen is grayscale, but it includes afull date book, phone book, and even
adictionary. Y ou can synchronize the phone with your computer to keep track of appointments
and contacts.

Figure 2.10. Motorola's Accompli 008.

36

http://commerce.motorola.com/consumer/qwhtml/a009.html

Additionally, the Accompli 008 offers full on-screen keyboard and voice recognition. It also has
handwriting recognition for Chinese as well as English, so you use a stylus to enter most of your
information.

The phoneis not currently available in North America. Currently the focusisin Europe and Hong
Kong, where the phone has a Chinese-English dictionary installed.

Wireless Network: GSM 900Mhz, GSM 1800Mhz, GPRS
Display Size: 240x320 pixels total, 240x236 pixels usable display area

URL:
http://www.motorol a.de/mobiltel/public/produkte/datenbl aetter/accompli008/datenbl att.shtml

Other Motorola Phones

Other Motorola offerings include the i55sr (110x102 screen), the i80s (119x64/1 bit screen), and
the i90c (111x110 screen). All of these phones run on the iDen network.

NEC N503i

Every other Japanese manufacturer has created a 503 line of color phone, and NEC isno
exception. Also like the others, it runs using the 2ME/CLDC with specia i-Appli class libraries.

Wireless Network: i-mode (PDC)

37

http://www.motorola.de/mobiltel/public/produkte/datenblaetter/accompli008/datenblatt.shtml

Display Size: 120x130/10 bits

URL : http://www.nec.co.jp/japanese/product/mobil &/lineup/n503/

NEC FOMA N2001

This sleek, color display phone runs on third-generation mobile networks within Japan and
supports 2ME/CLDC, along with NTT DoCoMo'si-Appli Java libraries. Like other FOMA
phones, it has avideo camerafor true Dick Tracy-like video phoning.

Wireless Network: 3G (W-CDMA)
Display: 12 hits

URL : http://www.nec.co.jp/japanese/product/mobile/n2001.html

Nokia 9210 and 9290 Communicator

Thisis another phone/organizer combination. The communicator folds open vertically, providing
afull keyboard and anice, large screen. The screen isfull color and can play short video clips, and
the high-speed network makes e-mail and other digital communications very efficient. Get a sneak
peek of itin Figure 2.11.

Figure 2.11. Nokia's Communicator.

The phone has built-in fax, e-mail, and Web browsing. The 9290 version of the Communicator is
intended for United States markets, and the 9210 version is already widely available in Europe.

The full PersonalJava 1.1.1 platform is built into the phone, and MIDP libraries can be added in on
top of PersonalJava. The JavaPhone 1.0 API is also included.

Platform: Symbian EPOC
Wireless Network: GSM 900Mhz, GSM 1800Mhz. The 9290 supports GSM 1900Mhz
Display Size: 640x200/12 bits (463x168 available for Java MIDlets)

URL for 9210: http://www.nokia.com/phones/9210/

URL for 9290: http://www.nokia.com/phones/9290/

I nformation About Java: http://forum.nokia.com/javaforum/main/1,6668,1 0 30,00.html

RIM/iPaq Blackberry

38

http://www.nec.co.jp/japanese/product/mobile/lineup/n503/
http://www.nec.co.jp/japanese/product/mobile/n2001.html
http://www.nokia.com/phones/9210/
http://www.nokia.com/phones/9290/
http://forum.nokia.com/javaforum/main/1,6668,1_0_30,00.html

The Blackberry, created by Research In Motion and licensed by Compag, was one of the first
devicesto support the MIDP version of J2ME out of the box. Intended mostly for quick and easy
wireless e-mail, the Blackberry has become a smash sensation in North America and abroad.

The screen size for various Blackberries ranges from pager-sized to Palm-sized.

RIM URL: http://www.rim.com/products’/handhel ds/index.shtml

iPaq URL : http://www.compag.com/products’handhel ds/blackberry/

More info about the Blackberry Java development can be found at
http://devel opers.rim.net/tool/jde/index.shtml.

Samsung SCH-X130, SCH-X230, SCH-X350, and SCH-X350

This group of phones run a specia Java virtual machine called the XV M created by the Korean
company XCE. The Javais MIDP compatible, with 256K B runtime memory and Korean Locae
support (EUC-KR).

The SCH-X130 and SCH-X350 have displays of 128x128/2 bits. The SCH-X230 is 120x160/8
bits. And the SCH-X250 has a 120x160 screen with 8 bits of color.

The phone's focusis on top-notch sound capabilities. The phone uses 16 chord progressions
instead of digital or mechanically produced sound. The phone will come with Top-40 hits as well
as natural sound clips. There will also be a Pam Top Karaoke function. Thiswill allow for
excellent game background music and sound effects! The phone can also transfer data over
CDMA 2000, which means rates can get as high as 144K pbs.

Wireless Network: CDMA 2000
Limits: 90KB of application memory (including RM S databases), with 180K of runtime RAM

URL: http://www.samsung.com.au/samsung.asp?cat=11& obj=503

Sharp J-SHO7

The J-SHO7, made for J-PHONE, runs the full CLDC/MIDP using JBlend. It also has the
capability to run a set of JJPHONE-specific class libraries (JSCL).

The phone not only has a great color display, but can support 3D polygons. This means that 3D
games are now totally feasible! Instead of transferring heavy bitmaps, graphics can be transported
to the phone in fast vector format.

Wireless Network: i-mode (PDC)
Display Size: 120x160 pixels, 16 hits
Limits: Maximum JAR sizeis 30KB

URL: http://www.sharp.co.jp/products/jsh07/

Siemens SL45i (or 6688i)

39

http://www.rim.com/products/handhelds/index.shtml
http://www.compaq.com/products/handhelds/blackberry/
http://developers.rim.net/tools/jde/index.shtml
http://www.samsung.com.au/samsung.asp?cat=11&obj=503
http://www.sharp.co.jp/products/jsh07/

This phone not only supports 2ME with MIDP, but comes with additional Java class libraries
enabling you to access specia features such as the phone's vibrator, light, sound tones, melody
composer, and better image manipulating. There is even an included game API! We will, of
course, cover this API in great detail later in this book.

The phone comes with many games pre-loaded, including Bricks, Worm, Chess, Black Jack, and
[-Skiing. Siemens has also made over-the-air provisioning of applications very easy and feasible.
The phone aso has a built-in MP3 player and aslot for MM C memory cards, with 32MB of
standard memory. It even comes with a designer stereo headset, enabling you to activate some
commands by voice.

Wireless Network: GSM 900Mhz, GSM 1800Mhz

Display Size: 101x80/1 hit

Limits: Maximum JAR sizeis 30KB

URL: http://www.siemens.com/page/1,3771,242906-1-999 5 0-0-
pressindex 20 bereichChoice 999,00.html

Sony SO503i

Sony has created a 503 DoCoMo color phone, as well. It runs the CLDC with i-Appli DoCoMo
classes.

Wireless Network: i-mode (PDC)
Display Size: 120x120/16 bits

URL: http://www.sony.co.jp/sd/products/Consumer/KEITAI/s0503i/

Toshiba J-T06

This advanced phone runs the full CLDC/MIDP using JBlend. It aso includes JPHONE-specific
class libraries (JSCL). Y ou can take snapshots with the built-in digital camera and send the picture,
though One Touch Mail, to any other person. Pretty cool! The J-TO6 is available only in Japan.
Wireless Network: PDC

Display: 16 hits

URL : http://www.j-phone-east.com/company/n/2001/010614 2.htm

Low-End Java Devices: Smart Cards and Embedded
Chips

Although the game possibilities are somewhat limited, you may want to look into developing
games for smart cards, embedded devices, medical instruments, smart chips in home appliances,
and other small systems capable of running Java.

JavaCard

40

http://www.siemens.com/page/1,3771,242906-1-999_5_0-0-pressindex_20_bereichchoice_999,00.html
http://www.siemens.com/page/1,3771,242906-1-999_5_0-0-pressindex_20_bereichchoice_999,00.html
http://www.sony.co.jp/sd/products/consumer/keitai/so503i/
http://www.j-phone-east.com/company/n/2001/010614_2.htm

Visa, American Express, Europay, and many other credit card companies around the world have
put smart Java chipsinto their credit cards creating "smart cards."

Many embedded chips, and other small embedded devices, run viathe JavaCard API. The
JavaCard API isa secure, lightweight subset of J2ME classes intended for environments that have
nearly no memory.

The reasons for adding Javato a credit card are plentiful. Typically, a credit card only has a
magnetic strip with simple information such as the account number, expiration date, and
cardholder's name. JavaCard enables much more advanced information to be stored on the card,
such as vendor account information, personal profiles, frequent flier miles, or other incentive
points. More information about JavaCard can be found at http://java.sun.com/products/javacard/.

EmbeddedJava

Sun's EmbeddedJava technology is away of taking a standard Java application environment and
condensing it into small memory footprints. EmbeddedJava is different from the Java and
Personal Java platforms in that there are no core APIs that must be implemented. Rather, APIs can
be configured depending on the target platform and the needs of the platform.

When using EmbeddedJava, you can grab any fields and methods from the core JDK 1.1.7 APls
(except java.applet) and leave behind the rest. Sun provides optimizing tools to create a scaled-
down embedded environment. More information can be found at
http://java.sun.com/products/embeddedjaval.

Summary

Aren't some of these devices cool ? And thisis only the beginning... Therest of this book will
show you how to actually program games that support all of these devices, and ook their best on
various types of screens. Want to know what you're up against? The next chapter will show you
some actual wireless games currently out on the market.

41

http://java.sun.com/products/javacard/
http://java.sun.com/products/embeddedjava/

Chapter 3. Big Games, Small Screens
IN THISCHAPTER

Y our Competition

WAP Games

i-mode Games

SMS GAMES

J2ME MIDP Games

J2ME Pam Games

iAppli Games

What Are Y ou Waiting For?

Over the next few pages, we'll look at some of the current micro games currently out on the
market. Many of these games are popular blockbusters and come from top game companies such
as Sega and Bandai, but you'll also notice that hobbyists and small independent teams have created
some of the best examples out there.

This chapter covers awide variety of games for various micro platforms:

WAP games

SMS games
MIDP games
J2ME Palm games

iAppli games

Your Competition

If you really want to design games that wow, it is highly recommended that you check out your
competition. Playing and studying other gamesis aterrific way to get interface and gameplay
ideas, learn what doesn't work, and become sure you're not doing something that has already been
done.

Although many of these games are just tinier versions of games we've aready seen, loved, and
gotten addicted to, many of the most exciting products in this chapter are utterly original. Y ou'll
find games without graphics, games that rely on global positioning, and games that wouldn't work
anywhere else but on amicro device.

The goodiesin this chapter will show you that big-game concepts are indeed possible on the
smallest of screens, and often with the smallest of budgets.

Things to Look For

The reasons why the best games are fun to play are difficult to encapsulate. Finding gameplay
features that work is especially important in the micro world, where there are so many limitations
and so few examples of quality gaming.

Some qualities to look and aim for:

42

e Easytolearn—If the gameistoo complicated, most people won't take the time to hike up
that learning curve. And there's almost no room for instructions on handheld device
screens. So make things ultra-intuitive!

e Clarity of visuals—The graphics should be as large as possible. The screens are, as you
know, very tiny, and most people like to hold the screens at chest level, about a foot away
from their eyes.

e Simplicity of gameplay—The gameplay itself should use afew keys and be very clear
and easy to understand.

e Quick game periods—Cell phone users often play games while waiting for meetings to
begin, during quick subway commutes, or while sitting on the porcelain thronein the
bathroom. Breaking your game into short, quick levelsis usually a good idea.

e Interactivity—Playing against machinesis cool. But if you can play the game against
other humans, you've got some real competition! And you aso have a built-in community,
keeping people coming back to be with friends they have met.

The Near Future

As new technologies come into play, Java micro games will become more powerful than ever.
Some examples of these technologies are as follows:

Color screens with better resolutions will make for bright, engaging graphics.

Faster processors and video chips will provide better animation and even 3D graphics.
Better audio capabilities will add the element of music and sound to games.

L ocation-based technologies will give games the capability to know exactly where in the
real world a player is standing. Games can be written engaging real playersin the real
world, using the phones only as a transparent tool to connect.

e Wireless connection technologies such as Bluetooth will give small devices short-range
radio connectivity, enabling phones and other devices to connect to other phones, larger
servers, or other peripherals—without using valuable and expensive wireless network
services. This can allow for extremely quick multiplayer gaming, as long as both players
are in the same vicinity. Likewise, third-generation networks will bring the power of
broadband speeds to mobile devices.

WAP Games

The Wireless Application Protocol (WAP), which isdiscussed in great detail in Chapter 4,
"Wireless Standards:How Data Goes To and Fro," is avery simplistic game platform. All game
traffic must be downloaded from the network and must be displayed in simple cards. The cards
themselves are nothing more than small Web pages. Y ou can basically display text, see simple
black and white graphics, and enter basic datainto aform. That's it! Worse yet, the downloading
between each card is usualy very slow, requiring a few seconds of patient foot-tapping.

Despite all these limitations, dozens of creative and daring individuals and companies have come
out with an impressive array of WAP games.

Wireless Games

URL : http://www.wirel essgames.com/

The Wireless Games Web site was created by a publisher of wireless games and other
technologies called Digital Bridges (http://www.digital bridges.com/). This British company is
dedicated to creating and expanding the reach of WAP games.

43

http://www.wirelessgames.com/
http://www.digitalbridges.com/

Some of their offerings include the following:
Sorcery

Shown in Figure 3.1, thisis a full-featured role-playing game. This game brings the worlds,
characters, and play from the beloved Steve Jackson Sorcery game onto wireless phones.

Figure 3.1. Sorcery.

The gameis atypical fantasy adventure. Y ou quest in search of the Crown of Kings, solving
puzzles, fighting monsters, and building up your character.

Tanks

Y ou play atank commander, facing off against another tank. All you do is choose the direction
you want to fire, select avelocity, and fire. Y our opponent then gets a shot at you.

Y ou can actually send your opponent messages as you shoot it out. A simple but engaging game.
Fight KO

You areatrainer. You must take a virtual fighter and try to build the best boxer by juggling
various attributes. Y ou can then compete against other fighters, as shown in Figure 3.2.

Figure 3.2. Fight KO.

The more your boxer fights, the more experienced he becomes. Y ou can continually edit and save
your character for future battles.

Code Breaker

In this simple game, you are a master safecracker trying to rob an entire town. Y ou go from store
to store, guessing codes and trying to get the loot. Y ou have ten tries before the police show up.

Mines

Thisisa WAP variation of the popular and addictive Mine Sweeper game that comes with all
Microsoft Windows machines.

Y ou must try to work your way to the center of agrid and grab the flag. But the going isn't easy—
you must sniff out and avoid stepping on any mines.

Casino Games

Wireless Games offers a suite of various games of chance, including
e High/Low
e Video Poker
e Blackjack (see Figure 3.3)

Figure 3.3. Blackjack.

e Fruit Machine (Slots)
e Roulette
e Craps
Popular Classics
Additionally, there are a number of simple, popular classics offered:
¢ Hangman—Solve a hidden word puzzle or feel the pain.
e Fours—A "Connect-Four"-type game. Try to drop checkersinto slots and get four in a

row (see Figure 3.4).

Figure 3.4. Fours.

e Tic Tac Toe—Everyone's favorite (and unwinnable) three-in-a-row game.
e Anagram—Try to unscramble phrases.

Wireless Pets

Thisisasimple virtual pet "game" created by The Games Kitchen, and borrowing from Bandai's
popular Tamagotchi.

45

Theideaisto take a baby pet and feed, care, and play with it. Y ou must keep it happy and full, or
it will get sick and possibly even die. Figure 3.5 shows a sample game session. Y our pet "lives' in
real time on the Wireless Games servers. Y ou can log in and check on your pet at any time.

Figure 3.5. Wireless Pets.

Quiz Call and LMA Football Quiz

Triviaisone of the simplest and most sensible genres of wireless games. Trivia doesn't need alot
of fancy graphics or network speed—only a good database of tough questions. It's easy to quickly
log in and challenge yourself to afew toughies at any time. Triviais also something that is highly
popular, given TV shows such as Who Wants to Be a Millionaire?

Wireless Games offers two games:

e Quizcall—Answer five questions correctly and you can reach the ultimate Knock Out
Round.

e LMA Football Quiz—How good is your knowledge of football (soccer, that is)? The
highest scorers each day are posted for all to see.
Top Trumps

Thisisapopular card-collecting game, licensed from Playaday.com. One player picks a statistic
from the back of a selected card and issues a challenge to an opponent. If the opponent's card has a
higher stat, then the opponent wins the card that you challenged with. Figure 3.6 shows a sample
card.

Figure 3.6. Top Trumps.

Wentworth Golf

This advanced game lets you play on a 3D simulation modeled after an actual golf course. You
and your caddy must choose the best club based on the wind and course conditions, and then hit
the ball in agiven direction. Figure 3.7 shows a sample screen.

Figure 3.7. Wentworth Golf.

46

http://playaday.com/

Jamdat

URL: http://www.jamdat.com

Jamdat has become one of the most successful wireless game companiesin the world. The
following is a sampling of Jamdat's games:

Gladiator

One of the most popular WAP games in the world is Gladiator. This game brought in more than
3.2 million extra minutes of airtime on the Sprint PCS service in the first three months after it
launched in October 2000.

Therules are extremely simple: Y ou are a gladiator challenging an opponent to head-to-head
combat. Y ou can choose which area of the body to strike at, what type of strike to deliver, and
how to defend, as shown in Figure 3.8.

Figure 3.8. Gladiator.

Y our gladiator will grow stronger with each win. Y ou can then take your new, stronger gladiator
and challenge other players.

At its heart, Gladiator is no more than a multiplayer version of Rock-Paper-Scissors. However,
clever graphics, engaging text, and a strong community base have turned the game into a sort of

epic.

47

http://www.jamdat.com/

Other games by Jamdat include

¢ Home Run Derby—A baseball game of pitcher versus batter. Two players face off. The
pitcher chooses the type of pitch, and the batter chooses the type of hit. The result will
range from a strike to a home run.

e Krazy Konondrum—A party game where you get to answer questions such as, "Would
you rather be a doughnut or a pomegranate?' The game takes your answers and compiles
them with other people's, generating alive survey or poll.

e Rock, Paper, Sizzer and Roshambofu—Jamdat has several versions of the original Rock-
Paper-Scissors game. In Roshambofu, you play the game against an Ancient Master, as
shown in Figure 3.9.

Figure 3.9. Roshambofu.

PicoFun

URL: http://www.picofun.com/

This Swedish company has created a set of innovative offerings.

Lifestylers

This clever game goes beyond the "Virtual Pet" genre, allowing you to act as a master to another
human being. Players can pick their goals, depending on the personality type of their characters.
Y ou can then balance your character's various attributes and skills, as shown in Figure 3.10.

Figure 3.10. Lifestylers.

48

http://www.picofun.com/

Your Lifestyler character lives, eats, deeps, dates, and works—just like you. But there are al sorts
of highly humorous and wacky situations and confrontations, where choices must be made.
Choose how your character behaves, and the character will begin to fall into different lifestyle
categories, including Casanova, Athlete, Couch Potato, Average Joe, Geek, and Clown.

Picofun Football

Picofun Football, released in 2000, was one of the world's first multiplayer WAP games. This
soccer simulation game allows you to manage your own team. Y ou can pick from dozens of
playersto buy and sell. Y ou must also pay good salaries and keep morale high. During fantasy
games against other players, you can see detailed statistics.

On the Green

On the Green is ahighly detailed golf simulation game. There are numerous courses, each with
different graphics, hazards, and scenery. With each hole, you can choose your club, angle of swing,
and the power of the swing. Asyou play, you can progress up 13 skill levels.

Wall Street Wizard

Wall Street Wizard is afantasy stock market trading game. Y ou can trade real shares with fake
money. Every player starts with the same amount of money, and whomever's portfolio has the
highest percentage gain at the end of each month isawinner.

Fight Arena

Thisisamultiplayer battle where you can choose to play against another player or against a

computer challenger. With each fight, your character's abilities will improve. To reach the number
one ranking, you must successfully beat all computerized and human opponents.

Handy Games

URL : http://www.handy-games.com/hg/index.php

This German company has created some of the goriest and sexiest WAP games out there. Quite an
accomplishment on such asmall, black-and-white screen....

49

http://www.handy-games.com/hg/index.php

WAP Knights

Thisis another dungeon-exploring role-playing game. Asillustrated in Figure 3.11, you must
work your way through a maze fighting monsters and seeking treasure. Y ou will eventualy find
keys to open doors to new levels. The graphics are particularly good for WAP, and they're
rendered on-the-fly. Y ou can aso save the game at any time and continue at your leisure, which is
anice feature for the on-the-go game player.

Figure 3.11. WAP Knights.

WAP Tanks

Thisisaturn-based tank battling game. Y ou face off against the enemy in a 5x5 grid speckled
with buildings. Y ou can perform two actions each move, with the option to either move, fire, or
repair your tank. This game can be played against other people or against the computer. Y ou work
your way up a high score list with each new battle.

WAP Massacre

Thisis another fighting game, very similar to Jamdat's Gladiator. The gruesome graphics, however,
are much more advanced, as shown in Figure 3.12.

Figure 3.12. WAP Massacre.

WAP Interpol

Y ou take on the role of an Interpol cop, chasing a criminal around the world. Y ou must hunt from
locale to locale, gaining clues and learning more about your suspect. When you think you've got
the criminal identified, you can issue an arrest warrant.

WAP Crates

Thisisalogic puzzle wherein you move various crates across a grid, trying to match a given
pattern. Y ou must carefully study the board and pick a strategy with each level.

WAP Girlfriends

This game is another variation on the "Virtual Pet" genre. In this case, you're in arelationship with
a"Virtual Girlfriend.” Y ou must keep up with your girlfriend's demands, choose different ways to

50

make money for her, and be sure to pay attention to your girlfriend regularly. Figure 3.13 shows a
sample screen. The game is alittle sexist, of course, but if you're into that sort of thing, the
juvenile humor of it al might be for you.

Figure 3.13. WAP Girlfriends.

FunCaster.com

URL: http://www.funcaster.com/

FunCaster offers 30 different types of games, including casino, chance, mind, leisure, word, and
kids games. Some of the more unusual offerings include

e Mermaid—A game of pure chance. Y ou can choose from five different rocks. Choose a
rock, then guess what type of marine lifeform lives beneath. Y ou can double your score if
amermaid appears.

e Shapez—Guess the arrangement of four shapes, given six possible shapes, asseenin
Figure 3.14. The play is similar to the classic Mastermind game.

Figure 3.14. Shapez.

RESLLT

coa) &5
20T

T tries left

Unplugged Games

URL: http://www.ungames.com/

Unplugged Games creates back-end game technology as well as original wireless games. The
founders of the company come from a strong game background and are focused on using small
devicesin innovative ways.

Void Raider

Void Raider is a complex, rich game of intergalactic trade and war. Y ou begin asthe Ensignin
command of atiny starship, and must capture enemy merchant ships, selling the cargo at a profit.
Y ou can aso hire yourself out as an escort, and protect friendly merchant ships from enemy raids.
If you get good enough, you can even go on hunts for enemy privateers, kidnap them, and demand
random.

Y ou must manage your crew, your ship's engine, and your weapons. As you earn more money,

you can upgrade your ship and hire better crews. Y ou can eventually get promoted to Fleet
Admiral.

51

http://funcaster.com/
http://www.funcaster.com/
http://www.ungames.com/

Rags 2 Riches

In this wacky game, you are afashion designer trying to predict next season's trends. Thisisarich
guessing game with amusing writing and wacky situations.

Word Trader

Word Trader is one of the most original WAP games out there. Y ou are given alist of five words.

Each word is associated with a different category, such as animals or cooking. Y ou trade away the
words you don't want to other players, and then get new words dealt to you at random. Theideais
to build alist of five within the same category.

After you've made a match, you "claim” that category. The first player to claim six out of eight
categories is the winner.

nGame

URL: http://www.ngame.com/index.html

nGame features games that can be played across multiple platforms. Many of their games work on
the Web, on interactive TV, and on mobile phones.

The company has dozens of WAP games, including nearly every classic casino game. They also
have a great selection of originals.

Alien Fish Exchange

Try to breed the most exotic aquatic life! You are given afew alien fish to start off with. Take care
of your fish, feeding them and playing with them, to encourage them to mutate into new breeds.
The game features dozens of different breeds, each with different attributes and behaviors.

The game is multiplayer and the world is persistent—you can log off the game at any time, and
your fish continue to grow...or waste away. Y ou can access your virtual aguarium from the Web,
your cell phone (Figure 3.15) or your digital TV set (Figure 3.16).

Figure 3.15. Alien Fish Exchange on a cell phone.

52

http://www.ngame.com/index.html

Figure 3.16. Alien Fish Exchange on digital TV.

Carrier Force

Y ou command afleet of eight ships—patrol boat, minesweeper, assault ship, submarine, destroyer,
cruiser, battleship, or aircraft carrier. Select two of your shipsto fight. If you use a powerful ship,
you will always win—but you want to avoid sacrificing a powerful carrier against alowly patrol
boat. Points are gained for every enemy ship you defeat, as seen in Figure 3.17. The game can be
played against human players or against the computer.

Figure 3.17. Carrier Force.

Chop Suey Kung Fu

Y ou choose a Kung Fu Master and then fight against an opponent. Each turn, both players pick
from a selection of martial arts moves. More powerful moves are less likely to hit. Aswith most
other nGame games, this game is playable against either humans or the computer.

Data Clash

You are ahacker. Your job isto create various attack programs and do battle with other players
across the network. Y ou must also write your own defensive programs, because you can be
attacked at any time.

53

The gameisin apersistent world. Y our programs can be attacked whether you are logged in or
not. Asyou explore the network, you will also compete against dozens of other hackers. Y our can
maintain your programs by logging in viathe Web, digital TV, or mobile phone.

There are 90 different offensive and defensive programs to choose from! Figure 3.18 shows a
sample screen from the game.

Figure 3.18. Data Clash.

i-mode Games

The i-mode platform and phones have similar capabilities to WAP, but generally provide much
faster service and have the potential to display color graphics. There are hundreds of different
games, many of them similar to the games reviewed in the previous sections.

Dwango's Turibaka Kibun

URL: http://www.dwango.conm/

It's not often that a cell phone game becomes a sensation. And who would have thought that the
game to take Japan by storm isn't about princesses, monsters, or soldiers, but about fishing?

As of early 2000, Dwango Kamone, the company's site for i-mode games, has accumulated more
than 1.5 million users. Some of the most popular wireless games in the world can be found here.

Turibaka Kibun literally means "crazy for fishing" in Japanese. The idea couldn't be simpler. You
choose a place to fish, select your bait, and then...wait. See Figure 3.19 for a sample screen shot.

Figure 3.19. Turibaka Kibun.

Eventually your phone will call you back. If your phone is on vibrate mode and you hold out the
antenna, it'll even feel like avirtual fishing rod.

http://www.dwango.com/

SMS Games

The Simple Messaging System (SMS) is asimple way of sending instant text messages from cell
phoneto cell phone. The latest specifications enable graphics as well as text, along with more
advanced interaction. See Chapter 4 for additional information on SMS.

There are many SMS games. All of them are equally simple: Y ou send a special message to
particular number, and you will get another message in return.

Fisupeli

URL : http://www.fisupeli.com/

The Finnish company Sonera Zed, in conjunction with Small Planet Ltd., has created a game
similar to Turibaka Kibun called Fisupeli. The gameis available only in Finland.

To play, you simply send a text message FISU to the number 400. Y ou will then get atext
message back describing your fishing environment. Over time, you will get text message alerts
containing one to three different types and sizes of fishes.

Y ou can log into the accompanying Web site at any time to see your fishing history.
Blue Factory

URL: http://www.bluefactory.com/

In addition to WAP games, Blue Factory specializesin games for SMS. Currently the games are
focused on European carriers Europolitan-V odafone, Telia, Mviva, Halebop, and Sonera Zed.

Their collection of games includes the following:

e Hunters & Collectors—Thisis an advanced multiplayer game that uses global positioning
technology. The characters are cuddly but dangerous rabbits, beavers, and other fuzzy
animals.

Theway it worksisingenious. Sign up and pick an animal to be your avatar. When two
players are close to each other (based on their actual position in the real world) adud is
initiated. They will get an SM 'S message indicating that the battle is ready to begin.

Each player sends an SM S message with the amount of ammunition they want to use and
their choice of weapon. The results of the duel will be shown, asin Figure 3.20.

Figure 3.20. Hunters and Collectors.

Players can log into the Hunters & Collectors Web page to buy new weapons, check their
stats, or look at the game map.

55

http://www.fisupeli.com/
http://www.bluefactory.com/

e Cool Vibes—Another dueling game using real positioning, this gameis similar to Hunters
& Callectors, but based in a psychedelic, tripped-out 60s world.

e Flirtylizer—Not exactly a game, but extremely cool! Sign up and you can flirt
anonymously with anyone you choose. Using maobile positioning, the Flirtylizer will point
out where your secret admirer islocated.

e Get Nessiel—A game where you try to "fish" for the Loch Ness monster. It also includes
dial-in elements with actual voices.

e BananaBattle—Estimate the distance to an opponent and then fling a banana at them. All
game messages are exchanged viaSMS.

o ExtremeQuiz, FootBallQuiz, SciFiQuiz, and CelebriQuiz—All variations on an SMS
trivia game with questions about extreme sports, football, sci-fi, or celebrities.

BotFighters by It's Alive

URL s: http://www.itsalive.com/ and http://www.botfighters.com/

One of Sweden's most popular cell phone gamesis called BotFighters. Players create robots and
can select elements like shield, weapon, eyes, and armor.

Using mobile positioning, you are notified when you are in the vicinity of another robot. Y ou can
issue SM S attack messages to the number 6688 to try to defeat other robots. Unlike other dueling
games, BotFightersis literally about being quickest on the draw—whoever sends the attack
message first will win. Damage depends on the weapon used and the amount of armor the target
bot is wearing.

If you log into the BotFighters Web site, as shown in Figure 3.21, you can upgrade your robot and
buy new weapons. More importantly, you can sign contracts to find and destroy other robots, and
earn lots of virtual money in the process. Y ou can retrieve information about the top assassins and
view their actual known positions on a map of the city. This alows you to literaly track down
your target in the real world, getting close enough to their location to zap them.

Figure 3.21. BotFighters.

56

http://www.itsalive.com/
http://www.botfighters.com/

It works like avirtual paintball game, and it has become somewhat of a craze in Stockholm. Some
players have gone so far asto engage in car chases and ambushes. The game costs $5 to $10 a
month on top of regular cell phone charges, depending on usage.

Vizzavi Footie and Trivia

URL : http://www.vizzavi.co.uk/

Sign up for one of these games—currently only available through the V odaphone system—and
you can star in your own game show. Y ou can opt to answer football (soccer) triviaor genera
trivia questions. The questions arrive via SM S, and you must send an SM S answer back. The
faster you answer them, the more points you'll get. After each weekly competition, alist of the top
ranking playerswill be sent to all opponents.

J2ME MIDP Games

This book will focus highly on the Mobile Information Device Profile (MIDP) of J2ME, because
it acts as the backbone for all small, mobile devices. Although the official release of MIDP isin its
early stages, many companies and hobbyists have managed to put out an impressive line of games.
Clearly, the speed in which games can be designed, programmed, and deployed is aresult of the
widespread use of Java and programmers' expertise in using it.

Karl Hornell's MIDP-Man

URL: http://www.javaonthebrain.com/java/midpman

An independent programmer named Karl Hornell has put out some of the most impressive MIDP
games, for both the Palm OS and cell phones. A cute and effective Pac-Man clone named MIDP-
Man and shown in Figure 3.22, pushes MIDP's limits.

Figure 3.22. MIDP-Man.

57

http://www.vizzavi.co.uk/
http://www.javaonthebrain.com/java/midpman

HolyCowBoy's BlockBuster and HolyMoley

URL for BlockBuster: http://holycow.tripod.co.jp/cool downboy/blockbuster.htm

URL for HolyMoley: http://holycow.tripod.co.jp/cooldownboy/holymoley.htm

BlockBuster, created by a Japanese programmer who calls himself HolyCowBoy, is a takeoff of
Breakout or Arkanoid. Move the paddle back and forth in order to catch the bouncing ball. The
ball will break apart blocks, sometimes releasing valuable pills that make your paddie bigger or
cause the ball to move more slowly. Figure 3.23 shows the game in action.

Figure 3.23. BlockBuster.

58

http://holycow.tripod.co.jp/cooldownboy/blockbuster.htm
http://holycow.tripod.co.jp/cooldownboy/holymoley.htm

Holy Moley is a"whack-a-mole game" that ingeniously lets you use your phone's numeric keypad
to quickly whack moles that pop out of holes. Y ou'll need quick reflexes! And be careful not to
whack aflower. The game has six different stages. Figure 3.24 illustrates all the mole-whacking

fun.

Figure 3.24. Holy Moley.

Draw Poker

URL : http://www.rr.iij4u.or.jp/%7EKkoichi/index.html

Thisisasimple but full-featured draw poker game created by another Japanese programmer
named Koichi. A screen sampleis shownin Figure 3.25.

Figure 3.25. Draw Poker.

59

http://www.rr.iij4u.or.jp/%7ekoichi/index.html

Cocoasoft

URL : http://www.cocoasoft.com/index.html

Some of the most advanced MIDP games out there were written by none other than Roman
Verhovsek—CEO of Cocoasoft and coauthor of this book.

Axion

Axion is aquick-moving arcade game. Y ou fly your ship through different landscapes, avoiding a
wide variety of bad guys—each of which exhibits a different difficulty and behavior.

As you progress through the levels, you will pick up different weapons and types of missiles, as
shown in Figure 3.26.

Figure 3.26. Axion.

The game will connect to a server and keep track of the top 100 players. Slightly different versions
of the games are available for different phones. If your phone supports sound or vibrations, so
does the game—your phone vibrates with each explosion!

i-Skiing
i-Skiing, shown in Figure 3.27, is a simple downhill slalom competition. Move your skier back
and forth between the flags, racing against the clock. Y ou will assessed atime penalty if you miss

flags. There are also a number of different slopesto try.

Figure 3.27.i-Skiing.

60

http://www.cocoasoft.com/index.html

Different versions of the game work on MIDP, iAppli, Personal Java, and KittyHawk (LG
Electronics i-Book phone). Multiplayer features will be provided in the near future.

Jerry the Cat: Indiana Jerrys

Indiana Jerrysis a complete side-scrolling platform game, similar to Super Mario Brothers or
Manic Miner. Y ou must move through different levels, avoiding bad dogs. Different levels have
elevators and other moving platforms, as well as power-ups and goodies that can earn you a higher
score. Figure 3.28 depicts Jerry in action.

Figure 3.28. Jerry the Cat.

Additionally, the game is multiplayer, with the capability for people across the world to compete
in the same levels.

RomeBlack's Mobile Internet Maze Game

URL : http://www.romeblack.com/Wirel ess/playing.html

The game takes the simple Rock-Paper-Scissors idea and adds a new twist: You log in with your
cell phone and join up to five other playersin amaze. Y ou take the role of either arock, a piece of
paper, or apair of scissors, as seen in Figure 3.29.

Figure 3.29. Internet Maze Game.

61

http://www.romeblack.com/wireless/playing.html

Y ou then chase opponents around the maze, while being chased by them. Rock will beat scissors,
scissors will aways beat paper, and paper will beat rock. Whoever is caught loses that round of
the game.

Both a Palm and MIDP version of the game are available.
Sky Arts' Cube Game

URL: http://www.skyarts.com/

The Sky Arts site features severa different puzzle gamesfor MIDP, along with areversi and
poker game.

In the Cube game, various colored cubes will fall from the top of agrid. If four or more of the
same colored squares are positioned in a horizontal or vertical line, then they will disappear from
the grid as shown in Figure 3.30. Any cubes higher up will fall, causing chain reactions. If you
wait too long, then the cubesin the grid will grow until there is no more room, and you will lose
the game. The other cube games provide variations on this theme.

Figure 3.30. Cube game.

62

http://www.skyarts.com/

Jshape's M-Type and MIDP Street Fighter

URL for M-Type: http://www.jshape.com/mtype/index.html

URL for Street Fighter: http://www.jshape.com/msf/index.html

M-TypeisaMicro Edition version of the popular 80s arcade game called R-Type. Y ou simply
move your ship around, avoiding fireballs from bad guys and trying to beat the big boss at the end
of each level. This game boasts some of the most impressive graphics to ever reach the small
screen, as shown in Figure 3.31.

Figure 3.31. M-Type.

MIDP Street Fighter is a takeoff of one of the most popular arcade fighting games of all time.
Although the game is not quite as advanced as the arcade version, it allows you to pit two martial
arts characters against each other, asin Figure 3.32.

Figure 3.32. Street Fighter.

63

http://www.jshape.com/mtype/index.html
http://www.jshape.com/msf/index.html

Chung-Li’s life bar

Chung-Li’s (the opponent)

Spruce Team

URL: http://www.spruce.jp/freemidlets/

The Spruce Team in Japan has created an entire suite of famous arcade games:

Spruce Invaders—A smaller version of Space Invaders.

Spruce Tennis—A simple paddle and ball game.

Spruce Blocks—A Tetris clone.

Spruce Shooter—A simple fly-and-shoot game.

Spruce Matchup—A simple concentration memory game.

Spruce Driver—A racing game, similar to the game that we will be creating together
during the course of this book. See Figure 3.33 for a screen shot.

Figure 3.33. Spruce Driver.

Red Team's Dope Wars

URL: http://www.redteam.co.uk/dopewars/

Meanwhile, the Red Team in Great Britain has created a MIDP version of the popular text game
Dope Wars, seen in Figure 3.34. Travel between Afghanistan, Colombia, and other international
locales buying and selling illegal narcotics. Avoid CIA agents and use fal se-bottomed suitcases
and ceramic handguns.

Figure 3.34. Dope Wars.

http://www.spruce.jp/freemidlets/
http://www.redteam.co.uk/dopewars/

Most of the action happens as text messages, but this simple and funny trading game is still fast-
paced and, well, addictive.

J2ME Palm Games

The exact specification for 2ZME on Palms and other PDASs is still being worked out. But early
release versions of the Kilobyte virtual machine (KVM) and areduced set of J2ME classes were
made available to the public as far back as two years ago.

NOTE

Any MIDP game or other application can run just fine on the Palm, aslong as the MIDP
libraries are installed. See Chapter 2, "The Mobile World," for afull list of platforms and
devices that support MIDP.

The following sections offer a sampling of some of the work that people have done with these
early samples.

Torunda!

URL : http://www.aa.al pha-net.ne.j p/kataho/to/index.html

This simple game, created by a Japanese programmer name Kataho, allows you to control afairy-
like character. Y ou move around the screen collecting gems, trying to avoid random flashes of
lightning, as seen in Figure 3.35.

Figure 3.35. Torundal!

65

http://www.aa.alpha-net.ne.jp/kataho/to/index.html

The full source code is available at Kataho's Web site, aswell as alevel editor that lets you design
your own game maps.

Karl Hornell's Iceblox and PalmWarp

URL for IceBlox: http://www.javaonthebrain.com/java/palmblox/

URL for Warp: http://www.javaonthebrain.com/java/pal mwarp/

These are examples of fast-action arcade games. In Iceblox (Figure 3.36), you control a penguin
that must smash through or slide strategically-placed blocks, avoiding or crushing bad guys.

Figure 3.36. IceBlox.

In PAdmWarp, shown in Figure 3.37, you fly a space ship through 3D-looking levels. The goal is
simple—move up and down shooting bad guys and avoiding their attacks. There are al sorts of
cool-looking charactersin this game, such as buzzsaws, tanks, and bazooka birds.

Figure 3.37. PalmWarp.

66

http://www.javaonthebrain.com/java/palmblox/
http://www.javaonthebrain.com/java/palmwarp/

Hobbit's Let Me Alone

URL : http://www.puzzle.gr.jp/hobbit/index.html.en

Y et another Japanese game programmer called Hobbit has created a slew of numerical puzzle
games for 2ME. One of the most interesting is called Let Me Alone, shown in Figure 3.38. The
goal istofill blocksin agrid so that the same number doesn't appear more than once in agiven
row or column.

Figure 3.38. Let Me Alone.

IAppli Games

67

http://www.puzzle.gr.jp/hobbit/index.html.en

NTT DoCoMo's specialized version of Micro Javais called iAppli. Well learn all about it in
Chapter 22, "iAppli: Micro Javawith aTwist."

There are many versionsin DoCoMao's 503-line of phones supporting iAppli, and it isavery
popular service in Japan. In general, iAppli is much more suitable for games than the basic MIDP
classes, with support for great sound, full color, and better graphics and animation.

Many of the top game companies in Japan have created iAppli product lines. And other big
players such as the Disney Internet Group International (DIG) have become content providers for
i-mode.

Asawhole, iAppli provides a great glimpse of Micro Javas near-term future: As a powerful
platform for professional-quality pocket games.

Squiral Game

URL : http://www.ai.mit.edu/people/hgm/imode/squiral/index.html

This game, created by Henry Minsky, is a quick-moving Tron clone. Check it out in Figure 3.39.

Figure 3.39. Squiral.

68

http://www.ai.mit.edu/people/hqm/imode/squiral/index.html

Dwango's Samurai Romanesque

URL: http://www.dwango.co.jp/kamone/samurai/

Samurai Romanesgue is of the most advanced role-playing games ever created, not to mention one
of the most advanced mobile games ever. Y ou play the role of a samurai in the Era of Warlords
(1468 to 1600), trying to rise from foot soldier to general.

The game costs 300 yen per month (about $3), and allows players to join a massively multiplayer
world. Up to 500,000 players can exist on the same server simultaneously, able to meet, fight,
trade, gossip, and chat with each other.

Y ou can use your mobile phone offline to train your samurai in the art of the sword, and then log
in to the gameworld to do real-time battle. This allows you to have some fun with the game
without paying packet fees, or if you are in an underground area with bad network coverage.

The game has some unusual, fascinating details. For example, you age one year per day of each
session. The weather in the gameworld is determined using real-time Japanese weather

69

http://www.dwango.co.jp/kamone/samurai/

information. If it israining outside, it will also be raining in the gameworld—making travel and
swordplay difficult.

Y ou can live to be about 40 years old. During your life you can opt to become aruler, or you can
serve amaster. Astime goes by, your hair might recede and you will earn battle scars. Mesting,
courting, and flirting with women takes several days and careful acting. Eventually, you might
marry and birth a child. The child will actually inherit some of your character's traits. After agame
session ends, your character dies, but you can control your child as the next generation of samurai.

The game includes severa hundred towns, each of which isfull of teahouses, shops, and inns. As
you walk through atown, as shown in Figure 3.40, the graphics scroll from side to side. Y our goal
isto reach castles, where you are given missions or the opportunity to join armies.

Figure 3.40. Walking through a town in Samurai Romanesque.

Traveling between towns occurs in real time, though you can hire horses or rickshaws to get there
faster. If you like, you can log off during transit. However, other players can attack you at any
time!

Every so often, huge epic battles between competing warlords occur, as shown in Figure 3.41.
Y ou can fight for agiven lord and be rewarded for bravery if you emerge victorious.

Figure 3.41. Battling in Samurai Romanesque.

Dwango's Challenge! The Hard-Boiled Way

Dwango also provides a multiplayer game-matching service for iAppli called Challenge! The
Hard-Boiled Way. Because the service uses a dedicated server, al game moves are transferred at
high speeds and reflected on players phones almost instantly.

In addition, the server uses pseudo push to cut down on packet fees. Datais only sent over the
network, from server to phone, when necessary. If somebody's mobile connection is interrupted,
their game state will be stored until they reconnect.

The service alows you meet, chat with, and face off against remote human opponents. Players
ratings are stored, and players can be automatically matched up based on ability.

70

The service offers six different games:

e TheBillionaire—A popular card game. A pack of cardsis distributed between up to four
participants. Each player is marked with arank, ranging from billionaire to pauper. The
poor must give their best cards to the hillionaire. The discarding then begins with the

lowest numbered card. The player who getsrid of all cardsfirst isthe winner. Figure 3.42
shows this game in action.

Figure 3.42. Billionaire.

¢ Reverse—A Revers or Othello clone, where players take turns placing either black or
white checkers on the board, trying to surround and then flip the opponent's pieces.
e Chess—The strategic game of kings, shown in Figure 3.43.

Figure 3.43. Chess.

e Gobang—A simpler variation of the popular game Go, where players place pebbleson a
grid in an attempt to line up five piecesin arow.

e Pincer Checkers—A variation of the popular Shogi game, where two playerstry to
surround each other's pieces.

e Military Checkers—A unique checkers game using military artwork.
Sega

Sega has created a version of its popular Sonic the Hedgehog side-scroller game for i-mode. Y ou

must collect rings while avoiding enemies. Figure 3.44 depicts a sample screen. Sega also plansto
create a cell phone version of its popular Out Run game.

Figure 3.44. Sonic the Hedgehog.

71

Namco

The creators of the popular fighting game Tekken have created a low-latency version for i-maode.

In Tekken Command Battle, shown in Figure 3.45, players can face off and choose to attack, parry,
or throw. A word then appears. Whoever types in the word faster and more accurately will cause
more damage.

Figure 3.45. Tekken Command Battle.

In addition, Namco is releasing some of its classic titles for i-mode on its EZweb service. Expect
to be able to play classics such as Pac-Man and Galaxian.

Capcom

Capcom plansto extend its Biohazard game franchise with amicro i-mode game called Biohazard
iSurvivor. In this role-playing game, you move around Raccoon City fighting zombies and
improving your character's abilities. Players will also be able to team up with others to complete
their quest.

Bandai Networks

The company that created the Tamagotchi virtual pet isfocusing heavily on iAppli Java games.
Descriptions of some planned rel eases include the following:

e A gambling game where players can place odds on the outcome of different types of
future events. Players will be able to check out odds, and even buy and sell properties,
trying to become king of the town.

e A gamein which you correspond by e-mail with virtual girls. The more responsive you
are, the more intimate your relationships will get.

e Mystic Grapple—A virtual trading card game where you command sorcerers and
summon monsters, trying to collect the best deck of cards.

e A golf simulation game.

e Mah Jong—Travel around Japan and compete in different mah jong tournaments.

72

Cybird's Mini Game Tengoku

URL: http://www.cybird.co.jp/english/

Cybrid has created a service called Mini Game Tengoku (Game Paradise), available to i-mode
users for 315 yen (about 3 dollars) per month. The service will include 14 different games:

GliderAction—Lift your glider to the right or left and try to ride the currents to land softly
on the landing pad. Y ou must avoid hazards such as crows and UFOs, and earn extra
points by grabbing jewels that dangle from balloons.

Seed no Bohken (The Adventures of Seed)—Control Seed as he moves around a maze,
avoiding monsters. Similar to Pac-Man.

Seed no Meikyu Tanken (The Labyrinth Adventures of Seed)—A similar game, where
Seed runs through a labyrinth using seeds as weapons—he can plant them, causing trees
to quickly grow and block enemy monsters.

TypeCannon—T his educational game, shown in Figure 3.46, tests your math skills. An
equation will flash across the screen, and you must type in the correct number solution to
hit the target with your cannonballs.

Figure 3.46. TypeCannon.

Takoyaki King—Y ou must quickly grill takoyaki (octopus dumplings) for your
demanding customers, and sell them all. If you serve them too raw or too burnt, you will
lose customers.

Snake—This game, shown in Figure 3.47, is a much more graphically advanced version
of the black and white Snake game found on many Nokia phones. Move around the
screen eating eggs, growing longer with each egg you eat. Y ou must avoid crashing into
walls...or your own tail!

Figure 3.47. Snake.

Businessman—K eep customers happy by selling them good products while making high
profits. A simple business simulation game.

Ohagjiki Daisenso (The Great War of Ohgjiki)—A marbles-like game where you pick a
direction, choose aforce, and then fire balls around the board, trying to knock your
opponent's balls off.

Reversi—The classic black and white checkers game.

Gomoku Narabe (Go)—Another classic game.

Poker—A quick draw poker game.

Hikkoshi Meijin (The King of Moving)—Organize objects within aroom, trying to clear
away enough space for your little red sofa.

CannonBubble—Change the angle and force of your cannon, shooting bubbles in the sky.
Try to arrange three bubbles of the same color to make them pop.

73

http://www.cybird.co.jp/english/

e CubeBuster—A concentration game where you must flip cards and try to find matches.

Hudson Soft

URL: http://www.hudson.co.jp/eng/index.html

Hudson Soft also provides an arcade site called "webbeeHudson" that allows i-mode usersto play
micro versions of classic Hudson Soft games. Here are some samples:

e Miracle GP—A car racing game.
e Miracle Quest—A role-playing game, shown in Figure 3.48, involving more than 200
different scenarios.

Figure 3.48. Miracle Quest.

e Miracle Detective—A criminal-pursuit game.
e Miracle Golf—Participate in weekly golf tournaments. Y ou can practice offline or
compete online against others. Figure 3.49 offers a glimpse.

Figure 3.49. Miracle Golf.

What Are You Waiting For?

It took Nintendo about ten yearsto sell a hundred million Game Boys. In the year 2001 alone, it is
expected that nearly four hundred million mobile phones will be sold.

There's abig, big market out there for mobile games, maybe even bigger than the market for PC or
console games. So time'sa wastin'l

In the next chapter we'll cover popular mobile phone standards that can serve as a basis for your
games.

74

http://www.hudson.co.jp/eng/index.html

Part Il: Before, Between, and Beyond J2ME

IN THIS PART

4 Wireless Standards: How Data Goes To and Fro

5 Let's Tak: Instant Wireless M essaging

6 Wirelessin Asia: i-mode and cHTML

7 The Wireless Landscape

75

Chapter 4. Wireless Standards: How Data Goes To
And Fro

INTHISCHAPTER

Wireless Networks

The Wireless Application Protocol (WAP)
Server-Side WAP

Handheld Device Markup Language (HDML)
WAP 2.0 and xHTML Basic

Summary

Micro Javais a pretty advanced beast. However, J2ME would not have been possible without
older mobile technologies. J2ME is built atop and within other standards that relegate such things
as network communication, voice communication, data transfer, and text display.

These standards are often used in creating Micro Java games. For example, amultiplayer game
will often involve players being matched up and chatting in a sort of lobby. Thislobby may not be
written in Java at al, but rather in a simpler text protocol such as WAP. Other games may want to
send out standard mobile messages, or even call up special voice numbers.

The standards we will look at in this chapter include the following:
e TheWireless Application Protocol (WAP)

e TheHandheld Device Markup Language (HDML)
¢ WAP 2.0 and the Extensible HyperText Markup Language (xHTML)

In Chapter 5, "Let's Talk: Instant Wireless Messaging," and Chapter 6, "Wirelessin Asia: i-mode
and cHTML," we'll go on to discuss other major standards, such as SM S Instant M essages and
Japan's popular i-mode service.

Wireless Networks

It would be overkill, in abook about Micro Java games, to delve into too much detail about all the
various types of wireless networks currently available. However, when designing micro games, it
is essential to know not only your target hardware platform, but also the makeup of the networks
you plan to support.

Multiplayer game developers, in particular, must understand a little about the networks that their
games run upon in order to design servers that can accommodate them.

First Generation (1G)

When people talk about the first generation of wireless networks, they are usually referring to the
anal og voice-centric systems of the 1980's.

The most popular types of these networks include Advanced Mobile Phone Services (AMPS) and
NMT.

76

Although the wireless world could never have gotten off the ground without anal og technology,
these were very primitive systems relative to today's standards, limited in both functionality and

capacity.
Second Generation (2G)

Second generation networks are digital and circuit-switched. In a circuit-switched network, Phone
A will find afree physical path to Phone B. This path then becomes dedicated to these phones, and
is kept free from outside interference for the duration of the phones' connection.

Because all data that goes across the network is compressed into bits and bytes, the networks can
support better voice quality without static, deal with a higher capacity of callers, require less
power, and offer global roaming.

More importantly, the data sent over 2G networks does not have to be voice at all. Short messages
or other electronic data—such as game moves—are perfectly valid.

While the data rates of 2G networks are usually good enough to support voice communications,
full back-and-forth Internet accessis still extremely slow (on the order of 9.6Kbps).

Briefly, here's a description of the major wireless 2G wireless networks around the world:

e Code Division Multiple Access (CDMA)—This technology uses digital encoding and
special routines to divide a given chunk of the radio spectrum into different slots. This
technique alows many people to share the same radio channel. Existing CDMA systems
can handle data speeds from 9.6Kbps to 14.4Kbps. In the United States, Sprint PCS and
Verizon Wireless run on CDMA networks.

e TimeDivision Multiple Access (TDMA)—Thiswas the first digital standard in the
United States, beginning in 1993. TDMA divides aradio channel into time slots, each of
which isafraction of a second long, and allocates different phone calls within each slot.
In the United States, Cingular isthe largest TDMA carrier.

e Global System for Mobile Communications (GSM)—Thisisthefirst digital standard
developed in Europe, and avariant of TDMA. Different versions of this operate anywhere
from the 900MHz to 1.9GHz frequency radio bands. GSM allows mobile phone usersto
roam across different networks, so that the same phone can work in more than 170
different countries. The data speeds can reach 9.6Kbps. In the Unites States, V oiceStream
Wirelessis one of the biggest GSM carriers.

e Personal Digital Cellular (PDC)—A Japanese standard based on TDMA. PDC operatesin
the 800Mhz and 1500M Hz bands.

e Integrated Digital Enhanced Network (iDEN)—This network, created by Motorolain
1994, works on the 800MHz, 900Mhz, and 1.5GHz bands. It is based on TDMA and
allows for more walkie-talkie-like functionality, such as dispatching, aswell as paging,
data, and fax. In the United States, Nextel isthe largest iDEN carrier.

Second (and a Half) Generation (2.5G)

GSM technologies have been enhanced to create an expanded set of standards called the General
Packet Radio Services (GPRS), specially designed to work with the Internet and multimedia
services such as music and video. This network is optimized for data speeds ranging from

114K bps to 170K bps, and will support roaming.

The biggest difference with this new packet-switched systemis that cell phones are always online
and connected. Users are typically charged depending on how much data is actually shipped back
and forth. The system also allows voice calls to be made simultaneously to data transfer.

77

Because the network is packet-switched, a physical connection is not held and dedicated between
two phones. Rather, network packets are routed as quickly as possible across logical paths. This
also allows the same data to easily and efficiently be shared among many users at the same time.

Theideawith GPRS isto take standard GSM service and transition it into third generation
systems such as UMTS (see the next section). In fact, GPRS is sometimes referred to as GSM-IP,
since it isamore robust version of GSM based on Internet Protocols (IPs).

Third Generation (3G)

We are now entering the era of 3G. Third generation systems are intended to serve high-speed
Internet data, complex teleconferencing, flicker-free video, and CD-quality music. Data speeds are
designed to range from 144K bps to 2Mbps (megabits per second).

Some of the major standards supporting 3G networks include the following:

e Wideband Code Division Multiple Access (W-CDMA)—W-CDMA is mostly used in
Japan. NTT DoCoMo's brand name for 3G servicesis Freedom of Mobile Multimedia
Access (FOMA).

e Universal Mobile Telecoms Network (UMTS)—A standard deployed throughout Europe.

e International Mobile Telecommunications 2000 (IMT 2000) —A globa standard created
by the International Telecommunication Union.

e Code Division Multiple Access 2000 (CDMA 2000)—Thisisaradio transmission
technology bringing narrowband CDMA into the third generation.

The Wireless Application Protocol (WAP)

URL : http://www.wapforum.org

The Wireless Application Protocol (WAP) is a set of standards based on the Internet Protocols (1P)
and the Extensible Markup Language (XML). WAP is an open and global standard for wireless
applications. WAP was designed to operate seamlessly over CMDA, CDPD, and al other major
wireless network types.

WAP's primary technology—the Wireless Markup Language (WML)—is based on HDML and
was developed by Unwired Planet (which became Phone.com and is now Openwave), Motorola,
Nokia, and Ericsson. These companies and others have formed an open organization devoted to
WAP called the WAP Forum.

WAP content is accessed using standard Uniform Resource Locators (URLS), just as Web pages
are. Pages written in WML have the .WML extension, just as most HTML pages end with _.HTML.

NOTE

Most modern mobile phones support some version of WAP. Many phones come prel oaded
with the Openwave (Phone.com) Mobile Browser.

The following section is not intended to be afull WAP primer. Rather, it will provide a brief
overview of most WML tags and attributes, allowing you to create smple WAP structuresin
which to support your Micro Java games.

The WAP Protocol Stack

78

http://www.wapforum.org/
http://phone.com/
http://phone.com/

The protocols that make up WAP are based strongly on the Internet Protocols. The Web protocol
stack includes old favorites such asHTML, HTTP, SSL, UDP/IP, and TCP/IP. Thisisavery
robust and efficient suite of protocols, to be sure. However, the Web stack itself is quite large, and
provides more functionality than most mobile phones need.

Because of this, a special WAP protocol stack was created. The stack includes, in order

e Anapplication layer—The actual application used to display things to the user. This uses
the Wireless Application Environment (WAE) displaying pages written with WML.

e A session layer—How connections are made. This layer uses the Wireless Session
Protocol (WSP).

e A transaction layer—How datais divided. Thislayer uses the Wireless Transaction
Protocol (WTP).

e A security layer—Encrypts the data. This layer uses Wireless Transport Layer Security
(WTLS).

e A datagram layer—How the data is packaged and sent across the network. Thisis done
using the Wireless Datagram Protocol (WDP). The WDP can use different bearers, such
as CDPD, SMS, and so on.

Wireless carriers and cell phone manufacturers need to worry about implementing all these
protocols properly. Lowly game developers need only focus on writing the actual applications
using WML and WML Script.

WAP Architecture

A WAP browser works very similarly to aWeb browser, and a WAP server works similarly to a
Web server. Asin the Web world, the client requests a page from a server. The server then
responds with the page data. There is no continual connection. If the server has more data to send
to the client, then another client request must first be made.

In the world of WAP, a phone is known as a user agent. In fact, most WAP pages come to the
phone from a standard Web server, directed through a special server called a WAP gateway.

Figure 4.1 shows the typical WAP architecture.

Figure 4.1. The WAP architecture.

79

WAP Gateway

[
Web/Computer
Network

Wireless
Metwork

e
[—
[—

]
C]

WAP Browser WEB Server

Gateway machines are typically housed and maintained by wireless service providers. The process
works asfollows:

1
2.

3.
4.

5.
6.

A mobile phone user asks for a specific URL.

The request is sent over a proprietary wireless network, using WAP protocols, to a
gateway machine.

The gateway trandlates the request to HT TP and sends it to a standard Web server.

The Web server will grab or dynamically generate the content (usually a WML document)
and send this response back to the gateway.

The gateway encodes the WML and WML Script into byte code and sends it to the phone.
The phone processes the byte code and displays the first card to the user.

This process, shown in Figure 4.2, allows a Sprint PCS game player and a Verizon Wireless user
to communicate via a central Web server even though they are using different wireless networks.

Figure 4.2. The WAP process.

80

WAP User-Agent WAP Gateway WEB Server

HTTP

Encoders & CGl Scripts
Decoders and others

Protocol
Adapters

The Wireless Markup Language (WML)

The Wireless Markup Language is very similar, in concept, to the Hyper Text Markup Language
(HTML) used to create most Web pages. Obviously, arich HTML Web site with snazzy
animations, tons of colors, and fantastic music won't look quite so snazzy on a postage-stamp-
sized black and white screen. WML was built to address the typical mobile phone's limitations:

The screen is 20 or fewer characters across, and only three to six linestall. As such,
WML needs only very basic text formatting and layout abilities.

Most phones have only a small amount of memory and rudimentary processor power. As
such, the object model of how WML Script can dynamically accessa WML deck isvastly
simplified.

Typically, aphone only has only a numeric keypad. As such, all of WML's input methods
are basic edit fields and option selections. Nothing that might rely on mouse or keyboard
input is supported.

Data transfer rates are extremely slow, which means latency is extremely high. As such,
WML applications are not sent as separate pages requiring many separate requests and
responses, but as one big deck separated into individual cards.

Bandwidth, or the amount of data that can be uploaded or downloaded per second, is
extremely limited. WML and WML Script are usually compressed into tight runnable byte
code, which means that a heavy WML file doesn't need to be parsed on the phone, but
rather on the gateway server.

WML is currently released as version 1.3. However, most phones only support WML 1.1. The
WML tagsin this chapter should work with WAP 1.1 browsers and up.

There is also an amost-complete WAP 2.0 specification, which we will discuss later in this

chapter.

81

WML Basics

Every WML file must begin with a standard prologue, including an XML header and a document
definition tag:

<?xml version="1.0"?>
<IDOCTYPE wml PUBLIC ""-//WAPFORUM//DTD WML 1.1//EN"
“http://www._wapforum.org/DTD/wml_1.1_xml"">

WARNING

Since WML is based on XML, it is case sensitive—every tag and attribute should bein
lowercase. Also, tags cannot be nested incorrectly. For example, the following lineisillegal
and will generate errors:

<p>Hello!</p>

Therest of the code must be surrounded by <WML> and </WML>.
A Game of Cards and Decks

In the world of the desktop Internet browser, there are Web sites and Web pages. On amobile
phone, there are decks and cards.

A cardisascreen that a user sees and can interact with. There can only be one card visible at a
time. There is no notion of various windows that can be moved around, minimized, or maximized.
Each card is surrounded by the tags:

<CARD i1d=""id" title"title">

and

</CARD>

The id attribute refers to the name of the card. This name must be a single word with no spaces or
wacky characters. Every card in a deck must have a different id name.

The title attribute is a short description of the card, and is usualy displayed at the top of the
mobile phone's screen. Each card must have at least one paragraph in it, as designated by the tags
<P>and </P>.

NOTE

Some WAP phones do not show the card title at all, so don't rely on it being there.
A deckisaset of cards. When your maobile phone downloads a WML file, it is getting an entire
deck. Thefirst card in the deck is activated. Later cards can then be activated using their id asthe
user selects various menu or other options.

A deck must begin with

<DECK>

82

and end with

</DECK>

So, taking al these rules together, the world's smplest WML file might look like this:

<?xml version="1.0"?>

<IDOCTYPE wml PUBLIC ""-//WAPFORUM//DTD WML 1.1//EN"
“http://www._wapforum.org/DTD/wml_1.1_xml"">

<wml>

<card id="main" title="Welcome!'>

<p>

Wow! This is one of the world®"s most simple WML Files!

</p>

</card>

<card id="'second" title="Second Page'>

<p>

Wow! The second card!

</p>

</card>

</wml>

On a phone, the above file would appear asin Figure 4.3. Note that the menu command lineis
automatically inserted as part of the WAP browser.

Figure 4.3. A simple WML file.

83

Anchors Away

Y ou can use anchors to go from one card to another, or to actually load a new deck from the
server. Anchor text or images will be hypertext, and will usually appear underlined. Players will
be allowed to select this hypertext using the up/down/left/right keys on their mobile phones.

The <anchor> tag contains inner tags.

e <go href="deck.wml#card">Click Here</go>— Loadsanew WML deck and
brings up a specific card. If you omit the # symbol in the href attribute, then the first
card in the given deck will be brought up.

Likewise, if you omit the deck name completely and only use the # symbol, then you can
jump to a card within the currently active deck.

The <go> tag is similar to the <A> hyperlink tag in HTML. It allows you to send a
request to the server, asking for a specific URL.

Note that the <go> tag can also contain a special tag called <postfield> that alows
you to post parameters to the Web server:

<postfield name="myparameter' value="myvalue'/>

e <prev/>— Goesto the previously loaded WML card.

e <refresh>Click Here</refresh>— Reloads the current card.

e <noop/>— No operation. This does nothing at all. Thisis usually done to show a
command that is currently disabled.

So, to switch to anew card in a deck

<anchor>
Select here to bring up a new card
from the current deck
<go href="#card2"/>

</anchor>

To switch to anew deck entirely

<anchor>
Select here to bring up a new deck
<go href=""test.wml"/>

</anchor>

Most requests will return anew WML document. The WML document can be static, or created
dynamically by a CGlI script, Java servlet, JSP, ASP, or other server-side technology.

For example, arequest to a Java servliet might look like this:
<go href="myservlet. jsp?c=getNewWMLPage"' />

The <refresh/> tag alows you to change certain variables and then reload the same or a
different card:

<anchor>
Select here to refresh variable x

84

<go href="test.wml"/>
<refresh>
<setvar name="x" value="'30"/>
</refresh>

</anchor>

Note that you can also use the <a> tag, similar to HTML, which is the same as using the
<anchor> and <go> combination:

Select here to bring up a new card.
Or

Select here to bring up a new deck.
Text Formatting Tags

Since a mobile phone doesn't have alot of room or awide variety of colors and fonts, only afew
tags are actually supported in WML.

The most popular tags for formatting text include the following:

e
— Used to add aline break. Because this tag stands alone and has no closing tag,
it must contain a slash.

e <p>My Paragraph</p>— Separates chunks of text into paragraphs.

e l ammighty— Used to make text stronger (usually the same as
making text bold).

e Emphasize me, baby!— Used to emphasize text (usually the same as
italicizing).

e | am bold— Used to make text bold.

e <i>| amitalic</i>— Used to make text itaicized.

e <u>l amunderlined</u>— Used to underline text.

e <smal I>Weelittle me</smal 1>— Makes text smaller.

e <large>Big bad me</large>— Makestext larger.

So the following code might appear asin Figure 4.4:

<?xml version="1.0"?>

<IDOCTYPE wml PUBLIC *"-//WAPFORUM//DTD WML 1.1//EN"
"http://www._wapforum.org/DTD/wml_1.1_xml"">
<wml>

<card title="Sample Formatting'>

<p>

Hello

1"m bold

<i>1"m i1talic</i>

<u>1"m underlined</u>

<big>1"m big</big>

<small>1"m small</small>

</p>

</card>

</wml>

Figure 4.4. Some formatted text.

85

Be aware that some phones do not support many of these tags. For example, an older WAP
browser may only allow paragraph breaks and line breaks, but no bolding, italicizing, or
underlining.

NOTE
Y ou can add a comment to a WML file using the same comment tags that work in HTML.:
<I-A funny little comment—>

Tables

Although using tablesis discouraged because there's usually not enough room for them, standard
table tags are supported similarly to HTML.

Y ou surround your table with

<table columns=5 rows=5>

and

</table>

Y ou can create rows and columns using the following tags:

e <tr>Row</tr>— Surrounds agiven row of text.

86

e <td>Column</td>— Creates agiven column.
The following code creates a small two-by-two column table;

<table columns="3">
<tr>

<td>Top Left</td>
<td>Top Right</td>
</tr>

<tr>

<td>Bottom Left</td>
<td>Bottom Right</td>

</tr>

</table>

For example:

Top Left Top Right
Bottom Left Bottom Right

User Input Tags

The user input controls will look different on every phone you use. Y ou can use many of the same
input elements that you'll find in an HTML form.

Input Fields

Typically, auser input field is an empty box in which a person can type in a number, word, or
phrase. Because typing on a cell phone is usually an arduous task, many phones will bring up a
specia screen when an input field is selected.

Y ou can create a standard input field named ""test' asfollows:
<input name="test"/>
Aninput field possesses several attributes:

e name— The name of the field, which will become a variable name you can access later or

send to the server.

emptyok— Set to true if the text field can be left blank. By default thisis set to false.

max length— The maximum length of characters that a user can enter.

size— The width of the field, indicated in number of characters.

title— Setsatitlefor the input field. Thiswill be displayed on some phones when the

user isinside thisfield.

o type— Setsthetype of input field. By default thisis text, but you might also have a
password type of field. In password fields, anything the user enters usually appears as
an asterisk, for added security.

o value— Setsthe default value for thisinput field.

e Tformat— Thetype of datathat can be entered in the field. The default is *M. The types
are asfollows:

A—Uppercase a phabetic characters

a—L owercase al phabetic characters

87

N—Numeric characters
X—Uppercase characters of any type
x—L owercase characters of any type
M—AII characters

Precede any of the these types with an asterisk to indicate that any number of characters
can be entered.

Precede any of the these types with a specific number from 1 to 9 to specify that the user
must enter a specific amount of the given character type.

So, to create a 10 character-wide input field that must be numeric and can contain only 10
characters, you would use the following:

<input name="test" size="10" maxlength="10" format=""*N"/>
Option Groups

Y ou can create a pull-down option list by surrounding the list with the <optgroup> and
</optgroup> tags, and surrounding each individual option using the <option> and
</option> tags.

<optgroup title="A Test'>

<option value ="first'">First Option</option>
<option value ="second">Second Option</option>
</optgroup>

Each option tag can take several attributes, such as:

e value— Setsthe value for the option that will be dumped into the variable, should the
option be selected.

e onpick— Thisattribute takes a URL or anchor card name as a parameter. If the given
option is selected, then the given URL is requested.

Check Boxes and Radio Buttons

To create check boxes, you can usethe <select multiple=""true'"> tag. Check boxesare a
list of options preceded by boxes, and any number of the boxes can be selected or unsel ected.

Set themultiple attribute to fal se to create radio buttons. Radio buttons show the user severa
options. Only one of the options can be selected. If a new option is selected, then any previous
selections are automatically unsel ected.

Other attributes for the <se lect> tag include:

e name— Name of the variable that will hold any selected value.

e value— Set the default value of the variable to be set.

e iname— Name of theinitial variable that will hold the initial value.

e ivalue— Setstheinitia value for the option that will be dumped into the variable,
indicated by the option group's name.

88

o, the following would be used to create asimple list of radio buttons:

<select multiple="false" name="mychoices'>
<option value="choicel">First Choice</option>
<option value="choice2">Second Choice</option>
<option value="choice3">Third Choice</option>
</select>

This might appear as shown in Figure 4.5.

Figure 4.5. A group of radio buttons.

Field Sets

Finaly, you can visibly group the buttons together into a sort of set. To do so, smply surround
elementsinside your user input forms with

<fieldset title="My Title">

and

</fieldset>

This can help group check boxes or radio buttons.

Example

89

So, taking al thistogether, you can make aform asin Figure 4.6 using the following WML file:

<?xml version="1.0"?>

<IDOCTYPE wml PUBLIC ""-//WAPFORUM//DTD WML 1.1//EN"
“http://www._wapforum.org/DTD/wml_1.1_xml"">

<wml>

<card title="My Input Form'>

<p>

Name: <input name='"Name" size="10"/>

<fieldset title="A Field">
<select multiple="true">
<option value="a"">A</option>
<option value="b">B</option>
</select>

</fieldset>

</p>

</card>

</wml>

Figure 4.6. Some user input fields.

The <do> Tag

The <do> tag lets the user perform some sort of global command or other task on the current card.
The command will usually appear in the soft-key menus at the bottom of the mobile phone's
display. Most phones allow for two soft keys. If you create more than two <do> options, then one

90

of the soft-key commands will usually become Menu, which will lead to a specia menu of
additional choices. The label attribute is the label for the command that will be shown to the
user.

The name attribute creates a variable name for the e ement.

The type attribute lets you choose what sort of command you wish to create. Various browsers
will display these commands in different ways. Usually, up to two commands can be shown on the
screen, mapped to the maobile phone's two command buttons. Other phones may display the
commands in a nested menu, or along with a special icon.

The following are some valid <do> command types:

e accept— Acknowledgement of a message or event.

e prev— Navigate back to a previous deck.

e help— Help about this card.

e reset— Reset the WAP browser.

e options— A selection from alist of options.

e delete— Delete anitem or choice.

e unknown— A special type, not one of the preceding types.

To perform an action, simply surround it with the <do> and </do> tags. To jump to acard in the
current deck named card2, you could use

<do type="accept"” label="0KI">
<go href="#card2"/>
</do>

The following command will add a back command to the current card, allowing you to go to the
previously loaded card:

<do type='"prev" label="Back">
<prev/>
</do>

Variables

WML files are capable of keeping track of and changing simple variables. Thislets your WML
application keep information between cards.

To explicitly set the variable i to 10, usethe <setvar> tag:

<setvar name="i" value="10"/>

Whenever you create an input element, the results are stored as variables. Simply use the name of
the element preceded by adollar sign. Y ou can surround the variable name by parentheses to
separate it from any other text.

So, to create a small application that asks the user for their name and then displaysit, you could
use the following code:

<?xml version="1.0"?>
<IDOCTYPE wml PUBLIC *-//WAPFORUM//DTD WML 1.1//EN"
“http://www._wapforum.org/DTD/wml_1.1_xml"">

91

<wml>

<card id=""input'>

<input name="myname' size="10"/>

<select input=""Name:'>

</select>

<do type="accept" label="0KI">
<go href="#result'"/>

</do>

</card>

<card id="result'>

<p>Your name is: $(myname)</p>
</card>

</wml>

The nameisinput in the first card (with the id of input). Then the card withthe id resultis
called, as soon asthe OK! button is pressed. The result is then displayed.

Images

Aswith HTML, WML does support an tag:

The resultant image might appear asin Figure 4.7.

Figure 4.7. A beautiful WAP image.

The src attribute points to an image in the WBMP format. This format is a specidl, tiny black-
and-white bitmap created to fit snugly on wireless devices.

NOTE
The WAP 2.0 specification proposes the use of color images.

The alt attribute lets you substitute a word or phrase instead of an image, for phones or WAP
browsers that do not support images.

There are several tools and plug-ins available at the following Web sites that allow you to convert
GIF or BMP images to the WBMP format:

e WBmpCreator—nhttp://www.wbmpcreator.com

92

http://www.wbmpcreator.com/

e Moblmage—http://www.pyweb.com/tools/
o Gif2Wbmp—nhttp://www.towap.net/downl oad/index.php?cmd=gif2wbmp& langue=2
o Wbmp Butterfly—nhttp://inin-wap.aval on.hr/zdravko/wbmpfly.htm

Timers

When using WAP, the connection between a mobile phone and the server does not remain
persistent between requests. If the server needs to send an update to the client, it has no way to do
so until the client explicitly requests a new deck.

Many games and other time-sensitive applications will need to constantly poll the server, asking
for any new updates. This can be done using a simple WML timer.

Set the ontimer attribute of the <card> tag to point to the WML page you wish to update. Y ou
canthen usethe<timer value="10"/> tagto create the countdown, setting the valuein tenths
of asecond.

To refresh the WML document every three seconds, simply use the following:

<card ontimer=""test.wml">
<timer value="30"/>
<p>Some Message</p>
</card>

WMLScript

If you've followed along so far, you've noticed that WML has very limited interactivity on the
client side. Really, al you can do is display simple text and images, collect alittle information via
user input forms, and send it al to the server to process.

Just as HTML has JavaScript (based on the ECMA Script standard), some WML browsers support
aspecia client-side scripting language called WML Script. WML Script is a much simpler subset
of ECMAScript. In addition, WML Script is compiled into bytecode by the WAP gateway before
being sent down to the phone.

WARNING

Many WAP Browsers do not support WML Script. Be sure to research your target platform
before relying on any client-side scripting. Check out the excellent table at

http://www.al I netdevi ces.com/fag/useragents.php3 to determine what version of WAP your
target device supports.

WML Script is used, for the most part, to verify user input before wasting precious time sending it
to the server. For example, if you ask your game player for his age, a simple WML Script can be
sure the input is indeed a number, isn't negative, and isn't over 200. If the results aren't valid, a
dialog box can pop up telling the player to enter anew number.

In addition, some versions of WML Script allow you to access special features of the user agent,
such as the following:

Dialog boxes to alert the user of something or to request input
Make phone calls

Access the SIM card

Access or change the address book

Configure the phone preferences

93

http://www.pyweb.com/tools/
http://www.towap.net/download/index.php?cmd=gif2wbmp&langue=2
http://inin-wap.avalon.hr/zdravko/wbmpfly.htm
http://www.allnetdevices.com/faq/useragents.php3

Accessing WML Script
WML Script files are stored separately from WML files. They usually have the .wmls extension.

Y ou can access a WML Script file's WML the same way you would request any other document:
<go href="test.wmls"/>

Y ou can access specific external functions within WML Script using the hash symbol. This allows
you to passin variables. For example, the following file requests a variable called myvar and then
passesit to the process () function withinaWMLScript file:

<?xml version="1.0"?>

<IDOCTYPE wml PUBLIC "'-//WAPFORUM//DTD WML 1.1//EN"
“http://www._wapforum.org/DTD/wml_1.1 _xml*"">
<wml>

<card id=""Input" title="Request Variable'>
<do type="options" label="Go">

<go href=""test.wmls#process("myvar")"/>
</do>

<p>

Type something here:

<input type=""text" name="myvar'/>

</p>

</card>

</wml>

WMLScript Example

Y ou can make a simple guessing game entirely on the client side using WML Script. For example,
you can create a dialog box that asks the user for a random number.

A function will pick arandom number and compare it the user's guess, and show a card indicating
whether the user was correct.

The following isthe code for GuessNumber .wml:

<?xml version="1.0"?>

<IDOCTYPE wml PUBLIC *"*-//WAPFORUM//DTD WML 1.1//EN"
“http://www._WAPFforum.org/DTD/wml_1.1 _xml*">

<wml>

<card id=""guess'>
<p>
Guessing a Random Number. ..
</p>
<do type="accept''>
<go href=""RandomGuess.wmls#guessrandom()" />
</do>
</card>

<card id="right">
<p>

You were right!

Number was $(randresult)

</p>
</card>

94

<card id="wrong'>
<p>

Sorry. Wrong!

Number was $(randresult)

</p>
</card>
</wml>

Here'sthe code for RandomGuess.wmls:

extern function guessrandom()

{
// Request a number, 0 by default

var thenum = 0;
// Loop until a valid number is picked.
do

{

var r = Dialogs.prompt(""Pick a number between 1 and 10", "0");
thenum = Lang.parselnt(r);

}
while (thenum < 1 || thenum > 10)

var randnum = Lang.random(10)+1;
// set the randresult variable
WMLBrowser .setVar(“'randresult', randnum);

if (randnum == thenum)
WMLBrowser .go("'GuessNumber . .wml#right');
else
WMLBrowser .go(*'GuessNumber .wml#wrong™™) ;
}

The guessrandom() function is preceded by the extern modifier, meaning that it can be
accessed by external WML or WML Script documents.

Note that the variable randnum is a script variable, and can only be set and accessed within this
WML Script function.

The randresult variable, however, is set usng WML Script's setVar () method, meaning it
will be an active browser variable—active and accessible as long as the player is visiting the
current WAP site.

Server-Side WAP

Most any Web server can serve out WML pages. Y ou will, however, need to modify your server
using the instructions given in this section.

Server Configuration

Every response your Web server sends to a browser is tagged with a special header. One of the
most important lines of the header tells the browser what the content-type of the document is. This
content-type is expressed using a standard known as the Multipurpose Internet Mail Extension
(MIME).

95

The MIME type of HTML files, for example, is text/html. For WAP documents, you need to
add several new MIME typesto alow for WML files, WML script files, compiled WML files,
and WBMP wireless bitmaps:

o text/vnd.wap.wnml

e application/vnd.wap.wmlc

e text/vnd.wap.wmlscript

e application/vnd.wap.-wmlscriptc
e image/vnd.wap.wbmp

Most Web servers make it easy to add new MIME types. Many servers have a

httpd.conT filein which these types can be added.

WAP and Java

Although some WAP pages will never change and can be written using a standard text editor or
HTML authoring tool, most WAP games and game tools will involve lots of dynamic information
such as game state, scores, number of usersin alobby, chat messages, and so on.

That means that the Web server will need to generate WML decks and cards on-the-fly. Server-
side Java technologies, such as JavaServer Pages (JSPs) and Java Servlets, are a great way to
pump out the necessary WML.

A Servlet Game Lobby

For example, here's asimple servlet that can alow an unlimited number of players to chat with
each other. This can lead up to afull-featured lobby where players can match up and then be
joined together to play Java games.

The WAP need only call the servlet with one parameter:
mymessage
The servlet will take that message and return the last five lines of chat.

Thisisobviously avery simplified version of a game lobby. A real lobby would force usersto log
in with a password, keep track of the user's name, keep track of which chat lines each user has
already seen, match players together, and kick off game sessions.

TheSimpleChatServlet. java filelookslikethis, and is shown in Figure 4.8:

import java.io.*;

import javax.servlet.™;

import javax.servlet.http.*;

public class SimpleChatServlet extends HttpServlet {

// Store last five messages
private static String message[] = new String[5];

public void init() throws ServletException

{
// Set messages to blank for now
for (int 1=0; 1 < 5; i++)

96

message[i] = ""';

public void doGet(HttpServletRequest request,HttpServletResponse
response)
throws ServletException, IOException
{

// set content type as wap.wml
response.setContentType(""text/vnd.wap.wml™);

// create a print writer output

PrintWriter out = response.getWriter();

// get the latest message, if any

String mymsg = request.getParameter(*'mymessage');

// 1f the message isn"t null, add it to the top of the queue
if (mymsg = null)

for (int i=4; i1 > 0; i1-)

{
// Replace message with previous message
message[i] = message[i-1];

message[0] = mymsg;

// write the data

out.printIn(’'<?xml version=\"1_.0\"?>");

out.printIn(*"<IDOCTYPE wml PUBLIC \"-//WAPFORUM//DTD WML
1.1//7ENN\""");

out.printin(’" \"http://www.wapforum.org/DTD/wml_1.1.xmI\">"");

out.printin('<wml>");

out.printIn(’<card title=\"Chatting\'">");

// Send any new messages back to this servlet

out.printin(’'<do type=\"accept\" label=\""Send\"">");

out.printIn(’ <go href=\"/servlet/SimpleChatServiet\"
method=\""get\'">");

out_printIn(’® <postfield name=\""mymessage\"
value=\"$mymsg\"/>"");

out.printin(’" </go>");

out.printin(’'</do>");

out.printin(" <p>");

// print out the last five messages
for (int i=0; i < 5; i++)

{

out.printin(message[i]+"
");
out.printIn('</p>");

// Request a new chat message

out_printIn('<p>");

out_printIn('Chat: <input title=\"Enter Chat Message\"
name=\""mymsg\"'"/>");

out.printin('
");

out.printin('</p>");

out.printIn(*</card>");

out.printin('</wml>");

97

Figure 4.8. A WAP chat application using a servlet.

Any WML card that requests this servlet will send its own chat message and retrieve the last five
messages that have been sent. Effectively, this servliet will pump out aWML file that looks like
the following:

<?xml version="1.0"?>

<IDOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
"http://www.wapforum.org/DTD/wml_1.1_xml"">

<wml>

<card title="Chatting'>

<do type="accept'” label="Send">

<go href="/servlet/SimpleChatServlet"” method="get'>
<postfield name="mymessage'" value="3$mymsg'/>

</go>

</do>

<p>

Message 1

Message 2

Message 3

Message 4

Message 5

</p>

<p>

Chat: <input title="Enter Chat Message' name='"mymsg"'/>

</p>

</card>

98

</wml>
Using JavaServer Pages (JSPs)

Similarly, JavaServer Pages (JSPs) can be used to dynamically create cards, using variables that
can be created programmatically.

Here's asimple example:

<?xml version="1.0"?>
<IDOCTYPE wml PUBLIC ""-//WAPFORUM//DTD WML 1.1//EN"
"http://www._wapforum.org/DTD/wml_1.1_xml"">

<Wh
response.setContentType(*"text/vnd.wap.wml'™);
out.printin('<wml>");

out.printIn("<card title=\"Today"s Date\'>");
out.printIn(’" <p align=\"center\'>");
out.printIn('Date: "+ new java.util_.Date());
out.printIn(" </p>");

out.printIn(*</card>");
out.printIn('</wml>");

%>

Development Environment

To develop WAP applications, you can use a number of different environments. Every major cell
phone manufacturer offers a software development kit that allows you to create and emulate their
precise WAP environment.

More information can be found at these sites:

e PyWeb's Deck-It Previewer WAP Emul ator—http://www.pyweb.com/tools/.

e Yospace SmartPhone Emulator—Shown in Figure 4.9, this tool lets you edit and view
WAP content on many different types of handsets. Y ou can download atrial version at
http://www.yospace.comy.

Figure 4.9. The Yospace SmartPhone Emulator.

99

http://www.pyweb.com/tools/
http://www.yospace.com/

e Ericsson Wapl DE—http://www.ericsson.com/mobilityworld/
e Nokias WAP Toolkit—Found at http://www.nokia.com/wap, Figures 4.10 and 4.11 show
thistoolkit in action.

Figure 4.10. The Nokia WAP Toolkit development environment.

100

http://www.ericsson.com/mobilityworld/
http://www.nokia.com/wap

Figure 4.11. The Nokia WAP Toolkit WAP emulator.

101

e MotorolaMobile Application Developers Kit (MADK)—This kit works in conjunction
with the Motorola Wireless IDE:

http://devel opers.motorola.com/devel opers/wirel ess/tool s/

e Openwave SDK (formerly Phone.Com's UP.SDK)—
http://www.openwave.com/products/devel oper products/sdk/index.html

Handheld Device Markup Language (HDML)

URL: http://mwww.w3.org/TR/NOTE-Submission-HDML.html

HDML isaformat extremely similar to WML. Like WAP's main presentation layer protocol, it is
asimplified version of HTML specially designed to work well with mobile phones.

NOTE

102

http://developers.motorola.com/developers/wireless/tools/
http://phone.com/
http://www.openwave.com/products/developer_products/sdk/index.html
http://www.w3.org/tr/note-submission-hdml.html

HDML was devel oped by Unwired Planet (which became Phone.com and now is owned by
Openwave) before WAP came about. Some of the older phones in the United States support
HDML, but the language is rapidly being phased out in favor of the more robust WML. As
such, we won't concentrate on it much in this book.

HDML is based strictly on existing Web standards and protocols. In addition to defining how a
cell phone screen can be visualy presented and laid out, HDML has elements defining the
navigation between various screens.

Some differences between WML and HDML are the following:

e WML ishased on XML. This means that people can use many popular XML authoring
and parsing tools to create and deal with XML. For example, the eXtensible Style Sheet
Language and associated Translations (XSL/XSLT) provide an easy way of taking the
same content, putting it in XML, and popping it out as either HTML or WML.

e Since HDML is not based on XML, you can be alot sloppier. Y ou can use upper or lower
case tags, nest tags, and you don't need to have a closing tag for every opening tag.

e HDML does not have arelated DTD (Document Type Definition). That means you can't
run an HDML document through a validator to make sure everything isin the proper
format.

e HDML does not have any form of client-side scripting.

e HDML does not have timers.

e HDML does not have multiple-choice selection lists. However, HDML does allow you to
add custom images to labels and choice groups, such as checkboxes and radio buttons.

e HDML has built-in bookmark functionality. Some WAP browsers offer bookmarks, but
they are not part of the main specification.

e HDML offers nested activities—a convenient way of organizing your application's
commands.

e HDML letsyou set up mobile-originated pre-fetch of documents. This means you can
pre-load your entire application and graphics. The user has alonger download time up
front, but everything runs much more responsively afterwards.

e HDML offers key accelerators for links. That means that you can specify exactly which
keys on the mobile phone's keypad will be associated with which action.

HDML Syntax
All HDML files start with
<HDML VERSION=3.0>

The Version value, of course, depends on the version of HDML you are writing. The document
ends with

</HDML>
Displays

Just like WML, HDML documents contain many screens (decks) and each screen can be shown to
the mobile phone user (asacard). In HDML, however, cards are called displays and indicated
using the <DISPLAY> tag.

Each display can be given a NAME attribute.

Activities

103

http://phone.com/

Every command that a user carries out is known as an activity. Each activity might have sub-
activites. When you use the "*GO** task under an <ACT ION> tag, you are performing an activity.

For example, in agame lobby, the main activities might be to Join a Game or Chat. The Join a
Game activity might have sub-activites such as Pick Game Name or Pick Opponents. Each step in
an activity usualy hasits own HDML card.

Y ou can use specia attributes to indicate how the application behaves as the user navigates back
and forth or cancels various tasks. Y ou can even create sub-activities using the GOSUB attribute, to
help group specific activities together under another activity.

Actions

If you don't assign an activity to akey, then it will have a default activity assigned to it. For
example

The <ACT ION> tag is the way you can request user input. A special command will be shown to
the user.

The TYPE attribute determines what type of action you're talking about. There are several action
types.

e ACCEPT— A standard acknowledgement of a message or event. By default, this displays
the previous card.

e HELP— By default, this shows a message that no help is currently available.

e PREV— By default, this action shows the previous card. If there is no previous card, the
current activity is canceled.

e SOFT1— Thefirst softkey is pressed.

e SOFT2— The second softkey is pressed.

e SEND— Something is being sent.

e DELETE— Usually used in text-entry fields. This action deletes the character to the left of
the cursor.

Set the LABEL attribute to display a specific command to the user. What happens after the user
selects that command depends on the value of the TASK and DEST attribute.

The most common TASK is GO, which means you want to jump to another document or card.
DEST points to the desired destination. This can be another HDML file, or a card within the
current document.

So, to go from card one to card two

<HDML VERSION=""3.0'">
<DISPLAY>
<ACTION LABEL="Hit Me' TYPE=ACCEPT TASK="GO' DEST="#card2'>
This is card one!
</DISPLAY>
<DISPLAY NAME="'card2'>
And this is card two!
</DISPLAY>
</HDML>

Other TASK values include the following:

104

e GO— Request a specific URL or card, along with the DEST attribute.

e GOSUB— Just like GO, thiswill request a specific URL. However, anew activity is
pushed on the browser stack, which means the browser can keep track of where you're
going and where you've come from. This makes it easy to cancel out or go backwards
logicaly.

PREV— Shows the previous card.

RETURN— Return from a GOSUB nested activity to the previous activity.

CANCEL— Cancels the current activity.

CALL— Changes the phone to voice mode and actually dials the number specified by the
NUMBER attribute.

e NOOP— Do nothing. A way to show a command but "disable" it.

Hyperlinks

HDML allows you to create hyperlinks. However, there is no HREF attribute. Instead, you use
DEST:

Images

Finally, images can be dropped into HDML documents using the <1MG> tag:

Most HDML browsers, such as UP.Link, support 1-bit imagesin the BMP format. Images that are
too large for the display will be cropped, and images that aren't valid will not be shown at all.

WAP 2.0 and xHTML Basic

URL: http://www.w3.org/TR/xhtml1/

The future of wireless markup languages appears to be xHTML Basic. All of the big wireless
players are helping to craft the xHTML specification: Sun, Ericsson, Panasonic, Microsoft,
Openwave (inventor of HDML and one of the main proponents of WAP), Access Co.
(representing iMode's cHTML), and The World Wide Web Consortium (W3C).

The second version of WAP isbased on xHTML. So what isit? The xHTML specification simply
involves taking the whole kahuna of HTML version 4.01 and redefining it as a pure XML
language. The beauty of xHTML isthat today's Web browsers can instantly support and display it.

Aswith today's HTML, the content and layout of all the elements can be created in HTML, and
the presentation look and feel can be specified using cascading style sheets (CSS).

What that means is that tomorrow's wireless languages will be an exact subset of mgjor HTML
and CSS tags and commands. Thiswill make it much easier to define exactly how a mobile
phone's content should look. Theoretically, phones will support slick interfaces, animation, pop-up
menus, and lots and lots of color. It'll also make it really easy to create applications that work on
both the Web and wireless browsers.

NOTE

105

http://www.w3.org/tr/xhtml1/

WAP 2.0 and i-mode’'s cHTML (discussed in Chapter 6) seem to be converging into XHTML.
Openwave, the leading provider of mobile phone browsers, has announced that it will be

supporting XHTML in upcoming rel eases.

Summary

In this chapter, we covered the gamut of wireless technologies that exist today, as well as those
being used to build the 3G systems of tomorrow. In Chapter 5, well focusin on instant messaging,
one of the most popular wireless data offerings.

106

Chapter 5. Let's Talk: Instant Wireless Messaging
IN THISCHAPTER

Messaging And Gaming

Short Message Service (SMS)
Actually Sending SMS Messages
SMS and 2ME
Multimedia M essaging Service (MMS)
Summary

This might sound obvious, but the thing that people find attractive about mobile phonesisn't the
innovative chipsets, advanced voice compression schemes, sophisticated data networks, sleek
liquid crystal displays, or sexy plastic casing. It's the communication. The capability to reach other
people and be reached, anywhere, anytime.

Text messaging picks up where voice communication leaves off. There are many times when a
few thoughtful words are more efficient than along conversation. In the desktop world, messaging
programs such as Y ahoo! Instant Messenger, America Online Instant Messenger (IM), and
Microsoft Messenger have taken the Internet's populace, especially teenagers, by storm.

In case you've been living under arock, all instant messenger programs work as follows: Y ou
create alist of buddies. When one of your buddiesis online, you are notified. Y ou can click on
your buddy's name at any time and type a message to her. She can then type a message back.

In other words, instant messaging combines the articul ate focus and assured delivery of e-mail
with the immediacy of the telephone.

In the world of mobile phones, text messaging is an equally impressive and important
phenomenon. Once again, the trend is being led by teens. Messages can be tapped into mobile
phones and sent to and fro during classes, during work, or while on the run. Y ou can receive a
message while the phone is off, or while you are talking on the other line. Messaging fanatics have
become perfectly adept at typing out complex sentences with tiny numeric keypads.

Messaging And Gaming

Messaging will play amajor rolein gaming. Many of today's games (such as Electronic Art's
Majestic) tap into instant messages as away of communicating with the player. Tomorrow's
handheld games will likely use messaging for many reasons:

e Friends can be notified when another friend islogged in and automatically be matched up
to join the same game session.

e Teamsof players can cooperate during a big multiplayer game.

e Competitors can tease, jab, brag, or cry to each other during games.

e Game status information such as top players, scores, hints, or other meta-game goodies
can be sent as hourly, daily, or weekly updates.

e Messaging can be part of the game itself. For example, in a persistent world space-battle
game you might be able to set up a space station with certain defenses. Y ou can then set
the captain of the station to notify you if it is being attacked. Log off the game and go
about your business. A few hours or days later, while you're in the middle of an important
business meeting, you might get aring on your cell phone notifying you that your

107

station's hull is receiving massive damage from alaser attack. Y ou can then excuse
yourself from the meeting and take care of more important business....

e Some carriers are allowing financial transactions through messaging, so players can pay
for their game sessions this way.

Short Message Service (SMS)

The world's foremost messaging standard is the Short Message Service (SMS), whichisasimple
format allowing for the transmission of alphanumeric messages. Almost every mobile service
provider offers SM'S messaging in one form or another.

If you think of e-mail as aletter, an SMS message is more like a postcard. With SM S, you can
send a quick message to another person by using her phone number as the destination address.

SMSisn't as popular in the United States asit isin Europe and Asia. Whereas American mobile
carriers make it difficult for their subscribers to message outside their networks, most European
carriers have standardized messaging, enabling almost any mobile phone to send text messages to
any other.

According to the GSM Association, more than 50 billion SM S text messages were sent over the
world's GSM networks in the first three months of 2001, and the group forecasts that well over
200 billion globa messages will be sent throughout the course of the year. In 1999, the average
number of SM'S messages was 1 billion per month. Now it's more than 16 billion, and heading
toward 25 billion!

Different carriers charge different rates for SMS. Some carriers actually charge 10 cents to adollar
per message! Others offer a set number of prepaid SM S messages per month.

SMS Specifics

URL: http://www.etsi.org/

SM S was created by the European Telecommunications Standards Institute (ETSI).

SM S messages are pure text. On GSM networks, a standard text message can be a maximum of
160 characters long. Each character is usually defined by a 7-bit alphabet similar to ASCII that
includes major punctuation, accented letters, mathematic symbols, and numerals. Some other
networks permit a maximum of 190 characters.

There are two formats in which you can send and receive SM'S messages.

e Text mode
e PDU mode

Additionally, there are specialized versions of SMS that enable instant pop-up messages, as well
as the capability to tack on multimedia and contact information. Some of these formats will be
discussed later in this chapter.

SMS Text Mode

108

http://www.etsi.org/

SMS's Text mode is a preset and simplified encoding of the bit stream represented by the PDU
mode. In other words, Text mode is the standard way in which English alphanumeric messages
can be sent back and forth.

Most mobile phones support Text mode, and it acts as akind of SMS lowest common
denominator standard.

Protocol Description Unit (PDU) Mode
Using the full PDU mode, any type of encoding can be created and implemented.

Using PDU mode adds a whole bunch of extra headers to the message, increasing the message
size and telling the mobile phone exactly how to encode the a phabet the way the sender intended
it.

Special SMS messages can be delivered from one carrier to another using PDU mode.
Smart Messaging

URL : http://www.forum.nokia.com

Smart Messaging is an enhanced SM S format designed by Nokia. Many other phones support
similar enhanced messages. These usually use a special 8-bit alphabet, with a maximum of 140
characters per message. These 8-bit characters are usually designated for digital data, not text.
Data that can be sent over SM S depends on the carrier, but typical data formats enable the
following:

e Simple black and white images.

New operator logos. For example, if you change your phone service from Sprint to Nextel,

then the Nextel logo can be sent down using SMS.

"Musical notes' for new ring tones.

Business cards and other contact information.

Calendar and scheduling information.

Over-the-air provisioning of WAP access, enabling a carrier to send bookmark lists, WAP

homepage and server settings, and other WAP options.

e The WAP gateway can send the phone URLs using SMS. The phone is smart enough to
grab the URL from the SM 'S message text and request the appropriate WML document.

Unicode Messages

Additionally, 16-bit messages are enabled on many networks. This format can handle a maximum
of only 70 characters per message.

The extended aphabet is used to support the Unicode (UCS2) format, capable of showing
characters from a phabets such as Chinese, Japanese, Korean, Cyrillic, Hebrew, and Arabic.

More information about Unicode can be found at http://www.unicode.org/

Flash SMS

Many mobile phones support Flash SM'S messages. These messages will literally flash up on the
screen as soon as they arrive, without the need for the user to navigate through option menus. This
provides more of aclassic "instant messenger” feel.

109

http://www.forum.nokia.com/
http://www.unicode.org/

Most Nokia, Siemens, Ericsson, and Maotorola phones support this type of messaging. The user
usually has the option to turn Flash SM S off if she findsit distracting.

To send aFHash SMS, the message data-coding scheme must be set to 16-bit Unicode with the
message class 0, and the message should start with the character 0001. Thus, the message length
itself can only be 69 Unicode characters.

Short Message Service Centers (SMSCs)

All SM S messages are routed through a central server, known as a Short Message Service Center
(SMSC). The SMSC is software that basically acts as a post office. It sits atop the operator's
network and queues up messages, bills the sender, routes messages to phones, notifies the sender
if the message can't be sent, and even sends return recei pts when the messages are read.

The reason an SMSC is needed is that mobile phones are not always on. Users often switch their
phones off, are out of the network coverage area, or run out of battery power. The SMSC stores
each message and queuesit up, trying to send it out as soon as possible. If the phone is unavailable,
the SMSC will periodically keep trying. After the message is successfully sent, the SMSC deletes
the message from its cache and continues on with other work.

Most operators permit you to tap into their SM SC using the Web or other open Internet

connections. Every provider uses different protocols for their SMSC. For example, CMG uses a

protocol called UCP/EMI, Logica uses SMPP, SEMA uses SM S2000, and Nokia uses CIMD.
NOTE

Game devel opers who plan on sending alot of messages may need special permission or
access from various carriers. Carriers are aso sensitive about the type of information you send
over their network, and want to avoid anything that can be construed as unwanted advertising,
or spam.

Figure 5.1 showsthe typical SMS architecture: Either a phone or Web server gateway machine
can connect to a SMSC to send or receive SM S messages.

Figure 5.1. The SMS architecture.

110

Short Message
Service Center

(SMSC)

Wireless

Web/Computer

|

=

[—
[—
——

oL

—
—

Mobile Phone 1 Mobile Phone 2 WEB Server

Free SMS Service
The following are several SM S services you can use to send SM S messages from the Web:
e Free SMSaround the world

http://www.worldxs.net/sms.html

e GoZing

http://www.gozing.com/

e MTNSMS

http://www.mtnsms.com/

There are also several services that enable you to use SMS to reach various Internet gateways.
Many service providers have created their own portal, enabling you to send and synchronize your
e-mail, schedule, or other contact information using SMS. For example

e Sprint PCS

http://www.messaging.sprintpcs.com/sms/

e Nextel

http://messaging.nextel.com/

111

http://www.worldxs.net/sms.html
http://www.gozing.com/
http://www.mtnsms.com/
http://www.messaging.sprintpcs.com/sms/
http://messaging.nextel.com/

e Airtouch (Verizon)

http://www.app.airtouch.com/text messagi ng/w.html

e Cingular

http://www.mywirel esswindow.com/interactive messaging

e AT&T Wireless

http://www.mobil e.att.net/mc/personal/pager show.cqi

e Globtel

http://globtel .sknet.sk/

e Eurotd

http://www?2.eurotel.cz/sms

Some carriers also allow you to use SM S to access the wider Internet. For example, one free
server can be found at http://www.excell.to/. After you have registered, you can get the phone
number of the gateway (whichisin Italy) and actually send out an e-mail using SM S and the
following format:

EMAIL user@domain .subject.message body

Actually Sending SMS Messages

Desktops or servers can send SMS messages directly to a mobile phone by using the phone or
SMCS software as a modem. Many mobile phones have cables enabling you to attach the phone to
your computer's serial port.

If you are interested in creating your own SM S server, this can be a good way to tap into the
wireless network and begin playing around.

To use SMS, send standard AT modem commands through the serial port and into the phone. For
example

o AT+CMGF=1
Changes the SM S sending mode to Text mode. Type 0 is used for PDU mode.
o AT+CMGS="'5551234567"

<message>

<Ctrl>+<zZ>

This sequence dials the number (555-123-4567 in this case) and sends the message.

112

http://www.app.airtouch.com/text_messaging/w.html
http://www.mywirelesswindow.com/interactive_messaging
http://www.mobile.att.net/mc/personal/pager_show.cgi
http://globtel.sknet.sk/
http://www2.eurotel.cz/sms
http://www.excell.to/

To test some of this stuff out, you can use the Hyper Terminal program that comes with Windows
(3.1 or later).

Luckily, however, there are some ready-made SM S tools for you to tap into or interface with.

SMS Tools

There are numerous SM S tools on the market, most of them geared toward carriers, large
corporations, and other organizations that want to add SM S capabilities to their communications

arsenal.

The following are some examples:

SMS Gateway

http://www.winsms.com/

A utility that lets anyone send and receive text and binary SM'S messages over GSM. The
package also comes with a gateway that other Windows applications can communicate
with using DDE, OLE, or the command line. If you want to create a huge game reliant on
SMS, this package is worth checking out.

SMS-JDK

http://www.noctor.com/

This package, by Noctor Consulting, is a 100% Java interface to the SMS protocol. You
can create Java applications that talk to the SMSC synchronously or asynchronously, with
multithreading and custom call-backs. This means that several Java objects can
communicate with one or more SMSCs at the same time. Additionally, applets can use a
special SMS-JDK proxy to communicate with an SMSC.

Kuulalaakeri

http://www.kuul al aakeri.com/

ThisisaUnix-based SM S gateway, based on the HTTP request method. Y ou can tap into
the API with any other program.

SMS and J2ME

If you want to create a Micro Java game that uses wireless messaging, you can send out SMS
messages using the followings steps:

1. Gainaccessto a SMSC that supports your subscribers. Y ou might need to contact various

wireless networks to arrange this. There are also companies that can act as athird party
provider of SMS services for you.

Create or buy an SM S gateway server that lets you send commands to the SMSC over the
Internet.

Create a database indicating different game players, what type of SMS service they use,
and what their phone number is.

113

http://www.winsms.com/
http://www.noctor.com/
http://www.kuulalaakeri.com/

4. When you want to send a message to a user, have the gateway send the message to the
appropriate SM SC, along with the number to dial.
5. The SMSC will ship off the desired message to the desired user.

If you want to receive SM S messages from game players, then the processis similar:

1. Createor hirean SMS out to a service that can handle the receipt of SMS messages. Y ou
will need to give out a telephone number that players can dial.

Some game devel opers have struck deals with wireless providers and been given access to
a short, special number. For example, to play Sonera Zed's Fisupeli fishing game, players
can begin fishing merely by sending out a text message that says"FISU" to the specia
phone number 400.

2. When players send an SM S message to this number, the SM SC will decode the message
and route it to your game server, along with the phone number or ID of the person who
sent the message.

3. Youcanlook up the player in your user database and adjust their game state as needed,
and possibly send them out another SM'S message as a response.

Sample Server Code
Actually sending an SM S message, then, might work according to the following process.
Y ou will need to have all the following piecesin place:

e Thecell phone number of aplayer. Let's call the variable pNumber.

e Themessageto send, stored in aString variable caled pMessage.

e Knowledge of which cell phone provider the player isusing.

e Accessto that cell phone provider's SMSC.

The access will usually be through a servlet with a command structure similar to

http://www._myprovider.com/sendsms?msg=Message&destination= 555-765-
4321&cal lback
_number=555-123-4567 &priority=normal& date=4/15&time=10:30

To send amessage to a specific provider, your Java code will look similar to the following:

String smsMsg = new String();

smsMsg = ""msg="" + URLEncoder .encode(pMessage);

smsMsg = smsMsg + "&destination=" + URLEncoder.encode(pNumber);
smsMsg = smsMsg + "&callback_number=123456789";

smsMsg = smsMsg + "&priority=normal";

int date,month,hour,minute;

Calendar cal = Calendar.getlnstance(TimeZone.getTimeZone("'EST'"));
date = cal .get(cal .DAY_OF_MONTH);

month = cal.get(cal .MONTH) + 1;

hour = cal .get(cal .HOUR);

minute = cal.get(cal .MINUTE) + 1;

smsMsg
smsMsg

smsMsg + ""&date=" + URLEncoder.encode(month + "/ + date) ;
smsMsg + "&time=" + URLEncoder.encode(hour + ":" + minute) ;

URL cellUrl = new URL('http://www.myprovider.com/sendsms™);

114

HttpURLConnection conn = (HttpURLConnection) cellUrl.openConnection();
conn.setRequestMethod("'POST™);

conn._setDolnput(true);

conn._setDoOutput(true);

conn.setUseCaches(false);

conn.setRequestProperty (“'Content-Type"™, "application/x-www-form-
urlencoded™);

DataOutputStream ds = new DataOutputStream (conn.getOutputStream());
ds.writeBytes (smsMsg);

ds.flush(Q;
ds.close();

Note that you use the URLEncoder .encode () method to convert any strings into valid escape
characters able to be sent over HTTP.

Multimedia Messaging Service (MMS)

URL: http://www.wapforum.org

URL: http://www.3gpp.ora/

Multimedia Messaging Service (MMYS) is the next generation of wireless messaging. Focusing on
entertainment applications, MMSis like a supercharged version of SMS with the capability to
send e-mail, audio, video, and presentations. The MM S specification was created by the WAP
Forum and the Third Generation Partnership Project (3GPP).

MM S uses alanguage called Synchronized Multimedia Integration Language (SMIL), which acts
as asort of script indicating exactly how and when multimedia should be displayed. This permits
you to create small presentations and animations, not to mention rich game scenarios.

When a user gets an MM S message, a sort of slide show with audio and graphics begins playing
right on their phone's screen. The user can generally choose to rewind and watch the slide show
again, deleteit, or storeit for later viewing. Phones can only store a limited number of MMS
messages before running out of room, so MM S messages usually expire after afew days.

NOTE

In general, MM S isintended only for carrier networks that can transfer data at a rate of
14.4Kbps or better.

Multimedia Message Service Centers (MMSC)

Just as SM S has its SMSCs, MM S has MM SCs that act as a central post office to send and receive
each message. An entire MM Sis sent in the background, using WAP's Wireless Service Protocol
(WSP) to "push” content down to the phone. As such, WAP 1.2 or better is needed to support
MMS.

MM S messages might take awhile to reach the phone. For example, if amessage is 50 kil obytes
long (400 kilobits), and is sent over a network that supports 10K bps bandwidth, it will take 40
seconds to send the message down. However, MM S phones will not notify users of a new message
until it has been entirely downloaded and is ready to play. This makes messages "seem"” instant.

115

http://www.wapforum.org/
http://www.3gpp.org/

MM SC aso features distribution lists, enabling a sender to compose one message for many
recipients.

Crack a SMIL

URL: http://www.w3.org/TR/REC-smil/

The Synchronized Multimedia Integration Language is, as its name implies, a language that
enables you to synchronize the playback of multimedia content. The language can juggle music,
voice, images, text, and even video. It shows exactly where visual elements are laid out on the
screen, when to play audio el ements, and how long everything is displayed before switching to a
new "dlide.”

The language is based on XML, which isvery similar to HTML, and was developed by major
television, audio, new media, and video companies. The World Wide Web Consortium (W3C)
standardized the final specification.

The content in SMIL messages is encapsulated using standard MIME types, with various phones
capable of displaying and dealing with different formats of multimedia. Almost every MMS-
capable phone will support these formats:

Text

JPEG

GIF

AMR Voice

Additionally, different carriers will permit different message lengths. Nokia, for example, is
planning on permitting messages from 30 to 100 kilobytesin size.

Simple SMIL Example

Using MMC and SMIL, then, you could create a game that shows a tiny image of your evil
nemesis taunting you in aleft-hand pane while text statistics about your army scroll by on the
right. Meanwhile, scary music could play.

A SMIL file to achieve this might look something like this:

<smil >
<head >
<layout >
<root-layout width="580" height="213" background-color="black"/>
<I- Text region —>
<region id="text" left="0" top="0" width="50" height="100"/>
<I- Image region —>
<region id="images" left="101" top=""0" width="50" height="100"/>
</layout>
</head >
<body>
<par>
<text src=""message.txt" region=""text_region" begin="1s" />

<audio src="scary.au" clip-end="145s" />
</par>
</body>
</smil>

116

http://www.w3.org/tr/rec-smil/

The preceding file only shows one sequence. Y ou could easily use SMIL to set a duration for the
sequence and then swap out graphical elements, add new text, and so on.

Enhanced Messaging Service (EMS)

URL: http://www.3gpp.org/

Because networks and phones that can support MM S will take awhile to hit the market, Alcatel,
Ericsson, Motorola, and Siemens have developed an interim messaging standard called the
Enhanced Messaging Service (EMS). The standard is defined by the Third Generation Partnership
Project (3GPP).

EMS adds images, audio, melodies, and animations to SMS. Unlike MM, which turns messages
into a full-fledged slide show, EM S works more like a still picture. For instance, if you receive an
EMS message, a specia icon will indicate that an image, some music, or even abrief animationis
attached. The EM'S message can even combine types, so that a black and white graphic appears
next to the message while asmall clip of music plays in the background.

Features that EM S supports include the following:

e Text formatting—Text can bejustified right, center, or left. And alarge or small font can
be used along with bold, italic, underlined, or strikethrough text.

e Black and white bitmap graphics—There are three supported graphic formats. Small
(16x16 pixels), large (32x32 pixels), or custom. The maximum picture size is 96x64.

e Audio—Y ou can compose simple melodies using 10 predefined sounds such as chimes,
chords, ding, "tada," claps, or adrum. Y ou can aso define and transmit your own 128-
byte sounds.

e Animation—Two sizes of animation will be supported, (8x8 pixels) and large (16x16
pixels). Many phones will have predefined animations stored on the phone showing
characters with emotions such as sad, happy, skeptical, flirty, and grieving. These
animations can help punctuate text messages. Custom animations can aso be sent over
theair.

EM S-capable phones will begin shipping at the end of 2001 and are expected to be popular and
widely used near the end of 2002.

Summary

Asyou can see, messaging is simple to program. In fact, the key to dealing with messaging has to
do more with setting up relationships with wireless carriers than hardcore programming or
technical know-how.

Messaging provides an extremely compelling way to push content to game players, aswell asa
simple way of having players send information back to the game. Text and multimedia messaging
will only continue to grow in popularity asit catches on with more and more people.

The next chapter will discuss the i-mode network, which has taken wireless Japan by storm. The
Compact HTML language used to create content for i-mode will also be explained.

117

http://www.3gpp.org/

Chapter 6. Wireless in Asia: i-mode and cHTML
INTHISCHAPTER

Using i-mode

Compact HTML (cHTML)
Development Tools
Testing and Emulators

Summary

There are tons of mobile phone users throughout the world, with the numbers growing rapidly.
However, it seemsthat no place on Earth is as crazy for wireless computing as Japan. In fact, as of
early 2001, 81% of the world's wireless Internet users could be found in Japan—we're talking
about 20 million people!

There are many reasons for this success: dial-up Internet connectivity is expensive compared to
mobile access; Japanese people spend an extremely large amount of time on public transportation;
and Japanese culture meshes well with "cute" gadgets. But the foremost reason for the success of
wireless computing is that Japan's leading wireless provider, NTT DoCoMo, made some smart
choices and put together the right technologies and infrastructure to make mobile data access fun,
easy, and well worth its price.

The network that serves al thisup is called i-mode.

If you livein North America, i-modeis also coming to a phone near you: Last year, NTT
DoCoMo bought 16% of AT& T Wireless, as well as pieces of wireless companiesin the
Netherlands, United Kingdom, Taiwan, and Hong Kong. In fact, the first American i-mode service
is expected to roll out in Sesttle at the end of 2001.

Using i-mode

NTT DoCoMo has focused on making i-mode easy to use. If you opt to add i-mode service to
your mobile phone, there will usually be a special button for i-mode features. When you press this
button, a special menu with your favorite sites pops up, aong with an index of 600 preferred i-
mode partner sites.

i-mode service costs 300 yen (about $3) per month, and you are charged 0.3 yen for every 128-
byte data packet. Unlike most American and European wireless services, you are not charged
based on how long you are connected, but based on how much data you transfer. Thisis another
big reason for i-mode's success: If you download a small adventure story and read it for 30
minutes, you are only charged afew pennies for the download size, not exorbitant fees for the 30
minutes.

NOTE

Many i-mode games are designed to have small packet sizes, with requests for new data as
infrequently as possible.

In addition, most of i-mode's most popular sites charge a monthly access fee. Many game portals,
for instance, charge an additional 300 yen per month. The charge is automatically tacked on to
your wireless hill, and profits are split between NTT DoCoMo and the content provider.

118

NOTE

If you want to become an i-mode developer or find out more information about the business
model, check out the English Web site at http://www.nttdocomo.com/

Many of today's i-mode handsets feature color screens. The latest i-mode phones now also support
aversion of Javacalled iAppli. For more information about this, check out Chapter 22, "iAppli:
Micro Javawith a Twist."

NOTE

Note that the maximum size for an i-mode page, including all cHTML markup and image, is
5KB. Anything larger than that will not be downloaded. NTT DoCoMo, in fact, recommends
you limit your pages to 2KB.

Compact HTML (cHTML)

URL: http://www.w3.0rg/TR/1998/NOT E-compactH TM L-19980209/

Just as WAP has WML, the markup language used to create i-mode sitesiscHTML. cHTML is
nothing more than a subset of HTML versions 2.0, 3.2, and 4.0. The language also has afew
special extras, such as tags that enable the user to dial avoice phone connection. There are also a
special set of characters called emoji that enable you to drop in small graphic icons based on
emotions, communication, transportation, and home life.

The simplicity of cHTML is also its power. Devel opers can use the dozens of Web authoring tools
and services out on the market to build cHTML. In addition, avalid cHTML page is, by definition,
valid HTML, and thus can be run or tested in any Web browser—although certain tags are specific
to i-mode and will not show up properly. Furthermore, i-mode users can access any Web page in
the world and see a simplified but complete version of it on their mobile phone screens.

WARNING
In practice, if you try to browse a Web page that hasn't been formatted for the small screen
using cHTML, the page might be bigger than your handset's display size or memory, and only

aportion of it will be shown.

Unlike WML 1.1, cHTML supports color, precise text and graphic placements, and other features
more typical of complex, rich Web pages than the typical dinky wireless data applications.

CHTML was created by Access Co., Ltd. The World Wide Web Consortium (W3C) standardized
the language in 1998. NTT DoCoMo phones currently run three versions of cHTML, each more
sophisticated than the previous one.

Character Sets

Because i-mode is currently only available in Japan, if you want to create an i-mode game you
would do well to write al text in Japanese. The name of the encoding standard used with i-mode
is Shift-JIS.

English characters, using the Western Encoding standard (1SO-8859-1), are also supported.

119

http://www.nttdocomo.com/
http://www.w3.org/tr/1998/note-compacthtml-19980209/

Emoji

URL: http://www.nttdocomo.co.jp/english/p_g/i/tag/emoji/

One of i-mode's most often used features are small graphical icons known as emaji, or "picture
characters." In all, there are 196 different icons, each the size of atext character, which can be
dropped anywhere in acHTML page.

Because the full set of emoji are stored on each i-mode phone, no graphical download is necessary.
To create an emoji using cHTML, just use the &# escape characters along with the decimal code,
followed by a semicolon. For example:

&#H63647;
Emoji are associated with the following:

Wesather

Zodiac signs

News and sports

Mood

Flirtation

Emotions
Transportation and travel
Finance and credit cards
Math

Places

People

Several emoji can be seenin Figure 6.1.

Figure 6.1. A few emoji.

L

.=
N
"o

v, o B

+

A full list of emoji can befound at NTT DoCoMo's Web site.

CcHTML Structure

120

http://www.nttdocomo.co.jp/english/p_s/i/tag/emoji/

A cHTML filelooks exactly like an HTML file. It begins with <HTML>, ends with </HTML>, and
has a <HEAD> section and a <BODY> section:

<HTML>

<HEAD>

<TITLE>My Page</TITLE>
</HEAD>

<BODY BGCOLOR=""#000000"">
</BODY>

</HTML>

NOTE

The BGCOLOR background color attribute, of course, is only relevant on color phones. Black
and white phones will ignore any color settings.

If you like, you can use <META> tags to let search engines and other Web-sniffing software know
that the document is cHTML. The description should be fewer than 10 characters long:

<META name="CHTML"™ content=""yes''><META name="‘description”

content=""Neat Page''>

Although using <META> tags is recommended, it is not required.

Standard cHTML Tags

Table 6.1 includes alist and short description of the common tags and tag attributes that i-mode's
version of cHTML supports. For an in-depth description of these tags, it is suggested that you pick
up a separate book about HTML or cHTML.

Table 6.1. Image Format Support

href=http://www_base.com/>

Tag Function

<l— > A comment.

&XXX; Designates an escape character. For example,
& creates an ampersand.

<BASE A base URL. All paths used in the file will be

relative to this URL.

<BL INK>

Blinks text.

<BLOCKQUOTE> Puts text in a special quote block, surrounded by
quotation marks.

 A line break.

<CENTER> Centers blocks of text, images, or tables.

<DL>, <DD>, <DT>

Creates a definition list.

<DIR> or <MENU> along with <L 1>

Creates a list of menus or directories.

<DIV align=""left">

Aligns a block of text to the left, center, or right.

\

\Changes the color of a given piece of text.

‘<HR>

\Creates a horizontal rule (a line).

‘ or along with <L 1>

\Creates an ordered or unordered list.

<OBJECT>

Adds a Java applet or other object to the page.
See Chapter 22 for more information.

‘<P>

\Creates a paragraph text block.

121

<PLAINTEXT> Displays text exactly as typed, including all white
space or other characters.

<PRE> Displays text in preformatted font, including line
feeds and white space.

Input Forms
cHTML enables you to create forms in exactly the same way you would with HTML.

Use the <FORM> and </FORM> tags to indicate aform, and use the method attribute to get or
post the form to a servlet or other server-side CGI script. An additional attribute called utn
enables you to designate the user's identification.

The <Input> Tag

Y ou can then use the <INPUT> tag to create various input widgets, using the name attribute to
name each field. For example

e <INPUT type="text" name="myfield" size="10">— Createsatext field that
is 10 characters wide. Thisis the default type. If you don't include a type attribute, then
the input widget will be atext field.

e <INPUT type="'password"” name="mypass" value="hello">— Createsa
password field with the initial value of "*hel o™

e <INPUT type="checkbox' name="box1" checked>— Createsatrue/fase
checkbox that is checked by default.

e <INPUT type="radio"” name="radiogrp'>— Createsaradio button.

e <INPUT type="hidden"™ name="secret" value="secretval''>— Createsa
hidden field, enabling you to pass back variables to the server without the user being
aware of it.

e <INPUT type="submit™ value="Hit Me'">— A submit button. When thisis
pressed, the form names and values will be passed to the server, asindicated in the
<FORM> tag's method attribute.

e <INPUT type="clear”™ value="Reset Form'>— A clear button. When thisis
pressed, all text fields are emptied.

Special Form Attributes

An additional parameter you can add to most types of <INPUT> tagsis accesskey. This useful
option lets you associate a numeric key on the phone's pad with the input element. When this key
is pressed, the given input widget will automatically be selected. Y ou can set this value from O to
9.

For example, if you want to make it easy for a user to quickly access an input field to enter their
name, you can write

Name: <INPUT name="Myname' accesskey=""1">

Additionally, the i sty l e attribute lets you set the default character input mode. Supported in
cHTML version 2, this attribute can help users quickly fill in forms. Vauesinclude

e 1— Full-space kana (Japanese | etters)

o 2— Half-space kana (Japanese |l etters)
e 3— Alphabetic

122

e 4— Numeric
For example, if you have an input field for a phone number, you can set the default to numerals:
<INPUT istyle="4">
Password-type fields are automatically set to use the numeric style.

The <Select> Tag

Y ou can easily create a selection list using the <SELECT> tag. For example

<SELECT name="mylist" size="3" multiple>

<OPTION selected value="1">First Value</OPTION>
<OPTION selected value="2">Second Value</OPTION>
<OPTION selected value="3">Third Value</OPTION>
</SELECT>

The si ze attribute indicates the maximum number of rows long the list should be. The
multiple attribute permits the user to select more than one option.

The <TextArea> Tag

Finaly, the <TEXTAREA> tag is available for you to use. For example, to create a text box that is
2 rows high and 15 characters wide:

<TEXTAREA name="mytext" rows="2" cols="15">
Like other input widgets, it can be given an accesskey or istyle attribute.

The Anchor Tag

One of the most important tags is the <A> anchor tag, which permits you to jump back and forth
between different documents, or within the same page. To create an anchor, you use the name
attribute

And then to jump to the anchor

Y ou can aso jump directly to another cHTML page by designating the URL.:

Extended Anchor Tag Functions

There are also some specific commands that HTML doesn't support. The <A> tag can handle the
accesskey attribute. For example, you can set it up so that if the user hits the 3 key, she will

automatically be taken to the Neato.com cHTML site:

Hit 3 To Go To
Neato

123

But wait, there's more! Y ou can actually permit a user to dial the phone from acHTML page:
Call Mr. Suzuki
Y ou can also add arecord to the mobile phone's stored tel ephone book:

Add Suzuki
to the Phone Book

Additionally, you can also ship off an e-mail to a specific address with a given subject and body:

<A href="mailto:test@test.com” subject="My Subject" body="This is an
e-mail [ic:ccc] from
i-mode."">Send an E-maill

More info about these tags can be found on NTT DoCoMo's Web site at
http://www.nttdocomo.co.jp/english/p_gli/tag/.

Images

Y ou can use GIF- and JPG-formatted imagesin your cHTML pages. Note, however, that the
image size needs to be smaller than your target screen—usually that means the image will be
100x100 pixels or fewer.

Using a GIF with cHTML isthe same asusing onein HTML:

You can aso use the al ign attribute to align nearby text with the image (set to top, middle, or
bottom).

Additionally, you can set thewidth, height, and hspace for horizontal space to the left and
right of the image, or vspace to add buffer space above and below the image.

Although many i-mode handsets only support black and white screens, a growing number feature
256-color screens. Many of today's i-mode handsets are also capable of displaying animated GIF
89aimages.

Table 6.2 shows which types of images are supported by various cHTML versions.

Table 6.2. Image Format Support

[Format 3.0 2.0 11.0

Non-interlaced |Supported Supported Supported

GIF

Interlaced GIF |Supported Supported Converted to non-

interlaced GIF

Transparent GIF|Supported Supported by color |Converted to non-
phones interlaced GIF

Animated GIF |Supported Supported Converted to non-

89a interlaced GIF

JPEG Only supported by some [Not supported Not supported

phones

124

http://www.nttdocomo.co.jp/english/p_s/i/tag/

There are some limitations and guidelines for animated GIFs:

e Themaximum length isfive frames.

e Themaximum size is 94x72 pixels. In fact, the 94x72 limit is agood rule of thumb for all
images, and will be guaranteed to appear on every handset.

e Theanimation can only be played up to 16 times.

e Only four animated GIFs can be used in the same document.

Always remember to keep the document beneath the 5KB file size maximum!
<Marquee>
Ancther neat tag that cHTML supportsis <MARQUEE>, which allows you to add horizontally-
scrolling tickersto the cell phone screen. The marquee is one line high and as wide as the screen
alows.
The <marquee> tag takes the following attributes:

e behavior— You can set thisto scrol I to have text stop at the edge of the screen,

sl ide to make text slide offscreen, or al ternate to haveit scroll back and forth.
e direction— Setthisto left or right to indicate which direction you want the text

to scrall.
e loop— Indicate how many different times you want the text to scroll. The maximum
valueis 16.

Development Tools

There are a number of different cHTML- and i-mode-specific development tools that enable you
to quickly craft and test your i-mode site.

Here are afew to check out:
e WapProfit i-mode Editor

URL : http://www.wapprofit.com/products/imodedownl oad.html

A Windows editor specifically geared to i-mode. Y ou can easily create quick menus and
emulate your site on atypical handset.

e« i-JADE

URL : http://www.zentek.com/i-JADE/

Ancther complete i-mode devel opment environment.

Testing and Emulators

After you've completed your i-mode site, you might want to be sure it looks good on a number of
different handsets.

125

http://www.wapprofit.com/products/imodedownload.html
http://www.zentek.com/i-jade/

Because CHTML is ultra-similar to HTML, you can actually test out much of your site using
Internet Explorer or Netscape. However, thisis only a good way of ensuring that all links are
working properly. Y ou won't be able to get areal idea of what your page will look like on an
actual phone. Also, i-mode-specific tags and emoji will not work.

Unfortunately, most i-mode emulators are currently in Japanese. The reasons for this are obvious:
The vast mgority of i-mode users are Japanese, and in Japan it is very easy to use an actua i-
mode phone to test your cHTML pages. Additionally, i-mode has an extremely wide variety of
handsets. It is difficult to see exactly what users experience without using areal i-mode handset.

There are anumber of emulators available, however, to give you a general sense of how things
will really shape up. Unless you speak the language, you might have to play around a bit before
understanding how everything works.

e |-Tool

URL : http://www.asahi-net.or.jp/~tz2s-nsmr/soft/itool/i-tool .htm

Shown in Figure 6.2, thisis a full-featured i-mode Emulator that simulates D501i/F501i,
P501i, and N501i phones

Figure 6.2. An i-mode emulator.

126

http://www.asahi-net.or.jp/%7Etz2s-nsmr/soft/itool/i-tool.htm

Hi®-# Tool

7a| ot | | 2w |
Ihttp:ffwww.dh—suft.cn.jpJ-'ril.n.lel:nj Go |

SOt
What ' s new!
@2 L4
B
PR <SNiIEELT
S . w2 ETR

EWE" - bl-4
(71531 15 %R

C.medias Compact NetFront

URL: http://www.c-media.com/mail/formmail.html

Ezos

URL: http://www.ezos.com/

A three-in-one cHTML, WAP, and XHTML browser.
i-browser

URL: http://www.charlietai.com/imode/

A Windows i-mode browser.

127

http://www.c-media.com/mail/formmail.html
http://www.ezos.com/
http://www.charlietai.com/imode/

e | monde

URL: http://www.monde.to/imode/

An online i-mode browser.
e The Pixo Internet Microbrowser

URL: http://www.pixo.com/

A browser that supports both standard HTML and cHTML.
e X9i-Mimic

URL : http://www.x-9.com/mimic/

A full i-mode emulator. The emulator is Web-based and tells you the document size,
image size, and total size. It will even estimate the page download time and packet charge.

Additionally, there are third-party testing companies who will test your i-mode or iAppli pages on
tons of actual i-mode handsets. For example, check out NooperLabs at http://nooper.co.jp/labs/.

Summary

Asyou can see, i-mode and cHTML provide developers with a pretty powerful and easy-to-write
method for bringing content to wireless phones.

As i-mode becomes more widespread, you can expect to seeit evolve and possibly even merge
with WAP to provide a powerful framework in which to place your Micro Java games.

Just as Java applets sit in HTML Web pages, your games can be surrounded by and supported by
these cHTML pages. Chapter 22 has more information about how to make this happen.

128

http://www.monde.to/imode/
http://www.pixo.com/
http://www.x-9.com/mimic/
http://nooper.co.jp/labs/

Chapter 7. The Wireless Landscape

INTHISCHAPTER

Bluetooth

Mobile Positioning
m-Commerce

Voice and Telephony
Unified Messaging (UM)
Summary

Using mobile phones to gab with friends is mighty cool—and convenient. Wireless telephony is
so easy and routine these days that most of us take for granted the fact that we can carry
worldwide communications gizmos in our hip pockets. But there are other uses for wireless
devices—stuff that has the potential to make the cool even cooler. These enhancements are the
stuff of science fiction, with vast implications for gaming and entertainment. Some of these
enhancements are available today, some coming soon.

While the standards and protocols used in the wireless world are in constant flux, there are several
that look like they're here to stay. These include the following:

e Bluetooth—A short-range wireless protocol that can turn the world into a vast high-speed
data network.

e Mobile positioning—A set of technologies that can pinpoint exactly where in the physical
world somebody is located.

e Mobile commerce (m-commerce)—V arious technol ogies that make charging or
transferring money quick and easy.

e Voice activation—Mixing voice with data in voice portals, or using one's voice as a
navigation interface.

Bluetooth

URL : http://www.bluetooth.com/

The colorfully-named Bluetooth is simply a standard for transmitting data using short-range radio
waves and low power. The radius that Bluetooth can operate within is about 33 feet (10 meters).
Radio waves can pierce most walls, and there's no requirement for two devices to be within line-
of-sight of each other.

There are millions of possible uses for Bluetooth:

e Computers, PDAs, mobile phones, and other devices can constantly be talking to each
other, synching address books and e-mail addresses. There's no need to place devicesin
cradles or point infrared portsin the right direction.

e Businessfolk can walk around a convention center and automatically collect a phoneful
of business cards and even product brochures.

e A digita video or still camera can take photos or movies, sending them to the nearest
mobile phone. The phone can then slowly transfer the images to a remote server.

e A laptop or mobile phone can zap documents to a nearby printer without any cables or
hook-ups.

129

http://www.bluetooth.com/

e A person can bounce between different offices around the world and instantly use her
mobile phone, laptop, or PDA to tap into the company's network, accessing data and
services.

e Storescan create incentives that "flash™ advertisements or coupons to people's cell phones
asthey walk past.

e A phone can become a Personal Trusted Device (PTD), which iskind of like awireless
extension of you and your wallet. Y ou can use your mobile phone to gain access to your
home, office, or top-secret cryogenic research laboratory. Y ou can also use your phone to
make purchases without swiping a credit card or signing adlip.

e A bunch of peoplein the same vicinity can play a high-speed multiplayer game, with
quick reaction times and trigger-finger reflexes.

A Bluetooth device sends data in the 2.4GHz band, at a data rate of about IMB per second.
Compare that to today's second-generation wirel ess networks, which are lucky if they can reach
14.4 kilobytes per second. Even when third generation networks become prominent, local network
technologies similar to Bluetooth will aways be faster than cell-based communications.

Nokia, Ericsson, Motorola, and most other mobile device manufactures have begun releasing
Bluetooth-enabled devices. Development kits for these devices are usually available on the
manufacturer's Web sites.

NOTE

Bluetooth's name, by the way, comes from a 10th century Viking king named Harald
Bluetooth. The protocol is named after him partially because he has aweird name, but also
because he was a big believer in bringing different nations together. He helped unite Denmark
and Norway.

Bluetooth Protocols

The current Bluetooth specification is huge and very complicated. However, there are three major
protocols defined; knowing about them might help you understand Bluetooth's various uses. The
three protocols are as follows:

¢ RFCOMM—AIllows basic stream connection between two devices.

e OBEX—Object-oriented exchanges. Establishes a standard way for hierarchical files,
contacts, or calendar information to be synchronized and transferred.

e Service Discovery Protocol—A sniffing service that lets Bluetooth devices find one
another and register various services.

Bluetooth and Java

URL : http://jcp.org/jsr/detail /82.jsp

WAP or 2ME data can easily ride over a Bluetooth transmission stream. For example, a WAP
browser should be able to grab a WML page or image from a nearby server using Bluetooth
instead of HTTP.

Thereis currently a specification in the works to create a standard set of Java APIs for Bluetooth.
The hope isto create an API based on the Generic Connection Framework defined in the CLDC.
We will discuss the Connection Framework in later chapters.

Other Short-Range Applications

130

http://jcp.org/jsr/detail/82.jsp

There are anumber of other protocols and methods of having a mobile phone communicate with
nearby devices. Many phones already have infrared ports, capable of beaming data to laptops,
Palms, and so on. An infrared beam's range, however, can reach only afew feet at most. And
infrared ports must be in direct line-of-sight.

The i-mode service, for instance, has run trials of a service called Cmode. According to an NTT
DoCoMo press release, the 'C' stands for "Coca-Cola, culture, and communication.” Cmode
permits the phone to act as a payment and control device. Point your phone at a Coke machine, hit
aspecia code, and a can of your chosen drink pops out. The charge for your soft drink will show
up on next month's mobile bill. Y ou can aso earn incentive points with every purchase, which can
be cashed in for free drinks or other prizes.

Additionally, some vending machines are already able to send wireless messages to vendors when
they are empty or in need of repair.

Other uses for short-range communications include the capability to control your home's lights,
doors, or heating. One could even unlock one's car using a cell phone.

Broadband's Promise

In the gaming world, companies are looking at short-range transmissions to give small devices the
power of powerful game servers. For example, complex game software rendering or physics
routines can run on a strong processor, and the results can be streamed down to the handset.

Eventually, wireless Local Area Network (W-LAN) and other solutions will permit datato be
transferred to and from wireless phones at true broadband speeds.

Mobile Positioning

One of the most useful, most exciting, and spookiest wireless enhancements is mobile positioning.
Because many people carry mobile phones with them all the time, it can be said that a personis
their phone. And a phone's location pinpoints exactly where a person is, and where they've been.

Although positioning has alot of potential for abuse, with the right privacy controls it can become
awonderful thing. Not only can positioning save lives by helping police cruisers, ambulances, and
fire trucks find the source of an emergency call, but there are countless business, entertainment,
and game-specific applications.

Positioning, in fact, has the potential to mix the palpable joys of humans meeting each other in
rea life with the fantastic and organizational elements of adigital medium. With exact mobile
positioning, games can begin to play people, rather than vice versa.

How It All Works

Thisfield of mobile technology is known as Location Based Services (LBS). There are severd
components to any location system:

e Geographic Information Systems (GIS)—Thisis the map itself, along with tools that can
bring map data down to the handset. V arious systems can handle road maps (with streets,
buildings, landmarks, gas stations, restaurants, bars, and so on) as well as topographical
maps (mountains, rivers, forests, and so on).

131

e Location Management—This piece of software acts as atrandator between the
positioning equipment and the network servers that help use the location coordinatesin a
useful way.

Some of the major categories of Location Based Services include the following:

e Tracking—Entire fleets of trucks, boats, soldiers, or gamers can be tracked. Users can
also subscribe to various m-commerce applications that track the user's whereabouts
throughout a city and notify a person when he walks near a store that is offering asale on
aproduct that the person desires.

e Emergency—When a user dials an emergency number, the authorities will know exactly
from where the call has been issued. The Federal Communications Commission (FCC)
has asked all United States wireless carriers to provide accurate location information
when users dial 911.

e Billing—BYy knowing where you are, your phone can figure out the cheapest or fastest
carrier based on your area and use that network for all its traffic.

e Location Based Information—The most useful for games. By knowing a user's location,
all sorts of funky things can happen within the game universe. Other typical applications
include city guides, which can figure out where you are and show you the closest movie
theaters, restaurants, or clubs.

Forums and Associations

Ericsson, Motorola, and Nokia founded the Location Interoperability Forum (LIF) to create a
standard way of developing location-based services on networks and handsets across the world.
More information can be found at http://www.locationforum.org/.

Ancther association called the Wireless Location Industry Association (WLIA) has also been
formed. The association was formed to provide hardware, software, and services related to
positioning. More info can be found at http://www.wliaonline.conv.

Additionally, the 3rd Generation Partnership Program (3GPP) is also working to standardize
positioning systems for GPRS and WCDMA networks.

Ultimately, there are and will be many standards and many ways of positioning. Although it's
useful to understand these technologies, most manufacturers will release a simple API enabling
developersto easily locate and track users using basic commands.

It's already possible to develop positioning applications using existing APIs. For example,
Ericsson's Mobile Positioning System (MPS) is atoolkit that provides such an API. Thelibraries
are available in a number of languages, including Java. As adeveloper, you just need to write your
application according to the API. The positioning will work no matter whether the user is on GSM,
TDMA, or UMTS networks.

More information about Ericsson's MPS is available at http://www.ericsson.com/mps/.

Privacy

Every provider will handle privacy in different ways. In general, though, most mobile positioning
services will offer severa layers of security:

e Only accepted and legitimate service providers can log on to the positioning system's
servers.

e Inorder to request a specific user's location, the user must have explicitly given the
service provider permission to do so.

132

http://www.locationforum.org/
http://www.wliaonline.com/
http://www.ericsson.com/mps/

e Mohile subscribers can turn off the capability to be located altogether, whenever desired.

Positioning Technologies

There are many different types of positioning. Different technologies provide various degrees of
accuracy, standardization, time it takes to refresh a new position, latency to retrieve position
details, and widespread acceptance.

The two main categories are as follows:

e Network-based solutions—This solution relies on using existing wireless networks,
triangulating the signal that reaches the various cell towers serving a particular mobile
phone. This can usually pinpoint the closest tower or antenna. The big advantage hereis
that special software and hardware isn't needed within each handset. See Figure 7.1 for an
illustration. Some of these solutions include TDOA and AOA.

Figure 7.1. Network-based positioning.

Satellite or Base C

Satellite or Base B)
Location: (200, 20)

Location: (125,60)

Satellite or Base A
Location: (100, 50)

Handset gets info
about where bases A,
B. and C are located,
relative to it.

Handset can now
Bt figure out where it is
located!

e Terminal-or handset-based solutions—This set of solutions tries to figure out exactly
where amobile phone is in the real world by calculating the direction and intensity of the
signal that is coming down to the phone. See Figure 7.2 for an illustration. GPSisthe
most well-known terminal-based solution. Terminal-based solutions are usually the most
accurate. The big disadvantage, however, is that the terminal usually must have special
chips or other equipment built in.

Figure 7.2. Terminal-based positioning.

133

Base B Base_ﬂ .
Location: (125,60) Location: (200, 20)

Base A
Location: (100, 50)

Bases A, B, and C
\ share info about wherd
the phone is, relative
to their positions.
MNetwork now knows

where phone is
located!

Global Positioning System (GPS)

The most popular form of positioning isthe Globa Positioning System (GPS), often used by
sailors, hikers, and truckers. A GPS device can receive arepeating signal from three or four
satellites around the globe. By knowing which satéllites the signals are coming from, and how
long it takes for the signal to reach the device, it is possible to figure out where on earth the device
is. The accuracy is pretty good, ranging from 5 to 40 meters.

NOTE

Note that the raw satellite information is often sent to the wireless network for the heavy
processing.

Assisted GPS (A-GPS) and Differential GPS (DGPS)

Assisted GPS (A-GPS) uses special network equipment to help figure out where the mobile device
is. Basically, an additional static GPS receiver is placed every few hundred miles. Thisreceiver's
"assistance data"' can be sent to nearby phones every so often, complementing information
received by the phone's own GPS receiver.

A similar system is known as differential GPS (DGPS). In DGPS, the static receiver knows
exactly whereit is, and thus can grab info from various satellites, measuring any timing
discrepancies. The static receiver gives this error information to the roving receiver (the mobile
phone). This way, discrepancies can be accounted for. This makes DGPS much more accurate.

Hybrid solutions like this are much faster than GPS alone, and can work even when aphoneis
unable to reach enough GPS satellites.

GSM Location Positioning

GSM Location Positioning is available on GSM networks. The technology is very similar to GPS,
using a combination of the Internet, cellular networks, and GPS satellites to triangulate a user's
position. Ericsson, SnapTrack, and CellPoint are some of the companies working on GSM

134

positioning systems. SnapTrack's Wireless Assisted GPS service has tested with a supposed
accuracy of 5-10 meters, depending on how densely packed an areais.

Unlike GPS, GSM positioning enables users to be found while they're in dense cities, buildings,
parking garages, or anywhere else mobile phone service works. Users can even keep their phones
in their briefcases, pockets, or luggage.

Time Difference of Arrival

The Time Difference of Arrival (TDOA) method involves special software or equipment to be
installed on every transmission tower on a cellular network. Basically, each cellular tower times
how long it takes for the signals from a mobile phone to reach it. By calculating how far a handset
is from various towers, and by knowing the GPS location of each tower, the rough position of a
handset can be determined. At least three base stations need to be able to receive signals from the
phone in order for this method to work.

Angle of Arrival

The Angle of Arrival (AOA) method issimilar to TDOA, except it analyzes the angle of each
signal instead of the time. Because the angle of a handset's signal is known, the network can figure
out which direction the signal is coming from. When combined with TDOA, relatively precise
positions are possible.

Enhanced Observed Time Differential

Enhanced Observed Time Differential (E-OTD) issimilar to TDOA, but in reverse. Rather than
the network timing each signal, the handset does the timing and calculates where in theworld it is
relative to surrounding towers.

New phones will need to be designed to handle E-OTD, but by putting the power of positioning in
the phone many privacy concerns can be handled. The accuracy is expected to be within about 125
meters.

Radio Propagation

This clever method maps the radio frequency (RF) characteristics across an entire area. By
analyzing a given handset's RF signal, it is possible to roughly estimate the device's position

m-Commerce

Mobile electronic commerce, also known as m-commerce, is an emerging and wide-ranging field.
Commerce plays many rolesin the wireless world. Just some of the angles include charging for
telecommunications services, collecting money, and using mobile phones to tap into other stores,
or banks.

Phone service plans break down into two wide categories:

e Prepaid—Before any call ismade or wireless service is used, the user's account is
checked and the appropriate amount is deducted as the phone is being used. Users who
prepay can be thought of as customers, and users might often jump from one prepaid
service or application to another.

135

e Postpaid—The mobile carrier keeps a detailed record of every call made or packet of data
that passes through the handset. A detailed invoiceis sent to the user at the end of each
month. Postpaid users can be thought of as subscribers, because much of their datais
known by the provider of the given content or service.

There are many intricate steps involved, including a call detail record (CDR), arating engine to
figure out how much each call should cost, and a routing routine to figure out which plan auser is
using.

Packet networks such as GPRS must not only keep track of each minute of voice use, but also
measure the amount of data being sent and received. There might also be additional charges for
premium services or content.

Things get even more complicated as a user roams from one network to another. Carriers must
settle accounts with each other, and exchange CDR data. Generally, third-party clearinghouses
will help keep track of al this.

From a game developer's perspective, much of this shouldn't matter. A good game is a good game
isagood game. But some games that have high numbers of data packets exchanged, or games that
take along time to play might cost the user more money than sheiswilling to spend. It is
important for any game designer to understand the target business model and gear the game's life
cycle and data transfer accordingly.

Charging for Content

Today, most e-commerce companies that support wireless data charge for services or content the
same way they do over the Web—nby collecting credit card information. While typing in a credit
card number isn't that hard to do on the Web, it becomes much more difficult and time-consuming
to do over amobile phone.

Some m-commerce interfaces are quick and easy, but they still require lots of additiona work
from the user's perspective. For example, Amazon.com has a nifty WAP interface that only
requires a click or two to buy books, as long as you've previously set up your account and credit
card number online.

NTT DoCoMo and many other carriers see the power in avoiding credit cards. Their goa isto
become like mini-banks themsel ves and automatically and easily charge fees for content or
services with the click of one button. These companies will then send abill to the user.

Micro Java and Money

Additionally, most mobile carriers now offer a profit sharing program for Micro Java devel opers.
In the United States for example, Motorola and Nextel offer a comprehensive devel oper
partnership. Y ou can list your application on the iDEN Update Web site at
http://commerce.motorola.com/nextel/main/, and charge any amount you want. Nextel and
Motorolawill split the proceeds with you.

The process works as follows:

1. Youjointhe Motorolaand Nextel developer program. Visit http://devel oper.nextel.com/
for more information.

2. You create your game or entertainment MIDlet, and test it as much as possible using
emulators and your own Motorola phone.

3. Nextel puts your application through a comprehensive review and testing process, to be
sure it causes no harm to the phone.

136

http://amazon.com/
http://commerce.motorola.com/nextel/main/
http://developer.nextel.com/

4. If al goeswell, your app gets added to the iDEN Update site and users around the world
can begin to access it. Users may plug their phones into their computers and use their
credit card to pay for additional applications. Additionally, Nextel now enables usersto
quickly and easily download Java apps over-the-air. The charge for apps will
conveniently appear on the player's next hill.

Most other wireless carriers will likely support similar commerce models.

Voice and Telephony

One thing about mobile phones will probably never change: They will likely never become more
like computers than like telephones. People still love the ease of talking into adevice and quickly
communicating with others. In industrialized nations, telephones are an integral part of most
people's lives. They require admost no interface, no special skills, and little effort—a person need
only remember her receiver's phone number.

As such, voice-recognition, voice-to-text, and text-to-voice technologies are being heavily
researched. There are aready many voice portal companies that can take your voice commands
and read you your e-mail, tell you the details on one of your phone book entries, or let you know
what appointments you have in today's calendar.

VoiceXML

URL: http://www.voicexml.org/

VoiceXML isalanguage that helps content providers create trees of voice menus that can be
triggered as users say certain words or phrases. The language is controlled by the VoiceXML
forum and is based on Extensible Markup Language (XML).

A VoiceXML system basically acts according to the following procedure:

1. A user calsaVoiceXML server. A default VoiceXML page isloaded. This page has
certain commands. Typically, amenu of typical optionsisread to the user.

2. Theserver will then wait for aresponse. The user speaks her mind.

3. The server trandates the request and retrieves arelevant VoiceXML page. The page can
be stored on any Web server across the world. The page might contain another menu of
options, or might be a dynamically-created chunk of text that can then be read to the user.

VoiceXML Software

There are a number of digitized speech applications and libraries that already use VoiceXML.
Some examples

e VoiceClient—An e-mail solution that uses VoiceXML to read out mail messages. Y ou
can plug in any text-to-speech engine you desire. More information can be found at
http://www.voiceclient.com/.

e Voice Genie—A VoiceXML browser and server. Learn more at
http://www.voicegenie.cony.

Wireless Telephony Application Interface (WTAI)

URL : http://www.wapforum.org/what/technical.htm

137

http://www.voicexml.org/
http://www.voiceclient.com/
http://www.voicegenie.com/
http://www.wapforum.org/what/technical.htm

The WTAI set of tools will enable a WAP developer to add all sorts of telephony featuresto a
WML page. Many of the latest WAP implementations support WTAI.

For example, you could create a WML link that enables usersto

e Dia anumber and make a call directly from the browser
e Addto or edit the device's phone book
e Automatically send dial tones during a voice call

In the near future, it is reasonable to expect that the WTAI telephony functions will be available
on many J2ME implementations. Thiswill enable Java developers to use functions. For example,
to make acall

WTACall call = WTAPublic.makeCall(*'5551234");
or to add a name to a phone book

WTAPublic.addPBEntry(*'5551234", "Harry Bigby');

Unified Messaging (UM)

The notion of unified messaging is quite simple: People should be able to use any device to access
and receive voice calls, voice-mails, video calls, faxes, e-mails, or any other type of
communications. Instead of different accounts, phone numbers, and machines, the promise of
unified messaging isto have all communications in synch and retrievable from computers,
television sets, or mobile phones.

For example, auser could set up aUM system to issue forth an SM S message whenever a new e-
mail isreceived. The UM system might then use text-to-speech technology to read the email to
the user over her handset.

Location-based services could help automatically determine where a user is and gear his
messaging preferences automatically. For example, if aperson isin a meeting room, then the
system could be smart enough to hold all calls and route them to voice-mail.

In the world of games, UM offersasimilar promise. A big game could have interfaces from set-
top game consoles, voice activation over mobile phones, or data viewing through 2ME.

Summary

Clearly, mobile phones are on the way to becoming as powerful as today's desktop PCs. The next
generation of mobile devices aready resembles some of today's top PDAs. Many companies
looking to develop for tomorrow's mobile handsets are focusing on PalmOS devices and PocketPC
computers, such as the Compaq iPag. For example, the Norwegian company Fathammer is
creating some software called X-Forge. This software is atiny but complete 3D library that will
enable game developers to render rich, beautiful, 3D worlds on maobile devices.

Micro Javawill help code achieve portability between tomorrow's wide range of devices. A basic
Java game that works on today's simple handsets can easily be expanded with better multimedia
and network access for future devices.

138

Y ou've been patient enough! In then next section, we will finally begin to look at how to make
games using 2ME.

139

Part Ill: The Java 2 Micro Edition

IN THIS PART

8 J2ME Overview

9 Creating aMIDl et

10 Making the Most of Limited Resources

11 Making the Most of It: Optimizations

12 Multithreaded Game Programming

140

Chapter 8. J2ME Overview
INTHISCHAPTER

The Trinity of Java Platforms

It'sa Small World After All

Profiles and Configurations

Connected in aLimited Way: The CLDC
The Mobhile Profile

Summary

Let'swarp back to 1995, the year when Java first came out. M obile phones were rare, brick-like
gizmos, and the Internet was just emerging outside the realm of university and government geeks.

A lot has happened since then. The Web business grew, expanded beyond all reason, exploded,
then established itself as a stable mass medium. And mobile phones swept the world, especially
throughout Europe and Asia, where phones are owned by two-thirds of the population. It is now
expected that the total number of wireless subscribers will exceed one billion by the end of 2002,
and the majority of these new appliances will be connected to the Internet.

So how does Java fit into in all this?

The Trinity of Java Platforms

In the beginning, there was only one edition of Java. Despite setbacks—such as the rumor that the
Indonesian island of Java sued Sun Microsystems—Java took off. Java was lucky enough to have
caught the Web wave, and soon become a favored language among Internet developers.

Java grew to be a big sucker—far too massive to fit on small devices. There was clearly aneed for
anew breed of Java, one that fit and made the most of limited devices. In 1999, Sun Microsystems
finally decided to split Java effortsinto three directions. Each of these platforms would be targeted
at different types of devices, as shownin Figure 8.1.

Figure 8.1. The Java virtual machine landscape.

c icat
Server 5 COmmunicator
X X
XPC Metwark Computer PDA xpager
x
o Maobile phone
Workstation Mac® Screenphone % X pSmart card
Smartphone x
J2EE JZ2SE J2ME JavaCard
HotSpot “ JVM KV CardVM
256M 10M 1M 512K 32K 1K
64 bit 32 bit 16 bit 8 bit

141

The three platforms are

e Java?2 Platform, Standard Edition (J2SE)—For personal computers and workstations, and
used mostly in the office or home. (http://java.sun.com/j2se/)

e Java?2 Platform, Enterprise Edition (J2EE)—For servers and middleware stations, and
usually used in secured corporate areas. (http://java.sun.com/j2ee/)

e Java2 Micro Edition (J2ME)—For small devices like mobile phones, pagers, PDAS, and
communicators; as well as home devices such as microwaves and refrigerators, which are
less powerful than personal computers. (http://java.sun.com/j2me/)

When developers talk about programming with Java, they are usually referring to J2SE, which is
the basic Java standard. Java applets and Java applications run using J2SE, and it forms the core of
J2EE and J2SE.

J2SE contains afast virtual machine with ajust-in-time (JIT) compiler, developer tools, and a set
of libraries vital for the development of applications.

Unlike J2SE, J2EE represents a middleware container (an add-on to J2SE) that supports JSPs,
Java Servlets, Enterprise JavaBeans (EJBs) and other J2EE APIs. It is meant for enterprise, multi-
tier applications, where companies invest in expensive servers. With J2EE, developers prefer to
focus on business logic instead of server implementation in order to speed up the development
cycle and to make applications more robust.

But the platform we're focusing on in this book is 2ME. As micro appliances become
increasingly important in our business lives, they also become potential platforms for heavy
entertainment, games, and other types of fun. J2M E makes game development on such devices a
reality.

And best of all, once you write a game that works on one type of J2ME device, it can easily be
modified to work on them all.

It's a Small World After All

In the past, micro devices came with their features hardcoded. Modern devices, however, support
customization through the downloading of new services and applications from the Internet. Most
major manufacturers have chosen J2ME as the standard for developing and deploying these new

services.

Using Java on Small Devices

There have been severa attempts to bring Java technology down to the small devices. These
efforts include Jump (http://hewqill.com/pilot/jump/) and Waba (http://www.wabasoft.com).

Jump is a Java language front-end—that is, it allows you to write programs in Java, but doesn't
compile programs into Java classes. Rather, Java codeis interpreted into assembly code and
compiled natively. Thisis nice and fast, but it isn't really Java, and lacks Javas portability.

Waba, on the other hand, has its own virtual machine. However, it takes afew liberties with its
capabilities and doesn't meet Sun's exact Java standard.

J2ME Rocks!

142

http://java.sun.com/j2se/
http://java.sun.com/j2ee/
http://java.sun.com/j2me/
http://hewgill.com/pilot/jump/
http://www.wabasoft.com/

The Java 2 Micro Edition (J2ME) was created by Sun, and fitsin perfectly with other Java
technologies. The language is focused specifically on the consumer and embedded market.

The main benefits of pure 2ME are asfollows:

e Cross-platform compatibility—An application that uses 100% pure 2ME APIs can easily
run on the wide range of devices of different models and from different vendors. Thisis
perhaps the most compelling argument for using Java. Theoretically, an application
written for aMotorola cell phone can aso run on a Nokia, or even a Palm. The same code
could be compiled and run as an applet in aWeb browser, as an application on amillion-
dollar server machine, in your car's dashboard, or—eventually—in a Java-powered neural
link to your own brain!

e Dynamic content—A pplications on devices never go out of date. Just download a new
one to meet new needs.

e Strong security—Security has always been one of Javas biggest concerns. Applications
written in J2ME cannot access the device's hardware or other resources, making it nearly
impossible to create viruses, Trojan horses, or other malicious programs.

e Large developer community—There are afew million Java devel opers already available
worldwide on developer's portals, mailing lists, and discussion boards.

Profiles and Configurations

Although different consumer devices such as mobile phones, pagers, and set-top boxes have many
things in common, they also differ in form, function, and features. To address this diversity, 2ME
attempts to be modular and easily customizable.

In order to support the kind of flexibility demanded by the embedded marketplace, the 2ME
architecture is designed to be modular and scalable. This modularity and scalability is defined by
the technology as three layers of software built upon the operating system of the device, as shown

in Figure 8.2.

Figure 8.2. JVM layers.

143

Profiles

Configuration

Java Virtual Machine

OS

e Javavirtual machine (JVM) layer
e Configuration layer
o Profilelayer

The VM layer is an implementation of a Java virtual machine customized for a particular device's
operating system and supports a particular 2ME configuration.

The configuration layer defines the minimum set of Java virtual machine features and Java class
libraries available on a particular category of appliances. Thisis usualy a subset of J2SE.

The profile layer defines the minimum set of APIs available on a particular family of devices,
such as mobile phones or PDAs. Applications are written for a particular profile, and are thus
portable to any device that supports that profile. A device can support multiple profiles.

Major J2ME Configurations

A J2ME configuration defines a minimum platform for each category of devices, each with
similar requirements for total memory availability and processing power. A configuration defines
various items that a hardware manufacturer or developer can expect to be available:

e Javaprogramming language features

e Javavirtua machine features
e Basic Javaclasslibrariesand APIs

144

At ahigh level, 2ME currently targets two categories of devices, each with its own configuration.
These configurations were hammered out by companies such as Sun, 3COM, Bull, Ericsson,
Matsushita, Mitsubishi, Motorola, Nokia, NTT DoCoMo, and Siemens;

e Connected Device Configuration (CDC)—This configuration is for shared and fixed
connected information devices. Typical representatives of this category are TV set-top
boxes, Internet TV's, and Internet-enabled screenphones. These devices have alarge range
of user interface capabilities, and memory availability between 2 and 16 megabytes. They
usually use high-bandwidth network connections, mostly using TCP/IP. Moreinfo can be
found at http://java.sun.com/products/cdc/.

e Connected, Limited Device Configuration (CLDC)—This configuration is for mobile-
connected information devices. Mobile phones, pagers, and PDAs are examples of
devicesin this category. They have avery simple user interface with limited displays, a
minimum memory size starting from 64 kilobytes, and low bandwidth network
connection—often with unstable connectivity. Network communications are often not
based on the TCP/IP protocol suite. Visit http://java.sun.com/products/cldc/ for additional
information.

J2ME Profiles

A J2ME profileis alayer on top of the configuration. It addresses the specific demands of a
certain device family. Its goal isto keep interoperability within a certain device family by defining
a standard Java platform for that market.

Profiles can serve two distinct portability requirements:

e A profile provides complete APIs for implementing applications for a specific kind of
device, such asamicrowave, TV, or pager.

e A profile can also be created to support a significant group of applications that might be
run on several categories of devices—for example, home banking or gaming applications.

It is possible for a single device to support severa profiles. Some of them will be device-specific,
and others will be application-specific.

Figure 8.3 shows a high-level view of how a profile such as the MIDP fitsinto adevice. The
lowest-level block represents the Mobile Information Device hardware itself. On top of this
hardware is the native system software. This layer includes the operating system and libraries used
by the device.

Figure 8.3. J2ME architecture overview.

145

http://java.sun.com/products/cdc/
http://java.sun.com/products/cldc/

MIDP Other applications
Applications

OEM

Classes
MIDP

CLDC

Native System Software

Mobile Information Device (MID)

The next level isthe CLDC or another configuration, which represents the K virtual machine and
the associated libraries defined by the CLDC specification. This block provides the underlying
Javawith functionality upon which higher-level Java APIs are built.

There are two categories shown on top of the CLDC: MIDP APIs and OEM-specific APIs.

For example, Siemens has a special game API profile, which is discussed in Chapter 23, "Siemens
Game APL." Applications that use OEM-specific APIs might not be portable to the other MIDP
devices.

Finaly, the third-party applications—any games or other programs you write—sit atop all these
APIs.

The Kilobyte Virtual Machine

The Kilobyte virtual machine (KVM) is a particular implementation of a Java virtual machine
meeting the CLDC specification. As such, the KVM isasmall and portable Java virtual machine,
designed for small devices with limited resources. The main goal was to create the smallest
possible virtual machine that would still maintain all the central aspects of the Javalanguage, but
would run on resource-limited devices with only afew hundred kilobytes of total memory.

It was designed to be

Small, with a static memory footprint between 40 and 80 kilobytes
Clean and portable

Modular and customizable

Complete and fast

The KVM isimplemented in the C programming language; therefore, it can be easily ported to
various platforms for which a C compiler is available. The virtual machine has been built around a

146

bytecode interpreter with various flags and options to speed up the porting and improve the space
optimization. It was already successfully ported to more than 25 devices, and it can be built with
any ANSI-compliant C compiler.

The Java Application Manager

The Java Application Manager (JAM) isa part of the KVM that serves as an interface between the
operating system and the virtual machine. Like the KVM, the JAM is built-in to any J2ME-
supporting device. The JAM works in the background, helping to launch your programs.

The JAM assumes that applications are available for downloading as JAR files by using
networking or storage protocol. It reads the contents of the JAR file and its descriptor file from the
Internet, and launches the KVM using the main class as a parameter. The JAM also handles each
application's life cycle, installing, launching, and deleting Java apps.

Packaging into a JAR File

Whenever a Java application intended for a CLDC device is distributed publicly, it must be
formatted in a compressed Java archive (JAR) file. The next chapter will show you how to create
JAR and other types of packages.

Connected in a Limited Way: The CLDC

The entire CLDC implementation generaly fitsin fewer than 128 kilobytes. Its specification
assumes that applications can be run in asllittle as 32 kilobytes of Java heap memory. Of course,
thissizeisonly theoretical. Most devices include not only the base CLDC classes, but tons of
profile classes (such as MIDP) to handle user interface, networking, and other essential details.

The CLDC configuration addresses the following areas, using the following Java packages:

e java.lang.*— Thisrepresents the essential Java classes for working with the system

and with different data types.
e java.util.*— Thisisthe standard set of utility classes for working with collections
and dates.

e Jjava.io.*— Handlesinput and output.
e Jjavax.microedition.io.*— A non-standard Java package that provides additional
network functionality.

The Java virtual machine supporting CLDC is compatible with the original Java language
specification by James Gosling, except for the following differences:

e No support for floating-point data types (no float and double)

No support for finalization of class instances (the method Object.finalize() does
not exist)

Limitation on error handling

No support for Java Native Interface (INI)

No reflection features

No support for thread groups or daemon threads

No wesak references

Floating-point support has been omitted primarily because of the majority of the CLDC target
devices not having hardware support for floating point arithmetic. Other features were eliminated

147

mostly because of strict memory limitations or potential security concernsin the absence of the
full J2SE security model.

Security
Security within the CLDC works as follows:

e Low-level virtual machine security is achieved by requiring downloaded Java classesto
pass a classfile verification step.

e Applications are protected from each other by being run in a closed sandbox environment.

e Classesin protected system packages cannot be overridden by applications.

Pre-verifying

The CLDC requires the capability of a Java virtual machine to identify and reject an invalid
classfile. Because the standard classfile verification approach defined by J2SE is too memory-
hungry for small appliances, the CLDC defines an alternative mechanism for verification.

In this alternative, each method in a downloaded Java classfile contains a stack map attribute. This
attribute is newly defined in the CLDC. It is added to the standard classfile by a pre-verification
tool that analyzes each method in the classfile. This step is typically performed on a server or
desktop system before the classfile is downloaded to the device.

The presence of this attribute enables a CLDC-compliant Java virtual machine to verify Java
classfiles much more quickly and with less VM code and RAM consumption, but with the same
level of security asin J2SE.

We will go into more detail about how to pre-verify in Chapter 9, "Creating A MIDlet."

The Mobile Profile

Thefirst and, at the present, only available standard profiles on the market is the Mobile
Information Device Profile (MIDP). This section covers some of the basics on MIDP, but for
more detailed information, go to http://java.sun.com/products/midp/.

The MIDP is designed to run on top of the CLDC. Devices that support the MIDP should have the
following minimum set of characteristics:

e Display:
Screen size of 96x54
Display depth of 1 bit
Aspect ratio of pixels approximately 1:1
e Input:
One-handed keypad, or two-handed keyboard, or touch screen

e Memory:

148

http://java.sun.com/products/midp/

128 kilobytes of non-volatile memory for the MIDP components

8 kilobytes of non-volatile memory for application-created persistence data

32 kilobytes of volatile memory for Java runtime (for example, heap memory)
e Networking:

Two-way, wireless, possibly intermittent, with limited bandwith

Most devices that implement the MIDP specification will be, at least initialy, devices that exist on
the market today, such as mobile phones and pagers.

MIDP in a Nutshell
The MIDP has classes to handle the following:

Application running
User interface
Persistent storage
Networking

Timers

Earlier Profiles

MIDP wasfirst released in September 2000. Before that, two Asian mobile operators announced
their own non-standard profiles:

e Kittyhawk—Created by LG Telecom and Sun Microsystems. This has been replaced by

MIDP.
e iAppli—Created by NTT DoCoMo. Thisis discussed fully in Chapter 22, "iAppli: Micro
Javawith a Twist."

The next MIDP specification, which also runs on Palm OS devices, will be announced in April
2002, and is being produced by the Mobile Information Device Profile Expert Group (MIDPEG),
whose members include America Online, Ericsson, Motorola, Nokia, Palm, Sun Microsystems
and others.

Summary

J2ME isaplatform that is slowly being accepted and deployed by most hardware manufacturers.
In the near future, the majority of mobile phones, TV set-top boxes, pagers, and other micro
devices will support 2ME.

Currently, CLDC isthe only J2ME configuration available on the market, with two profileslaid
on the top of it: MIDP and iAppli. Because the latter profileisused only by NTT DoCoMo, MIDP
isthe gold standard for small devices.

The next chapter will show you how to begin developing a MIDP application.

149

Chapter 9. Creating a MIDlet
IN THISCHAPTER

Command-Line MIDlet Development
Development Environments

Lifecycle of aMIDlet

Displaying Stuff

Menus and Commands

Creating Help and About Alert Screens
Global Properties

Summary

If you have any experience creating Java applications or applets, then programming in 2ME
won't seem like such a stretch. The steps are basically the same:

Write your program and save it as atext file with the . java extension.
Compileit.

Pre-verify it.

Package it.

Testit.

Debug it.

Release it!

NoukrowdpE

The only thing that should set off your mental alarm is step number 3—pre-verification. This
might sound weird and complicated, but it's actually quite easy. The purpose of pre-verification is
to go through your bytecode and set hints up so that the actual verification of bytecode on the
micro device will happen much more quickly, saving you valuable startup time.

Command-Line MIDIlet Development

Y ou don't really need any fancy toolsto create aMIDlet. Simply install Java SDK 1.3 and the
MIDlet libraries. Get the Java SDK 1.3 from http://java.sun.com/j2se/1.3/. Get the CLDC
packages from http://www.sun.com/software/communitysource/j2me/cldc/download.html. And
grab the MIDP libraries from http://java.sun.com/products/midp/.

Install everything into the same directory. To do so, create a directory similar tomkdir j2me.
Y ou should then unzip the j2me_cldc-1_0O-src-winsol .zip fileintothe C:\j2me\
directory. Then unzip midp-1_0Oa-spec. zip into the same directory.

Y ou are now ready to write your MIDlet application. A bit later in this chapter, we will discuss
what all these methods mean and how it all works. For now, just use atext editor to create thefile
Hello.java:

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

public class Hello extends MIDlet {

private Display display;
TextBox t = null;

150

http://java.sun.com/j2se/1.3/
http://www.sun.com/software/communitysource/j2me/cldc/download.html
http://java.sun.com/products/midp/

public Hello(Q

{
display = Display.getDisplay(this);
}
public void startApp(Q
{

t = new TextBox("'Hello ', "Howdy!', 256, 0);
display.setCurrent(t);

}
public void pauseApp() { }

public void destroyApp(boolean unconditional) { }
}

Make suretheHell lo. java programisin the c:\ j2me directory.

Y ou can now compile the program the same way you would compile any other Java application.
Simply point to the appropriate MIDP and CLDC classes:

Javac -bootclasspath c:\j2me\midp\classes Hello.java
This should createthe Hel 1o . class file. You can now pre-verify the class:
c:\j2me\cldc\preverify HelloMIDlet

This command will automatically create an "output" directory beneath the current directory and
put the pre-verified class into this new directory. Move to the output directory as follows:

cd output

Then package your application into a JAR file. Whenever you build a MIDP application, you
should place all pre-verified class files, images, and other resourcesinto a JAR.

The command to package things up into a JAR named "HellowWorld" is thus:

jJjar cf HelloWorld.jar Hello.class

Every MIDlet package should also include a special JAD file. This simple text file is a description
of what the JAR contains, what device it is intended for, and how much memory it takes up.
Typically, amicro device will read the JAD file to determine how to download or otherwise
deploy the JAR file.

So, create afile called He l IoWor 1d . JAD with the following content:

MIDlIet-1: HelloWorld, HelloWorld.png, HelloMIDlet
MIDlet-Jar-Size: 1178

MIDIet-Jar-URL: HelloWorld.jar

MIDIlet-Name: HelloWorld

MIDlIet-Vendor: Sun Microsystems

MIDlIet-Version: 1.0

That'sit! You can now load and run the Hel loWor ld . JAR and Hel loWor Id.JAD files onto
any MIDP emulator or device!

151

Development Environments

The procedure outlined in the previous section is kind of complicated, though, isn't it? Luckily,
there are many development environments that do all the compiling, pre-verification, creation of
JAR and JAD files, and other packaging for you. Metrowerk's Code Warrior has a 2ME plug-in,
and Borland's JBuilder has a Handheld Express add-on. In addition, Nokia, Siemens, RIM,
Zucotto, and Motorola all offer special SDKs and IDEs for J2ME devel opment. Many of these
vendor-specific IDEs are discussed in later chapters, but you can also get more information about
each on the Web:

e RIM Blackberry IDE

URL: http://devel opers.rim.net/tool §/jde/index.shtml

e Zucotto WHITEboard

URL : http://www.zucotto.com/whiteboard/

e Borland's JBuilder Mobile Set

URL : http://www.borland.com/jbuilder/mobil eset/

Wireless Toolkit

Throughout this book, we will be focusing on a product called the 2ME Wireless Toolkit. Y ou
can download it from http://java.sun.com/products/|2mewtool kit/.

The Wireless Toolkit, developed by Sun, isfree of charge, complete, easy to use, and available for
Windows, Linux, and Solaris. It also comes with a bunch of source code, including sample games
such as Snake, Sokaban, atile-siding game, Pong, and Star Cruiser. It also includes a slew of
emulators, shown in Figure 9.1, that enable you to test your applications on a black and white
phone, a color phone, a pager, a Palm, or vendor-specific phones, such as the Motorolai85s.

Figure 9.1. Sun's Wireless Toolkit. To run the Wireless Toolkit, you'll need Java
itself (JDK 1.3 or better), which has all the engines and libraries necessary to
compile code. If you don't already have the JDK, you can grab it at
http://java.sun.com/j2se/1.3/. Be sure to install it per directions, with all the proper
settings for classpaths and paths.

152

http://developers.rim.net/tools/jde/index.shtml
http://www.zucotto.com/whiteboard/
http://www.borland.com/jbuilder/mobileset/
http://java.sun.com/products/j2mewtoolkit/
http://java.sun.com/j2se/1.3/

NOTE
The Java SDK must be installed before you install the Wireless Toolkit.

If you like, you can integrate the Wireless Toolkit with Sun's free Forte devel opment environment.
Y ou can download Forte at http://www.sun.com/forte/ffj/.

The Wireless Toolkit can also be integrated into Borland's JBuilder.

Developing a MIDlet with the Wireless Toolkit
Let'swalk through the process of writing, compiling, testing, and packaging a MIDlet.
NOTE

The Wireless Toolkit isinstalled by default in the directory C:\ j 2mewtk. If you have chosen
to install to a different directory, then modify al the following commands appropriately.

First off, you can run the Wireless Toolkit Preferences program to set up a proxy server, aswell as
the preferred heap size to emulate.

Y ou can then run the Ktoolbar shortcut, which loads up a graphical menu with all your
development options, as shown in Figure 9.1.

1. Tocreate anew project, hit the New Project button. Give your project a simple name
(with no spaces), and type in the name of the main MIDlet class. For example, if you are
creating a Hello World application, use Project name "Helloworld" and MIDlet Class
name "Hello."

2. The settings dialog for the project will appear asin Figure 9.2. These are the properties
that will eventually appear in the application's JAD file. Y ou can modify the properties as

153

http://www.sun.com/forte/ffj/

you see fit. Underneath the MIDlets tab you can modify the display name of your MIDlet,
the application's icon, and the application's main class file. Using an icon is optional .

Figure 9.2. The settings dialog.

Note that any given JAR file might have several applications included within it. For
example, you might want to package several games together into the same arcade.

In any event, hit the OK button to save the settings. Y ou can modify the settings at any
time by hitting the Settings button.

A new directory will be created beneath the C:\J2mewtk\apps directory. In this case,
well have aC:\J2mewtk\apps\Hel loWor Id directory. Benesath this directory will be
four other directories; bin, lib, res, and src.

Y ou can create your Java class or classes using any text editor or other development
environment. Drop al the Javafilesinto the C:\J2mewtk\apps\Hel loWorld\src
directory.

For example, drop theHel lo. java file (listed in the previous section) into this directory.

154

5.

If your application uses any PNG images or other resources, drop those in the
C:\J2mewtk\apps\Hel loWor ld\res directory.

Y ou can now compile, pre-verify, and package your application in one step. Just hit the
Build button.

If al goes well, the console will give you a Build Complete message. Otherwise, any
errors will be shown. Go through your Java source files and correct any bugs.

Y ou can test the program using the built-in emulator. Choose which device you want to
emulate using the Device pull-down menu. Y ou can choose DefaultGrayPhone for a
phone with a black and white screen, DefaultColorPhone for a color screen,
MinimumPhone for athe simplest possible MIDP device, Motorolai85s, Palm device, or
RIM pager device.

To run the emulator, hit the Run button. A list of al the MIDlets available for launching
will appear. Select HelloWorld and then hit the Launch button. The application will run,
as shown in Figure 9.3.

Figure 9.3. The Hello World MIDlet.

8. You can now actualy build the JAR file. Select the top Project menu and choose the

Package option. Look under the C:\J2mewtk\apps\Hel loWor Id\bin directory.
You'll noticeaHelloWorld. jar fileand aHel loWorld. jad file.

155

Actually installing the JAR and JAD files differs from device to device. Later chaptersin
this book cover how to deploy MIDlets on Siemens, NTT DoComo, and other devices.

Lifecycle of a MIDlet

Why isaMIDlet called aMIDlet? Because it is a special type of applet that runs on MIDP-
compliant devices. Cute, eh? Just as a standard Java applet extendsthe java.applet.Applet
class, aMIDlet extendsthe javax.microedition.MIDlet_MIDlet class.

TheMIDIet class contains al the goodies that the phone's application management system needs
to tap into your application and start, pause, and end processes. The
Javax.microedition.midlet.MIDlet class has several abstract methods that you must
definein your main classfile:

e public void startApp()— Thismethod is called the moment your MIDlet
becomes active. While active, your MIDIet might run and access the phone's resources.
The method is called when your program isfirst run, as well as when your programis
released from the paused state.

e public void pauseApp()— Most MIDP devices permit the user to pause the
current application. For example, if a player's phone rings, then she might choose to pause
the game and answer the call. Whenever a pause event takes place, this method is called.
Whilein the paused state, your MIDIet must release shared resources. Thisis also agood
place to pause any game timers, and so on. This method will only be called when the
MIDlet isin the active state. Some devices (such as the Siemens SL45i) never call this
method; however, the method must always be included in your program.

e public void destroyApp(boolean unconditional)— When the user
chooses to end the game, the phone will automatically call this method. At this point,
your MIDlet will terminate and enter the destroyed state. In the destroyed state, the
MIDlet should release al resources, stop al threads, and save any persistent state. This
method can be called while the MIDlet isin either the paused or active state.

Theunconditional flag determines whether the program must quit, or whether it
would just be niceif the program quits. If the flag is set to true, then the phone's user
definitely wants out. The MIDlet must be sure to clean up all resources properly.
However, some phones might try to quit the application after a given amount of idle time.
In such acase, theunconditional flag will be set to false. The MIDlet can avoid
entering the destroyed state by throwing aMIDletStateChangeException.

These states—active, paused, and destroyed—enabl e the handheld device's application
management software to manage the activities of multiple MIDlets within the same runtime
environment. It can select which MIDlets are active at a given time by starting and pausing them
individually. The application management software maintains the state of the MIDlet and invokes
methods on the MIDIet to change the states. The MIDIet implements these methods to update its
internal activities and resource usage as directed by the application management software. The
state change is not considered complete until the state change method has returned. It isintended
that these methods return quickly. Listing 9.1 shows the structure of the world's smplest (and
most useless) Java MIDlet:

Listing 9.1 A Minimal MIDlet Implementation

import javax.microedition.midlet.*;

public class Game extends MIDlet

156

public void startApp() {3
public void pauseApp(Q) {3
public void destroyApp(boolean b) {}

public void exit()

{
destroyApp(false);

notifyDestroyed();

}
}

The method exit() isadded to provide aremote call to help terminate the application.

Displaying Stuff

To draw something on the micro device screen, you need to access the display. To do so, you can
usethe javax.microedition. lcdui .Display class, which is statically included with every
MIDlet.

Display represents the system's graphical display and input devices. It includes methods for
retrieving properties of the device and for requesting that objects be displayed on the device.

There is exactly oneinstance of the Displlay class per MIDlet. To get areference to the instance,
call the getDisplay() method. The application may call the method anywhere in the code, at
any time.

Any user interface objects that you can paint on the display must extend the Displayable class.
Any Displayable object may have commands and listeners associated with it. The contents
displayed and their interactions with the user are defined by subclasses. Basically, every screen
that you'll want to show should be defined as a separate Displayabl e object.

A device can only show oneDisplayable object at atime. This object isreferred to asthe
current Displayable object.

The Display class has the following important methods:

e isColor()— Returnstrueif the current device has a color screen, returns false
otherwise.

e numColors()— Returns the number of colors or grayscales that can be represented on
the device.

e getCurrent()— Returnsthe current Displayable object. TheDisplayable
object returned might not actually be visible on the display if the MIDlet isrunning in the
background, or if the Displayable object is currently obscured by a system screen. The
value returned by getCurrent() might aso be null if the setCurrent() method has
not been called yet.

e setCurrent(Displayable nextDisplayable)— Thisisakey method that
actually changes the current display. Simply passin anew Displayable object. The
change will typically not take effect immediately, but may be delayed so that it occurs
between event delivery method calls. Because of this delay, acall to getCurrent()
shortly after acall to setCurrent() isunlikely to return the value passed to
setCurrent().

157

When aMIDlet application isfirst started, thereis no current Displayable object. Itis
the responsibility of the application to ensure that aDisplayable object isvisible and
can interact with the user at all times. Therefore, an application should always call
setCurrent() aspart of itsinitialization.

e setCurrent(Alert alert, Displayable nextDisplayable)— Thisisa
version of setCurrent() specialy suited for alerts. An aert is aspecial type of
Displayable object that is intended to be shown and immediately dismissed. For
example, atypical aert might be a dialog box that warns the player about some imminent
problem.

To use this method, set the alert as the current Displayabl e object and choose another
screen asthe nextDisplayable. Assoon asthe alert box is dismissed, the next
Displayable screen will be shown.

Working with Screens

The javax.microedition. Icdui .Screen classisthe common superclass of al high-level
user interface objects. The Screen itself is pretty ssimple. It simply alows you to add atitle or
scrolling ticker tothe Displayable class.

Every screen that a user will see should be created asits own class. The display will automatically
refresh whenever the contents of a screen are updated. For example, suppose aL i st object
featuring a main game menu is currently being displayed. If the application inserts a new element
at the beginning of the List, it isdisplayed immediately and the other elements will be
rearranged appropriately. Thereis no need for the application to call another method to refresh the

display.
WARNING

It is good programming practice to only change the contents of a screen when it is not visible
(that is, while another Displayable iscurrent). Changing the contents of the screen while it
isvisible may result in performance problems on some devices, and might also be confusing if
the screen's content changes at the same moment when a user is interacting with it.

The following classes are subclasses of the Screen class:

e Form
e Alert
° List

e TextBox
All these classes inherit four methods from Screen:

o getTitle()— Getsthetitle of the Screen.

e setTitle(String title)— Setsthetitle of the Screen. If the Screenis
physicaly visible, the visible effect should take place no later than immediately after the
callback.

e getTicker()— Getsthe scrolling ticker object used by the Screen.

e setTicker(Ticker ticker)— Setsascrolling ticker to be used for this Screen,
replacing any previous ticker. Several Screen objects within an application can share the
sameticker. Thisis done by calling setTicker () on different screens with the same
Ticker object.

158

Forms

The javax.microedition. lcdui .Form classisthe most commonly used child of Screen.
It might contain an arbitrary mixture of items, such as images, text fields, date fields, gauges, and
choice groups. In general, any subclass of the 1tem class can be contained within aForm.

Every maobile device will handle the layout, traversal, and scrolling of aform in adlightly different
way.

Theitems contained in a Form are referred to by their indices, which are consecutive integers
starting from zero. These items can be edited using the append (), delete(), insert(), and
set() methods. More information about dealing with user interface items can be found in
Chapter 13, "High-Level Approach.”

Listing 9.2, for example, creates a start-up form and setsit asthe current Displayable.
Listing 9.2 Creating and Calling a Form

import javax.microedition.MIDlet.*;
import javax.microedition.lcdui.*;

public class Game extends MIDlet

{
private Display display;

public void startApp()

{
display = Display.getDisplay(this);
StartForm form = new StartForm(this);
display.setCurrent(form);

}

public void pauseApp() {}
public void destroyApp(boolean b) {}

public Display getDisplay(Q)
{

return display;

}

public void exit()

{
destroyApp(false);

notifyDestroyed();

}
}

The code for the StartForm class can be seen in Listing 9.3.
Listing 9.3 The StartForm Class

import javax.microedition.lcdui.*;
public class StartForm extends Form

{

private Game game;

159

}

public StartForm(Game game)

{

}

super(*'Micro Racer™);
this.game = game;
Stringltem item = new Stringltem(

"Welcome to Micro Racer!", null);

append(item);

Thefina product can be seen in Figure 9.4.

Figure 9.4. Game intro screen.

New forms must extend the Form class. The form's constructor must call the parent's constructor,
which accepts the title as a parameter. To be able to access the MIDlet's exit () and other
methods, a global variable pointing to the main Game classis provided.

Javax.microedition. lcdui .Stringltemisauser interface component to present

different read-only text labels. More information about Stringltem and other user interface
components can be found in Chapter 13, "High-Level Graphical User Interfaces.”

Each Form has the following important methods:

append (Item item)— Addsauser interfaceitem into the Form.

append(String str)— Addsastring to the Form.

append(Image img)— Adds animageto the Form.

insert(int itemNum, Item item)— Insertsanitemintothe Form just prior to
the item number specified. The size of the Form grows by one. The i temNum parameter
must be within the current range of actual items.

delete(int itemNum)— Deletestheitemat i temNum.

set(int itemNum, Item item)— Setstheitem referenced by itemNum tothe
specified item, replacing the previous item. The previous item is removed from the Form.
get(int itemNum)— Getstheitem at given position.
setltemStateListener(ltemStateListener listener)— Setstheitem state
listener for the Form, replacing any previous listener. If the listener is null, it smply
removes the previous listener. An item state listener enables your application to
dynamically handle any changesto the form'sitems.

size()— Returns the number of itemsin the Form.

160

Every Screen's subclass also implementsthe Disp layab le interface, which means you can use
the isShown () method that returnstrue only if the Form is actualy visible on the display. In
order for aDisplayable to bevisible, al the following must be true:

e TheMIDlet must be running in the foreground
e TheDisplayable must bethe display's current screen
e TheDisplayable must not be obscured by a system screen

Menus and Commands

Because the MIDP user interface is highly abstract, it does not dictate any concrete interaction
techniques, such as soft buttons or menus. Even low-level interactions such as scrolling are hidden
to the application.

Instead, MIDP definesthe javax.microedition. Icdui .Command class. Whenever a user
hits a button, menu, dial, touch-screen, or other supported input element, a particular command
will be triggered.

Because every Screen's subclass implementsthe Displayabl e interface, every screen has
access to aslew of command methods:

e addCommand(Command cmd)— AddsacommandtotheDisplayable.

e removeCommand(Command cmd)— Removesacommand fromtheDisplayable.

e setCommandListener(CommandListener listener)— Setsalistener for
Commandsto thisDisplayable, replacing any previous CommandListener. A null
referenceis allowed, and has the effect of removing any existing listener.

Whenever the user hits akey (or does something €l se command-worthy), a command will be
issued to any registered command listener. Every Command is made up of three elements:

e Labd
e Command type
e Priority

A command label isaString that will be shown to let the user know what a command actually
does. For example, most phones have two soft keys right beneath their display. A typical 1abel
might be set to "Quit." The word "quit" would then appear above the first soft key. When this key
is pressed, the application will catch the command and exit smoothly.

Other times, a menu of various commands might be presented to the user, as shown in Figure 9.5.
The user can use the phone's arrow keys to scroll to a particular command and select it.

Figure 9.5. A sample menu of commands.

161

A command's type specifies the intent of the command. For example, if the application specifies
that the command is of type BACK (to go back to the previously shown screen), then some devices
will automatically associate all back commands with a given soft key. The defined command
types are asfollows:

BACK— Returns the user to the previous screen.

OK— A command that is a standard positive answer to a dial og.

CANCEL— A command that is a standard negative answer to adialog.

EX1T— A command used for exiting from the application.

HELP— A request for online help.

ITEM— A command type relevant to a particular user interface item on the screen.
SCREEN— An application-defined command that somehow pertains to the current screen.
STOP— A command that will stop some currently running process or operation.

Finally, the command's priority value describes the importance of this command relative to other
commands on the same screen. Priority values are integers, where alower number indicates
greater importance. The actual values are chosen by the application. A priority value of one
indicates the most important command.

Typically, amobile device will position acommand on the screen based on its type and then order
similar commands based on their priority. This usually means that the command with the highest
priority is placed so that user can trigger it directly (using the soft keys), and that commands with
lower priority are placed on an inner menu.

Itisalso possible for several commands to have the same priorities and types. If this occurs, each
device will choose the order in which they are presented. Usually, the first command you create in
your code will be given higher priority.

The javax.microedition. Icdui.CommandListener interfaceis used by applicationsto
receive high-level eventsthat are invoked by commands. The application must provide an
implementation of alistener and must provide an instance of it on a screen in order to receive
high-level events on that screen.

WARNING
The specification does not require the platform to create multiple threads for event delivery.
Thus, if the listener method does not return, or the return is delayed, the system might be
blocked. The Listener method should always return immediately.

Listing 9.4 shows atypical set of commands, along with alistener. The first command, Play, will

appear in the bottom row of the screen, linked to the first soft key. The second soft key will be
linked to an command named Menu (created automatically by the phone).

162

When the Menu soft key is hit, the remaining commands will appear in a menu, as shown in
Figure 9.5.

Listing 9.4 A Command Listener

import javax.microedition.lcdui.*;

public class StartForm extends Form
implements CommandListener
{

private Game game;

private Command playCommand;
private Command helpCommand;
private Command aboutCommand;
private Command exitCommand;

public StartForm(Game game)
{
super(*'Micro Racer™);
this.game = game;
Stringltem item = new Stringltem(
"Welcome to Micro Racer!", null);
append(item);
playCommand new Command("'Play’, Command.SCREEN, 1);
helpCommand new Command(‘‘Help', Command.HELP, 2);
aboutCommand = new Command(‘‘About',
Command.SCREEN, 3);
exitCommand = new Command("Exit', Command.EXIT, 4);
addCommand(playCommand) ;
addCommand(helpCommand) ;
addCommand (aboutCommand) ;
addCommand(exitCommand) ;
setCommandListener(this);

}

public void commandAction(Command c, Displayable s)

{
if (c.equals(playCommand))
{

// The Play Command has been selected.

glse if (c.equals(helpCommand))
{ // The Help Command has been selected.
glse if (c.equals(aboutCommand))
{ // The About Command has been selected.
%Ise if (c.equals(exitCommand))

// The Exit Command has been selected.
game.exit(Q);

}
}

To create commands, add them as a global variable, construct them using new, then plop them on
a screen using the addCommand () method.

163

To actually catch the commands, implement aCommandL i stener and register it using the
setCommandListener() method.

Creating Help and About Alert Screens

An alert isascreen that shows data to the user and waits for a certain period before proceeding to
the next screen. An alert generally contains some descriptive text, an optional image icon, and
several special commands—usually OK and, optionally, CANCEL. Figure 9.6 illustrates an example.

Figure 9.6. The Help alert.

The atert Class

The javax.microedition. Icdui .Alert class makesit easy to create alerts. The intended
use of an dert isto inform the user about information, errors, and other exceptional conditions.
Every dert can have an javax.microedition. lcdui .AlertType class associated with it to
provide an indication of its nature.

An Alert's constructor accepts four parameters:

e Title (for example, "Help" or "About™)

o Alerttext

e Alert image (may be set to null if not needed)
e Alerttype

After constructing an alert, an application should set the alert timeout. The timeout may be set to

infinity by using the setTimeout(Alert.FOREVER) method. Inthis case, thedert is

considered to be modal—forcing the user to hit the OK or CANCEL command to dismissiit.
WARNING

If you put too much content in atimed alert, the alert dialog will scroll, and might
automatically become amodal aert.

The following alert types are defined:

e ALARM— Alertsthe user to an event for which the user has previously requested to be
notified. For instance, "Y ou are out of time!"

164

CONFIRMAT I10ON— Confirms an action. For example, "Are you sure you want to quit this
game?"

ERROR— Alerts the user to an erroneous operation. For example, "No Network
Connection Detected.”

I NFO— Provides non-threatening information to the user. For example, "Congrats! Y ou
just passed level one."

WARNING— Warns the user of a potentially dangerous operation. For example: "Hitting
the OK button will erase your saved game. Are you sure you want to do this?"

Alerts do not accept application-defined commands. As such, some of the command-rel evant
methods inherited from Screen will throw exceptions. Methods useful in the Alert class are the
following:

getDefaultTimeout()— Returnsthe default time for showing an dert. Thisis either
apositive value, which indicates atime in milliseconds, or the special value FOREVER,
which indicates that alerts are modal by default.

getTimeout()— Getsthe timeout for the current alert box. Thisis either a positive
value, which indicates atime in milliseconds, or the specia value FOREVER, which
indicates that this alert is modal .

setTimeout(int time)— Setsthetimeout for the alert box. This must either be a
positive time value in milliseconds, or the special value FOREVER.

getType ()— Returnsthe type of the alert.

setType(AlertType type)— This method sets the type of the aert.
getString()— Returns the text string used in the alert.

setString(String str)— Setsthetext string used in the aert.

getlmage ()— Getsthe image used in the alert.

setlmage(Image img)— Setstheimage used inthe dert.

Alerts are agreat and easy way to add Help or About screens to your game.

Listing 9.5 shows how to implement a Help alert screen and an About alert screen.

Listing 9.5 Implementing Help and About Screens

import javax.microedition.lcdui.*;

public class StartForm extends Form

{

implements CommandListener

private Game game;

private Command playCommand;
private Command helpCommand;
private Command aboutCommand;
private Command exitCommand;

public StartForm(Game game)

{

super(*'Micro Racer™);
this.game = game;
Stringltem item = new Stringltem(

"Welcome to Micro Racer!", null);

append(item);
playCommand = new Command(*'Play', Command.SCREEN, 1);
helpCommand = new Command(‘'Help'", Command.SCREEN, 2);

aboutCommand = new Command("'About",

Command .SCREEN, 3);

165

exitCommand = new Command("Exit', Command.SCREEN, 4);
addCommand(playCommand) ;

addCommand(helpCommand) ;

addCommand (aboutCommand) ;

addCommand(exitCommand) ;

setCommandListener(this);

}

public void commandAction(Command c, Displayable s)

{
it (c.equals(playCommand)) {}
else if (c.equals(helpCommand))

{

String str = "Under construction.";

Alert alert = new Alert(""Help", str, null,
AlertType.INFO);

alert.setTimeout(Alert.FOREVER);

game.getDisplay() -setCurrent(alert, this);

else if (c.equals(aboutCommand))

{
StringBuffer buf = new StringBuffer(");

buf._append(*'Developed by David Fox');

buf._append(*'and Roman Verhovsek._\n");

Alert alert = new Alert('About", buf.toString(),
null, AlertType.INFO);

alert.setTimeout(Alert.FOREVER);

game.getDisplay() -setCurrent(alert, this);

else if (c.equals(exitCommand))

{

game.exit();

}
}

When putting an alert on the screen, the display's setCurrent() method is called with two
parameters. The second parameter is the screen that should be shown after the alert is dismissed.

Splash Screens

A splash screen is an informational screen that introduces the game with specific logo and text. It
is shown during a game's startup, and usually turns off after a period of time. Y ou can use the
Alert classto create such a screen, but oftentimes you will want more control and may want to
show several images along with several text el ements.

In these cases, the Canvas or Form classes can be used instead. A Canvas isthe most flexible
type of screen, but you must implement your own scrolling and component positioning. The
Canvas classisdiscussed in much more detail in Chapter 14, "Low-Level Approach.”

An easier solution isthe Form object, which is discussed in Chapter 13. For now, check out
Listing 9.6 to see how a simple intro screen, shown in Figure 9.7, is created.

Figure 9.7. The splash screen.

166

Listing 9.6 A Form Object Splash Screen

import java.util._*;
import javax.microedition.lcdui.*;

public class IntroForm extends Form

{

private Game game;
private Form form;

public IntroForm(Game game, Form form)

{
super(*™");
this.game = game;
this.form = form;
Image image = null;
try
{
image = Image.createlmage(*'/logo.png™);

} catch (Exception ex) {}

Imageltem item = new Imageltem(null, image,
Imageltem_LAYOUT_CENTER, null);

append(item);

Task task = new Task();

Thread thread = new Thread(task);

thread.start();

}

public class Task implements Runnable

{
private final int DELAY = 5000;

public void run()

{
try

{
Thread.sleep(DELAY);

} catch (Exception ex) {}
game.getDisplay() -setCurrent(form);

}
}

The IntroForm constructor takes two parameters: areference to aMIDlet (so that we can access
the current display object) and a reference to the form that must replace the current one. An
invoked thread waits for five seconds, then makes the change to the new form.

167

Animage isloaded using the static method Image . create Image () where the filename should
start with adlash (/) to indicate that the image isin the same directory or JAR file as the MIDlet
class.

To cal up theintro dialog, your main MIDlet Game class would use code similar to the following:

public void startApp(Q)

{
display = Display.getDisplay(this);
StartForm form = new StartForm(this);
IntroForm introForm = new IntroForm(this, form);
display.setCurrent(introForm);

Global Properties

Part of the challenge of writing a professional game is being sure it runs as smoothly as possible,
no matter what the operating system, device, screen resolution or colors, or language.

Y ou can accomplish agreat deal by sniffing out a MIDIet's various application and system
properties.

Getting Application Properties

The getAppProperty(String key) method withinthe MIDIet class provides the program
with a mechanism to retrieve named properties from the application management software. These
properties are retrieved from the combination of the application descriptor file (JAD) and the
manifest (built within every JAR). For example, one could call the following methods on the
Hello World program:

System.out.printIn(*'Vendor: " +
getAppProperty(""MIDlet-Vendor™));
System.out.printin("'‘MIDlet: " +
getAppProperty(*MIDlet-Version'));

Doing so would produce the following output in the debug console;

Vendor: Sun Microsystems
MIDIet Version: 1.0

Getting System Properties
MIDP includes four valid system properties:

e microedition.profiles— Returnsthe available profile (for example, MIDP-1.0)

e microedition.locale— Returnsthe current locale of the device (for example, en-
US for United States English).

e microedition.platform— Returnsthe current phone being used. For example,
Motorola i85s.

e microedition.encoding— Returnsthe type of String encoding this phone uses.
Every CLDC implementation supports the ISO8859 1 (Latin 1) encoding. But Japanese
phones, for example, will support the SJIS (Shift-JIS) encoding.

168

The values of these properties can be retrieved using the static method getProperty(String
key) inthe System class. This method gets the system property indicated by the specified key.

Themicroedition. locale property isvery important for games and other apps that want to
achieve international support. The localeis represented by two values. The first one is a two-letter
code defined in the 1SO-639 standard, and the second one is a two-letter code defined by |SO-
3166, separated by a hyphen.

Creating a Global Cache Class

Let's begin writing our first game class. Most games, not to mention other MIDP applications, will
want a nice place to store global variables and other values that might need to be accessed
throughout. To accomplish this, we will build aCache class.

One important global value is the language that the player speaks. Listing 9.7 shows asimple
Cache class that can handle English and Slovakian.

Listing 9.7 The Cache Class

public class Cache

{
public static final int ENGLISH = O;
public static final int SLOVENE = 1;
private int language;
private Cache() {}
static
i .
String locale =
System.getProperty("'microedition.locale™);
iT (locale == null)
language = ENGLISH; // Default value
else
if (locale.startsWith('si')
language = SLOVENE;
else
language = ENGLISH; // Default
}
public static int getLanguage()
{
return language;
}
}

Note that the Cache class' constructor is private. Because of this, the class can't be instantiated; all
methods are going to be static.

Summary

Hopefully, this chapter gives you an idea of how simpleit isto get up and running using MIDP.

169

And thisisjust the beginning. Weve aready accomplished quite a bit: Our game has an intro
screen, amain user interface menu, a help screen, and the ability to be readable in both Eastern
Europe and the United States.

Throughout the next few chapters, we will be adding more to our racing game, creating a more
complex game interface, graphics, animations, sprites, sounds, and more—much, much more!

170

Chapter 10. Making the Most of Limited Resources
IN THISCHAPTER

The Limitations

Memory Limitations

Displays

Breaking Through the Limitations
Summary

Games are one of the most powerful factors forcing computer users to upgrade to better hardware.
The latest games run on up-to-date machines with powerful processors, lots of working memory,
and fast video acceleration and 3D-rendering cards. Fortunately, PCs are expandable, with lots of
empty slots for additional cards. When a slick new game comes out, fans can easily swap in a new
video card or add more memory chips.

On the other hand, most small J2ME devices offer what's inside and nothing more. They don't
usually provide any extension slots, although PDAs such as the Palm, iPaq, or Handspring do
offer basic expansion ports.

Here's another crazy fact: The micro devices that users buy today will most likely have been in use
for ayear or two already, and users are generally tied to their mobile phone or other micro device
for afew years.

If you want to develop games for micro devices, then, you have to be acutely aware of atarget
device's limitations. And you have to face the fact that these limits won't be improved upon
anytime soon.

The Limitations

Most 2ME MIDP devices can fit in your hand. Several years ago, mobile devices were very
expensive and geared toward business people. Today, almost 90% of al mobile phone users own a
device for personal use, especialy in Europe and Asia.

By looking at the mobile scene in Japan, and based on predictions by European mobile operators
such as Vodafone, Deutsche Telecom, and Telefonica, as well as American operators Sprint PCS,
Nextel, and V oicestream, entertainment is going to become the number one mobile application. As
better games hit the market, mobile users will demand faster processors and more memory.
Hopefully thiswill create a mutually beneficial relationship between consumers, phone
manufacturers, and game devel opers, with better games driving better hardware and vice versa.

However, no matter how advanced hardware gets, there will always be three problematic areas for
games on micro devices:

e Processor speed
e Memory
e Video

Processor Paucity

171

A lot goes on under the hood in atypical game. Games must move the sprites, calculate new
positions, check for collisions, and paint everything. Artificial intelligence adds additional
processing.

All thisfunctionality is supported by multithreading, where separate actions are executed at the
same time. Threading is discussed in much more detail in Chapter 12, "Multithreaded Game
Programming.”

In reality, however, only one thread is executed at any given time. The processor execution timeis
dliced into small time chunks, and each sliceis used to execute a given thread's code. For slow
human eyes, the fast execution of different threads makes it seem like many things are happening
at the sametime.

When al is said and done, the execution time of al the threads must be under a certain maximum.
This maximum is usualy dictated by the frame rate of the game. For example, to achieve 16
frames per second, the complete execution cycle must be invoked in under 62.5 milliseconds.
That's possible only if the processor is powerful enough to execute the code needed for each
animation framein that time.

Asyou will soon see, most micro device processors are not powerful enough to deliver animations
of 16 frames per second.

Memory Madness

Even if aprocessor was powerful enough, memory can dictate whether a device will support a
given game. Although the CPU affects the overall speed of a game, memory problems can crop up
at any time, because new objects are constantly being created.

Video Vex

Different micro devices also offer different screen resolutions. Although more and more color
displays are coming out, especially in Japan, most mobile phones are still black and white.
Drawing operations can be executed with different speeds on different devices. The more pixelsa
screen has, the more time is needed to draw a compl ete screen.

Most PDAS, for example, have large screens, generally 160x160 pixels or more. This makes for
dower drawing times compared to smaller devices with the same processors.

Processors of the Future

The microprocessor is the brain and heart of every device. The 2ME CLDC specification doesn't
force the hardware manufacturers to conform to any special processor, or even keep to a specific
processor speed. Rather, any 16-or 32-bit processor can be supported.

Although Nokia, Siemens, and Motorola currently offer high-end mobile devices (such as the
Nokia Communicator 9110, Motorola Accompli A008, and Siemens SL45i), these devices are
expensive and geared toward a business audience. The most addicted game players are young and
don't have alot of their own money to spend on devices. As such, most of the gaming will likely
be done on phones with very slow, cheap processors.

Memory Limitations

172

Memory is the place where the brain of the device stores its data, and where the list of things that
need to be done (the execution code) islocated. The 2ME memory model can be split into three
sections:

e Working memory—Where the device stores data needed only during the lifetime of the
game. When the game is terminated, everything in this memory is forgotten. When the
game s started up, the complete execution code is also copied here as the classes are
loaded. This memory aso holds al bitmap images created from PNG files.

e Storage memory—Where the device stores RMS datain its own local database. When the
game isterminated or the device is turned off, the information stored here remains.

e Application memory—Where the device stores installed games and other applications.
This memory can take the same place as storage memory.

All these memories have their limitations, depending on free memory. Although working and
storage memory have an impact on the game execution, the application memory dictates how
large the game can be and how many games can be installed onto a given device.

Working Memory

When the game is started up, it isfirst copied from the application memory into the working
memory and then executed. In fact, only the classes that the classloader needs (the starting classes)
are copied. Other classes are loaded upon their first instantiation. If games are too large to fit into
working memory, the device notifies the user with an out-of-memory warning.

That restriction is one of the reasons why J2ME devices ask developers to restrict the size of their
applications. Another reason isthe fear that larger applications would crash the maobile network. If
all 2G mobile networks are capable of 9600 bytes per second, an application with asize of 50KB
needs almost a minute to be transferred from the Internet into the application memory. If
thousands of users try to download alarge popular game at once, then the network might become
clogged.

During execution, a game constantly allocates memory for primitive data and objects. The created
information takes up more memory space and can be divided into three groups:

e Static data—Created when the classis |oaded into the working memory. It occupies part
of the memory and stays there as long as the game lives.

e Global data—Created when the instance of the classis created. This staysin memory as
long as the object is alive. When the object is destroyed by the garbage collector, the data
disappears too.

e Local data—Created each time the method that creates the variablesis executed. At the
end of the method, local variables become candidates for garbage collection. Local datais
created and destroyed so often that is one of the biggest reasons for memory
fragmentations.

Memory Fragmentation

Memory fragmentation happens when working memory is completely allocated with smaller
objects. After atime, some of those objects are destroyed and some parts of the memory space are
cleaned up. If developer checks for available memory, the device will return the correct value. But
when the game tries to allocate a large object in memory, the object can't be placed anywhere
because there is not enough consecutive room for it. The memory looks like Swiss cheese—alot
of empty space, but hone of it in one clean block.

173

A good implementation of garbage collection should take care of this problem. Most J2ME virtual
machines, however, don't have enough room for a good implementation. Chapter 11, "Making the
Most of it: Optimizations," contains tips and tricks for getting around this problem.

In general, the key to avoiding fragmentation and other memory issues isto avoid constantly
alocating and de-all ocating objects. Instead, try to create every object you need ahead of time. For
example, you can create a pool of sprites. When you need a new object, grab an unused sprite
from the pool instead of creating a new one. When you're done with the object, drop it back into
the pool.

Memory Matters

All'in all, it isimportant to build a compatibility list for any game you release. Y ou should
carefully check the specification for any device you are targeting, because every gadget has a
different amount of working memory. For example, the Siemens SL45i has 128K B of available
working memory, the Motorola i85 has 256K B, and the Motorola Accompli A008 has 640K B.
Some larger games will only run on certain devices.

Storage Memory

Games also heed memory for persistent storage of data, such as the current status, high scores, and
so on. When the deviceis turned off, the storage stays intact and nothing is forgotten. This
memory is usually larger than the working memory, and uses a different type of hardware, such as
flash memory, a multimedia memory card, or even asmall disk drive.

For example, the Siemens SL45i has a 32MB multimedia memory card (MMC) that can be
replaced with alarger one, and is completely available for 2ME application and database storage.
With J22ME applications averaging 30KB for each JAR file, each MMC can hold more than a
thousand games! On the other hand, the Motorola Accompli A008 uses internal memory limited to
1.6MB.

Internal memories are smaller than memory cards, but are also faster. Speed can be important. The
Siemens MMC isvery slow, and Siemens also suggests that developers use their non-standard
File1/O API instead of local storage (RMS). The Accompli's RMS, because of its large memory,
is aso quite ow. On the other hand, the Motorolai85 and similar phones can manipulate the

RMS relatively quickly.

RMS speed aso has alot to do with the Javaimplementation. The Java virtual machine for iDEN
devices was developed in Horida, and the KVM for the Accompli A008 was built in Sweden.
Apparently, developers in warm weather do a better job implementing database storage than those
up north!

Displays

Screen resolution is one of the largest problems for game developers. If displays were standard on
every J2ME device the way they are on personal computers, we could fix all imagesto one size
everything would look fine.

Unfortunately, the graphics resolution of J2ME devices starts at 96x54 pixels, but is usually much
higher (101x80 on the Siemens SL45i, or 240x234 on the Motorola Accompli A008). PDAs have
even larger screens.

Additionally, some devices offer double buffering on the screen, while others do not.

174

Breaking Through the Limitations

Ultimately, game producers will have to make some tough decisions. On the one hand, it'safine
idea to support every J2ME device and make more income from agame. But, if you want your
gameto look really good, some lower-end devices will have to be excluded. Unfortunately, most
mobile gamers will own cheaper devices with smaller screens, smaller amounts of memory, and
slower processors.

Detecting the Minimum Speed

If your game is running too fast, users will be unable to play it. Enemies will move at the player
too quickly, not giving the player enough time to dodge. If your game is running too slowly, it will
become boring.

Finding the right execution speed is key. To accomplish this, your game should set a frame rate
and try to achieve this rate no matter how slow or fast the device being used is.

Frame Rate

A framerateis exactly what it sounds like—the rate at which one still frame flashes by, creating
the appearance of motion. For example, think of a Bugs Bunny cartoon. Normally, a cartoon
flickers by at 16 frames per second (FPS). Thisis quick enough for the human eye to believe that
theimageis"moving." If the frame rate slows down, the eye begins to see choppiness and
flickering.

In order for agame to achieve 16 FPS, the device would need to paint each frame in under 62.5
milliseconds. Thisis not feasible on most micro devices, given most processor and screen paint
speeds. However, games are not as detailed as cartoons. Game characters are made up of larger
pixels, and usually things don't change that much per frame. As such, aframe rate of 10 frames
per second is acceptable, and gives the game 100 milliseconds to process and paint each frame.
Chapter 17, "Sprite Movement,” delvesinto the finer points of sprite movement and painting.

Multiple Display Support

As new J2ME devices come out, your game will need to support new screen resolutions and color
depths. One solution is to have different JAR files for each J2ME device. The difference between
all those JAR files would be in the images within, as well as minor changes to the code that
displays the image. For example, sprites on a device with a screen resolution of 200x200 pixels
should be twice as large as those that are meant for a device with a 100x100 pixel screen.

It isagood ideato design your game into two separate classes:

e Logica classes—This part represents the game itself, together with the game's artificial
intelligence. This should be where 90% of all game functionality takes place.

e Visual classes—This part is responsible for painting on the screen and information that
depends heavily on the device specifications, such as screen size, image size, movement
values, and so on. This code can either read in parameters and adjust drawing sizes on-
the-fly, or can be totally rewritten for each new device.

Ancther approach is to use the lowest common denominator for all devices. For example, |et's say
that you want to support the following screen resolutions: 96x80, 120x64, and 102x72. Simply

175

paint the game at 96x64 pixels and center the game in the screen. The empty space on the devices
with larger screen resolutions can be filled out with aborder image.

Black and White World

It would be a mistake to attempt to use color images in your game. Although most phonesin Japan
have color screens, most small devices around the world only have black and white screens.

When a device paints an image, the image's colors are translated into colors that are actually
supported. If a phone can only paint in black or white, a colorful image will be reduced to an odd-
looking smear.

As such, be sureto create all game images as black and white bitmaps. Y ou can then scale up for
better devices.

Summary

Limitations exist. That's life. Throughout this book, however, we will strive to break through the
limitations. We will focus on how to create games that ook as good as they can possibly look, no
matter what the deviceis. The key lies in finding the right game execution speed and reducing the
game's memory usage.

It isimportant to benchmark the processor speed, working memory size, storage memory size, and
display for any device you want to target. Y ou can then adjust your game's frame rate, graphics
size and color depth, or artificial intelligence as appropriate.

The next chapter contains aslew of tips for optimizing the speed, size, and flexibility of your
game code.

176

Chapter 11. Making the Most of It: Optimizations
INTHISCHAPTER

A Limited World
Making Code Optimal
Code Size Reductions
Speeding Up the Code
Using Less Memory
Power Consumption

Summary

So you've finished your game. It's time to break out the champagne. But then you load your game
onto your favorite Java device and get an out-of-memory message. What now?

WEéll, you basically have two choices. Only release the game on devices that have enough speed
and memory, or rewrite, optimize, and strip your game down to make it fit.

A Limited World

Most devices that run MIDP are very limited in memory size, processor power, display resolution,
and connectivity. Manufacturers have made sacrifices in the hopes of creating devices that are
portable, battery-powered, and cheap. Initially, most handheld devices were intended for business
users who wanted to check e-mail or do an Internet search out of the office. More and more,
however, manufacturers are gearing these devices to a broader audience. An audience thirsting for
good games. And even though we're beginning to see more color screens, better sound capabilities,
and faster processors, handheld devices are always going to be pretty restricted compared to their
big brother, the PC.

Because of these steep limitations, devel opers—especially game devel opers—must focus like mad
on making applications smaller, faster, economical, and optimal.

Making Code Optimal

Making game code optimal is not an easy task. As a matter of fact, half the work in game
development for small devicesisin the optimization stage. But with experience, you will learn
where typical problems are and how to solve them.

Code optimization can be divided into five categories:

Optimizations to reduce code size
Optimizations to speed up the code execution
Optimizations to decrease memory usage
Optimizations to increase device availability
Optimizations to increase network performance

Code Size Optimizations

177

When agame isinstalled onto a device via a synch cable or over the network, the JAR fileis
unpacked into the device's storage memory. Every time the game is executed, the execution byte
code (Java classes) are copied into the working memory (heap memory) and processed. The larger
the classes are, the less heap memory isleft for the game. The less heap memory, the slower
things run and the greater the chances that the game will run out of memory completely. So, given
all that, making game classes as small as possible is of the utmost importance.

Making Code Faster

According to specification, devices that run J2ME CLDC have 16- or 32-bit processors with low
frequencies, in the range between a few megahertz (smart phones), to a few hundred (Windows
CE-based devices). The higher the clock speed is, the more power-hungry devices are.
Unfortunately, all small devices are limited by their batteries or accumulators—and most devices
aim to have at least 24 hours of continuous battery usage. As such, device manufacturers have
purposely installed low-powered chipsets. Making code run fast, then, is another key goal of
micro game devel opment.

Decreasing Memory

Devices have different ranges of available working memory. Smart phones only have between
128K B and 256K B of heap memory. Devel opers who write games in native assembly code, or a
low-level languages such as C++, can easily compact their code to be as efficient as possible. Java
developers, however, must deal with alot of overhead, such as memory allocation (object
construction) and deallocation (garbage collection). A chunk of memory is aso eaten up by the
JavaVirtua Machine (KVM), which runs the byte code. As you begin to create Java games and
test them on real devices, you'll probably run across out-of-memory error messages.

Device Availability

Different actions, such as the background display light or vibrations, might consume extra power
and force the device into off-line mode. With correct development, and by avoiding the overuse of
various calls, your game can have a better impact on a device's lifetime.

Network Performance

If your game is multiplayer-capable, then you'll need to send and receive messages over the
network. In most cases, this network is awfully slow, with high latency and limited bandwidth. As
such, it isimportant to make sure that every packet your game deals with is as compressed as
possible.

More information about network optimization can be found in Chapter 20, "Connecting Out:
Wireless Networking.”

Code Size Reductions

Making the execution code or JAR file smaller has several positive impacts on devices and game
players:

e Thesmaller aJARfileis, thelesstime it takesto download it over the Internet. With
fewer bytes to transfer, gamers will be charged |ess by their mobile operators, and be
online and playing much faster.

178

e Thesmaller execution codeis, the lesstimeit takes to install, verify, and execute a game.
Userswill not have to wait for delays between stages.

e Theless space classes take, the more heap memory is left for the game. Games usually
alocate large tables (for example, for level design, alist of enemies, and so on) might run
out of memory if there's not enough elbow room.

e Some devices have explicit limits on the size of a JAR file. For example, i-mode
applications may not be larger than 10 kilobytes.

Please note that code size optimizations are not always sufficient. Often times, game functionality
must be stripped down or simplified.

There are three techniques used to perform code reduction:

e Shorten the names of variables and methods in the code.
e Avoid a pure object-oriented way of programming.
e Maketheimage sizessmaller.

Obfuscators and Name-Shortening

When developing in an assembly language, every variable or method is represented by an address
(16- or 32-hit in small device processors) that points to a memory cell. Whatever mnemonic a
developer uses for avariable or method name, the size of the variable in memory stays the same (2
or 4 bytes). Needless to say, Javais not like assembly language. Instead, Java's focus is on making
code easy to write and maintain. Typical variable and method names might be GoldMonster or
LowLevel InterfaceControl. Intheworld of desktop computing, where machines have a
few hundred extra megabytes to play around with, there's usually no need to give these names a
second thought. But in the limited world of handhelds, every little byte counts:

e Each letter in the name of the class adds an additional byte to the execution code.

e Each letter in the name of the public method adds an additional byte to the execution code.
Protected and private methods don't have any impact on the class size.

e Each letter in the name of the public variable adds an additional byte to the execution
code. Protected and private variables don't have any influence on the size of the class.
Also, the name length of local variables and parameters don't change the size of the class.

e Every letter in the name of the constructor adds an additional byte to the classfile.

Does this mean that you should try to write a game using tiny method and variable names?

Imagine changing al method names like moveEnemy (), drawScene(), and makeNextMove ()
intoa(), b(), and c(). Not fun! The length of the class file would immediately be shortened, but
the source code would be muddled and impossible to maintain.

There is a better solution. Instead of making the source code dirty and unreadable, devel opers can
use a specia application called an obfuscator.

An obfuscator's main job is to protect applications against illegal decompilation by making the
code hard to read and difficult to unravel. The obfuscator is run only when the code is ready to be
released. It takes normal Java files and outputs tight, special classfiles. Luckily for 2ME
developers, most obfuscators will also drastically shorten class, variable, and method names. An
obfuscator's output code istypically 5 to 20 percent smaller than original classfiles. The size of
the reduction is based on the number of classes, methods, and variables.

There are many different obfuscators on the market, some available commercially and some free.
Check them out:

e IBM'sJAX (http://www.al phaworks.ibm.com/tech/JAX)

179

http://www.alphaworks.ibm.com/tech/jax

e RetroGuard (http://www.retrol ogic.com/)
e Jshrink (http://www.e-t.com/jshrink.html)
e Condensity (http://www.condensity.com/)

For example, to run Jax on aclass, you would use the following code fragment:

Java jax TestClass.class
Jax will output the compressed classinto aZip filecalled TestClass_jax.zip.
NOTE

Note that you may not want to change the name of your main MIDIet class. Most obfuscators
let you specify classes whose names should not be changed.

The Object-Oriented Dilemma

Javais an object-oriented language. Developers typically separate their code into many different
objects, each represented by a separate class. Each class has number of public methods and
variables available to other classes, and then has private methods for the class' internal usage.

With good object-oriented design, programmers can easily reuse pre-developed components and
speed up the development cycle. Code is aso more tightly written and separated by functionality.
For example, agame may typically have a separate class for game logic and one for actually
drawing visua graphics.

The following illustrates atypical object-oriented approach, in which two different classes will use
the same method name to achieve different functionality. Class Ext1 sets the global variable to
the same value as the parameter, and class Ext2 setsit to the square value of the parameter:

public abstract class Base
{
protected int value;
public abstract void setValue(int value);

public class Extl extends Base

{
public void setValue(int value)
{
this.value = value;
}
}
public class Ext2 extends Base
{
public void setValue(int value)
{
this.value = value * value;
}
}

This type of programming is very useful if you want to create an abstract concept that acts
differently at different times. For example, you might have aRaceTrack interface that returns
different values depending on whether the track isin the country or the city.

180

http://www.retrologic.com/
http://www.e-t.com/jshrink.html
http://www.condensity.com/

The result of the three classes listed above, however, is that they take up 654KB worth of storage
space. Another option is to use a non-object-oriented approach, and put al three classes into one:

public class Base

{
public static final int EXT1
public static final int EXT2

= O

private int type;
private int value;

public Base(int type)

{
this.type = type;

public void setValue(int value)
switch (type)

case EXT1:
this.value
break;

case EXT2:
this.value = value * value;
break;

default:

}

value;

}
}

In this case, the execution code only takes up 431 bytes. The code size is reduced by one third!
Although it is not recommended that you abandon all object-oriented techniques altogether, you
should be aware of not over-designing your game into too many classes. A good rule of thumb is
to design and build your game in away that is easiest for you, and when you are ready to release
the game, combine classes that don't offer much extra functionality.

WARNING

Some devices, such as the Siemens Java phone, have a 16KB class size limit. In this case, it
may make sense to split big classesinto several objects.

Image Size Reduction

Graphics are the centerpiece of most modern games. Graphics are everywhere—in the
introductory animation, in sprites, and in cutscenes. These image files can really add up.

Everything that a 2ZM E game needs is stuffed into one JAR file. Too many individual images can
quickly inflate the JAR file beyond its suggested maximum size.

The PNG image format used with MIDP has a large amount of overhead. PNG files are 24-bit and
include a complete palette in the PNG header. If you put twenty image files in your JAR file, you
will also be putting in 20 copies of the same palette.

Oneideais to squeeze images together by putting them into one image file, like afilmstrip. That
way, one file can have multiple images, but only one palette. To grab the image from this filmstrip,

181

your program must clip the screen appropriately. More information about clipping can be found in
Chapter 14, "Low-Level Approach."”

Another means of reducing the JAR file sizeis to move images off the local JAR file and onto the
network. This way, images are downloaded over HTTP from a Web server as they are needed.
The images can even be stored in the device's local database. More information about
downloading and storing images can be found in Chapter 16, "Managing Y our Sprites.”

Speeding Up the Code

In the world of game development, animation and gameplay are often expressed as frames per
second, or FPS. A typical 3D console game may animate millions of polygons at 24 FPS. The
timeit takes for ahuman eye to judge a series of still images as "moving" ranges from 20 to 30
frames per second. Any less than that and the animation or film begins to look choppy, like an old
Charlie Chaplin movie.

On handheld devices, users are much more forgiving. Aslong as a game animates at 10 frames per
second or better, things will appear relatively smooth.

However, running 10 FPS isfar from easy. For example, if the animation consists of a UFO sprite
flying across the screen, then every frame of the game must move the sprite, recalculate the
position using complex physics, look for collisions, and so on. To achieve 10 FPS, al of this must
be done in fewer than 100 milliseconds.

Here are some cold hard facts about mobile devices and processor power:

e Theprocessors are 16- or 32-bit.

e Thefrequency of the processorsis extremely low compared to PCs. For example, the
Siemens SL45i runs at 13MHz, and the Motorola Accompli A008 runs at 33MHz.

e To provide low power consumption, the processors have the smallest possible number of
transistors. That means there's no floating-point support, Nno extra memory management
units, and so on.

Given these parameters, a thoughtlessly developed J2ME game will run at only 1 or 2 frames per
second. No game player in the world will stand for that.

The following optimizations can help speed up your game's execution:

Optimize the call for garbage collection.
Void constructing new objects.

Use static methods instead of object methods.
Speed up the screen repainting.

Dealing with the Garbage Collector

For many devel opers, Javal's memory management is one of its most attractive features. A Java
developer never has to deal directly with memory allocation and deallocation. When an object is
created, Java automatically grabs the memory it needs. When the object is no longer needed, you
simply set it to null. Java's garbage collector destroys the object and cleans up the memory after
the destruction.

182

Garbage collection only reclaims memory when it determines that the object is unreachable from
any part of the application. Since the Javalanguage specifications don't provide any rules for how
the garbage collection should be invoked, each JVM uses its own implementation. The garbage
collector generally runsin its own thread and at its own pace.

J2ME MIDP devices are limited not only to the heap memory, but also to the memory needed for
implementation of the device's Kilobyte virtual machine. In order to make the KVM small, some
functionality has been stripped down or implemented in amore primitive way. As such, garbage
collection is usually not very sophisticated on handheld devices. Sometimes creating too many
objects can confuse the garbage collector and cause an out-of-memory situation.

To avoid application crash situations, you should call garbage collection manually whenever
possible. The process can be invoked by calling

System.gc(Q);
or
Runtime.getRuntime()-gcQ);

In other words, the second you are done using any object and reach a good spot in your game to
pause, set it to null and notify the garbage collector. A good time to call the garbage collector is
after your screen paints. That way, the garbage collector will not kick up in the middle of
animations, making sprites seem choppy or inconsistent.

The Constructorless Way

A constructor is called every time a classis created. When the constructor is called, two steps are
involved during class instantiation:

e Memory space needed for the object is allocated.
e Any additional code in the constructor method is called. The constructor may also call a
constructor of the parent class.

Both steps usualy take quite a bit of time. Creating too many classes within your game loop will
cause needless delays. Instead, you should create any objects you need before the main game loop
actually begins. Of course, you must be careful here: Too many created objects might cause an
out-of-memory situation.

One good design pattern isto use a pool of created objects that are available to the application as
necessary. When the object is needed, it can be borrowed from the pool. After using it, the
application returns the object back to the pool for later reuse.

Math Classes

Custom-created mathematical classes in particular can cause lots of constructor problems. For
example, many MIDP programs will have a class simulating floating-point numbers. Often, itis
tempting to create each number as a separate object:

Float numberl = new Float(100);

Making each number its own object is convenient. Y ou can easily call various methods on the
number to add it, subtract it, and so forth. The big problem with this approach, however, is that
each new mathematical operation takes extratime and memory for object construction and
garbage collection. If alot of small objects are created during the game execution, the memory

183

might become fragmented. If memory becomes too fragmented, a new large object can't be created
even if thereis plenty of memory left, because there is not enough clean, consecutive memory
space.

A better way of implementing a mathematical library isto create one singleton class that is always
accessible. This class can have static methods that allow mathematical functions to be called at
any time.

Static Methods

Static methods belong to entire classes, not to individual objects. A program can call astatic
method without constructing a new object. As such, using lots of static methods can speed up your
game's execution time and increase the size of available heap memory.

Of course, there is dso adownside: Static methods can only call other static methods, and only
access static variables. This limits their usability.

A good example of static methods usage can be found in athe Cache class detailed in Chapter 9,
"Creating A MIDlet." This class holds all game-wide information, such as the language, screen
resolution, list of sprites, and so on. Y ou should strive to put any commonly used variables or
other info as static variables within static classes.

The Fast-Draw

A gameisaseries of actions that constantly repeat. A typical game animation loop will usually
perform the following actions:

Read in user input

Calculate new position of sprites
Animate the background

Check for collisions

Draw the complete scene

Calculating sprite position can take a nice chunk of available cycle time. The more complex a
gameis, the more intricate the game's artificial intelligence (Al) is. One helpful technique isto
place the game's Al in a separate thread, so that animation isn't waiting on game logic.

Another blocking point is collision detection. The more sprites you have, the more collision
detection routines you will need to run. Chapter 16 contains several techniques for speeding up
collision detection.

Obviously, you want to strive to get through the game loop as quickly as possible. The faster you
can get all the calculations done with, the faster your frame rate will be. However, some frames
may finish much more quickly than others. This means that your animations may appear a bit
herky-jerky, with sprites sometimes racing across the screen and sometimes moping.

Some devices support double buffering. These devices accept al paint calls and execute them on
an offscreen image located in device memory. When the paint() method is complete, the device
will automatically flush the offscreen image onto the device's display. If double buffering is not
supported, you will need to implement it yourself to avoid screen-flickering. Creating this
additional offscreen image can take some more free memory, and the extra drawing routine can
take additional more time.

184

When double buffering, try not to clear and redraw every sprite on your entire game screen each
and every frame. Instead, you can merely del ete pieces of the scene where the sprite was located
before the new movement occurred. Y ou can then draw the sprite at its new location.

Ancther good ideais to keep track of your frame rate by checking the system clock. Y ou may
even want to slow down extra-fast frames using the Thread . sleep() method.

More information about these and other animation techniques can be found in Chapter 17, " Sprite
Movement."

In the end, though, the main graphical bottleneck isthe device's graphics driver. The driver's main
job isto connect an application paint call with the device's actual display. Unfortunately, the
driver is not optimized like the ones found in personal computers, and doesn't have any additional
accelerators for fast painting. In fact, many micro devices take more than 100 milliseconds to
paint atypical screen.

Micro Java game developers will have to separate all Java-enabled devices into two groups: Those
that are fast enough and those that are hopeless. For example, smart phones such as Motorola's i85
and Siemens SL45i are faster than PDA-like phones with big screens such as the Motorola
Accompli A008.

Using Less Memory

When a game executes, it usually needsto allocate lots and lots of memory. Every sprite, image,
game state, and other piece of the virtual world will require a bit of memory. Since devices have a
limited amount of memory, games should strive to create each level or scene only as needed.

Memory usage can also be controlled by using some smart coding techniques. Two of the most
frequent memory problems occur while creating text and using lists.

string Versus StringBuffer

After aString object is created, the contents of the object can't actually be changed. Whenever
you modify aString, you are actually creating one or more hew String objects. That means
the concatenation of two Strings actually creates three separate objects. The same problem
occurs with other String operations such as inserting characters, converting to uppercase, or
parsing out a substring.

A much more efficient way to manipulate character arraysisthe StringBuffer class.
StringBuffer objects automatically expand as needed. For example, if you concatenate two
StringBuffers, then anew array is created and the old arrays are copied within.
StringBuffer operations are much faster than using Strings.

Here's an example of using aStringBuffer instead of aString:

public class StringLib

{
private StringLib(Q) {}

public static String getTime(int time)

{
StringBuffer buf = new StringBuffer();

185

buf_append(""""'Time: """");

int seconds = time / 1000;

int minutes seconds / 60;

int hours = minutes / 60;
seconds = seconds - minutes * 60;
minutes = minutes - hours * 60;
buf_append(hours);
buf._append(*':');
buf_append(format(minutes));
buf.append(*':');
buf.append(format(seconds));
return buf.toString();

}

private static String format(int value)

{
String str = String.valueOf(value);
str = (str.length() == 1 ? "0" + str : str);
return str;

}

}

The getTime () method cuts the time (provided in milliseconds) into separate chunks
representing hours, minutes, and seconds. Because the default length of aStringBuffer object
is 16 characters, there is no need for the object to expand itself.

If you were to use String objectsin the preceding code in place of aStringBuffer, the
application would need to create six string constants and five Stringsfor concatenations.

Note, however, the format () method in the preceding code. Thereis only one concatenation at
most. In this case, it makes more sense to use two small Stringsrather than one large
StringBuffer.

Arrays Versus vector and Hashtable

Arraysin Javaare aspecial kind of object. They are created by using either the new operator, or in
acombined declaration, creation, and initialization statement. An array represents a 32-bit address
that pointsto alist of indexed values. VValues may be of primitive types or classes. The biggest
problem in using arraysis that you need to set the size of your array in advance. If you need to
enlarge the array, you must create alarger one and copy the values from the old array into the new
one (by calling the System.arraycopy () method).

A much easier approach isto use the Vector class. The Vector object is used to store an array
of objects, and it can grow automatically as needed. The class also offers awide range of methods
for adding, inserting, finding, and deleting objects. All methods are synchronized to guard against
one thread changing the data currently being used by another thread.

TheHashtable classissimilar to the Vector class, alowing you to store an unlimited number
of objects keyed to a particular value.

Unfortunately, the convenience and safety of aVector or Hashtable comesat aprice. A lot of
overhead memory is used to create aVector or Hashtable, and locking and releasing the
Vector and Hashtabl es reduces your program's execution speed.

When it comes to your own games, try to use arrays whenever possible.

186

Power Consumption

The last important optimization technique has to do with the lifetime of a device's battery. Some
phones are not very good with using power for graphics and program execution. Some phones
might run out of battery power if the user plays a game for an hour or two.

Some of the biggest power-eating problems in games are

e Whenever agame key is pressed, the display light turns on for amoment. Some devices
have the ability to turn the light off manually, but most users don't bother to use this
feature.

e During the game execution, your game may produce sounds. Sounds may be turned off,
but then your gameplay suffers.

e Some devices support vibrations, and games may use them for special effects.

Pure MIDP devices don't support backlight, advanced sounds, or vibrations. However, some
devices, such as the Siemens SL45i and the i-mode series 503 have an additional game API that
enabl es those effects. Astempting as it may be to use some of these neat features, you should do
so sparingly to avoid totally sapping battery power.

Summary

Asyou can see, Micro Java game development is a tricky business. However, by focusing
carefully on your game'sfile size, execution speed, memory bounds, battery life, and networking
protocol, you can achieve some remarkabl e things.

One thing J2ME programming teaches you is to be resourceful. In subsequent chapters, we will go
into more detail about creating optimized routines that balance functionality with speed and size.

187

Chapter 12. Multithreaded Game Programming
IN THISCHAPTER

Threads

Extending the Thread Object
Implementing the Runnable Interface
Thread Priorities

Thread States

Synchronizations and Deadlocks
wait() and notify()

Timers

Making Threads Better

Summary

When games are running on a mobile device, many different pieces of code must be executed
simultaneously. This includes actions such as checking the keyboard, moving the sprites, detecting
sprite collision, planning the game's artificial intelligence, and of course, repainting. If a devel oper
hasto put al those tasks into alist and execute the list step-by-step, just waiting for a new key-
pressed event could pause the game. A much better approach would be to put tasks into different
lists, and permit each list to execute at the same time. For example, one task can check the
keyboard as the other task executes other parts of the code. Fortunately, when calling the
repaint() method, only arequest for anew painting is sent, without waiting for the repaint
itself. Thisisdonein acompletely different task. A question arises: Can you do such athingin
J2ME? The answer is yes. This multitasking capability can be achieved ssimply by using Java's
multithreading capabilities.

Threads

A thread is a path taken by a program during execution. By executing through several paths, an
application is quicker, flexible, and non-blockable. If a program can be split into separate tasks, it
is often easier to program the algorithm as a separate task or thread. Such programs deal with
multiple independent tasks. The popularity of threading increased when graphical interfaces
became the standard for all devices, from desktop computersto small intelligent devices. The
reason for threading's success is the user's perception of better program performance—and
performance is extremely important in games!

When developing threads for games, the following questions arise:

How many threads does the game need?

What should be the animation frame-rate?

How do you manipulate data using a thread?

Do you use the Thread class, Runnable interface, or Timer class?

The answer to the first question is that at |east three threads are required. One thread is used for
drawing the graphic scene, one for reading input events (for example, keyboard, pen, and so on),
and one for manipulating the sprites. Fortunately for the game devel opers, the first two threads are
already automatically implemented, and devel opers don't need to implement additional threads.
The easiest way to implement the third thread is by using the Canvas class that represents the
game graphics area where the game is happening. Additional threads can be used for artificial
intelligence to make the game more attractive.

188

If a developer wants to attract a gaming audience, alot of work must be done in the area of the
graphics. Usually today's games make alot of effort to convince players by making magnificent
introductory animations. But Java-enabled mobile devices are too limited in resources to offer the
same effects. Mobile developers need to focus more on the games themselves. Providing animated
action is possible with implementation of the animation thread. Such athread is used to offer
animated scenes with a fixed frame-rate.

Animation adds a great deal to the user interface, but unfortunately the devices currently available
on the market are not fast enough, so higher animation frame-rates are not possible. There are
many ways to implement animation, which can differ in speed from device to device. This book
will show you the simplest solution: taking the lowest common denominator. The lowest
acceptable frame-rate is ten frames per second. This means that a thread must execute the loop
every 100 milliseconds.

The thread can have multiple methods to manipulate its data, but it should have these two required
methods:

e start()— To start the thread (game)
e stop()— To stop the thread (game)

Extending the thread Object

Within the Java virtual machine, a java. lang. Thread object encapsulates the details of how a
particular system approaches the multithreading.

The following methods are important for the Thread class:

e currentThread()— This method returns a reference to the currently executing thread
object.

e yield()— Thismethod causes the currently executing thread object to temporarily
pause and permit other threads to execute.

e sleep(long millis)— Thismethod causes the currently executing thread to sleep
(temporarily cease execution) for the specified number of milliseconds. The thread does
not lose ownership of any monitors. This method is very useful for managing the game
speed that must produce a fixed frame-rate. The devel oper's responsibility isto measure
the time of execution and to sleep the rest of the time to achieve the correct time (for
example, 100 milliseconds for 10 frames per second).

e start()— Thismethod causes the thread to begin execution. The Java Virtual Machine
callsthe run method of thisthread. The result isthat two threads are running
concurrently: the current thread (which returns from the call to the start method) and
the other thread (which executes its run method). The start method is very important
for starting the game.

e run()— Subclasses of Thread should override the run() method to provide
functionality such as sprite movement, calling the repaint() method and executing
artificial intelligence tasks.

e isAlive()— Thismethod tests whether the thread is alive. A thread is dliveif it has
been started and has not yet died.

e setPriority(int newPriority)— This method changes the priority of the thread.

e getPriority()— This method returnsthe thread's priority.

e activeCount()— This method returns the current number of active threads in the Java
Virtual Machine.

e join()— This method waits for the thread to die.

189

Listing 12.1 illustrates how to implement athread using the Thread class.
Listing 12.1 The GameCanvas Thread Example

public class GameCanvas

{
private final int DELAY = 100;

private GameThread thread;
private boolean running;

public GameCanvas()

{
}

public void start()
{

running = true;
thread = new GameThread();
thread.start();

}

public void stop()
{

}

public class GameThread extends Thread

{

running = false;

public void run()

while (running)

{

// Move sprites

// Check collisions
// Repaint

try

Thread.sleep(DELAY);
} catch (Exception ex) { }
3
3
}
3

A special flag called running is used to notify the thread whether it can continue. When the flag
isset to false by astop() method, the thread finishes. The constant DELAY defines the sleep
time for each loop. The developer should be aware that sleep time alone doesn't provide the
animation frame-rate because execution time also contains times needed for moving sprites,
collision detection, and calling the paint() method, which is executed in a separate thread. In
reality, the speed is much lower, depending on the CPU speed of the mobile device.

Implementing the runnavie Interface

Another way to create athread isto implement the java. lang.Runnable interface. This
interface is designed to provide a common protocol for objects that want to execute code while

190

they are active. For example, Runnable isimplemented by the Thread class. Being active
simply means that a thread has been started and has not yet been stopped. In addition, Runnable
provides the means for a class to be active while not subclassing Thread. The classisfreeto
extend some other class, in this case Canvas. A class that implements Runnable can run
without subclassing Thread by instantiating a Thread instance and passing itself in as the target.
In most cases, the Runnab I e interface should be used if you are only planning to override the
run() method and no other Thread methods.

Runnable has only one method:

e run()— When an object implementing the Runnabl e interface is used to create a
thread, starting the thread causes the object's run method to be called in that separately
executing thread. The general contract of the run method isthat it may take any action
whatsoever. Usually, a game provides its own functionality within this method (such as
sprite movement and calculations).

Listing 12.2 shows how to implement athread using the Runnabl e interface.
Listing 12.2 The GameCanvas Runnable Example

public class GameCanvas implements Runnable

{
private final int DELAY = 100;

private Thread thread;
private boolean running;

public GameCanvas()

{
}

public void start()

{
running = true;
thread = new Thread(this);
thread.start();

}

public void stop()
{

running = false;

}

public void run()
{
while (running)
{
// Move sprites
// Check collisions
// Repaint
try

Thread.sleep(DELAY);
} catch (Exception ex) { }

191

Aswith the extended Thread object, a specia flag called running isalso used to notify the
thread whether it can continue. When the flag is set to false by astop () method, the thread
finishes. The developer should be aware that, asin the Thread class, sleep time alone doesn't
provide the animation frame-rate. If developer wants to have afixed frame-rate, thus freezing the
execution of every frame at one tenth of a second, the easiest approach isto use the Timer class,
which will be discussed later in this chapter. Timers may not be connected to the hardware clock
itself, which can fire the timer events on time.

Thread Priorities

Each thread can have its own thread priority. By looking closer at the multithreading mechanism
implemented in the Java virtual machine, you see that only one thread is ever executed at a given
time (on single-processor machines). It is the system's responsibility to slice the time and execute
the specific thread within one time dice. How often the thread appearsin a specific timeis
indicated by the priority. A higher priority means more frequent execution, and such threads also
run faster. The following constants define priorities:

e MIN_PRIORITY— The minimum priority that athread can have (value 1)
e NORM_PRIORITY— The default priority assigned to athread (value 5)
e MAX_PRIORITY— The maximum priority that a thread can have (vaue 10)

The priority can be any integer number between MIN_PRIORITY and MAX_PRIORITY. Ifitis
out of thisrange, java. lang. 11 legalArgumentException isthrown.

Thread States

Depending on what the thread is doing, it can have different thread states. Each thread can have
one of four states:

e New state—Thisisthe state of a newly created thread. The start() method is used to
activate the thread, assign some resources to it, and move it to arunnable state. A newly
started thread always executes a run() method.

¢ Runnable state—In this state, the thread is on the virtual machine's list of runnable
threads. When it gets to run depends on its priority, the characteristics of the VM, and
the activity of other threads.

e Blocked state—A thread can be moved to the list of blocked threads as a result of
entering await() method, calling the sleep() method, or calling one of the blocking
I/0 methods that the VM manages.

o Dead state—A thread becomes dead when it exitsthe run() method that it started. A
dead thread can't be reanimated.

By using the isAlive() method, the developer can find out if the thread is still alive. A thread is
diveif it is starting, running, or blocked. Dead threads are not alive, and the call to the method
returnsfalsein this case.

Synchronizations and Deadlocks

192

In theory, any Thread can access any object within a Java program. To prevent the programming
chaos that would result from multiple threads modifying the same object at the same time, Java
uses the monitor mechanism wherein the synchronized keyword is used. The monitor mechanism
is built into the Object class, thus insuring that al Java objects can useit.

The Javavirtual machine has control over alock variable attached to each object. Thislock
variable is used to implement a monitor mechanism that can control threads access to the object.
The monitor mechanism is used only when the synchronized keyword has been used to label a
block of code. When a thread attempts to enter a synchronized block of code, the virtual machine
checks whether the lock is available. If no other thread has the lock, the current thread locks the
object. If the lock already exists, the current thread becomes blocked and can't proceed until the
lock is released. When the thread |eaves the synchronized block, the lock is automatically released,
and the next blocked thread in ablocked list may proceed.

A deadlock occurs when two threads are trying to gain control of object and each one has alock

on aresource that the other needs to proceed. Unfortunately, Java has no mechanism to detect or
control deadlock situations. It is a programmer's responsihility to plan objects and threads so that
after the thread acquires the lock on the object, it will be able to complete the synchronized code,
or at least call itswait() method.

wait() an d notify()

If two threads require more cooperation in the use of an object that can't be obtained with asimple
synchronized access, thewait() and notify() methods can be used.

Thewait() method has three forms:

¢ wait()— Thismethod causes the current thread to wait until another thread invokes
either the notify () method or the notifyAl 1 () method for this object. The current
thread must own this object's monitor. The thread releases ownership of this monitor and
waits until another thread notifies threads waiting on this object's monitor to wake up,
through acall to either the notify () method or the notifyAl 1 () method. The thread
then waits until it can re-obtain ownership of the monitor and resumes execution. Only a
thread that is the owner of this object's monitor should call this method.

e wait(long timeout)— Thismethod causes the current thread to wait until either
another thread invokes the noti fy () method or the notifyAl I () method for this
object, or a specified amount of time has elapsed.

e wait(long timeout, int nanos)— This method causesthe current thread to wait
until another thread invokes the notify () method or the notifyAl 1 () method for
this object, some other thread interrupts the current thread, or a certain amount of real
time has elapsed.

The notify() method wakes up a single thread that is waiting on the object's monitor. If any
threads are waiting on the object, one of them is chosen to be awakened. The choice is arbitrary
and occurs at the discretion of the implementation. The thread waits on an object's monitor by
calling one of the wa it methods. The awakened thread will not be able to proceed until the
current thread relinguishes the lock on the object. The awakened thread will compete in the usual
manner with any other threads that might be actively competing to synchronize on the object. The
notifyAll () method wakes up al threads that are waiting on the object's monitor.

193

Timers

If you want to execute tasks that take different amounts of time during sprite movement and
collision detection, the simplest way isto usethe java.util . Timer class. The Timer class
makes it easy for threads to schedule tasks for future execution in a background thread. Tasks may
be scheduled for one-time execution, or for repeated execution at regular intervals. Timer tasks
should complete quickly. If atimer task takes excessive time to complete, it "hogs' the timer's task
execution thread. This can, in turn, delay the execution of subsequent tasks, which might bunch up
and execute in rapid succession when the offending task finally completes. By default, the task
execution thread does not run as a daemon thread, so it is capable of keeping an application from
terminating. If a caller wants to terminate a timer's task execution thread rapidly, the caller should
invoke the timer's cance I () method.

The following methods are part of the Timer class:

e schedule(TimerTask task, long delay)— This method schedulesthe
specified task for execution after the specified delay. Games should call this method when
execution of the task doesn't depend on fixed execution rate. Each task is executed within
a specified amount of time (for example, every 100 milliseconds), but the execution of the
task can exceed that time.

e schedule(TimerTask task, Date time)— Thismethod schedules the specified
task for execution at the specified time.

e schedule(TimerTask task, long delay, long period)— This method
schedules the specified task for repeated fixed-delay execution, beginning after the
specified delay. Subsequent executions take place at approximately regular intervals
separated by the specified period.

If the execution is delayed for any reason (such as garbage collection or other background
activity), subsequent executions will be delayed as well. In the long run, the frequency of
execution will generally be slightly lower than the reciprocal of the specified period.

e schedule(TimerTask task, Date firstTime, long period)— This
method schedul es the specified task for repeated fixed-delay execution, beginning at the
specified time. Thisis similar to preceding method.

e scheduleAtFixedRate(TimerTask task, long delay, long period)—
This method schedules the specified task for repeated fixed-rate execution, beginning
after the specified delay. Subsequent executions take place at approximately regular
intervals, separated by the specified period.

If the execution is delayed for any reason, two or more executions will occur in rapid
succession to catch up. In the long run, the frequency of execution will be the exact
reciprocal of the specified period.

A game should use this method if the timeframe must be fixed. However, if the execution
time of the task islarger than is allowed, the number of threads will constantly increase.
J2ME devices are unfortunately resource-limited, and might eventually crash.

e scheduleAtFixedRate(TimerTask task, Date firstTime, long
period)— This method schedules the specified task for repeated fixed-rate execution,
beginning at the specified time. Thisis similar to the preceding method.

e cancel ()— Thismethod terminates this timer, discarding any currently scheduled tasks.
It does not interfere with a currently executing task if it exists. After atimer has been
terminated, its execution thread terminates gracefully, and no more tasks can be
scheduled on it.

194

Y ou need to implement your own TimerTask class and create a TimerTask object if you want
to usethe Timer class. The run() method needs to be implemented containing the thread
functionality. Listing 12.3 contains an implementation of threading using the Timer class.

Listing 12.3 The GameCanvas Timer Example

import java.util.*;

public class GameCanvas

{
private final int DELAY = 100;

private Timer timer;

public GameCanvas()

{
}

public void start()

GameTask task = new GameTask();
timer = new Timer();
timer.scheduleAtFixedRate(task, 0, DELAY);

}

public void stop()
{

running = false;

}

public class GameTask extends TimerTask

{

public void run()

{

// Nove sprites
// Check collisions
// Repaint

}
}
}

This code is similar to the implementation of the Thread class, where the devel oper writes
Thread's own inner class. Timer executes the task every 100 milliseconds. If the task takes more
then 100 milliseconds, a new task will still be invoked on time. This means that at a specific time,
there might be a bunch of threads running, which can slow down the device. Another approach
would be to use the schedule () method, but the application would lose the fixed scheduling
necessary during game execution.

Making Threads Better

The problem with timers is that they don't provide additional control methods for tasks like
threads do. Y ou can still usethe Thread class instead by implementing asimilar functionality as
found inthe Timer class, asseenin Listing 12.4.

Listing 12.4 A Similar Functionality to the Timer Example

195

public class GameCanvas

{

private final int DELAY = 100;

private GameThread thread;
private boolean running;

public GameCanvas()

{
}

public void start()

{

running = true;
thread = new GameThread();
thread.start();

}

public void stop()

{

running = false;

}

public class GameThread extends Thread

{

public void run()

{

while (running)

{

}
}
}
}

long time = System.currentTimeMillis(Q);
// NMove sprites
// Check collisions

// Repaint
time = System.currentTimeMillis() - timer;
try

it (time < DELAY)
Thread.sleep(DELAY - (int)time);

catch (Exception ex) { }

In the run() method, you measure the time of functionality execution by calling the
System.currentTimeMi I lis() method. If the execution timeis less then 100 milliseconds,
the run method sleeps until it receives areminder. Otherwise, it executes the next loop.

Summary

Through the use of multithreading, games become faster and manage different tasks at the same
time—which was not easy to achieve in older systems. While the game waits on the player's
keyboard, joystick, or touch-screen commands, it can paint on the screen, calculate new positions
of the sprites, and manage its artifical intelligence. Multithreading can be done using threads or
timers. Timers are much easier to use, because a game can execute the task in afixed timeframe.
However, because Java did not initially have the Timer class, alot of ported games opt to use the

196

Thread classinstead. The next chapter will introduce high-level GUI components, and how to
use them for game devel opment.

197

Part IV: Let the Games Begin!

IN THIS PART

13 High-Level Graphical User Interfaces

14 Working with Graphics. Low-Level Graphical User Interfaces
15 Entering The Land Of Sprites

16 Managing Y our Sprites

17 Sprite Movement
18 I2ME Audio Basics

19 Be Persistent: MIDP Data Storage

20 Connecting Out: Wireless Networking

198

Chapter 13. High-Level Graphical User Interfaces

INTHISCHAPTER

The Screen Class
Forms and Alerts
Lists

Text Boxes

Items

Tickers

Additional Libraries

Summary

Most games, especially those that involve alot of action, don't concern themselves with a high-
level graphical interface. High-level elements are those you'd typically find in a data entry form,
including text boxes, pull-down selection menus, and check boxes.

Instead, games are focused on more detailed graphics—stuff like backgrounds, animations, and
sprites. Thistype of low-level graphics manipulation is discussed in the next chapter.

However, agameisn't all about action. Even the most graphically advanced game needs a start
menu, or aform for the user to enter their name when she achieves a high score. When new levels
are loaded, you might want to show players a gauge component to indicate how much has been
downloaded so far. Players might also need choice components to select the difficulty of levels.

And so, high-level GUI components are important after all. Luckily, MIDP makes high-level
GUIs extremely easy to implement.

This chapter will discuss the basics of Java GUI development as it pertains to game programming.
The emphasis will be on graphics fundamentals, as well as the development of custom
components for our applications to use. The key liesin the Screen class.

The screen Class

The javax.microedition. Icdui .Screen classis asuperclass of all GUI components that
can be put on a screen. Such components can also contain other components. The Screen class
itself has methods to set and get the values of thetitle bar and ticker text. It usually has automatic
component positioning and scolling mechanisms, so developers don't need to bother with such
things.

NOTE

The layout policy in most devicesis vertical. In forms, anew line is usually started for
focusable items such asa TextField, DateField, Gauge, or ChoiceGroup. If thesize
of aformis greater than the size of the display, then the user will usually be able to scroll
downward. Thereis usually no horizontal scrolling.

String items and images, which do not involve user interaction, behave differently than other
widgets. Severa strings, for example, are drawn horizontally unless the newline character (\n)
is embedded in the string. Content is wrapped (for text) or clipped (for images) to fit the width
of the display.

199

Forms and Alerts

The javax.microedition. lcdui .Form classis one of the most commonly used child
classes of the Screen class. It isthe only one that is a container in which developers can place
different GUI objects.

Itemsthat are placed in forms are descended from the javax.microedition. Icdui . ltem
class. The Form classissimilar to the java.awt.Panel classin J2SE.

TheAlert classis aspecial type of form used for notification purposes. Like the Form class,
when an Alert is shown it occupies the complete screen.

Lists

The javax.microedition. lcdui.List classisasuccessor of the Screen classand is used
to present alist of choicesto the user. A list can be exclusive (acting like a set of radio buttons),
multiple (acting like a set of check boxes), or implicit (acting like a selecting menu).

The user generally accesses an item in the list by using the up and down arrow keys to choose the
item. The item can then be selected using the phone's main Select button.

Most of the behavior in alist is common with the class
jJjavax.microedition. Icdui .ChoiceGroup, and the common API is defined in the
interface javax.microedition. Icdui .Choice.

When alist is present on the display, it also takes up the entire screen. Traversing alist or
scrolling through its items does not trigger any application-visible events. The system only notifies
the application when alist item is actually selected. The notification of the application is done
within the commandAction() method. An example of the List classin action can be seenin

Figure 13.1.

Figure 13.1. A Java List object.

200

List Types
There are three types of lists:

e IMPLICIT— Thislist actslike a selection menu. When an item is selected, the
application isimmediately notified.

e EXCLUSIVE— Actslike a set of radio buttons. The select operation changes the selected
element in the list. The application, however, is not notified until the user explicitly
triggers acommand such as Done. Y ou must be sure to add and handle this command.

e MULTIPLE— Actslike aset of check boxes. The select operation toggles the selected
state of the current element. The application is not notified.

IMPLICIT lists can be used to construct menus by treating each element like alogical command.
In this case, no application-defined commands have to be created. The application just has to
register aCommandL istener that is called when auser selects an item.

For example, you might create an explicit list with three operations. Start Game, Quit Game, and
Instructions. Start Game is considered the default operation.

Because thelist is of type IMPLICIT, when a player selects a given command, the
commandAction() method is called, and the SELECT_COMMAND parameter is passed in.

Choices, Choices

201

The javax.microedition. lcdui .Choice interface definesan API for auser interface
component implementing a selection from a predefined number of choices. The Ul components
that implement Choice are List and ChoiceGroup.

Each element of aChoice iscomposed of atext string and an optional image. If the application
provides an image, the implementation can choose to ignore the image if it exceeds the capacity of
the deviceto display it. If the implementation displays the image, it will be displayed adjacent to
the text string as a sort of icon, and the pair will be treated as a unit.

After aChoice object has been created, elements may be inserted, appended, and deleted, and
each element's string part and image part can be obtained and set. Elements within aChoice
object are referred to by their indexes, which are consecutive integers starting from zero.

There are three types of choices. IMPLICIT-CHOICE (valid only for lists), EXCLUSIVE-
CHOICE, and MULT IPLE-CHOICE.

When aChoice is present on the display, the user can interact with it indefinitely. These
traversing and scrolling operations do not cause application-visible events. The system notifies the
application only when some application-defined command is fired, or when the selection state of a
ChoiceGroup ischanged. When acommand is fired, a high-level event is delivered to the
listener of the Screen.

The following important methods can be found in the javax.microedition. Icdui .Choice
interface:

e size()— Getsthe number of elements present.

e getString(int elementNum)— Getsthe text part of the element referenced by
elementNum value.

e getlmage(int elementNum)— Getsthe image part of the element referenced by
elementNum.

e append(String stringPart, Image imagePart)— Appendsan element tothe
choice group. The added element will be the last element listed. The size of the group
grows by one.

o insert(int elementNum, String stringPart, Image imagePart)—
Inserts an element into the choice just prior to the element specified. The group size
grows by one.

e delete(int elementNum)— Deletesthe element referenced by e lementNum. The
group size shrinks by one.

e set(int elementNum, String stringPart, Image imagePart)— Setsthe
element referenced by e lementNum to the specified element, replacing the previous
contents of the element.

e isSelected(int elementNum)— GetsaBoolean value indicating whether this
element is selected.

¢ getSelectedlndex()— Returnsthe index number of an element in the choice that is
selected.

e getSelectedFlags(boolean[] selectedArray)— Queriesthe state of achoice
and returns the state of all elementsin the Boolean array called selectedArray.

o setSelectedIndex(int elementNum, boolean selected)

For MULT IPLE, this method simply sets an individual element's selected state.

For EXCLUSIVE, this can be used only to select any element. In other words, the selected
parameter must be true. When an element is selected, the previously selected element is
deselected.

202

For IMPLICIT, this can be used only to select any element. The selected parameter must
be true. When an element is selected, the previoudly selected element is deselected.

setSelectedFlags (boolean[] selectedArray)— Attemptsto set the
selected state of every element in the Choice using the Boolean array.

Lists can be used as menus and track/level selectors. Listing 13.1 shows an example menu. A car
racing game can use this menu to select atype of track.

Listing 13.1 Choosing a Track

import javax.microedition.lcdui.*;
import javax.microedition.midlet.*;

public class Tracks extends List

{

implements CommandListener

private MIDlet midlet;
private GameCanvas nextForm;
private Form previousForm;

private Command backCommand = new

Command(*'Back', Command.SCREEN, 1);

private static String trackNames[] =

{"City", "Forest"™, "Mountain'"};

private static int lengths[] =

{1000, 1400, 800};

public Tracks(MIDlet midlet, GameCanvas nextForm,

{

}

Form previousForm)

super(""Tracks:", List.IMPLICIT, trackNames, null);
this_.midlet = midlet;

this.nextForm = nextForm;

this.previousForm = previousForm;
addCommand(backCommand) ;

setCommandListener(this);

public void commandAction(Command c, Displayable s)

{

if (c.equals(List.SELECT_COMMAND))

int trackID = getSelectedIndex();
nextForm.setLength(lengths[tracklD]);
nextForm.setSpeed(Float.createFloat(2, 400));
nextForm.initEnemies();
Display.getDisplay(midlet) .setCurrent(nextForm);
nextForm.start();

else if (c == backCommand)

{
Display.getDisplay(midlet) .setCurrent(previousForm);

203

The application memorizes the previous and next form so that forward and backward navigation is
available. All list options are passed as an array of strings. When the Select key is pressed, it
invokes a special SELECT_COMMAND event. In the command listener, when the event is caught,
the track's id isread from the list and the game is started (usually by starting a thread). The track
isshownin Figure 13.2.

Figure 13.2. The race track selection list.

Text Boxes

A javax.microedition. Icdui.TextBox classisanother Screen class successor that
alows the user to enter and edit text. It has a maximum size, which is the maximum number of
characters that can be stored in the object at any time (its capacity). Thislimit is enforced when
the TextBox'sinstance is constructed, when the user is editing text within, as well as when the
application program calls methods that modify its contents. The maximum size is the maximum
stored capacity, and is unrelated to the number of characters that can be displayed at any given
time.

The text contained within a TextBox may be more than can be displayed at one time. If thisisthe
case, the implementation will usualy let the user scroll down through the box to view and edit any
part of the text. This scrolling occurs transparently to the application.

204

Important methods are the following:

e getString()— Getsthe contents of the TextBox as a string value.

e setString(String text)— Setsthe contents of the TextBox asastring value,
replacing the previous contents.

e getChars(char[] data)— Copiesthe contents of the TextBox into a character
array starting at index zero. Array elements beyond the characters copied are left
unchanged.

e setChars(char[] data, int offset, int length)— Setsthe contents of
the TextBox from a character array, replacing the previous contents. Characters are
copied from the region of the data array starting at array index offset and running for
length characters.

e insert(String src, int position)— Insertsastring into the contents of the
TextBox. The string isinserted just prior to the character indicated by the position
parameter. The current size of the contents isincreased by the number of inserted
characters. The resulting string must fit within the current maximum capacity.

e insert(char[] data, int offset, int length, int position)—
Inserts a subrange of an array of charactersinto the contents of the TextBox.

e delete(int offset, int length)— Deletes characters from the TextBox.

e getMaxSize()— Returnsthe maximum size of characters that can be stored in this
TextBox.

e setMaxSize(int maxSize)— Setsthe maximum size (number of characters) that
can be contained in this TextBox. If the current contents of the TextBox are larger than
maxSize, the contents are truncated to fit.

e size()— Getsthe number of characters that are currently stored in this TextBox.

e getCaretPosition()— Getsthe current input position.

e setConstraints(int constraints)— Setstheinput constraints of the TextBox.

e getConstraints()— Getsthe current input constraints of the TextBox.

ltems

The javax.microedition. Icdui . I'tem classisthe big daddy of them all. Any user
interface component that can be added onto a Form must derive from I'tem. All 1tem objects
have alabel field, which isastring that is attached to the item. The label istypically displayed
near the component when it is displayed within a screen and has the following methods:

e setlLabel(String label)— Setsthelabel of this object.
e getLabel ()— Getsthelabel of thisobject.

In some cases, when the user attempts to interact with the item, the system will switch to a system-
generated screen where the actual interaction takes place. If this occurs, the label will generally be
carried along and displayed within this new screen in order to provide the user with some context
for the operation.

Item State Listening

Sometimesit is useful to know if auser is selecting one of your items. Y ou can have aform listen
to aitem by using the following static method:

Form.setltemStatelListener(ltemStatelListener)

205

When a user does something interesting with a user interface component, the listener's
itemStateChanged(ltem item) method will be triggered. Such changes include

e Changing the set of selected valuesin aChoiceGroup
e Adjusting the value of an interactive Gauge

e Entering anew valueinto aTextField

e Entering anew Date into aDateField

The listener is not called if the application (as opposed to the user) changes the value of an
interactive item.

Choices

A javax.microedition. Icdui.ChoiceGroup isagroup of selectable elementsintended to
be placed within a Form. The group may be created with a mode that requires a single choice to
be made, or one that allows multiple choices.

Each device implementation is responsible for providing the graphical representation of these
modes, and must provide visually different graphics for different modes. For example, some
devices might use radio buttons for the single choice mode and check boxes for the multiple-
choice mode. Choices implement the javax.microedition. Icdui .Choice interface and
therefore have the same methods as lists.

Dates

A javax.microedition. Icdui.DateField isan editable component for presenting date
and time information that can be placed into aForm.

Y ou can create an instance to accept a given date, agiven time, or both. Thisinput mode
configuration is accomplished by calling the DATE, TIME, or DATE_T IME static fields of this
class. Figure 13.3, for example, shows atypical date and time selection screen.

Figure 13.3. Displaying date and time.

Methods for manipulating the date and time include the following:

e getDate()— Returnsthe date value of thisfield. The returned valueis null if the field
valueisnot initialized. The Date object is constructed according to the rules of alocale-
specific calendaring system and defined time zone. In the T IME mode field, the date
components are set to the zero epoch value of January 1st, 1970. If aDate object

206

presents time beyond one day from this zero epoch, then thisfield isin the not initialized
state, and this method returns null. In the DATE mode field, the time component of the
calendar is set to zero when constructing the date object.

e setDate(Date date)— Setsanew valuefor thisfield. Null can be passed to set the
field state to the not initialized state. The input mode of this field defines what
components of the passed Date object is used. In TIME input mode, the date components
must be set to the zero epoch value of January 1st, 1970. If aDate object presentstime
beyond one day from the zero epoch, then thisfield isin the not initialized state.

In TIME input mode, the date component of the Date object isignored, and the time
component is used to the precision of minutes.

In DATE input mode, the time component of the Date object isignored.

In DATE_T IME input mode, the date and time components of Date are used, but only to
the precision of minutes.

e getlnputMode ()— Getsthe input mode for this date field. Valid input modes are
DATE, TIME, or DATE_TIME.

e setlnputMode(int mode)— Setstheinput mode for this date field. Valid input
modes are DATE, TIME, or DATE_TIME.

e setlLabel(String label)— Setsthelabel of the I'tem. If thelabel isnull, it
specifies that thisitem has no label.

Progress Meters

Often times, it's agood idea to show aload bar to a user as a bunch of graphics or classes are
loaded from the network or from storage memory. The javax.microedition. Icdui .Gauge
class implements a bar graph display of avalue intended for use in the form of a progress meter.
Figure 13.4 shows a typical gauge.

Figure 13.4. An interactive and non-interactive gauge.

207

The values accepted by the Gauge object are small integersin the range zero through a maximum
value established by the application. The application is expected to normalize its valuesinto this
range. The device is also expected to normalize this range into a smaller set of values for display
purposes. Doing so will not change the actual value contained within the object. The range of
values specified by the application may be larger than the number of distinct visual states possible
on the device, so more than one value may have the same visual representation.

Applications can set or retrieve the Gauge's value at any time, regardless of the interaction mode.
The user is prohibited from moving the value outside the established range. The expected behavior
isthat the application sets the initia value, then allows the user to modify the value thereafter.
However, the application is not prohibited from modifying the value even while the user is
interacting with it.

The Gauge class has the following important methods:

e setValue(int value)— Setsthe current value of this Gauge object. If the valueis
less than zero, zero is used. If the current value is greater than the maximum value, the
current value is set to be equal to the maximum value.

¢ getValue()— Getsthe current value of this Gauge object.

e setMaxValue(int maxValue)— This setsthe maximum value of this Gauge object.
The new maximum value must be greater than zero, otherwise an exception is thrown. If
the current value is greater than the new maximum value, the current valueis set to be
equal to the new maximum value.

e getMaxValue()— Getsthe maximum value of this Gauge object.

208

e islnteractive()— Telswhether the user is allowed to change the value of the
Gauge.

e setLabel(String label)— Setsthelabel of the I tem. If thelabd isnull, it
specifies that thisitem has no label.

An example of aprogress meter in use can be seenin Listing 13.2.
Listing 13.2 The ProgressForm Example

import javax.microedition.lcdui.*;
import javax.microedition.midlet.*;

public class ProgressForm extends Form
implements CommandListener, Runnable

{
private final int MAX = 10;

private MIDlet midlet;

private Form nextForm;

private Gauge gauge;

private Stringltem label;

private Command nextCommand = new
Command(*'Next", Command.SCREEN, 1);

public ProgressForm(MIDlet midlet, Form nextForm)

{
super(‘'Loader™);
this.midlet = midlet;
this.nextForm = nextForm;
addCommand(nextCommand) ;
setCommandListener(this);

gauge = new Gauge('''", false, MAX, 0);
append(gauge);
}

public void commandAction(Command c, Displayable s)

{
if (c.equals(nextCommand))

Thread thread = new Thread(this);
thread.start();

}
}
public void run()
{
for (int i = 0; 1 < MAX; i++)
{
// Do something
gauge.setValue(i + 1);
}
Display.getDisplay(midlet) .setCurrent(nextForm);
}

}

Progress meters are often used during the execution of segmented actions that are quite slow (for
example, loading images and levels over the network). Users want some kind of feedback that

209

showing that the device is not frozen. The value MAX should have the number of itemsto be done
(such as number of images). When pressing the Next soft key, anew thread is invoked.

StringltemS

The javax.microedition. lcdui.Stringltemclassisasimpleitem that can contain a
string. Thisis used to create a display-only text label. Both the label and the textual content of a
Stringltem can be modified by the application. The visual representation of the label may
differ from that of the textual contents.

To manipulate a Stringltem, use the following methods:

o getText()— Getsthetext contents of the Stringltem, or null if the Stringltemis
empty.

o setText(String text)— Setsthetext contents of the Stringltem. If textisnull,
the Stringltem isset to be empty.

e setLabel(String label)— Setsthelabel of the I'tem. If thelabel isnull, it
specifies that thisitem has no label.

ImageltemS

Similar to Stringltem, the javax.microedition. lcdui . Imageltem class provides
layout control when Image objects are added to a Form. Each Image I tem object contains a
reference to an Image object. Thisimage must be immutable. The value null may be specified for
the image contents of an Image I tem. If this occurs (and if the label isaso null), the Image I'tem
will occupy no space on the screen.

Each Image I tem object contains alayout field that is combined from the following vaues:

e LAYOUT_DEFAULT— Use the default formatting of the container of the image.

e LAYOUT_LEFT— Image should be close to left edge of the drawing area.

e LAYOUT_RIGHT— Image should be close to right edge of the drawing area.

e LAYOUT_CENTER— Image should be horizontally centered.

e LAYOUT_NEWLINE_BEFORE— A new line should be started before the image is drawn.
e LAYOUT_NEWLINE_AFTER— A new line should be started after the image is drawn.

Because of device constraints such as limited screen size, the implementation might choose to
ignore layout directions.

There are some implicit rules on how the layout directives can be combined:

e LAYOUT_DEFAULT cannot not be combined with any other directive. In fact, any other
value will override LAYOUT _DEFAULT becauseitsvalueisO.

e LAYOUT_LEFT, LAYOUT_RIGHT, and LAYOUT_CENTER are meant to be mutually
exclusive.

e It usually makes sense to combine LAYOUT _LEFT, LAYOUT_RIGHT, and
LAYOUT _CENTER with LAYOUT _NEWLINE_BEFORE and LAYOUT _NEWLINE_AFTER

Important methods within Image Item are the following:

e getlmage()— Getstheimage contained within the Image I tem, or returns null if there
is no contained image.

210

e setlmage(Image img)— Setstheimage object contained within the Image I tem.
The image must be immutable. If img isnull, the Image I tem is set to be empty.

e getAltText()— Getsthetext string to be used if the image exceeds the device's
capacity to display it.

e setAltText(String text)— Setsthe dternate text of the Image I tem, or null if
no aternate text is provided.

e getLayout()— Getsthelayout directives used for placing the image.

e setLayout(int layout)— Setsthelayout directives.

e setlLabel(String label)— Setsthelabel of the I'tem. If thelabel isnull, it
specifies that thisitem has no label.

Text Inputs

The javax.microedition. Icdui.TextField classis an editable text component that may
be placed into aForm, as seenin Figure 13.5).

Figure 13.5. A typical text password field.

You can give atext field an initial value. It also has a maximum size, which is the maximum
number of characters that can be stored in the object at any time. This limit is enforced when the
TextField instance is constructed, when the user is editing text within the TextField, aswell
as when the application program calls methods on the TextField that modify its contents. The
maximum size is the maximum stored capacity and is unrelated to the number of characters that
may be displayed at any given time. The number of characters displayed and their arrangement
into rows and columns are determined by the device.

The TextField sharesthe concept of input constraints with the TextBox object. The different
congtraints allow the application to request that the user's input be restricted in a variety of ways.
The implementation is required to restrict the user's input as requested by the application. The
following constants can be used to restrict the character set:

e ANY— The user is allowed to enter any type of text at al. Thisisthe default.

e EMAILADDR— The user is allowed to enter an e-mail address.

e NUMERIC— The user is alowed to enter only an integer value. The implementation must
restrict the contents to consist of an optional minus sign followed by an optional string of
numerals.

e PHONENUMBER— The user is allowed to enter a phone number. The phone number isa
special case, since a phone-based implementation may be linked to the native phone
dialing application. The implementation might automatically start a phone dialer
application that isinitialized so that pressing a single key would be enough to make a call.
The call must not be made automatically without requiring the user's confirmation. The

211

exact set of characters allowed is specific to the device and to the device's network, and
can include non-numeric characters.

e URL— The user isallowed to enter a URL, such as http://www.yahoo.com.

e PASSWORD— The text entered must be masked so that the characters typed are not visible.
The actual contents of the text field are not affected, but each character is displayed using
amask character such as *. The character chosen as the mask character is
implementation-dependent. Thisis useful for entering confidential information such as
passwords or PINs. A password box is shown in Figure 13.5.

e CONSTRAINT_MASK— The mask value for determining the constraint mode. The
application should use the logical AND operation with a value returned by
getConstraints() and CONSTRAINT MASK to retrieve the current constraint mode,
aswell asto remove any modifier flags such as the PASSWORD flag.

The implementation may provide specia formatting for the value entered. For example, a
PHONENUMBER field may be separated and punctuated as appropriate for the phone number
conventionsin use, grouping the digits into country code, area code, prefix, and so on. Note that in
some networks a + prefix is part of the number, and is returned as a part of the string.

Tickers

A special type of item that can be added to any screenisaticker. The

jJavax.microedition. Icdui . Ticker classimplements ascrolling ticker-tape, whichisa
piece of text that runs continuously across the display. The direction and speed of scrolling are
determined by the implementation. While animating, the ticker string scrolls continuoudly. That is,
when the string finishes scrolling off the display, the ticker starts over at the beginning of the
string.

Thereisno API provided for starting and stopping the ticker. The ticker always scrolls
continuously. Some devices might automatically pause the scrolling for power consumption
purposes, for example, if the user doesn't interact with the device for a certain period of time. The
implementation should resume scrolling the ticker when the user interacts with the device again.

The same ticker can be shared by several Screen objects. This can be accomplished by calling
the setTicker () method on all such screens. Typical usageisfor an application to place the
same ticker on all its screens. When the application switches between two screens that have the
same ticker, a desirable effect isfor the ticker to be displayed at the same location on the display
and to continue scrolling its contents at the same position. This gives the illusion of the ticker
being attached to the global display, instead of to each screen.

Y ou can construct and add aticker object as follows. Just drop the following code into any form
class:

Ticker ticker = new Ticker("'Please wait! Loading...");
setTicker(ticker);

Additional Libraries

If you want to extend the user interface further, you might want to check out some other toolkits.

212

http://www.yahoo.com/

A site called Trantor in Germany offers a package known as kAWT. Grab it from
http://www.trantor.de/kawt/index.html.

kKAWT isalightweight version of Java's AWT, specidly tailored for 2ME. There are versions for
the Palm as well asfor MIDP. It enables your MIDIets to use standard Java widgets such as panels
and containers, and makes the MIDlet code truly upwardly compatible with applets. For example,
atypical panel isshownin Figure 13.6.

Figure 13.6. Using KAWT in J2ME.

IEFlll“ E

grid

fexit dialag flom

border

 =ImlW Ezc

The only caveat isthat KAWT will suck away an additiona 27K or so of memory.

Summary

Asyou can see, ahigh-level user interface is pretty simple to throw together. Creating your game
menus, load bars, aert boxes, input boxes, and other such interface itemsisreally easy. Just create
aquick Form, drop in the items you want, and off you go!

But obviously the real meat of agameisin the graphics. For that, you need to draw images
directly onto the screen. The Canvas classis a special type of screen that makes this possible, and
the next chapter has al the details you'll need....

213

http://www.trantor.de/kawt/index.html

Chapter 14. Working with Graphics: Low-Level
Graphical User Interfaces

INTHISCHAPTER

The Canvas Class
Painting on the Screen
Drawing Images
Summary

Let's face facts—graphics are the heart of gaming, and good graphics consist of writing and
animating al sorts of images on a device's screen.

The MIDP Ul component that supports this low-level approachisthe
Javax.microedition. Icdui .Canvas class. Thisisthe class where all the action happens.

The canvas Class

Canvas handles low-level events and allows you to draw directly onto the device's display. The
Canvas class, just like the Screen class, implements the

jJjavax.microedition. Icdui .Displayable interface. Just likeaForm, an Alert, or any
other type of screen, you can easily create and display multiple Canvases using the
setDisplay() method.

For example, in the car racing game we have been creating, alist screen is used to select the track
you want to race on, and aCanvas subclass would implement the actual game.

Canvases require applications to subclass them because the paint () method is declared
abstract. The paint() method is where you actually put the pedal to the metal and draw things
onto the screen.

Other methods found in the Canvas class are the following:

e getWidth()— Getsthewidth of the display in pixels.

e getHeight()— Getsthe height of the display in pixels.

e isDoubleBuffered()— Checkswhether the device uses double buffering when
painting on the canvas.

e hasPointerEvents()— Checkswhether the device supports pointer press and release
events. Most phones do not have touch screens and pointers. Most PDASs (such as the
Palm) however, do support pointers.

e hasPointerMotionEvents()— Checks whether the device supports pointer motion
events (pointer is dragged).

¢ hasRepeatEvents()— Checks whether the device can generate repeat events when
the key is kept down. Some mobile phones can deal with this, but many do not.

e getKeyCode(int gameAction)— Getsakey code that corresponds to the specified
game action on the device.

e getKeyName(int keyCode)— Getsan informative key string for akey.

e getGameAction(int keyCode)— Getsthe game action associated with the given
key code of the device.

214

keyPressed(int keyCode)— Called when akey isfirst pressed.

keyRepeated(int keyCode)— Called when akey is repeated (held down).

keyReleased(int keyCode)— Called when akey is released.

pointerPressed(int x, int y)— Called when the pointeris pressed on a

coordinate (X,y).

e pointerReleased(int x, int y)— Caledwhen the pointer isreleased on the
coordinate (X,y).

e pointerDragged(int x, int y)— Caled when the pointer is dragged to the new
coordinate (X,y).

e repaint(int x, int y, int width, int height)— Requestsarepaint for
the specified region of the screen.

e repaint()— Requestsarepaint for the entire canvas.

e showNotify()— Caled immediately prior to this canvas being made visible on the
display. If you need to do something to the canvas right before it is shown, do it here.

e hideNotify()— Called shortly after the canvas has been removed from the display.
Thisisagood place to clean up any objects and free up some extra memory.

e paint(Graphics g)— Rendersthe canvas. The application must implement this

method in order to paint any graphics.

Canvas Events

Canvas makesit easy to handle game actions, key presses, and pointer manipulations. Special
methods are a so provided to let you know what the current device can handle.

Using the keyPressed() method, for example, you can detect any time a user hits a soft key, a
menu key, a cursor (arrow) key, or a number key on the phone's keypad. The MIDP API also
includes a specia set of game keys, which are usually mapped to the arrow keys and the main
"send" or "fire" key. Games should use game actions instead of key codes whenever possible.

Event-handling methods are not declared abstract, and their default implementations are empty.
That means they do nothing. This allows you to override only the methods you actually need.

Most mobile phones do not have a touch screen, where the user uses a stylus or mouse-like cursor
to point to alocation on the screen. Instead, most user input on micro devicesis viathe keypad.

Every key is assigned a special key code. The key code values are unique for each hardware key.
The following key codes are defined:

e KEY_NUMO to KEY_NUM9 for numeric O through 9 keys
e KEY_STAR for the > key
e KEY_POUND for # key

These key codes correspond to keys on an ITU-T standard telephone keypad. Other keys may be
present on the keyboard, and they will have key codes different from those listed previously. In
order to guarantee portability, applications should use only the standard key codes.

Most games use arrow keys and fire keys. The MID Profile defines the following game actions:
e UP, DOWN, LEFT, and RIGHT for navigation keys. Almost every phone now features these
cursor keys.

e GAME_A, GAME_B, GAME_C, and GAME_D for specia keys. This usually correspondsto
the soft keys immediately beneath the screen.

215

e FIRE for aselect key. Thisisusualy in the center of the cursor keys, or is the phone's
main Send or Talk key. For example, the Siemens SL45i maps the fire key to the left soft

key.

Each key code may be mapped to at most one game action, but it may be associated with more
than one key code. The application can translate a key code into a game action using the
getGameAction() method, and it can translate a key code into a game action using the
getKeyCode () method.

Custom Commands

Y ou can aso add your own custom commands, as discussed in Chapter 9, "Creating aMIDlet."
Simply register acommand listener and implement the public void
commandAction(Command c, Displayable s) method.

Commands will be mapped to keys and menus in a device-specific way.

Creating a Game Key and Pointer Handler

Unlike arelatively static business application, a game needs to be extremely responsive to user
input. When a player hits or holds down the right cursor key to move his car to the right, the game
sure as heck better be able to keep up.

Most 2ME devices use a separate thread for receiving keyboard commands. When a player
presses a phone key, the key fires an event which isimmediately transferred to the game. For
example, when auser hitsthe right key, the keyPressed(int keycode) method is called.
The keycode will equal RIGHT. Aslong as the player is pressing this key, we need to make sure to
animate the race car to the right.

Now, as soon as the player releases the key, the keyReleased(int keycode) method is
called. The game should be smart enough to immediately stop the race car's rightward movement.

As such, atypical action game doesn't really need to trigger a series of eventswhen akey is
pressed. Rather, a game needs to keep track of an input state.

Thisis easily done. Just create a global variable called key and change the variable as keys are
pressed or released:

private int key;

public void keyPressed(int keyCode)

{
key = getGameAction(keyCode);

}

public void keyReleased(int keyCode)

{
// We set this to zero to indicate nothing is pressed.
key = 0;

}

If you want the gameplay to be slightly different, you could ignore the keyRe leased () method.
Thiswould make it so that your car responded to more redlistic steering wheel physics. To
straighten the race car's direction, the player would have to press the opposite direction key.

216

Instead of using the system above, you may optionally use the keyRepeated () method to
determine if akey is continuously held down. However, some phones do not support this method
and other phones wait quite a while before calling the method. To achieve smooth, 10 frames per
second action, you should implement your own "repeat detection.”

Note that some older phones may not have game keys at al. As such, when creating an action
game, it isagood idea to handle not only game (cursor) keys, but keypad keys. Use the following
numeric key for compatibility with older phones:

Key 2 for up
Key 8 for down
Key 4 for left
Key 6 for right
Key 5 for fire

In Chapter 17, "Sprite Movement,” we will tie this key variable in with the sprite movement
thread.

Handling Touch Screens

More expensive devices such as PDAs will have large touch screens with aminimal set of keys. In
this case, you can use the pointerPressed() and pointerReleased() methods. To find
out if adevice supports the touch screen events, call the hasPointerEvents() method.

Similar to key events, pointer events are fired by touching the screen. The x and y coordinate of
where the stylusis touching will be returned. Y our game should define the screen areathat is
sensitive to screen touches.

For example, in our racing game, you can define the width of the screen in the game's Cache
class. Y ou can then treat any pointer presses on the right side of the screen as steering to the right.
Touching the left side of the screen will steer |eft. Lifting the pointer will stop the car's side-to-
side movement.

The code to handle thisis listed here:

public void pointerPressed(int x, int y)

{
iT (x < getWidth() 7 2)
key = LEFT;
else
key = RIGHT
}

public void pointerReleased(int x, int y)

{
key = 0;

}

Y ou can aso draw your own virtual command keys onto the game screen. In such a case, you'd
create special screen areas reserved for navigation.

Painting on the Screen

217

The javax.microedition. lcdui .Graphics classisan abstract class that represents the
actual device'sdisplay.

The Graphics class provides simple 2D geometric rendering capabilities. You can easily use
graphics to draw primitive lines, rectangles, and arcs. Y ou can aso fill in your rectangles and arcs
with a solid color. Rectangles with rounded corners can also be specified.

Using Graphics, you can aso easily draw text Stringsor, most importantly, images. The only
explicit drawing operation provided in the Graphics classis pixel replacement. The destination
pixel vaueissimply replaced by the current pixel value specified in the graphics object being
used for rendering. No facility for combining pixel values, such as raster-ops or aphablending, is
provided.

The Graphics class can be rendered directly to the display or to an offscreen image buffer,
depending on the device. A graphics object for rendering to the display is passed to the Canvas
paint() method. Thisisthe only means by which a graphics object destined for the display can
be obtained.

The default coordinate system's origin (0,0) is at the upper left-hand corner of the screen. The X-
axis direction is positive towards the right, and the Y -axis direction is positive downwards. All
coordinates are specified as integers.

Important methods within Graphics include the following:

e translate(int x, int y)— Trandatesthe origin of the graphics context to the
point (X, y) in the current coordinate system.

e getTranslateX()— Getsthe X coordinate of the translated origin of this graphics
context.

e getTranslateY()— Getsthe Y coordinate of the translated origin of this graphics
context.

e setStrokeStyle(int style)— Setsthe stroke style used for drawing lines, arcs,
rectangles and rounded rectangles.

e getStrokeStyle()— Getsthe stroke style used for drawing operations.

e getColor()— Getsthe current color.

e getRedComponent()— Getsthe red component of the current color.

e getGreenComponent()— Getsthe green component of the current color.

e getBlueComponent()— Getsthe blue component of the current color.

e getGrayScale()— Getsthe current grayscale value of the color being used for
rendering operations.

e setColor(int red, int green, int blue)— Setsthe current color to the
specified RGB values.

e setColor(int RGB)— Setsthe current color to the specified RGB value.

e setGrayScale(int value)— Setsthe current grayscale to be used for all
subsequent rendering operations.

e getFont()— Getsthe current font.

e setFont(Font font)— Setsthefont for al subsequent text rendering operations.

e getClipX()— Getsthe X offset of the current clipping arearelative to the coordinate
system origin of this graphics context.

e getClipY()— GetstheY offset of the current clipping arearelative to the coordinate
system origin of this graphics context.

e getClipWidth()— Getsthe width of the current clipping area.

e getClipHeight()— Getsthe height of the current clipping area.

218

e clipRect(int x, int y, int width, int height)— Intersectsthe current
clip with the specified rectangle. The resulting clipping areais the intersection of the
current clipping area and the specified rectangle.

e setClip(int x, int y, int width, int height)— Setsthecurrent clip to
the rectangle specified by the given coordinates.

e drawLine(int x1, int yl, int x2, int y2)— Drawsalinebetween the
coordinates (x1,y1) and (x2,y2).

e drawRect(int x, int y, int width, int height)— Drawsthe outline of
the specified rectangle.

e TillRect(int x, int y, int width, int height)— Fllsthe specified
rectangle with the current color.

e drawRoundRect(int x, int y, int width, int height, int arcWidth,
int arcHeight)— Drawsthe outline of the specified rounded corner rectangle.

o fillRoundRect(int x, int y, int width, int height, int arcWidth,
int arcHeight)— Fillsthe specified rounded corner rectangle with the current color.

o drawArc(int x, int y, int width, int height, int startAngle,
int arcAngle)— Drawsthe outline of acircular or eliptical arc covering the
specified rectangle.

o TillArc(int x, int y, int width, int height, int startAngle,
int arcAngle)— Fillsacircular or eliptical arc covering the specified rectangle.

e drawString(String str, int x, int y, int anchor)— Drawsthe
specified string using the current font and color.

e drawSubstring(String str, int offset, int len, int x, inty,
int anchor)— Draws the specified substring using the current font and color.

e drawChar(char character, int x, int y, int anchor)— Drawsthe
specified character using the current font and color.

e drawChars(char[] data, int offset, int length, int x, int vy,
int anchor)— Draws the specified characters using the current font and color.

e drawlmage(lmage img, int x, int y, int anchor)— Drawsthe specified
image by using the anchor point.

Working with Colors

In 2ME, images are expressed using 24 bits per pixel. This meansthat J2ME, in theory, can
handle full-color images. To define each pixel's color, three bytes are used—8 hits for the red
component, 8 for the green, and 8 for the blue. Because most micro devices don't support all 24
bits, they map colors requested by the application into colors available on the device. For example,
even though J2ME may support millions of colors, adevice may only be able to handle black,
white, and gray.

The current color of the Graphics object can be set by calling the Graphics.setColor()
method. The color's red-green-blue components can be set separately or as an integer value. For
example, the color red can be set using

setColor(255, 0, 0);

or

setColor (Oxff0000) ;

The methods getRedComponent(), getGreenComponent(), and getBlueComponent()
return the values of the current color. Currently, most mobile phones in the USA and Europe are
black and white, offering only a few shades of gray. To see how the color is mapped into a gray
scale, use the getGrayScale() method.

219

Stroke Types

Lines, arcs, rectangles, and rounded rectangles may be drawn with either aSOLID or aDOTTED
stroke style set by the Graphics.setStrokeStyle() method. For the SOLID stroke style,
drawing operations are performed with a one-pixel wide pen that fills the pixel immediately below
and to the right of the specified coordinate. Drawn lines touch pixels at both endpoints. Drawing
operations under the DOTTED stroke style will touch a subset of pixels that would have been
touched under the SOL ID stroke style. The frequency and length of dotsis implementation-
dependent.

Drawing Lines

Todraw aline, usethe Graphics.drawL ine() method. It accepts four parameters: X1, y1, X2,
and y2. The parameters set two points on the screen (x1,y1) and (x2,y2), and alineis drawn
between them. The current color and stroke style are used to draw the line.

To create a dotted line in the middle of the road for our car racing game, you could use code
similar to

public void paint(Graphics g)

{
g-setStrokeStyle(Graphics.DOTTED);

g.drawLine(getWidth() 7/ 2, 0, getwidth() 7/ 2,
getHeight() - 1);
}

This code snippet uses the Canvas getWidth() method to get the display's width so thelineis
put in the middle. Figure 14.1 shows the result of the paint() method.

Figure 14.1. A dotted line.

Drawing Rectangles

To draw arectangle, the drawRect () method is used. Much like drawL ine(), it also accepts
four parameters: X, y, width, and height. The point (X,y) sets the upper-left coordinate of the
rectangle and then draws the box with the given width and height. The rectangle can be solid or
dotted, and is drawn in the currently specified color.

220

Y ou can aso draw filled rectangles with the £i I IRect () method. The current color isused as
thefill. The resulting rectangle will cover an areathat is (width+1) pixels wide and (height+1)
pixelstall.

To draw the edges of the road, we could add on to our dotted line and use this code:

public void paint(Graphics g)

{
g-setStrokeStyle(Graphics.DOTTED);
g-drawLine(getWidth() 7/ 2, 0, getwWidth() 7/ 2,
getHeight() - 1);
g.setStrokeStyle(Graphics.SOLID);
g-FillRect(0, 0, (getWidth() - ROAD_WIDTH) 7/ 2,
getHeight());
g-FillRect((getWidth() + ROAD _WIDTH) / 2, O,
(getWidth() - ROAD_WIDTH) / 2, getHeight());
}

The fil IRect() method is called twice: once to create the left edge of the road, and onceto
create the right. Setting a solid style doesn't affect the filled rectangles, but will be used later for
further drawings. To give the road afixed width, the ROAD_WIDTH constant is used.

Figure 14.2 illustrates our new road.

Figure 14.2. The side of the road.

Drawing Rounded Rectangles

To draw arectangle with rounded corners, use the drawRoundRect() method. Similarly, you
can fill around rectangle using the fi I IRoundRect() method.

Both of these methods accept six parameters—four of them are equal to parametersin
drawRect() and fi l IRect(), and two additional parameters provide the horizontal and
vertical diameters of the arc at all four corners.

Drawing Arcs

With the drawArc () method, you can draw the outline of acircular or elliptical arc covering a
specified area on your device's screen. The resulting arc begins at a specific angle and extends a
set number of degrees to the next angle. Angles start at O degrees, which is similar to the 3 o'clock
position.

221

A positive value indicates a counter-clockwise rotation of the angle, whereas a negative value
indicates a clockwise rotation. The center of the arc is the center of the rectangle whose origin is
(x,y) and whose size is specified by the width and height arguments. Similarly, the fFillArc()
method fillsacircular or elliptical arc covering the specified rectangle.

Fonts

The javax.microedition. Icdui . Font class represents fonts and their font metrics. Fonts
cannot be created by applications, but are defined in the system. Y our game should query for a
given font based on its attributes, and the system will provide the font that matches your requested
attributes as closely as possible.

The Font class has the following attributes:

o Style
e Size
e [ace

The following styles are available for the font:
e STYLE BOLD
e STYLE_ITALIC
e STYLE PLAIN
e STYLE_UNDERLINED
The supported font sizes are
e SIZE_LARGE— Thelargest font the device can display. Usually corresponds to a point
size of 16.
e SIZE_MEDIUM— Corresponds to a medium-sized font.
e SIZE_SMALL— The smallest font the device can handle. Usualy refers to a point size of
8.
Finaly, the various faces you can ask for are
e FACE_MONOSPACE— A monospace font, where each character is equally wide.
e FACE_PROPORTIONAL— A font where letters are proportional to each other.
e FACE_SYSTEM— The standard font used on this system.

So, to get a bold, medium-sized, and monospaced font, you would use

Font newfont = Font.getFont(Font.FACE_MONOSPACE,Font.STYLE_BOLD,
Font.SIZE_MEDIUM) ;

Y ou can then set the font in the paint method using
g-setFont(newfont);

Drawing Strings

To draw a string, you can use the following methods:

e drawString()

222

e drawSubstring()
e drawChar(Q)
e drawChars()

The drawString() method draws the specified string using the current font and color. The (X,y)
position is the position of the anchor point defined by the parameters. In asimilar way, the
drawSubstring() method can be used to draw only part of a given string.

If you want to draw individual characters, or if you are dealing with an array of charactersin lieu
of astring, you can use the drawChar () and drawChars() methods.

To draw the racing game's "heads up display” interface information, which contains the lives | eft,
time left, and score, you could use the code as follows:

public void paint(Graphics g)

{
g.setStrokeStyle(Graphics.DOTTED);
g-drawLine(getWidth() 7/ 2, 0, getwWidth() 7/ 2,
getHeight() - 1);

g.setStrokeStyle(Graphics.SOLID);

g-fillRect(0, 0, (getWidth() - ROAD_WIDTH) / 2,
getHeight());

g-FillRect((getWidth() + ROAD _WIDTH) / 2, O,
(getWidth() - ROAD _WIDTH) / 2, getHeight());

g-drawString(*'Score:", (getWidth() - ROAD_WIDTH) /
2 + 1, 0, Graphics.TOP | Graphics.LEFT);

}

This creates a status line, shown in Figure 14.3.

Figure 14.3. Drawing the score.

Drawing Images

Drawing primates and stringsis al well and good, but what we're really here for isto draw some
graphics!

To drop an image on a canvas, usethe Graphics.drawlmage() method. Simply specify at
which point the graphic should be drawn.

223

In most cases, the upper left corner of your graphic should be drawn at the given point. As such,
you should usually pass Graphics.TOP and Graphics.LEFT into the drawlImage () method.

Note that, if you desire, your image can be drawn in different positions relative to the anchor point
by passing in different anchor constants.

Valid constants include the following:

e BASEL INE— Images should be aligned with the baseline of any text to be drawn at the
given anchor point.

BOTTOM— Images should be aligned with the bottom of the given anchor point.
HCENTER— Images should be centered horizontally around the given anchor point.
LEFT— Images should be aligned with the right of the given anchor point.

R1GHT— Images should be aligned with the right of the given anchor point.

TOP— Images should be aligned with the top of the given anchor point.

VCENTER— Images should be centered vertically around the given anchor point.

The Image Class

The javax.microedition. Icdui . Image class holds graphical image data. Images exist
only in offscreen memory, and will not be painted on the display unless an explicit command is
issued by the application (such as within the paint() method of a Canvas) or when an Image
object is placed within aform screen or an alert screen.

Images are either mutable or immutable, depending upon how they are created. Immutable images
are generally created by loading image data (usually as a Portable Network Graphics, or PNG file)
from resource bundles, from files, or from the network. They may not be modified once they are
created.

Mutable images are created in offscreen memory. The application might paint into them after
having created aGraphics object expressly for this purpose.

The Image class supports images stored in the PNG format, version 1.0.
The following methods are part of the Image class:

e createlmage(int width, int height)— Createsanew, mutable image for off-
screen drawing.

e createlmage(lmage source)— Createsan immutable image from a source image.

e createlmage(String name)— Creates an immutable image from decoded image
data obtained from the named resource.

e createlmage(byte[] imageData, int offset, int length)— Createsan

immutable image, which is decoded from the data stored in the specified byte array at the

specified offset and length. The data must be in a self-identifying image file format

supported by the implementation, such as PNG.

getGraphics()— Createsanew Graphics object that renders to thisimage.

getWidth()— Getsthe width of theimage in pixels.

getHeight()— Getsthe height of the image in pixels.

isMutable ()— Checks whether this image is mutable. Mutable images can be

modified by rendering to them through a Graphics object obtained from the

getGraphics() method of this object.

Clipping

224

As we delve into more advanced animation techniques, you'll notice that it often makes sense to
deal with a specific portion of the canvas at a given time. Y ou will often want to create alittle
rectangle within the drawing area. Any draw commands issued inside the rectangle are registered.
Anything outside the clipping region isignored.

To set the current clip rectangle on the current Graphics screen, use the Graphics.setClip()
method. Just pass in two sets of coordinates to create a rectangle.

After setClip() hasbeen called, any rendering operations will have no effect outside the
clipping area. This method is useful for implementing image transparency. We will discuss how to
draw transparent images in Chapter 15, "Entering the Land of Sprites.”

Translating

Ancther advanced rendering technique involves moving the base origin of al drawing functions to
adifferent point. For example, any time you pick an (x,y) coordinate position in which to paint a
line, draw text, or drop an image, the canvas assumes that you are doing so based on the upper left
corner at point (0,0).

If you like, you can trandlate the origin of the graphics context to any point you wish. To do so,
just call the translate() method. All coordinates used in subsegquent rendering operations on
this graphics context will be relative to this new origin.

Note that the effect of callsto translate() are cumulative. If you set the new origin to (10,10)
and then set it to (10,10) again, you will actually be drawing based on point (20,20).

Double Buffering

Double buffering is a key technique used when drawing graphics. Because a screen's repaint is
unpredictable, if you were to paint graphics directly to the device screen, you would notice a
yucky flickering. Thisis because the screen might begin painting a new frame before it has fully
finished drawing the last one.

Double buffering enables you to assemble a sort of offscreen "preview" of the exact way you want
your screen to appear before it is painted. The way it worksisthat you draw all your sprites and
other graphics onto an offscreen image that is the same size as the actual device screen. This
offscreen image acts a buffer. When you are done drawing, you simply draw the entire offscreen
image onto the "live" screen.

Many J2ME devices support double buffering themselves, but some devices, such as the
Accompli A008, do not. To check whether your device supports this feature, call

isDoubleBuffered();
If the method returns false, you will need to implement your own double buffering.
This can be done as follows:

private Image scene = Image.createlmage(getWidth(),
getHeight());
private Graphics g = scene.getGraphics();

public void paint(Graphics gr)

{
g-setStrokeStyle(Graphics.DOTTED);

225

g.drawLine(getWidth() 7/ 2, 0, getwidth() 7/ 2,
getHeight() - 1);

g-setStrokeStyle(Graphics.SOLID);

g.-fillRect(0, 0, (getWidth() - ROAD_WIDTH) / 2,
getHeight());

g-FillRect((getWidth() + ROAD WIDTH) / 2, O,
(getWidth() - ROAD_WIDTH) / 2, getHeight());

g-drawString(*'Score:", (getWidth() - ROAD_WIDTH) /
2 + 1, 0, Graphics.TOP | Graphics.LEFT);

gr.drawlmage(scene, 0, 0, Graphics.TOP |
Graphics.LEFT);

}

In the example above, an additional 1mage object is added to the code. This represents the
offscreen image. We will set the Graphics variable g to point to thisimage instead of the actual
device screen, which is actually passed inasgr.

Notice that the size of the offscreen image must be the same as the size of the display, which we
grab from the getWidth() and getHeight() method of Canvas.

When painting on the screen, all painting isin reaity done to the offscreen image. In the last line
of our paint routine, the full frameis rendered onto the real screen.

Summary

The Canvas class, along with Image, Font, and other such classes, givesyou alot of direct
control. Using these classes, you can achieve endless graphical effects.

In later chapters we will delve more deeply into these classes, creating fully animated sprites that
can easily be moved around the game screen, making your game come alive.

226

Chapter 15. Entering the Land of Sprites
INTHISCHAPTER

Sprites

Image Files

Collision Detection
Creating Child Sprites
Image Transparency
Summary

Sprites are one of the most important components in any graphical game. A spriteis, ssimply put,
any graphic that appears on your screen. A spriteis every monster, every fireball, every tree, and
every ladder. Some sprites move around the screen, some sprites have animations, and some will
affect the game when something else collides with them.

Throughout this book, we will be building a game called Micro Racer. The goal of the gameis
simple: You are acar racing down atrack. Enemy cars speed at you from the opposite direction.
Y ou must avoid these cars. Y ou can pick up various weapons and objects along the way to help
you repair your car, move faster, or blast enemies off the track.

This chapter will show you how to create the basic building block of all action games—a simple
but robust Sprite class.

Sprites

Suppose we want to model an ordinary scene straight from the real world. What do we see?
People walk the sidewalks. Cars drive through the streets. Birds fly beneath the clouds. People,
cars, and birds are objects that represent our physical world.

At any given time, these objects have positions that can be termed as absolute. From a given
vantage point, every object is a certain horizontal distance, vertical distance, and depth away—this
can be expressed as x, y, and z coordinates.

Many of these objects are also moving at a certain velocity and certain direction—again, things
that can be expressed in terms of X, y, and z. Clouds move slowly, cars move quickly.

Finally, these objects may interact with each other. What happens when abird hits a person? What
happens when a car does? All the objects that make up the gameworld are known in game
terminology as sprites.

Sprite Properties

In order to create and work with standard spritesin atwo-dimensional gameworld, you will need
to be able to access and set various properties. These include the following:

e X position—The position x represents the horizontal coordinate of the sprite, measured in
pixels. If the sprite's x and y position are inside the visible display area, then the sprite is
drawn on the screen. The leftmost column of the screen is known as x position 0, the
rightmost column of a 100-pixel-wide screen would be x position 99.

227

e Yy position—This represents the vertical coordinate of the sprite. The top row of the screen
isy position 0, and the bottom row of a 100-pixel-long screen would be 'y position 99.

e Veocity Vx—This represents the horizontal speed of the sprite. In other words, in every
frame the sprite will move Vx pixels. If VX is anegative value, the sprite moves to the left,
otherwise it movesto theright.

e Veocity Vy—Thisisthe vertical speed of the sprite If Vy is negative, the sprite will
move up, otherwise the sprite will move downward. If both Vx and Vy are set to 0, then
the sprite is stationary and does not move.

e Width—Represents the width of the sprite graphic. Together with the x position, it
defines the right edge of the sprite on the x coordinate.

e Height—Represents the height of the sprite graphic. Together with the y position, it
defines the bottom edge of the sprite on the y coordinate.

e Image—Pointsto the graphical representation of the sprite that is encoded in PNG format.
The image file might contain a series of animated images that are defined by a frame
number.

e Frame—lIf aspriteisto be animated, it will contain more than one frame. This property
enables you to set the current frame.

e Vishility—During the game, some sprites might be disabled because they were hit, or
they might be eliminated because they have moved off the screen. The visibility flag
shows or hides the sprite.

Besides these properties, sprites can also have their own energy value, hit points, dollar value,
number of lives, and many more properties that are different from game to game.

Animating Frames

Some sprites might just contain one frame. For example, an arrow flying through the air might just
consist of one simple image. However, sprites are at their most beautiful and interesting when they
are animated. For example, a man walking might consist of three frames:

1. A man with both legs down.
2. A man with the right leg extended.
3. A man with the left leg extended.

Y ou could then animate the man by calling the frames in sequence: 1,2,1,3,1,2, and so on.

If your game features a character being shown from the top down, you might want to create
different frames for each direction the character can face.

The Sprite classthat we will create must be able to handle multiple frames. The easiest way to
dothisisto put al of aSprite'sframesin onefile, known as afilmstrip file. For example,
Figure 15.1 shows a blown-up version of the car we are going to use in our racing game.

Figure 15.1. Creating a car filmstrip file.

228

Notice that the two imagesin Figure 15.1 are nearly identical. The rightmost image, however, has
white stripesin its tires. When these two frames are cycled quickly, it creates the illusion of
speedy tire movement.

Notice that the width of the image in Figure 15.1 is twice as wide as the actua frame we want to
show. This leads to the following simple formula:

filmstrip_width = frame_width * num_frames

The sprite Class
You can easily extend the Sprite class, detailed in Listing 15.1, to add additional properties.
Listing 15.1 Adding to the Sprite Class

import javax.microedition.lcdui.*;

public class Sprite

{
private Image image;
private int Xx;
private int y;
private int vx;
private int vy;
private int width;
private int height;
private int numFrames;
private int frame;
private boolean visible;

public Sprite(lmage image, int width, int height,
int numFrames)
throws Exception

this.image = image;

this.width = width;

this.height = height;

this.numFrames = numFrames;

if (image.getHeight() != height)
throw new Exception('Height not correct.);

it (image.getWidth() / numFrames != width)
thro new Exception("'Width not correct.');

}

public Image getlmage()
{

return image;

}

public int getX()
{

return Xx;

}

public void setX(int x)
{

this.x = X;

}

229

public int getY()

{
return y;
}
public void setY(int y)
{
this.y = y;
}
public int getvx()
{
return vx;
}
public void setVx(int vx)
{
this.vx = vx;
}
public int getvy(Q)
{
return vy;
}
public void setVy(int vy)
{
this.vy = vy;
}
public int getWidth()
{

return width;

}
public int getHeight()
{

}

public int getFrame()
{

return frame;

}

return height;

public void setFrame(int frame)
throws Exception

it (frame < 0 || frame > numFrames - 1)
throw new Exception (“'Not correct frame number.');
this.frame = frame;

}
public boolean isVisible()
{
return this.visible;
}

public void setVisible(boolean visible)

{

230

this.visible = visible;
¥
b

By default, sprites are inactive when they are first created. Y ou pass in the number of frames. The
Sprite class ensures that the image used for the sprite is wide enough to handle the given
number of frames. An exception isthrown if the image width is not correct:

iT (image.getWidth() /7 numFrames != width)
thro new Exception(*'Width not correct.");

NOTE

A sprite's position and speed should ideally use floating-point numbers. Since J2ME does not
include floating-point libraries, the next chapter will show you how to simulate floating-point
numbers.

By default, the first frame of a sprite (with the numerical value of 0) is shown.

Image Files

Images are the heart of sprites. Our Spri te classes must be able to load and properly display
sprites.

Loading Included Images

Before an image can be used, it must be loaded from the resource file using the

Image . createlmage () method. In 22ME, the only resourcefileisin the JAR file, where all
classes are located. Listing 15.2 shows what the loading procedure looks like. We will add this
procedure to our globa Cache classthat contains all game-wide objects and variables.

Notice that images are |oaded within a static block. This block is executed when the classis first
loaded, generally before the first application's method starts.

NOTE

To use images with the Wireless Toolkit, drop your PNG filesinto the res directory of your
current project. When you build and package the MIDlet, images will be taken from here
automatically.

Listing 15.2 Loading an Image Resource

static

{

String locale =
System.getProperty("'microedition. locale™);

language = ENGLISH; // Default value

if (locale "= null && locale.startsWith("'si'))
language = SLOVENE; try

{

carlmage = Image.createlmage(''/car.png™);

catch (Exception ex) { }

231

}
Loading Images Over the Network

Some devices have limitations on the size of JAR files. NTT DoCoMo iApplis, for example, may
not be more than larger than 10 kilobytes. Other phones have limitations of 30-50 kilobytes.

The reason for this limitation has to do with slow 2G mobile networks with 9600bps bandwidths.
If hundreds of users were to download alarge Java game at the same time, it could overload the
network.

WARNING

Over a 9600bps network, 10 kilobytes of data can take 10 seconds to download. Because
mobile users will probably only wait one minute at the most, applications should always be
smaller than 50 kilobytes (with an average size of 30 kilobytes).

JAR files not only contain game classes, but also include images. If your game has 20 or so sprites,
this can easily take up agood 10K of additional room.

Given the size limitations of JAR files, it often makes sense to download images from the network
as needed. The raw image data can then be stored in the phone's internal data records. The next
chapter shows you to how grab images on-the-fly. Chapter 19, "Be Persistent: MIDP Data
Storage,” shows you how to store these images on the phone for later use.

Image Size Reduction

A good game will generally include many attractive graphics. The more characters, enemies,
obstacles, and backgrounds you can draw, the richer your gameworld will be.

In MIDP, al the images you use must be in PNG format. PNG is a compressed format that uses all
24 bits asits color paette. If you take an in-depth look at a PNG file, you will notice the following:

e Header—This part contains basic information about the image, such as the image's size.
Most importantly, alarge chunk of the header contains information about the color palette
the image uses.

e Data part—Contains the value for each pixel in the image.

Because a PNG file's header is so large, the more files you use, the more memory you are taking
up. Because most images will use the same color palette, this amounts to wasted space.

Putting all the frames of a spritein one filmstrip file, asin Figure 15.1, solvesthis problem. A lot
of different images will have only one header.

The question then becomes, how does your MIDlet extract each frame from the filmstrip? Luckily,
MIDP enables us to clip images as we draw them. The game needs to create a clip rectangle that
equals the width of the frame. The image must then be positioned in such away that the current
frame of the image islocated in the clipping rectangle.

Clipping an image takes some extra drawing time, however. As such, creating separate filmstrips
for each sprite (as opposed to putting every frame of every sprite in one huge file) makes alot of
sense.

Drawing the Sprites

232

A spriteis meaningless unlessit can be dealt with and drawn. A robust sprite engine must include
not only the sprite data, but a SpriteManager class capable of storing collections of sprites. The
engine also needs to include a rendering component to actually draw the sprites onto the screen.

Listing 15.3 shows how to integrate a paint() method into the Spri te class. By making each
Sprite responsible for painting itself, you give it absolute control over its own visual fate. The
main paint() method in your game, Canvas, simply needs to go through the list of spritesand
individually call paint() oneach one.

Listing 15.3 Adding the paint() Method

public void paint(Graphics g)
{
g.setClip(x, y, width, height);
g-drawlmage(image, x - frame * width, vy,
Graphics.TOP | Graphics.LEFT);
g.setClip(0, 0, Cache.width, Cache.height);

The paint() method is pretty simple:

1. Theclipping rectangleis set to the current x and y position, at the current width and
height. This ensures that only one frame is drawn at atime.

2. Theimageitsef isthen drawn so that the frame we want corresponds with the upper left
corner of the clipping rectangle. For example, if we want to draw the second frame of an
animation, where each frame is 20 pixels wide, we offset the image's x position by 20.

3. Theclipping rectangle is then re-sent to equal the full screen width and height.

Collision Detection

Sprite collision detection is an essential attribute of any game engine. Collision detection lets you
know when two sprites are touching. Pretty much every game is based on this principal: Bullet
hits soldier, monster touches elf, pinball bumpsinto flipper, Bill Gates grabs money bags, shoes
touch lava, and so on.

In our Micro Racer game, when the player's car collides with an enemy car, we will deduct one
unit of energy. If the player loses all 100 energy units, the gameis over. Well also throw obstacles
into the game. If the player's car hits an oil dick, for example, it will veer off to the side. Finally,
well include power-ups. When the player's car touches awrench, its damage will be fixed
automatically.

The question is, how can we implement fast but accurate collision detection on small, slow,
resource-limited devices?

Basic Collision Detection

The simplest form of collision detection is generally the fastest form. Each sprite and itsimage are
treated as arectangle. If one sprite's rectangle overlaps another sprite's rectangle, asin Figure 15.2,
then we consider the sprites as having collided. Notice that in the figure there is a 4x2 section of
overlapping rectangles.

Figure 15.2. Simple collision between two sprites.

233

To implement this type of detection, you need to take the x position, y position, width, and height
of two sprites and then do some simple math, as shown in Listing 15.4.

Listing 15.4 Adding Collision Detection to the Sprite

public boolean collide(Sprite sprite)

{
if ((x + width) > sprite.getX() &&
X < sprite.getX() &&
(y + height) > sprite.getY() &&
y < sprite.getY())
return true;
return false;

}

Unfortunately, thisis avery primitive form of detection. Most sprites are not actually rectangular.
A racing car, for example, is shaped more like an I. Using thisform of collision detection, the
game might deduct energy from your car, even if the car doesn't actually touch an enemy.
Additionally, you might want to only detect collision within a certain part of a sprite. For example,
when aknife hits a monster, you might want to deduct two hit pointsif the knife stabs the
monster's face, and only one hit point if the knife hits the body.

The next chapter discusses how to implement a more advanced form of collision detection.

234

Creating Child Sprites

The Spri te class contains everything we need to draw and move sprites, but it doesn't have alot
of personality. To really make a game swing, child classes need to be created for various sprites,
each containing their own properties and methods.

In our Micro Racer game, for example, we will have two types of sprites—the player and the
enemy.

Building the Player Sprite

Many games feature a hero or protagonist. Thisis known as a player sprite. In our racing game,
the red car isthe player sprite. A player spriteis treated differently than other sprites. It represents
the one unique object that defines how the game will progress.

In our racing game, the player sprite contains one additional property—energy. This property lets
us know how often collisions have occurred. When energy reaches zero, the gameis over. If the
car can reach the end of atrack without losing all its energy, the energy value is reset and the
player is given a score.

A player child classisshownin Listing 15.5.
Listing 15.5 The Player Sprite Child Class

import javax.microedition.lcdui.*;

public class Player extends Sprite

{

protected int energy;

public Player(Image image, int width, int height,
int numFrames, iInt energy)
throws Exception

{
super(image, width, height, numFrames);
this.energy = energy;

}

public int getEnergy()
{

return energy;

}

public void setEnergy(int energy)

{

this.energy = energy;

}
}

ThePlayer class constructor callsits parent constructor, passing up most of the values. The only
additional value helps set the car'sinitial energy.

A more advanced Player class might contain even more information, such as the amount of
money the car's owner has made, the damage to various parts of the car, the number of bonus

235

points the player has gained, and so on. We will flesh out this class in the final chapter of the book,
"Micro Racer: Putting it All Together."

Opponents

To keep things simple, enemy cars are represented using the basic Spri te class. However, a
more advanced version of Micro Racer might include various types of enemies, each with its own
attributes, personality, and artificial intelligence driving routines.

Image Transparency

Every PNG image is rectangular. However, atypical spriteitself usually has a much more
interesting shape. For example, a bouncing ball would be circular. To make sprites seem redlistic,
not like strange blocks, it isimportant to set one color within every PNG file as the background, or
transparent color.

When you create a PNG file using Photoshop or another design application, you can specify one
of the colorsto be transparent. When each pixel of aPNG image is rendered, this transparent color
will be masked out and not drawn.

Unfortunately, the MIDP specification does not demand that image transparency be supported.
Because J2ME is so limited, most manufacturers have only implemented the minimum MIDP
requirements. As such, many phones, such as the Motorolai85s, do not support PNG transparency.
This means that an image will appear with a blockish border around it, such as the bottommost
spritein Figure 15.3. This effect will look especially odd when two sprites overlap. The
nontransparent corner of one sprite will paint over another sprite, slicing bits of it off.

Figure 15.3. Without image transparency.

236

Luckily, there are several means of achieving transparency so that an image appears more realistic,
as with the topmost smiley face in Figure 15.3:

e Sprites can be drawn with primitive drawing methods.
e Sprites can be drawn with smaller image chunks.
e Sprites can be drawn into precise, clipped aress.

Drawing by Pixels

If your spriteis simplistic, there's no need to use a PNG file at al. Instead, you can create the
image using MIDP primitive methods such asdrawLine(), drawRect(), fillRect(), and
SO on.

Drawing primitivesis also much faster than rendering a PNG using drawlImage (). However,
there are also weaknesses to this approach:

e If your image gets complicated, you might need to use tons of drawing methods. This
produces larger source code and execution code, resulting in alarger JAR file size.

e Because PNG images are not used in this approach, all image design must be done by a
Java programmer, who must be artistic enough to plot every pixel within the source code.
A game artist will not be able to design and easily tweak images.

237

In theory, you could get around this problem by creating a tool to convert a PNG image or
any other array of bitsinto aset of drawLine() cals. However, thiswould involve lots
of extrawork.

e Although primitive graphical methods, in general, are faster then drawlImage (), caling
dozens of primitive methods can be very slow.

In Listing 15.6, the Player classdraws its car one line at atime using the drawL i ne () method.
By calling other methods, the number of code lines can be significantly reduced. All coordinates
are based on the (X, y) position of the sprite. The car appearsin Figure 15.4.

Figure 15.4. Drawing a car using primitives.

Listing 15.6 Creating a Car Using Primitives

public void paint(Graphics g)

{
g-drawLine(x + 2, y + 1, x + 2, y + 3);
g-drawLine(x + 7, y + 1, x + 7, y + 3);
g-drawLine(x + 3, y + 2, X + 6, y + 2);
g-drawLine(x + 4, y + 3, X + 4, y + 5);
g-drawLine(x + 5, y + 3, x + 5, y + 5);
g-drawLine(x + 3, y + 6, x + 3, y + 10);
g-drawLine(x + 6, y + 6, X + 6, y + 10);
g-drawLine(x + 4, y + 7, X + 4, y + 8);
g-drawLine(x + 5, y + 7, x + 5, y + 8);
g-drawLine(x + 2, y + 11, x + 2, y + 11);
g-drawLine(x + 7, y + 11, x + 7, y + 11)
g-drawLine(x + 3, y + 12, x + 6, y + 12);
g.drawLine(x, y + 9, X, y + 13);
g-drawLine(x + 1, y + 9, x + 1, y + 13);
g-drawLine(x + 8, y + 9, x + 8, y + 13);
g-drawLine(x + 9, y + 9, x + 9, y + 13);

}

238

Drawing a Sprite's Chunks

Ancther means of achieving transparency is to separate the image into afew image chunks. Each
chunk would be rectangular, but they could be combined together to form a nonrectangular
graphical object.

To create this, your game artist will need to draw images for sprites and later split the images into
many small rectangulars. Y ou will then need to position these rectangles relative to each other to
"put them together" in the way the artist intended.

This approach works if you have a small amount of chunks and arelatively rectangul ar-shaped
object, such as with the simplistic car in our racing game. However, this approach makesit very
hard to draw circular objects.

Implementation of Image Transparency

The last approach involves clipping each rectangular part of the image, then drawing the image on
the screen. Thisis similar to the previous approach, except the work of dividing up the image into
rectangular components is done programmatically, rather than by an artist.

Listing 15.7 shows away to define an unlimited number of rectangular clipped areas using atwo-
dimensiona array of integers that holds each rectangle's (x, y) position aswell asits width and
height.

Listing 15.7 Using Many Clipping Rectangles

protected int areas[][1 ={ {2, 1, 6, 3} , { 3, 4, 4, 5},
{0, 9, 10, 14} };

public void paint(Graphics g)

{
for (int i1 = 0; 1 < areas.length; i++)
{
g-setClip(areas[i][0], areas[i][1], areas[i][2].
areas[i]1[3D);

g.drawlmage(image, x - frame * width, vy,
Graphics.TOP | Graphics.LEFT);

}
g-setClip(0, 0, Cache.width, Cache.height);

In this case, the image is drawn three separate times, and three separate clipping rectangles are
created. This method takes more than three times as long as drawing a plain, hontransparent image.

Summary

We now have aSprite class, agood basisfor creating the rest of our game. But we're still
dealing with some severe limitations—we need a way to download images over the network, a
way for the game to handle and keep track of all our sprites, and away to achieve better collision
detection. All these techniques, and more, will be discussed in the next chapter.

239

Chapter 16. Managing Your Sprites
INTHISCHAPTER

Networked Game Components
Advanced Collision Detection
The Sprite Manager

Summary

This chapter shows you how to create a sprite manager. The SpriteManager classisan
important part of any game, acting as a container in which to add sprites. This makes it easy to
retrieve, manipulate, move, and draw groups of sprites.

This chapter will also cover advanced sprite techniques, such as retrieving images from the
network, and creating more advanced collision detection to make games more accurate and
realistic.

Networked Game Components

A game does not only consist of the code. Rather, the game code is usually just an engine that
loads up al sorts of other data and manipulates it.

Because most mobile devices place severe limitations on the size of JAR files, it makes awhole
lot of sense to retrieve game components separately, over the network. In fact, this might be part
of your game's business model: Y ou might give away the first level, but then charge players to
download further levels. Each level could come with its own sounds and audio.

A typical game includes the following:

e Images—Different mobile devices can handle different types of images. Some devices
have large color screens. Others only have tiny black and white displays. By retrieving
your files over the network, you can grab optimized images that are appropriate for the
device being used.

e Sounds—Audio files are currently not supported by MIDP. Some extension profiles,
however, such as the Siemens Game API and the DoCoMo iAppli API support audio files.
Eventually, it might even be possible to stream MP3 files over the network. For more
information, check out Chapter 22, "iAppli: Micro Javawith aTwist," and Chapter 23,
"Siemens Game APL."

e Leves, missions, or tracks—Some mobile devices such as the Siemens SL45i store
applications on multimedia memory cards. Thisisagreat plusfor users, because they can
store afew thousand applications on each card. However, this portability has a downside
for the game developer. A user can easily upload a commercial game from a memory card
onto a personal computer, then illegally distribute the game to other users. To solvethis
problem, you can distribute your game without any levels. Each level must then be
downloaded over the network separately. Each download can be monitored and charged.

The process of downloading any of these datatypesis similar:

1. Connect to aserver.
2. Download the image, audio, or game level as a byte array.
3. Convert it into the format your game requires.

240

Downloading Images

Listing 16.1 shows how to load images over a network. Because every MIDP phone supports the
HTTP protocol, simply place your images on any public Web server. When your application starts,
it connects to the server and grabs the needed images.

Listing 16.1 Loading Images from Afar

public static Image carlmage;
static

{
try

{

carlmage = loadlmage(
"http://www.foo.com/images/car.png™);
} catch (Exception ex) {}

public static Image loadlmage(String url)

byte buffer[] = null;
try

{
HttpConnection conn = (HttpConnection)

Connector.open(url);
try
{
int length = (int)conn.getLength();
buffer = new byte[length];
DatalnputStream in = conn.openDatalnputStream();
in.read(buffer);
in.close();
return Image.createlmage(buffer, O,
buffer.length);

finally
{

conn.close();

}

}
catch (Exception ex) {}

return null;

}

The load Image () method isrelatively simple: An HTTP connection to aWeb server is created.
The server returns the length of the image. A byte array of that length is then created, and the
image is downloaded into the array. This array is then passed into the Image . createlmage ()
method, and a new Javaimage is returned.

More information about the Connector class can be found in Chapter 20, "Connecting Out:
Wireless Networking.”

Downloading Other Media Types

Grabbing other media types can work in asimilar fashion. Pretty much every API allows you to
construct sounds, images, or other objects using a simple byte array.

241

When you create your game components, be sure to write a game engine or level editor that can
input and output byte arrays as necessary. ldeally, your entire game state should be able to be
compressed into abyte array.

Additionally, your images and other multimedia can be saved onto the device's storage memory
for future games. Chapter 19, "Be Persistent: MIDP Data Storage," shows you how to achieve this.

Advanced Collision Detection

In the previous chapter we talked about a way of detecting sprite collision using overlapping
rectangles. Thistype of collision detection is very inaccurate. For instance, if the transparent
corners of aball sprite touch the corners of another ball sprite, your game will think they have
collided. The player, however, will see two balls move past each other without touching. Luckily,
there are several advanced detection techniques that can be used to eliminate this problem:

e Collision detection with multiple levels—A spriteis divided into different areas, called
levels. Thelargest areaiis called the root level, and has no parent. Every other level can
contain other levels, and also lies within a parent level. This enables you to create various
zones within your sprite. For example, you will be able to tell when amissile hitsthe side,
edge, or center of an enemy barracks. Or, if you just need to know whether the sprite was
hit at al, you merely look at the parent level.

e Collision detection with multiple areas—A nonrectangular sprite is divided into different
rectangular parts. Detection within each of these small rectangles occurs separately.

e Bitmasked collision detection—This involves two images: The original spriteimage and a
sprite mask. The mask image is a two-colored (black and white) bitmap, wherein the
white color represents the presence of the sprite, and the black color its absence. This
approach is the most accurate, but also the slowest.

Each of the above solutions will be discussed in the following sections.

Solution 1: Multiple Levels

Figure 16.1 shows how the image of aball can be separated into two levels. The larger rectangle
surrounds the entire ball. The smaller rectangle, which is achild of the larger rectangle, denotes
the center of the ball. When a collision occurs, the game is told which level was hit.

Figure 16.1. Multiple levels of collision.

242

Each level isrepresented by a quadruplet that holds the upper-left coordinate (X, y) of the area, as
well as the width and height. In Listing 16.2 the quadruplets are hard-coded, but they could just as
easily have been provided as parametersin the Spri te's constructor.

Listing 16.2 Creating Collision Levels

protected int areas[][] = {{0, O, 10, 14} ,
{3, 2, 4, 11}};

public int collide(Sprite sprite)
{

for (int 1 = 0; 1 < areas.length; i++)

if ((areas[i][0] + areas[i][2]) > sprite.getX() &&
areas[i1][0] < sprite.getX() &&
(areas[i1][1] + areas[1][3]) > sprite.getY() &&
areas[1][1] < sprite.getY())
return 1i;

}

return -1;
¥

The code presumes that levels in the array are presented in order from the outer area to the inner
one. The col lide() method tests whether a given sprite has collided with a specific area. The
method returns an integer value that represents the level number. The root level has avalue 0. If
thereis no collision, the value -1 isreturned. This can let you know whether a sprite has hit the
outer edge of another sprite, or the direct center. Y ou can then react accordingly.

The exampl e shows how basic area detection can occur. In reality, you would need to check each
area of one sprite against each area of another sprite. If one sprite has m areas, and the other one

243

has n areas, the game would need to make mxn comparisons for one collision. That can slow down
your game considerably.

Solution 2: Multiple Areas

Any digital nonrectangular image can be partitioned into a finite number of rectangular parts. For
example, the circlein Figure 16.2 has been divided into three rectangles. If your image has any
extra pixels along its edges, they can be divided into arectangle that is only 1 pixel square.

Figure 16.2. Multiple areas of collision.

When your program tries to detect whether two sprites have collided, it can check every rectangle
of one sprite against every rectangle of another. Thistype of collision detection is 100% accurate.
However, the more rectangles your sprite is made up of, the more checking iterations there are that
must be performed.

Area collision detection can be implemented similarly to level detection. Simply create an array of
quadruplets (x, y, width and height), asin Listing 16.3.

Listing 16.3 Creating Collision Areas

protected int areas[][] = {{2, 1, 6, 3} , {3, 4, 4, 5} ,
{0, 9, 10, 14}};

public boolean collide(Sprite sprite)
{

for (int 1 = 0; i < areas.length; i++)

it ((areas[1][0] + areas[i][2]) > sprite.getX() &&
areas[i][0] < sprite.getX() &&

244

}

(areas[i][1] + areas[i][3]) > sprite.getY() &&
areas[i][1] < sprite.getY())
return true;

return false;

Thecol lide() method returnstrue if at least one of the parts collide with another sprite.

When you actually build your game, you should experiment with various types of collision
detection and various numbers of areas. Because current Java devices are quite slow, you might
want to limit your sprites to one or two areas at most.

The Sprite Manager

A sprite manager's main jobs are to manage alist of different sprites and to provide the capability
to manipulate those sprites.

When defining the manager, the following methods should be implemented:

addSprite(Sprite sprite)— Addsanew spriteinto the manager at the end of the
list.

insertSprite(Sprite sprite, int position)— Addsanew spriteintothe
manager at the given position.

getSpritePosition(Sprite sprite)— Returnsthe sprite's position number
associated to the given sprite. The first sprite is at the position 0. The value —1 isreturned
if the sprite was not found.

getSprite(int index)— Returns the sprite associated with the given index.
deleteSprite(Sprite sprite)— Deletesthe given sprite from the manager.
deleteSprite(int position)— Deletesasprite from the given position from the
manager.

paint(Graphics g)— Drawsall the sprites onto the given Graphics object. The
sprites are drawn in order from O to getLength()-1.

size()— Returns the number of spritesin the manager.

Listing 16.4 shows the implementation of the SpriteManager class, using all the preceding
methods.

Listing 16.4 The SpriteManager Class

import java.util.*;
import javax.microedition.lcdui.*;

public class SpriteManager

{

private Vector list;
public SpriteManager()

list = new Vector();

public void addSprite(Sprite sprite)

list.addElement(sprite);

245

}

public void insertSprite(Sprite sprite, int position)
{

list.insertElementAt(sprite, position);

}

public int getSpritePosition(Sprite sprite)
{
for (int i = 0; i < list.size(); i++)
{
Sprite comparableSprite = (Sprite)list.elementAt(i);
ifT (sprite.equals(comparableSprite))
return i;
3

return -1;

}

public Sprite getSprite(int index)
{
return (Sprite)list.elementAt(index);

}

public void deleteSprite(Sprite sprite)

{
deleteSprite(getSpritePosition(sprite));

}

public void deleteSprite(int position)
{

list.removeElementAt(position);

}

public int size()
{

return list.size();

}

public void paint(Graphics g)
{
for (int i = 0; i < list.size(); i++)
{
Sprite sprite = (Sprite)list.elementAt(i);
sprite.paint(g);
¥
b
b

The manager uses aVector object for storing sprites. If sprites need to have unique IDs, Vector
could be replaced with Hashtable. Y our game can use severa managers to hold each group of
sprites. For example, you might want to organize things so that you have one manager for
opponent vehicles, one for obstacles, one for background elements, and so on.

Sprites are always added at the end of thelist. All searches are linear, and are fast enough for
small amount of sprites. For larger games, you can implement more advanced search mechanisms

such as sorting via binary trees. The paint() method ssimply draws all the spritesin thelist in
order asthey're put in the list.

Drawing Optimizations

246

Look closely at the paint() method in Listing 16.4. The SpriteManager classis drawing
sprite images, even if they are located beyond the bounds of the current screen. Thiswill slow
down the game, because a huge number of unnecessary actions are invoked. Y our game might
have hundreds of spritesin memory, but only one or two drawn on the screen at any given time.
Instead, painting should be done asin Listing 16.5.

Listing 16.5 Improved Painting

import java.util._*;
import javax.microedition.lcdui.*;
public class SpriteManager

{

private Vector list;
private int width;
private int height;

public SpriteManager(int width, int height)
{

this.width = width;

this.height = height;

list = new Vector();

}

public void paint(Graphics g)
{
for (int i = 0; i < list.size(); i++)
{
Sprite sprite = (Sprite)list.elementAt(i);
ifT ((sprite.getX() + sprite.getWidth() > 0) &&
(sprite.getX() < width) &&
(sprite.getY() + sprite.getHeight() > 0) &&
(sprite.getY() < height))
sprite.paint(g);

}

The sprite manager stores the values of the screen’'s width and height. Both values are very
important, because they represent boundaries. The paint() method walks through the manager's
sprite list and checks whether each sprite lies inside the screen.

Enhancing Sprite Collision

To apply the sprite manager to our Micro Racer game, you can create one SpriteManager
group for all the enemy cars. Y ou can then figure out whether your player sprite has collided with
an enemy by creating collision detection within the SpriteManager class, asillustrated in

Listing 16.6.
Listing 16.6 Adding Collision Detection

public boolean collide(Sprite sprite)
{
for (int i = 0; 1 < list.size(); i++)
{
Sprite comparableSprite = (Sprite)list_elementAt(i);
if (sprite.collide(comparableSprite))
return true;

247

}

return false;

}

The col Iide () method checks whether the player sprite (which should be passed in asa
parameter) has collided with any of the enemy sprites. If there is a collision, the method returns
true.

Moving through the list with alarger number of sprites can significantly slow down the game.
One possible optimization would be to put the spritesin a correct order within the list, and only
check the sprites that are on the screen. The ones that are offscreen could never collide with the

player sprite.

Summary

Now we're getting someplace! We have afully functional game with a hero, a group of enemies,
and a means of figuring out whether any fender-benders have occurred. However, the gameis till
pretty simplistic. After al, none of our sprites are actually moving yet! The next chapter finally
makes sprites spritely, showing you how to actually animate and move them around within a game
loop.

248

Chapter 17. Sprite Movement
INTHISCHAPTER

Floating-Point in 2ME
Game Initialization
Movement

Piecing It All Together

Summary

So far, we've managed to create a bunch of sprites and draw them on the screen. But we're not
painting astill life here; we're programming a gamel!

To make agame agame, it must read input events from the keyboard or the screen and move

sprites accordingly. The game must also set up initial conditions, check controls for game
operability, and provide artificial intelligence for computer-controlled characters or game moves.

Floating-Point in J2ME

Before we get too excited, though, there's one thing we're going to have to get out of the way:
MIDP does not support floating-point math.

Why is floating-point math important for games? Imagine a game hero that can move in different
directions, such as the enemy carsin our Micro Racer game. Y ou'll want the carsto move at a
constant speed, regardless of which direction the sprite is moving. To create this type of smooth
movement, you would use a pair of simple trigonometric formulas:

Vx = V * cos(tau)

and

Vy =V * sin(tau)

where tau is an angle starting at the 3 o'clock position and increasing counterclockwise, as
illustrated in Figure 17.1.

Figure 17.1. Velocity components.

249

Tau

Vx X

Unfortunately, the results of these formulas are going to involve decimal places. If you round
things off, movement becomes nonlinear.

Additionally, 3D games are becoming very popular. It's conceivable that 3D engines, or isometric
engines (games that simulate depth of scene, such as the view of a maze by peeking over its outer
wall), will soon be feasible on smaller devices. In order to transform 3D polygons and draw 3D
worlds, accurate linear algebra and trigonometric functions are imperative. This involves precise
floating-point support.

Cheating the System

Even if your target device doesn't support floating-point numbers, you can easily develop your
own floating-point library, or even buy it from software companies specializing in such libraries.

When developing a floating-point math library, there are afew questions to be answered:

e Should the floating-point library be based on |EEE or fixed-point arithmetic?
e What isthelevel of precision that the game needs?
e How fast isthetarget device?

The IEEE standard enables you to implement 32-, 64-, or higher-bit floating-point numbers, and to
perform arithmetic on them. However, this standard is very difficult to implement and requires a
lot of memory.

250

A more simplistic solution isto use fixed-point arithmetic, directly mapping floating-point
numbers to integers. We will just imagine a decimal point between the third and fourth digits.

The weakness of using fixed-point arithmetic is that you are limited in how many decimal spots
you can use after the floating point. However, the precision is generally good enough to suit the
needs of sprite movement.

To achieve the best precision, you should use along integer, because it is the largest numerical
format in the Javalanguage. Long integers offer 64 bits for floating-point number representation.

Because most devices have small screens and relatively coarse sprite movement, most sprite math
usually involves real numbersin the range between 0.001 and 1000.000. Because you'll need four
digitsto represent 1.000, its integer value would be 1000. Further, the integer value of 1000.000
would be 1000000.

Our custom floating-point library must also implement common mathematical functions. For
example, the trigonometric sine function can be calculated using an interactive formula. This
approach is very preciseif ahigh enough number of iterations are performed. Unfortunately, itis
difficult to predict how many loops are needed to cal culate sine with precision, and each loop eats
up precious time.

A much faster approach is to use pre-calculated value tables (alist of values) for each function.
Thetable for sine can have the results for angle values of 0, 10, 20, and so on, all the way to 90°.
If agame needsto find the sine of 6°, the library uses linear interpolation to calculate it based on
neighboring results. The more values that are in the table, the more precise results can be. More
precision can also be achieved by interpolating through more points. Listing 17.1 implements a
basic floating-point library for 2ME.

Listing 17.1 The Float Class

public class Float

{

// The value of the number 1.
public static final long VALUE_ONE = 1000;

// The value of Pl, to three decimal places.
public static final long Pl = 3142;

// A sine table with 10 values.
private static final long SIN_TABLE[] =

{
0, 173, 342, 500, 643, 766, 866, 940, 985, 1000
T

// A cosine table with 10 values.
private static final long COS_TABLE[] =

{
1000, 985, 940, 866, 766, 643, 500, 342, 173, O
T

private Float() { }

// Create a float from a round integer.
public static long createFloat(long integer)

if (integer > Long.MAX_VALUE / Float.VALUE_ONE)

throw new RuntimeException(
"Integer too large.™);

251

return integer * Float.VALUE_ONE;
}

// Create a float from a round integer and a decimal fraction.
public static long createFloat(long integer,

long fraction)
{

if (integer > Long-MAX VALUE / Float.VALUE_ONE)
throw new RuntimeException(
"Integer too large.™);
if (fraction > Float.VALUE_ONE - 1)
throw new RuntimeException('Fraction too large.");
return integer * Float.VALUE _ONE + fraction;

}

// Get the integer value.
public static long getinteger(long value)

{
return value / Float.VALUE_ONE;

}

// Get the decimal fraction value.
public static long getFraction(long value)

{
return value % Float.VALUE ONE;

}

// Add two floats.
public static long add(long valuel, long value2)

{

return valuel + value2;

}

// Subtract two floats.
public static long sub(long valuel, long value2)

{

return valuel - value2;

}

// Multiply two floats.
public static long mul(long valuel, long value2)

{
return valuel * value2 / Float.VALUE_ONE;

}

// Divide two floats.
public static long div(long valuel, long value2)

{
return valuel * Float.VALUE ONE / value2;

}

// Get the inverse of a float.
public static long inv(long value)

{
return Float.div(Float.VALUE ONE, value);

}

// Get the absolute value of a float.
public static long abs(long value)

if (value < 0)

252

value = - value;
return value;

}

// Get the sign of a float.
public static long sign(long value)
{

return (value < 0 ? -1 : 1);

}

// Perform the sine function on a float.
public static long sin(long value)
{
value = value % Float.createFloat(360);
long sign = 1;
if (value > Float.createFloat(180))
{
value = value - Float.createFloat(360);
sign = -1;
}
long abs = Float.abs(value);
if (abs > Float.createFloat(90))
abs = Float.createFloat(180) - abs;
if (abs == Float.createFloat(90))
return Float.createFloat(l);
if (abs == Float.createFloat(0))
return Float.createFloat(0);

int x1 = (int)Float.getinteger(Float.div(abs,

Float.createFloat(10)));

int x2 = x1 + 1;

long y1 SIN_TABLE[x1];

long y2 SIN_TABLE[x2];

long k = Float.div(Float.sub(y2, yl),
Float.sub(x2, x1));

return sign * Float.add(yl,
Float.mul(k, Float.sub(abs, x1)));

}

// Perform the cosine function on a float.
public static long cos(long value)
{
value = value % Float.createFloat(360);
long sign = -1;
if (value > Float.createFloat(180))
{
value = value - Float.createFloat(360);
}
if (value >= Float.createFloat(-90) &&
value <= Float.createFloat(90))
sign = 1;
long abs = Float.abs(value);
if (abs > Float.createFloat(90))
abs = Float.createFloat(180) - abs;
if (abs == Float.createFloat(90))
return Float.createFloat(0);
if (abs == Float.createFloat(0))
return Float.createFloat(l);
int x1 = (int)Float._getlinteger(

Float.div(abs, Float.createFloat(10)));

int x2 = x1 + 1;
long yl = COS_TABLE[Xx1];

253

long y2 = COS_TABLE[x2];
long k = Float.div(Float.sub(y2, yl1),
Float.sub(x2, x1));
return sign * Float.add(yl,
Float.mul(k, Float.sub(abs, x1)));
}

// Perform the tangent function on a float.
public static long tan(long value)

{

return Float.div(Float.sin(value), Float.cos(value));

}

// Convert a value from radians to degrees.
public static long toDeg(long value)
{

return Float.div(Float.mul(
value, Float.createFloat(180)), Float.Pl);
}

// Convert a value from degrees to radians.
public static long toRad(long value)

{
return Float.div(Float.mul(value, Float.Pl),

Float.createFloat(180));
3

}

Listing 17.1 creates alibrary that isn't complete, but offers enough functionality to move spritesin
agame. All functions are static, enabling any other class to easily access the methods.

Thefloat value is represented as along integer. Y ou must carefully keep track of numbers you use
in the game—some long integers will actually be floating-point numbers.

The constant VALUE_ ONE represents the number 1.0, and the number of zeros shows how many
decimal places are reserved after the decimal point. Y ou can change this value to offer different
levels of precision. By increasing the constant, the maximum float value decreases.

Some values in mathematical libraries are represented as constants. The most commonly used
constants are pi (w) and E. Because the game needs only trigonometric functions, the constant E is
not needed. Pi has the value 3.142 to provide the highest precision possible with three decimal
places after the decimal point.

A floating-point number can be created with two createFloat() methods. One method accepts
just an integer value, and the other accepts an additional fraction part. If method parameters
exceed the maximum value, an exception is thrown. To retrieve the integer part of afloating
number, your game can call the getInteger () method. To retrieve the fraction part, call the
getFraction() method.

Addition and subtraction are done in the traditional way. When multiplying, however, the result
must be divided with the VALUE_ONE constant at the end to keep the result at the same decimal
point precision. During division, the result is multiplied by VALUE_ONE to keep the same decimal
point precision. To avoid additional precision losses, the numbers must be multiplied before
dividing them.

254

There are also two tables in the code with results for mgjor angles of sine and cosine. Both tables
can be easily merged because they are mirrored. However, it is sometimes quicker to have more
tables and less execution code.

Game Initialization
Now we're amost ready to move some sprites.

First off, however, each sprite'sinitial condition must be set. Sprites must be placed at their
starting positions and given initial values (for example, level of energy, x velocity, y velocity, and
so on). If your game contains atimer, it should be reset. When your gameis over, theinitia
conditions should be set once again.

Listing 17.2 expands Micro Racer's GameCanvas classto initialize the player sprite as well asthe
enemy sprites.

Listing 17.2 Initializing It All

private SpriteManager enemyList;
private int length;

public GameCanvas()

Cache.width = getWidth(Q);
Cache.height = getHeight();
try
{
player = new Player(Cache.carlmage,
Cache.carlmage.getWidth(),
Cache.carlmage.getHeight(), 1, INIT_ENERGY);
// Place the player in the center of the screen
player._setX(Float.createFloat((Cache.width —
player.getWidth(Q)) 7/ 2));
// Place the player at the very bottom
player.setY(Float.createFloat(Cache.height —
player._getHeight()));
player._setVisible(true);
} catch (Exception ex) { }

public void initEnemies()
{
enemyList = new SpriteManager(Cache.width,
Cache.height);
int size = length / Cache.height - 1;
Random rnd = new Random();

// Create "size" enemies.
for (int i = 1; 1 <= size; i++)
{

try

{

Sprite sprite = new Sprite(Cache.enemylmage,
Cache.enemylmage.getWidth(),
Cache.enemylmage.getHeight(), 1);

// Set the X position of the sprite randomly

int x = rnd.nextInt() % (ROAD_WIDTH -

255

Cache.enemylmage.getWidth());
X=X<0?-X1:X);
sprite.setX(Float.createFloat((Cache.width —

ROAD_WIDTH) 7 2 + x));

// Scatter the sprites around the at various Y positions
sprite.setY(Float.createFloat(- i1 *

Cache.height));

// Set the downward velocity to "speed"
sprite.setVy(speed);
enemyList.addSprite(sprite);

} catch (Exception ex) { }

}

public void setSpeed(long speed)
{ this.speed = speed;

}

public void setLength(int length)
i this.length = length;

In Listing 17.2, the player's race car is constructed and set at a default location at the bottom center.
Afterwards, a sprite manager is created, and different enemy sprites are put in the list by calling
the addSprite() method. The number of spritesis carefully calculated to put no more than four
opponent cars on one screen at atime. The x position of each enemy is random, using the
nextInt() method from Java's Random class. The x, y and velocity values are created as
floating-point numbers.

Movement

In Micro Racer, the movement of the hero sprite depends on which keys the player presses. On the
other hand, the movement of enemy spritesis determined by game intelligence. Enemy movement
can be accomplished in different ways:

¢ Predefined movement—T he opponent sprites have their initial positions and velocities.
These values never really change throughout the game.

e Smart movement—The opponent sprites have their initial positions. Each car's velocity
(direction and speed) is determined during the course of the game. For example, an
opponent basketball player could always be running toward the ball.

e Artificial intelligence (Al) movement—Opponent sprites use a custom artificial
intelligence engine. This engine evaluates the history of the sprite's movement, learns
from its mistakes, predicts what the player is going to do next, and defines the movement
of sprites accordingly. A smple example of Al movement isin chess, where the computer
can search through a tree of legal moves, calculating which combination of future moves
will have the best effect—that is, avoiding traps, leading to the capture of an opponent's
piece, and checkmate.

For starters, we'll keep things simple with our game. We will use predefined movement to position
opponent cars randomly, keeping a reasonable number of cars on the screen at onetime.

256

When the user selects atrack to play using the Tracks form, the track's length will be set by calling
the setLength() method, and the speed of enemy vehicles will be set using the setSpeed ()
method. In this way, each new track is more challenging than the last.

The Movement Routine

Movement occurs by creating a special game thread. This thread will continue running aslong as
the gameisin progress. Any game actions can be handled in thisloop. We can create a game
thread in Listing 17.3.

Listing 17.3 Creating a Game Thread

public class GameThread extends Thread

{

public void run()

while (running)
{
long time = System.currentTimeMillis();
moveSprites();
// Check collisions
repaint();
serviceRepaints();
time = System.currentTimeMillis() - time;
try
{
if (time < DELAY)
Thread.sleep(DELAY - (int)time);

catch (Exception ex) { }

}
}
}

ThemoveSprite() routine, which actually handles the movement of each sprite, isdetailed in
Listing 17.4.

Listing 17.4 Moving the Sprites

private void moveSprites()

{
switch (key)
{

case Canvas.LEFT:
if (Float.getlinteger(player.getXx()) >
(Cache.width - ROAD_WIDTH) / 2)
player._setX(Float.sub(player.getxX(),
Float.createFloat(2)));
break;
case Canvas.RIGHT:
if (Float.getlinteger(player.getX()) +
player.getWidth() <
(Cache.width + ROAD_WIDTH) / 2)
player.setX(Float.add(player.getX(),
Float.createFloat(2)));
break;

b

for (int i = 0; 1 < enemyList.size(); i++)

257

{
Sprite sprite = enemyList.getSprite(i);
sprite.setY(Float.add(sprite.getY(),
sprite.getvy()));
}
}

Finally, we make sure to paint al our spritesin the paint() method of GameCanvas. This can
befoundin Listing 17.5.

Listing 17.5 Painting Sprites
public void paint(Graphics gr)

// All the other paint functions happen here...

// ...

// Then we paint the enemy list

enemyList.paint(g);

// And then the player...

player._paint(g);

// And then drop it all onto the real screen

gr.drawlmage(scene, 0, 0, Graphics.TOP |
Graphics.LEFT);

}

The movement magic happens in the moveSprites() method. This method does the following:

e Move the hero sprite. The race car moves either to the left if the player is holding down
the left arrow key, or to theright if the player is holding down the right arrow key.
Movement occurs by adding or subtracting 2 pixels (as a floating-point number) from the
vehicle's current x position. If the race car hits either side of the track, movement stops.

e Move opponent sprites. Opponent movement, for now, is pretty simple. Each enemy car
is moved a set number of pixels down the screen. The enemy's current y position is
increased by the enemy's current y velocity. An enemy can be slowed down or sped up by
changing the y velocity value.

Piecing It All Together

We now have al sorts of sprites moving around the game screen. All that remains now isto
handle sprites when they interact, and to determine how the game ends.

Handling Collision Detection

Whenever your car touches an enemy car, it |oses some energy. That means collision detection is
essential. Because our Sprite class aready has collision detection routines, it's just a matter of
detecting and handling collisions. A method could be created as follows:

private void checkCollision()

if (enemyList.collide(player))
player.setEnergy(player.getEnergy() -
COLLIDE_ENERGY);
iT (player.getEnergy() <= 0)
running = false;

258

}

This method checks for acollision. If one occurs, the COLL IDE_ENERGY value is deducted from
the player's energy. If the energy reaches zero, then we stop running the game loop.

It'simportant for players to know where they stand in a game at any given time. As such, the
energy valueis drawn at the top of the screen at all times. Well aso let the player know how
much time has passed:

public void paint(Graphics gr)

{
é:éraWString("E:" + player.getEnergy(), (getWidth() -
ROAD_WIDTH) / 2 + 1, 0, Graphics.TOP |
Graphics.LEFT);
g-drawString("'T:" + (timer / 10) + "." + (timer % 10)
+ "s", getWidth() /7 2 + 1, 0, Graphics.TOP |
Graphics.LEFT);
}

Endgame: Losing or Winning
A gameisn't much of agame unless you either lose or winiit. In our Micro Racer game, you win if

your car successfully reaches atrack's finish line before losing al its energy. If your energy
reaches zero, however, the game is over.

To set the finish line's location, we add this bit of code to the initEnemies() method:

private long line;
public void initEnemies()

{
line = - Float.createFloat(length);

}

Recall that Iength isaglobal variable, which is set from the Tracks class. Each track has a
different length.

The finish line can then be painted in the paint method:

public void paint(Graphics gr)

{
g.drawLine((getWidth() - ROAD_WIDTH) / 2,
(int)Float.getinteger(line),
(getWidth() + ROAD_WIDTH) 7/ 2,
(int)Float.getinteger(line));
}

Finaly, we'll create a method to detect whether the finish line has been crossed. If it is
successfully crossed, well set the Finished global flag to true, and stop running the game loop:

259

private void checkFinishLine()

{
it (Float.getlnteger(line) > Cache.height)
{
running = false;
finished = true;
}
}

The Final Game Thread

Okay, now let's piece this all together. The key isto add the appropriate methods to the
GameThread loop. Listing 17.6 implements a game thread that checks for car collisions, checks
whether the finish line has been crossed, increments the timer, and handl es the endgame gracefully.

Listing 17.6 The Final Game Loop

public class GameThread extends Thread

public void run()

{

while (running)

{

long time = System.currentTimeMillis();
moveSprites();
checkCollision();
checkFinishLine();
timer++;
repaint();
serviceRepaints();
time = System.currentTimeMillis() - time;
try
{
if (time < DELAY)
Thread.sleep(DELAY - (int)time);
}

catch (Exception ex) { }
}
if (finished)

// Tell the user the score.
// Send the score to a high-score server..

}
else
// Tell the player that the game is over...

// Finally, return the the original menu form
Display.getDisplay(midlet) .setCurrent(form);

}
}

Figure 17.2 shows the game in action.

Figure 17.2. The game in action.

260

Summary

And so there you have it—a fully functional game. Although it might not be on par with Quake or
Tomb Raider, Micro Racer is definitely a cute enough little action game to play during boring
business meetings. The final version of the gameis far from complete. In the remaining chapters,
well add sounds, supercharge the game for Siemens or NTT DoCoMo phones, store data locally,
and even add a multiplayer-networking component.

261

Chapter 18. J2ME Audio Basics

INTHISCHAPTER

e SoundsAre (Barely) Possiblel
e Summary

Blockbuster games combine arich story, beautiful graphics, smooth playability, mood-inducing
background music, and startling sound effects. Mobile game designers must get used to working
around severe limitations on all of these elements. But of all the sacrifices a MIDP developer must
make, no other component is quite as inadequate as music and audio effects. MIDP sound support
isvirtualy nil.

That being said, many phone operators are beginning to introduce extension APIs with excellent
sound capabilities. Check out Chapter 23 for afull overview of the Siemens API.

Sounds Are (Barely) Possible!

Most early MIDP devices were not originally intended as gameplaying or digital entertainment
machines. While it may seem ironic that a telephone doesn't come with built-in audio hardware,
that is sadly often the case.

The latest batch of phones and other devices, however, are much more impressive. Many phones
now have the capability to play fancy ring-tones, chirpy sound effects, and even MP3 music files.

Even the simplest phone, however, usually has the capability to emit afew simple beeps and blips.
These sounds are triggered as part of the phone's user interface—whenever you select a menu
option, whenever an alert dialog pops up, or if an alarmistriggered.

MIDP alows you to useits Al ert class to invoke simple system sounds. The Alert class,
discussed in Chapter 13, "High-Level Graphical User Interfaces,” is used when a game needs to
display an important dialog box notification. Alerts are typically used to present information about
the game, such as instructions, credits, and so on. Sometimes an alert box will pop up asa
gameplay warning, or even as a user-friendly way of catching a programming error.

MIDP lets you define various types of aertsusing the AlertType class. Some phones attach
unique sound effects to each of these alert types.

These types are

Information— Communicates some sort of non-crucial data to the player. The
associated sound is usually very short and subtle. This sound can be played several times
throughout the cycle of a game to express some sort of common game event.

e Confirmation— Confirmsauser's actions. The associated sound is usually succinct
but noticeable.

e Warning— Warnsthe user about a potentially dangerous operation. The sound is often
sharp and of along duration. In general, it makes sense to play awarning sound during
major game events, such as when the character is about to die or when the game is over.

e Alarm— A very noticeable sound intended to alert the user about a predefined event.

Alarm sounds can last for a very long time. Games should use such a sound rarely.

262

e Error— Alertsthe user that something erroneous or problematic has just occurred. The
associated sound is generally short but grating and negative.

The AlertType—class doesn't have any public constructor. To useit, you can grab one of five
static objects: AlertType. INFO, AlertType .CONFIRMATION, AlertType .WARNING,
AlertType.ALARM and AlertType .ERROR. Each of these objects only has one method:
playSound(), which plays the defined alert sound. The method takes an instance of the
Display class as a parameter.

For example, if we wanted to spice up the car game we have been developing, we can add a short
sound effect (Info) whenever the user collides with another car; ablaring horn (Error) when the
car's energy dropsto zero, and along wail (Alarm) when the gameis over.

Listing 18.1 shows amodified version of the checkCol lision() and checkFinishLine()
methods.

Listing 18.1 Modified Versions of checkCollision() and checkFinishLine()
Methods

private void checkCollision()

{
iT (enemyList.collide(player))
{
player._setEnergy(player.getEnergy() —
COLLIDE_ENERGY);
AlertType. INFO.playSound(Display.getDisplay(
midlet));
}
it (player.getEnergy() <= 0)
{
running = false;
AlertType.ERROR.playSound(Display.getDisplay(
midlet));
}
}

private void checkFinishLine()
iT (Float.getinteger(line) > Cache.height)
running = false;
finished = true;

AlertType .ALARM.playSound(Display.getDisplay(
midlet));

Summary

Unfortunately, the sound capabilities of today's Micro Java devices leave alot to be desired.
Future versions of MIDP will definitely focus much more on rich and varied effects, background
music, and other audio features.

263

In the meantime, there are many vendor-specific extensions by companies like Siemens enabling
more impressive grooves.

264

Chapter 19. Be Persistent: MIDP Data Storage

INTHISCHAPTER

RecordStore Overview
RecordStore in Practice
More RecordStore Joy

Summary

So, now we've got some datawe'd like to store persistently on our 2ME device—the images for
the car's weapons. By storing these directly on the device, we don't have to download them every
time the MIDlet fires up. Fine, but how do you do it across so many diverse devices, most of
which are without hard drives or even file systems?

Aswith most things in the 2ME scheme of things, data storage isin the mix, but it's rather
different than you might be used to, and requires alittle limited-device common-sense to use
effectively and efficiently.

To take advantage of J2ME's data access capabilities, well need to make use of the classes and
interfaces in a core MIDP package we haven't yet touched, the javax.microedition.rms
package. (The "rms" acronym stands for Record Management System.) This package's
RecordStore classisour key to data storage and handling.

RecordStore Qverview

Before we dive into coding, let's take alook at RecordStore's quirks and limitations. Here's
what the class javadocs say:

"...A record store consists of a collection of records which will remain persistent across multiple
invocations of the MIDlet. The platform is responsible for making its best effort to maintain the
integrity of the MIDlet's record stores throughout the normal use of the platform, including
reboots, battery changes, etc."

It's worth paying attention to that last bit—the platform will make "its best effort” to keep
persistent data safe and sound. For the most part, we can assume that any given device will follow
through, but well really need to account for the possibility that the storage might get wiped, and
that we'll need to rebuild it if it's not found.

Working with aRecordStore israther like working with a database, or with a
RandomAccessFi le from J2SE's java. i o package. You create and access aRecordStore
using aunique String ID (up to 32 Unicode characters long), and you can then add, read, set, or
delete individual records of datawithin it. There are a bevy of new exceptions to handle with a
RecordStore, which we'll touch on later.

A RecordStore isassociated only with the MIDlet suite that created it. Any RecordStore
created by any MIDlet within asuiteis available to all other MIDlets in the same suite. However,
you can't access aRecordStore in another stite.

When you add a new piece of datato aRecordStore, it's added viathe addRecord () method,
which returns aunique recordld int primitive that can be used to access the same record later

265

on. The recordld isguaranteed to start at 1 for the first record of anew RecordStore, and
will increment by one for each record subsequently added to it.

This recordld number increments absolutely, regardless of any record deletions. In other words,
if you add three records to anew RecordStore upon creating it, their recordidswill be 1, 2,
and 3 in the order in which they were added. If you then delete the second record and add an
entirely new one, the recordldswill be 1, 3, and 4. Bearing thisin mind, well use this behavior
to our advantage to keep track of our images consistently—if perhaps inflexibly—although well
hint at how to handle records in amore arbitrary fashion toward the end of the chapter (using a
RecordEnumeration).

Datais stored and retrieved to and from individual records only as byte arrays, and so must be
packed into byte arrays for storage, then unpacked to rebuild and use as needed by the MIDIet.
WEe'l build some methods for doing this simply with our data.

The amount of RecordStore storage space depends wholly upon the device, and is generally
shared with the MIDlet storage. In other words, don't believe you've got megabytes of memory to
dump datainto. Y ou might only have some tens of kilobytes, if even that. Keep only what you
need, and clear out what you don't. So, when the car's images need to change, we'll completely
replace the older data with the new stuff.

Likewise, there's no guarantee that data access speed will be anything remarkable. Don't worry too
much: accessing an individual record will likely only take a few milliseconds, but it may very well
be much slower than using normal Java variable objects on the VM's memory heap. Furthermore,
for many devices (for example, Palm Pilots), writing to memory storage is often considerably
slower than reading from it, usually because of well-considered memory-locking and security.

The key here for usisthat the data is persistent across "multiple invocations of the MIDIet.” This
isRecordStore's best use, instead of storing and retrieving data on the fly during a MIDlet's
normal operation. The rule of thumb isthat for any data which should be persistent, it should be
moved from normal runtime variablesinto the RecordStore before the MIDlet shuts down. The
MIDlet should then unpack the record data into those variables when it starts up again.

Finaly, aRecordStore isthread-safe. It is synchronized so that only a single running thread can
access arecord at atime. Remember, it's still up to the developer to make sure that, if there are
multiple threads in a given MIDlet that may potentially access the same record, that they do so
with someintelligence. In other words, if one thread adds records to a store and a second thread
only retrieves records, the second one should be smart enough not to retrieve a particular record
until the first thread has actually added it.

Those are the basic ups and downs of RecordStores, so now let's see what they can do!

RecordStore IN Practice

A RecordStore isn't built viaa constructor like most other objects; rather, it's effectively
requested from the client device via a static method call:

RecordStore openRecordStore(String recordName, boolean
createlfNecessary)

If aRecordStore specified by the recordName argument exists on the device, it's found and
returned. If it doesn't exist and the create |l fNecessary Boolean argument istrue, a new

266

RecordStore isbuilt and returned. If an exception isthrown, it might not exist, or the device
might not be able to create any new RecordStores (possibly not enough spare memory). Other
useful RecordStore methods available are described in the following sections.

addRecord()

int addRecord(byte[] data, int offset, int numBytes)

Thisisthe single method used to add new datato aRecordStore. The datamust be handled as a
byte array, and will be stored in the new record as such. Y ou can specify the offset index in the
data array and the number of bytes to actually store. If successfully added (without generating an
exception), the method will return the recordid int for the new record. Because thisis awrite
operation, the RecordStore isblocked to all other accesses until the record is fully written and
added successfully.

getRecord()

getRecord(int recordld)

This returns a copy of the byte array stored at the location specified by recordld. Note that it
indeed returns a copy; changing the copy won't ater the record in any way. If the recordlid
doesn't exist in the record, thiswill throw an Inval idRecordIDException.
getRecord(int recordld, byte[] buffer, int offset)

Instead of returning the byte array, this method inserts a copy of the record's array into the
supplied buffer array, beginning at the offset index in the buffer. It then returnsan int
representing the number of bytes copied into the buffer. Note that this could result in an
ArrayIndexOutOfBounds exception if the buffer istoo small to accommodate the record's
array from the offset index.

setRecord()

setRecord(int recordld, byte[] newData, int offset, int numBytes)

Thisisused similarly to the addRecord () method, but it wholly replaces the record at the
recordld specified. The recordld remainsin the RecordStore, but now pointsto the new
data. The offset can be used to point at a starting index in the newData array, along with
numBytes, to indicate the range of newData's indices that will actually be stored asits own
array in the record.

deleteRecord()

deleteRecord(int recordld)

This deletes the record in the store associated with the recordld. The recordld valueis
effectively gone from the RecordStore and will not be reused.

getLastModified()
long getLastModified()

Thisreturns the last time the record store was modified.

267

getNextRecordID()
int getNextRecordID()

Returnsthe recordld that would be assigned to the next record added. Thisis useful when we
need to check up on the recordld status without actually adding a record.

getNumRecords()

int getNumRecords()

Returns the number of records currently in the RecordStore. This has no relation to the
recordld status.

getSize()

getSize()

Returnsthe total size, in bytes, used by the RecordStore.
getSizeAvailable()

getSizeAvailable()

This returnsthe total bytes still available in the device's storage for the RecordStore to use. For
some games and applications, this will be a key method to confirm how much to rely upon the
local device storage, and to scale that reliance appropriately.

deleteRecordStore()

deleteRecordStore(String recordName)

Thisisadtatic class method, and it completely removes aRecordStore from the device's
persistent memory storage. Thisis unrecoverable, and any data remaining in the RecordStore is
lost. If you need to reset aRecordStore and start from scratch (at recordld == 1), you'll
need to delete it and create a new one.

EnumerateRecords()

RecordEnumeration enumerateRecords(RecordFilter filter,
RecordComparator comparator,
boolean keepUpdated)

WEell look alittle at enumerating RecordStoreslater in the chapter. Enumeration allows for
some greater flexibility in record handling, at the cost of some efficiency.

RecordStore Exceptions

These are the new exceptions we can catch when dealing with RecordStores. Just about every
method shown so far will need to be contained in a try-catch block, and can potentially throw at
least one of the following:

e RecordStoreExeption— Thisisthe most generic of the RecordStore's exceptions,
and is the super class of most of the others.

268

e RecordStoreNotFoundException— Thisisthrown whenever the RecordStore
requested isn't found in the device's storage.

e RecordStoreNotOpenException —Thisisthrown whenever an attempt at access
(read/write/lwhatever) is executed on aRecordStore that hasn't been properly opened
for use by the MIDlet.

e RecordStoreFul IException— Thiscan be abig one, the RecordStore hasno
memory space |left available to store new records.

e InvalidRecordIDException— One of these isthrown whenever arecordld is
used that doesn't exist in the RecordStore. This can actually be useful to catch and
discard while iterating through aRecordStore up toits getNextRecordI1D() vaue.

The Game's New Methods

Whoops! Let's just hang on a second; there are a couple more J2ME caveats to consider before we
start implementing anything, this time regarding the Image class. Thisisn't your dad's old reliable
J2SE Image class; it's rather more restrictive and we'll have to hurdle the following issues:

e Oncean Image, dwaysan Image. Thereare no PixelGrabbersor other useful
classesto pull the raw image datafrom an Image object.

e Youcan'tjust point the Image class at alikely URL and hope to pop out anything better
than anull. To get our remote image files on the server downloaded and looking good on
the device, well need to access them as binaries. In other words, as byte arrays.

What this means for us is that we're going to be keeping two versions of the Images in memory.
One version will be the binary source byte array, and the other will be the resulting displayable
Image.

WEe're going to define the methods in a generic form, so that they're not hard-coded only to
handling the weapon Images and data.

Here they are, in brief:

e public byte[][]1 getlmageDataFromStore()— If theRecordStore is
present, this will rebuild each weapon Image's source byte array from the records found
and return atwo-dimensional byte array for all Images found. If the method returns null,
it couldn't find its RecordStore (or experienced some other device issue), and the
MIDlet will have to download the images over the Internet.

e public void storelmageData(byte[][] imageData)— Beforethe MIDlet
shuts down, this method will delete the current RecordStore (if present), build a new
RecordStore, and pack the supplied byte arrays into records. If the method can't create
theRecordStore, or thereisn't enough room for the data, the method will simply return
without issue. This means that the MIDlet will load the images over the Internet the next
timeit runs.

As stated previously, aRecordStore returns a predictable ordering of recordld ints
when adding recordsto it, starting at recordld == 1 for the very first record added,
and incrementing by one for each subsequent record added. Wel'll use this behavior to
keep our Imagesin the same order in the RecordStore asthey will beinthe Images

array.

The static intsaready a part of the Weapon class will comein handy to properly index
and ID the records Weapon.FLAME (== 0) andWeapon.OIL (== 1).

269

e protected boolean removelmageStore()— Thelast method well need will
simply delete the RecordStore completely. Since it's possible we might only partially
build the RecordStore before running into problems, it's only proper to make sureit's
removed from the device's storage space, and not just leave it littering up the MIDlet
neighborhood.

The MIDIet will also need some new member variables:

private static final String IMAGE_STORE = "CarDB";
private Image[] weaponlmages;

private byte[][] weaponlmageSource;

private RecordStore imageDB;

The Image array, weaponlImages, will be used to handle the weapon Image objects on the
client and the IMAGE_STORE string will be used to uniquely identify the RecordStore for
consistent access from session to session.

Writing the Code

As shown previously, RecordStore usageis heavy on exception handling. For our purposes, it's
good enough to use a catchall approach (pardon the Java pun) and just catch most exceptionsin
general.

Let's start off with the method to clear the RecordStore. It returns a Boolean that's true if the
RecordStore was successfully removed (or simply didn't exist), and falseif a different
exception is encountered.

protected boolean removelmageStore()

{
try

{
it (imageDB != null

{

}
RecordStore.deleteRecordStore(IMAGE_STORE) ;

imageDB.closeRecordStore();

catch (RecordStoreException rse)

// The RecordStore didn"t exist to delete
// in the First place. Shouldn®"t be a

// problem.

return true

catch (Exception e)

{
// Something happened we can®t handle

return false;

// Removed successfully
return true;

}

Now let's build the first method, which grabs image data from the RecordStore.

270

First, well check whether the RecordStore of images even exists, and if not, just return null so
that the MIDIet will know to get the images over the Internet. Then, welll verify that the
RecordStore is properly built (that is, simply has some records).

public byte[][]1 getlmageDataFromStore()

{

imageDB = null;
try {

imageDB = RecordStore.openRecordStore(IMAGE_STORE, false);

// Get the number of records present

int numRecords = imageDB.getNumRecords();

// NMake sure the RecordStore actually *has* some records
if (numRecords == 0)

{
// The RecordStore seems to be whacked, so delete it
// and abort
removelmageStore();
return null;
3

Now let's set up the temporary variables needed to unpack the Images. If there's an issue, just
return null and move on.

}

}

byte[][1 allRecordData = new byte[numRecords][];
byte[] data = null;

// Note that we"re counting the records from 1,
// not from O.
for (int i = 1; 1 <= numRecords; i++)

{
data = null;
data = imageDB.getRecord(i);
// Note that the array index is one less than the
// recordld.
allRecordData[i-1] = data;
}

// All done, close the RecordStore
imageDB.closeRecordStore();

// Success!
return allRecordData;

catch (Exception e)

{

// There was a problem somewhere above.
// Make sure the RecordStore is removed.
removelmageStore();

// And abort
return null;

Asyou can see, it's all pretty straightforward. Here's the sister method:

public void storelmageData(byte[][] imageData)

{

271

First, let's remove the old RecordStore and start anew one by calling
remove ImageRecord(). Remember the Boolean it returns? If it returns false, we abort because
it might mean an issue with the RecordStore facility in general, which we can't handle.

Removing the RecordStore beforewriting to it isn't strictly necessary, but it will let us handle
the same number of images from one session to another cleanly, without the need to monitor the
record numbers and idstoo closely.

IT (IremovelmageRecord())

{
}

return;

Next, we build the RecordStore anew.
imageDB = null;

try {
// This creates a new RecordStore

imageDB = RecordStore.openRecordStore(IMAGE_STORE, true);

Now, let's make absolutely sure there's enough storage space for our byte arrays. Thisisn't really
needed, as adding the actual datawill result in an exception if there's not enough room, but it will
let us stop the process before actually writing anything to the store.

int totalSize = 0;
for (int i = 0; 1 < imageData.length; i++)
{
totalSize += imageData[i].-length;
}

ifT (totalSize > imageDB.getSizeAvailable())

// bad news, just abort and return
removeRecordStore();
return;

// If we made it to here, it looks good and we"ll likely

succeed.
for (int 1 = 0; i1 < imageData.length; i++)

{
}

imageDB.closeRecordStore();

imageDB.addRecord(imageData[i], O, imageData[i]-length);

}

catch (Exception e)

// Clean up and abort
remove lmageStore();
3
}

As you should expect, writing the records is a little more involved than simply reading them,
because there's more chance that things could go wrong.

The MIDlet Changes

272

In the game MIDlet's code, well need to handle things as follows:

weaponlmageSource = getlmageDataFromStore();
it (weaponlmageSource == null)
{

// We couldn"t build the data from

// the RecordStore so we need to

// get them via the Internet.

weaponlmageSource = getlmageDataFromServer();

if (weaponlmageSource == null)

{

// Now we"re in trouble, we couldn™t
// build the images any which way
// so we"ll need to inform the user
// and possibly abort the game...

}

// We got the data, now build the images

weaponlmages = new Image[weaponlmageSource.length];
for (int i1 = 0; 1 < weaponlmageSource.length; i++)
{

weaponlmages[i] = Image.createlmage(weaponlmageSource[i], O,
weaponlmageSource[i]-length);

}

Okay, the Images are built! Now, when the user is done playing and closes out the MIDlet, the
weapon ImageSource array should still be alive and kept up-to-date with any weapon image
changes, so we simply call

storelmageData(weaponlmageSource) ;

That'sit! The game can now store and retrieve its weapon images from the RecordStore.

More Rrecordstore JOY

Storing a byte array used to create an Image is about as simple as it gets for images, but with the
right combination of classes, we can actually use records and their byte array data more simply
and with greater flexibility for other types of objects. Well aso get into RecordEnumerator
handling here. Consider the following classin Listing 19.1.

Listing 19.1 The CarStore Class

public class CarStore
{
// These two static final ints will
// be used to filter the records via
// a RecordFilter implementation.
public static final int CASH RECORD = 1;
public static final int WEAPON_RECORD = 2;

// The player®s current weapons

273

private Weapon|[] weapons;

// The player®s current cash
private int cash;

// Build a new CarStore and set the
// members
CarStore(int cash, Weapon[] weapons) {
this.cash = cash;
this.weapons = weapons;

}

// get the current cash
public int getCash()

{
}

// get the current weapons array
public Weapon[] getWeapons()
{

}

// Writes the cash and weapon data to a new
// RecordStore.
public void writeToStore()

{

return cash;

return weapons;

try

{
// Let"s make sure we"re dealing with a fresh new
// RecordStore (because we"re still relying a little on
// recordld ordering) and remove it if it"s still in
// device storage.
RecordStore.deleteRecordStore(*'"MyCoolCar™);

catch (Exception e)

// Shouldn"t be a showstopper, so continue

}

// Now we can build the RecordStore from scratch
try

// Let"s make sure we"re dealing with a fresh new

// RecordStore (since we"re still relying a little on

// recordld ordering) and remove it if it"s still in

// device storage.

RecordStore.deleteRecordStore(*'"MyCoolCar™);

// Now we"ll create a new one.

RecordStore carDB =
RecordStore.openRecordStore(*'MyCoolCar™, true);

// Build some reusable data handling objects.
ByteArrayOutputStream bout = new ByteArrayOutputStream();
DataOutputStream dout = new DataOutputStream(bout);
byte[] data = null;

// Build some simple weapon description Strings
// just to show the breadth of functionality we

274

// have here. This array is keyed to Weapon.FLAME
// and Weapon.OIL, which are 0 and 1, respectively.

String[] weaponName = { "Flamer™", "Oil" } ;

// First, we"re going to write the player”s
// current cash to the car®s RecordStore
// We"ll i1id the record as a cash record...
dout.writeByte(CASH_RECORD);

// and then write the cash amount
dout.writelnt(cash);

// and now bundle the Stream into a byte

// array and write a new record. It"s

// the very first record in the RecordStore,
// so we know it"ll have the recordld of 1.
data = bout.toByteArray();

// Add the array to the RecordStore
carDB.addRecord(data, 0, data.length);

// and reset the Streams to
// properly handle the Weapons.
bout.reset();

// lterate through the car"s Weapons array
for (int 1 = 0; 1 < weapons.length; i++)
{
// Write the weapon record tag..
dout.writeByte(WEAPON_RECORD);

// Write the weapon name to the stream
dout.writeUTF(weaponName[weapons[i]-getWeaponType()1):;

// Write the weapon type...
dout.writelnt(weapons[i].getWeaponType());

// Write the weapon®s ammo
dout.writelnt(weapons[i].getWeaponAmmo());

// and finally, the Weapon®"s time value
dout.writelnt(weapons[i].getWeaponTime());

dout.flush();

// Pack the Byte Stream (aka the Data Stream)
// into the data byte array...
data = bout.toByteArray();

// Add the array to the RecordStore
carDB.addRecord(data, 0, data.length);

// and reset the Streams to
// properly handle the next Weapon.
bout.reset();

}

carDB.closeRecordStore();

dout.close();

bout.close();

275

}

catch (Exception e)

// handle exceptions here...

}
}

Okay, that puts the cash and the weapons datainto aRecordStore. To get it out, we're going to
do things differently and use aRecordEnumerator with a custom implementation of the
RecordFi lter interface. If you noticed, the CASH_RECORD and WEAPON_RECORD values were
written as bytes to their respective records before any of the other data. Well use that byte to filter
the records. Setting aside the CarStore classfor amoment, here'sour Car Il temFi lter class,
shown in Listing 19.2.

Listing 19.2 The CarltemFilter Class

class CarltemFilter implements RecordFilter
{
// This will contain the car item id
// we"ll be looking for in the records.
private byte filterValue;

// Builds a new CarltemFilter for the
// specific car record id we want to
// find

public CarltemFilter(int filterint)

{
}

// This is the RecordFilter method used
// by the RecordEnumeration to determine
// iT the record is a "match”™ and needs
// to be included in its enumeration.
public boolean matches(byte[] candidate)

{

filtervalue = (byte)filterint;

if (candidate == null |] candidate.length == 0)
{

}

// Since, in the CarStore.writeToStore() method,
// we wrote the item type byte to the records
// before anything else, the byte at index 0O

// should be our id to filter.

return (candidate[0] == filterValue);

return false;

}

Alright! Now we're ready to get our data back out of the RecordStore. Here'sthe CarStore
method that will do it for us:

public void readStore()
{
try
{)
// Open the RecordStore built above...
RecordStore carDB = RecordStore.openRecordStore (“‘MyCoolCar",
false);

276

false);

// Build some reusable data handling objects.
ByteArraylnputStream bin = null;
DatalnputStream din = null;

byte[] data = null;

// First, we"ll get the cash record out and set
// the cash value. Remember that this record
// was added before any other so we know it"s
// at recordld == 1.

data = carDB.getRecord(l);

// Set up the streams to read back the
// stored variables

bin = new ByteArraylnputStream(data);
din = new DatalnputStream(bin);

// discard the CASH_RECORD byte
din.readByte();

// and now grab the actual cash value stored.
cash = din.readInt();

// clean up for the weapons handling
din.close();
bin.close();

// Prepare the Weapons array for the new data

// (We build it to (getNumRecords()-1) to account
// Tor the cash record.)

weapons = new Weapon[carDB.getNumRecords()-1];

// The following sets up a RecordEnumeration

// object with our CarltemFilter RecordFilter

// and a null RecordComparator which means

// it will simply iterate the weapon records

// in no particular order. We"re assuming, here,

// that the Weapon records found won"t need to be

// in a certain sequence but can be rebuilt

// willy-nilly. You can always build your

// own RecordComparator to put the enumeration into

// some specific order.

CarltemFilter Filter = new CarltemFilter (WEAPON_RECORD);
RecordEnumeration re = carDB.enumerateRecords(filter, null,

// Prepare the necessary temp variables and
int count = O;

String weaponName = ""'';

int type = 0;

int time = O;

int ammo = O;

while (re.hasNextElement())
{

// This next call returns the record"s byte array and
// advances the RecordEnumerator®s pointer to the record
// beyond the one returned.

data = re.nextRecord();

// Set up the streams...
bin = new ByteArraylnputStream(data);

277

din = new DatalnputStream(bin);

// Read and discard the weapon record id
din.readByte();

// Read back the weapon name String
weaponName = din.readUTF(Q);
System.out._printIn(*'Got the Weapon name: "+weaponName);

// Read the weapon type...
type = din.readlnt();

// Read the weapon®s ammo
ammo = din.readlnt();

// and finally, the Weapon®s time value
time = din.readlnt();

// Now rebuild the weapon into the

// weapons array.

weapons[count++] = new Weapon(type, time, ammo);
// Clean up

din.close(Q);

bin.close();

}

catch (Exception e)

// handle exceptions here...

}
}
}

The RecordEnumeration's behavior can be further refined by building an implementation of
RecordComparator. For example, we could easily implement one and make a
RecordEnumerator to return weapon records ordered according to the ammo value.

NOTE

Using filters and comparators slows down the process. Using null for both ensures the fastest
record retrieval possible with aRecordEnumerator, but will return all the recordsin the
RecordStore in no specific guaranteed order.

There's one last interesting bit we haven't touched on yet with RecordStores. You can add a
RecordListener to aRecordStore viaitsaddRecordListener () method. The class
implementing RecordListener will then be notified any time any record is added, changed, or
deleted from the RecordStore.

Summary

In this chapter we looked at when (and when not) to use 2ME's RecordStore class, along with
its limitations and practical work-arounds. Now you know how to directly store and retrieve data
fromaRecordStore, get ahelping hand from the java. io package, and use RecordFilters
and RecordEnumerationsto store and retrieve data flexibly and consistently.

278

Chapter 20. Connecting Out: Wireless Networking
INTHISCHAPTER

J2ME Networking Overview

MIDP Networking

Setting Up Y our Game Server

Data Format

Making a Multiplayer Car Racing Game

Summary

Above all else, amobile phone's true purpose isto connect people together over vast distances.
Single player games on phones are well and good, but the tiny graphics window and puny
processors will never compete with the likes of Microsoft's Xbox, Sony's PlayStation 2, or
Nintendo's GameCube.

Rather, the mobile games that are most likely to be successful and awe-inspiring will involve lots
of players cooperating, competing, and sharing an experience. A well-done wireless game can
bring people together in ways previously unimaginable.

J2ME Networking Overview

In the world of Java Standard Edition, large and intricate java.io.* and java.net.*
packages are used to great effect. These packages contain pretty much any type of networking
class you want: Socket, DatagramSocket, ServerSocket, and so on. Each class has
different methods and different ways of being used.

In the world of 2ME, however, we don't have the luxury of being quite so complete. For starters,
we have no idea what type of network transport protocol a phone is using. Devices that work over
circuit-switched networks can use streaming always-on connections such as the Transport Control
Protocol (TCP). However, packet-switched networks may only be able to handle their network
datain discrete, non-guaranteed packets, using a protocol such as the User Datagram Protocol
(UDP). What's a poor phone to do?

The CLDC's Connection interface was created to be as genera as possible. The Connection
classisacatch-all that can, in theory, handle pretty much any network connection. A special class
known asthe Connector can tap into any CLDC class that extends from the Connection
interface.

The Connection interface is an ultra simple, ultra-generalized networking class with only two
methods: open() and close().

There are several more specialized interfaces that extend from Connection. These areillustrated
in Figure 20.1.

Figure 20.1. The Connection interfaces.

279

Connection

v !

StreamConnectionMotifier DatagramConnection

! v

InputConnection QutputConnection

StreamConnection

ContentConnection

e InputConnection— This pointsto adevice from which data can be read. Use the

openlnputStream() method to return an input stream.

e OutputConnection— This points to adevice from which data can be written. Use its

openOutputStream() method to talk to the outside world.
e StreamConnection— Combinesinput and output connections. The

StreamConnectionNoti fied interface waits for a connection to be established and

then returns a StreamConnection.

e ContentConnection— Extends StreamConnection and deals with metadata about

the given connection.
e DatagramConnection— A point that can send or receive datagrams.

Every Connector's open method takesin a String with the familiar syntax:
"protocol:address;parameters’. For example, to open up atypical HTTP connection

Connector .open(*'http://java.sun.com/developer'™);

to open a socket

Connector .open(*'socket://108.233.291.001:1234"");

and to open a datagram connection

Connector .open(*'datagram://www._myserver.com:9000"") ;

For example, to connect to a server, smply have the MIDIlet use the Connector class:

Datagram dgram = dc.newDatagram(message, msglength,'datagram://
www .myserver .com:9000") ;
dc.send(dgram);

280

dc.close();

Y ou can even theoretically connect to a serial or infrared port if your phone or 2ME device
supports the interface:

Connector .open(*'comm:0;baudrate=9600%) ;
Or even open alocd file, if the device has afile system:

Connector .open('file:/myFile._txt™);
Get the idea?

When you call the Connector class, it sniffs out the protocol you are using and looks for an
applicable Connection classto use. This makesit exceptionally easy to swap out one protocol
for another—merely change the String passed to the open() method.

NOTE

The CLDC itself does not actually implement any protocols. The MIDP is required to support
the HTTP protocol, but not necessarily sockets or datagrams. These protocols may or may not
be supported by specific phones. As such, it is recommended that you use HTTP for all your
game communications, so that the same game will work on pretty much any MIDP-compliant
phone.

MIDP Networking

The MIDP specification makes it extremely easy to pass data back and forth using HTTP. To do
this, MIDP adds the HttpConnection interface to the Connector suite, alowing for HTTP
protocol access. The HttpConnection interface, extending from
Jjavax.microedition.io.ContentConnection, handles everything you could want to
request or respond to an HT TP connection.

Every Motorolai85s phone, for example, hasits own static | P address. Having one phone
communicate with another is only a matter of simple peer-to-peer networking. Have one phone
connect to the other's IP address using HT TP and communicate away!

More often, though, your phone will connect to an outside server machine. This server can be used
as agateway for amost any type of game traffic or other network communication. For instance, a
gateway can be set up to access an entire database of sports scores, then stream only the latest
requested scores to a MIDlet as part of areal-time sports fantasy game.

A Little Info About HTTP

The Hyper Text Transport Protocol (HTTP) is the protocol that you use each time you surf the
Web. It is a request-response protocol that works like this:

1. Theclient sets up the connection. Thisis known as Setup mode.

2. Theclient sends arequest to the server, asking for a specific piece of data. It can add all
sorts of regquest headers to this request.

3. The connection to the server remains open. Thisis known as Connected mode.

281

4. The server interprets the request and then sends a response back to the client. The
response might also have many headers, helping the client interpret the response body.
5. The connection is then closed. Thisis known as the Closed mode.

HTTP Setup Mode
S0, to set up aHTTP connection on your MIDP client, create the connection

HttpConnection c =
(HttpConnection)Connector.open(*"http://www.myserver.com/");

Y ou can then change the request method or alter a request property. By default, the request
method is GET, which means that all parameters are passed in along with the URL.

Y ou can aso use the POST method, which passes al data and parameters as a separate chunk, thus
enabling you to send much bigger packets of data:

c.setRequestMethod(HttpConnection.POST);
Use the following to set some of the HTTP headers:

c.setRequestProperty(*'User-Agent",""Profile/MIDP-1.0
Configuration/CLDC-1.0");
c.setRequestProperty("Content-Length',""100™);

At any time, you can call various methods to get the status or other information about the HTTP
connection. For example

e getURL— Getsthefull URL.

e getProtocol— Getsthe protocol fromthe URL.

e getHost— Getsthe URL's host.

e getPort— Getsthe port fromthe URL.

e getFile— Getsthefile portion of the URL.

e getRequestMethod— Getsthe current request method. The default isGET.
e getRequestProperty— Getsthe value of arequest property.

Making the HTTP Connection
There are several methods you can call to actually try to connect:

e openlnputStream— Read text from the HTTP connection.

e openOutputStream— Write text to the HTTP connection.

e openDatalnputStream— Read binary data from the HT TP connection.

e openDataOutputStream— Read binary datafrom the HTTP connection.

e getLength— Get the length of the current packet of data.

e getType— Get the type of the current packet of data.

e getDate— Get the date when the current packet of data was created.

e getExpiration— Get the expiration date of the current packet of data. This can be
found in the "expires’ line of the HTTP header.

Closing Out

To close your HTTP connection, use this method:

282

e close— Inherited from the Connection interface. Closes out the connection.

HTTP Example

A typical example of sending some datato a servlet viaPOST might look like this:

HttpConnection ¢ = null;
InputStream is = null;
OutputStream os = null;

c = (HttpConnection)Connector.open(url);

// Set the request method and headers
c.setRequestMethod(HttpConnection.POST);
c.setRequestProperty(*'User-Agent","Profile/MIDP-1.0
Configuration/CLDC-1.0");
c.setRequestProperty('Content-Language', "en-US™);

Y ou can then send your data along using an output stream:

// Write your data to the output stream
0s = c.openOutputStream();
os.write('data’™);

os.flush(Q);

Response Code
The MIDlet usually asks for the response code to ensure that the data was returned correctly:

int rc = c.getResponseCode();
iT(rc == HttpConnection.HTTP_OK) {

// we"re good... continue

} else {

// tell the user about the error
3

In some cases, the response code might be valid, but not HTTP_OK. For example, you might get
HTTP_MOVED_TEMP, which means that the servlet or Web page you requested might have
redirected you to another page. Y ou should grab the new URL from the header and open a new
connection:

int rc = conn.getResponseCode();

switch(rc)
{
case HttpConnection.HTTP_MOVED_PERM:
case HttpConnection.HTTP_MOVED_TEMP:
case HttpConnection.HTTP_SEE_OTHER:
case HttpConnection.HTTP_TEMP_REDIRECT:
url = conn.getHeaderField("Location™);
ifC url = null && url._startsWith('/*"))
{
StringBuffer b = new StringBuffer();
b.append("http://");
b.append(conn.getHost());
b.append(":");
b.append(conn.getPort());
b.append(url);

283

url = b.toString();
s

// Close the old connection

c.close();

// You should open a new connection here
break;

}

Reading In Data

In any event, eventually you can read in the returned data. Y ou can read in the data as raw bytes
using an input stream.

Whenever possible, you should use the content length header information when reading in data. If
you try to read more bytes than were sent, the application might just wait forever waiting for new
data to come down the pike.

However, you should aso prepare for the situation in which you're not sure how much datato
expect. In that case, just read in one byte at atime until you get -1, indicating that there are no
more bytes to be read.

// Open an InputStream to read in the HTTP headers.
is = c.openlnputStream();

// Get the length and process the data

int len = (int)c.getLength();

it (len > 0)

byte[] data = new byte[len];
int actual = is.read(data);
// do something with the data here

}

else

{
// If we don®"t know the length, read in the data

// one character at a time and add it to a byte array.
ByteArrayOutputStream tmp = new ByteArrayOutputStream();
int ch;
while ((ch = is.read()) = -1)

tmp.write(ch);
data = tmp.toByteArray();
// do something with the data here

}

On the other hand, you can read in your data as a data input stream. This lets you read in primitive
Javatypes (such as strings, integers, and so on) in a machine-independent way. The servlet must
use a data output stream to write data accordingly:

DatalnputStream is = new DatalnputStream(c.openlnputStream());
String msg = is.readUTF(Q);
// Do something with the data

Closing Down Cleanly

Y ou can continue to write and read data if you so desire. Just be sure that the connection is of the
"Keep-Alive' variety. More information about keeping connections alive can be found later in this
chapter.

In the end, be sure to close all open streams and connections:

284

if (is = null)
is.close();

if (os = null)
os.close();

it (c '= null)
c.close();

Working Around HTTP's Limitations

HTTP is known as a half-duplex protocol. That means you cannot transmit information in two
directions at the same time. If your game is advanced, with unpredictable data packets constantly
coming in and going out, you'll want to use a full-duplex protocol. But what if your phone only
supports HTTP?

Multiple Connections

One way to achieve full-duplex communication is by having your MIDlet client create multiple
connections—one that sends data to the server and one that stays alive, retrieving server data.

The first connection should use chunked transfer encoding. The server creates an open connection
and assigns it some sort of unique ID. ThisID is sent down to the client.

The client can now create a client-to-server connection with an incredibly large content-length
heading, passing in the proper ID. The server can then handle request data asit flowsin from the
client and channel an appropriate response to the open server-to-client connection.

Some servers and proxies may not be able to handle a request with along content length heading,
buffering the request and waiting for the request to be completed. In this case, the client can break
each message into a chunk and send it as a new, individual request. The client should send the ID
along with each request, either as a custom header element or as part of the payload. The server
can then parse this ID number and send the appropriate response back to the client.

The Power of the Proxy

Of course, you can write your game server using any networking protocol you want. Y ou can tap
into the game server viaan HTTP proxy. A proxy isaservlet or other server-side component that
reads in HTTP messages sent from your MIDlet and trandlates them into another protocol which it
then transmits to the game server. Likewise, a proxy will take server messages and translate them
into HTTP messages, queuing them up and sending them out to your MIDlet as necessary.

Using a proxy will add extra latency to your game's communications. But it will also allow you to
write games that support different network protocols. For example, devices that support datagrams
can use them. If aConnectionNotFoundException isthrown, the game can revert to using
HTTP viaaproxy instead.

Setting Up Your Game Server

Y our remote game server can, of course, be another mobile device. This lets you achieve true
peer-to-peer gameplay.

To accomplish this, create an endless loop that listens to a port and waits for some data. If you are
sure your target device supports datagrams, for example, you could write something like this:

285

int receiveport = 91;

DatagramConnection dc =

(DatagramConnection)Connector.open(‘'datagram://: "‘+receiveport);
while (true)

dgram = dc.newDatagram(dc.getMaximumLength());

dc.receive(dgram);
reply = new String(dgram.getData(), O,dgram.getLength());

Alternatively, you could write a dastardly simple server in Java Standard Edition (or any other
language), running as an application on any network-enabled PC.

For instance, the meat of your server could handle datagrams as follows:

null;
new DatagramPacket(bytesReceived,

DatagramSocket receiveSocket
DatagramPacket receivePacket
bytesReceived. length);

receiveSocket.receive(receivePacket);

For the sake of this chapter, however, we will focus on HTTP and use a Java servlet to handle the
HTTP communications.

Servlets are perfect for dealing with HTTP, because they have been designed from the ground up
for request-response connections.

To use aservlet, you must be using a J2EE Web server, such as Resin, Tomcat for Apache,
Weblogic, SilverStream, and so on. Y ou can also configure most other Web servers to support
servlets. Tomcat is afree, open-source servlet engine. Y ou can grab it from
http://jakarta.apache.org/site/binindex.html.

Data Format

Y our game packets can be sent in any format you want. Obviously, you want to try to keep your
data as small as possible.

Doing Your Own Packing

Y ou can pack alot of information into a byte. For example, you can fit 8 Boolean flag valuesinto
each of the 8 bits. The following code line represents fal se, true, true, false, false, false, true, true:

01100011

To set this, you could use afunction like the following code fragment, passing in an array of 8
Booleans:

byte setFlag(boolean[] flag)

{
// temp starts off as 00000000

byte temp = 0;
for (int i=0; i<8; i++)

// Set the last bit to 1 if true
it (Flag[i])

286

http://jakarta.apache.org/site/binindex.html

temp += 1;
// Shift the bits over to the left
temp = temp << 1;
}

return temp;

}

Then you can read the values by masking out bits using the bitwise and command (&). For
example, to seeif the seventh bit is true or false, you can mask your byte with 01000000 (64),
and seeif theresult is O (false) or 64 (true):

01100011 & 01000000 = 01000000
(99 & 64 = 64)

Y ou can aso shift the bits over a set amount and compare the first bit. For example, this method
returns whether a given flag is true or false:

boolean getFlag(byte b,int location)

return (((b >> location) & 1) == 1);
}

For the most part you shouldn't need to roll your own hit-packing routines. The
DatalnputStream and DataOutputStream, discussed a bit later in this chapter, do a decent
job.

XML

Many people adore eXtensible Markup Language (XML), which formats documentsin a highly
organized and readable way. XML has some great advantages. For example, it'sreally easy to
figure out what's in this game message:

<move><sprite>car</sprite><x>10</x><y>15</y></move>

However, XML isvery verbose and will create ultra-heavy data packets. There are, however,
ways to compress and otherwise optimize XML data.

If you want your MIDlIet to parse XML data, you can choose various types of parsers.

e Validating—The document is checked against aDTD. Thisrequires alot of extra code
and timeto validate. It is not recommended that you ever use a validating XML parser.

e Non-Vaidating—The document isjust read in.

e Single-Step Document Parser—Thiswill parse an entire document and create a
document-type-definition (DTD) object that contains a sense of all nodes, children, and
branches. Theroot of thetreeis called kXMLElement, and each node is an instance. You
can grab nodes using methods such asgetChi ldren(), getTagName(), and
getContents(). Thistype of parsing takes tons of time and uses up scads of memory
because the entire document must be kept around.

e Incrementa—Thiswill takein aline and parse it, putting the data into temporary
variables. A sense of the entire document is not retained. Thisisthe smallest and fastest
way to parse XML.

There are several good non-validating parsers available for MIDP.

287

e KkXML—A small incremental parser. Y ou can download it from http://www.kxml.org/
and include the kXML classes with your application.

e NanoXML—A single step parser. Grab a port of NanoXML for 2ME from
http://nanoxml.sourceforge.net/. Y ou will also need a specia version of the
XMLElement.javafile ported for 2ME:
http://www.ericgiguere.com/microjava/cldc_xml.html.

To parse adocument incrementally using kXML, just use code similar to the following:

InputStreamReader xmldata = new
InputStreamReader(c.openlnputStream());
XmIParser parser = new XmlParser(new InputStreamReader(xmldata));

try {
boolean keepParsing = true;

while(keepParsing)
{

ParseEvent event = parser.read();

switch(event.getType())
{
case Xml.START TAG:
// handle the start of a XML tag
break;
case Xml_END_TAG:
// handle the end of a XML tag
break;
case Xml_TEXT:
// handle the text inside a tag
break;
case Xml_END_DOCUMENT:
// document done
keepParsing = false;
break;

}
}
catch(java.io.l0Exception e){ }

Encoding with pataOutputStream and DatalnputStream

Perhaps the easiest way of sending and receiving datais to use Java's predefined data types. For
example, nothing could be easier than sending an integer, a String, and a boolean, and then
reading them directly back in.

The DataOutputStream and DatalnputStream classes make thisimmensely easy. For
example, to write out your variables

DataOutputStream os = new DataOutputStream(c.openOutputStream());
os.writeBoolean(true);

os.writeUTF("Hello World!'™);

os.writelnt(5);

os.close();

and then to read them in

DatalnputStream is = new DatalnputStream(c.openlnputStream());
boolean b = is.readBoolean();

288

http://www.kxml.org/
http://nanoxml.sourceforge.net/
http://www.ericgiguere.com/microjava/cldc_xml.html

String hello = is.readUTFQ);
int t = = is.readInt();
is.close();

Making a Multiplayer Car Racing Game
S0, let's create a game herel

Obviousdly, it would be nice to modify our car racing action game to have two cars racing on the
same track, each trying to reach the finish line first. The latency of most mobile networks,
however, makes such a game quite impossible.

Games that require immediate knowledge of where opponents are and what they're doing just
don't make sense over low-latency connections. A shooting game just isn't much fun when it takes
a second or more for the news of your gunshot to reach your opponent!

The types of multiplayer games presently possible with today's wireless networks are as follows:

e Turn-based games—AImost any board or card game is possible on MIDP.

Games that read from the same data source—Many games, such as fantasy sports games,
involve people competing against each other in away that doesn't involve direct
interaction. Y ou make your decisions, your opponent makes her decisions, and the game
iskicked into action.

Centralized high-score lists, ratings, and rankings.

Games where the interaction with other playersisn't graphical—for example, in our
Micro Racing game, you drive the track and win money. Y ou can then spend your money
online and buy or sell parts for your car.

Simple chatting and instant messaging applications.

All thisbeing said, thereis a clever way to create a two-player racing game:

1. Two players start the game and log into a server.

2. Both clients show two cars on the track.

3. Theserver sends a"start game" message to both clients.

4. When the game starts, the client uses artificial intelligence to move the opponent's car
slowly along the track.

5. Meanwhile, the client sends information to the server about where it is and how much
time has elapsed.

6. The server then sends information about the opponent's car as often as possible. Y our
opponent's car "leaps’ forward or backward on the track depending on where it actualy is.

Although this system isworkable, it is definitely clunky and unsightly. Instead of trying to cheat
dow latencies, we're going to use this chapter to create a car part trading system that would be
cool and useful to use with the present limitations.

Design the System

Thefirst step in building the multiplayer aspect of your gameisto look at the game design and
figure out the minimum amount of data that needs to be sent back and forth, which in our case is
the following:

1. Youloginto the server and enter the Garage. Y ou send in your username.
2. You are sent back alist of al the items available for sale.

289

3.

You are also sent alist of others who are currently hanging out in the Garage.

Y ou have two choices: Buy It! or Sell It!

1

2.

3.

4.

If you decide to buy, you can pick the item you want. A more detailed description is
shown to you. Y ou can then click the Buy It! button to make the purchase.

If you have enough money, the purchase is made. Money is deducted from your account
and you now own the new item. It is automatically installed onto your car (saved into the
game's data record). The next time you race, you will reap the advantages of this new
engine, tire, or weapon.

NOTE

If this game was commercial, the Garage might charge a nominal maintenance feein rea
dollarsfor installing your item.

If you decide to sell, you are a shown adetailed list of all your items. Y ou check the items
you want to sell. Y ou can then indicate how much money you want to charge for it. You
then hit the Sell It! button. Aslong as you stay logged into the Garage, others users can
buy thisitem.

When you log off, any of your goods that didn't sell are taken off the market.

Special Considerations

Because we're going to be using HTTP as the transport medium, several considerations must be
kept in mind:

Unlike a socket, an HTTP connection is generally not kept alive. Rather, the client must
"pull™ info from the server as often asit needsiit. To figure out whether any of your items
have sold, you will need to poll the server constantly to check on the status of your goods.
If anything has been sold, you are notified. That item is removed from your inventory and
the purchase price is added to your account.

The connection is stateless. This means that every time you talk to the server, you need to
tell it who you are. Thisis called session tracking.

Polling

Polling can be accomplished by creating a thread, having the thread send a request to the server,
and then sleeping for a given number of milliseconds.

In the land of MIDP, however, it is much more efficient and convenient to useaTimer and a
TimerTask.

Create the timer as follows, giving it a pause of 10 seconds:

timer = new Timer();
CheckInTimer ci = new CheckInTimer();
timer.schedule(ci, (long)10000,10000);

The CheckInTimer class can look like this;

class ChecklIn

CheckIn(Q)

{

290

ConnectServer(*'checkin”,null,this);

}
}

How long the timer should wait to trigger each server call depends on your game design and on
the target network. In general, the faster your timer, the more responsive the game—but
realistically, wireless networks cannot handle multiple connections spaced |ess than one second

apart.

Keeping HTTP Connections Alive

By default, HTTP connections are kept alive. This means that the same connection will be used for
multiple requests. Thisis useful for any situation where the client will repeatedly send requests to
the server.

If you explicitly do not want your connection to stay alive, set the Connection header to
"close':

conn._setRequestProperty("Connection',"close");

To keep the connection alive, you must set avalid Content-Length header every time you send
some data. This must be set to the size, in bytes, of the data you are about to send:

byte data[] = new byte[55];
// Fill in the byte array with data here
c.setRequestProperty(*'Content-Length',data. length);

Aslong as the game client and game server deals with valid lengths of data, and as long as both
parties don't issue the close () command, the client and server can communicate freely on this
By default, HTTP connections are kept alive This means that the same connection will be used for
multiple requests. connection.

Session Tracking

Although keeping an By default, HTTP connections are kept alive This means that the same
connection will be used for multiple requests. HTTP connection aliveiswell and good, it is
usually cleaner and easier for a server to close out a connection after every request.

When you surf between several Web pages on abig site, a browser cookie keeps track of who you
are and enables the Web server to track a given session. However, MIDP doesn't support cookies.

Rather, the typical method of keeping track of sessionsis by sending some sort of identification
along with every regquest. This ID can be part of the message itself, sent in a specia request header,
or attached to the URL, as seen here:

http://www.testgame.com/servilet/GarageServilet?uname=fox

In our sample game, the MIDlet will tack on ausername parameter to every message. Thislets
the server keep track of sessions.

The Messages

Given our game design parameters, Table 20.1 shows the commands and applicable parameters
that will need to be handled.

291

Table 20.1. Necessary Game Parameters

Uname |Takes the username as a parameter. Must be sent along with every message.

Action|login— Logsin to the server. Sends down alist of items and list of other users.
logout— Logsout and notifies you if anything has been sold.

buy— Buy a particular item.

sel l— Sdl aparticular item.

checkin— Just check in to the server to see how things are progressing.

Item |When sent along with buy, just include the name of the item you want.

Sell |When sent along with sel I, you must include the item's name, description, and
price, in the format 1temName!A Neat Item!59.

Weaknesses
Although the preceding design is functional, it has alot of weaknesses. Here are just afew:

1. There'sno check to be sure two users aren't using the same username. Eventually, the
system should include usernames and passwords, and only allow one person to use a
particular account name.

2. Theamount of money you have and your car's items should be stored on the server in a
database. Otherwise, it's easy for a hacker to pretend to have limitless amounts of money.

3. If itemswere in adatabase, then the store could be persistent. Y ou wouldn't have to
remain logged in to sell your items. Rather, the system could sell items for you and notify
you viae-mail when a purchase succeeds.

4. All buy and sell operations should be discrete transactions—that is, a database should
"lock" each object whenever adeal is made, to ensure that only one person is buying or
selling it at atime.

5. There'sno real interaction. It would be nice to have some chat or other social
functionality so people can express themselves, and alow the player to get an idea of the
other players personalities.

The Client Side

It then sends this number to a server. Note that for the sake of testing, it's a good idea to set the
server to localhost—that way you can run the server and the client from the comfort of your
desktop machine. Eventually, however, you will want to run the servlet on alive Web site and
your MIDlet should connect to that URL. Different application servers allow you to set up servlets
in different ways. A typical servlet setup will look like this:
http://localhost:8080/servlet/GarageServlet.

Note that we created a ServerCal Iback interface with one method:
public void serverResponse(String response);

Every major game message is given its own class, each implementing ServerCal Iback. Each
message connects to the server and passes in itself as the callback. That way, when the servlet
issues aresponse, it can be handled by the appropriate class.

Thefull code listing is asfollows:

292

http://localhost:8080/servlet/garageservlet

import java.util.*;

import java.io.™;

import javax.microedition.io.*;

import javax.microedition.lcdui.*;

import javax.microedition.midlet.*;

public class GarageClient extends MIDlet implements CommandListener

{

private
private
private
private
private
private
private

// Hard-

Display display;
Form loginform;
Form mainform;
Form detailform;
Form sellform;
Form sellform2;
Form itemsoldform;

coded for now. I have 200 dollars.

public int mybalance = 200;
// For now, just hard code the item data

// TODO:

Grab this from the database

public String[] myitemname = {"Turbo Boost","Oil Slick","Wide

Tires"};

public String[] myitemdescript = {"Add 2 To Speed","Releases Oil On
Track™,"Add 1 To

Control™};

// commands

static

1);

static

static

static

static
2);

static
2);

static

1);

static

1);

static

final Command LOGIN = new Command(‘'Log In",Command.SCREEN,
final Command EXIT = new Command(“Exit',Command.EXIT, 2);
final Command BUY = new Command('Buy',Command.SCREEN, 1);

final Command SELL =
final Command LOGOUT = new Command('‘Log Out',Command.SCREEN,

new Command(*'Sell",Command.SCREEN, 1);

final Command REFRESH = new Command(‘'‘Refresh',Command.SCREEN,

final Command BUYIT = new Command(‘'‘Buy It",Command.SCREEN,
final Command SELLIT = new Command("'Sell 1t",Command.SCREEN,

final Command BACK = new Command('‘Back',Command.BACK, 2);

private TextField usernamefield;
private TextField pricefield;
private ChoiceGroup itemgroup;
String username;

private Vector itemvector;
private Vector solditemvector;
private int price;

private String usershere;

Timer timer;
// Point to the servlet here...
String url = "http://localhost:8080/serviet/GarageServiet";

public GarageClient()

{

display = Display.getDisplay(this);

}

293

public void startApp()
{

loginform = new Form(*'The Garage');

loginform.append(*'Log In Now'™);

usernamefield = new TextField("Username:", "', 10, TextField.ANY);
loginform.append(usernamefield);

loginform.addCommand(LOGIN) ;

loginform.addCommand(EXIT);

loginform.setCommandListener(this);

display.setCurrent(loginform);
}

public void pauseApp() { }
public void destroyApp(boolean unconditional) { }
public void commandAction(Command c, Displayable s)

if (s instanceof Form)

{
Form obj = (Form) s;
if (obj == loginform)
if (c == EXIT)
{
notifyDestroyed();
}
else if (c == LOGIN)
{
username = usernamefield.getString();
Login 1 = new Login();
}
else if (obj == mainform)
{
if (c == BUY)
buydetail (itemgroup.getSelectedIndex());
else if (c == SELL)
sell();
else if (c == LOGOUT)
{
Logout 1o = new Logout();
}
else if (c == REFRESH)
{
Login 1 = new Login();
}
}
else if (obj == sellform || obj == detailform || obj ==
itemsoldform)
{
if (c == BACK)
display.setCurrent(mainform);
else if (c == BUYIT)
Buylt bi = new Buylt(itemgroup.getSelectedindex());
}
else if (c == SELLIT)
pickprice();
}

294

else if (obj == sellform2)
{
if (c == BACK)
display.setCurrent(sellform);
else if (c == SELLIT)
{
String price = pricefield.getString();
int 1 = itemgroup.getSelectedIndex();

// Be sure item wasn"t already put up for sale
it (myitemname[i].equals(""))
return;

// Marshal data for item in a String

String theitem =
myitemname[i]+"!"+myitemdescript[i]+"!"+price;

// Remove the item from the local list of my items

myitemname[i] = ""';
myitemdescript[i] = "";
Selllt si = new Selllt(thEitem);
s
}
}

s

void CreateMainform()

{

mainform = new Form(*'ltems For Sale'™);
mainform.addCommand(BUY) ;
mainform.addCommand(SELL) ;
mainform.addCommand (LOGOUT) ;
mainform.addCommand (REFRESH) ;
mainform.setCommandListener(this);

mainform.append(*'Also Here: "+usershere+'"\n");
mainform.append(*'"My Balance: $"+mybalance+'\n"");

if (itemvector.size() == 0)

{
mainform.append(*'No Items For Sale™);
mainform.append(*'Come Back Later™);

// Remove the buy button
mainform. removeCommand(BUY) ;

}

else

{

String items[] = new String[itemvector.size()];
// Now parse out the item name
for (int i=0; i < itemvector.size(); i++)
items[i] = ItemName((String)itemvector.elementAt(i));

itemgroup = new ChoiceGroup("'Exclusive',ChoiceGroup.
EXCLUSIVE, items,null);

mainform.append(itemgroup);

}
}

void Createltemsoldform()

295

itemsoldform = new Form(*"Item Sold!"™);
itemsoldform.addCommand(BACK) ;
itemsoldform.setCommandListener(this);

}
class Login implements ServerCallback
{
LoginQ
{
ConnectServer(*'login”,null,this);
}
public void serverResponse(String response)
{

if (CheckForError(response)) return;
// Parse out the user list and items for sale
int uindex = response.indexOf("'users™);

int findex response. indexOf(*"forsale™);
if (uindex == -1 || findex == -1)

ShowError("'Bad User List or For Sale List Returned™);
return;

}

usershere = response.substring(6,findex-1);
String forsale = response.substring(findex+8);

// Now parse through the for sale list
itemvector = new Vector();
CreateltemVector(forsale, itemvector);
boolean canbuy = true;

CreateMainform();

display.setCurrent(mainform);

}
}

private void buydetail(int at)

{
detailform = new Form("'Ready To Buy');

detailform.addCommand(BUYIT);
detai lform.addCommand(BACK) ;
detailform.setCommandListener(this);

detailform.append(ltemName((String)itemvector.elementAt(at))+'"\n");

// Show the description

detailform.append(ltemDescription((String)itemvector.elementAt(at))+"
\n");

// Show the price

String iprice = ltemPrice((String)itemvector.elementAt(at));
detailform.append(*'For $"+iprice+'"\n");

try {

296

price = Integer.parselnt(iprice);

}
catch (NumberFormatException nfe)
{)
price = 0;
}

// Do we have enough money?
if (price > mybalance)

detailform.append(*'You Can"t Afford This!");
detailform.removeCommand(BUYIT);

}
display.setCurrent(detailform);

}

class Buylt implements ServerCallback

{

int index;

Buylt(int itemindex)
{
index = itemindex;
ConnectServer(“'buy", itemgroup.getString(itemindex),this);

}

public void serverResponse(String response)

{

if (CheckForError(response)) return;
if (response.equals('"))

{

// Charge your account
mybalance -= price;

// TODO: Add item to your personal database

// Remove item from local list
itemvector.removeElementAt(index);

CreateMainform();
display.setCurrent(mainform);

else
ShowError(response) ;
}

}

private void sell()

{

sellform = new Form(*'Your Items™);
sellform.addCommand(SELLIT);
sellform.addCommand(BACK) ;
sellform.setCommandListener(this);

itemgroup = new ChoiceGroup("'Exclusive',ChoiceGroup.
EXCLUSIVE,myitemname,null);

sellform.append(itemgroup);

display.setCurrent(sellform);

}

private void pickprice()

297

sellform2 = new Form(''Choose Sale Price™);
sellform2._addCommand(SELLIT);
sellform2.addCommand(BACK) ;

sellform2.setCommandListener(this);

sellform2_append(itemgroup.getString(itemgroup.getSelectedindex())+"\
n");

pricefield = new TextField("Price:", ", 3, TextField.NUMERIC);
sellform2_append(pricefield);

display.setCurrent(sellform2);

class Selllt implements ServerCallback

{

Selllt(String item)
{

ConnectServer('sell™, item, this);

}

public void serverResponse(String response)

{

if (CheckForError(response)) return;

// Begin polling the server for any updates
if (timer == null)

{

timer = new Timer();
CheckInTimer ci = new CheckInTimer();
timer.schedule(ci, (long)10000,10000);

3

display.setCurrent(mainform);

+
}

class Logout implements ServerCallback

{

Logout()
if (timer = null)
timer.cancel();
ConnectServer('logout™” ,null,this);

public void serverResponse(String response)

if (CheckForError(response)) return;
display.setCurrent(loginform);

}

}

class Checkln implements ServerCallback {
CheckIn(Q)

{

ConnectServer(‘'checkin”,null,this);

298

}

public void serverResponse(String response)
{

if (CheckForError(response)) return;

int rindex = response.indexOf(*'sold™);

if (rindex = -1)

{

String items = response.substring(rindex+5);
it (Titems.equals('™))
{
Createltemsoldform();
solditemvector = new Vector();
CreateltemVector(items,solditemvector);

// Now parse out the item name
for (int i=0; i < solditemvector.size(); i++)
{

String itemname =

ItemName((String)solditemvector.elementAt(i));

String itemprice =

ItemPrice((String)solditemvector.elementAt(i));

\Y

{

}

int price = 0;
try {
price = Integer.parselnt(itemprice);

catch (NumberFormatException nfe) { }

// TODO: Remove the item from the database
itemsoldform.append(itemname+" sold for $"+itemprice);

// Add money to your balance

mybalance += price;
CreateMainform();
display.setCurrent(itemsoldform);

oid CreateltemVector(String items,Vector iv)

// Parse through the list of items
int start = 0;
int end = 0;
String item = "'';

end = items.indexOf(",");

while (end = -1)
{

item = items.substring(start,end);
iv_.addElement(item);

start = end+1;

end = items.indexOf(",",start);

-

item = items.substring(start);
if (item.equals('™))
iv_.addElement(item);

299

private boolean CheckForError(String response)
{
System.out.printIn(*'RESP:"+response);
int ecode = response.indexOf(*'error™);
if (ecode 1= -1)
{
String therror = response.substring(ecode+6);
ShowError(therror);
return true;

}

return false;

}

private void ShowError(String err)

{
Alert errorAlert = new Alert("Alert”,err,null, AlertType.ERROR);
errorAlert.setTimeout(Alert.FOREVER);
display.setCurrent(errorAlert);

}

private String ltemName(String item)
{

int end = item.indexOf("1%);

if (end == -1)

ShowError(*'Bad ltem Format™);
return ""';

}

return item.substring(0,end);

// Horselmean!669

}

private String ltemDescription(String item)
{

int start = item.indexOf("!");

int end = item.indexOf("!",start+1);

if (end == -1 || start == -1)

ShowError(*'Bad ltem Format™);
return ""';

}

return item.substring(start+1l,end);

}

private String ltemPrice(String item)
{
int start = item.indexOf("!1");
int end = item.indexOf("!",start+1);
if (end == -1 || start == -1)
{
ShowError(*'Bad Item Format'™);
return ""';

}

return item.substring(end+1);

}

void ConnectServer(String action,String item,ServerCallback
callback)

{

ConnectNow cn = new ConnectNow(action, item,callback);
cn.start();

300

public interface ServerCallback

{
public void serverResponse(String response);
}
class ConnectNow implements Runnable
{

String action;
String item;
ServerCallback callback;

ConnectNow(String a,String i,ServerCallback c)

€ .
action = a;
item = 1i;
callback = c;

}

public void run(Q)

{
HttpConnection ¢ = null;
InputStream is = null;
DataOutputStream os = null;
StringBuffer b = new StringBuffer();

if (item == null)
item = "";

try

{
¢ = (HttpConnection)Connector.open(url);
c.setRequestMethod(HttpConnection.POST);
c.setRequestProperty(*“'User-Agent","Profile/MIDP-1.0

Configuration/CLDC-1.0");
c.setRequestProperty('Content-Language", "en-US™);
0s = new DataOutputStream(c.openOutputStream());
os.writeUTF(username);
os.writeUTF(action);
os.writeUTF(item);
System.out.printIn(username+","+action+","+item);

int rc = c.getResponseCode();
if(rc == HttpConnection_.HTTP_OK)

{
is = c.openDatalnputStream();
int ch;
while ((ch = is.read()) != -1)
b.append((char) ch);
else
{

System.out.printIn("'Response Code: "+rc);
ShowError(*'Bad Server Response!™);
}

catch (Exception e)
ShowError(*'Problem Connecting to Network'™);

}
finally

301

try {

if (is = null)
is.close();

if (c = null)
c.close();

if (os = null)
os.close();

catch (Exception e)

ShowError(*'Problem Closing Network Connection'™);

}

}
if (b = null)
callback.serverResponse(b.toString());
else
callback.serverResponse(null);

}
void start()
{
Thread t = new Thread(this);
try
{
t.start();
catch(Exception e)
ShowError(e.toString());
}
}
}

class CheckInTimer extends TimerTask
CheckInTimer() { }

public void run()

{
try {
Checkln ci = new CheckIn();
catch (Exception ex) { }
}
}

}
The Server Side

The Garage servlet itself is pretty simple—once kicked off, it remains running. It listens for new
connections, handles commands, and returns data.

The Game Data

Encapsulating the game dataitself in Java classes is an exceptionally easy way to keep track of
things. Eventually, these classes could be turned into Enterprise JavaBeans, enabling all the data
to be stored permanently in a database.

302

Basically, we have two objects we care about: Carltem and CarUser.
For the sake of this simplified demo, CarUser merely contains one item—the user's name.

Well also create an equal s method to help the servlet figure out whether two users are the same:

public class CarUser {
public String name;

CarUser (String n) {
name = n;
}

public boolean equals(CarUser cu) {
return (cu.name.equals(name));
}

}

Meanwhile, the Car I tem classisn't that much more complicated. It just holds the items that are
for sale, their description, and the sale price:

public class Carltem {
public String name;
public String description;
public int cost;
public String ownername;

Carltem (String n,String d,int c,String o) {

name = n;
description = d;
cost = c;

ownername = 0O;

Note that eventually you could use Car I 'tem to keep track of things on both the client side as well
asthe server side. You could also create special classes that extend Car I tem—for example, the
Armor class, Wheel class, Weapon class, Booster class, or Engine class.

Let's just concentrate on one of these, the Weapon class. The classisrelatively simple. It basically
just acts as a container to hold several useful variables.

It could, in theory, look like the following code fragment, containing the amount of damage the
weapon extracts, the amount of ammunition left, and whether the weapon is situated on the front,
side, or back of the car.

public class Weapon extends Carltem
{
static public final int FRONT =
static public final int REAR
static public final int LEFT
static public final int RIGHT =

0;
1;
2;

3;

public int weapon;
public int damagepoints;
public int ammunition;
public int location;

303

Weapon(String name,String descrip, int cost,String ownname, int
points,int ammo, int loc)
{
super(name,descrip,cost,ownname) ;
damagepoints = points;
ammunition = ammo;
location = loc;
}
}

To create a flamethrower, you would just use

Weapon ft = new Weapon(''flamethrower',"Burns Vehicles In Front",
100,myname, 25,16 ,Weapon.
FRONT) ;

The Servlet

Running on the localhost machineisthe GarageServlet serviet, which simply waits for
HTTP messages.

The full codeis asfollows:

import java.io.™;

import java.util.*;

import javax.servlet.*;
import javax.servlet_http.*;

public class GarageServlet extends HttpServilet {
// Store the users, items for sale, and items sold
private static Vector users = new Vector();
private static Vector forSale = new Vector();
private static Vector sold = new Vector();

public GarageServiet() { }

public void doPost(HttpServletRequest request,HttpServletResponse
response)
throws ServletException, IOException
{
// Get the input stream
ServiletlnputStream in = request.getinputStream();
DatalnputStream din = new DatalnputStream(in);

try {
String name =
String action
String item =
din.close();
SendOutput(name,action, item,response);

in.readUTFQ);
in.readUTFQ);
in.readUTFQ);

oIl o

b
catch (Exception e)
{
b
b

public void doGet(HttpServletRequest request,HttpServletResponse
response)
throws ServletException, IOException

304

{
// get the input through the URL
String name = request.getParameter(‘'uname™™);
String action = request.getParameter("action™);
String item = request.getParameter(item");
SendOutput(name,action, item,response);

}

private synchronized void SendOutput(String name,String
action,String item,
HttpServletResponse response) throws I0Exception

{

PrintWriter out = new PrintWriter (response.getOutputStream(),
true);

response.setStatus(response.SC_OK);
it (name == null)
return;

if (action.equals('login'™))
{
// Be sure we aren"t already logged in
CarUser cu = FindUser(name);
if (cu == null)
{
cu = new CarUser(name);
// add to user list
users.addElement(cu);

}

// send down list of users
SendUsers(out);
out.print(&");

// send down list of items for sale
SendltemsForSale(out);

out.close();

// Otherwise, be sure this user is on the system
CarUser thisuser = FindUser(name);
iT (thisuser == null)
{
SendError(out,"'Not Logged In');
return;

3
if (action.equals('logout'™))
{
// remove this user®s items from the for sale list

Carltem ci = FindltemOwnedBy(name);
while (ci = null)

forSale.removeElement(ci);
ci = FindltemOwnedBy(name);

// remove user from list
users.removeElement(thisuser);
NotifyOfltemsSold(out,name);

else if (action.equals(buy'™))
{

305

if (item == null)

SendError(out,”No Item Specified™);
return;

}

// Be sure requested item name is on the list
Carltem ci = Findltem(item);
it (ci = null)
{
// Remove item from the for sale list
forSale.removeElement(ci);

// Add item to sold list
sold.addElement(ci);
}

else

SendError(out, " 1tem Not Found™);
return;

}

else if (action.equals('sell™))

if (item == null)

{
SendError(out,”No ltem Specified™);
return;

}

// Parse out the name, descrip, and cost

String iname = ""'';

String descrip = "';

int cost = 0;

StringTokenizer st = new StringTokenizer(item,"!'™);
try {

iname = st._nextToken();

descrip = st.nextToken();

try {
cost = Integer.parselnt(st.nextToken());

catch (NumberFormatException nfe) {
SendError(out,'Bad Price™);
return;

}

catch (NoSuchElementException nse) {
SendError(out,'Bad Item Format');
return;

3

// Create the Carltem object

Carltem ci = new Carltem(iname,descrip,cost,name);

// Add item to for sale list

forSale.addElement(ci);

}

else if (action.equals('checkin'™))

{
}

NotifyOFfltemsSold(out,name);

306

else
SendError(out,"1llegal Action™);
out.close();

}

private static void SendError(PrintWriter out,String error)

{
out.print(error="+error);
out.close();

}

private static void SendUsers(PrintWriter out)

{
out_print(users=");
for (int i=0; i < users.size(); i++)

{
CarUser cu = (CarUser)users.elementAt(i);
out_print(cu.name);
if (i = users.size()-1)
out.print(’,");
}
}

private static void SendltemsForSale(PrintWriter out)

{

out.print(“forsale=");
for (int i=0; i < forSale.size(); i++)

{
Carltem ci = (Carltem)forSale_elementAt(i);
out.print(ci.name+"1"+ci.description+"!1"+ci.cost);
if (i = forSale.size()-1)
out.print(”,");
}
}

private static void NotifyOfltemsSold(PrintWriter out,String
owner)
{
out_print('sold=");
for (int i=0; i < sold.size(); i++)

{
Carltem ci = (Carltem)sold.elementAt(i);
if (ci.ownername.equals(owner))
// Remove the item from the sold list
sold.removeElement(ci);
out.print(ci.name+"11"+ci.cost);
if (i '= sold.size()-1)
out._print(’,");
}
}
}
private Carltem Findltem(String name)
{
for (int i=0; i < forSale.size(); i++)
{
Carltem ci = (Carltem)forSale_elementAt(i);
if (ci.name.equals(name))
return ci;
}

307

// l1tem not in list
return null;

}

private Carltem FindltemOwnedBy(String name)
{

for (int i=0; i < forSale.size(); i++)
{
Carltem ci = (Carltem)forSale_elementAt(i);
if (ci.ownername.equals(name))
return ci;
}

// ltem not in list
return null;

}

private CarUser FindUser(String name)

{
for (int i=0; 1 < users.size(); i++)
{
CarUser cu = (CarUser)users.elementAt(i);
if (cu.name.equals(name))
return cu;
}

// l1tem not in list
return null;

}
}

Playing the Game

First you log into the Garage, as shown in Figure 20.2. Y ou then see alist of who's there (Figure
20.3) and what's for sale (Figure 20.4). Y ou can then choose an item that you're interested in.
Detailed information about its abilities and enhancements will be shown to you, asin Figure 20.5.
Y ou now have the choice of buying it or bailing out. If you buy it, the price is deducted from your
account and you now own it.

Figure 20.2. Logging in.

308

Figure 20.3. Who's here...

309

Figure 20.4. ...and what's for sale.

310

Figure 20.5. An item's detail.

311

Y ou might also, of course, decide to sell your own goodies to make some extra money. To do so,
just hit the Sell button. A list of all your items appears, as can be seen in Figure 20.6.

Figure 20.6. A list of your items.

312

Y ou simply need to set your sale price, as shown in Figure 20.7. Y ou can set this as high as you
want, but if you make your item too costly, you will most likely not get any buyers.

Figure 20.7. Choosing a sale price.

313

Asyou wait, your MIDlet will automatically poll the server every few seconds for any updated
info. If somebody decides to buy your item, you are informed as shown in Figure 20.8.

Figure 20.8. Your item has been sold!

314

Summary
And so there you have it—a full-featured (more or less) multiplayer game component!

In Chapter 19, we created alocal data store with game information, such as how much money you
have, which objects you own, and so on. Obviously, it makes lots of sense to tie the Garage client
to this same data store, so that everything you buy and sell is persistent from one game to the next.

In Chapter 24, "Micro Racer: Putting It All Together" we will tie together the data store, the
multiplayer buy-and-sell networking component, as well as al the action components. In the end,
well have a complete, competitive action game with a built-in online community.

315

Part V: J2ME Extensions

IN THIS PART

21 PersonalJava, Connected Device Configuration, and Other Micro Java Blends

22 iAppli: Micro Javawith a Twist

23 Siemens Game API

316

Chapter 21. PersonalJava, Connected Device
Configuration, and Other Micro Java Blends

INTHISCHAPTER

Connected Device Configuration (CDC)
Personal Java

PDA Profile

Java Game Profile

The 2ME Multimedia Profile

Summary

Throughout this book, we've been leaning heavily on designing games for the MIDP—the Micro
Java profile designed for today's average mobile phone. But there are other types of Micro Java,
too. This chapter gives those types afair shake.

Some examples of devices that sport other Micro Java blends:

Personal Digital Assistants (PDA)s such as Palm devices will soon have their own Micro
Javaprofile.

Many advanced hybrid organizer-phones, such as the Nokia Communicator, use
Symbian's EPOC operating system, which supports the Java profile. Thisis often
accompanied by the JavaPhone API.

More powerful palmtop computers, such as those sporting Microsoft's Windows CE
operating system, can run Personal Java. The Sharp Zaurus SL-5000 runs embedded Linux
along with Personal Java.

Many set-top digital television boxes, game consoles, and other multimedia devices will
come with Personal Java pre-installed, usually working in conjunction with the JavaTV
APIL.

With the large number of devices supporting Personal Java and other Javatechnologies, expect to
start playing games in places games haven't traditionally been played before. For example:

A navigation device in an automobile can help pop out trivia, geography, wordplay, or
other fun games during long family road trips.

A refrigerator can make a game out of guessing its contents. Or a special game can help
you diet by forcing you to help Sergeant Heart battle the giant Cholesterol Monster before
you can mindlessly reach for a snack.

Small screensin digital telephones might enable you to engage in simple multiplayer
games, puzzles, or adventures with friends while you speak to them.

This chapter will discuss Personal Java, as well as other forthcoming Micro Java profiles that
might be useful for game devel opers.

Connected Device Configuration (CDC)

The Connected Device Configuration (CDC) is a J2ME configuration meant for higher-end
devices that are more sophisticated than standard mobile phones. For example, the CDC covers
smart communicators, pagers, micro laptops, PDAS, and set-top boxes. Specificaly, the CDC
targets devices with the following attributes:

317

Minimum 512K ROM

Minimum 256K RAM

Connectivity to a network

Capability to support the full Java virtual machine
Some sort of user interface

Typically running on a 32-bit microprocessor

A basic user interface

Just as the CLDC uses the Kilobyte virtual machine (KVM) to process bytecode, the CDC has a
specia C virtual machine (CVM). The CVM supports nearly al the Java 2 virtual machine
features, but has a much smaller footprint. More info can be found at
http://java.sun.com/products/cdc/cvi.

The CDC uses the Foundation Profile to flesh out all user interface and network functionality.
More info about the Foundation Profile can be found at http://java.sun.com/products/foundation/.

J2ME Foundation Profile

The J2ME Foundation Profileis targeted at network-enabled devices that do not necessarily have
adisplay or otherwise require a GUI. As such, there are no user interface classes or methods.

A target device will have aminimum 1024KB of ROM and a minimum 512KB of RAM.

The Personal Profile

The next release of PersonalJava, which is till in the specification phase, is known as the Personal
Profile for 2ME. This profile will be based on the Java 2 Standard Edition code and will be
compatible with Personal Java specification versions 1.1 and 1.2.

The Personal Profile will use the CDC and the Foundation Profile as abasis, but will go onto
define GUI and other special features.

The Personal Profile will target micro devices with the following characterigtics:

Minimum 2.5MB ROM available
Minimum 1IMB RAM available

Robust connectivity to a network
A graphical user interface display

In effect, the Foundation Profile for 2ME, along with the CDC and the Personal Profile, is
equivalent to the current Personal Java environment. This means that existing Personal Java
applications will be able to run on more modern J2ME systems.

PersonalJava

The Personal Java platform was around before J2ME technol ogies were finalized. It was the first
Micro Java technology. The current release of PersonalJavais basically a subset of the JDK 1.1.8
code, along with some Java 2 security and support for native interfaces. Personal Java also has a
few of itsown APIs, such asthe Timer API.

Just like standard Java, Personal Java can run as either applets or applications. Various devices will
include browsers than support Personal Java applets. Other gadgets, such as the Nokia 9210

318

http://java.sun.com/products/cdc/cvm/
http://java.sun.com/products/foundation/

Communicator, have a separate AppletViewer program capable of running applets. Most
Personal Java devices sport the full Personal Java A pplication Environment (PJAE).

Many small devices currently handle Personal Java. There are also various runtime libraries, such
as Insignia Jeode, Savale, and Kada VM, which you can install on top of other operating systems,
allowing you to then run Personal Java apps. More information about these packages can be found
in Chapter 2, "The Mobile World."

Personal Java combines the pros of the Java language with a small, efficient footprint and memory
model. Thousands of Personal Java applications have already been written and deployed for set-top
boxes, PDAs, and other systems.

More information about Personal Java can be found at http://java.sun.com/products/personaljaval.

PersonalJava APIs
Personal Java supports some form of the following standard Java APIs:

e Java.applet

e jJava.awt

e Java.awt.datatransfer
e java.awt.event

e Java.awt.image

e Java.awt.peer

e Java.beans

e Java.io

e java.lang

e jJava.lang.reflect
e jJava.net

e java.util

e jJava.util_zip

In addition, there are several specific omissions and additions.

Double Buffering

Many Personal Java devices have built-in support for double buffering. This allows for flicker-free
drawing to the screen without any additional work or overhead.

To check whether your device supports double buffering, call the public boolean
isDoubleBuffered() method from the java.awt.Component or
jJjava.awt.peer.ComponentPeer packages.

If the device supports double buffering, then al paint() and update() functionswill
automatically be drawn to an offscreen buffer. If the method returns fal se, however, you will
need to implement double buffering yourself.

Input Without a Mouse

Y our Personal Java application can deal with specia input methods. There are four interfacesin

the com. sun.awt package that enable you to develop components that use specific means of
navigation.

319

http://java.sun.com/products/personaljava/

The interfaces include the following:

e NolnputPreferred— Thiscomponent is just meant to display something. It has no
navigation at all.

e KeyboardInputPreferred— Keyboard support is preferred, if possible. Because
many devices won't have an actual keyboard attached, a virtual keyboard might appear on
the screen and a user may use that to "type" her message.

e ActionlnputPreferred— A user can activate this component using the standard
input device. Basically, the component should be able to figure out when a user has
focused on it (MOUSE_ENTER), moved away from it (MOUSE_EXIT), or selected/clicked
on it (MOUSE_DOWN followed by MOUSE_UP). This usually involves some sort of pointer,
such as a stylus, afinger on atouch screen, or rolling around an arrow cursor with a
trackball.

e PositionallnputPreferred— Usethisinterface when it isimportant to determine
the specific x and y coordinates that a user has selected within the actual component.

Dealing with Unsupported Features

If there's one thing can be generalized about the wide variety of devices that use PersonalJava, it's
that there are always exceptions to every rule. Some devices just won't be able to support every
Personal Java feature.

As such, if an implementation does not support an optional package or class, then the
NoClassDefFoundError will be thrown when the program attempts to access that class.

If only certain methods within aclass are not valid on a particular device, the implementation will
throw an exception class called com.sun. lang.UnsupportedOperationException when
the method is accessed. Be sure to catch and handle these exceptions throughout your game.

The Timer API

Personal Java has a built-in series of timer events. The main timer call is
com.sun.util.PTimer. A PTimer object can hold specific timer events, each specified by a
timer specification. When atimer goes off, it calls the timer specification's notifyListeners()
method.

To schedule atimer, use the schedule(PTimerSpec pts) method and passin a
PTimerSpec object.

Thecom.sun.util.PTimerSpec class determines how and when atimer should be triggered.
A specification can register PTimerWentOffListenersand determine how often
com.sun.util.PTimerWentOffEvent should be thrown.

Y ou can create two types of timer specifications. absolute or delayed, using the
setAbsolute(boolean absolute) method. A delayed timer will go off after a set amount
of time has passed. An absolute timer will go off at a specific time.

Y ou can set the time value itself using the setTime(long time) method. For delayed timers,
thisisthe delay in milliseconds. For absolute timers, this is the time in milliseconds since
midnight, January 1, 1970 (a standard Java clock unit).

Delayed specifications can be set to repeat immediately after being activated using the

setRepeat(boolean repeat) method. A repeating specification can be set to be regular or
non-regular using the setRegular(boolean regular) method. A regular specification will

320

go off at afixed interval, no matter what the system load is or whether it takes along time to
notify listeners. A non-regular timer will only begin to count down after all listeners have been
called.

The interface used to deal with atimer iscom.sun.util.PtimerWentOffListener. Simply
implement this interface, create your timer, and then handle the
timerWentOFF(PtimerWentOffEvent pte) method. This method will be called whenever
the timer finally goes off.

Developer Tools

Creating Personal Java applications is similar to cranking out any other Java application. Y ou write
the Java source code files, compile them into bytecode classes using javac, and test.

Because Personal Java has several special classes that aren't in the standard JDK, you can
download the compatibility classes from http://java.sun.com/products/personaljaval/pj-cc.html.

Y ou will need these classes to compile Personal Java applets and applications via the standard JDK
environment.

PersonalJava Emulation Environment

After you've built your classfiles, it's time to see what they actually look like on atypical
Personal Java device.

Y ou can download the Personal Java emulation environment from Sun's site
(http://java.sun.com/products/personaljava/pj-emulation.html) . There are versions available for
Solaris and Windows. There are also various packages available, to simulate various devices. Y ou
can simulate using the full set of support libraries by using standard Win32 or Motif components.
Or you can simulate the minimum platform using the special Touchable component set.

TIP

To ensure that your Personal Java application runs on any supported device, use the minimal
Touchable set.

Y ou can run your applications using the pjava program. Y ou can view applets using the
pappletviewer. These two programs work just like their Java Standard Edition counterparts,
jJavaand appletviewer.

For example, enter the following line:

pjava MyTest.class

If al goeswell, you'll see your application run. Y ou are now able to thoroughly test it.
JavaCheck

Anather tool enabling you to be sure your code is valid is JavaCheck. This program, available for
download at http://java.sun.com/products/personal javaljavacheck.html, analyses applications and
applets and ensures that they are compatible with Personal Java or other Java platforms. JavaCheck
reads Platform Specification Files, which have afile extension of . spc. Thesefiles define the
limits of agiven platform. Sun has created . spc files for various Java platforms.

321

http://java.sun.com/products/personaljava/pj-cc.html
http://java.sun.com/products/personaljava/pj-emulation.html
http://java.sun.com/products/personaljava/javacheck.html

S0, to test a Personal Java application, you would run JavaCheck, load up the Personal Java spc
file asthe basis, and then input the classes you want to test. JavaCheck will tell you whether there
are any errors or warnings.

Both a command line and GUI version of JavaCheck are available.
Nokia's PersonalJava Development Environment

The Nokia 9201 Communicator is one of the most popular Personal Java devices available. The
Communicator is both a mobile phone and PDA, running on the EPOC Operating System. It has a
full (mini) keyboard and 12-bit color screen that is 640x200 pixelsin size. Check out
http://forum.nokia.com/ for more information.

Nokia and Borland have created a visual Integrated Development Environment (IDE) and
Software Development Kit (SDK) to help ease application development. The SDK for the Nokia
9210 can plug into Borland's popular JBuilder product, giving the developer an integrated
environment in which to write, test, emulate, and debug applications.

To create a Personal Java file for the Symbian Platform, you must import two packages that
include classes for the Crystal application environment and Symbian's standard EPOC classes:

import com.symbian.devnet.crystal . awt.*;
import com.symbian.epoc.awt.*;

For example, to install your Personal Java applet on the Communicator or other Symbian platform
systems, you need to follow this process:

1. You must obtain aunique identifier (UID) number. Y ou can obtain this from Symbian's

Web site at http://www.symbiandevnet.cony.

Compile your Java code as usual.

Package all classesinto aJJAR file.

Create al graphics as bitmaps.

Use the AIF Builder tool that comes with the Nokia SDK to create support files. Y ou will

need to type in your UID, the application name, and the application's main class and

working directory.

6. TheAlF Builder tool aso lets you import or edit your application'sicons. Y ou need to
create two icons: One 25x20 and one 64x50.

7. You can aso usethistool to set the application's Caption in 23 different languages!

8. Intheend, the AIF Builder will output files to your working directory:

a. Anapplicationinformation file (. aif)

b. A Symbian application file (. app)

c. A textfilewith command-line parameters (. txt)
d. A resourcefile(.rss)

e. A multi-bitmap file (. mbm)

9. You can now use the emulator to test your program. Just point it to this working directory
and select the main classfile.

10. To actualy deploy to a Nokia phone, you need to create a package (. PKG) file that lists
all components. Thisisasimpletext file that lists al the files necessary to build the
installer, including the JAR and any image files. Thisfile also indicates what supported
languages are, and what the UID number is. The format looks like this:

agkrwd

&EN

#{ "Test"} , (Ox01010101), 1, 0, O
"Test.aif" - "I:\system\apps\test\Test.aif"
“"Test.app"” - "I:\system\apps\test\Test.app"
"Test.txt" - "I:\system\apps\test\Test.txt"

322

http://forum.nokia.com/
http://www.symbiandevnet.com/

"Test.mbm"™ - "I:\system\apps\test\Test.mbm"
"Test.jar" - "Il:\system\apps\test\Test.jar"
"Test.jpg"” - "I:\system\apps\test\Test. jpg"

11. Usethemakesis command-line tool (available from Nokia or Symbian's site) to
package everything together. Just input the . PKG file as a parameter.

12. A _SISingtdlation file will be created. The . SIS file can then be copied to the device
using a seria cable or infrared port, or it can be downloaded from the Internet.

MIDP Plug-In for PersonalJava

It's possible to run MIDP programs on many Personal Java devices. For example, Nokia offersa
specia plug-in program for the Nokia 9210 that emulates the MIDP environment. Y ou can find it
at the following URL: http://forum.nokia.com/files/disclaimer/1,14553,1423,00.html.

PersonalJava Design Considerations

Because PersonalJavais amost as feature-rich asthe full Java 2 Standard Edition, developers
might be tempted to write big, meaty applets. However, there are many design constraints to keep
in mind:

e Many devices don't have typical input or output devices. Some devices might use touch-
screen monitors, speech recognition, styluses, joysticks, virtual keyboards, a simple set of
cursor keys on aremote control, levers, buttons, dials, and so on. As such, mouse-only
events such as right-clicking, double-clicking, dragging and dropping, and so on are not
appropriate. Most buttons or other commands should be available viaa single "click" or
selection.

e There might not be enough room in memory for images. Any images displayed should be
very small. Downloading images from the network as necessary and then disposing of
them often makes more sense than packaging them in the application.

e Useflush and dispose on objects as often as you can, and be sure to set all objectsto
nul I when you're done with them.

e Watch out for hashtables—they eat memory for breskfast. Try to limit them to afew
dozen elements.

e For animation, use PersonalJavas built in automated double-buffering rather than copying
graphics onto your screen one frame at atime.

e Instead of spawning your own memory-intensive threads, use Personal Java's Timer API.

PDA Profile

The Java community is currently fleshing out a J2ME profile especially for PDA devices and
other handheld organizers. This profile will extend and enhance the CLDC, and can be found at
http://jcp.org/jsr/detail /75.jsp.

It is shaping up to be similar to the MIDP, but with better graphics and user interface features, and
less support for wireless network functionality.

The PDA Profile will likely have a user interface toolkit that is a subset of Java Standard Edition's
Abstract Window Toolkit (AWT). It might also support infrared beaming and persistent storage of
data.

Thetarget platform will have these characteritics:

323

http://forum.nokia.com/files/disclaimer/1,14553,1423,00.html
http://jcp.org/jsr/detail/75.jsp

A minimum of 512K B total memory (ROM + RAM), and a maximum of 16MB.
Limited power, usually battery operated.

A basic user interface; Displays should have a resolution of 20,000 pixels or more.
A basic pointing device and the capability to accept character input.

Java Game Profile

Information on the Java Game Profile proposal can be found at http://jcp.org/jsr/detail/134.jsp.
This proposal isfor a 2ME profile that will cover nine areas of game development:

1. 3D modeling and rendering, including effects such as reflection mapping, stencil buffer-
based shadow volumes, and so on.

2. 3D physics modeling.

3. 3D character animation.

4. 2D rendering and video buffer management, page flipping, hardware-accelerated BLT,
line draw, and rectangular fill.

5. Game message marshalling and network communication.

6. Streaming mediaand high-quality video playback.

7. Sound effects and background music, including support for such formats as MP3, MIDI,
streaming audio, and popular voice codecs.

8. Access and discovery of game controllers such as joysticks, gamepads, and steering
wheels.

9. Hardware access. The Java Virtual Machine, under the game profile, will likely be able to
access memory outside the Java heap. Thiswill enable the program to load game data and
memory more efficiently and to access video graphics memory directly for quicker
rendering and special effects.

Thiswill allow for arelatively high-end gaming platform. Development of this profile is very
exciting for both Java and gaming enthusiasts. If this profileis successful and receives support
from major game console manufactures, a game design studio will be able to create one amazing
kick-butt game and deploy it on dozens of different systems. Currently, developers must spend
millions of dollars porting their games from one console to another.

Theideaisto pare down the Java 2 Standard Edition API, which is focused on database and e-
business applications, and create a brand new profile geared exclusively towards games. This
profile will likely be based on the CDC and Foundation Profile.

There are many existing APIs that support graphics, sound, and other gaming needs. For example,
the Java Media Framework (JMF) APl supports streaming of audio and video, the Java3D API
handles 3D rendering, and Java2D with itsVolati lelmage and Graphics2D classes alow for
quick-drawing rendering effects.

The gaming profile will likely leverage as many existing APIs as possible, and spawn awhole
new set of Java APIsfor things such as physics modeling.

Thetarget platform is high-end consumer game devices, ranging from handsets such as the
GameBoy to consoles such as the PlayStation 2 and Xbox.

The J2ME Multimedia Profile

324

http://jcp.org/jsr/detail/134.jsp

The J2ME Multimedia Profile can be found at http://jcp.org/jsr/detail/135.jsp. This proposed
multimedia APl specification gives developers high-level access to the sound and multimedia
capabilities of 2ME devices.

Although many mobile devices can only produce single monophonic sounds, others feature both
sampled, synthetic audio and other rich mediatypes. The 22ME Multimedia Profile will be able to
handle, generate, and playback sound in all these formats.

Simple controls will handle the lower common denominator, and additional functions will be
available for devices that support more advanced audio.

The Multimedia Profile will also alow for time-based synching of images with audio, using
formats smilar to SMIL.

Summary

Asthere are tons of different types of devices, there are different types of Java. PersonalJava
cleverly brings the power of the Java Standard Edition into smaller spaces.

In the next chapter, we'll look at yet another breed of Micro Java—NTT DoCoMo'siAppli profile.
This profile will allow you to develop kick-butt Java applications in Japan and beyond.

325

http://jcp.org/jsr/detail/135.jsp

Chapter 22. iAppli: Micro Java with a Twist
IN THISCHAPTER

The Architecture of It All

iAppli: Like MIDP, But Not Quite
Developing iApplis

Summary

In Chapter 6 we looked at i-mode, NTT DoCoMo's popular wireless network. Just as WAP istoo
limited for true interactive applications, i-mode istoo simplistic for apps such as games that
require quick reactions, decent graphics and animations, always-connected networking, and
sounds.

Like many other mobile phone manufacturers, NTT DoCoMo decided that Java was the answer.
However, at the time of this decision, the MIDP specification was just beginning to be fleshed out
and taken seriously. NTT DoCoMo, unfortunately, didn't have time to wait. They also wanted to
create alibrary specially geared toward their particular service, brand, and mobile phone
constraints.

So NTT DoCoMo built atop the CLDC basics and came out with their own Micro Java profile. It
has lots in common with MIDP, but branches off in some interesting and weird directions.

Instead of MIDLets, NTT DoCoMo's Java apps are known as iApplis. The first Java handsets went
on sale in Japan in January 2001. A full list of current phones capable of running iApplis can be
found in Chapter 2, "The Mobile World."

NOTE

While reading about i Applis on the Web, you might come across the word keitai. Thisisa
Japanese word meaning "portable," and is often used in the vernacular to refer to mobile
phones (keitai denwa).

The Architecture of It All

iAppli applications can run on any 50x series of i-mode phone. The extensions library basically
sits atop the CLDC class library. Like MIDP, iApplis are based on a subset of the java. lang,
jJava.io, java.util, and javax.microedition. io classes.

iApplis are defined using five special packages. com.nttdocmo. io, com.nttdocmo.util,
com.nttdocomo.ui, com.nttdocomo.net, and javax.microedition.io.

In addition, like MIDP, the i-mode library runs using the KVM. Additionally, various phone
manufacturers might add additional functionality and handset-specific libraries.

The architecture looks something like Figure 22.1.

Figure 22.1. The iAppli architecture.

326

Java App

I i-mode Server
= o
~" ™\ —
Packet
Network -)
I WEB Server
— P ——

Java App

i

Basically, the i-mode extension library handles the following:

e User Interface—Graphics and clear interface widgets are amajor focusfor NTT DoCoMo.
For example, iAppli supports i-melody sounds and i-anime animated images.

e Networking—All communication occurs using HTTP. Fully functional client-server
application can be run, alowing for true multiplayer gaming or games that change over
time based on input from a central server.

e Scratchpad—Applications or data downloaded from the networks can be stored on the
mobile phone. This allows for permanent storage of a user's most useful applications.
Scratchpad is the storage memory where "files" can be saved and loaded.

e Text Conversion—iAppli handles al Japanese language processing. Just like i-mode's
browser, iAppli deals with the Shift JIS (SJIS) Japanese character encoding. Java
applications can a so display the emoji picture symbols used throughout i-mode.

In addition to providing room for the iAppli classes, media, and ScratchPad, each handset has a
Java Application Manager (JAM) that controls the activation of applications in i-mode phone
terminals.

Provisioning

TheiAppli architecture makes deploying Java applications really easy. Y ou just drop the
application on aWeb server. The program is downloaded using HTTP, the same way i-mode
formatted cHTML documents are downloaded.

All Java classes, multimediafiles, and other data files are packaged in a JAR file and can be
downloaded all at once. Alternatively, individual images, sounds, or other pieces of data can be
downloaded on-the-fly by the Java application during runtime.

327

NOTE

AniAppli program, packaged in aJJAR file, can only take up a maximum of 10KB. The phone
terminal alocates at least 5KB of room for a ScratchPad. Most Java-enabled i-mode phones will
hold at least three JAR files and ScratchPads.

Additionally, each iAppli package must include an Application Descriptor File (ADF) with the
extension JAM. Thisisasimple text file, much like aMIDPJAD file, that includes information
about how to install, activate, and control applications. It also defines the application's size, its
home URL, the size of the ScratchPad needed, and any specific start-up parameters. This can help
a handset determine whether theiAppli program will run properly or fit in the available memory.

The ADF File

Some of the major parameters within the ADF file are detailed in Table 22.1.

Table 22.1. JAM File Properties and Parameters

AppName Application name. This can be a maximum of 16 bytes long. This is the
(required) name that appears on the phone's application menu.
AppVer The current version number of the application.

PackageURL [The URL from which the JAR file can be downloaded.
(required)

AppSize The size of the JAR file. Must be 10240 bytes (10KB) or less.

(required)

AppClass The main class name, used to start the application.

(required)

AppParam Starting parameters for the main class. An application can call the
getArgs() method to access this.

\KvmVer |Version of KVM, in case you are using a special version.

\SPsize |Size of ScratchPad needed for this application.

LastModified |Last date and time the application was modified. Enables the phone to update

(required) the application when necessary. The format is: Dow, DD Mon YYYY
HH:MM:SS

(Day of the week, Day, Month, Y ear, Hours, Minutes, Seconds)

UseNetwork You must set this to http when network communication is used.

TargetDevice |The brand or version of mobile phone that this application will work on.

LaunchAt iAppli programs can be set to start up every time the phone is turned on,
or at specific times, enabling users to set up personal agents that can
download news, stocks, weather, gameworld status, or other info
according to a regular schedule.

For example, asample JAM file named MySampl e . jam might look like this:

AppName = MYSampleApp

AppClass = MySample

AppVer = 1.0

PackageURL = http://www.sample.com/MySample.jar
AppSize = 1014

AppParam = argl arg2 arg3

LastModified = Fri, 3 Mar 2002 11:11:11

328

The Provisioning Process
The provisioning process works as follows:

1. A player reaches a content provider's Web page using the standard i-mode browser. A list
of various Java games can be presented here. This page is created using cHTML.

2. The player selects the game she wantsto play. A message pops up warning the user that
the game needs to be downloaded.

3. TheJAM fileis downloaded. The phone then scans the file and determines whether the
application will work on the particular model of handset. For example, if the application
uses an extension library that only works on Sony phones and the player isusing a
Panasonic phone, then a message will be shown telling the player that the application
cannot be installed.

4. Likewise, shewill betoldif there's not enough room on the user's handset. She will
usually be given the option to erase other Java applications and free up more memory.

5. If the classes for the game already exist, then the JAR file will only be downloaded if the
existing files are out of date.

6. Downloading of the JAR begins. When the download is finished, the player gets a
message stating that the application is now stored on the handset. The JAM now has a
new applet in its menagerie.

7. The player can now browse her local library of Java applications and select the game.
She's off and playing!

All iAppli applications can also operate as standalone apps. For example, a user can enjoy a
single-player action game without connecting to the network and incurring network fees of any
kind.

Updating Applications

After an iAppli program has been downloaded, users can activate it directly from the original
cHTML i-mode page.

Each JAM file hasa LastModified entry. If thekey isout of date, then the new JAR file will be
downloaded and installed. After everything isinstalled properly, the old JAR file will be deleted.
All datain the ScratchPad, however, will remain intact.

i-mode Extension Tags

To drop an iAppli program within an i-mode cHTML page, you can use the <OBJECT> tag as
follows:

<OBJECT declare id="application.declaration” data="MySampleApp.jam"
type="application/

X-jam''>

Here"s a Sample 1Appli Java Application

</0OBJECT>

Point to the JAM file using the data attribute. Y ou can then have the user download theiAppli as
follows:

Download The
Sample App!

Note that the href attribute points to a URL that will only come up if the application's download
fails. Thisisagood place to put an error or help page.

329

Priorities, Priorities

i-mode handsets will give priority to voice phone calls. When acall isreceived, the iAppli will be
paused while the call takes place. When the player hangs up, the iAppli will be resumed.

If email isreceived, the user will be alerted, but the iAppli will not be interrupted.
WARNING

If theiAppli is currently sending or receiving data over the network, then some phones will
interrupt the data transfer, only to resume it later. Other phone models will simply restart the
application. The user will usually have the option to turn this automatic switching on or off.

As such, every iAppli should implement the resume () method. This method can check to be
sure no important data transfers were lost.

IAppli: Like MIDP, But Not Quite

All iAppli programs run from one main class, which must be derived from the
com.nttdocomo.ui . lApplication class. When the application starts up, the start()
method of thismain classis run.

The most basic iAppli program would look like this:

import com.nttdocomo.ui.lApplication
public class Sample extend lApplication

public IApplication(){
}

public void start(){

}
}

When the application is finished, you need to call the terminate () method within
com.nettdocomo.ui.lApplication. The System.exit() routine used with standard
Javawill not adequately shut the program down and clean up al the resources, and will likely
throw a security exception.

Other methods within the 1 Application superclass are the following:

String[] GetArgs(Q)
1Application GetCurrentApp(Q)
String GetSourceUrl()

void resume()

abstract void start()

void terminate()

User Interface

330

Much aswith MIDP, iAppli programs enable you to use either alow-level user interface API—
drawing pixels directly on the screen—or writing to a high-level API, creating forms using buttons,

list boxes, text fields, and other widgets.

All user interface output happens viathe com.nttdocomo.ui .Display class. Mgor methods

include the following:

e int getHeight()— Get the height of the current screen.
e int getWidth()— Obtain the width of the current screen.

e void setCurrent(Frame frame)— Set the current frame to be shown on screen.

Thiscanthisalow-level Canvas or ahigh-level Form.
Low-Level Ul

Low-level API isbased on the com.nttdocomo.ui .Canvas class. Methods in this class
include the following:

e Graphics GetGraphics()

e iInt GetKeypadState()

e abstract void paint(Graphics g)

e void processEvent(int type, int param)

e void repaint()

e void repaint(int x, int y, int width, int height)

A low-level implementation of iAppli Canvas isamost identical to the way you would do it with

the MIDP standard. Basically, al the action happensin the paint() method.
Y ou could create asimple Canvas class as follows:

import com.nttdocomo.ui.*;
public class MyCanvas extends Canvas(){

MyCanvas(){
¥

public void paint(Graphics g){
-lock(Q);

.clearRect(0, 0, 200, 200);
-drawString("'Hello", 10, 10);
-drawRect(5,5, 195, 195);
-unlock(true);

Qo aQ

}

Notetheg. lock() and g-unlock() methods. Y ou should always surround all drawing
routines with these functions to draw to an offscreen buffer and create flicker-free graphics.

Y ou could bring the canvas to life by creating an iAppli asfollows:

import com.nttdocomo.ui.lApplication;

public class HellolAppli extends IApplication{
public void start() {
MyCanvas myCanvas = new MyCanvas();
Display.setCurrent(myCanvas);

331

}
Graphics

The com.nttdocomo.ui .Graphics classisvery similar to the MIDP'sGraphics class.
There are some interesting additions and omissions, however:

o drawPolyline(int[] xPoints, int[] yPoints, int numPoints)—
Draws a continuous line segment between various sets of points.

e TillPolygon(int[] xPoints, int[] yPoints, int numPoints)— Paints
afilled polygon with vertices indicated by xPoints and yPoints arrays. Thereisno
corresponding function in the MIDP spec. However, MIDLets do enable you to draw arcs.

e lock()— Begins double buffering.

e setOrigin(int x, int y)— Setstheorigin upon which al coordinates will be
based.

e setColor(int color)— Setsacolor to be used for drawing. Note that you must
grab the appropriate color for the given handset using either the getCollorOfName(int
color) method or getColorOfRGB(int r,int g, int b).For example

g-setColor((g-getColorOfName(g-YELLOW)))
or

g-setColor((g-getColorOfRGB(128,128,128)))

e unlock(boolean forced)— Endsdouble buffering. When you lock the graphics
context, all drawing occursin an offscreen buffer. When you unlock the buffer, the entire
offscreen image is drawn to the actual screen. If you set unlock()'sforced parameter to
true, then the drawing occurs immediately. Otherwise, the graphics are put in a queue
and drawn as soon as possible.

High-Level Ul

All high-level Ul is achieved by creating aPanel. First off, you can set thetitle of the panel as
follows:

setTitle(""My Panel™);

Y ou can then add various user interface el ements. Elements will appear in the panel according to
the order you add them. Y ou can adjust elements using standard component methods such as
setEnabled(), setVisible(), and so on.

Some of the user interface elements are discussed in the following sections.

Label

Y ou can create atext label, choosing the text you want to display and the justification. For
example

Label lab = new Label(""Username:", Label.LEFT);
add(lab);

TextBox

332

Y ou can create atext input box using the TextBox(String text,int columns,int
rows, int mode) method.

For example, to create two fields—one for a username (with a default name of “*Henry'*) and one
for a password, you would use:

TextBox name = new TextBox(“'Henry', 50, 1, TextBox.DISPLAY_ANY);
TextBox pass = new TextBox(null, 50, 1, TextBox.DISPLAY_PASSWORD);
name.setlnputMode(TextBox.KANA) ;
pass.setlnputMode(TextBox.NUMBER) ;

ListBox

The ListBox element is a powerful widget that enables you to create various types of selection
menus. Types include the following:

e SINGLE_SELECT— A simplelist of choices. The user may select one and only one
option.

e RADIO _BUTTON A list of choices, where each choice is preceded by a small button. The
user may select one and only one option. Thisis shown in Figure 22.2.

Figure 22.2. A check box version of ListBox.—

e NUMBERED_LIST— A list of choices, each choice preceded by a number, starting from 1.

e CHOICE— A standard options menu choice list.

e MULTIPLE_SELECT— The user may select numerous items. Clicking on aitem once
selectsit, clicking again deselectsit.

e CHECK_BOX— A list of choices, each preceded by a check box graphic. The user may
select numerous items. When an item is selected, its check box will befilled in (see

Figure 22.2).

For example

333

ListBox Ib = new ListBox(ListBox.RADIO_BUTTON);
String items[] = new String[3];
items[0] = "Choice 1";

items[1] = "Choice 2";
items[2] = "Choice 3";
Ib.setltems(items);
add(lb);

Ticker

This enables you to create a scrolling text ticker, similar to the news tickertape in Times Square.
Theticker will usually appear at the very top (or bottom) of the screen.

To create the ticker you could use code similar to the following:

Ticker tick = new Ticker();
tick.setBackground(Graphics.getColorOfName(Graphics.LIME));
tick.setText("'This text will scroll and scroll forever!™);
add(tick);

VisualPresenter

TheVisualPresenter component enables you to create a scrollable areain which you can
plop an image. Y ou can then set various attributes such as IMAGE_XPOS and IMAGE_YPOS,
which indicate where in the VisualPresenter thetop right corner of the image will be drawn.

For example

VisualPresenter vp = new VisualPresenter();
add(vp);
vp.setAttribute(VisualPresenter. IMAGE_XPOS, 0);
vp.setAttribute(VisualPresenter. IMAGE_YPOS, 0);
Medialmage medialmage =
MediaManager .getlmage('resource:///myimage.gif'");
try {

medialmage.use();
} catch (Exception e) {
}
Image img = medialmage.getimage();
int imgWidth = img.getWidth(Q);
int imgHeight = img.getHeight();
vp.setlmage(medialmage);
vp.setSize(Display.getWidth()/2, Display.getHeight()/2);
vp.-play(Q);

Button
Buttons can be created and added very ssimply:

Button but = new Button("Hit Me!™);
add(but);

Y ou can detect whether the button is hit using a component event listener, which we will discuss
in alater section.

Dialog Boxes

334

To create adialog box, smply designate the type of dialog you want and the dialog box'stitle.
Valid typesinclude the following:

e DIALOG_INFORMATION
e DIALOG_WARNING

e DIALOG_ERROR

e DIALOG_YESNO

e DIALOG_YESNOCANCEL

Y ou can then add text to the dialog box and detect button presses. The buttons that appear will
depend on the type of dialog you use. Various button types that are in the Dial og classinclude
BUTTON_OK, BUTTON_CANCEL, BUTTON_YES, and BUTTON_NO.

For example:

Dialog dialog = new Dialog(DIALOG_INFORMATION, ""Hello™);
dialog.setText(*'Hello sir.");
dialog.show();

Handling Events
The event model for iAppli programsis similar to the listener-del egation model used in JDK 1.1.

If you are drawing a bunch of widgets using high-level user interface classes, listeners might not
be registered within a component—but only in the container or panel that holds the component.

If you are drawing directly to the screen using the low-level APls, al events are automatically
passed to the processEvent () method of the Canvas drawing area. This method can be
overridden and all events can thus be handled. Y ou do not need to add a special listener.

Process Event on Canvas

The Canvas hasits own event listener built in. Just usethe processkEvent(int type, int
param) method.

There are two types of events:

e KEY_PRESSED EVENT— A key was pushed.
e KEY_RELEASED EVENT— The key was released.

Various keys can also be sniffed:

e KEY_OKEY_1,KEY_2,KEY_3,KEY_4,KEY_5,KEY_6,KEY_7,KEY_8,KEY_9—, One
of the numerical keys.

e KEY_ASTERISK KEY_POUND—, The asterisk (star) or pound (hash) key.

e KEY_LEFTKEY_UP, KEY_RIGHT, KEY_DOWN—, One of the cursor arrow keys.

e KEY_SELECT— The center select key.

e KEY_SOFT1 KEY_SOFT2—, One of the soft keys, usually at the top of the keypad.

Y ou could create a Canvas that deals with keypad presses and other events as follows:

class HelloCanvas extends Canvas {

// Put all drawing here, in the paint() method...

335

public void processEvent(int type, int param)

{
if(type == Display.KEY_PRESSED EVENT)
{

int key = getKeypadState();
ifT (param == Display.KEY_RIGHT)
// The right cursor key was pressed.
else if(param == Display.KEY_SOFT1)
// Softkey 1 was pressed.
else if(param == Display.KEY_SOFT2)
// Softkey 2 was pressed.
else if

}

KeyListener on a Panel

Panels, meanwhile, can implement various listeners. For instance, to detect key presses simply
have your panel implement KeyListener. You can then set the panel asthe listener within the
constructor:

setKeyListener(this);
The panel must then handle two methods:

o keyPressed(Panel panel,int key)
o keyReleased(Panel panel,int key)

This enables the panel to detect any keypress, similar to the processEvent() method of
Canvas.

Component Listener

Additionally, a panel can implement ComponentListener. Thisletsthe panel deal with any
changes to any of its components. For example, to deal with a button

public class ButtonTest extends Panel implements ComponentListener

{
Button btn;

ButtonTest() {
btn = new Button(''‘Button™);
this.add(btn);
setComponentListener(this);

public void componentAction(Component source, int type, int param)

{
iT (source instanceof Button && type == BUTTON_PRESSED)

// Do something!

}
}

SoftKeyListener

336

Your panel or Canvas can aso implement the SoftKeyL istener classto deal directly with the
two soft keys. Simply add a listener to your panel or Canvas's constructor method:

setSoftKeyListener(this);

Then set the label you want to appear on the phone's menu. This label is usually placed directly
above the soft key:

setSoftLabel (Frame.SOFT_KEY_1, "Exit');

Y ou can now implement SoftKeyL istener using the softkeyPressed() and
softKeyReleased() methods. For example

public void softKeyPressed(int key)

if (key == Frame.SOFT_KEY_1)
MainApp.terminate();
}

public void softKeyReleased(int key) {}
Graphics and Sound
iAppli can handle the following formats:

e Still images—GIF 87 and 87a. Unlike MIDP, iApplis support transparent images. Thisis
good news for game programmers!

e Animations—GIF89a animated GIF sequences.

e Sounds—i-Melody file (MLD) format. Thisisaformat similar to MIDI, allowing up to
16 different voices. Most MLD files are lessthan 1KB in size.

Y ou can create i-Melody files using various tools. One popular tool isMLD Creator by
Naka-Net (http://www.naka-net.com/SOFT/MLDC/).

Images and sounds can be loaded using the com . nttdocomo.ui -MediaManager's methods:
e MediaData getData(String location)
e Medialmage getlmage(String location)
e MediaSound getSound(String location)

There are two main locations you can read media from:

e You can place images or sounds within the JAR that the iAppli Java classes are packaged
in. In this case, you use the resource protocol:

Medialmage mi = MediaManager.getlmage (‘'resource:
///sample.gif');

e Youcangrab amediafile directly from a Web server using the HTTP or HTTPS protocol:

Medialmage mi = MediaManager .getlmage ('http:
//www .sample.com/images/sample.gif'");

or

337

http://www.naka-net.com/soft/mldc/

Medialmage mi = MediaManager.getlmage(getSourceURL() +
"sample.gif");

Displaying an Image
To display an image you could use code similar to the following:

Medialmage mi = MediaManager.getlmage(''resource:///sample.gif'");

try{
mi.use(Q);

catch(ConnectionException ce){
// Could not connect.
} catch(UlException ui){
// Other exception.
}

Image img = mi.getlmage();
Y ou can now paint using aVisualPresenter component.

When you are temporarily done with the image, you can call unuse () to free up the memory. If
you no longer need theimage at all, you can call dispose () to unload the image entirely.

Playing Music
To play an audio file, use an AudioPresenter. The codeis similar to the following:

AudioPresenter ap;

MediaSound ms;

ap = AudioPresenter.getAudioPresenter();

ms = MediaManager .getSound(‘'resouce:///audio/test.mld™);

try {
ms.use();

catch (Exception e) { }
ap.setSound(ms);

Y ou can then play the sound at any time by calling
ap.playQ;

When finished, call the stop() method on your audio presenter and call unuse () and
dispose () on your media sound object to dispose of the sound properly.

Listening to Your Music

Y ou can aso keep track of an audio clip by having your panel implement MediaListener. You
can then set the listener asfollows:

ap.setMedialListener(this);
Finally, you must implement the med iaAction method as follows:
public void mediaAction(MediaPresenter source, iInt type, int param)

{

338

switch (type) {

case AudioPresenter . AUDIO_PLAYING:
break;

case AudioPresenter.AUDIO _COMPLETE:
break;

case AudioPresenter.AUDIO_STOPPED:
break;

}

Networking and Input/Output
There are basically two ways you can get and receive data:

1. Through the network using HTTP or HTTPS communication. The iAppli inputs or
outputs data using standard HT TP requests and responses. Java for i-mode applications
cannot use non-HTTP(S) protocols such as TCP socket, UDP, and FTP.

2. Read or write from a ScratchPad. Every iAppli is allotted 5KB of ScratchPad space.

HTTP Connections

In order to use HTTP communications, you have to add the **UseNetwork = http* lineto
your application's ADF (JAM) file.

Basically, HTTP communications work the same with iApplis as they do with MIDlets. For
example, to read data from a servlet on the network (http://www.myhost.com/myserviet)
and put it into a byte array called data you would use the following code:

HttpConnection http = null;

InputStream in = null;

byte[] data = null;

String URL = "http://www.myhost.com/myserviet";

try

{
http = (HttpConnection)Connector.open(URL,Connector.READ);

http.setRequestMethod(HttpConnection.GET);
http.connect();

int contentLength = (int)http.getLength();
in = http.openlnputStream();

data = new byte[contentLength];
in.read(data);
}

catch(ConnectionException ce)

// Handle a connection exception.

}

catch(Exception e)

// Handle other type of exception

3
finally

{
try

if(inl=null)
{

339

in.close();
in = null;

}
if(httpl=null)

http.close();
http = null;
3
3
catch(Exception e)
{
http = null;
in = null;
3
3

To write to the server you would use code similar to the following:

http = (HttpConnection)Connector.open(URL, Connector.WRITE);
http.setRequestMethod(HttpConnection.POST);
http.setRequestProperty("Content-Type","application/octet-stream™);
DataOutputStream stream = http.openDataOutputStream();
stream.write(data,0,data.length);

stream.close();

http.close();

CAUTION

For security reasons, iApplis can only access the Web site (the exact URL scheme, host name,
and port number) from which they were downloaded. Also, be sure to use the host name when
communicating with a server, not the IP address.

ScratchPad

Writing and reading to the ScratchPad isreally easy. Simply use “'scratchpad:///0" asthe
URL protocol. For example, to write four Unicode characters to the ScratchPad, use the following
code:

try

{

OutputStream out = Connector.openOutputStream(''scratchpad:///0");
out.write(0Oxfe);

out.write(Oxff);

out.write(0x100);

out.write(0x101);

out.close();

}

catch (10Exception e)

{

System.out.printIn(""10Exception in save");
}

And to read those bytes back in

try

InputStream in= Connector.openlnputStream(*'scratchpad:///0");
for(int 1=0; i<4; i++)

340

{
System.out.printin(in.read());

in.close();

catch (10Exception e)

{
System.out.printIn(*"10Exception in read);}

}

Y ou could also read or write several bytes at atime using OutputStream'swrite(String
data, int offset, int length) method. Thenread in using the read(String
data, int offset, int length) method.

Developing iApplis

Actually designing and creating iApplisis very similar to developing MIDIets. Y ou need to have a
Java compiler and JAR tool, which can be found in Sun Microsystem's J2SE toolKkit.

My hopeisthat this chapter will get you off the ground and creating working iApplis. Thereis
also lots of documentation on the Web, though much of it isin Japanese. The full iAppli
specification and API can be found in Japanese at http://www.nttdocomo.co.jp/i/javal/index.html.
However, thereis now an English version available at
http://www.nttdocomo.co.jp/english/p_gli/javalindex.html.

If you happen to live in Japan and own an i-mode phone or two, then you're lucky—you can test
your games out right on their target platforms. For those in the rest of the world, however,
emulators will do the job nicely. Several emulators can be downloaded:

e i-JADE—A tool by Zentek that lets you simulate several iA ppli—capable handsets.

URL : http://www.zentek.com/i-JADE/index.html.

e |JavaEngine i503—An open source project emulating the 1503 handset.

URL: http://i503.sourceforge.net/

e |Emulator—A very useful emulator, written in Java.

URL : http://uni.himitsukichi.com/iap/eindex.html

Most of the emulators are in Japanese, and will include lots of Japanese menus. If you explore, it
should al make sense soon enough. In general, the first menu option on the phone is usually your
test application. The second menu option usually allows you to quit. The i-JADE emulator,
however, has an English version.

After you've got al the tools, follow these steps:

1. Besuretoinclude Sun'scldc and NTT DoCoMa's com. nttdocomo librariesin your
classpath, and compile your application. Most emulators have included the necessary
classes as part of their own libraries.

For example, to compile using the classes that come with the i-JADE emulator:

341

http://www.nttdocomo.co.jp/i/java/index.html
http://www.nttdocomo.co.jp/english/p_s/i/java/index.html
http://www.zentek.com/i-jade/index.html
http://i503.sourceforge.net/
http://uni.himitsukichi.com/iap/eindex.html

c:\jdkl.3\bin\javac -classpath c:\i-jade\i-jade-p.jar
MyApp - java

Note that you might need to change the name of the JAR filefrom i-jade-p. jar,
depending on the version of i-JADE you download. Different handset emulators have
dightly different filenames.

Test the application using an emulator. Run the emulator using:
c:\jdkl.3\bin\java -jar c:\i-jade\i-jade-p.jar

The emulator control panel appears, as seen in Figure 22.3. Here you can input either the
name of aJJAM file (which must point aJAR), or just asingle Javaclass.

Figure 22.3. Inputting a JAM file or Java class.

If al goeswell, you will then see your iAppli run in the emulator window, asin Figure
224.

Figure 22.4. Emulating a Mine Sweeper game!

342

6.
4

To actualy deploy, you first need to pre-verify your classes. Y ou can use the standard
J2ME pre-verify technique discussed in Chapter 9, "First Steps.” The pre-verifier aso
comes with Sun's wireless toolkit:

preverify -classpath c:\cldc\classes;c:\i-jade\i-jade-p.jar;c:
\myclasses -d c:\myOutput
MyApp

Create the JAM text file, such asmyapp - jam.
Y ou now need to package your Java classes and al supporting mediainto a JAR file.
Include al GIFs and audio files:

c:\jdkl.3\bin\jar cvf MyApp.jar MyApp.class imagel.gif
image2.gif

Create acHTML file with the <OBJECT> tag pointing to your JAR file.
Put the cHTML file aswell asthe JAM text file on a public Web server.

Y ou can now point your i-mode Java-enabled handset to the given Web address and download

away!

After you've tested it and ensured that everything works, you can open your game to the public or
strike a distribution and profit-sharing deal with NTT DoCoMo.

Summary

Because iApplis are so similar to MIDlets, it is usually feasible to write games for both systems. It
should only take afew hours or days to port awell-written MIDlet so that it will runon NTT
DoCoMo's i-mode system. Appendix D lists all the methods and classes that comprise the iAppli

profile.

343

The next few chapters will go into other vendor-specific APIs that can help you write powerful
games targeted at specific brands of mobile phones.

Chapter 23. Siemens Game API
INTHISCHAPTER

Getting Set Up
The Game SDK Overview

Images and Sprites
Graphic Objects
Sprites
TiledBackground
Flashing

Good Vibrations
Music, Sweet Music
GSM Functions
Input Output
Summary

The Siemens SL45i is more than just one of the first Java phones to be released in Europe—it's
actually alean, mean, fine-tuned gameplaying machine.

To accomplish this, Siemens has put out one of the most advanced Micro Java APls. The API not
only fully supports MIDP, but offers the software devel oper some additional capabilities:

Create sprites and sounds using a Game API
Send SM'S messages

Access the phone book and make calls
Beam data via the phone's infrared port
Access the phone's side keys

Motorola, Siemens, and Ericsson have announced that they will band together and create a
standard game API. This de facto game API will most likely have many of the same classes and
methods discussed in this chapter.

Getting Set Up

To build a Siemens-specific MIDIet, you must write your code, compile it, pre-verify it, and
package it. In other words, the process is exactly the same as creating any other MIDIet.

Siemens has released a full Software Development Kit (SDK) that makes the process easy. You
can even integrate the SDK with the Forte devel opment environment if you want. First off, you
must have Java 1.3 or later installed. This can be downloaded from http://java.sun.com/j2se/.

Next, download the Siemens SDK. Go to Siemens' site at http://www.siemens-mobile.de/ and
click on the Developer's Portal. If you don't already have an account, you will need to sign up for
one. Signing up isfree and painless. Then click on the Wireless Java link to download the latest
SDK.

Findly, if you'd actualy like to load your MIDlets onto a Siemens phone, you can grab the
DataExchange software from http://www.my-siemens.com/. Just go to the SL45i page and visit
the Downloads and Applications section.

345

http://java.sun.com/j2se/
http://www.siemens-mobile.de/
http://www.my-siemens.com/

Compiling

To actually compile, be sure to include the APl jar filein your classpath. Assuming you installed
the Siemens SDK to the C:\Siemens\Java directory, you could compile the Test.java program
asfollows:

Javac —g —bootclasspath C:\Siemens\JavaSDK\I1ib\API.jar Test.java

Y ou can then pre-verify in much the same way:

preverify —classpath C:\Siemens\JavaSDK\Iib\API.jar;. Test

Finally, to package everything together you can use the JAR command:

jar cf test._jar Test.class

Y ou can now create the JAD Application Descriptor File (ADF) as with any other MIDIet. Details
on how to do this are discussed in Chapter 9, "Creating aMIDlet."

Running with the Emulator

The Siemens SDK comes with aneat little SL45i emulator that enables you to launch either JAD
files or raw Java classes.

Toload up aclassfile, click on the Start Java Application line in the Commands window. Y ou can
select aJAR file, aJAD file, or even a Javaclass.

After an application has been downloaded on the emulator, you can run it by selecting the Menu
command on the phone itself, then choosing Surf/Fun, Java. Select the application you want, then
choose the Option command. The application runs, as shown in Figure 23.1.

Figure 23.1. The Siemens emulator.

346

Running on the Actual Phone

The easiest way to test your applications out isto copy the class files over using the Siemens
DataExchange software.

Connect your phoneto your PC using avalid cable—it should come with the phone, or you can
obtain one from Siemens. Y ou can now run the DataExchange software:

1. Create anew directory beneath the \ java\ jam directory.

2. Openthe new folder. Copy the classfiles or the JAR file, as well as any resources (such
asimages), into the new directory.

3. Openthefolder and copy the classfilesinto it.

Y ou can now run the MIDlet!

Download Your Applet Over the Air

Finally, you can use the phone or emulator to actually download your MIDlet over the air (OTA).
To do s, be sureto set up avalid JAD file with aMIDIet-JAR-URL attribute that pointsto avalid
URL:

MIDIet-Jar-URL: http://www.myserver.com/MyGame. jar

If you want to test the download locally, just point to the phone'slocal /java/ jam directory:

347

MIDlIet-Jar-URL: file://a:/java/jam/games/MyGame. jar

The Game SDK Overview

The Siemens game SDK contains everything you might need to create a smooth and quick-moving
action game. The SDK classes arein the com.siemens.mp.game package. The classes are

e ExtendedImage— Extended graphical functionsfor Images.

e GraphicObject— A superclass for game graphics, such as Sprites.
e GraphicObjectManager— Manages and paints GraphicObjects.
e Light— Allows you access the phone's LCD backlight.

e Melody— Playsmusic.

e MelodyComposer— Creates musical melodies using predefined tones.
e Sound— Allows you to access the phone's sound system.

e Sprite— Allowsyou to create, move, and animate a game sprite.

e TiledBackground— Allowsyou to create a background pattern.

e Vibrator— Allowsyou to access the phone's vibrator.

Images and Sprites

Images are the main focus of most games. The Siemens APl makes it easy to create, manipulate,
and render complicated characters and scenes.

Creating an Extended Image

To create a special Siemensimage, just pass a normal Javaimage into the Extended Image class.
Because of the way the image might be manipulated, the image width must be divisible by eight.

For example
ExtendedImage im = new (testimage);

Y ou can then modify the image any way you want and use the get Image () method to retrieve a
standard Java image.

After you create an Extended Image, you can perform all sorts of neat modifications. Many
methods take acolor parameter. If you are using 2 bits per pixel, then 0 is the transparent color,

1liswhite, and 2 or 3is black. Otherwise, if you are using only 1 bit per pixel, then 0 iswhite and
lisblack.

Commands include the following:
e public void clear(byte color)— Clearsthe entireimage using the given color.
e public void setPixel(int x, int y, byte color)— Allowsyouto seta

given pixel to a specific color.

Using this command, you can create your own images. For example

348

ExtendedImage im=new ExtendedImage(new Image(24,24));
im.setPixel (5,0, (byte)l); //black pixel at pos 5,0

e public void setPixels(byte[] pixels, int x, int y, int width,
int height)— Thisletsyou create an image using a byte array. Each bit of the array
indicates the color of the pixel. Y ou can then render thisimage at a given x,y location.
Note that the x location must be divisible by eight.

For example, to draw ablack line that is 8 pixels across and 2 pixels high, create a byte
array with two bytes set to —1. The decimal value of -1l isal ones—11111111. You
could then draw thisline at location 4x1 within an empty image:

ExtendedImage im=new ExtendedImage(new Image(24,24));

byte[] pix=new byte[] { (byte)-1, (byte)-1 } ;
im.setPixels(pix, 8, 1, 8, 2);

Alternatively, you can grab the information from an image using
public int getPixel(int x, int y)
or

public void getPixelBytes(byte[] pixels, int x, int y, int width, int
height)

Blitting

To create high-performance graphics, many games will directly modify the video screen, avoiding
the overhead of fancy paint and double buffering routes. The process of copying alarge array of
bits directly into video memory is known as blitting.

You can easily blit with any ExtendedImage. Simply call theblitToScreen(int x,int y)
routine, passing in the exact x and y positions you want your image to appear:

myimg.blitToScreen(10,15);

The most typical usageisto draw all sprites, tiles, and so on to an offscreen image, and then blit
that big image onto the screen.

A typical game's paint routine would use a GraphicObjectManager to paint al sprites and
tilesto an offscreen Extended Image, as shown in the following code snippet:

public void paint(Graphics g)
{
gameScreen.clear((byte)0);
try
{
gfxManager .paint(gameScreen, 0, 0);
gameScreen.blitToScreen(0,0);
} catch(Exception e) {

}

349

Graphic Objects

Every Sprite or ExtendedlImage you create is asubclass of the GraphicObject class. This
class basically only has two methods, enabling you to show or hide the graphic:

e public void setVisible(Boolean visible)
e public boolean getVisible()

Y ou can actually deal with all your objects using the GraphicObjectManager class. New
objects are added, by default, to the end of the list. When objects are drawn, the first element in
the list will be drawn first. Positioning objects in the manager enables you to layer them behind or
in front of each other.

The class has the following methods:

e public void paint(Image image, int x, int y)— Thekey routine. Draws
all the objects into the given image (usually an offscreen image). The offscreen image
must not be transparent. This offscreen image can then be smoothly blitted onto the
device's screen.

e public void addObject(GraphicObject gobject)— Addsanew object to
the object manager at the end of thelist.

e public void insertObject(GraphicObject gobject, int position)—
Adds a new object at a specific location in thelist.

e public int getObjectPosition(GraphicObject gobject)— Returnsthe
number associated with the given object.

e public GraphicObject getObjectAt(int index)— Returnsthe object at the
given index.

e public void deleteObject(GraphicObject gobject)— Deletesthe given
object from the manager.

e public void deleteObject(int position)— Deletesthe object at the given
position from the Ob jectManager.

e public void paint(Extendedlmage image, int x, int y)— Drawsall
objects to the given Extended Image offscreen object.

e public static byte[] createTextureBits(int width, int height,
byte[] texture)— Converts atexture from bytes per pixel into bits per pixel. This
enables you to "compress' an image into fewer bytes. For example, the image
{0,0,1,1,1,1,0,0%} would be converted into just one byte: {60%}.

Sprites

In Chapter 15, "Entering the Land of Sprites,” we discussed what sprites are—basicaly, any
character or graphical object in your game that needs to be animated or moved.

Siemens phones have a specia Sprite class, asubclass of GraphicObject. The Sprite class
lets you do pretty much anything you can think of:

e public void setPosition(int x, int y— Thisenablesyou to drop the upper
right corner of the sprite at a specific set of coordinates.

e public void setCollisionRectangle(int x, int y, int width, int
height)— This enables you to create a specific collision rectangle around the sprite.
The rectangle can be bigger than the sprite image itself if you want your character to be

350

extra-sensitive, or the rectangle can be small and detect specific collisions. For example,
if your spriteisagraphic of a penguin, you can set the collision rectangle around the
penguin's head. That way, if abad guy threw afish at the penguin's body, a collision
would not be detected.

e public void setFrame(int framenumber)— This method sets which frame of
the animation to draw. The framenumber parameter can be set to be anywhere from 0
to the frameCount-1.

After your game is running, you can detect where your sprites are and whether or not they've
collided with another sprite or a specific point on the screen:

e public int getXPosition()— Returnsthe actual x (horizontal) coordinate.

e public int getYPosition()— Returnsthe actua y (vertical) coordinate.

e public int getFrame()— Returnswhich frame of animation is currently being
shown.

e public boolean isCollidingWith(Sprite other)— Returnstrueif the given
sprite's collision rectangle is overlapping the other sprite's collision rectangle.

e public boolean isCollidingWithPos(int x, int y)— Returnstrueif the
given sprite's collision rectangle overlaps with a specific (x,y) coordinate.

Creating and Masking a Sprite

A sprite basically consists of two images—a filmstrip of the animated graphic, and a simple black-
and-white image representing amask. A mask can be thought of as a specific shape that has been
cut out of a black sheet of paper. The shape is then laid atop your graphic, as shown in Figure 23.2.
Any pixels not covered by the cut-out will be transparent.

Figure 23.2. A sprite and its mask.

<« —>

Y ou can create a mask using most paint programs. Simply throw out the color information from
your image, leaving a black silhouette of your sprite.

There are three ways to construct aSprite using the Siemens API:

e public Sprite(lmage source, Image mask, int numFrames)— This
creates a sprite given a source image, a mask image, and a given number of frames. The
width of the source and mask image must be divisible by eight.

e public Sprite(Extendedlmage source, Extendedlmage mask, int
numFrames)— Just like the previous method, except it takesin Extended Images as
the source and mask instead of Images.

e public Sprite(byte[] source, int source offset, int width, int
height, byte[] mask, int mask _offset, int numFrames)— Yet another
way of creating a sprite. Instead of passingin an Image object, you can passin the raw

351

image source and mask data. Y ou must define the width and height of the image so that
the byte array can be parsed correctly. The width, of course, must be divisible by eight.
Y ou might also begin reading in the bytes at a specific offset.

Each of these constructors will throw an 1 I legal ArgumentException if the width of the
imageis not divisible by eight, if there isthe wrong number of frames, or if atransparent color is
used as either the source or mask image.

Sample Code

S0, to create a quick game with afew sprites you could use code similar to the following:

Image frog=Image.createlmage("'/frog.png™);

Image frogm=Image.createlmage("'/frog-mask.png");

Sprite frogsprite = new Sprite(frog, frogm, 1);
GraphicObjectManager spriteManager= new GraphicObjectManager();
spriteManager.addObject(frogsprite);

sprite.setPosition(10,10);

spriteManager.paint(offscreen, 0, 0);

In your paint method, you could then draw the game screen as follows:
g.drawlmage(offscreen, 0, 0, Graphics.LEFT | Graphics.TOP)

Ultimately, you can layer multiple sprites on top of each other to create afull game, as shown in
Figure 23.3.

Figure 23.3. Multiple sprites.

352

TiledBackground

Most games feature not only characters (sprites), but a background world within which the sprites
live. The Siemens API includes an easy-to-use Ti ledBackground class that lets you define and
draw tiles or patterns across your game screen.

Aswith Sprites, aTiledBackground constructor takes three alternative forms:

e public TiledBackground(Image tilePixels,Image tileMask, byte[]
map, int widthinTiles, int heightInTiles)

e public TiledBackground(ExtendedImage tilePixels,ExtendedlImage
tileMask, byte[] map, int widthInTiles, int heightInTiles)

e public TiledBackground(byte[] tilePixels, byte[] tileMask,
byte[] map, int widthInTiles, int heightInTiles)

The parameters are as follows:

e tilePixels— A Javaimage, ExtendedlImage, or byte array that contains the tiles.
Thetotal width of the image must be eight. The height can be as long as you want, but the
number must be divisible by eight.

e tileMask— Thisisan 8x8 pixel Javaimage, ExtendedImage, or byte array with the
mask that should be overlaid over thetiles.

353

e map— Thisisabyte array that defines how the tiles should be drawn. Each byte
represents a separate tile. This concept is explained a bit later in this chapter.

e widthInTiles— Thewidth of the tile map.

e heightInTiles— Theheight of thetile map.

If the width of the image or mask is not 8, atransparent color is used in the image or mask, or if
you define abigger map than you've actually created, an I 1 legalArgumentException will be
thrown.

Finaly, you can determine where within the Ti IeMap the tiles should be drawn using the
setPositionInMap(int x, int y) method.

The Tiles

Y ou can define your tile using any Javaimage, Extended Image, or a byte array.

Although tiles are often geometric, it often makes sense to use a byte array to create the pattern.
Each byte in the array should either be O (white) or 1 (black). Each pattern within the array should
be 8 pixels wide and 8 pixels high.

Y ou can create as many images as you want within a given array. For example, the following code
defines an array of two different tiles—the mountains and the forests. If you squint at the zeros
and ones, you can amost make out what the pattern will look like. Figure 23.4 corresponds to the
tiles created here:

final static private byte tiles pixels[] = {
0,0,0,0,0,0,0,0, // First tile: The mountain
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,1,1,0,0,0,
0,0,1,1,1,1,0,0,
0,1,1,1,1,1,1,0,
1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,
0,0,0,1,1,0,0,0, // Second tile: The tree
0,0,1,1,1,1,0,0,
0,1,1,1,1,1,1,0,
0,1,1,1,1,1,1,0,
0,0,1,1,1,1,0,0,
0,0,0,1,1,0,0,0,
0,0,0,1,1,0,0,0,
0,0,0,1,1,0,0,0,
};

Figure 23.4. A custom tile.

354

The Tile Background

Just as we used a byte array to define each tile, the Ti ledBackground itself can be designed
using a byte array. Each byte has a different meaning:

e 0— Thistileistransparent.

e 1— Thistileis purewhite.

e 2— Thistileis pure black

e 3 and up—Theisacustom user-defined tile.

For example, you can create a Ti ledBackground asfollows:

final static private byte map[] = {

0,0,0,0,0,0,0,0, //1line with predefined transparent tiles
1,1,1,1,1,1,1,1, //line with predefined white tiles
1,1,1,1,1,1,1,1, //line with predefined white tiles
2,2,2,2,2,2,2,2, //line with predefined black tiles
2,2,2,2,2,2,2,2, //line with predefined black tiles
3,3,3,3,3,4,4,4, //line of hills (3) and trees (4)
3,3,3,3,3,4,4,4, //line with mixed tiles

3,3,3,3,3,4,4,4, //line with mixed tiles

}:

Y ou could then draw the new Ti ledBackground asfollows:

TiledBackground tiledBack = new TiledBackground(GraphicObjectManager.
createTextureBits(8,

16,tiles_pixels), null, map, 8,8);

tiledBack.setPositionlnMap(0,0);

GraphicObjectManager spriteManager= new GraphicObjectManager();
spriteManager.addObject(tiledBack);

spriteManager.paint(offscreen, 0, 0); //draw to doublebuffer image

Y ou could then draw the double buffer offscreen image in your paint method:
g-drawlmage(offscreen, 0, 0, Graphics.LEFT | Graphics.TOP)

A sample tiled screen appears as in Figure 23.5, with abird sprite in the foreground, aring pattern
set of tiles behind that, an 8-ball graphic in the next layer, and a set of geometric tile shapesin the

355

background. Everything moves at once, smoothly and easily. The code for creating this effect can
be found in the src directory of the Siemens Toolkit.

Figure 23.5. A tiled background with sprites behind and in front.

Tiling, asyou can see, is agreat feature that really adds depth and texture to games.

Flashing

One neat little trick your game can perform is to flash the phone's backlight. Thisis agreat way of
getting the player's attention. Y ou can flash things whenever your hero gets hit, whenever you
open anew door to your dungeon, or even create an atmospheric game with real-time day and
night.

To do this, just usethe Light class. It couldn't be simpler:
Light.setLightOn();
or

Light.setLightOff();

356

WARNING

Be cautious, though: Every time you flash on the light, you are wasting extra battery power.
Be sure to test your game out, so that it doesn't sap away all the phone's energy too quickly.

Good Vibrations

There is something mobile phones offer that most other gaming appliances cannot—vibrations.
Most modern maobile phones have the capability to produce acute vibrations when the user is
called as ameans of silently letting the user know that somebody is trying to reach him.

Of course, the vibrator can aso be used for more entertaining purposes. For example, when player
flies a spaceship through a swarm of meteors, the device can vibrate after every collision.

Siemens offers aMIDP extension that enables you to manipulate the device's vibrator. To produce
vibration, the com.siemens.mp.game.Vibrator classisused. The class provides the
following static methods:

e triggerVibrator(int duration)— Activatesthe vibrator for a given number of
milliseconds. The method should be used to provide shakings and collisions.

e startVibrator()— Activates the vibrator and keeps it on.

e stopVibrator()— Deactivates the vibrator.

So, you could add vibrations to the racing game that we have been developing using code similar
to the following:

private void checkCollision()

{
iT (enemyList.collide(player))

{
player._setEnergy(player.getEnergy() —

COLLIDE_ENERGY);
Vibrator.triggerVibrator(100);

}
}

When two sprites collide together, the vibrator's static method triggerVibrator() iscaled.
The vibrator isinvoked for a duration of 100 milliseconds.

Music, Sweet Music

Onething that is notably lacking from most MIDP games is decent sound. The Siemens classes
comprise one of the best mobile sound APIs on the market.

To play sounds, you need only accessthe com.siemens.mp.game.Sound class. This class has
only one static method: playTone(int freq, int time).

This method plays a tone of the specific frequency for a specified amount of time given in
milliseconds. For example, to play atone at 400Hz for 100 milliseconds, you would use the
following line:

357

com.siemens.mp.game.Sound.playTone(400, 100);

If you are musically inclined, you can combine many of these calls together to perform neat sound
effects.

Melodies

In addition to the generic Sound method, the Siemens API aso enables you to take predefined
musical notes and piece them together, creating rich and beautiful sounding themes, sound effects,
and melodies. Siemens extensions offer the com.siemens .mp.game .Melody classto play
melodies composed with the com. siemens .mp . game .MelodyComposer class.

The melodies are based on the custom ring-tones that Siemens users can download to personalize
their phones. The melodies have the following features:

e Threefull octaves and 8 notes above the third octave
e Multiple note durations, from 1/16 to awhole note, including dotted notes.

For example, you can use various durations of the musical notesC, D, E, F, G, A, H (TheH
replaces the B in the Siemens API), as well as others, to easily compose complex, rich tunes.

Composing Like a Virtuoso
The MelodyComposer class has the following methods:

e setBPM(int bpm)— Sets beats per minute (the default value is 60bpm).

e appendNote(int note, int length)— Appends a predefined note of predefined
length to the melody composer. All predefined notes are represented as constants. A list
of valid notes appearsin Table 23.1. Valid lengths can be found in Table 23.2.

e getMelody()— Returnsthe instance of the Me lody object.

¢ resetMelody()— Resetsthe composed melody.

¢ length()— Counts the tones in the composed melody.

e maxLength()— Returns the maximum allowed size of a melody.

Table 23.1. Notes You Can Play With

INO_TONE 'Silence

‘TONE_CO—TONE_C4 |The C note played at various octaves
TONE_CI1SO- The C semitone note played at various octaves
TONE_C1S4

TONE_DO-TONE_D4 The D note played at various octaves
TONE_DISO- The D semitone note played at various octaves
TONE_DI1S4

‘TONE_EO—TONE_E4 |The E note played at various octaves

‘TONE_FO—TONE_F4 |The F note played at various octaves

TONE_F1S0— The F semitone note played at various octaves
TONE_FI154

‘TONE_GO—TONE_G4 |The G note played at various octaves
TONE_GI1SO— The G semitone note played at various octaves
TONE_GI1S4

TONE_AO-TONE_A4 The A note played at various octaves

TONE A1SO- The A semitone note played at various octaves

358

TONE_AIS3

TONE_HO-TONE_H3 The H note played at various octaves

TONE_MARK Sets a marker at a specific point, enabling you to create a variant
to be repeated

TONE_PAUSE Pauses the melody

TONE_REPEAT Repeats the melody n times from the beginning. Set n in the

length parameter

TONE_REPEAT_MARK |Repeat n times from the last TON_MARK call

TONE_REPEV Repeat forever from the very beginning of the melody
TONE_REPEV_MARK Repeat forever from the last TON_MARK call
TONE_REPON Repeat n times from the beginning, then continue on
TONE_REPON_MARK Repeat n times from the preceding TON_MARK call, then go on
TONE_STOP Stop the current sequence

Table 23.2. Tone Length Values
TONELENGTH_1 1 A whole length
TONELENGTH_1_16 1/16 length
TONELENGTH_1 2 1/2 length
TONELENGTH_1 32 1/32 length
TONELENGTH_1 4 1/4 length
TONELENGTH_1_ 64 1/64 length
TONELENGTH_1_8 1/8 length

TONELENGTH_DOTTED_1_1 |A whole length, dotted. A dotted note is equivalent to adding
half the beats to the note. For example, if you dot a full-
length note, you get a note that is 1 and a half beats long.

TONELENGTH_DOTTED_1_16(1/16 length, dotted

TONELENGTH_DOTTED_1_2 |1/2 length, dotted

TONELENGTH_DOTTED_1_32|1/3 length, dotted

TONELENGTH_DOTTED_1_4 |1/4 length, dotted

TONELENGTH_DOTTED_1_64|1/64 length, dotted

TONELENGTH_DOTTED_1_8 |[1/8 length, dotted

There are many Siemens ring tones published on the Web. If you a do a simple search, you can
find numerous tunes to use in your games. For example, the song "Say Y ou'll Be There" by the
Spice Girls can be created using the following sequence:

Ais2(1/8) Ais3(1/8) F3(1/8) Gis3(1/8) Dis3(1/8) Cis3(1/16) Ais2(1/8)
P(1/16) F3(1/8) Dis3(

1/8) Cis 3(1/16) A2(1/8) P(1/16) F3(1/8) Dis3(1/8) Cis3(1/8)
Gis2(1/16) Cis3(1/16) C3(1/

16) Gis2(1/16) Ais2(1l /8) Ais3(1/8) F3(1/8) Gis3(1/8) Dis3(1/8)
Cis3(1/1 6) Ais2(1/8) P(1/

16) F3(1/8) Dis3(1/8) Cis3(1/16) A2(1/8) P(1/16) F3(1/8) Dis3(1/8)
Cis3(1/8)

Playing the Melody
After amelody is composed, you can retrieve the Me I ody object using getMe lody (), then

caling the play () method within the melody to start the tune a-crankin'. The melody can be
stopped by calling the stop () method.

359

For example, to play alittle ditty when the game is over, use the following code:

private void checkCollision()

{
// Other stuff goes here. ..

it (player.getEnergy() <= 0)

running = false;

MelodyComposer comp = new MelodyComposer();
comp.setBPM(120);

try

{
comp .appendNote(MelodyComposer . TONE_E1,

MelodyComposer . TONELENGTH_1_4);
comp .appendNote(MelodyComposer.TONE D1,
MelodyComposer . TONELENGTH_1_2);
comp -appendNote(MelodyComposer . TONE_C3,
MelodyComposer . TONELENGTH_1 4);
} catch (Exception ex) {}
Melody melody = comp.getMelody();
melody.play(Q);
}
}

A MelodyComposer object is constructed without any parameters. To make the melody quick,
the beats per minute value is doubled to 120bpm. When the energy goes below zero, the melody

E-D-C isplayed, with the D duration stretched getMe lody (), then calling the twice aslong as
the other notes.

GSM Functions

The com.siemens.mp.gsm package enables you to perform phone-specific functions, such as
accessing the phone book, dialing a voice call number, or sending an SM S message.

Making a Call

Would you like to create a game that actually dials the police department if your character
performs an illegal action? Although it is highly not recommended to do so, you can using the
Siemens API!

Simply call the static start() method of the com.siemens.mp.gsm.Call () object, passing
in the phone number:

Call _start(*'212-555-1212");

Note that once you begin a call, the currently running Java application will automatically be
terminated. An 1l legal ArgumentException isthrown if the number isin anillegal format,
or if the phone does not allow calls to be made from Java.

Accessing the Phone Book

To get al the Missed Dialing Numbers (MDN) currently within the phone's address book, call the
getMDN() method within the com.siemens.mp.gsm.PhoneBook object:

360

String n[] = PhoneBook.getMDN(Q);

If al goeswell, aString array with al the numbers will be returned.

SMS Messages

Yes, it'strue! You can send an SM S message using the Siemens API. To do so, just activate the
static send () method within the com.siemens.mp.gsm.SMS object, passing in the
destination's phone number and the message you want to send:

SMS.send(*'212-555-1231","Hi there!™);

Most phones will display a dialog box asking the user to confirm whether or not she wants to
actually send the SMS.

If the number or the text message is missing or in an incorrect format, an

11 legalArgumentException will bethrown. If the SMS network is not available, an
10Exception will bethrown.

Input Output

The Siemens API not only lets you send SMS messages and initiate calls, but it also enables you
to load and savefilesto thelocal file system, or send or receive data via the mobile phone's serial
or infrared port.

Sending and Receiving Data

To actually send some data, use the com.siemens.mp.io.Connection class. Construct the
Connection classasfollows:

Connection conn = new Connection(String connectTo);
The connectTo parameter can be one of several values:
e SMS:number— Connectsvia SMSto a specific phone number.
e IRDA:— Connects through the infrared port.

e INTERNAL :— Connects through the phone'sinterna port.

Y ou can then call the send(byte[] data) method to actually send some data. To get a
response, usethe setListener(ConnectionListener listener) method.

To create alistener, just create a class that implements
com.siemens.mp.io.ConnectionListener. You must then add this method to the class

public void receiveData(byte[] data)

If any datais received from the given port, this method will be triggered.

Saving and Loading Files

361

The Siemens SL45i phone, unlike many other mobile devices, has an explicit file system with
directories that you can read or write to.

Thecom.siemens.mp.io.File package contains a bunch of methods that enable you to easily
create afile, writeto afile, read from afile, or even delete afile.

For security reasons, you may only access files beneath the current Java applet's path. As such,
only relative pathnames are valid, and you may not access parent directoriesusing the . . directive.

Thefirst time you run the Fi le class, a special storage directory will be created beneath your
applet's directory.

e public int open(String filename)— Opensafile named filename and
prepares the file for reading or writing, in binary (untranslated) mode. If the specified file
does not already exist, it will be created. Returns afile descriptor integer that can be used
to accessthefile.

e public int close(int fileDescriptor)— Closesthe file associated with the
given fileDescriptor.

e public int write(int fileDescriptor, byte[] buf, int offset,
int numBytes)— Writes numBytes from the byte array buf at a given offset into the
file associated with fi leDescriptor. Writing will begin at the current position of the
file pointer. After writing a set number of bytes, the file pointer isincreased by that
number. To change the pointer, use the seek () method.

e public int read(int fileDescriptor, byte[] buf, int offset, int
numBytes)— Reads numBytes (or less) from the file associated with
fileDescriptor into the byte array buf at agiven offset. The read operation begins at
the current position of the file pointer. After the read operation, the file pointer points to
the next unread character. The method returns the total number of bytes read. If the value
isless than zero, an error has occurred.

e public static int debugWrite(String filename, String
infoString)— A useful way of creating debug logs for your program; this method
adds a given string to the indicated filename.

e public static int exists(String filename)— Returnstrueif the given
filename exigts.

e public int seek(int fileDescriptor, int seekpos)— Movesthefile
pointer for the specified fi leDescriptor to the specified seekpos location.

e public int length(int fileDescriptor)— Returnsthelength of thefile.
Length will be less than zero if there isan error.

e public static int delete(String fileName)— Removes a specificfile
from the storage directory. Returns —1 if successful.

e public static int spaceAvailable()— Returns how many free bytes are
currently available within the phone's file system.

e public static int rename(String source, String dest)— Renamesthe
given source file to the new destination name.

e public static int copy(String source,String dest)— Copiesthe given
source file as a new file with the destination name.

Summary

Although the API in this chapter applies only to the Siemens SL45i phone, it al'so givesyou a
glimpse of where 2ME profiles are heading.

362

With better graphic rendering, slicker sprites, tiled backgrounds, delightful audio, and telephonic
features, it's possible to design and develop truly kick-butt games.

363

Part VI: Micro Racer

IN THIS PART

24 Micro Racer: Putting It All Together

364

Chapter 24. Micro Racer: Putting It All Together

INTHISCHAPTER

The Bad News

The Good News

Putting Together the Pieces

One Game Running Everywhere

Summary

In this chapter, we'll take al the pieces of half-baked gameness from other chapters and blend
them together to achieve afull-fledged, professiona version of Micro Racer. But first, let's recap.

The Bad News

The bad news, plainly put, isthat programming advanced games for handheld devicesis atotal
pain. Compared to a desktop system, the screens are miniscule, the user interface is barbaric, the
memory is limited, network connectivity is slow and choppy, and the processor is laughable.

Programming in a language like Java only adds a layer onto this hard-to-digest cake. Sun's
Kilobyte virtual machine (KVM) getsits name because it takes up afew kilobytes of space. But
even those few bytes are wasteful. The KVM also usurps afair bit of memory. In addition, Java
classes have the added overhead of a dow startup. While startup is going on, the KVM is going
through the class, allocating heap space and verifying the bytecode.

Additionally, a Java programmer is restricted to the capabilities of the virtual machine. Because
Javamust work on awide variety of devices, it iswritten for the lowest common denominator.

For example, here are some big stumbling blocks:

¢ No transparent images. Without transparency, overlapping sprites ook really prickly. Any
image that might overlap another image or background element will need to be
rectangular in order to look good!

e You cannot grab, copy, or edit the pixels of RGB images on-the-fly. This means that
ultra-cool graphic effects like fading in, explosions, and dynamic shadows are impossible.

e Thereisnofill-polygon or fill-triangle method, which makes rendering 3D images quite
difficult.

e You cannot copy raw pixel datato the screen (known as blitting). This makesiit
unfeasible to do any texture-mapping or particle effects, and so on.

e Other than elementary system beeps, thereisno audio at all. I'll say that again: Thereis
no audio at all!

e Thereisno floating-point math. This makes some 3D and physics, and even sprite
movement, difficult.

e Thereisno native support or Java Native Interface (JNI). That means you can't dial the
phone, work with any of the ringtones, work with any native user interface widgets, and
SO on.

Additionally, Anfy Teamin Italy has put together a detailed list of gaming and graphics-related
stuff that MIDP is missing. Y ou can seeit at http://www.anfyteam.com/dev/j 2me/midpimage.html.

365

http://www.anfyteam.com/dev/j2me/midpimage.html

Because of al the restrictions on asmall device, there is no way of fitting in ajust-in-time (JIT)
compiler. This means that code will run quite lowly. In fact, while playing around with some
casual tests, a J2ME application runs about three to eight times slower than a native Palm
application written in a compiled language, such as C.

So is 2ME like war—good for absolutely nothing?

The Good News

Throughout this book we have discussed techniques to sidestep or deal with many of the
preceding problems. Y ou have learned how to create your own transparency, make the most out of
dow networks, and simulate floating-point math.

In addition, more and more manufacturers are coming out with snazzier extensionsto MIDP,
allowing for image manipulation, transparency, and enhanced audio. i-mode phones come with
some great sound and graphics features out of the box. Siemens, with their nifty game API, are the
first to deliver on the promise of extensions. Other companies such as Ericsson and Nokia have
game APIsin store and are likely to follow suit. Of course, using one of these APIs means that
your game will only work on one particular brand of phone.

It'simportant to remember that Javais perhaps the easiest modern language to develop in. With
garbage collection of old objects and the lack of memory allocation and pointers, it's a great way
to create quick prototypes and develop them out into full apps. The object-oriented nature of Java
makes it easy to maintain, enabling devel opers to make sweeping code changes with alittle
modification to a superclass.

Writing a native handheld application requires countless hours of debugging, emulating, testing,
deploying, re-debugging, and packaging. Write to the wrong memory location, and you can easily
fry the machine.

If you waste alittle memory on a desktop or server application, nobody will bat an eye. But when
dealing with atiny space like a mobile phone, every bad byte hurts. Memory leaks in Java are
possible, but they are much easier to avoid.

Perhaps the most compelling argument for using Java is that—you guessed it—you can write once
and run everywhere. A game written for a Motorola cell phone can also run on aNokia, an
Ericsson, a Siemens, or a Palm. The same code could even be compiled and run as an appletin a
Web browser, as an application on amillion-dollar server machine, in your car's dashboard, or—
eventually—in a Java-powered neural link to your own brain!

Finally, don't forget about the promise of wireless devices. Although it might seem silly to try to
achieve arich, meaningful immersion on atiny 100x100 pixel screen, there's one thing mobile
phone games give you that even the best consoles can't provide: Micro games are always with you,
and can be played anywhere you go. This not only means that games can now be more convenient,
but wholly new types of games can be designed that take advantage of new lifestyles.

Putting Together the Pieces

So what do we have here?

366

e InChapters 15, 16 and 17, we developed a sprite system and figured out how to create,
move, and animate our hero (the race car) and the enemy cars. We also figured out how to
detect and deal with collisions.

e In Chapter 18, we added sound.

e In Chapter 19, we discussed ways of saving information as the local database record. This
isauseful way of keeping track of how much money you have to spend, and what special
attributes your car has.

e In Chapter 20, we created the Garage, an online community you can visit to buy and sell
car parts.

So what really remains isto tie everything together. Basically, our game needs to become more
than a simple action game—we need to create a complex data structure that lets the player know
how good her car is. We need to structure the car in terms of its chassis, engine, tires, weapons,
and power-ups. Thisway, when the player goes online to the Garage to buy components, these
items will have meaningful values.

Right now, the car doesn't have any weapons at all! Let's look at how to add some simple weapons,
such as ail dicks, machine guns, and flamethrowers.

Another important element will be power-ups. We should scatter ammo, tires, new weapon types,
and more throughout the track so that players can spiff up their current weapon. Thiswill make it
worth moreif they try to sell it online.

To deal with this new complexity and power, we should also create smarter computer-controlled
opponents. Some of the enemies can have weapons of their own! Thiswill involve more advanced
artificial intelligence techniques.

Finally, we should create several types of tracks to make the game more interesting, and inspire
playersto try various levels.

Whew! Canwedo it?

Adding Weapons

To add weapons, al we need to do is create aWeapon class. In theory, various weapons can
extend from this class, modifying variables and overriding methods as necessary.

To avoid having too many classes, however, we can start by packing several similar weapons
within the same class. The classin Listing 24.1 handles a flamethrower and oil slick.

Listing 24.1 The Weapon Class

public class Weapon
{
5-

private int weapontime ;
53

private int weaponammo
private String name;
private String description;

public static final int FLAME = O;
public static final int OIL = 1;
private int weapontype = FLAME;
private boolean upforsale = false;
private String displayname = "*';

Weapon(int type,int time,int ammo,String n,String d)
{

367

weapontype = type;
weapontime = time;

weaponammo ammo;
name = n;
description = d;
displayname = name.substring(0,5);
3
public int getWeaponTime()
{
return weapontime;
3

public void setWeaponTime(int t)
{

weapontime = t;

}

public int getWeaponAmmo()
{

return weaponammo;

}

public void setWeaponAmmo(int a)

{

weaponammo = a,

}
public int getWeaponType()
{
return weapontype;
}

public void setWeaponType(int t)
{

}

public boolean fire()
{

weapontype = t;

if (—weaponammo <= 0)

weaponammo = O;
return false;

}

return true;

}

public void setName(String n)

{
displayname = n.substring(0,5);

name = n;
}
public String getName()
{
return name;
}

public void setDescription(String n)

{

368

description = n;

}

public String getDescription()
{

}

public boolean getUpForSale()
{

return upforsale;

}

public void setUpForSale(boolean u)

{

upforsale = u;

}

public String getDisplayName()
{

return (displayname +": "+weaponammo) ;

}

return description;

}

Notice how each weapon has five main variables that need to be set when the weapon is
constructed:

e Time—How long the weapon lasts when it istriggered. For example, a flamethrower
might stay "on" for five frames.

¢ Ammo—How many units of ammunition the weapon currently has. Every time the
weapon is used (by calling the fi re () method), this number is decremented.

e Type—Thetype of weapon used. Thiswill help the graphics engine figure out which
image to paint.

¢ Name—The name of the weapon. This can change as the player upgradesit in the Garage.

e Description—A good description of the weapon. Thiswill be important when the player
triesto sell it online.

The actual visual weapon frames themselves can be loaded using the Cache class:

public static Image oillmage;
public static Image flamelmage;

static

flamelmage = Image.createlmage(*'/flame.png™);
oillmage = Image.createlmage(*'/oil.png"™);

}

Our existing GameCanvas class can then handle the weapon as shown in Listing 24.2. This
listing just shows the parts of the class relevant to dealing with a weapon.

Listing 24.2 Adding Weapons to GameCanvas

public class GameCanvas extends Canvas

{

private Sprite theweapon;
private boolean weaponon = false;
private int weaponcount = 0O;

369

private Weapon weapon;

public GameCanvas(Game midlet, Form form)

{
try

// Use weapon 0 for now

weapon = game.cs.getWeapons()[O0];

theweapon = new Sprite(Cache.flamelmage,10,14, 2);

theweapon.setX(Float.createFloat((Cache.width -
player.getWidth(Q)) 7 2));

theweapon.setY(Float.createFloat(Cache.height -
(player.getHeight() *2) - 14));

theweapon.setVisible(true);

catch (Exception ex)

{
System.out.printIn("'Problem Creating Sprites!');
}
}
public void keyPressed(int keyCode)
{

key = getGameAction(keyCode);
// When the fire key is pressed, trigger the weapon.
if (key == FIRE)

if (lweaponon && weapon.fire())

{

weaponon = true;
weaponcount = 0;

}
}

public void paint(Graphics gr)
{
// Paint other things

// Paint the racecar

}}-Draw the weapon
theweapon.setX(player.getX());
if (weaponon)

// Draw flame in front
if (weapon.getWeaponType() == Weapon.FLAME)
{

theweapon.setVisible(true);

}
// See if the weapon should be switched off
if (++weaponcount > weapon.getWeaponTime())

{

weaponon = false;
theweapon.setVisible(false);

3
theweapon.paint(g);
s

// Draw other interface items here

i%-(weapon = null)

370

{
g-drawString(weapon.getDisplayName(), (getWidth() - ROAD_WIDTH)

/ 2 + 1, 15, Graphics.TOP | Graphics.LEFT);

gr.drawlmage(scene, 0, 0, Graphics.TOP | Graphics.LEFT);
}

private void checkCollision()

{

// Did enemy hit weapon?
it (weaponon)

Sprite collidedwith = enemyList.collideSprite(theweapon);
// Get rid of enemy.
ifT (collidedwith != null)
enemyList.deleteSprite(collidedwith);
}
}
}

Thisis how it works:

1. Theweaponisinitialized as a sprite. For now, well just use one type of weapon, the
flamethrower. Notice that the weapon is retrieved from the cs object in the game. Thisis
our data store object, which we will discuss later in this chapter.

2. When the user hits the FIRE button, the weapon is triggered. The weaponcount is set to
zero.

If the weapon has no more ammo, then it will not fire. See the i re() method in the
Weapon class.

3. Thenext timethe car is painted, the weapon sprite is drawn in the appropriate place,
which is generally right in front of the car. More advanced weapons, like missiles, can
even move across the screen.

The weaponcount isincremented. If the weaponcount is more than the weapontime,
then the weapon is switched off. The weapon will no longer be painted.

4. If an enemy car collides with the weapon, the enemy is removed from the board.

If you want, you can modify the Micro Racer code to treat collisions more redistically.
For example, you could deduct a certain number of hit points from the enemy. Various
weapons would exert various types and amounts of damage. If the enemy's hit count
reached zero, then a fantastic crashing animation would be shown as the enemy exploded
inaball of flame.

The final game, with weapons and all, appearsin Figure 24.1.

Figure 24.1. Toasting enemies with our new flamethrower.

371

Better Enemies: Artificial Intelligence

It doesn't take awhole lot to make our enemies smarter. Right now, cars are randomly dropped on
the track and simply move downward. Let's spice things up a bit by making some enemies move
back and forth randomly. Let's also change the vel ocity, so some cars are faster than others.

Thisisn't redly artificia intelligence (it's more like artificial stupidity). But at least it makes things
alittle more interesting. To add real artificial intelligence, you'd want to give different drivers
personality traits—some would be aggressive, some timid, and so on. Various cars would react to
where you go and what weapons you fire in complex and human-like ways. Additionally, enemy
cars would need to react to each other. They should not bump against each other or, asis currently
the case, overlap with each other.

First, create some random starting positions and velocities using a better initEnemies()
method:

public void initEnemies()

{

enemyList = new SpriteManager(Cache.width, Cache.height);
int size = length / Cache.height * 4 - 1;
Random rnd new Random();
for (int i 1; 1 <= size; i++)
{
try

372

{
Sprite sprite = new Sprite(Cache.enemylmage,
Cache.enemylmage.getWidth(), Cache.enemylmage.getHeight(),
1);
// Figure out where the enemy starts
int x = rnd.nextInt() % (ROAD_WIDTH -
Cache.enemylmage.getWidth());
X=X<0?-Xx1:X);
// Draw at a random X
sprite.setX(Float.createFloat((Cache.width - ROAD WIDTH) / 2 +
xX));
// Scatter the enemy"s Y position
sprite.setY(Float.createFloat(- 1 * Cache.height 7/ 4));
// Modify the speed slightly
X = rnd.nextInt() % 1000;
long veer = Float.createFloat(0,x);
long newspeed = Float.add(veer,enemyspeed);
sprite.setVy(newspeed);
// Move the enemy back and forth
X = rnd.nextInt() % 2;
long sidemove = Float.createFloat(x);
sprite.setVx(sidemove);
enemyList.addSprite(sprite);
} catch (Exception ex) {}
}
}

Then, in the moveSprites() method, be sure that an enemy doesn't drive off the road. If acar
swerves too far to the left or right, reverse its horizontal (x) velocity:

private void moveSprites()

{

for (int i = 0; i < enemyList.size(); i++)
{
Sprite sprite = enemyList._getSprite(i);
sprite.setY(Float.add(sprite.getY(), sprite.getvy()));
// Make sure not hitting the side walls
sprite.setX(Float.add(sprite.getX(), sprite.getVx()));
if ((Float.getinteger(sprite.getX()) < (Cache.width -
ROAD_WIDTH) 7 2) ||
(Float.getinteger(sprite.getX()) +
sprite.getWidth() > (Cache.width + ROAD_WIDTH) 7/ 2))

// Move in other direction
sprite.setVx(-sprite.getVx());

b
Better Control

Asit stands, the timer in Micro Racer doesn't serve much of a purpose. After al, the player's race
car can only move at one speed. Well, it shouldn't be too hard to make things more interesting. For
starters, we should use the up and down arrow keys to speed up or slow down our racecar.

Thisis simple enough, and occursin the moveSprites() method, which works with a global
myspeed variable:

373

private long myspeed = 0;
private void moveSprites()

switch (key)
{
case Canvas.LEFT:
if (Float.getinteger(player.getX()) >
(Cache.width - ROAD_WIDTH) / 2)
player.setX(Float.sub(player.getxX(),
Float.createFloat(2)));
break;
case Canvas.RIGHT:
if (Float.getinteger(player.getX()) + player.getWidth() <
(Cache.width + ROAD_WIDTH) / 2)
player.setX(Float.add(player.getX(),
Float.createFloat(2)));
break;
case Canvas.UP:
if (Float.getlnteger(myspeed) > 10)
break;
myspeed = Float.add(myspeed,1);
for (int i = 0; 1 < enemyList.size(); i++)

{
Sprite sprite = enemyList.getSprite(i);
sprite.setVy(Float.add(sprite.getVy(),myspeed));
}
break;

case Canvas.DOWN:
if (Float.getinteger(myspeed) < -10)
break;
myspeed = Float.sub(myspeed,1);
for (int i = 0; 1 < enemyList.size(); i++)

{
Sprite sprite = enemyList.getSprite(i);
sprite.setVy(Float.add(sprite.getVy(),myspeed));
}
break;

;-

Notice that the longer you hold down the up button, the more each enemy's vel ocity increases. The
finish line's velocity will also increase, as will the power-ups.

Thetotal effect of thisisthat everything will move downward at a faster rate, making it seem like
you are speeding up!

Toredly get the most of this effect, well position the race car dightly above the bottom of the
screen by modifying the Y position in the GameCanvas constructor:

player.setY(Float.createFloat(Cache.height - (player.getHeight()
*2)));

Adding Power-Ups

To add a power-up, we just need to create afew random Sprites in the GameCanvas class.
This part is pretty easy, and similar to adding enemies. The only difference is that power-ups don't
move from side to side!

374

For the sake of simplicity, let'sjust create two types of power-ups—one that gives you an extra
point of ammo, and one that gives you anywhere from 5 to 20 dollars. Well scatter these power-
ups throughout the track.

First off, create a new power-up graphic and load it using the global Cache class:

public static Image poweruplmage;
static
{
try
{
poweruplmage = Image.createlmage(''/power.png™);
} catch (Exception ex) {}

}

Simply create another class-wide SpriteManager object to hold the power-ups, and throw in a
new initPowerups() method asfollows:

private SpriteManager powerUpsMoney;

public void initPowerups()
{
powerUpsMoney = new SpriteManager(Cache.width, Cache.height);
// The number of power ups is half the number of enemies.
// That seems fair!
int size = (length / Cache.height * 4 - 1) / 2;
Random rnd new Random();
for (int i 1; 1 <= size; i++)
{
try

{

Sprite sprite = new
Sprite(Cache.poweruplmage,Cache.poweruplmage. getWidth(), Cache.
poweruplmage.getHeight(), 1);

// Figure out how where to put it...

int x = rnd.nextInt() % (ROAD_WIDTH -
Cache.enemylmage.getWidth());

X=X<07?-Xx1:X);

// Draw at a random X

sprite.setX(Float.createFloat((Cache.width - ROAD WIDTH) / 2 +

x));
// Scatter the power ups Y position
sprite.setY(Float.createFloat(- 1 * Cache.height /7 4));
powerUpsMoney.addSprite(sprite);
} catch (Exception ex) { }

}
}

You can call initPowerups() inyour Tracks class, right after you call initEnemies().
This enables you to give different tracks different types or amounts of goodies.

To create the weapon power-ups, you would simply create yet another SpriteManager instance
called powerUpsWeapon. Y ou can then paint your power-ups within the GameCanvas in the
exact same way you paint your enemies:

public void paint(Graphics gr)
{

375

// paint power ups first since they are on the ground
powerUpsMoney.paint(g);

powerUpsWeapon.paint(g);

// Then paint other things

,

Likewise, you can move the power-ups based on your car's current speed:

private void moveSprites()

{

for (int i = 0; i < powerUpsMoney.size(); i++)
{
Sprite sprite = powerUpsMoney.getSprite(i);
long powerUpSpeed = myspeed;
if (Float.getlnteger(powerUpSpeed) <= 3)
powerUpSpeed = Float.createFloat(3);
sprite.setY(Float.add(sprite.getY(), powerUpSpeed));

}

Finally, you can check when your race car touches a power-up. Remove the power-up and award
more ammo as follows:

private void checkCollision()

{

// Did we hit a power up?
Sprite collidedwith = powerUpsWeapon.collideSprite(player);
ifT (collidedwith != null)
{
// Remove the power up
powerUpsWeapon.deleteSprite(collidedwith);
Random rnd = new Random();
// Add 1 ammo point

weapon . setWeaponAmmo (weapon . getWeaponAmmo()+1);

collidedwith = powerUpsMoney.collideSprite(player);

iT (collidedwith != null)

{
// Remove the power up
powerUpsMoney.deleteSprite(collidedwith);
Random rnd = new Random();
// Add from 5 to 15 dollars
int x = rnd.nextint() % 15;
X=X<0?-Xx1:X);
X += 5;
game.cs.setCash(game.cs.getCash()+x);

}

}

The game . cs variable seen in the preceding code is discussed in the next section. It pointsto
your CarStore class, which handles all weapons and cash and keeps the values persistent from
gameto game. Y our final game will have little power-up blobs, as shown in Figure 24.2:

Figure 24.2. Adding power-ups across the track.

376

Tying In the Game with the Data Store

To make Micro Racer interesting, data has to be persistent from game to game—how much money
you have, which weapons you've got, how much ammo each weapon has, and so on. The more
inventory we make persistent, the more continuous and meaningful objects in the gameworld
become.

To create storage for money and weapons, check out the CarStore class from Chapter 19, "Be
Persistent: MIDP Data Storage." We will modify it slightly so that it reads and writes each
weapon's name and description, a ong with the ammo, weapon time, and weapon type:

// Write the weapon®s name
dout.writeUTF(weapons[i].getName());

// Write the weapon®s description
dout._writeUTF(weapons[i]-.getDescription());

And for reading

// Read the Weapon®s name
name = din.readUTF(Q);
System.out.printIn(''Got the Weapon name: "+name);

// Read the Weapon®s description
description = din.readUTF(Q);

377

Thetrick now isto create aglobal CarStore class. Well cal it cs and put it in our Game class,
asshownin Listing 24.3.

Listing 24.3 Creating a Car Store and Dealing with It

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

public class Game extends MIDlet

{
private Display display;

public static CarStore cs = new CarStore();
public StartForm form;

public GarageClient garage;

public void startApp(Q

// To begin, read values from storage
if (Ics.readStore())
{
// 1f we have problem use default values....
cs.setCash(100);
Weapon[] weapons = new Weapon[2];
weapons[0] = new Weapon(Weapon.FLAME, 6, 7,"Flame Thrower",
"Toasts Cars In
Front');
weapons[1] = new Weapon(Weapon.OIL, 15, 2,"0il Slick","Makes
Cars Slide'™);
cs.setWeapons(weapons) ;
}

// Be sure we have at least SOME ammo
for (int i=0; i1 < cs.getWeapons().length; i++)

if (cs.getWeaponsQ[i] = null &&
cs.getWeapons()[i]-getWeaponAmmo() <= 0)
cs.getWeapons()[i]-setWeaponAmmo(10);
}

garage = new GarageClient(this);
display = Display.getDisplay(this);
form = new StartForm(this);
display.setCurrent(form);

}
public void pauseApp() { }

public void destroyApp(boolean b)

{
System.out.printIn(‘'DestroyApp() called. Writing data to
RecordStore™);

System.out.printIn(""Writing to the store!');
cs.writeToStore();

}

public Display getDisplay(Q)
{

return display;

}

378

public void exit()

{
destroyApp(false);

notifyDestroyed();

}
}

Thisiswhat happens in the preceding code:

1. When the game begins, it attempts to read the current list of weapons and the current
amount of cash from storage.

2. If thereading fails, it might be because thisis the first time the game has been played.
The game gives the player some default values. Seven rounds of a basic flame thrower,
two ail slicks, and $100 cash.

3. If thereading succeeds, then the CarStore classwill contain an array of weapons as
well as the current amount of cash. Y ou can grab these items any time throughout the
game by using cs.getWeapons() or cs.getCash().

4. When the gameis over, destroyApp() isautomatically called. The game takes this
final opportunity to store the current list of weapons and current cash balance.

That'sit! By putting this code in the constructor of StartForm, the player can display the current
balance and weapon list on the start screen the next time the game is started:

append(*'Cash: "+game.cs.getCash());

for (int i=0; i < game.cs.getWeapons().length; i++)

{
append('Weapon#"+(i+1)+": "+game.cs.getWeapons()[i]-getName());

The starting form will appear asin Figure 24.3.

Figure 24.3. Showing our current balance and weapons.

379

Tying In the Offline Game with the Online Garage

The final task in creating our game is to make it truly multiplayer-capable by merging the storage
components and online components. The key to doing thisis clever and robust data structures. We
already have aWeapon class, which has everything we need to know about a weapon, and we
have the persistent CarStore class.

So, all we need to do istie together the GarageClient code from Chapter 20, "Connecting Out:
Wireless Networking." Just strip out al the code that makes GarageClient amain MIDlet and
turn it into an ordinary class.

Changing GarageClient

Y ou can construct the class as follows, passing in areference to the game class:

private Game game;
GarageClient(Game @)

{
}

game = g;

To trigger everything, we can create a public Login method within the GarageClient as
follows:

380

public void Login(Q)
{

}

game.getDisplay() -setCurrent(loginform);

Finally, we need to go through the GarageClient class and find al the local variables that
contain the amount of cash a player has or which weapons the player wantsto buy or sell. We
need to replace all these variables with a connection to the CarStore class. For example, in the
commandAction() method, we can deal with aplayer's SELLIT command as follows:

else if (c == SELLIT)

{
String price = pricefield.getString();
int 1 = itemgroup.getSelectedindex();

// Be sure item wasn"t already put up for sale
it (game.cs.getWeapons()[i]-getUpForSale())
return;

// Marshal data for item in a String

String theitem =
game.cs.getWeapons()[i]-getName()+"1"+game.cs.getWeapons() [i]-
getDescription(Q+"!"+price;

// Remove the item from the local list of my items

game.cs.getWeapons()[i]-setUpForSale(true);
Selllt si = new Selllt(theitem);

}

Changing the Game Client
Likewise, our main Game class can have aglobal pointer to the garage:

public GarageClient garage;

public void startApp()
{

}

garage = new GarageClient(this);

Adding the Garage to the Game Menu
To access the Garage, just add another command to the main menu within the StartForm class:

private Command garageCommand;

public StartForm(Game game)
{

garageCommand = new Command(*'Garage!', Command.SCREEN, 2);
addCommand(garageCommand) ;

,

public void commandAction(Command c, Displayable s)

{
if (c.equals(garageCommand))

381

game.garage.LoginQ);
}
}

Now You're Online!

That's pretty much it. A player need only select the Garage command from the main menu to reach
the online Garage. The player will then be ableto sell her current weapons, as you can seein

Figure 24.4.

Figure 24.4. Hawking weapons online.

Future Work

Micro Racer would be even better if it had various types of engines, wheels, chassis, and more.
These items could then be added onto any car to achieve better speed, more energy, more accurate
control, and so on.

It would also be niceif the various tracks did more than run at different speeds and lengths. It

would be nice to actually make a mountain track with plenty of twists and turns, aforest track full
of fallen trees, and a city track with intersections, pedestrians, and maybe even police cars.

382

The biggest addition to the game could be in its graphics. The artwork could be modified based on
which track you selected. New tracks with new challenges could even be added weekly to a
special game server and then downloaded to the phone.

It would also be niceif the car was more realistic looking, and if the car graphic itself seemed to
veer and animate as you moved to the side or hit the brakes. The game could aso use some killer
death animations, for the times when you destroy an enemy—or an enemy knocks you off the road.

Clearly, Micro Racer "1.0" is only a beginning.

One Game Running Everywhere

If your game uses pure MIDP and only pure MIDP, then it should be easy to deploy it to amost
any phone. Although the means of downloading or installing a JAR file differs from brand to
brand, the same code should work without too many problems.

But what if you want to make the most out of each type of phone? It would be niceto create a
game that used the best graphic and sound features of each device. For example, using the
Siemens API, our driving game might have a neat, energetic soundtrack playing in the background.
When the player's car crashes, you might also want the phone to vibrate.

The Magic of Interfaces

To use the same code base for various extension APIs, simply create interfaces for any external
features. For example, let's suppose we want a special sound to play and the phone to vibrate when
the player's car crashes. Create an interface called CrashCarEffect as shown in Listing 24.4.

Listing 24.4 The CrashCarEffect Interface

public interface CrashCarEffect

public void ICrashed();
}

Now write two classes that implement CrashCarEffect. Onewill be adummy classfor abasic
MIDP phone that does absolutely nothing, and is shown in Listing 24.5.

Listing 24.5 The DummyCrash Class

public class DummyCrash implements CrashCarEffect

{
}

public void ICrashed() { }

The other will be a special class that only works on Siemens phones, seen in Listing 24.6.
Listing 24.6 The SiemensCrash Class

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import com.siemens.mp.game.*;

public class SiemensCrash implements CrashCarEffect

383

public void ICrashed()

// Vibrate a bit
Vibrator.triggerVibrator(100);
// Play a defeat sound
MelodyComposer comp = new MelodyComposer();
comp.setBPM(120);
try
{
comp .appendNote(MelodyComposer.TONE_E1,
MelodyComposer . TONELENGTH_1 4);
comp -appendNote(MelodyComposer . TONE_D1,
MelodyComposer .TONELENGTH_1 2);
comp .appendNote(MelodyComposer.TONE_C3,
MelodyComposer . TONELENGTH_1 4);
} catch (Exception ex) {}
Melody melody = comp.getMelody();
melody.play(Q);
b
b

Now, in your game code, use the System.getProperty() function to figure out what device
the player isusing. Y ou can then dynamically load the appropriate class using Class. forName ()
and newlnstance().

For example, we can modify the checkCol lision() method in our game's GameCanvas class,
asseenin Listing 24.7.

Listing 24.7 Using Different Classes for Different Phones

private void checkCollision()
{
iT (enemyList.collide(player))
player.setEnergy(player.getEnergy() - COLLIDE_ENERGY);
if (player.getEnergy() <= 0)
{

CrashCarEffect tempclass = null;

String vendor = System.getProperty("'microedition.platform™);

try {

if(vendor !'= null && vendor.indexOf(*'Siemens'™) I= -1)

tempclass =

(CrashCarEffect)Class.forName("'SiemensCrash'™) .newlnstance();

else

tempclass =
(CrashCarEffect)Class.forName(*'DummyCrash'™) .newlnstance();

catch (Exception e) { }
if (tempclass != null)
tempclass. ICrashed();
running = false;
}
}

Although the SiemensCrash class will not compile using the Wireless Toolkit or standard
MIDP development tools, you can toss it into the JAR file anyway. It will just be ignored by
phones that do not support it. Alternatively, you could create two different JAR files—one for
Siemens users and another for everyone else.

384

Using the same technique, you can create special interfaces for every major game event, then
create device-specific classes for iAppli, Siemens, and so on.

Summary

What more is there to say?

Throughout this chapter, we've combined all the code we've accumulated so far to create a pretty
cool little game (if we do say so ourselves).

However, keep in mind that Micro Racer isawork in progress. We encourage you to take this
code and readlly flesh it out, creating various types of weapons, car parts, tracks, enemies, online
community features, and so on.

Y ou should also dust off your artistic skills, or partner up with a good game designer. Better
animations and graphics will go along way toward making Micro Racer seem enticing, sleek, and
professional. Better yet, just take some of the concepts you've learned and create something truly
original! Y ou have ablank game canvasin front of you. Get out there and wow them!

385

Part VII: Appendixes

IN THIS PART

A Low-Level GUI Classes
BMIDP1.1

C Siemens Game API
D TheiAppli API

386

Appendix A. Low-Level GUI Classes

Game Classes
Javax.microedition.lcdui.AlertType
Javax.microedition. lcdui .Command
Javax.microedition.lcdui .Display
Javax.microedition. lcdui .Displayable
Javax.microedition. lcdui .Canvas
Javax.microedition. lcdui .Screen
Javax.microedition.lcdui.Alert
Javax.microedition. lcdui .Form
Javax.microedition.lcdui.List
Javax.microedition. lcdui . TextBox
Javax.microedition. lcdui .Font
Javax.microedition. lcdui .Graphics
Javax.microedition. lcdui. Image
Javax.microedition.lcdui.ltem
Javax.microedition. lcdui.ChoiceGroup
Javax.microedition. lcdui .DateField
Javax.microedition. lcdui .Gauge
Javax.microedition. lcdui.Imageltem
Javax.microedition. lcdui .Stringltem
Javax.microedition. lcdui.TextField

Javax.microedition. lcdui .Ticker

Game Classes

The following listing contains a brief description of commonly used 2ME GUI classes. All the
following classes are in the javax.microedition. lcdui package.

e Alert— Showsdatato the user and waits for a certain period of time.

e AlertType— Designates the nature of an Alert.

e Canvas— Handleslow-level events and draws to the display.

e ChoiceGroup— A group of selectable elements.

e Command— A user action.

e DateField— An editable component for presenting date and time information.
e Display— Represents the manager of the display and input devices for the device.
e Displayable— A superclass of all Screensthat can be put on the display.

e Font— Text fontsand font metrics.

e Form— A Screen that contains common user interface items.

e Gauge— A bar graph display.

e Graphics— Allowsfor drawing and 2D geometric rendering.

387

e Image— Holds graphical image data.

e Imageltem— Addsan Image toaFormortoanAlert

e Item— A superclass for components that can be added to aForm and Alert.
e List— A Screen containing alist of choices.

e Screen— An abstract superclass defining the display at any given time.

e Stringltem— Holdsastring.

e TextBox— Allowsthe user to enter and edit text.

e TextField— An editable text component.

e Ticker— A piece of text that scrolls continuously across the display.

The associated interfaces are

e Choice— Components that can be selected from a predefined number of choices.

e CommandListener— Receives high-level events.

e ItemStateListener— Receves eventsthat indicate changesin the internal state of
the interactive items within a Form screen.

The hierarchy is asfollows:

jJava.lang.Object
Javax.microedition. lcdui .AlertType
Javax.microedition. lcdui .Command
Javax.microedition.lcdui .Display
Javax.microedition.lcdui.Displayable
Javax.microedition. lcdui .Canvas
Javax.microedition. lcdui .Screen
Javax.microedition. lcdui .Alert
Javax.microedition.lcdui .Form
Javax.microedition.lcdui.List (implements
Javax.microedition. lcdui.Choice)
Javax.microedition. lcdui . TextBox
Javax.microedition. lcdui .Font
Javax.microedition. lcdui .Graphics
Javax.microedition. lcdui.Image
Javax.microedition. lcdui.ltem
Javax.microedition. lcdui .ChoiceGroup (implements
Javax.microedition. lcdui .Choice)
Javax.microedition. lcdui .DateField
Javax.microedition. lcdui.Gauge
Javax.microedition.lcdui.Imageltem
Javax.microedition. lcdui .Stringltem
Javax.microedition. lcdui .TextField
Javax.microedition. lcdui.Ticker

Complete method listings for each of these classes are provided throughout the rest of this
appendix.

Javax.microedition.lcdui.AlertType

o AlertType()
e boolean playSound(Display display)

388

Javax.microedition. lcdui .Command

e Command(String label, int commandType,int priority)
e int getCommandType()

String getLabel ()

e iInt getPriority()

String to String()

Javax.microedition.lcdui .Display

e void callSerially(Runnable obj)

Displayable getCurrent()

e static Display getDisplay(MIDlet c)

e boolean isColor()

e int numColors()

e void setCurrent(Alert alert, Displayable next)
e void setCurrent(Displayable next)

Javax.microedition. lcdui.Displayable

e void addCommand(Command cmd)

boolean isShown()

void removeCommand(Command cmd)

void setCommandListener(CommandListener 1)

Javax.microedition. lcdui .Canvas

Canvas(Q)

e Int getGameAction(int keyCode)

e int getHeight()

e iInt getKeyCode(int gameAction)

String getKeyName(int keyCode)

e iInt getWidth()

boolean hasPointerEvents()

boolean hasPointerMotionEvents()

boolean hasRepeatEvents()

protected void hideNotify()

boolean isDoubleBuffered()

protected void keyPressed(int keyCode)
protected void keyReleased(int keyCode)
protected void keyRepeated(int keyCode)
protected abstract void paint(Graphics g)
protected void pointerDragged(int x, int y)
protected void pointerPressed(int x, int y)
protected void pointerReleased(int x, iInt y)
void repaint()

void repaint(int x, int y, int width, int height)

389

e void serviceRepaints()
e protected void showNotify()

Javax.microedition. lcdui .Screen

Ticker getTicker()

String getTitle()

e void setTicker(Ticker newTicker)
o void setTitle(String newTitle)

Javax.microedition. lcdui .Alert

o Alert(String title)

Alert(String title,String alertText, Image alertimage, AlertType
alertType)

e void addCommand(Command cmd)
e iInt getDefaultTimeout()
Image getlmage()

String getString()

e iInt getTimeout()

AlertType getType()

e void setCommandListener(CommandListener 1)
e void setlmage(Image img)

e void setString(String str)
void setTimeout(int time)
void setType(AlertType type)

Javax.microedition. lcdui.Form

Form(String title)

Form(String title, Item[] items)
int append(Image image)

int append(ltem item)

int append(String str)

e void delete(int index)

Item get(int index)

void insert(int index, Iltem item)
void set(int index, Item item)

e void setltemStateListener(ltemStateListener iListener)
int size()

Javax.microedition. lcdui.List

o List(String title, int listType)

390

List(String title, int listType, String[] stringElements,
Image[] int append(String stringElement, Image imageElement)

void delete(int index)

Image getlmage(int index)

int getSelectedFlags(boolean[] selectedArray_return)

int getSelectedindex()

String getString(int index)

void insert(int index, String stringElement, Image imageElement)
boolean isSelected(int index)

void set(int index, String stringElement, Image imageElement)
void setSelectedFlags(boolean[] selectedArray)

void setSelectedIndex(int index, boolean selected)

int size()

Javax.microedition. lcdui.TextBox

TextBox(String title, String text, int maxSize, int constraints)
void delete(int offset, int length)

int getCaretPosition()

int getChars(char[] data)

int getConstraints()

int getMaxSize()

String getString()

void insert(char[] data, int offset, int length, int position)
void insert(String src, int position)

void setChars(char[] data, int offset, int length)

void setConstraints(int constraints)

int setMaxSize(int maxSize)

void setString(String text)

int size()

Javax.microedition. lcdui .Font

int charsWidth(char[] ch, int offset, int length)
int charWidth(char ch)

int getBaselinePosition()

static Font getDefaultFont()

int getFace()

static Font getFont(int face, int style, int size)
int getHeight()

int getSize()

int getStyle()

boolean isBold()

boolean isltalic()

boolean isPlain()

boolean isUnderlined()

int stringWidth(String str)

int substringWidth(String str, int offset, int len)

391

Javax.microedition. lcdui .Graphics

e void clipRect(int x, int y, int width, int height)

e void drawArc(int x, int y, int width, int height, int
startAngle, int arcAngle)

e void drawChar(char character, int x, int y, int anchor)

e void drawChars(char[] data, int offset, int length, int x, int
y, int anchor)

e void drawlmage(lmage img, int x, int y, int anchor)

e void drawLine(int x1, int yl, int x2, int y2)

e void drawRect(int x, int y, int width, int height)

e void drawRoundRect(int x, int y, int width, int height, int
arcWidth, int arcHeight)

e void drawString(String str, int x, int y, int anchor)

e void drawSubstring(String str, int offset, int len, int x, int
y, int anchor)

e void FfillArc(int x, int y, int width, int height, int
startAngle, int arcAngle)

o void fillRect(int x, int y, int width, int height)

e void fillRoundRect(int x, int y, int width, int height, int
arcWidth, int arcHeight)

e int getBlueComponent()

e iInt getClipHeight()

o int getClipWidth()

e int getClipX()

e int getClipY()

e int getColor()

e Font getFont()

e iInt getGrayScale()

e Int getGreenComponent()

e Iint getRedComponent()

e iInt getStrokeStyle()

e Int getTranslateX()

e iInt getTranslateY()

e void setClip(int x, int y, int width, int height)

e void setColor(int RGB)

e void setColor(int red, int green, int blue)

e void setFont(Font font)

e void setGrayScale(int value)

e void setStrokeStyle(int style)

e void translate(int x, int y)

Javax.microedition. lcdui. Image

e static Image createlmage(byte[] imageData, int imageOffset, int
imagelLength)

e static Image createlmage(lmage image)

e static Image createlmage(int width, int height)

e static Image createlmage(String name)

392

e static Image createlmage(byte[] imageData, int offset, int
imagelLength)

Graphics getGraphics()

e iInt getHeight()

e iInt getWidth()

boolean isMutable()

Javax.microedition. lcdui.ltem

e String getLabel()
e void setLabel(String label)

Javax.microedition. lcdui .ChoiceGroup

e ChoiceGroup(String label, int choiceType)

e ChoiceGroup(String label, int choiceType, String[]
stringElements, Image[] imageElements)

int append(String stringElement, Image imageElement)

e void delete(int index)

Image getlmage(int index)

o int getSelectedFlags(boolean[] selectedArray_return)

e int getSelectedIndex()

String getString(int index)

e void insert(int index, String stringElement, Image imageElement)
boolean isSelected(int index)

void set(int index, String stringElement, Image imageElement)
o void setSelectedFlags(boolean[] selectedArray)

void setSelectedIndex(int index, boolean selected)

int size()

Javax.microedition. lcdui .DateField

DateField(String label, int mode)

DateField(String label, int mode, TimeZone timeZone)
Date getDate()

e int getlnputMode()

e void setDate(Date date)

e void setlnputMode(int mode)

Javax.microedition. lcdui.Gauge

e Gauge(String label, boolean interactive, int maxValue, int
initialVvalue)

e Int getMaxvValue()
e int getvValue()

393

boolean islInteractive()
void setMaxValue(int maxValue)
void setValue(int value)

Javax.microedition. lcdui.Imageltem

Imageltem(String label, Image img, int layout, String altText)
String getAltText()

Image getlmage()

int getLayout()

void setAltText(String text)

void setlmage(lmage img)

void setLayout(int layout)

Javax.microedition. lcdui .Stringltem

Stringltem(String label, String text)
String getText()
void setText(String text)

Javax.microedition. lcdui.TextField

TextField(String label, String text, int maxSize, int
constraints)

void delete(int offset, int length)

int getCaretPosition()

int getChars(char[] data)

int getConstraints()

int getMaxSize()

String getString()

void insert(char[] data, int offset, int length, int position)
void insert(String src, int position)

void setChars(char[] data, int offset, int length)
void setConstraints(int constraints)

int setMaxSize(int maxSize)

void setString(String text)

int size()

Javax.microedition.lcdui .Ticker

Ticker(String str)
String getString()
void setString(String str)

394

Appendix B. MIDP 1.1

Main Packages

java.io ClassHierarchy

jJava.ioInterface Hierarchy

java. lang_Class Hierarchy

jJava. lang_Interface Hierarchy

java.util _ClassHierarchy

jJava.util Interface Hierarchy

Jjavax.microedition.io_ClassHierarchy

Javax.microedition.ioInterface Hierarchy

jJjavax.microedition. Icdui_ClassHierarchy

jJavax.microedition. Icdui_Interface Hierarchy

jJjavax.microedition.midlet ClassHierarchy

jJjavax.microedition.rms_ClassHierarchy

Jjavax.microedition.rms_|Interface Hierarchy

Main Packages

MIDP 1.1 consists of the following packages:

Java

Java

jJava.io

jJava.lang

Java.util
Javax.microedition.io
Javax.microedition. lcdui
Javax.microedition.midlet
Javax.microedition.rms

.io Class Hierarchy

-lang.Object

Java.io. InputStream
Java.io.ByteArraylnputStream
Java.io.DatalnputStream (implements
Java.io.Datalnput)

Java.io.OutputStream
Java.io.ByteArrayOutputStream
Java.io.DataOutputStream (implements
Java.io.DataOutput)
Java.io.PrintStream

Java.io.Reader

395

Java.io. InputStreamReader
jJava.lang.Throwable
Java.lang.Exception
Java.io. I0Exception
Java.io.EOFException
Java.io.InterruptedlOException
Java.io.UnsupportedEncodingException
Java.io.UTFDataFormatException
Java.io._Writer
Java.io.OutputStreamWriter

java.io Interface Hierarchy

Java.io.Datalnput
Java.io.DataOutput

java.lang Class Hierarchy

jJava.lang.Object
jJava.lang.Boolean
jJava.lang.Byte
Java.lang.Character
jJava.lang.Class
jJava.lang. Integer
jJava.lang.Long
Java.lang.Math
Java.lang.-Runtime
jJava.lang.Short
jJava.lang.String
Java.lang.StringBuffer
Java.lang.System
jJava.lang.Thread (implements java.lang.-Runnable)
jJava.lang.Throwable
jJava.lang.Error
jJava.lang.VirtualMachineError
Java.lang.OutOfMemoryError
Java.lang.Exception
Java.lang.ClassNotFoundException
jJava.lang.lllegalAccessException
Java.lang. InstantiationException
jJava.lang. InterruptedException
Java.lang.RuntimeException
Java.lang.ArithmeticException
Java.lang.ArrayStoreException
Java.lang.ClassCastException
jJava.lang.lllegalArgumentException
jJava.lang.lllegalThreadStateException
Java.lang.NumberFormatException
jJava.lang.lllegalMonitorStateException
jJava.lang.lllegalStateException
Java. lang. IndexOutOfBoundsException
Java.lang.ArraylndexOutOfBoundsException
Java.lang.StringlndexOutOfBoundsException
Java.lang.NegativeArraySizeException

396

jJava.lang.NullPointerException
Java.lang.SecurityException

java.lang Interface Hierarchy

Java.lang.Runnable

java.util Class Hierarchy

jJava.lang.Object
jJava.util.Calendar
Java.util _Date
Java.util _Hashtable
Java.util .Random
jJava.lang.Throwable
Java.lang.Exception
Java.lang.RuntimeException
Java.util _EmptyStackException
Java.util _.NoSuchElementException
Java.util.Timer
Java.util.TimerTask (implements java.lang.Runnable)
Java.util_TimeZone
jJava.util _Vector
Java.util.Stack

java.util Interface Hierarchy

jJava.util _.Enumeration

javax.microedition.io Class Hierarchy

jJava.lang.Object
Javax.microedition.io.Connector
jJava.lang.Throwable
Java.lang.Exception
Java.io. I0Exception
Javax.microedition.io.ConnectionNotFoundException

javax.microedition.io Interface Hierarchy

Javax.microedition.io.Connection
Javax.microedition.io.DatagramConnection
Javax.microedition.io. InputConnection

Javax.microedition.io.StreamConnection
Javax.microedition.io.ContentConnection

397

Javax.microedition.io.HttpConnection

Javax.microedition.io.OutputConnection

Javax.microedition.io.StreamConnection

Javax.microedition.io.ContentConnection
Javax.microedition.io.HttpConnection

Javax.microedition.io.StreamConnectionNotifier
Java.io.Datalnput

Javax.microedition.io.Datagram
Java.io.DataOutput

Javax.microedition.io.Datagram

javax.microedition. Icdui Class Hierarchy

See Appendix A.

javax.microedition.lcdui INnterface Hierarchy

See Appendix A.

javax.microedition.midlet Class Hierarchy

jJava.lang.Object
Javax.microedition.midlet_MIDlet
jJava.lang.Throwable
Java.lang.Exception

Javax.microedition.midlet.MIDletStateChangeException

javax.microedition.rms Class Hierarchy

jJava.lang.Object
Javax.microedition.rms.RecordStore
jJava.lang.Throwable
Java.lang.Exception
Javax.microedition.rms.RecordStoreException
Javax.microedition.rms. InvalidRecordIDException
Javax.microedition.rms.RecordStoreFul IException
Javax.microedition.rms.RecordStoreNot
FoundException

Javax.microedition.rms.RecordStoreNotOpenException

javax.microedition.rms Interface Hierarchy

398

Javax.microedition.rms.RecordComparator
Javax.microedition.rms.RecordEnumeration
Javax.microedition.rms.RecordFilter
Javax.microedition.rms.RecordListener

399

Appendix C. Siemens Game API

Game Classes

Siemens GSM Classes

I nput/Output Classes

Game Classes

Programming with the Siemens Game API is discussed in depth in Chapter 23, "Siemens Game

APL." The Siemens Game API consists of the following classes:

jJava.lang.Object
com.siemens.mp.game.Light
com.siemens.mp.game.MelodyComposer
com.siemens.mp.misc.NativeMem
com.siemens.mp.game.ExtendedlImage
com.siemens.mp.game.GraphicObject
com.siemens.mp.game.Sprite
com.siemens.mp.game.TiledBackground
com.siemens.mp.game.GraphicObjectManager
com.siemens.mp.game.Melody
com.siemens.mp.game.Sound
com.siemens.mp.game.Vibrator

com.siemens.mp.game.Light

e Light(
e static void setLightOff()
e static void setLightOn()

com.siemens.mp.game.MelodyComposer

e MelodyComposer()

e void appendNote(int note, int length)
o Melody getMelody()

e int lengthQ)

e static int maxLength()

e void resetMelody()

e void setBPM(int bpm)

com.siemens.mp.game.ExtendedlImage

o ExtendedImage(Ilmage image)

e void blitToScreen(int x, int y)

e void clear(byte color)

o Image getlmage()

e iInt getPixel(int x, int y)

o void getPixelBytes(byte[] pixels, int x, int vy,
height)

400

int width,

int

void setPixel(int x, int y, byte color)
void setPixels(byte[] pixels, int x, int y, int width, int
height)

com.siemens.mp.game.GraphicObject

GraphicObject()
boolean getVisible()
void setVisible(boolean visible)

com.siemens.mp.game.Sprite

Sprite(byte[] pixels, int pixel offset, int width, int height,
byte[] mask, int mask offset, int numFrames)
Sprite(ExtendedImage pixels, Extendedlmage mask, int numFrames)
Sprite(Image pixels, Image mask, int numFrames)

int getFrame()

int getXPosition()

int getYPosition()

boolean isCollidingWith(Sprite other)

boolean isCollidingWithPos(int xpos, int ypos)

void setCollisionRectangle(int x, int y, int width, int height)
void setFrame(int framenumber)

void setPosition(int x, int y)

com.siemens.mp.game.TiledBackground

TiledBackground(byte[] tilePixels, byte[] tileMask, byte[] map,
int widthInTiles, int heightinTiles)

TiledBackground(ExtendedImage tilePixels, ExtendedImage
tileMask, byte[] map, int widthInTiles, int heightInTiles)

TiledBackground(Image tilePixels, Image tileMask, byte[] map,
int widthInTiles, int heightinTiles)

void setPositionInMap(int x, int y)

com.siemens.mp.game.GraphicObjectManager

GraphicObjectManager ()

void addObject(GraphicObject gobject)

static byte[] createTextureBits(int width, int height, byte[]
texture)

void deleteObject(GraphicObject gobject)

void deleteObject(int position)

GraphicObject getObjectAt(int index)

int getObjectPosition(GraphicObject gobject)

void insertObject(GraphicObject gobject, int position)
void paint(Extendedlmage eimage, int x, int y)

void paint(lmage image, int x, int y)

com.siemens.mp.game.Melody

void play(Q
static void stop()

401

com.siemens.mp.game.Sound

e Sound()
e static void playTone(int tone freq, int tone_time)

com.siemens.mp.game.Vibrator

e Vibrator()

e static void startVibrator()

e static void stopVibrator()

e static void triggerVibrator(int duration)

Siemens GSM Classes

These classes allow the Java program to access the phone's functions. The classes descend from
jJava.lang.Object:

e com.siemens.mp.gsm.Call
e com.siemens.mp.gsm.PhoneBook
e com.siemens.mp.gsm.SMS

com.siemens.mp.gsm.Call

e CallQ
e static void start(String number)

com.siemens.mp.gsm.PhoneBook

e PhoneBook()
e static String[] GetMDNQ)

com.siemens.mp.gsm.SMS

e SMSQ
e static int send(String number, String data)

Input/Output Classes
The Siemens IO classes, descending from java. lang-Object, include the following:
e com.siemens.mp.io.Connection

e com.siemens.mp.io.File
e iInterface com.siemens.mp.io.ConnectionListener

com.siemens.mp.io.Connection

e Connection(String connectTo)
o void send(byte[] data)

402

e static void setListener(ConnectionListener listener)

com.siemens.mp.io.File

o FileQ

e int close(int fileDescriptor)

e static int copy(String source, String dest)

e static int debugWrite(String fileName, String infoString)

e static int delete(String fileName)

e static int exists(String fileName)

e int length(int fileDescriptor)

e iInt open(String fileName)

e int read(int fileDescriptor, byte[] buf, int offset, int
numBytes)

e static int rename(String source, String dest)

e int seek(int fileDescriptor, int seekpos)

e static int spaceAvailable()

e int write(int fileDescriptor, byte[] buf, int offset, int
numBytes)

public interface ConnectionListener

e void receiveData(byte[] data)

403

Appendix D. The iAppli API

Packages
com.nttdocomo. io Interfaces
com.nttdocomo. io Interfaces
com.nttdocomo. lang
com.nttdocomo.net
com.nttdocomo.ui
com.nttdocomo.ui Interfaces
com._nttdocomo.util

com.nttdocomo.util Interfaces

IApplication

Packages
TheiAppli API contains five mgjor packages:

e com.nttdocomo. io— Input/output over the network (using HTTP) and to/from the
ScratchPad.

e com.nttdocomo. lang— The standard language constructs specific to iApplis.

e com.nttdocomo.net— Networking support classes.

e com.nttdocomo.ui— The user interface, image, sound, and canvas components.

e com.nttdocomo.util— Other supporting utility classes.

com.nttdocomo.io INterfaces

Thereisjust one class for input and output:

jJava.lang.Object
jJava.lang.Throwable
Java.lang.Exception
Java.io. IO0Exception

com.nttdocomo. io INterfaces

404

Define the communication with HTTP. Extend from both InputConnection and
OutputConnection

Javax.microedition.io.Connection
Javax.microedition.io. InputConnection
Javax.microedition.io.StreamConnection
Javax.microedition.io.ContentConnection
com.nttdocomo. io.HttpConnection
Javax.microedition.io.OutputConnection
Javax.microedition.io.StreamConnection
Javax.microedition.io.ContentConnection
com.nttdocomo. io.HttpConnection

com.nttdocomo. lang

Cdlled if an unsupported operation or method is called during runtime.

jJava.lang.Object
Jjava.lang.Throwable
Java.lang.Exception
Java.lang.RuntimeException
com.nttdocomo. lang.UnsupportedOperationException

com.nttdocomo.net

Converts a character string into avalid URL format. This handles Chinese or Japanese characters.

jJava.lang.Object
com.nttdocomo.net.URLDecoder
com.nttdocomo.net.URLEncoder

com.nttdocomo.ui
jJava.lang.Object

com.nttdocomo.ui.AudioPresenter— An audio control class that implements
com.nttdocomo.ui .MediaPresenter.

com.nttdocomo.ui .Component— All high-level APl components derive from
com.nttdocomo.ui.Component.

com.nttdocomo.ui . Button— Defines abutton, implements
com.nttdocomo.ui.Interactable.

com.nttdocomo.ui . ImageLabel— Definesatill image.

com.nttdocomo.ui . Labe l— Defines a non-editable character string.

405

com.nttdocomo.ui .ListBox— A list box component that implements
com.nttdocomo.ui.Interactable.

com.nttdocomo.ui.TextBox— A text input component that implements
com.nttdocomo.ui.Interactable.

com.nttdocomo.ui.Ticker— A ticker component that scrollstext to the left.

com.nttdocomo.ui .VisualPresenter— A component that displays visual media,
implements com.nttdocomo.ui .MediaPresenter.

com.nttdocomo.ui .Display— Displaysthe current screen and processes keystrokes or other
input.

com.nttdocomo.ui . Font— Controlsthe calligraphic text style, size, and family.

com.nttdocomo.ui .Frame— The actual visua frame itself. Superclass of
com.nttdocomo.ui .Canvas.

com.nttdocomo.ui .Canvas— An abstract low-level display class that draws pixels to the
screen.

com.nttdocomo.ui.Dialog— A diaog box.

com.nttdocomo.ui.Panel— A high-level Ul display class, capable of holding Ul
components.

com.nttdocomo.ui .Graphics— Controls al drawing function in the Canvas class.

com.nttdocomo.ui . lApplication— Themain classthat starts, stops, and manages the
application.

com.nttdocomo.ui . Image— Holds the actual image data.
com.nttdocomo.ui .MediaManager— A media management processing class.
com.nttdocomo.ui .PhoneSystem— Accesses and handles the settings of the mobile phone.

com.nttdocomo.ui.ShortTimer— A basic interval timer function, implements
com.nttdocomo.util._TimeKeeper.

Jjava.lang.Throwable
Java.lang.Exception
Java.lang.RuntimeException

com.nttdocomo.ui.UlException— A common exceptional classfor problemsrelated to
the user interface.

com.nttdocomo.ui INterfaces

There are several interfaces to support the Ul classes:

406

com.nttdocomo.util.EventListener

com.nttdocomo.ui .ComponentListener— Definesthe listener, handling any events that
occur to a component.

com.nttdocomo.ui .KeyListener— Definesthe listener that corresponds to key presses
while the high-level Ul is being displayed.

com.nttdocomo.ui .MediaListener— Definesthe listener that corresponds to media events,
such as a sound starting or stopping.

com.nttdocomo.ui.SoftKeyL istener— Definesthe event listener of the software key in
the high-level UI.

com.nttdocomo.ui . FocusManager— Manages which component in aPanel currently has
focus.

com.nttdocomo.ui . Interactable— Defines acomponent that can be interacted with on-
the-fly.

com.nttdocomo.ui . LayoutManager— Defines where components are placed in aPanel.
com.nttdocomo.ui.MediaPresenter— Defines the mediatype.

com.nttdocomo.ui .MediaResource— Resource management superclass of MediaData,
Medialmage, and MediaSound.

com.nttdocomo.ui .MediaData— Defines something that is media.
com.nttdocomo.ui.Medialmage— A graphic image.

com.nttdocomo.ui .MediaSound— An audio sound.

com.nttdocomo.util

The Timer class alows events to be triggered on aregular basis:

jJava.lang.Object
com.nttdocomo.util.Timer

com.nttdocomo.util INnterfaces

Defines al listeners, for events or timers;

com.nttdocomo.util.EventListener
com.nttdocomo.util.TimerListener
com.nttdocomo.util.TimeKeeper

407

IApplication

The 1Application class starts the program and manages everything. Y our program should
derive from this class. The actual classesin IApplication are asfollows:

IApplication()— Constructor.
java.lang.String[] GetArgs()— Getsthe starting parameters of the application.
static lApplication GetCurrentApp()— Getsthe current application instance.

java.lang.String GetSourcecUrl1()— The URL from which the application was
originaly downloaded.

void resume()— Called after the application has been interrupted, due to a voice phone call or
other pause event.

abstract void start()— Called when the application first executes.

void terminate()— Endsthe application cleanly.

408

	Table of Content
	Copyright
	Trademarks
	Warning and Disclaimer
	Credits
	Dedication

	About the Author
	Acknowledgments
	Chapter 1. Introduction (or Everything I Wanted to Know About Micro Java Gaming But Was Afraid to Ask)
	A New Era of Gaming
	A Brief History of Games
	Multiplayer Mania
	Micro Devices, Micro Lifestyles
	Enter Micro Java

	This Book's Mission
	The Game Plan
	Part I: Small Devices
	Part II: Before, Between, and Beyond J2ME
	Part III: The Java 2 Micro Edition
	Part IV: Let the Games Begin!
	Part V: J2ME Extensions
	Part VI: Micro Racer
	Figure 1.1. You will learn how to build this game.
	Figure 1.2. The Garage: Where you log online and trade car parts with other users.

	A Bit About Game Design
	The Game Design Process
	Preproduction
	Answering Questions
	Picking a Game Genre
	Copying, Stealing, and Cloning
	What Types of Games Are Possible?
	Know Thy Limits
	Designing Within Restrictions
	Designing Around Restrictions
	Figure 1.3. Turibaka Kibun: A game that would only be possible on a mobile phone.
	The Game's Mission
	Inputs and Outputs
	Gameplay
	Other Resources

	Prototyping
	Programming
	Playtesting

	Show Me the Money: Micro Game Business Models
	The Business Outlook
	Advertising and Sponsorships
	Content Deals
	Pay-For-Play or Subscription

	Summary

	Part I: Small Devices
	Chapter 2. The Mobile World
	A New Era of Gaming
	Micro Devices
	The Micro Revolution Begins
	Wide Support
	Asia
	Europe
	North America

	High-End Java Devices: Set-Top Boxes, Phones, Consoles
	PersonalJava
	Figure 2.1. A visually appealing PersonalJava application.

	JavaTV
	JavaPhone
	PingTel xpressa Phone
	Sharp NC-10 IP Phone

	Personal Digital Assistants (PDAs)
	J2ME PDA Profile
	PalmOS
	Figure 2.2. The Handspring Visor Edge.
	Figure 2.3. The VisorPhone.

	Microsoft Windows CE
	Figure 2.4. The Compaq iPaq.
	Siemens SIMpad SL4
	Figure 2.5. The SIMpad SL4.
	Siemens SX45

	Symbian EPOC
	Psion netBook (Series 7)
	Psion RevoPlus
	Figure 2.6. The Psion RevoPlus.

	Sharp Zaurus SL-5000
	Other Linux Handhelds
	Micro Java Virtual Machines
	Javasoft's KVM for the Palm
	Javasoft's MIDP for the PalmOS
	Javasoft's PersonalJava for Windows CE
	IBM J9 VM
	Esmertec Jbed Micro Edition CDLC
	kAWT Extended KVM (xKVM)
	Kadasystems Kada VM
	MicroJBlend
	Jeode EVM
	NSIcom CrEme
	HP chaiVM for Pocket PC
	SAVAJE XE Operating System
	Transvirtual Kaffe

	Mobile Phones and Pagers
	Casio CdmaOne C452CA
	Ericsson R380
	Fujitsu F503i
	Hitachi CdmaOne C451H
	LG Telecom p510 (i-Book)
	Other LG Telecom Phones
	Matsushita/Panasonic P503i
	Matsushita/Panasonic P503iS
	Matsushita/Panasonic FOMA P2101V
	Mitsubishi D503i and D503iS
	Mitsubishi J-D05
	Motorola i85s
	Figure 2.7. Motorola's i85s: The first Java phone in the United States.

	Motorola i50sx
	Figure 2.8. Motorola's i50sx.

	Motorola Accompli 009 PIC
	Figure 2.9. Motorola's Accompli 009 PIC.

	Motorola, Accompli 008/6288
	Figure 2.10. Motorola's Accompli 008.

	Other Motorola Phones
	NEC N503i
	NEC FOMA N2001
	Nokia 9210 and 9290 Communicator
	Figure 2.11. Nokia's Communicator.

	RIM/iPaq Blackberry
	Samsung SCH-X130, SCH-X230, SCH-X350, and SCH-X350
	Sharp J-SH07
	Siemens SL45i (or 6688i)
	Sony SO503i
	Toshiba J-T06

	Low-End Java Devices: Smart Cards and Embedded Chips
	JavaCard
	EmbeddedJava

	Summary

	Chapter 3. Big Games, Small Screens
	Your Competition
	Things to Look For
	The Near Future

	WAP Games
	Wireless Games
	Sorcery
	Figure 3.1. Sorcery.
	Tanks
	Fight KO
	Figure 3.2. Fight KO.
	Code Breaker
	Mines
	Casino Games
	Figure 3.3. Blackjack.
	Popular Classics
	Figure 3.4. Fours.
	Wireless Pets
	Figure 3.5. Wireless Pets.
	Quiz Call and LMA Football Quiz
	Top Trumps
	Figure 3.6. Top Trumps.
	Wentworth Golf
	Figure 3.7. Wentworth Golf.

	Jamdat
	Gladiator
	Figure 3.8. Gladiator.
	Figure 3.9. Roshambofu.

	PicoFun
	Lifestylers
	Figure 3.10. Lifestylers.
	Picofun Football
	On the Green
	Wall Street Wizard
	Fight Arena

	Handy Games
	WAP Knights
	Figure 3.11. WAP Knights.
	WAP Tanks
	WAP Massacre
	Figure 3.12. WAP Massacre.
	WAP Interpol
	WAP Crates
	WAP Girlfriends
	Figure 3.13. WAP Girlfriends.

	FunCaster.com
	Figure 3.14. Shapez.

	Unplugged Games
	Void Raider
	Rags 2 Riches
	Word Trader

	nGame
	Alien Fish Exchange
	Figure 3.15. Alien Fish Exchange on a cell phone.
	Figure 3.16. Alien Fish Exchange on digital TV.
	Carrier Force
	Figure 3.17. Carrier Force.
	Chop Suey Kung Fu
	Data Clash
	Figure 3.18. Data Clash.

	i-mode Games
	Dwango's Turibaka Kibun
	Figure 3.19. Turibaka Kibun.

	SMS Games
	Fisupeli
	Blue Factory
	Figure 3.20. Hunters and Collectors.

	BotFighters by It's Alive
	Figure 3.21. BotFighters.

	Vizzavi Footie and Trivia

	J2ME MIDP Games
	Karl H?rnell's MIDP-Man
	Figure 3.22. MIDP-Man.

	HolyCowBoy's BlockBuster and HolyMoley
	Figure 3.23. BlockBuster.
	Figure 3.24. Holy Moley.

	Draw Poker
	Figure 3.25. Draw Poker.

	Cocoasoft
	Axion
	Figure 3.26. Axion.
	i-Skiing
	Figure 3.27. i-Skiing.
	Jerry the Cat: Indiana Jerrys
	Figure 3.28. Jerry the Cat.

	RomeBlack's Mobile Internet Maze Game
	Figure 3.29. Internet Maze Game.

	Sky Arts' Cube Game
	Figure 3.30. Cube game.

	Jshape's M-Type and MIDP Street Fighter
	Figure 3.31. M-Type.
	Figure 3.32. Street Fighter.

	Spruce Team
	Figure 3.33. Spruce Driver.

	Red Team's Dope Wars
	Figure 3.34. Dope Wars.

	J2ME Palm Games
	Torunda!
	Figure 3.35. Torunda!

	Karl H?rnell's Iceblox and PalmWarp
	Figure 3.36. IceBlox.
	Figure 3.37. PalmWarp.

	Hobbit's Let Me Alone
	Figure 3.38. Let Me Alone.

	iAppli Games
	Squiral Game
	Figure 3.39. Squiral.

	Dwango's Samurai Romanesque
	Figure 3.40. Walking through a town in Samurai Romanesque.
	Figure 3.41. Battling in Samurai Romanesque.

	Dwango's Challenge! The Hard-Boiled Way
	Figure 3.42. Billionaire.
	Figure 3.43. Chess.

	Sega
	Figure 3.44. Sonic the Hedgehog.

	Namco
	Figure 3.45. Tekken Command Battle.

	Capcom
	Bandai Networks
	Cybird's Mini Game Tengoku
	Figure 3.46. TypeCannon.
	Figure 3.47. Snake.

	Hudson Soft
	Figure 3.48. Miracle Quest.
	Figure 3.49. Miracle Golf.

	What Are You Waiting For?

	Part II: Before, Between, and Beyond J2ME
	Chapter 4. Wireless Standards: How Data Goes To And Fro
	Wireless Networks
	First Generation (1G)
	Second Generation (2G)
	Second (and a Half) Generation (2.5G)
	Third Generation (3G)

	The Wireless Application Protocol (WAP)
	The WAP Protocol Stack
	WAP Architecture
	Figure 4.1. The WAP architecture.
	Figure 4.2. The WAP process.

	The Wireless Markup Language (WML)
	WML Basics
	A Game of Cards and Decks
	Figure 4.3. A simple WML file.
	Anchors Away
	Text Formatting Tags
	Figure 4.4. Some formatted text.
	Tables
	User Input Tags
	Input Fields
	Option Groups
	Check Boxes and Radio Buttons
	Figure 4.5. A group of radio buttons.
	Field Sets
	Example
	Figure 4.6. Some user input fields.
	The <do> Tag
	Variables
	Images
	Figure 4.7. A beautiful WAP image.
	Timers

	WMLScript
	Accessing WML Script
	WMLScript Example

	Server-Side WAP
	Server Configuration
	WAP and Java
	A Servlet Game Lobby
	Figure 4.8. A WAP chat application using a servlet.
	Using JavaServer Pages (JSPs)

	Development Environment
	Figure 4.9. The Yospace SmartPhone Emulator.
	Figure 4.10. The Nokia WAP Toolkit development environment.
	Figure 4.11. The Nokia WAP Toolkit WAP emulator.

	Handheld Device Markup Language (HDML)
	HDML Syntax
	Displays
	Activities
	Actions
	Hyperlinks
	Images

	WAP 2.0 and xHTML Basic
	Summary

	Chapter 5. Let's Talk: Instant Wireless Messaging
	Messaging And Gaming
	Short Message Service (SMS)
	SMS Specifics
	SMS Text Mode
	Protocol Description Unit (PDU) Mode
	Smart Messaging
	Unicode Messages
	Flash SMS

	Short Message Service Centers (SMSCs)
	Figure 5.1. The SMS architecture.

	Free SMS Service

	Actually Sending SMS Messages
	SMS Tools

	SMS and J2ME
	Sample Server Code

	Multimedia Messaging Service (MMS)
	Multimedia Message Service Centers (MMSC)
	Crack a SMIL
	Simple SMIL Example
	Enhanced Messaging Service (EMS)

	Summary

	Chapter 6. Wireless in Asia: i-mode and cHTML
	Using i-mode
	Compact HTML (cHTML)
	Character Sets
	Emoji
	Figure 6.1. A few emoji.

	cHTML Structure
	Standard cHTML Tags
	Table 6.1. Image Format Support

	Input Forms
	The <Input> Tag
	Special Form Attributes
	The <Select> Tag
	The <TextArea> Tag

	The Anchor Tag
	Extended Anchor Tag Functions

	Images
	Table 6.2. Image Format Support

	<Marquee>

	Development Tools
	Testing and Emulators
	
	Figure 6.2. An i-mode emulator.

	Summary

	Chapter 7. The Wireless Landscape
	Bluetooth
	Bluetooth Protocols
	Bluetooth and Java
	Other Short-Range Applications
	Broadband's Promise

	Mobile Positioning
	How It All Works
	Forums and Associations
	Privacy
	Positioning Technologies
	Figure 7.1. Network-based positioning.
	Figure 7.2. Terminal-based positioning.
	Global Positioning System (GPS)
	Assisted GPS (A-GPS) and Differential GPS (DGPS)
	GSM Location Positioning
	Time Difference of Arrival
	Angle of Arrival
	Enhanced Observed Time Differential
	Radio Propagation

	m-Commerce
	Charging for Content
	Micro Java and Money

	Voice and Telephony
	VoiceXML
	VoiceXML Software
	Wireless Telephony Application Interface (WTAI)

	Unified Messaging (UM)
	Summary

	Part III: The Java 2 Micro Edition
	Chapter 8. J2ME Overview
	The Trinity of Java Platforms
	
	Figure 8.1. The Java virtual machine landscape.

	It's a Small World After All
	Using Java on Small Devices
	J2ME Rocks!

	Profiles and Configurations
	
	Figure 8.2. JVM layers.

	Major J2ME Configurations
	J2ME Profiles
	Figure 8.3. J2ME architecture overview.

	The Kilobyte Virtual Machine
	The Java Application Manager
	Packaging into a JAR File

	Connected in a Limited Way: The CLDC
	Security
	Pre-verifying

	The Mobile Profile
	MIDP in a Nutshell
	Earlier Profiles

	Summary

	Chapter 9. Creating a MIDlet
	Command-Line MIDlet Development
	Development Environments
	Wireless Toolkit
	Figure 9.1. Sun's Wireless Toolkit. To run the Wireless Toolkit, you'll need Java itself (JDK 1.3 or better), which has all the engines and libraries necessary to compile code. If you don't already have the JDK, you can grab it at http://java.sun.com/j

	Developing a MIDlet with the Wireless Toolkit
	Figure 9.2. The settings dialog.
	Figure 9.3. The Hello World MIDlet.

	Lifecycle of a MIDlet
	
	Listing 9.1 A Minimal MIDlet Implementation

	Displaying Stuff
	Working with Screens
	Forms
	Listing 9.2 Creating and Calling a Form
	Listing 9.3 The StartForm Class
	Figure 9.4. Game intro screen.

	Menus and Commands
	
	Figure 9.5. A sample menu of commands.
	Listing 9.4 A Command Listener

	Creating Help and About Alert Screens
	
	Figure 9.6. The Help alert.

	The Alert Class
	Listing 9.5 Implementing Help and About Screens

	Splash Screens
	Figure 9.7. The splash screen.
	Listing 9.6 A Form Object Splash Screen

	Global Properties
	Getting Application Properties
	Getting System Properties
	Creating a Global Cache Class
	Listing 9.7 The Cache Class

	Summary

	Chapter 10. Making the Most of Limited Resources
	The Limitations
	Processor Paucity
	Memory Madness
	Video Vex
	Processors of the Future

	Memory Limitations
	Working Memory
	Memory Fragmentation
	Memory Matters

	Storage Memory

	Displays
	Breaking Through the Limitations
	Detecting the Minimum Speed
	Frame Rate
	Multiple Display Support
	Black and White World

	Summary

	Chapter 11. Making the Most of It: Optimizations
	A Limited World
	Making Code Optimal
	Code Size Optimizations
	Making Code Faster
	Decreasing Memory
	Device Availability
	Network Performance

	Code Size Reductions
	Obfuscators and Name-Shortening
	The Object-Oriented Dilemma
	Image Size Reduction

	Speeding Up the Code
	Dealing with the Garbage Collector
	The Constructorless Way
	Math Classes

	Static Methods
	The Fast-Draw

	Using Less Memory
	String Versus StringBuffer
	Arrays Versus Vector and Hashtable

	Power Consumption
	Summary

	Chapter 12. Multithreaded Game Programming
	Threads
	Extending the Thread Object
	
	Listing 12.1 The GameCanvas Thread Example

	Implementing the Runnable Interface
	
	Listing 12.2 The GameCanvas Runnable Example

	Thread Priorities
	Thread States
	Synchronizations and Deadlocks
	wait() and notify()
	Timers
	
	Listing 12.3 The GameCanvas Timer Example

	Making Threads Better
	
	Listing 12.4 A Similar Functionality to the Timer Example

	Summary

	Part IV: Let the Games Begin!
	Chapter 13. High-Level Graphical User Interfaces
	The Screen Class
	Forms and Alerts
	Lists
	
	Figure 13.1. A Java List object.

	List Types
	Choices, Choices
	Listing 13.1 Choosing a Track
	Figure 13.2. The race track selection list.

	Text Boxes
	Items
	Item State Listening
	Choices
	Dates
	Figure 13.3. Displaying date and time.

	Progress Meters
	Figure 13.4. An interactive and non-interactive gauge.
	Listing 13.2 The ProgressForm Example

	StringItems
	ImageItems
	Text Inputs
	Figure 13.5. A typical text password field.

	Tickers
	Additional Libraries
	
	Figure 13.6. Using kAWT in J2ME.

	Summary

	Chapter 14. Working with Graphics: Low-Level Graphical User Interfaces
	The Canvas Class
	Canvas Events
	Custom Commands
	Creating a Game Key and Pointer Handler
	Handling Touch Screens

	Painting on the Screen
	Working with Colors
	Stroke Types
	Drawing Lines
	Figure 14.1. A dotted line.

	Drawing Rectangles
	Figure 14.2. The side of the road.

	Drawing Rounded Rectangles
	Drawing Arcs
	Fonts
	Drawing Strings
	Figure 14.3. Drawing the score.

	Drawing Images
	The Image Class
	Clipping
	Translating
	Double Buffering

	Summary

	Chapter 15. Entering the Land of Sprites
	Sprites
	Sprite Properties
	Animating Frames
	Figure 15.1. Creating a car filmstrip file.

	The Sprite Class
	Listing 15.1 Adding to the Sprite Class

	Image Files
	Loading Included Images
	Listing 15.2 Loading an Image Resource

	Loading Images Over the Network
	Image Size Reduction
	Drawing the Sprites
	Listing 15.3 Adding the paint() Method

	Collision Detection
	Basic Collision Detection
	Figure 15.2. Simple collision between two sprites.
	Listing 15.4 Adding Collision Detection to the Sprite

	Creating Child Sprites
	Building the Player Sprite
	Listing 15.5 The Player Sprite Child Class

	Opponents

	Image Transparency
	
	Figure 15.3. Without image transparency.

	Drawing by Pixels
	Figure 15.4. Drawing a car using primitives.
	Listing 15.6 Creating a Car Using Primitives

	Drawing a Sprite's Chunks
	Implementation of Image Transparency
	Listing 15.7 Using Many Clipping Rectangles

	Summary

	Chapter 16. Managing Your Sprites
	Networked Game Components
	Downloading Images
	Listing 16.1 Loading Images from Afar

	Downloading Other Media Types

	Advanced Collision Detection
	Solution 1: Multiple Levels
	Figure 16.1. Multiple levels of collision.
	Listing 16.2 Creating Collision Levels

	Solution 2: Multiple Areas
	Figure 16.2. Multiple areas of collision.
	Listing 16.3 Creating Collision Areas

	The Sprite Manager
	
	Listing 16.4 The SpriteManager Class

	Drawing Optimizations
	Listing 16.5 Improved Painting

	Enhancing Sprite Collision
	Listing 16.6 Adding Collision Detection

	Summary

	Chapter 17. Sprite Movement
	Floating-Point in J2ME
	
	Figure 17.1. Velocity components.

	Cheating the System
	Listing 17.1 The Float Class

	Game Initialization
	
	Listing 17.2 Initializing It All

	Movement
	The Movement Routine
	Listing 17.3 Creating a Game Thread
	Listing 17.4 Moving the Sprites
	Listing 17.5 Painting Sprites

	Piecing It All Together
	Handling Collision Detection
	Endgame: Losing or Winning
	The Final Game Thread
	Listing 17.6 The Final Game Loop
	Figure 17.2. The game in action.

	Summary

	Chapter 18. J2ME Audio Basics
	Sounds Are (Barely) Possible!
	
	Listing 18.1 Modified Versions of checkCollision() and checkFinishLine() Methods

	Summary

	Chapter 19. Be Persistent: MIDP Data Storage
	RecordStore Overview
	RecordStore in Practice
	addRecord()
	getRecord()
	setRecord()
	deleteRecord()
	getLastModified()
	getNextRecordID()
	getNumRecords()
	getSize()
	getSizeAvailable()
	deleteRecordStore()
	EnumerateRecords()
	RecordStore Exceptions

	The Game's New Methods
	Writing the Code
	The MIDlet Changes

	More RecordStore Joy
	
	Listing 19.1 The CarStore Class
	Listing 19.2 The CarItemFilter Class

	Summary

	Chapter 20. Connecting Out: Wireless Networking
	J2ME Networking Overview
	
	Figure 20.1. The Connection interfaces.

	MIDP Networking
	A Little Info About HTTP
	HTTP Setup Mode
	Making the HTTP Connection
	Closing Out

	HTTP Example
	Response Code
	Reading In Data
	Closing Down Cleanly

	Working Around HTTP's Limitations
	Multiple Connections
	The Power of the Proxy

	Setting Up Your Game Server
	Data Format
	Doing Your Own Packing
	XML
	Encoding with DataOutputStream and DataInputStream

	Making a Multiplayer Car Racing Game
	Design the System
	Special Considerations
	Polling
	Keeping HTTP Connections Alive
	Session Tracking

	The Messages
	Table 20.1. Necessary Game Parameters

	Weaknesses
	The Client Side
	The Server Side
	The Game Data
	The Servlet

	Playing the Game
	Figure 20.2. Logging in.
	Figure 20.3. Who's here…
	Figure 20.4. …and what's for sale.
	Figure 20.5. An item's detail.
	Figure 20.6. A list of your items.
	Figure 20.7. Choosing a sale price.
	Figure 20.8. Your item has been sold!

	Summary

	Part V: J2ME Extensions
	Chapter 21. PersonalJava, Connected Device Configuration, and Other Micro Java Blends
	Connected Device Configuration (CDC)
	J2ME Foundation Profile
	The Personal Profile

	PersonalJava
	PersonalJava APIs
	Double Buffering
	Input Without a Mouse
	Dealing with Unsupported Features
	The Timer API

	Developer Tools
	PersonalJava Emulation Environment
	JavaCheck
	Nokia's PersonalJava Development Environment

	MIDP Plug-In for PersonalJava
	PersonalJava Design Considerations

	PDA Profile
	Java Game Profile
	The J2ME Multimedia Profile
	Summary

	Chapter 22. iAppli: Micro Java with a Twist
	The Architecture of It All
	
	Figure 22.1. The iAppli architecture.

	Provisioning
	The ADF File
	Table 22.1. JAM File Properties and Parameters
	The Provisioning Process
	Updating Applications
	i-mode Extension Tags

	Priorities, Priorities

	iAppli: Like MIDP, But Not Quite
	User Interface
	Low-Level UI
	Graphics
	High-Level UI
	Label
	TextBox
	ListBox
	Figure 22.2. A check box version of ListBox.—
	Ticker
	VisualPresenter
	Button
	Dialog Boxes
	Handling Events
	Process Event on Canvas
	KeyListener on a Panel
	Component Listener
	SoftKeyListener
	Graphics and Sound
	Displaying an Image
	Playing Music
	Listening to Your Music

	Networking and Input/Output
	HTTP Connections
	ScratchPad

	Developing iApplis
	
	Figure 22.3. Inputting a JAM file or Java class.
	Figure 22.4. Emulating a Mine Sweeper game!

	Summary

	Chapter 23. Siemens Game API
	Getting Set Up
	Compiling
	Running with the Emulator
	Figure 23.1. The Siemens emulator.

	Running on the Actual Phone
	Download Your Applet Over the Air

	The Game SDK Overview
	Images and Sprites
	Creating an Extended Image
	Blitting

	Graphic Objects
	Sprites
	Creating and Masking a Sprite
	Figure 23.2. A sprite and its mask.

	Sample Code
	Figure 23.3. Multiple sprites.

	TiledBackground
	The Tiles
	Figure 23.4. A custom tile.

	The Tile Background
	Figure 23.5. A tiled background with sprites behind and in front.

	Flashing
	Good Vibrations
	Music, Sweet Music
	Melodies
	Composing Like a Virtuoso
	Table 23.1. Notes You Can Play With
	Table 23.2. Tone Length Values
	Playing the Melody

	GSM Functions
	Making a Call
	Accessing the Phone Book
	SMS Messages

	Input Output
	Sending and Receiving Data
	Saving and Loading Files

	Summary

	Part VI: Micro Racer
	Chapter 24. Micro Racer: Putting It All Together
	The Bad News
	The Good News
	Putting Together the Pieces
	Adding Weapons
	Listing 24.1 The Weapon Class
	Listing 24.2 Adding Weapons to GameCanvas
	Figure 24.1. Toasting enemies with our new flamethrower.

	Better Enemies: Artificial Intelligence
	Better Control
	Adding Power-Ups
	Figure 24.2. Adding power-ups across the track.

	Tying In the Game with the Data Store
	Listing 24.3 Creating a Car Store and Dealing with It
	Figure 24.3. Showing our current balance and weapons.

	Tying In the Offline Game with the Online Garage
	Changing GarageClient
	Changing the Game Client
	Adding the Garage to the Game Menu
	Now You're Online!
	Figure 24.4. Hawking weapons online.

	Future Work

	One Game Running Everywhere
	The Magic of Interfaces
	Listing 24.4 The CrashCarEffect Interface
	Listing 24.5 The DummyCrash Class
	Listing 24.6 The SiemensCrash Class
	Listing 24.7 Using Different Classes for Different Phones

	Summary

	Part VII: Appendixes
	Appendix A. Low-Level GUI Classes
	Game Classes
	javax.microedition.lcdui.AlertType
	javax.microedition.lcdui.Command
	javax.microedition.lcdui.Display
	javax.microedition.lcdui.Displayable
	javax.microedition.lcdui.Canvas
	javax.microedition.lcdui.Screen
	javax.microedition.lcdui.Alert
	javax.microedition.lcdui.Form
	javax.microedition.lcdui.List
	javax.microedition.lcdui.TextBox
	javax.microedition.lcdui.Font
	javax.microedition.lcdui.Graphics
	javax.microedition.lcdui.Image
	javax.microedition.lcdui.Item
	javax.microedition.lcdui.ChoiceGroup
	javax.microedition.lcdui.DateField
	javax.microedition.lcdui.Gauge
	javax.microedition.lcdui.ImageItem
	javax.microedition.lcdui.StringItem
	javax.microedition.lcdui.TextField
	javax.microedition.lcdui.Ticker

	Appendix B. MIDP 1.1
	Main Packages
	java.io Class Hierarchy
	java.io Interface Hierarchy
	java.lang Class Hierarchy
	java.lang Interface Hierarchy
	java.util Class Hierarchy
	java.util Interface Hierarchy
	javax.microedition.io Class Hierarchy
	javax.microedition.io Interface Hierarchy
	javax.microedition.lcdui Class Hierarchy
	javax.microedition.lcdui Interface Hierarchy
	javax.microedition.midlet Class Hierarchy
	javax.microedition.rms Class Hierarchy
	javax.microedition.rms Interface Hierarchy

	Appendix C. Siemens Game API
	Game Classes
	com.siemens.mp.game.Light
	com.siemens.mp.game.MelodyComposer
	com.siemens.mp.game.ExtendedImage
	com.siemens.mp.game.GraphicObject
	com.siemens.mp.game.Sprite
	com.siemens.mp.game.TiledBackground
	com.siemens.mp.game.GraphicObjectManager
	com.siemens.mp.game.Melody
	com.siemens.mp.game.Sound
	com.siemens.mp.game.Vibrator

	Siemens GSM Classes
	com.siemens.mp.gsm.Call
	com.siemens.mp.gsm.PhoneBook
	com.siemens.mp.gsm.SMS

	Input/Output Classes
	com.siemens.mp.io.Connection
	com.siemens.mp.io.File
	public interface ConnectionListener

	Appendix D. The iAppli API
	Packages
	com.nttdocomo.io Interfaces
	com.nttdocomo.io Interfaces
	com.nttdocomo.lang
	com.nttdocomo.net
	com.nttdocomo.ui
	com.nttdocomo.ui Interfaces
	com.nttdocomo.util
	com.nttdocomo.util Interfaces
	IApplication

