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The History of Haskell

Thehistoryof Haskell is bestdescribedusingthewordsof theauthors.Thefollowing
text is quotedfrom thepublishedversionof theHaskell 98Report:

In Septemberof 1987a meetingwasheldat theconferenceonFunctional
ProgrammingLanguagesandComputerArchitecture(FPCA'87) in Port-
land, Oregon, to discussan unfortunatesituationin the functional pro-
grammingcommunity:therehadcomeinto beingmorethanadozennon-
strict, purely functionalprogramminglanguages,all similar in expressive
power andsemanticunderpinnings.Therewasa strongconsensusat this
meetingthatmorewidespreaduseof thisclassof functionallanguageswas
beinghamperedby thelack of a commonlanguage.It wasdecidedthata
committeeshouldbe formedto designsucha language,providing faster
communicationof new ideas,a stablefoundationfor realapplicationsde-
velopment,anda vehicle throughwhich otherswould be encouragedto
usefunctionallanguages.This documentdescribestheresultof thatcom-
mittee'sefforts: apurelyfunctionalprogramminglanguagecalledHaskell,
namedafterthelogicianHaskell B. Currywhosework providesthelogical
basisfor muchof ours.

Thecommittee'sprimarygoalwasto designalanguagethatsatis�edthese
constraints:

1. It shouldbesuitablefor teaching,research,andapplications,includ-
ing building largesystems.

2. It shouldbe completelydescribedvia the publicationof a formal
syntaxandsemantics.

3. It shouldbefreely available. Anyoneshouldbepermittedto imple-
mentthelanguageanddistributeit to whomever they please.

4. It shouldbebasedon ideasthatenjoy awideconsensus.

5. It shouldreduceunnecessarydiversity in functional programming
languages.

The committeeintendedthat Haskell would serve as a basisfor future
researchin languagedesign,andhopedthatextensionsor variantsof the
languagewouldappear, incorporatingexperimentalfeatures.

Haskell hasindeedevolvedcontinuouslysinceits originalpublication.By
themiddleof 1997,therehadbeenfour iterationsof the languagedesign
(thelatestat thatpointbeingHaskell 1.4). At the1997Haskell Workshop
in Amsterdam,it wasdecidedthata stablevariantof Haskell wasneeded;
this stablelanguageis the subjectof this Report,and is called“Haskell
98”.

Haskell 98 was conceived as a relatively minor tidy-up of Haskell 1.4,
makingsomesimpli�cations, andremoving somepitfalls for theunwary.
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Chapter 1

Intr oduction

This tutorial containsa whole hostof examplecode,all of which shouldhave been
includedin its distribution. If not, pleaserefer to the links off of theHaskell website
(haskell.org ) to get it. This book is formattedto make examplecodestandout
from therestof thetext.

Code will look like this.

Occasionally, we will refer to interactionbetwenyou and the operatingsystem
and/ortheinteractive shell(moreon this in Section2).

Interaction will look like this.

Strewn throughoutthe tutorial, we will often make additionalnotesto something
written. Theseareoften for makingcomparisonsto otherprogramminglanguagesor
addinghelpful information.

NOTE Noteswill appearlike this.

If we're coveringa dif�cult or confusingtopic andthereis somethingyou should
watchout for, wewill placeawarning.

WARNING Warningswill appearlike this.

Finally, wewill sometimesmakereferenceto built-in functions(so-calledPrelude-
functions).Thiswill look somethinglike this:

map :: ( a � > b )� > [a ]� > [b ]

Within thebodytext, Haskell keywordswill appearlike this: where, identi�ers as
map, typesasString andclassesasEq .
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8 CHAPTER2. GETTINGSTARTED

2.2.2 Installation procedures

Onceyou've downloadedGHC, installationdiffersdependingon your platform;how-
ever, installationfor GHC is moreof lessidenticalto installationfor any programon
yourplatform.

For Windows whenyouclick onthe“msi” �le to download,simplychoose“Run This
Program”andthe installationwill begin automatically. Fromthere,just follow
theon-screeninstructions.

For RPMs usewhatever RPMinstallationprogramyouknow best.

For source �rst gunzip the �le, thenuntar it. Presumablyif you're usinga system
which isn't otherwisesupported,youknow enoughaboutyoursystemto beable
to runcon�gure scriptsandmake thingsby hand.

For amoredetaileddescriptionof theinstallationprocedure,look at theGHCusers
manualunder“Installing GHC”.

2.2.3 How to run the compiler

Runningthecompileris fairly easy. Assumingthatyou have a programwritten with a
main functionin a �le calledMain.hs , youcancompileit simplyby writing:

% ghc --make Main.hs -o main

The“–make” optiontellsGHCthatthis is aprogramandnot justa library andyou
want to build it andall modulesit dependson. “Main.hs” stipulatesthe nameof the
�le to compile;andthe“-o main” meansthatyouwantto put theoutputin a �le called
“main”.

NOTE In Windows, you shouldsay“-o main.exe” to tell Windows
thatthis is anexecutable�le.

Youcanthenrun theprogramby simply typing “main” at theprompt.

2.2.4 How to run the interpreter

GHCi is invokedwith thecommand“ghci” or “ghc –interactive”. Oneor moremodules
or �lenamescanalsobespeci�edonthecommandline; this instructsGHCi to loadthe
speci�edmodulesor �lenames(andall themodulesthey dependon), justasif youhad
said:loadmodulesat theGHCi prompt.
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Prelude> 5*(4+3)
35

We can seethat, in addition to the standardarithmeticoperations,Haskell also
allowsgroupingby parentheses,hencethedifferencebetweenthevaluesof 5*4+3 and
5*(4+3). Thereasonfor this is thatthe“understood”groupingof the�rst expressionis
(5*4)+3, dueto operator precedence.operator precedence

Also notethatparenthesesaren't requiredaroundfunctionarguments.For instance,
we simply wrote sqrt 2, not sqrt(2) , as would be requiredin most other lan-
guages.Youcouldwrite it with theparentheses,but in Haskell, sincefunctionapplica-
tion is socommon,parenthesesaren't required.

WARNING Even thoughparenthesesarenot alwaysneeded,some-
times it is betterto leave them in anyway; otherpeoplewill probably
have to readyour code,andif extra parenthesesmake the intent of the
codeclearer, usethem.

Now try entering2ˆ5000. Doesit work?

NOTE If you're familiar with programmingin otherlanguages,you
may �nd it odd that sqrt 2 comesbackwith a decimalpoint (i.e., is a
�oating pointnumber)eventhoughtheargumentto thefunctionseemsto
beaninteger. This interchangability of numerictypesis dueto Haskell's
systemof typeclassesandwill bediscussedin detail in Section4.3).

Exercises

Exercise3.1 We'veseenthatmultiplicationbindsmore tightly thandivision.Canyou
think of a way to determinewhetherfunctionapplicationbindsmore or lesstightly
thanmultiplication?

3.2 Pairs, Triples and Mor e

In additionto singlevalues,we shouldalsoaddressmultiple values.For instance,we
maywantto referto apositionby its x /y coordinate,whichwouldbeapairof integers.
To make a pair of integersis simple: you enclosethepair in parenthesisandseparate
themwith acomma.Try thefollowing:

Prelude> (5,3)
(5,3)
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Prelude> [1,2]
[1,2]
Prelude> [1,2,3]
[1,2,3]

Listsdon't needto have any elements.Theemptylist is simply [] .
Unlike tuples,we canvery easilyaddan elementon to the beginning of the list

usingthecolonoperator. Thecolonis calledthe“cons” operator;theprocessof addingcons operator
an elementis called“consing.” The etymologyof this is that we areconstructing a
new list from anelementandanold list. We canseetheconsoperatorin actionin the
following examples:

Prelude> 0:[1,2]
[0,1,2]
Prelude> 5:[1,2,3,4]
[5,1,2,3,4]

Wecanactuallybuild any list by usingtheconsoperator(thecolon)andtheempty
list:

Prelude> 5:1:2:3:4:[]
[5,1,2,3,4]

In fact,the[5,1,2,3,4] syntaxis “syntacticsugar” for theexpressionusingthesyntactic sugar
explicit consoperatorsandemptylist. If wewrite somethingusingthe[5,1,2,3,4]
notation,thecompilersimply translatesit to theexpressionusing(:) and[] .

NOTE In general,“syntacticsugar” is astrictly unnecessarylanguage
feature,which is addedto make thesyntaxnicer.

Onefurther differencebetweenlists andtuplesis that,while tuplesareheteroge-
neous,lists mustbe homogenous.This meansthat you cannothave a list that holdshomogenous
bothintegersandstrings.If you try to, a typeerrorwill bereported.

Of course,lists don't have to just containintegersor strings;they canalsocontain
tuplesor evenotherlists. Tuples,similarly, cancontainlistsandothertuples.Try some
of thefollowing:

Prelude> [(1,1),(2,4),(3,9),(4,16)]
[(1,1),(2,4),(3,9),(4,16)]
Prelude> ([1,2,3,4],[5,6,7])
([1,2,3,4],[5,6,7])
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==> ((1 - 4) - 8) - 5
==> ((-3) - 8) - 5
==> (-11) - 5
==> -16

Notethatoncethefoldl goesaway, theparenthesizationis exactly theopposite
of thefoldr .

NOTE foldl is often moreef�cient thanfoldr for reasonsthat
we will discussin Section7.8. However, foldr canwork on in�nite
lists, while foldl cannot. This is becausebeforefoldl doesany-
thing, it hasto go to the end of the list. On the other hand, foldr
startsproducingoutput immediately. For instance,foldr (:) []
[1,2,3,4,5] simply returnsthe samelist. Even if the list were in-
�nite, it would produceoutput. A similar functionusingfoldl would
fail to produceany output.

If this discussionof the folding functionsis still somewhat unclear, that's okay.
We'll discussthemfurtherin Section7.8.

Exercises
Exercise3.3 Usemap to convert a string into a list of booleans,each elementin the
new list representingwhetheror not theoriginal elementwasa lower-casecharacter.
Thatis, it shouldtake thestring “aBCde” andreturn[True,False,False,True,True].

Exercise3.4 Usethe functionsmentionedin this section(youwill needtwo of them)
to computethenumberof lower-caseletters in a string. For instance, on “aBCde” it
shouldreturn3.

Exercise3.5 We'veseenhowto calculatesumsandproductsusingfolding functions.
Given that the functionmax returnsthe maximumof two numbers, write a function
usinga fold that will returnthemaximumvaluein a list (andzero if thelist is empty).
So,whenappliedto [5,10,2,8,1]it will return10. Assumethat thevaluesin thelist are
always� 0. Explainto yourselfwhyit works.

Exercise3.6 Write a function that takes a list of pairs of length at least 2 and re-
turns the �r st componentof the secondelementin the list. So,whenprovidedwith
[(5,'b'),(1,'c'),(6,'a')], it will return1.

3.4 SourceCodeFiles

As programmers,we don't want to simply evaluatesmallexpressionslike these– we
wantto sit down, write codein oureditorof choice,save it andthenuseit.

We alreadysaw in Sections2.2 and2.3 how to write a Hello World programand
how to compileit. Here,we show how to usefunctionsde�ned in a source-code�le
in theinteractive environment.To do this, createa �le calledTest.hs andenterthe
following code:
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comment -} the original comment extends to the
matching end-comment token: -}
f x =

case x of
0 -> 1 -- 0 maps to 1
1 -> 5 -- 1 maps to 5
2 -> 2 -- 2 maps to 2
_ -> -1 -- everything else maps to -1

Thisexampleprogramshowstheuseof bothline commentsand(embedded)block
comments.

3.7 Recursion

In imperative languageslikeC andJava,themostbasiccontrolstructureis a loop(like
afor loop). However, for loopsdon't makemuchsensein Haskell becausethey require
destructive update(the index variableis constantlybeingupdated).Instead,Haskell
usesrecursion.

A functionis recursiveif it callsitself (seeAppendixB for more).Recursive func-
tionsexist alsoin C andJava but areusedlessthanthey arein functionallanguages.
Theprototypicalrecursivefunctionis thefactorialfunction.In animperative language,
youmightwrite thisassomethinglike:

int factorial(int n) {
int fact = 1;
for (int i=2; i <= n; i++)

fact = fact * i;
return fact;

}

While thiscodefragmentwill successfullycomputefactorialsfor positive integers,
it somehow ignoresthebasicde�nition of factorial,usuallygivenas:

n! =
�

1 n = 1
n � (n � 1)! otherwise

This de�nition itself is exactly a recursive de�nition: namelythe valueof n! de-
pendson thevalueof (n � 1)!. If you think of ! asa function,thenit is calling itself.
Wecantranslatethisde�nition almostverbatiminto Haskell code:

factorial 1 = 1
factorial n = n * factorial (n-1)

This is likely thesimplestrecursive functionyou'll ever see,but it is correct.
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Similarly, wecanconsiderthefilter function.Again,thebasecaseis theempty
list, andtherecursive caseis a conslist. However, this time, we're choosingwhether
to keepanelement,dependingon whetheror not a particularpredicateholds.We can
de�ne the�lter functionas:

my_filter p [] = []
my_filter p (x:xs) =

if p x
then x : my_filter p xs
else my_filter p xs

In this code,whenpresentedwith an empty list, we simply returnan empty list.
This is because�lter cannotaddelements;it canonly remove them.

Whenpresentedwith a list of theform (x:xs) , weneedto decidewhetheror not
to keepthevaluex. To do this, we usean if statementandthepredicatep. If p x is
true,thenwe returna list thatbeginswith x followedby theresultof �ltering thetail
of thelist. If p x is false,thenweexcludex andreturntheresultof �ltering thetail of
thelist.

We canalsode�ne map andboth fold functionsusingexplicit recursion.Seethe
exercisesfor thede�nition of mapandChapter7 for thefolds.

Exercises
Exercise3.7 The�bonacci sequenceis de�nedby:

F n =
�

1 n = 1 or n = 2
F n � 2 + F n � 1 otherwise

Write a recursive function fib that takes a positiveinteger n as a parameterand
calculatesF n .

Exercise3.8 De�ne a recursivefunctionmult that takestwo positiveintegers a and
b andreturnsa*b , but onlyusesaddition(i.e., nofair justusingmultiplication).Begin
bymakinga mathematicalde�nition in thestyleof thepreviousexerciseandtherestof
this section.

Exercise3.9 De�ne a recursivefunctionmy mapthatbehavesidenticallyto thestan-
dard functionmap.

3.8 Interacti vity

If you arefamiliar with bookson other(imperative) languages,you might bewonder-
ing why you haven't seenmany of thestandardprogramswritten in tutorialsof other
languages(likeonesthatasktheuserfor hisnameandthensays“Hi” to him by name).
Thereasonfor this is simple:Beinga purefunctionallanguage,it is not entirelyclear
how oneshouldhandleoperationslikeuserinput.
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incorrect.Here,we will give the incorrectversion,explain why it is wrong,thengive
thecorrectversion.

Let's saywe're writing a simpleprogramthatrepeatedlyaskstheuserto typein a
few words.If atany point theuserenterstheemptyword(i.e.,hejusthitsenterwithout
typing anything), theprogramprintsout everythinghe's typedup until thatpoint and
thenexits. Theprimary function(actually, anaction)in this programis onethatasks
theuserfor a word,checksto seeif it' s empty, andtheneithercontinuesor ends.The
incorrect formulationof thismight look somethinglike:

askForWords = do
putStrLn "Please enter a word:"
word <- getLine
if word == ""

then return []
else return (word : askForWords)

Beforereadingahead,seeif youcan�gure outwhatis wrongwith theabovecode.
Theerroris onthelastline, speci�cally with thetermword : askForWords .

Remeberthat when using (: ), we are making a list out of an element(in this case
word ) andanotherlist (in this case,askForWords ). However, askForWords is
not a list; it is anactionthat,whenrun,will producea list. Thatmeansthatbeforewe
canattachanything to the front, we needto run theactionandtake theresult. In this
case,wewantto dosomethinglike:

askForWords = do
putStrLn "Please enter a word:"
word <- getLine
if word == ""

then return []
else do

rest <- askForWords
return (word : rest)

Here,we�rst runaskForWords , taketheresultandstoreit in thevariablerest .
Then, we returnthelist createdfrom word andrest .

By now, you shouldhave a goodunderstandingof how to write simplefunctions,
compilethem,testfunctionsandprogramsin theinteractive environment,andmanip-
ulatelists.

Exercises
Exercise3.10 Writea programthatwill repeatedlyasktheuserfor numbersuntil she
typesin zero, at which point it will tell her thesumof all thenumbers, theproductof
all thenumbers,and,for each number, its factorial. For instance, a sessionmightlook
like:





Chapter 4

TypeBasics

Haskell usesa systemof static typechecking. This meansthat every expressionin
Haskell is assigneda type. For instance'a' would have type Char, for “character.”
Then,if youhavea functionwhichexpectsanargumentof acertaintypeandyougive
it thewrongtype,a compile-timeerrorwill begenerated(that is, you will not beable
to compilethe program).This vastly reducesthe numberof bugsthat cancreepinto
yourprogram.

Furthermore,Haskell usesa systemof typeinference. This meansthat you don't
evenneedto specifythe typeof expressions.For comparison,in C, whenyou de�ne
a variable,you needto specifyits type (for instance,int, char, etc.). In Haskell, you
needn't do this– thetypewill beinferredfrom context.

NOTE If you want, you certainlyareallowed to explicitely specify
thetypeof anexpression;this oftenhelpsdebugging.In fact,it is some-
timesconsideredgoodstyle to explicitly specifythe typesof outermost
functions.

BothHugsandGHCi allow you to applytypeinferenceto anexpressionto �nd its
type. This is doneby usingthe:t command.For instance,startup your favorite shell
andtry thefollowing:

Prelude> :t 'c'
'c' :: Char

This tells us that the expression'c' hastype Char (the doublecolon :: is used
throughoutHaskell to specifytypes).

4.1 SimpleTypes

Therearea slew of built-in types,including Int (for integers,both positive andneg-
ative), Double(for �oating point numbers),Char (for singlecharacters),String (for
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function de�nition sinceit knows you will only apply square to Ints, so it may be
ableto generatefastercode.

If you have extensionsturnedon (“-98” in Hugsor “-fglasgow-exts” in GHC(i)),
you canalsoadda typesignatureto expressionsandnot just functions.For instance,
youcouldwrite:

square (x :: Int) = x*x

which tells the compiler that x is an Int; however, it leaves the compiler alone
to infer the type of the restof the expression. What is the type of square in this
example?Makeyourguessthenyoucancheckit eitherby enteringthiscodeinto a�le
andloadingit into your interpreteror by askingfor thetypeof theexpression:

Prelude> :t (\(x :: Int) -> x*x)

sincethis lambdaabstractionis equivalentto theabove functiondeclaration.

4.4.5 Functional Ar guments

In Section3.3we saw examplesof functionstakingotherfunctionsasarguments.For
instance,maptook a functionto applyto eachelementin a list, filter took a func-
tion thattold it whichelementsof a list to keep,andfoldl tookafunctionwhichtold
it how to combinelist elementstogether. As with everyotherfunctionin Haskell, these
arewell-typed.

Let's �rst think aboutthe map function. It' s job is to take a list of elementsand
produceanotherlist of elements.Thesetwo lists don't necessarilyhave to have the
sametypesof elements.Somap will take a valueof type [a] andproducea valueof
type [b]. How doesit do this? It usestheuser-suppliedfunction to convert. In order
to convert an a to a b, this functionmusthave typea ! b. Thus,the typeof map is
(a ! b) ! [a] ! [b], whichyoucanverify in your interpreterwith “:t”.

We canapply the samesort of analysisto filter anddiscernthat it hastype
(a ! Bool) ! [a] ! [a]. As wepresentedthefoldl function,youmightbetempted
to give it type(a ! a ! a) ! a ! [a] ! a, meaningthatyou take a functionwhich
combinestwo asintoanotherone,aninitial valueof typea, alist of asto producea�nal
valueof typea. In fact,foldl hasamoregeneraltype: (a ! b ! a) ! a ! [b] ! a.
Soit takesa functionwhich turn ana anda b into ana, aninitial valueof typea anda
list of bs. It producesana.

To seethis,wecanwrite a functioncount whichcountshow many membersof a
list satisfyagivenconstraint.Youcanof courseyou filter andlength to do this,
but wewill alsodo it usingfoldr :

module Count
where

import Char
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4.5.3 RecursiveDatatypes

We can also de�ne recursive datatypes. Theseare datatypeswhosede�nitions are
basedon themselves.For instance,wecouldde�ne a list datatypeas:

data List a = Nil
| Cons a (List a)

In thisde�nition, wehavede�ned whatit meansto beof typeList a. Wesaythata
list is eitherempty(Nil ) or it' s theCons of avalueof typea andanothervalueof type
List a. This is almostidenticalto theactualde�nition of the list datatypein Haskell,
except that usesspecialsyntaxwhere[] correspondsto Nil and: correspondsto
Cons. Wecanwrite ourown length functionfor our listsas:

listLength Nil = 0
listLength (Cons x xs) = 1 + listLength xs

This function is slightly more complicatedand usesrecursion to calculatethe
lengthof a List . The �rst line saysthat the lengthof an empty list (a Nil ) is 0.
This muchis obvious. The secondline tells us how to calculatethe lengthof a non-
emptylist. A non-emptylist mustbeof the form Cons x xs for somevaluesof x
andxs . We know thatxs is anotherlist andwe know thatwhatever thelengthof the
currentlist is, it' s the lengthof its tail (the valueof xs ) plus one(to accountfor x).
Thus,weapplythelistLength functionto xs andaddoneto theresult.Thisgives
usthelengthof theentirelist.

Exercises
Exercise4.8 WritefunctionslistHead , listTail , listFoldl andlistFoldr
which areequivalentto their Preludetwins,but functiononour List datatype. Don't
worry aboutexceptionalconditionson the�r st two.

4.5.4 Binary Trees

We can de�ne datatypesthat are more complicatedthat lists. Supposewe want to
de�ne a structurethat looks like a binary tree. A binary treeis a structurethat hasa
singleroot node;eachnodein thetreeis eithera “leaf” or a “branch.” If it' s a leaf, it
holdsavalue;if it' sabranch,it holdsavalueanda left child andaright child. Eachof
thesechildrenis anothernode.Wecande�ne suchadatatypeas:

data BinaryTree a
= Leaf a
| Branch (BinaryTree a) a (BinaryTree a)

In this datatypedeclarationwe say that a BinaryTree of as is eithera Leaf
which holdsana, or it' s a branchwith a left child (which is a BinaryTree of as),a
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main = do
s <- readFile "somefile"
let i = f s
putStrLn (show i)

Here, we use the arrow convention to “get the string out of theIO action” and then
applyf to the string (calleds ). We then, for example, printi to the screen. Note that
the let here doesn’t have a correspondingin. This is because we are in ado block.
Also note that we don’t writei <- f s becausef is just a normal function, not an
IO action.

4.4.4 Explicit Type Declarations

It is sometimes desirable to explicitly specify the types ofsome elements or functions,
for one (or more) of the following reasons:

• Clarity

• Speed

• Debugging

Some people consider it good software engineering to specify the types of all top-
level functions. If nothing else, if you’re trying to compile a program and you get type
errors that you cannot understand, if you declare the types of some of your functions
explicitly, it may be easier to figure out where the error is.

Type declarations are written separatly from the function definition. For instance,
we could explicitly type the functionsquare as in the following code (an explicitly
declared type is called atype signature):

square :: Num a => a -> a
square x = x * x

These two lines do not even have to be next to eachother. However, the type that you
specify must match the inferred type of the function definition (or be more specific).
In this definition, you could applysquare to anything which is an instance ofNum:
Int, Double, etc. However, if you knew apriori thatsquare were only going to be
applied to value of typeInt, you couldrefineits type as:

square :: Int -> Int
square x = x * x

Now, you could only applysquare to values of typeInt. Moreover, with this def-
inition, the compiler doesn’t have to generate the general code specified in the original
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function definition since it knows you will only applysquare to Ints, so it may be
able to generate faster code.

If you have extensions turned on (“-98” in Hugs or “-fglasgow-exts” in GHC(i)),
you can also add a type signature to expressions and not just functions. For instance,
you could write:

square (x :: Int) = x * x

which tells the compiler thatx is an Int; however, it leaves the compiler alone
to infer the type of the rest of the expression. What is the type of square in this
example? Make your guess then you can check it either by entering this code into a file
and loading it into your interpreter or by asking for the typeof the expression:

Prelude> :t (\(x :: Int) -> x * x)

since this lambda abstraction is equivalent to the above function declaration.

4.4.5 Functional Arguments

In Section 3.3 we saw examples of functions taking other functions as arguments. For
instance,map took a function to apply to each element in a list,filter took a func-
tion that told it which elements of a list to keep, andfoldl took a function which told
it how to combine list elements together. As with every otherfunction in Haskell, these
are well-typed.

Let’s first think about themap function. It’s job is to take a list of elements and
produce another list of elements. These two lists don’t necessarily have to have the
same types of elements. Somap will take a value of type[a] and produce a value of
type [b]. How does it do this? It uses the user-supplied function to convert. In order
to convert ana to ab, this function must have typea → b. Thus, the type ofmap is
(a → b) → [a] → [b], which you can verify in your interpreter with “:t”.

We can apply the same sort of analysis tofilter and discern that it has type
(a → Bool) → [a] → [a]. As we presented thefoldl function, you might be tempted
to give it type(a → a → a) → a → [a] → a, meaning that you take a function which
combines twoas into another one, an initial value of typea, a list ofas to produce a final
value of typea. In fact,foldl has a more general type:(a → b → a) → a → [b] → a.
So it takes a function which turn ana and ab into ana, an initial value of typea and a
list of bs. It produces ana.

To see this, we can write a functioncount which counts how many members of a
list satisfy a given constraint. You can of course youfilter andlength to do this,
but we will also do it usingfoldr :

module Count
where

import Char
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count1 p l = length (filter p l)
count2 p l = foldr (\x c -> if p x then c+1 else c) 0 l

The functioning ofcount1 is simple. It filters the listl according to the predicate
p, then takes the length of the resulting list. On the other hand,count2 uses the intial
value (which is an integer) to hold the current count. For each element in the listl ,
it applies the lambda expression shown. This takes two arguments,c which holds the
current count andx which is the current element in the list that we’re looking at. It
checks to see ifp holds aboutx . If it does, it returns the new valuec+1 , increasing the
count of elements for which the predicate holds. If it doesn’t, it just returnsc , the old
count.

Exercises

Exercise 4.3Figure out for yourself, and then verify the types of the following expres-
sions, if they have a type. Also note if the expression is a type error:

1. \x -> [x]

2. \x y z -> (x,y:z:[])

3. \x -> x + 5

4. \x -> "hello, world"

5. \x -> x ’a’

6. \x -> x x

7. \x -> x + x

4.5 Data Types

Tuples and lists are nice, common ways to define structured values. However, it is
often desirable to be able to define our own data structures and functions over them.
So-called “datatypes” are defined using thedata keyword.

4.5.1 Pairs

For instance, a definition of a pair of elements (much like thestandard, build-in pair
type) could be:

data Pair a b = Pair a b
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Let’s walk through this code one word at a time. First we say “data” meaning that
we’re defining a datatype. We then give the name of the datatype, in this case, “Pair.”
The “a” and “b” that follow “Pair” are type parameters, just like the “a” is the type of
the functionmap. So up until this point, we’ve said that we’re going to define adata
structure called “Pair” which is parameterized over two types,a andb.

After the equals sign, we specify theconstructorsof this data type. In this case,
there is a single constructor, “Pair” (this doesn’t necessarily have to have the same
name as the type, but in this case it seems to make more sense).After this pair, we
again write “a b”, which means that in order to construct aPair we need two values,
one of typea and one of typeb.

This definition introduces a function,Pair :: a -> b -> Pair a b that
you can use to constructPair s. If you enter this code into a file and load it, you can
see how these are constructed:

Datatypes> :t Pair
Pair :: a -> b -> Pair a b
Datatypes> :t Pair ’a’
Pair ’a’ :: a -> Pair Char a
Datatypes> :t Pair ’a’ "Hello"
:t Pair ’a’ "Hello"
Pair ’a’ "Hello" :: Pair Char [Char]

So, by givingPair two values, we have completely constructed a value of type
Pair. We can write functions involving pairs as:

pairFst (Pair x y) = x
pairSnd (Pair x y) = y

In this, we’ve used thepattern matchingcapabilities of Haskell to look at a pair
an extract values from it. In the definition ofpairFst we take an entirePair and
extract the first element; similarly forpairSnd . We’ll discuss pattern matching in
much more detail in Section 7.4.

Exercises
Exercise 4.4Write a data type declaration forTriple , a type which contains three
elements, all of different types. Write functionstripleFst , tripleSnd andtripleThr
to extract respectively the first, second and third elements.

Exercise 4.5Write a datatypeQuadruple which holds four elements. However, the
first two elements must be the same type and the last two elements must be the same
type. Write a functionfirstTwo which returns a list containing the first two elements
and a functionlastTwo which returns a list containing the last two elements. Write
type signatures for these functions
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4.5.2 Multiple Constructors

We have seen an example of the data type with one constructor:Pair . It is also
possible (and extremely useful) to have multiple constructors.

Let us consider a simple function which searches through a list for an element
satisfying a given predicate and then returns the first element satisfying that predicate.
What should we do if none of the elements in the list satisfy the predicate? A few
options are listed below:

• Raise an error

• Loop indefinitely

• Write a check function

• Return the first element

• . . .

Raising an error is certainly an option (see Section 10.1 to see how to do this).
The problem is that it is difficult/impossible to recover from such errors. Looping
indefinitely is possible, but not terribly useful. We could write a sister function which
checks to see if the list contains an element satisfying a predicate and leave it up to the
user to always use this function first. We could return the first element, but this is very
ad-hoc and difficult to remember.

The fact that there is no basic option to solve this problem simply means we have to
think about it a little more. What are we trying to do? We’re trying to write a function
which might succeed and might not. Furthermore, if it does succeed, it returns some
sort of value. Let’s write a datatype:

data Maybe a = Nothing
| Just a

This is one of the most common datatypes in Haskell and is defined in the Prelude.
Here, we’re saying that there are two possible ways to createsomething of type

Maybe a. The first is to use the nullary constructorNothing , which takes no ar-
guments (this is what “nullary” means). The second is to use the constructorJust ,
together with a value of typea.

The Maybe type is useful in all sorts of circumstances. For instance, suppose
we want to write a function (likehead ) which returns the first element of a given
list. However, we don’t want the program to die if the given list is empty. We can
accomplish this with a function like:

firstElement :: [a] -> Maybe a
firstElement [] = Nothing
firstElement (x:xs) = Just x
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The type signature here says thatfirstElement takes a list ofas and produces
something with typeMaybe a. In the first line of code, we match against the empty
list [] . If this match succeeds (i.e., the list is, in fact, empty), we returnNothing . If
the first match fails, then we try to match againstx:xs which must succeed. In this
case, we returnJust x .

For ourfindElement function, we represent failure by the valueNothing and
success with valuea by Just a . Our function might look something like this:

findElement :: (a -> Bool) -> [a] -> Maybe a
findElement p [] = Nothing
findElement p (x:xs) =

if p x then Just x
else findElement p xs

The first line here gives the type of the function. In this case, our first argument
is the predicate (and takes an element of typea and returnsTrue if and only if the
element satisfies the predicate); the second argument is a list of as. Our return value
is maybean a. That is, if the function succeeds, we will returnJust a and if not,
Nothing .

Another useful datatype is theEither type, defined as:

data Either a b = Left a
| Right b

This is a way of expressing alternation. That is, something of type Either a b
is eithera value of typea (using theLeft constructor) or a value of typeb (using the
Right constructor).

Exercises

Exercise 4.6Write a datatypeTuple which can hold one, two, three or four elements,
depending on the constructor (that is, there should be four constructors, one for each
number of arguments). Also provide functionstuple1 throughtuple4 which take a
tuple and returnJust the value in that position, orNothing if the number is invalid
(i.e., you ask for thetuple4 on a tuple holding only two elements).

Exercise 4.7Based on our definition ofTuple from the previous exercise, write a
function which takes aTuple and returns either the value (if it’s a one-tuple), a
Haskell-pair (i.e.,(’a’,5) ) if it’s a two-tuple, a Haskell-triple if it’s a three-tuple
or a Haskell-quadruple if it’s a four-tuple. You will need touse theEither type to
represent this.
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4.5.3 Recursive Datatypes

We can also definerecursive datatypes.These are datatypes whose definitions are
based on themselves. For instance, we could define a list datatype as:

data List a = Nil
| Cons a (List a)

In this definition, we have defined what it means to be of typeList a. We say that a
list is either empty (Nil ) or it’s theCons of a value of typea and another value of type
List a. This is almost identical to the actual definition of the listdatatype in Haskell,
except that uses special syntax where[] corresponds toNil and : corresponds to
Cons. We can write our ownlength function for our lists as:

listLength Nil = 0
listLength (Cons x xs) = 1 + listLength xs

This function is slightly more complicated and usesrecursion to calculate the
length of aList . The first line says that the length of an empty list (aNil ) is 0.
This much is obvious. The second line tells us how to calculate the length of a non-
empty list. A non-empty list must be of the formCons x xs for some values ofx
andxs . We know thatxs is another list and we know that whatever the length of the
current list is, it’s the length of its tail (the value ofxs ) plus one (to account forx ).
Thus, we apply thelistLength function toxs and add one to the result. This gives
us the length of the entire list.

Exercises
Exercise 4.8Write functionslistHead , listTail , listFoldl andlistFoldr
which are equivalent to their Prelude twins, but function onour List datatype. Don’t
worry about exceptional conditions on the first two.

4.5.4 Binary Trees

We can define datatypes that are more complicated than lists.Suppose we want to
define a structure that looks like a binary tree. A binary treeis a structure that has a
single root node; each node in the tree is either a “leaf” or a “branch.” If it’s a leaf, it
holds a value; if it’s a branch, it holds a value and a left child and a right child. Each of
these children is another node. We can define such a data type as:

data BinaryTree a
= Leaf a
| Branch (BinaryTree a) a (BinaryTree a)

In this datatype declaration we say that aBinaryTree of as is either aLeaf
which holds ana, or it’s a branch with a left child (which is aBinaryTree of as), a



52 CHAPTER 4. TYPE BASICS

node value (which is ana), and a right child (which is also aBinaryTree of as). It is
simple to modify thelistLength function so that instead of calculating the length
of lists, it calculates the number of nodes in aBinaryTree . Can you figure out how?
We can call this functiontreeSize . The solution is given below:

treeSize (Leaf x) = 1
treeSize (Branch left x right) =

1 + treeSize left + treeSize right

Here, we say that the size of a leaf is1 and the size of a branch is the size of its left
child, plus the size of its right child, plus one.

Exercises
Exercise 4.9Write a functionelements which returns the elements in aBinaryTree
in a bottom-up, left-to-right manner (i.e., the first element returned in the left-most leaf,
followed by its parent’s value, followed by the other child’s value, and so on). The re-
sult type should be a normal Haskell list.

Exercise 4.10Write a fold function forBinaryTree s and rewriteelements in
terms of it (call the new oneelements2 ).

4.5.5 Enumerated Sets

You can also use datatypes to define things like enumerated sets, for instance, a type
which can only have a constrained number of values. We could define a color type:

data Color
= Red
| Orange
| Yellow
| Green
| Blue
| Purple
| White
| Black

This would be sufficient to deal with simple colors. Suppose we were using this to
write a drawing program, we could then write a function to convert between aColor

and a RGB triple. We can write acolorToRGB function, as:

colorToRGB Red = (255,0,0)
colorToRGB Orange = (255,128,0)
colorToRGB Yellow = (255,255,0)
colorToRGB Green = (0,255,0)
colorToRGB Blue = (0,0,255)
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colorToRGB Purple = (255,0,255)
colorToRGB White = (255,255,255)
colorToRGB Black = (0,0,0)

If we wanted also to allow the user to define his own custom colors, we could
change theColor datatype to something like:

data Color
= Red
| Orange
| Yellow
| Green
| Blue
| Purple
| White
| Black
| Custom Int Int Int -- R G B components

And add a final definition forcolorToRGB :

colorToRGB (Custom r g b) = (r,g,b)

4.5.6 The Unit type

A final useful datatype defined in Haskell (from the Prelude) is the unit type. It’s
definition is:

data () = ()

The only true value of this type is() . This is essentially the same as avoid type in
a langauge like C or Java and will be useful when we talk about IO in Chapter 5.

We’ll dwell much more on data types in Sections 7.4 and 8.3.

4.6 Continuation Passing Style

There is a style of functional programming called “Continuation Passing Style” (also
simply “CPS”). The idea behind CPS is to pass around as a function argument what to
do next. I will handwave through an example which is too complex to write out at this
point and then give a real example, though one with less motivation.

Consider the problem of parsing. The idea here is that we havea sequence of
tokens (words, letters, whatever) and we want to ascribe structure to them. The task
of converting a string of Java tokens to a Java abstract syntax tree is an example of a
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parsing problem. So is the task of taking an English sentenceand creating a parse tree
(though the latter is quite a bit harder).

Suppose we’re parsing something like C or Java where functions take arguments
in parentheses. But for simplicity, assume they are not separated by commas. That
is, a function call looks likemyFunction(x y z) . We want to convert this into
something like a pair containing first the string “myFunction” and then a list with three
string elements: “x”, “y” and “z”.

The general approach to solving this would be to write a function which parses
function calls like this one. First it would look for an identifier (“myFunction”), then
for an open parenthesis, then for zero or more identifiers, then for a close parenthesis.

One way to do this would be to have two functions:

parseFunction ::
[Token] -> Maybe ((String, [String]), [Token])

parseIdentifier ::
[Token] -> Maybe (String, [Token])

The idea would be that if we callparseFunction , if it doesn’t returnNothing ,
then it returns the pair described earlier, together with whatever is left after parsing the
function. Similarly,parseIdentifier will parse one of the arguments. If it returns
Nothing , then it’s not an argument; if it returnsJust something, then that something
is the argument paired with the rest of the tokens.

What theparseFunction function would do is to parse an identifier. If this
fails, it fails itself. Otherwise, it continues and tries toparse a open parenthesis. If that
succeeds, it repeatedly callsparseIdentifier until that fails. It then tries to parse
a close parenthesis. If that succeeds, then it’s done. Otherwise, it fails.

There is, however, another way to think about this problem. The advantage to this
solution is that functions no longer need to return the remaining tokens (which tends to
get ugly). Instead of the above, we write functions:

parseFunction ::
[Token] -> ((String, [String]) -> [Token] -> a) ->
([Token] -> a) -> a

parseIdentifier ::
[Token] -> (String -> [Token] -> a) ->
([Token] -> a) -> a

Let’s considerparseIdentifier . This takes three arguments: a list of tokens
and twocontinuations. The first continuation is what to do when you succeed. The
second continuation is what to do if you fail. WhatparseIdentifier does, then,
is try to read an identifier. If this succeeds, it calls the first continuation with that
identifier and the remaining tokens as arguments. If readingthe identifier fails, it calls
the second continuation with all the tokens.
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Now considerparseFunction . Recall that it wants to read an identifier, an
open parenthesis, zero or more identifiers and a close parenthesis. Thus, the first thing
it does is callparseIdentifier . The first argument it gives is the list of tokens.
The first continuation (which is whatparseIdentifier should do if it succeeds)
is in turn a function which will look for an open parenthesis,zero or more arguments
and a close parethesis. The second argument (the failure argument) is just going to be
the failure function given toparseFunction .

Now, we simply need to define this function which looks for an open parenthesis,
zero or more arguments and a close parethesis. This is easy. We write a function which
looks for the open parenthesis and then callsparseIdentifier with a success
continuation that looks for more identifiers, and a “failure” continuation which looks
for the close parenthesis (note that this failure doesn’t really mean failure – it just means
there are no more arguments left).

I realize this discussion has been quite abstract. I would willingly give code for all
this parsing, but it is perhaps too complex at the moment. Instead, consider the problem
of folding across a list. We can write a CPS fold as:

cfold’ f z [] = z
cfold’ f z (x:xs) = f x z (\y -> cfold’ f y xs)

In this code,cfold’ take a functionf which takes three arguments, slightly dif-
ferent from the standard folds. The first is the current list element,x , the second is the
accumulated element,z , and the third is the continuation: basicially, what to donext.

We can write a wrapper function forcfold’ that will make it behave more like a
normal fold:

cfold f z l = cfold’ (\x t g -> f x (g t)) z l

We can test that this function behaves as we desire:

CPS> cfold (+) 0 [1,2,3,4]
10
CPS> cfold (:) [] [1,2,3]
[1,2,3]

One thing that’s nice about formulatingcfold in terms of the helper function
cfold’ is that we can use the helper function directly. This enablesus to change, for
instance, the evaluation order of the fold very easily:

CPS> cfold’ (\x t g -> (x : g t)) [] [1..10]
[1,2,3,4,5,6,7,8,9,10]
CPS> cfold’ (\x t g -> g (x : t)) [] [1..10]
[10,9,8,7,6,5,4,3,2,1]
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The only difference between these calls tocfold’ is whether we call the continu-
ation before or after constructing the list. As it turns out,this slight difference changes
the behavior for being likefoldr to being likefoldl . We can evaluate both of these
calls as follows (letf be the folding function):

cfold’ (\x t g -> (x : g t)) [] [1,2,3]
==> cfold’ f [] [1,2,3]
==> f 1 [] (\y -> cfold’ f y [2,3])
==> 1 : ((\y -> cfold’ f y [2,3]) [])
==> 1 : (cfold’ f [] [2,3])
==> 1 : (f 2 [] (\y -> cfold’ f y [3]))
==> 1 : (2 : ((\y -> cfold’ f y [3]) []))
==> 1 : (2 : (cfold’ f [] [3]))
==> 1 : (2 : (f 3 [] (\y -> cfold’ f y [])))
==> 1 : (2 : (3 : (cfold’ f [] [])))
==> 1 : (2 : (3 : []))
==> [1,2,3]

cfold’ (\x t g -> g (x:t)) [] [1,2,3]
==> cfold’ f [] [1,2,3]
==> (\x t g -> g (x:t)) 1 [] (\y -> cfold’ f y [2,3])
==> (\g -> g [1]) (\y -> cfold’ f y [2,3])
==> (\y -> cfold’ f y [2,3]) [1]
==> cfold’ f [1] [2,3]
==> (\x t g -> g (x:t)) 2 [1] (\y -> cfold’ f y [3])
==> cfold’ f (2:[1]) [3]
==> cfold’ f [2,1] [3]
==> (\x t g -> g (x:t)) 3 [2,1] (\y -> cfold’ f y [])
==> cfold’ f (3:[2,1]) []
==> [3,2,1]

In general, continuation passing style is a very powerful abstraction, though it can
be difficult to master. We will revisit the topic more thoroughly later in the book.

Exercises

Exercise 4.11Test whether the CPS-style fold mimicks either offoldr and foldl .
If not, where is the difference?

Exercise 4.12Write mapandfilter using continuation passing style.



Chapter 5

Basic Input/Output

As we mentioned earlier, it is difficult to think of a good, clean way to integrate oper-
ations like input/output into a pure functional language. Before we give the solution,
let’s take a step back and think about the difficulties inherent in such a task.

Any IO library should provide a host of functions, containing (at a minimum) op-
erations like:

• print a string to the screen

• read a string from a keyboard

• write data to a file

• read data from a file

There are two issues here. Let’s first consider the initial two examples and think
about what their types should be. Certainly the first operation (I hesitate to call it a
“function”) should take aString argument and produce something, but what should it
produce? It could produce a unit() , since there is essentially no return value from
printing a string. The second operation, similarly, shouldreturn aString, but it doesn’t
seem to require an argument.

We want both of these operations to be functions, but they areby definition not
functions. The item that reads a string from the keyboard cannot be a function, as it
will not return the sameString every time. And if the first function simply returns()
every time, there should be no problem with replacing it witha functionf = () ,
due to referential transparency. But clearly this does not have the desired effect.

5.1 The RealWorld Solution

In a sense, the reason that these items are not functions is that they interact with the
“real world.” Their values depend directly on the real world. Supposing we had a type
RealWorld, we might write these functions as having type:

57
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printAString :: RealWorld -> String -> RealWorld
readAString :: RealWorld -> (RealWorld, String)

That is,printAString takes a current state of the world and a string to print;
it then modifies the state of the world in such a way that the string is now printed and
returns this new value. Similarly,readAString takes a current state of the world
and returns anewstate of the world, paired with theString that was typed.

This would be a possible way to do IO, though it is more than somewhat unweildy.
In this style (assuming an initialRealWorld state were an argument tomain ), our
“Name.hs” program from Section 3.8 would look something like:

main rW =
let rW’ = printAString rW "Please enter your name: "

(rW’’,name) = readAString rW’
in printAString rW’’

("Hello, " ++ name ++ ", how are you?")

This is not only hard to read, but prone to error, if you accidentally use the wrong
version of theRealWorld. It also doesn’t model the fact that the program below makes
no sense:

main rW =
let rW’ = printAString rW "Please enter your name: "

(rW’’,name) = readAString rW’
in printAString rW’ -- OOPS!

("Hello, " ++ name ++ ", how are you?")

In this program, the reference torW’’ on the last line has been changed to a ref-
erence torW’ . It is completely unclear what this program should do. Clearly, it must
read a string in order to have a value forname to be printed. But that means that the
RealWorld has been updated. However, then we try to ignore this update by using an
“old version” of theRealWorld. There is clearly something wrong happening here.

Suffice it to say that doing IO operations in a pure lazy functional language is not
trivial.

5.2 Actions

The breakthrough for solving this problem came when Phil Wadler realized that mon-
ads would be a good way to think about IO computations. In fact, monads are able to
express much more than just the simple operations describedabove; we can use them
to express a variety of constructions like concurrence, exceptions, IO, non-determinism
and much more. Moreover, there is nothing special about them; they can be defined
within Haskell with no special handling from the compiler (though compilers often
choose to optimize monadic operations).
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As pointed out before, we cannot think of things like “print astring to the screen” or
“read data from a file” as functions, since they are not (in thepure mathematical sense).
Therefore, we give them another name:actions. Not only do we give them a special
name, we give them a special type. One particularly useful action isputStrLn , which
prints a string to the screen. This action has type:

putStrLn :: String -> IO ()

As expected,putStrLn takes a string argument. What it returns is of typeIO
() . This means that this function is actually an action (that iswhat theIO means).
Furthermore, when this action isevaluated(or “run”) , the result will have type().

NOTE Actually, this type means thatputStrLn is an actionwithin
the IO monad, but we will gloss over this for now.

You can probably already guess the type ofgetLine :

getLine :: IO String

This means thatgetLine is an IO action that, when run, will have typeString.
The question immediately arises: “how do you ‘run’ an action?”. This is something

that is left up to the compiler. You cannot actually run an action yourself; instead, a
program is, itself, a single action that is run when the compiled program is executed.
Thus, the compiler requires that themain function have typeIO (), which means that
it is an IO action that returns nothing. The compiled code then executes this action.

However, while you are not allowed to run actions yourself, you are allowed to
combine actions. In fact, we have already seen one way to do this usingthe do
notation (how toreally do this will be revealed in Chapter 9). Let’s consider the original
name program:

main = do
hSetBuffering stdin LineBuffering
putStrLn "Please enter your name: "
name <- getLine
putStrLn ("Hello, " ++ name ++ ", how are you?")

We can consider thedo notation as a way to combine a sequence of actions. More-
over, the<- notation is a way to get the value out of an action. So, in this program,
we’re sequencing four actions: setting buffering, aputStrLn , a getLine and an-
otherputStrLn . TheputStrLn action has typeString → IO (), so we provide it a
String, so the fully applied action has typeIO (). This is something that we are allowed
to execute.

ThegetLine action has typeIO String, so it is okay to execute it directly. How-
ever, in order to get the value out of the action, we writename <- getLine , which
basically means “rungetLine , and put the results in the variable calledname.”
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Normal Haskell constructions likeif/then/elseandcase/ofcan be used within the
do notation, but you need to be somewhat careful. For instance,in our “guess the
number” program, we have:

do ...
if (read guess) < num

then do putStrLn "Too low!"
doGuessing num

else if read guess > num
then do putStrLn "Too high!"

doGuessing num
else do putStrLn "You Win!"

If we think about how theif/then/elseconstruction works, it essentially takes three
arguments: the condition, the “then” branch, and the “else”branch. The condition
needs to have typeBool, and the two branches can have any type, provided that they
have thesametype. The type of the entireif/then/elseconstruction is then the type of
the two branches.

In the outermost comparison, we have(read guess) < num as the condition.
This clearly has the correct type. Let’s just consider the “then” branch. The code here
is:

do putStrLn "Too low!"
doGuessing num

Here, we are sequencing two actions:putStrLn anddoGuessing . The first
has typeIO (), which is fine. The second also has typeIO (), which is fine. The type
result of the entire computation is precisely the type of thefinal computation. Thus, the
type of the “then” branch is alsoIO (). A similar argument shows that the type of the
“else” branch is alsoIO (). This means the type of the entireif/then/elseconstruction
is IO (), which is just what we want.

NOTE In this code, the last line is “else do putStrLn "You
Win!" ”. This is somewhat overly verbose. In fact, “else putStrLn
"You Win!" ” would have been sufficient, sincedo is only necessary to
sequence actions. Since we have only one action here, it is superfluous.

It is incorrect to think to yourself “Well, I already started ado block; I don’t need
another one,” and hence write something like:

do if (read guess) < num
then putStrLn "Too low!"

doGuessing num
else ...
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Here, since we didn’t repeat thedo, the compiler doesn’t know that theputStrLn
anddoGuessing calls are supposed to be sequenced, and the compiler will think
you’re trying to callputStrLn with three arguments: the string, the functiondoGuessing
and the integernum. It will certainly complain (though the error may be somewhat dif-
ficult to comprehend at this point).

We can write the samedoGuessing function using acasestatement. To do this,
we first introduce the Prelude functioncompare , which takes two values of the same
type (in theOrd class) and returns one ofGT, LT, EQ, depending on whether the first
is greater than, less than or equal to the second.

doGuessing num = do
putStrLn "Enter your guess:"
guess <- getLine
case compare (read guess) num of

LT -> do putStrLn "Too low!"
doGuessing num

GT -> do putStrLn "Too high!"
doGuessing num

EQ -> putStrLn "You Win!"

Here, again, thedos after the-> s are necessary on the first two options, because
we are sequencing actions.

If you’re used to programming in an imperative language likeC or Java, you might
think that return will exit you from the current function. This is not so in Haskell.
In Haskell,return simply takes a normal value (for instance, one of typeIO Int) and
makes it into an action that returns the given value (for instance, the value of typeInt).
In particular, in an imperative language, you might write this function as:

void doGuessing(int num) {
print "Enter your guess:";
int guess = atoi(readLine());
if (guess == num) {

print "You win!";
return ();

}

// we won’t get here if guess == num
if (guess < num) {

print "Too low!";
doGuessing(num);

} else {
print "Too high!";
doGuessing(num);

}
}
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Here, because we have thereturn () in the firstif match, we expect the code
to exit there (and in mode imperative languages, it does). However, the equivalent code
in Haskell, which might look something like:

doGuessing num = do
putStrLn "Enter your guess:"
guess <- getLine
case compare (read guess) num of

EQ -> do putStrLn "You win!"
return ()

-- we don’t expect to get here unless guess == num
if (read guess < num)

then do print "Too low!";
doGuessing

else do print "Too high!";
doGuessing

will not behave as you expect. First of all, if you guess correctly, it will first print “You
win!,” but it won’t exit, and it will check whetherguess is less thannum. Of course
it is not, so the else branch is taken, and it will print “Too high!” and then ask you to
guess again.

On the other hand, if you guess incorrectly, it will try to evaluate the case statement
and get eitherLT or GTas the result of thecompare . In either case, it won’t have a
pattern that matches, and the program will fail immediatelywith an exception.

Exercises
Exercise 5.1Write a program that asks the user for his or her name. If the name is
one of Simon, John or Phil, tell the user that you think Haskell is a great programming
language. If the name is Koen, tell them that you think debugging Haskell is fun (Koen
Classen is one of the people who works on Haskell debugging);otherwise, tell the user
that you don’t know who he or she is.
Write two different versions of this program, one usingif statements, the other using a
case statement.

5.3 The IO Library

The IO Library (available byimport ing theIO module) contains many definitions, the
most common of which are listed below:

data IOMode = ReadMode | WriteMode
| AppendMode | ReadWriteMode

openFile :: FilePath -> IOMode -> IO Handle
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hClose :: Handle -> IO ()

hIsEOF :: Handle -> IO Bool

hGetChar :: Handle -> IO Char
hGetLine :: Handle -> IO String
hGetContents :: Handle -> IO String

getChar :: IO Char
getLine :: IO String
getContents :: IO String

hPutChar :: Handle -> Char -> IO ()
hPutStr :: Handle -> String -> IO ()
hPutStrLn :: Handle -> String -> IO ()

putChar :: Char -> IO ()
putStr :: String -> IO ()
putStrLn :: String -> IO ()

readFile :: FilePath -> IO String
writeFile :: FilePath -> String -> IO ()

bracket ::
IO a -> (a -> IO b) -> (a -> IO c) -> IO c

NOTE The typeFilePath is a type synonymfor String. That is,
there is no difference betweenFilePath andString. So, for instance,
the readFile function takes aString (the file to read) and returns an
action that, when run, produces the contents of that file. SeeSection 8.1
for more about type synonyms.

Most of these functions are self-explanatory. TheopenFile andhClose func-
tions open and close a file, respectively, using theIOMode argument as the mode for
opening the file. hIsEOF tests for end-of file. hGetChar and hGetLine read
a character or line (respectively) from a file.hGetContents reads the entire file.
The getChar , getLine and getContents variants read from standard input.
hPutChar prints a character to a file;hPutStr prints a string; andhPutStrLn
prints a string with a newline character at the end. The variants without theh prefix
work on standard output. ThereadFile andwriteFile functions read an entire
file without having to open it first.

Thebracket function is used to perform actions safely. Consider a function that
opens a file, writes a character to it, and then closes the file.When writing such a
function, one needs to be careful to ensure that, if there were an error at some point,
the file is still successfully closed. Thebracket function makes this easy. It takes
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three arguments: The first is the action to perform at the beginning. The second is the
action to perform at the end, regardless of whether there’s an error or not. The third is
the action to perform in the middle, which might result in an error. For instance, our
character-writing function might look like:

writeChar :: FilePath -> Char -> IO ()
writeChar fp c =

bracket
(openFile fp ReadMode)
hClose
(\h -> hPutChar h c)

This will open the file, write the character and then close thefile. However, if
writing the character fails,hClose will still be executed, and the exception will be
reraised afterwards. That way, you don’t need to worry too much about catching the
exceptions and about closing all of your handles.

5.4 A File Reading Program

We can write a simple program that allows a user to read and write files. The interface
is admittedly poor, and it does not catch all errors (try reading a non-existant file).
Nevertheless, it should give a fairly complete example of how to use IO. Enter the
following code into “FileRead.hs,” and compile/run:

module Main
where

import IO

main = do
hSetBuffering stdin LineBuffering
doLoop

doLoop = do
putStrLn "Enter a command rFN wFN or q to quit:"
command <- getLine
case command of

’q’:_ -> return ()
’r’:filename -> do putStrLn ("Reading " ++ filename)

doRead filename
doLoop

’w’:filename -> do putStrLn ("Writing " ++ filename)
doWrite filename
doLoop

_ -> doLoop
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doRead filename =
bracket (openFile filename ReadMode) hClose

(\h -> do contents <- hGetContents h
putStrLn "The first 100 chars:"
putStrLn (take 100 contents))

doWrite filename = do
putStrLn "Enter text to go into the file:"
contents <- getLine
bracket (openFile filename WriteMode) hClose

(\h -> hPutStrLn h contents)

What does this program do? First, it issues a short string of instructions and reads
a command. It then performs acaseswitch on the command and checks first to see if
the first character is a ‘q.’ If it is, it returns a value of unittype.

NOTE Thereturn function is a function that takes a value of type
a and returns an action of typeIO a. Thus, the type ofreturn () is
IO ().

If the first character of the command wasn’t a ‘q,’ the programchecks to see if it
was an ’r’ followed by some string that is bound to the variable filename . It then
tells you that it’s reading the file, does the read and runsdoLoop again. The check
for ‘w’ is nearly identical. Otherwise, it matches, the wildcard character, and loops
to doLoop .

ThedoRead function uses thebracket function to make sure there are no prob-
lems reading the file. It opens a file inReadMode, reads its contents and prints the first
100 characters (thetake function takes an integern and a list and returns the firstn
elements of the list).

The doWrite function asks for some text, reads it from the keyboard, and then
writes it to the file specified.

NOTE Both doRead anddoWrite could have been made simpler
by usingreadFile andwriteFile , but they were written in the ex-
tended fashion to show how the more complex functions are used.

The only major problem with this program is that it will die ifyou try to read a file
that doesn’t already exists or if you specify some bad filename like * \ˆ# @. You may
think that the calls tobracket in doRead anddoWrite should take care of this,
but they don’t. They only catch exceptions within the main body, not within the startup
or shutdown functions (openFile andhClose , in these cases). We would need to
catch exceptions raised byopenFile , in order to make this complete. We will do this
when we talk about exceptions in more detail in Section 10.1.
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Exercises
Exercise 5.2Write a program that first asks whether the user wants to read from a file,
write to a file or quit. If the user responds quit, the program should exit. If he responds
read, the program should ask him for a file name and print that file to the screen (if the
file doesn’t exist, the program may crash). If he responds write, it should ask him for a
file name and then ask him for text to write to the file, with “.” signaling completion.
All but the “.” should be written to the file.
For example, running this program might produce:

Do you want to [read] a file, [write] a file or [quit]?
read
Enter a file name to read:
foo
...contents of foo...
Do you want to [read] a file, [write] a file or [quit]?
write
Enter a file name to write:
foo
Enter text (dot on a line by itself to end):
this is some
text for
foo
.
Do you want to [read] a file, [write] a file or [quit]?
read
Enter a file name to read:
foo
this is some
text for
foo
Do you want to [read] a file, [write] a file or [quit]?
read
Enter a file name to read:
foof
Sorry, that file does not exist.
Do you want to [read] a file, [write] a file or [quit]?
blech
I don’t understand the command blech.
Do you want to [read] a file, [write] a file or [quit]?
quit
Goodbye!
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Modules

In Haskell, program subcomponents are divided into modules. Each module sits in its
own file and the name of the module should match the name of the file (without the
“.hs” extension, of course), if you wish to ever use that module in a larger program.

For instance, suppose I am writing a game of poker. I may wish to have a separate
module called “Cards” to handle the generation of cards, theshuffling and the dealing
functions, and then use this “Cards” module in my “Poker” modules. That way, if I
ever go back and want to write a blackjack program, I don’t have to rewrite all the code
for the cards; I can simply import the old “Cards” module.

6.1 Exports

Suppose as suggested we are writing a cards module. I have left out the implementation
details, but suppose the skeleton of our module looks something like this:

module Cards
where

data Card = ...
data Deck = ...

newDeck :: ... -> Deck
newDeck = ...

shuffle :: ... -> Deck -> Deck
shuffle = ...

-- ’deal deck n’ deals ’n’ cards from ’deck’
deal :: Deck -> Int -> [Card]
deal deck n = dealHelper deck n []

67
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dealHelper = ...

In this code, the functiondeal calls a helper functiondealHelper . The im-
plementation of this helper function is very dependent on the exact data structures you
used forCard andDeck so we don’t want other people to be able to call this function.
In order to do this, we create anexport list, which we insert just after the module name
declaration:

module Cards ( Card(),
Deck(),
newDeck,
shuffle,
deal

)
where

...

Here, we have specified exactly what functions the module exports, so people who
use this module won’t be able to access ourdealHelper function. The() after
Card andDeck specify that we are exporting thetypebut none of the constructors.
For instance if our definition ofCard were:

data Card = Card Suit Face
data Suit = Hearts

| Spades
| Diamonds
| Clubs

data Face = Jack
| Queen
| King
| Ace
| Number Int

Then users of our module would be able tousethings of typeCard , but wouldn’t
be able to construct their ownCard s and wouldn’t be able to extract any of the suit/face
information stored in them.

If we wanted users of our module to be able to access all of thisinformation, we
would have to specify it in the export list:

module Cards ( Card(Card),
Suit(Hearts,Spades,Diamonds,Clubs),
Face(Jack,Queen,King,Ace,Number),
...

)
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where

...

This can get frustrating if you’re exporting datatypes withmany constructors, so if
you want to export them all, you can simply write(..) , as in:

module Cards ( Card(..),
Suit(..),
Face(..),
...

)
where

...

And this will automatically export all the constructors.

6.2 Imports

There are a few idiosyncracies in the module import system, but as long as you stay
away from the corner cases, you should be fine. Suppose, as before, you wrote a
module called “Cards” which you saved in the file “Cards.hs”.You are now writing
your poker module and you want toimportall the definitions from the “Cards” module.
To do this, all you need to do is write:

module Poker
where

import Cards

This will enable to you use any of the functions, types and constructors exported
by the module “Cards”. You may refer to them simply by their name in the “Cards”
module (as, for instance,newDeck), or you may refer to them explicitely as imported
from “Cards” (as, for instance,Cards.newDeck ). It may be the case that two module
export functions or types of the same name. In these cases, you can import one of
the modulesqualified which means that you would no longer be able to simply use
the newDeck format but must use the longerCards.newDeck format, to remove
ambiguity. If you wanted to import “Cards” in this qualified form, you would write:

import qualified Cards

Another way to avoid problems with overlapping function definitions is to import
only certain functions from modules. Suppose we knew the only function from “Cards”
that we wanted wasnewDeck , we could import only this function by writing:
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import Cards (newDeck)

On the other hand, suppose we knew that that thedeal function overlapped with
another module, but that we didn’t need the “Cards” version of that function. We could
hide the definition ofdeal and import everything else by writing:

import Cards hiding (deal)

Finally, suppose we want to import “Cards” as a qualified module, but don’t want
to have to typeCards. out all the time and would rather just type, for instance,C. –
we could do this using theaskeyword:

import qualified Cards as C

These options can be mixed and matched – you can give explicitimport lists on
qualified/as imports, for instance.

6.3 Hierarchical Imports

Though technically not part of the Haskell 98 standard, mostHaskell compilers support
hierarchical imports. This was designed to get rid of clutter in the directories in which
modules are stored. Hierarchical imports allow you to specify (to a certain degree)
where in the directory structure a module exists. For instance, if you have a “haskell”
directory on your computer and this directory is in your compiler’s path (see your
compiler notes for how to set this; in GHC it’s “-i”, in Hugs it’s “-P”), then you can
specify module locations in subdirectories to that directory.

Suppose instead of saving the “Cards” module in your generalhaskell directory,
you created a directory specifically for it called “Cards”. The full path of theCards.hs
file is thenhaskell/Cards/Cards.hs (or, for Windowshaskell \Cards \Cards.hs ).
If you then change the name of the Cards module to “Cards.Cards”, as in:

module Cards.Cards(...)
where

...

You could then import it in any module, regardless of this module’s directory, as:

import Cards.Cards

If you start importing these module qualified, I highly recommend using theas
keyword to shorten the names, so you can write:
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import qualified Cards.Cards as Cards

... Cards.newDeck ...

instead of:

import qualified Cards.Cards

... Cards.Cards.newDeck ...

which tends to get ugly.

6.4 Literate Versus Non-Literate

The idea of literate programming is a relatively simple one,but took quite a while to
become popularized. When we think about programming, we think about thecode
being the default mode of entry andcommentsbeing secondary. That is, we write code
without any special annotation, but comments are annotatedwith either-- or {- ...
- }. Literate programming swaps these preconceptions.

There are two types of literate programs in Haskell; the firstuses so-called Bird-
scripts and the second uses LATEX-style markup. Each will be discussed individually.
No matter which you use, literate scripts must have the extension lhs instead of hs to
tell the compiler that the program is written in a literate style.

6.4.1 Bird-scripts

In a Bird-style literate program, comments are default and code is introduced with a
leading greater-than sign (“>”). Everything else remains the same. For example, our
Hello World program would be written in Bird-style as:

This is a simple (literate!) Hello World program.

> module Main
> where

All our main function does is print a string:

> main = putStrLn "Hello World"

Note that the spaces between the lines of code and the “comments” are necessary
(your compiler will probably complain if you are missing them). When compiled or
loaded in an interpreter, this program will have the exact same properties as the non-
literate version from Section 3.4.
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6.4.2 LaTeX-scripts

LATEX is a text-markup language very popular in the academic community for publish-
ing. If you are unfamiliar with LATEX, you may not find this section terribly useful.

Again, a literate Hello World program written in LATEX-style would look like:

This is another simple (literate!) Hello World program.

\begin{code}
module Main

where
\end{code}

All our main function does is print a string:

\begin{code}
main = putStrLn "Hello World"
\end{code}

In LATEX-style scripts, the blank lines arenot necessary.
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Advanced Features

Discussion

7.1 Sections and Infix Operators

We’ve already seen how to double the values of elements in a list usingmap:

Prelude> map (\x -> x * 2) [1,2,3,4]
[2,4,6,8]

However, there is a more concise way to write this:

Prelude> map ( * 2) [1,2,3,4]
[2,4,6,8]

This type of thing can be done for any infix function:

Prelude> map (+5) [1,2,3,4]
[6,7,8,9]
Prelude> map (/2) [1,2,3,4]
[0.5,1.0,1.5,2.0]
Prelude> map (2/) [1,2,3,4]
[2.0,1.0,0.666667,0.5]

You might be tempted to try to subtract values from elements in a list by mapping
-2 across a list. This won’t work, though, because while the+ in +2 is parsed as
the standard plus operator (as there is no ambiguity), the- in -2 is interpreted as the
unary minus, not the binary minus. Thus-2 here is thenumber−2, not the function
λx.x − 2.

In general, these are called sections. For binary infix operators (like +), we can
cause the function to become prefix by enclosing it in paretheses. For example:

73
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Prelude> (+) 5 3
8
Prelude> (-) 5 3
2

Additionally, we can provide either of its argument to make asection. For example:

Prelude> (+5) 3
8
Prelude> (/3) 6
2.0
Prelude> (3/) 6
0.5

Non-infix functions can be made infix by enclosing them in backquotes (“̀’’). For
example:

Prelude> (+2) ‘map‘ [1..10]
[3,4,5,6,7,8,9,10,11,12]

7.2 Local Declarations

Recall back from Section 3.5, there are many computations which require using the
result of the same computation in multiple places in a function. There, we considered
the function for computing the roots of a quadratic polynomial:

roots a b c =
((-b + sqrt(b * b - 4 * a* c)) / (2 * a),

(-b - sqrt(b * b - 4 * a* c)) / (2 * a))

In addition to thelet bindings introduced there, we can do this using awhereclause.
where clauses come immediately after function definitions and introduce a new level
of layout (see Section 7.11). We write this as:

roots a b c =
((-b + det) / (2 * a), (-b - det) / (2 * a))
where det = sqrt(b * b-4 * a* c)

Any values defined in awhereclauseshadowany other values with the same name.
For instance, if we had the following code block:
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det = "Hello World"

roots a b c =
((-b + det) / (2 * a), (-b - det) / (2 * a))
where det = sqrt(b * b-4 * a* c)

f _ = det

The value ofroots doesn’t notice the top-level declaration ofdet , since it is
shadowed by the local definition (the fact that the types don’t match doesn’t matter
either). Furthermore, sincef cannot “see inside” ofroots , the only thing it knows
aboutdet is what is available at the top level, which is the string “Hello World.” Thus,
f is a function which takes any argument to that string.

Where clauses can contain any number of subexpressions, butthey must be aligned
for layout. For instance, we could also pull out the2* a computation and get the
following code:

roots a b c =
((-b + det) / (a2), (-b - det) / (a2))
where det = sqrt(b * b-4 * a* c)

a2 = 2 * a

Sub-expressions inwhere clauses must come after function definitions. Some-
times it is more convenient to put the local definitions before the actual expression
of the function. This can be done by usinglet/in clauses. We have already seenlet
clauses;whereclauses are virtually identical to theirlet clause cousins except for their
placement. The sameroots function can be written usinglet as:

roots a b c =
let det = sqrt (b * b - 4 * a* c)

a2 = 2 * a
in ((-b + det) / a2, (-b - det) / a2)

Using awhereclause, it looks like:

roots a b c = ((-b + det) / a2, (-b - det) / a2)
where

det = sqrt (b * b - 4 * a* c)
a2 = 2 * a

These two types of clauses can be mixed (i.e., you can write a function which has
both alet cause and awhere clause). This is strongly advisedagainst, as it tends to
make code difficult to read. However, if you choose to do it, values in thelet clause
shadow those in thewhereclause. So if you define the function:
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f x =
let y = x+1
in y
where y = x+2

The value off 5 is 6, not 7. Of course, I plead with you to never ever write
code that looks like this. No one should have to remember thisrule and by shadowing
where-defined values in alet clause only makes your code difficult to understand.

In general, whether you should uselet clauses orwhereclauses is largely a matter
of personal preference. Usually, the names you give to the subexpressions should be
sufficiently expressive that without reading their definitions any reader of your code
should be able to figure out what they do. In this case,where clauses are probably
more desirable because they allow the reader to see immediately what a function does.
However, in real life, values are often given cryptic names.In which caselet clauses
may be better. Either is probably okay, though I thinkwhereclauses are more common.

7.3 Partial Application

Partial application is when you take a function which takesn arguments and you supply
it with < n of them. When discussing sections in Section 7.1, we saw a form of
“partial application” in which functions like+ were partially applied. For instance, in
the expressionmap (+1) [1,2,3] , the section(+1) is a partial application of+.
This is because+ really takes two arguments, but we’ve only given it one.

Partial application is very common in function definitions and sometimes goes by
the name “eta reduction”. For instance, suppose we are writting a functionlcaseStringeta reduction
which converts a whole string into lower case. We could writethis as:

lcaseString s = map toLower s

Here, there is no partial application (though you could argue that applying no argu-
ments totoLower could be considered partial application). However, we notice that
the application ofs occurs at the end of bothlcaseString and ofmap toLower .
In fact, we can remove it by performing eta reduction, to get:

lcaseString = map toLower

Now, we have a partial application ofmap: it expects a function and a list, but
we’ve only given it the function.

This all is related to type type ofmap, which is (a → b) → ([a] → [b]), when
parentheses are all included. In our case,toLower is of typeChar → Char. Thus, if
we supply this function tomap, we get a function of type[Char] → [Char], as desired.

Now, consider the task of converting a string to lowercase and remove all non letter
characters. We might write this as:
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lcaseLetters s = map toLower (filter isAlpha s)

But note that we can actually write this in terms of function composition:

lcaseLetters s = (map toLower . filter isAlpha) s

And again, we’re left with an eta reducible function:

lcaseLetters = map toLower . filter isAlpha

Writing functions in this style is very common among advanced Haskell users. In
fact it has a name: point-free programming (not to be confused with pointlessprogram- point-free programming
ming). It is call point free because in the original definition of lcaseLetters , we
can think of the values as a point on which the function is operating. By removing the
point from the function definition, we have a point-free function.

A function similar to(.) is ($) . Whereas(.) is function composition,($) is $

function application. The definition of($) from the Prelude is very simple: function application

f $ x = f x

However, this function is given very low fixity, which means that it can be used to
replace parentheses. For instance, we might write a function:

foo x y = bar y (baz (fluff (ork x)))

However, using the function application function, we can rewrite this as:

foo x y = bar y $ baz $ fluff $ ork x

This moderately resembles the function composition syntax. The($) function is
also useful when combined with other infix functions. For instance, we cannot write:

Prelude> putStrLn "5+3=" ++ show (5+3)

because this is interpreted as(putStrLn "5+3=") ++ (show (5+3)) , which
makes no sense. However, we can fix this by writing instead:

Prelude> putStrLn $ "5+3=" ++ show (5+3)

Which works fine.
Consider now the task of extracting from a list of tuples all the ones whose first

component is greater than zero. One way to write this would be:
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fstGt0 l = filter (\ (a,b) -> a>0) l

We can first apply eta reduction to the whole function, yielding:

fstGt0 = filter (\ (a,b) -> a>0)

Now, we can rewrite the lambda function to use thefst function instead of the
pattern matching:

fstGt0 = filter (\x -> fst x > 0)

Now, we can use function composition betweenfst and> to get:

fstGt0 = filter (\x -> ((>0) . fst) x)

And finally we can eta reduce:

fstGt0 = filter ((>0).fst)

This definition is simultaneously shorter and easier to understand than the original.
We can clearly see exactly what it is doing: we’re filtering a list by checking whether
something is greater than zero. What are we checking? Thefst element.

While converting to point free style often results in clearer code, this is of course
not always the case. For instance, converting the followingmap to point free style
yields something nearly uninterpretable:

foo = map (\x -> sqrt (3+4 * (xˆ2)))
foo = map (sqrt . (3+) . (4 * ) . (ˆ2))

There are a handful of combinators defined in the Prelude which are useful for point
free programming:

• uncurry takes a function of typea → b → c and converts it into a function of
type(a, b) → c. This is useful, for example, when mapping across a list of pairs:

Prelude> map (uncurry ( * )) [(1,2),(3,4),(5,6)]
[2,12,30]

• curry is the opposite ofuncurry and takes a function of type(a, b) → c and
produces a function of typea → b → c.

• flip reverse the order of arguments to a function. That is, it takes a function of
typea → b → c and produces a function of typeb → a → c. For instance, we
can sort a list in reverse order by usingflip compare :



7.3. PARTIAL APPLICATION 79

Prelude> List.sortBy compare [5,1,8,3]
[1,3,5,8]
Prelude> List.sortBy (flip compare) [5,1,8,3]
[8,5,3,1]

This is the same as saying:

Prelude> List.sortBy (\a b -> compare b a) [5,1,8,3]
[8,5,3,1]

only shorter.

Of course, not all functions can be written in point free style. For instance:

square x = x * x

Cannot be written in point free style, without some other combinators. For instance,
if we can define other functions, we can write:

pair x = (x,x)
square = uncurry ( * ) . pair

But in this case, this is not terribly useful.

Exercises

Exercise 7.1Convert the following functions into point-free style, if possible.

func1 x l = map (\y -> y*x) l

func2 f g l = filter f (map g l)

func3 f l = l ++ map f l

func4 l = map (\y -> y+2)
(filter (\z -> z ‘elem‘ [1..10])

(5:l))

func5 f l = foldr (\x y -> f (y,x)) 0 l
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7.4 Pattern Matching

Pattern matching is one of the most powerful features of Haskell (and most functional
programming languages). It is most commonly used in conjunction with caseexpres-
sions, which we have already seen in Section 3.5. Let’s return to ourColor example
from Section 4.5. I’ll repeat the definition we already had for the datatype:

data Color
= Red
| Orange
| Yellow
| Green
| Blue
| Purple
| White
| Black
| Custom Int Int Int -- R G B components
deriving (Show,Eq)

We then want to write a function that will convert between something of typeColor

and a triple ofInts, which correspond to the RGB values, respectively. Specifically, if
we see aColor which isRed, we want to return(255,0,0) , since this is the RGB
value for red. So we write that (remember that piecewise function definitions are just
casestatements):

colorToRGB Red = (255,0,0)

If we see aColor which isOrange , we want to return(255,128,0) ; and if we
seeYellow , we want to return(255,255,0) , and so on. Finally, if we see a custom
color, which is comprised of three components, we want to make a triple out of these,
so we write:

colorToRGB Orange = (255,128,0)
colorToRGB Yellow = (255,255,0)
colorToRGB Green = (0,255,0)
colorToRGB Blue = (0,0,255)
colorToRGB Purple = (255,0,255)
colorToRGB White = (255,255,255)
colorToRGB Black = (0,0,0)
colorToRGB (Custom r g b) = (r,g,b)

Then, in our interpreter, if we type:

Color> colorToRGB Yellow
(255,255,0)
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What is happening is this: we create a value, call itx, which has valueRed. We
then apply this tocolorToRGB . We check to see if we can “match”x againstRed.
This match fails because according to the definition ofEq Color, Red is not equal
to Yellow . We continue down the definitions ofcolorToRGB and try to match
Yellow againstOrange . This fails, too. We the try to matchYellow against
Yellow , which succeeds, so we use this function definition, which simply returns
the value(255,255,0) , as expected.

Suppose instead, we used a custom color:

Color> colorToRGB (Custom 50 200 100)
(50,200,100)

We apply the same matching process, failing on all values from Red to Black .
We then get to try to matchCustom 50 200 100 againstCustom r g b . We
can see that theCustom part matches, so then we go see if the subelements match. In
the matching, the variablesr , g andb are essentially wild cards, so there is no trouble
matchingr with 50,g with 200 andb with 100. As a “side-effect” of this matching,r
gets the value 50,g gets the value 200 andb gets the value 100. So the entire match
succeeded and we look at the definition of this part of the function and bundle up the
triple using the matched values ofr , g andb.

We can also write a function to check to see if aColor is a custom color or not:

isCustomColor (Custom _ _ _) = True
isCustomColor _ = False

When we apply a value toisCustomColor it tries to match that value against
Custom . This match will succeed if the value isCustom x y z for anyx ,
y andz . The (underscore) character is a “wildcard” and will match anything, but will
not do the binding that would happen if you put a variable namethere. If this match
succeeds, the function returnsTrue ; however, if this match fails, it goes on to the next
line, which will match anything and then returnFalse .

For some reason we might want to define a function which tells us whether a given
color is “bright” or not, where my definition of “bright” is that one of its RGB compo-
nents is equal to 255 (admittedly and arbitrary definition, but it’s simply an example).
We could define this function as:

isBright = isBright’ . colorToRGB
where isBright’ (255,_,_) = True

isBright’ (_,255,_) = True
isBright’ (_,_,255) = True
isBright’ _ = False

Let’s dwell on this definition for a second. TheisBright function is the compo-
sition of our previously defined functioncolorToRGB and a helper functionisBright’ ,
which tells us if a given RGB value is bright or not. We could replace the first line here
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with isBright c = isBright’ (colorToRGB c) but there is no need to ex-
plicitly write the parameter here, so we don’t. Again, this function composition style
of programming takes some getting used to, so I will try to useit frequently in this
tutorial.

TheisBright’ helper function takes the RGB triple produced bycolorToRGB .
It first tries to match it against(255, , ) which succeeds if the value has 255 in
its first position. If this match succeeds,isBright’ returnsTrue and so does
isBright . The second and third line of definition check for 255 in the second and
third position in the triple, respectively. The fourth line, the fallthrough, matches ev-
erything else and reports it as not bright.

We might want to also write a function to convert between RGB triples andColors.
We could simple stick everything in aCustom constructor, but this would defeat the
purpose; we want to use theCustom slot only for values which don’t match the pre-
defined colors. However, we don’t want to allow the user to construct custom colors
like (600,-40,99) since these are invalid RGB values. We could throw an error if such
a value is given, but this can be difficult to deal with. Instead, we use theMaybe
datatype. This is defined (in the Prelude) as:

data Maybe a = Nothing
| Just a

The way we use this is as follows: ourrgbToColor function returns a value of
type Maybe Color . If the RGB value passed to our function isinvalid, we return
Nothing , which corresponds to a failure. If, on the other hand, the RGB value is
valid, we create the appropriateColor value and returnJust that. The code to do this
is:

rgbToColor 255 0 0 = Just Red
rgbToColor 255 128 0 = Just Orange
rgbToColor 255 255 0 = Just Yellow
rgbToColor 0 255 0 = Just Green
rgbToColor 0 0 255 = Just Blue
rgbToColor 255 0 255 = Just Purple
rgbToColor 255 255 255 = Just White
rgbToColor 0 0 0 = Just Black
rgbToColor r g b =

if 0 <= r && r <= 255 &&
0 <= g && g <= 255 &&
0 <= b && b <= 255

then Just (Custom r g b)
else Nothing -- invalid RGB value

The first eight lines match the RGB arguments against the predefined values and,
if they match,rgbToColor returnsJust the appropriate color. If none of these
matches, the last definition ofrgbToColor matches the first argument againstr , the
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second againstg and the third againstb (which causes the side-effect of binding these
values). It then checks to see if these values are valid (eachis greater than or equal to
zero and less than or equal to 255). If so, it returnsJust (Custom r g b) ; if not,
it returnsNothing corresponding to an invalid color.

Using this, we can write a function that checks to see if a right RGB value is valid:

rgbIsValid r g b = rgbIsValid’ (rgbToColor r g b)
where rgbIsValid’ (Just _) = True

rgbIsValid’ _ = False

Here, we compose the helper functionrgbIsValid’ with our functionrgbToColor .
The helper function checks to see if the value returned byrgbToColor is Just any-
thing (the wildcard). If so, it returnsTrue . If not, it matches anything and returns
False .

Pattern matching isn’t magic, though. You can only match against datatypes; you
cannot match against functions. For instance, the following is invalid:

f x = x + 1

g (f x) = x

Even though the intended meaning ofg is clear (i.e.,g x = x - 1 ), the com-
piler doesn’t know in general thatf has an inverse function, so it can’t perform matches
like this.

7.5 Guards

Guards can be thought of as an extension to the pattern matching facility. They enable
you to allow piecewise function definitions to be taken according to arbitrary boolean
expressions. Guards appear after all arguments to a function but before the equals sign,
and are begun with a vertical bar. We could use guards to writea simple function which
returns a string telling you the result of comparing two elements:

comparison x y | x < y = "The first is less"
| x > y = "The second is less"
| otherwise = "They are equal"

You can read the vertical bar as “such that.” So we say that thevalue ofcomparison
x y “such that” x is less than y is “The first is less.” The value such that x is greater
than y is “The second is less” and the valueotherwise is “They are equal”. The key-
word otherwise is simply defined to be equal toTrue and thus matches anything
that falls through that far. So, we can see that this works:
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Guards> comparison 5 10
"The first is less"
Guards> comparison 10 5
"The second is less"
Guards> comparison 7 7
"They are equal"

Guards are applied in conjunction with pattern matching. When a pattern matches,
all of its guards are tried, consecutively, until one matches. If none match, then pattern
matching continues with the next pattern.

One nicety about guards is thatwhereclauses are common to all guards. So another
possible definition for ourisBright function from the previous section would be:

isBright2 c | r == 255 = True
| g == 255 = True
| b == 255 = True
| otherwise = False

where (r,g,b) = colorToRGB c

The function is equivalent to the previous version, but performs its calculation
slightly differently. It takes a color,c , and appliescolorToRGB to it, yielding an
RGB triple which is matched (using pattern matching!) against (r,g,b) . This match
succeeds and the valuesr , g andb are bound to their respective values. The first guard
checks to see ifr is 255 and, if so, returns true. The second and third guard check g
andb against 255, respectively and return true if they match. Thelast guard fires as a
last resort and returnsFalse .

7.6 Instance Declarations

In order to declare a type to be an instance of a class, you needto provide an instance
declaration for it. Most classes provide what’s called a “minimal complete definition.”
This means the functions which must be implemented for this class in order for its
definition to be satisfied. Once you’ve written these functions for your type, you can
declare it an instance of the class.

7.6.1 TheEq Class

TheEq class has two members (i.e., two functions):

(==) :: Eq a => a -> a -> Bool
(/=) :: Eq a => a -> a -> Bool
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The first of these type signatures reads that the function== is a function which takes
two as which are members ofEq and produces aBool . The type signature of/= (not
equal) is identical. A minimal complete definition for theEq class requires that either
one of these functions be defined (if you define==, then/= is defined automatically by
negating the result of==, and vice versa). These declarations must be provided inside
the instance declaration.

This is best demonstrated by example. Suppose we have our color example, re-
peded here for convenience:

data Color
= Red
| Orange
| Yellow
| Green
| Blue
| Purple
| White
| Black
| Custom Int Int Int -- R G B components

We can defineColor to be an instance ofEq by the following declaration:

instance Eq Color where
Red == Red = True
Orange == Orange = True
Yellow == Yellow = True
Green == Green = True
Blue == Blue = True
Purple == Purple = True
White == White = True
Black == Black = True
(Custom r g b) == (Custom r’ g’ b’) =

r == r’ && g == g’ && b == b’
_ == _ = False

The first line here begins with the keywordinstancetelling the compiler that we’re
making an instance declaration. It then specifies the class,Eq, and the type,Color

which is going to be an instance of this class. Following that, there’s thewhere key-
word. Finally there’s the method declaration.

The first eight lines of the method declaration are basicallyidentical. The first one,
for instance, says that the value of the expressionRed == Red is equal toTrue .
Lines two through eight are identical. The declaration for custom colors is a bit differ-
ent. We pattern matchCustom on both sides of==. On the left hand side, we bindr ,
g andb to the components, respectively. On the right hand side, we bind r’ , g’ and
b’ to the components. We then say that these two custom colors are equal precisely
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whenr == r’ , g == g’ andb == b’ are all equal. The fallthrough says that any
pair we haven’t previously declared as equal are unequal.

7.6.2 TheShow Class

The Show class is used to display arbitrary values as strings. This class has three
methods:

show :: Show a => a -> String
showsPrec :: Show a => Int -> a -> String -> String
showList :: Show a => [a] -> String -> String

A minimal complete definition is eithershow or showsPrec (we will talk about
showsPrec later – it’s in there for efficiency reasons). We can define ourColor

datatype to be an instance ofShow with the following instance declaration:

instance Show Color where
show Red = "Red"
show Orange = "Orange"
show Yellow = "Yellow"
show Green = "Green"
show Blue = "Blue"
show Purple = "Purple"
show White = "White"
show Black = "Black"
show (Custom r g b) =

"Custom " ++ show r ++ " " ++
show g ++ " " ++ show b

This declaration specifies exactly how to convert values of typeColor to Strings.
Again, the first eight lines are identical and simply take aColor and produce a string.
The last line for handling custom colors matches out the RGB components and creates
a string by concattenating the result ofshow ing the components individually (with
spaces in between and “Custom” at the beginning).

7.6.3 Other Important Classes

There are a few other important classes which I will mention briefly because either they
are commonly used or because we will be using them shortly. I won’t provide example
instance declarations; how you can do this should be clear bynow.

The Ord Class

The ordering class, the functions are:
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compare :: Ord a => a -> a -> Ordering
(<=) :: Ord a => a -> a -> Bool
(>) :: Ord a => a -> a -> Bool
(>=) :: Ord a => a -> a -> Bool
(<) :: Ord a => a -> a -> Bool
min :: Ord a => a -> a -> a
max :: Ord a => a -> a -> a

The almost any of the functions alone is a minimal complete definition; it is rec-
ommended that you implementcompare if you implement only one, though. This
function returns a value of typeOrdering which is defined as:

data Ordering = LT | EQ | GT

So, for instance, we get:

Prelude> compare 5 7
LT
Prelude> compare 6 6
EQ
Prelude> compare 7 5
GT

In order to declare a type to be an instance ofOrd you must already have declared
it an instance ofEq (in other words,Ord is a subclassof Eq – more about this in
Section 8.4).

The EnumClass

TheEnum class is for enumerated types; that is, for types where each element has a
successor and a predecessor. It’s methods are:

pred :: Enum a => a -> a
succ :: Enum a => a -> a
toEnum :: Enum a => Int -> a
fromEnum :: Enum a => a -> Int
enumFrom :: Enum a => a -> [a]
enumFromThen :: Enum a => a -> a -> [a]
enumFromTo :: Enum a => a -> a -> [a]
enumFromThenTo :: Enum a => a -> a -> a -> [a]

The minimal complete definition contains bothtoEnum and fromEnum , which
converts from and toInts. Thepred andsucc functions give the predecessor and
successor, respectively. Theenum functions enumerate lists of elements. For instance,
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enumFrom x lists all elements afterx ; enumFromThen x step lists all elements
starting atx in steps of sizestep . TheTo functions end the enumeration at the given
element.

The NumClass

TheNum class provides the standard arithmetic operations:

(-) :: Num a => a -> a -> a
( * ) :: Num a => a -> a -> a
(+) :: Num a => a -> a -> a
negate :: Num a => a -> a
signum :: Num a => a -> a
abs :: Num a => a -> a
fromInteger :: Num a => Integer -> a

All of these are obvious except for perhapsnegate which is the unary minus.
That is,negate x means−x.

The Read Class

TheRead class is the opposite of theShow class. It is a way to take a string and read
in from it a value of arbitrary type. The methods forRead are:

readsPrec :: Read a => Int -> String -> [(a, String)]
readList :: String -> [([a], String)]

The minimal complete definition isreadsPrec . The most important function
related to this isread , which usesreadsPrec as:

read s = fst (head (readsPrec 0 s))

This will fail if parsing the string fails. You could define amaybeRead function
as:

maybeRead s =
case readsPrec 0 s of

[(a,_)] -> Just a
_ -> Nothing

How to write and usereadsPrec directly will be discussed further in the exam-
ples.
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7.6.4 Class Contexts

Suppose we are definition theMaybe datatype from scratch. The definition would be
something like:

data Maybe a = Nothing
| Just a

Now, when we go to write the instance declarations, for, say,Eq, we need to know
thata is an instance ofEq otherwise we can’t write a declaration. We express this as:

instance Eq a => Eq (Maybe a) where
Nothing == Nothing = True
(Just x) == (Just x’) = x == x’

This first line can be read “Thata is an instance ofEq implies(=>) thatMaybe a

is an instance ofEq.”

7.6.5 Deriving Classes

Writing obviousEq, Ord, Read andShow classes like these is tedious and should be
automated. Luckily for us, it is. If you write a datatype that’s “simple enough” (almost
any datatype you’ll write unless you start writing fixed point types), the compiler can
automaticallyderive some of the most basic classes. To do this, you simply add a
deriving clause to after the datatype declaration, as in:

data Color
= Red
| ...
| Custom Int Int Int -- R G B components
deriving (Eq, Ord, Show, Read)

This will automatically create instances of theColor datatype of the named classes.
Similarly, the declaration:

data Maybe a = Nothing
| Just a
deriving (Eq, Ord, Show, Read)

derives these classes just whena is appropriate.
All in all, you are allowed to derive instances ofEq, Ord, Enum, Bounded,

Show andRead. There is considerable work in the area of “polytypic programming”
or “generic programming” which, among other things, would allow for instance dec-
larations foranyclass to be derived. This is much beyond the scope of this tutorial;
instead, I refer you to the literature.



90 CHAPTER 7. ADVANCED FEATURES

7.7 Datatypes Revisited

I know by this point you’re probably terribly tired of hearing about datatypes. They
are, however, incredibly important, otherwise I wouldn’t devote so much time to them.
Datatypes offer a sort of notational convenience if you have, for instance, a datatype
that holds many many values. These are called named fields.

7.7.1 Named Fields

Consider a datatype whose purpose is to hold configuration settings. Usually when
you extract members from this type, you really only care about one or possibly two of
the many settings. Moreover, if many of the settings have thesame type, you might
often find yourself wondering “wait, was this the fourth orfifth element?” One thing
you could do would be to write accessor functions. Consider the following made-up
configuration type for a terminal program:

data Configuration =
Configuration String -- user name

String -- local host
String -- remote host
Bool -- is guest?
Bool -- is super user?
String -- current directory
String -- home directory
Integer -- time connected

deriving (Eq, Show)

You could then write accessor functions, like (I’ve only listed a few):

getUserName (Configuration un _ _ _ _ _ _ _) = un
getLocalHost (Configuration _ lh _ _ _ _ _ _) = lh
getRemoteHost (Configuration _ _ rh _ _ _ _ _) = rh
getIsGuest (Configuration _ _ _ ig _ _ _ _) = ig
...

You could also write update functions to update a single element. Of course, now
if you add an element to the configuration, or remove one, all of these functions now
have to take a different number of arguments. This is highly annoying and is an easy
place for bugs to slip in. However, there’s a solution. We simply give names to the
fields in the datatype declaration, as follows:

data Configuration =
Configuration { username :: String,

localhost :: String,
remotehost :: String,
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isguest :: Bool,
issuperuser :: Bool,
currentdir :: String,
homedir :: String,
timeconnected :: Integer

}

This will automatically generate the following accessor functions for us:

username :: Configuration -> String
localhost :: Configuration -> String
...

Moreover, it gives us very convenient update methods. Here is a short example
for a “post working directory” and “change directory” like functions that work on
Configurations:

changeDir :: Configuration -> String -> Configuration
changeDir cfg newDir =

-- make sure the directory exists
if directoryExists newDir

then -- change our current directory
cfg{currentdir = newDir}

else error "directory does not exist"

postWorkingDir :: Configuration -> String
-- retrieve our current directory

postWorkingDir cfg = currentdir cfg

So, in general, to update the fieldx in a datatypey to z , you writey{x=z }. You
can change more than one; each should be separated by commas,for instance,y{x=z,
a=b, c=d }.

You can of course continue to pattern match againstConfigurations as you did
before. The named fields are simply syntactic sugar; you can still write something like:

getUserName (Configuration un _ _ _ _ _ _ _) = un

But there is little reason to. Finally, you can pattern matchagainst named fields as
in:

getHostData (Configuration {localhost=lh,remotehost=r h})
= (lh,rh)
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This matches the variablelh against thelocalhost field on theConfiguration

and the variablerh against theremotehost field on theConfiguration. These
matches of course succeed. You could also constrain the matches by putting values
instead of variable names in these positions, as you would for standard datatypes.

You can create values ofConfiguration in the old way as shown in the first definition
below, or in the named-field’s type, as shown in the second definition below:

initCFG =
Configuration "nobody" "nowhere" "nowhere"

False False "/" "/" 0
initCFG’ =

Configuration
{ username="nobody",

localhost="nowhere",
remotehost="nowhere",
isguest=False,
issuperuser=False,
currentdir="/",
homedir="/",
timeconnected=0 }

Though the second is probably much more understandable unless you litter your
code with comments.

7.8 More Lists

todo: put something here

7.8.1 Standard List Functions

Recall that the definition of the built-in Haskell list datatype is equivalent to:

data List a = Nil
| Cons a (List a)

With the exception thatNil is called[] andCons x xs is calledx:xs . This is
simply to make pattern matching easier and code smaller. Let’s investigate how some
of the standard list functions may be written. Considermap. A definition is given
below:

map _ [] = []
map f (x:xs) = f x : map f xs
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Here, the first line says that when youmapacross an empty list, no matter what the
function is, you get an empty list back. The second line says that when youmapacross
a list with x as the head andxs as the tail, the result isf applied tox consed onto the
result of mappingf onxs .

Thefilter can be defined similarly:

filter _ [] = []
filter p (x:xs) | p x = x : filter p xs

| otherwise = filter p xs

How this works should be clear. For an empty list, we return anempty list. For
a non empty list, we return the filter of the tail, perhaps withthe head on the front,
depending on whether it satisfies the predicatep or not.

We can definefoldr as:

foldr _ z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

Here, the best interpretation is that we are replacing the empty list ([] ) with a
particular value and the list constructor (: ) with some function. On the first line, we
can see the replacement of[] for z . Using backquotes to makef infix, we can write
the second line as:

foldr f z (x:xs) = x ‘f‘ (foldr f z xs)

From this, we can directly see how: is being replaced byf .
Finally, foldl :

foldl _ z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

This is slightly more complicated. Remember,z can be thought of as the current
state. So if we’re folding across a list which is empty, we simply return the current
state. On the other hand, if the list is not empty, it’s of the formx:xs . In this case, we
get a new state by applingf to the current statez and the current list elementx and
then recursively callfoldl onxs with this new state.

There is another class of functions: thezip andunzip functions, which respec-
tively take multiple lists and make one or take one lists and split them apart. For
instance,zip does the following:

Prelude> zip "hello" [1,2,3,4,5]
[(’h’,1),(’e’,2),(’l’,3),(’l’,4),(’o’,5)]
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Basically, it pairs the first elements of both lists and makesthat the first element of
the new list. It then pairs the second elements of both lists and makes that the second
element, etc. What if the lists have unequal length? It simply stops when the shorter
one stops. A reasonable definition forzip is:

zip [] _ = []
zip _ [] = []
zip (x:xs) (y:ys) = (x,y) : zip xs ys

Theunzip function does the opposite. It takes a zipped list and returns the two
“original” lists:

Prelude> unzip [(’f’,1),(’o’,2),(’o’,3)]
("foo",[1,2,3])

There are a whole slew ofzip andunzip functions, namedzip3 , unzip3 ,
zip4 , unzip4 and so on; the...3 functions use triples instead of pairs; the...4
functions use 4-tuples, etc.

Finally, the functiontake takes an integern and a list and returns the firstn
elements off the list. Correspondingly,drop takes an integern and a list and returns
the result of throwing away the firstn elements off the list. Neither of these functions
produces an error; ifn is too large, they both will just return shorter lists.

7.8.2 List Comprehensions

There is some syntactic sugar for dealing with lists whose elements are members of the
Enum class (see Section 7.6), such asInt or Char. If we want to create a list of all the
elements from1 to 10, we can simply write:

Prelude> [1..10]
[1,2,3,4,5,6,7,8,9,10]

We can also introduce an amount to step by:

Prelude> [1,3..10]
[1,3,5,7,9]
Prelude> [1,4..10]
[1,4,7,10]

These expressions are short hand forenumFromTo andenumFromThenTo , re-
spectively. Of course, you don’t need to specify an upper bound. Try the following
(but be ready to hit Control+C to stop the computation!):

Prelude> [1..]
[1,2,3,4,5,6,7,8,9,10,11,12{Interrupted!}
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Probably yours printed a few thousand more elements than this. As we said before,
Haskell is lazy. That means that a list of all numbers from 1 onis perfectly well formed
and that’s exactly what this list is. Of course, if you attempt to print the list (which
we’re implicitly doing by typing it in the interpreter), it won’t halt. But if we only
evaluate an initial segment of this list, we’re fine:

Prelude> take 3 [1..]
[1,2,3]
Prelude> take 3 (drop 5 [1..])
[6,7,8]

This comes in useful if, say, we want to assign an ID to each element in a list.
Without laziness we’d have to write something like this:

assignID :: [a] -> [(a,Int)]
assignID l = zip l [1..length l]

Which means that the list will be traversed twice. However, because of laziness,
we can simply write:

assignID l = zip l [1..]

And we’ll get exactly what we want. We can see that this works:

Prelude> assignID "hello"
[(’h’,1),(’e’,2),(’l’,3),(’l’,4),(’o’,5)]

Finally, there is some useful syntactic sugar formapandfilter , based on stan-
dard set-notation in mathematics. In math, we would write something like{f(x)|x ∈
s∧p(x)} to mean the set of all values off when applied to elements ofs which satisfy
p. This is equivalent to the Haskell statementmap f (filter p s) . However, we
can also use more math-like notation and write[f x | x <- s, p x] . While in
math the ordering of the statements on the side after the pipeis free, it is not so in
Haskell. We could not have putp x beforex <- s otherwise the compiler wouldn’t
know yet whatx was. We can use this to do simple string processing. Suppose we
want to take a string, remove all the lower-case letters and convert the rest of the letters
to upper case. We could do this in either of the following two equivalent ways:

Prelude> map toLower (filter isUpper "Hello World")
"hw"
Prelude> [toLower x | x <- "Hello World", isUpper x]
"hw"
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These two are equivalent, and, depending on the exact functions you’re using, one
might be more readable than the other. There’s more you can dohere, though. Suppose
you want to create a list of pairs, one for each point between (0,0) and (5,7) below the
diagonal. Doing this manually with lists and maps would be cumbersome and possibly
difficult to read. It couldn’t be easier than with list comprehensions:

Prelude> [(x,y) | x <- [1..5], y <- [x..7]]
[(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,2),(2 ,3),
(2,4),(2,5),(2,6),(2,7),(3,3),(3,4),(3,5),(3,6),(3, 7),
(4,4),(4,5),(4,6),(4,7),(5,5),(5,6),(5,7)]

If you reverse the order of thex <- andy <- clauses, the order in which the
space is traversed will be reversed (of course, in that case,y could no longer depend
onx and you would need to makex depend ony but this is trivial).

7.9 Arrays

Lists are nice for many things. It is easy to add elements to the beginning of them and
to manipulate them in various ways that change the length of the list. However, they are
bad for random access, having average complexityO(n) to access an arbitrary element
(if you don’t know whatO(. . . ) means, you can either ignore it or take a quick detour
and read Appendix A, a two-page introduction to complexity theory). So, if you’re
willing to give up fast insertion and deletion because you need random access, you
should use arrays instead of lists.

In order to use arrays you must import theArray module. There are a few
methods for creating arrays, thearray function, thelistArray function, and the
accumArray function. Thearray function takes a pair which is the bounds of
the array, and an association list which specifies the initial values of the array. The
listArray function takes bounds and then simply a list of values. Finally, the
accumArray function takes an accumulation function, an initial value and an associ-
ation list and accumulates pairs from the list into the array. Here are some examples of
arrays being created:

Arrays> array (1,5) [(i,2 * i) | i <- [1..5]]
array (1,5) [(1,2),(2,4),(3,6),(4,8),(5,10)]
Arrays> listArray (1,5) [3,7,5,1,10]
array (1,5) [(1,3),(2,7),(3,5),(4,1),(5,10)]
Arrays> accumArray (+) 2 (1,5) [(i,i) | i <- [1..5]]
array (1,5) [(1,3),(2,4),(3,5),(4,6),(5,7)]

When arrays are printed out (via the show function), they areprinted with an asso-
ciation list. For instance, in the first example, the association list says that the value of
the array at1 is 2, the value of the array at2 is 4, and so on.

You can extract an element of an array using the! function, which takes an array
and an index, as in:
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Arrays> (listArray (1,5) [3,7,5,1,10]) ! 3
5

Moreover, you can update elements in the array using the// function. This takes
an array and an association list and updates the positions specified in the list:

Arrays> (listArray (1,5) [3,7,5,1,10]) //
[(2,99),(3,-99)]

array (1,5) [(1,3),(2,99),(3,-99),(4,1),(5,10)]

There are a few other functions which are of interest:
bounds returns the bounds of an array
indices returns a list of all indices of the array
elems returns a list of all the values in the array in order
assocs returns an association list for the array

If we definearr to be listArray (1,5) [3,7,5,1,10] , the result of
these functions applied toarr are:

Arrays> bounds arr
(1,5)
Arrays> indices arr
[1,2,3,4,5]
Arrays> elems arr
[3,7,5,1,10]
Arrays> assocs arr
[(1,3),(2,7),(3,5),(4,1),(5,10)]

Note that while arrays areO(1) access, they are notO(1) update. They are in
factO(n) update, since in order to maintain purity, the array must becopiedin order to
make an update. Thus, functional arrays are pretty much onlyuseful when you’re filling
them up once and then only reading. If you need fast access andupdate, you should
probably useFiniteMap s, which are discussed in Section 7.10 and haveO(log n)
access and update.

7.10 Finite Maps

TheFiniteMap datatype (which is available in theFiniteMap module, orData.FiniteMap
module in the hierarchical libraries) is a purely functional implementation of balanced
trees. Finite maps can be compared to lists and arrays in terms of the time it takes to
perform various operations on those datatypes of a fixed size, n. A brief comparison
is:
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List Array FiniteMap
insert O(1) O(n) O(log n)
update O(n) O(n) O(log n)
delete O(n) O(n) O(log n)
find O(n) O(1) O(log n)
map O(n) O(n) O(n log n)

As we can see, lists provide fast insertion (but slow everything else), arrays pro-
vide fast lookup (but slow everything else) and finite maps provide moderately fast
everything (except mapping, which is a bit slower than listsor arrays).

The type of a finite map is for the formFiniteMapkeyelt wherekey is the type of
the keys andelt is the type of the elements. That is, finite maps are lookup tables from
typekey to typeelt.

The basic finite map functions are:

emptyFM :: FiniteMap key elt
addToFM :: FiniteMap key elt -> key -> elt ->

FiniteMap key elt
delFromFM :: FiniteMap key elt -> key ->

FiniteMap key elt
elemFM :: key -> FiniteMap key elt -> Bool
lookupFM :: FiniteMap key elt -> key -> Maybe elt

In all these cases, the typekey must be an instance ofOrd (and hence also an
instance ofEq).

There are also functionlistToFM and fmToList to convert lists to and from
finite maps. Try the following:

Prelude> :m FiniteMap
FiniteMap> let fm = listToFM

[(’a’,5),(’b’,10),(’c’,1),(’d’,2)]
FiniteMap> let myFM = addToFM fm ’e’ 6
FiniteMap> fmToList fm
[(’a’,5),(’b’,10),(’c’,1),(’d’,2)]
FiniteMap> fmToList myFM
[(’a’,5),(’b’,10),(’c’,1),(’d’,2),(’e’,6)]
FiniteMap> lookupFM myFM ’e’
Just 6
FiniteMap> lookupFM fm ’e’
Nothing

You can also experiment with the other commands. Note that you cannotshow a
finite map, as they are not instances ofShow:

FiniteMap> show myFM
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<interactive>:1:
No instance for (Show (FiniteMap Char Integer))
arising from use of ‘show’ at <interactive>:1
In the definition of ‘it’: show myFM

In order to inspect the elements, you first need to usefmToList .

7.11 Layout

7.12 The Final Word on Lists

You are likely tired of hearing about lists at this point, butthey are so fundamental to
Haskell (and really all of functional programming) that it would be terrible not to talk
about them some more.

It turns out thatfoldr is actually quite a powerful function: it can compute an
primitive recursivefunction. A primitive recursive function is essentially one which primitive recursive
can be calculated using only “for” loops, but not “while” loops.

In fact, we can fairly easily definemap in terms offoldr :

map2 f = foldr (\a b -> f a : b) []

Here,b is the accumulator (i.e., the result list) anda is the element being currently
considered. In fact, we can simplify this definition througha sequence of steps:

foldr (\a b -> f a : b) []
==> foldr (\a b -> (:) (f a) b) []
==> foldr (\a -> (:) (f a)) []
==> foldr (\a -> ((:) . f) a) []
==> foldr ((:) . f) []

This is directly related to the fact thatfoldr (:) [] is the identity function on
lists. This is because, as mentioned before,foldr f z can be thought of as replacing
the [] in lists byz and the: by f . In this case, we’re keeping both the same, so it is
the identity function.

In fact, you can convert any function of the following style into afoldr :

myfunc [] = z
myfunc (x:xs) = f x (myfunc xs)

By writing the last line withf in infix form, this should be obvious:

myfunc [] = z
myfunc (x:xs) = x ‘f‘ (myfunc xs)
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Clearly, we are just replacing[] with z and : with f . Consider thefilter
function:

filter p [] = []
filter p (x:xs) =

if p x
then x : filter p xs
else filter p xs

This function also follows the form above. Based on the first line, we can figure
out thatz is supposed to be[] , just like in themap case. Now, suppose that we call
the result of callingfilter p xs simplyb, then we can rewrite this as:

filter p [] = []
filter p (x:xs) =

if p x then x : b else b

Given this, we can transformfilter into a fold:

filter p = foldr (\a b -> if p a then a:b else b) []

Let’s consider a slightly more complicated function:++. The definition for++ is:

(++) [] ys = ys
(++) (x:xs) ys = x : (xs ++ ys)

Now, the question is whether we can write this in fold notation. First, we can apply
eta reduction to the first line to give:

(++) [] = id

Through a sequence of steps, we can also eta-reduce the second line:

(++) (x:xs) ys = x : ((++) xs ys)
==> (++) (x:xs) ys = (x:) ((++) xs ys)
==> (++) (x:xs) ys = ((x:) . (++) xs) ys
==> (++) (x:xs) = (x:) . (++) xs

Thus, we get that an eta-reduced defintion of++ is:

(++) [] = id
(++) (x:xs) = (x:) . (++) xs

Now, we can try to put this into fold notation. First, we notice that the base case
converts[] into id . Now, if we assume(++) xs is calledb andx is calleda, we
can get the following definition in terms offoldr :
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(++) = foldr (\a b -> (a:) . b) id

This actually makes sense intuitively. If we only think about applying++ to one
argument, we can think of it as a function which takes a list and creates a function
which, when applied, will prepend this list to another list.In the lambda function, we
assume we have a functionb which will do this for the rest of the list and we need to
create a function which will do this forb as well as the single elementa. In order to
do this, we first applyb and then further adda to the front.

We can further reduce this expression to a point-free style through the following
sequence:

==> (++) = foldr (\a b -> (a:) . b) id
==> (++) = foldr (\a b -> (.) (a:) b) id
==> (++) = foldr (\a -> (.) (a:)) id
==> (++) = foldr (\a -> (.) ((:) a)) id
==> (++) = foldr (\a -> ((.) . (:)) a) id
==> (++) = foldr ((.) . (:)) id

This final version is point free, though not necessarily understandable. Presum-
bably the original version is clearer.

As a final example, considerconcat . We can write this as:

concat [] = []
concat (x:xs) = x ++ concat xs

It should be immediately clear that thez element for the fold is[] and that the
recursive function is++, yielding:

concat = foldr (++) []

Exercises
Exercise 7.2The functionand takes a list of booleans and returnsTrue if and only
if all of them areTrue . It also returnsTrue on the empty list. Write this function in
terms offoldr .

Exercise 7.3The functionconcatMap behaves such thatconcatMap f is the same
asconcat . map f . Write this function in terms offoldr .
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Chapter 8

Advanced Types

As you’ve probably ascertained by this point, the type system is integral to Haskell.
While this chapter is called “Advanced Types”, you will probably find it to be more
general than that and it must not be skipped simply because you’re not interested in the
type system.

8.1 Type Synonyms

Type synonyms exist in Haskell simply for convenience: their removal would not make
Haskell any less powerful.

Consider the case when you are constantly dealing with listsof three-dimensional
points. For instance, you might have a function with type[(Double, Double, Double)] → Double → [(Double, Double, Double)].
Since you are a good software engineer, you want to place typesignatures on all your
top-level functions. However, typing[(Double, Double, Double)] all the time gets very
tedious. To get around this, you can define a type synonym:

type List3D = [(Double,Double,Double)]

Now, the type signature for your functions may be writtenList3D → Double → List3D.
We should note that type synonyms cannot be self-referential. That is, you cannot

have:

type BadType = Int -> BadType

This is because this is an “infinite type.” Since Haskell removes type synonyms
very early on, any instance ofBadType will be replaced byInt → BadType, which
will result in an infinite loop.

Type synonyms can also be parameterized. For instance, you might want to be able
to change the types of the points in the list of 3D points. For this, you could define:

type List3D a = [(a,a,a)]

103
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Then your references to[(Double, Double, Double)] would becomeList3D Double.

8.2 Newtypes

Consider the problem in which you need to have a type which is very much likeInt, but
its ordering is defined differently. Perhaps you wish to order Ints first by even numbers
then by odd numbers (that is, all odd numbers are greater thanany even number and
within the odd/even subsets, ordering is standard).

Unfortunately, you cannot define a new instance ofOrd for Int because then
Haskell won’t know which one to use. What you want is to define atype which is
isomorphicto Int.

NOTE “Isomorphic” is a common term in mathematics which basi-
cally means “structurally identical.” For instance, in graph theory, if you
have two graphs which are identical except they have different labels on
the nodes, they are isomorphic. In our context, two types areisomorphic
if they have the same underlying structure.

One way to do this would be to define a new datatype:

data MyInt = MyInt Int

We could then write appropriate code for this datatype. The problem (and this is
very subtle) is that this type is not truly isomorphic toInt: it has one more value. When
we think of the typeInt, we usually think that it takes all values of integers, but itreally
has one more value:| (pronounced “bottom”), which is used to represent erroneous or
undefined computations. Thus,MyInt has not only valuesMyInt 0 , MyInt 1 and
so on, but alsoMyInt | . However, since datatypes can themselves be undefined, it
has an additional value:| which differs fromMyInt | and this makes the types
non-isomorphic. (See Section?? for more information on bottom.)

Disregarding that subtlety, there may be efficiency issues with this representation:
now, instead of simply storing an integer, we have to store a pointer to an integer and
have to follow that pointer whenever we need the value of aMyInt.

To get around these problems, Haskell has anewtypeconstruction. Anewtypeis a
cross between a datatype and a type synonym: it has a constructor like a datatype, but
it can have only one constructor and this constructor can have only one argument. For
instance, we can define:

newtype MyInt = MyInt Int

But we cannot define any of:

newtype Bad1 = Bad1a Int | Bad1b Double
newtype Bad2 = Bad2 Int Double
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Of course, the fact that we cannot defineBad2 as above is not a big issue: we can
simply define the following by pairing the types:

newtype Good2 = Good2 (Int,Double)

Now, suppose we’ve definedMyInt as anewtype. This enables use to write our
desired instance ofOrd as:

instance Ord MyInt where
MyInt i < MyInt j

| odd i && odd j = i < j
| even i && even j = i < j
| even i = True
| otherwise = False
where odd x = (x ‘mod‘ 2) == 0

even = not . odd

Like datatype, we can still derive classes likeShow andEq over newtypes (in fact,
I’m implicitly assuming we have derivedEq overMyInt – where is my assumption in
the above code?).

Moreover, in recent versions of GHC (see Section 2.2), on newtypes, you are al-
lowed to deriveanyclass of which the base type (in this case,Int) is an instance. For
example, we could deriveNum onMyInt to provide arithmetic functions over it.

Pattern matching over newtypes is exactly as in datatypes. We can write constructor
and destructor functions forMyInt as follows:

mkMyInt i = MyInt i
unMyInt (MyInt i) = i

8.3 Datatypes

We’ve already seen datatypes used in a variety of contexts. This section concludes
some of the discussion and introduces some of the common datatypes in Haskell. It
also provides a more theoretical underpinning to what datatypes actually are.

8.3.1 Strict Fields

One of the great things about Haskell is that computation is performed lazily. However,
sometimes this leads to inefficiencies. One way around this problem is to use datatypes
with strict fields. Before we talk about the solution, let’s spend some time to get a
bit more comfortable with how bottom works in to the picture (for more theory, see
Section??).

Suppose we’ve defined the unit datatype (this one of the simplest datatypes you can
define):
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data Unit = Unit

This datatype has exactly one constructor,Unit , which takes no arguments. In a
strict language like ML, there would be exactly one value of typeUnit: namely,Unit .
This is not quite so in Haskell. In fact, there aretwo values of typeUnit. One of them
is Unit . The other is bottom (written| ).

You can think of bottom as representing a computation which won’t halt. For in-
stance, suppose we define the value:

foo = foo

This is perfectly valid Haskell code and simply says that when you want to evaluate
foo , all you need to do is evaluatefoo . Clearly this is an “infinite loop.”

What is the type offoo ? Simplya. We cannot say anything more about it than
that. The fact thatfoo has typea in fact tells us that it must be an infinite loop (or
some other such strange value). However, sincefoo has typea and thus can have any
type, it can also have typeUnit. We could write, for instance:

foo :: Unit
foo = foo

Thus, we have found a second value with typeUnit. In fact, we have found all
values of typeUnit. Any other non-terminating function or error-producing function
will have exactly the same effect asfoo (though Haskell provides some more utility
with the functionerror ).

This means, for instance, that there are actuallyfour values with typeMaybe Unit.
They are: | , Nothing , Just | andJust Unit . However, it could be the fact
that you, as a programmer, know that you will never come across the third of these.
Namely, you want the argument toJust to bestrict. This means that if the argument
to Just is bottom, then the entire structure becomes bottom. You usean exclamation
point to specify a constructor as strict. We can define a strict version ofMaybe as:

data SMaybe a = SNothing | SJust !a

There are now only three values ofSMaybe. We can see the difference by writing
the following program:

module Main where

import System

data SMaybe a = SNothing | SJust !a deriving Show
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main = do
[cmd] <- getArgs
case cmd of

"a" -> printJust undefined
"b" -> printJust Nothing
"c" -> printJust (Just undefined)
"d" -> printJust (Just ())

"e" -> printSJust undefined
"f" -> printSJust SNothing
"g" -> printSJust (SJust undefined)
"h" -> printSJust (SJust ())

printJust :: Maybe () -> IO ()
printJust Nothing = putStrLn "Nothing"
printJust (Just x) = do putStr "Just "; print x

printJust :: SMaybe () -> IO ()
printSJust SNothing = putStrLn "Nothing"
printSJust (SJust x) = do putStr "Just "; print x

Here, depending on what command line argument is passed, we will do something
different. The outputs for the various options are:

\% ./strict a
Fail: Prelude.undefined

\% ./strict b
Nothing

\% ./strict c
Just
Fail: Prelude.undefined

\% ./strict d
Just ()

\% ./strict e
Fail: Prelude.undefined

\% ./strict f
Nothing

\% ./strict g
Fail: Prelude.undefined
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\% ./strict h
Just ()

The thing worth noting here is the difference between cases “c” and “g”. In the
“c” case, theJust is printed, because this is printedbeforethe undefined value is
evaluated. However, in the “g” case, since the constructor is strict, as soon as you
match theSJust , you also match the value. In this case, the value is undefined, so the
whole thing fails before it gets a chance to doanything.

8.4 Classes

We have already encountered type classes a few times, but only in the context of pre-
viously existing type classes. This section is about how to define your own. We will
begin the discussion by talking about Pong and then move on toa useful generalization
of computations.

8.4.1 Pong

The discussion here will be motivated by the construction ofthe game Pong (see Ap-
pendix?? for the full code). In Pong, there are three things drawn on the screen: the
two paddles and the ball. While the paddles and the ball are different in a few respects,
they share many commonalities, such as position, velocity,acceleration, color, shape,
and so on. We can express these commonalities by defining a class for Pong entities,
which we callEntity. We make such a definition as follows:

class Entity a where
getPosition :: a -> (Int,Int)
getVelocity :: a -> (Int,Int)
getAcceleration :: a -> (Int,Int)
getColor :: a -> Color
getShape :: a -> Shape

This code defines a typeclassEntity. This class has five methods:getPosition ,
getVelocity , getAcceleration , getColor andgetShape with the corre-
sponding types.

The first line here uses the keywordclassto introduce a new typeclass. We can
read this typeclass definition as “There is a typeclass ’Entity’; a type ’a’ is an instance
of Entity if it provides the following five functions: . . . ”. To see how we can write an
instance of this class, let us define a player (paddle) datatype:

data Paddle =
Paddle { paddlePosX, paddlePosY,

paddleVelX, paddleVelY,
paddleAccX, paddleAccY :: Int,
paddleColor :: Color,
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paddleHeight :: Int,
playerNumber :: Int }

Given this data declaration, we can definePaddle to be an instance ofEntity:

instance Entity Paddle where
getPosition p = (paddlePosX p, paddlePosY p)
getVelocity p = (paddleVelX p, paddleVelY p)
getAcceleration p = (paddleAccX p, paddleAccY p)
getColor = paddleColor
getShape = Rectangle 5 . paddleHeight

The actual Haskell types of the class functions all have included the contextEntity
a =>. For example,getPosition has typeEntity a ⇒ a → (Int, Int). However,
it will turn out that many of our routines will need entities to also be instances ofEq.
We can therefore choose to makeEntity a subclass ofEq: namely, you can only be
an instance ofEntity if you are already an instance ofEq. To do this, we change the
first line of the class declaration to:

class Eq a => Entity a where

Now, in order to definePaddles to be instances ofEntity we will first need them
to be instances ofEq – we can do this by deriving the class.

8.4.2 Computations

Let’s think back to our original motivation for defining theMaybe datatype from Sec-
tion ??. We wanted to be able to express that functions (i.e., computations) can fail.

Let us consider the case of performing search on a graph. Allow us to take a small
aside to set up a small graph library:

data Graph v e = Graph [(Int,v)] [(Int,Int,e)]

TheGraph datatype takes two type arguments which correspond to vertex and edge
labels. The first argument to theGraph constructor is a list (set) of vertices; the second
is the list (set) of edges. We will assume these lists are always sorted and that each
vertex has a unique id and that there is at most one edge between any two vertices.

Suppose we want to search for a path between two vertices. Perhaps there is no
path between those vertices. To represent this, we will use the Maybe datatype. If
it succeeds, it will return the list of vertices traversed. Our search function could be
written (naively) as follows:

search :: Graph v e -> Int -> Int -> Maybe [Int]
search g@(Graph vl el) src dst

| src == dst = Just [src]
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| otherwise = search’ el
where search’ [] = Nothing

search’ ((u,v,_):es)
| src == u =

case search g v dst of
Just p -> Just (u:p)
Nothing -> search’ es

| otherwise = search’ es

This algorithm works as follows (try to read along): to search in a graphg from
src to dst , first we check to see if these are equal. If they are, we have found our
way and just return the trivial solution. Otherwise, we wantto traverse the edge-list.
If we’re traversing the edge-list and it is empty, we’ve failed, so we returnNothing .
Otherwise, we’re looking at an edge fromu to v . If u is our source, then we consider
this step and recursively search the graph fromv to dst . If this fails, we try the rest of
the edges; if this succeeds, we put our current position before the path found and return.
If u is not our source, this edge is useless and we continue traversing the edge-list.

This algorithm is terrible: namely, if the graph contains cycles, it can loop indefi-
nitely. Nevertheless, it is sufficent for now. Be sure you understand it well: things only
get more complicated.

Now, there are cases where theMaybe datatype is not sufficient: perhaps we wish
to include an error message together with the failure. We could define a datatype to
express this as:

data Failable a = Success a | Fail String

Now, failures come with a failure string to express what wentwrong. We can
rewrite our search function to use this datatype:

search2 :: Graph v e -> Int -> Int -> Failable [Int]
search2 g@(Graph vl el) src dst

| src == dst = Success [src]
| otherwise = search’ el
where search’ [] = Fail "No path"

search’ ((u,v,_):es)
| src == u =

case search2 g v dst of
Success p -> Success (u:p)
_ -> search’ es

| otherwise = search’ es

This code is a straightforward translation of the above.
There is another option for this computation: perhaps we want not just one path,

but all possible paths. We can express this as a function which returns a list of lists of
vertices. The basic idea is the same:
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search3 :: Graph v e -> Int -> Int -> [[Int]]
search3 g@(Graph vl el) src dst

| src == dst = [[src]]
| otherwise = search’ el
where search’ [] = []

search’ ((u,v,_):es)
| src == u =

map (u:) (search3 g v dst) ++
search’ es

| otherwise = search’ es

The code here has gotten a little shorter, thanks to the standard preludemap func-
tion, though it is essentially the same.

We may ask ourselves what all of these have in common and try togobble up
those commonalities in a class. In essense, we need some way of representing success
and some way of representing failure. Furthermore, we need away to combine two
successes (in the first two cases, the first success is chosen;in the third, they are strung
together). Finally, we need to be able to augment a previous success (if there was one)
with some new value. We can fit this all into a class as follows:

class Computation c where
success :: a -> c a
failure :: String -> c a
augment :: c a -> (a -> c b) -> c b
combine :: c a -> c a -> c a

In this class declaration, we’re saying thatc is an instance of the classComputation

if it provides four functions:success , failure , augment andcombine . The
success function takes a value of typea and returns it wrapped up inc, representing
a successful computation. Thefailure function takes aString and returns a compu-
tation representing a failure. Thecombine function takes two previous computation
and produces a new one which is the combination of both. Theaugment function is
a bit more complex.

The augment function takes some previously given computation (namely,c a)
and a function which takes the value of that computation (thea) and returns ab and
produces ab inside of that computation. Note that in our current situation, giving
augment the typec a → (a → a) → c a would have been sufficient, sincea is always
[Int], but we make it this more general time just for generality.

How augment works is probably best shown by example. We can defineMaybe,
Failable and[] to be instances ofComputation as:

instance Computation Maybe where
success = Just
failure = const Nothing
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augment (Just x) f = f x
augment Nothing _ = Nothing
combine Nothing y = y
combine x _ = x

Here, success is represented withJust and failure ignores its argument and
returnsNothing . Thecombine function takes the first success we found and ignores
the rest. The functionaugment checks to see if we succeeded before (and thus had
a Just something) and, if we did, appliesf to it. If we failed before (and thus had a
Nothing ), we ignore the function and returnNothing .

instance Computation Failable where
success = Success
failure = Fail
augment (Success x) f = f x
augment (Fail s) _ = Fail s
combine (Fail _) y = y
combine x _ = x

These definitions are obvious. Finally:

instance Computation [] where
success a = [a]
failure = const []
augment l f = concat (map f l)
combine = (++)

Here, the value of a successful computation is a singleton list containing that value.
Failure is represented with the empty list and to combine previous successes we simply
catenate them. Finally, augmenting a computation amounts to mapping the function
across the list of previous computations and concatentate them. we apply the function
to each element in the list and then concatenate the results.

Using these computations, we can express all of the above versions of search as:

searchAll g@(Graph vl el) src dst
| src == dst = success [src]
| otherwise = search’ el
where search’ [] = failure "no path"

search’ ((u,v,_):es)
| src == u = (searchAll g v dst ‘augment‘

(success . (u:)))
‘combine‘ search’ es

| otherwise = search’ es
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In this, we see the uses of all the functions from the classComputation.
If you’ve understood this discussion of computations, you are in a very good posi-

tion as you have understood the concept ofmonads, probably the most difficult concept
in Haskell. In fact, theComputation class is almost exactly theMonad class, ex-
cept thatsuccess is calledreturn , failure is calledfail andaugment is
called>>= (read “bind”). Thecombine function isn’t actually required by monads,
but is found in theMonadPlus class for reasons which will become obvious later.

If you didn’t understand everything here, read through it again and then wait for
the proper discussion of monads in Chapter 9.

8.5 Instances

We have already seen how to declare instances of some simple classes; allow us to
consider some more advanced classes here. There is aFunctor class defined in the
Functor module.

NOTE The name “functor”, like “monad” comes from category the-
ory. There, a functor is like a function, but instead of mapping elements
to elements, it maps structures to structures.

The definition of the functor class is:

class Functor f where
fmap :: (a -> b) -> f a -> f b

The type definition forfmap (not to mention its name) is very similar to the func-
tion map over lists. In fact,fmap is essentially a generalization ofmap to arbitrary
structures (and, of course, lists are already instances ofFunctor). However, we can
also define other structures to be instances of functors. Consider the following datatype
for binary trees:

data BinTree a = Leaf a
| Branch (BinTree a) (BinTree a)

We can immediately identify that theBinTree type essentially “raises” a typea into
trees of that type. There is a naturally associated functor which goes along with this
raising. We can write the instance:

instance Functor BinTree where
fmap f (Leaf a) = Leaf (f a)
fmap f (Branch left right) =

Branch (fmap f left) (fmap f right)
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Now, we’ve seen how to make something likeBinTree an instance ofEq by using
the deriving keyword, but here we will do it by hand. We want to makeBinTree as
instances ofEq but obviously we cannot do this unlessa is itself an instance ofEq.
We can specify this dependence in the instance declaration:

instance Eq a => Eq (BinTree a) where
Leaf a == Leaf b = a == b
Branch l r == Branch l’ r’ = l == l’ && r == r’
_ == _ = False

The first line of this can be read “ifa is an instance ofEq, thenBinTree a is also
an instance ofEq”. We then provide the definitions. If we did not include the “Eq a
=>” part, the compiler would complain because we’re trying to use the== function on
as in the second line.

The “Eq a =>” part of the definition is called the “context.” We should note that
there are some restrictions on what can appear in the contextand what can appear in
the declaration. For instance, we’re not allowed to have instance declarations that don’t
contain type constructors on the right hand side. To see why,consider the following
declarations:

class MyEq a where
myeq :: a -> a -> Bool

instance Eq a => MyEq a where
myeq = (==)

As it stands, there doesn’t seem to be anything wrong with this definition. However,
if elsewhere in a program we had the definition:

instance MyEq a => Eq a where
(==) = myeq

In this case, if we’re trying to establish if some type is an instance ofEq, we could
reduce it to trying to find out if that type is an instance ofMyEq, which we could
in turn reduce to trying to find out if that type is an instance of Eq, and so on. The
compiler protects itself against this by refusing the first instance declaration.

This is commonly known as theclosed-world assumption. That is, we’re assuming,
when we write a definition like the first one, that there won’t be any declarations like
the second. However, this assumption is invalid because there’s nothing to prevent the
second declaration (or some equally evil declaration). Theclosed world assumption
can also bite you in cases like:

class OnlyInts a where
foo :: a -> a -> Bool



8.6. KINDS 115

instance OnlyInts Int where
foo == (==)

bar :: OnlyInts a => a -> Bool
bar = foo 5

We’ve again made the closed-world assumption: we’ve assumed that the only in-
stance ofOnlyInts is Int, but there’s no reason another instance couldn’t be defined
elsewhere, ruining our defintion ofbar .

8.6 Kinds

Let us take a moment and think about what types are available in Haskell. We have
simple types, likeInt, Char, Double and so on. We then have type constructors like
Maybe which take a type (likeChar) and produce a new type,Maybe Char. Similarly,
the type constructor[] (lists) takes a type (likeInt) and produces[Int]. We have more
complex things like→ (function arrow) which takestwo types (sayInt andBool) and
produces a new typeInt → Bool.

In a sense, these types themselves have type. Types likeInt have some sort of basic
type. Types likeMaybe have a type which takes something of basic type and returns
something of basic type. And so forth.

Talking about the types of types becomes unwieldy and highlyambiguous, so we
call the types of types “kinds.” What we have been calling “basic types” have kind
“* ”. Something of kind* is something which can have an actual value. There is also a
single kind constructor,→ with which we can build more complex kinds.

ConsiderMaybe. This takes something of kind* and produces something of kind
* . Thus, the kind ofMaybe is * -> * . Recall the definition ofPair from Sec-
tion 4.5.1:

data Pair a b = Pair a b

Here,Pair is a type constructor which takes two arguments, each of kind* and
produces a type of kind* . Thus, the kind ofPair is * -> ( * -> * ) . However, we
again assume associativity so we just write* -> * -> * .

Let us make a slightly strange datatype definition:

data Strange c a b =
MkStrange (c a) (c b)

Before we analyze the kind ofStrange, let’s think about what it does. It is essen-
tially a pairing constructor, though it doesn’t pair actualelements, but elements within
another constructor. For instance, think ofc asMaybe. ThenMkStrange pairsMaybes
of the two typesa andb. However,c need not beMaybe but could instead by[], or
many other things.
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What do we know aboutc, though? We know that it must have kind* -> * . This
is because we havec a on the right hand side. The type variablesa andb each have
kind * as before. Thus, the kind ofStrange is ( * -> * ) -> * -> * -> * . That
is, it takes a constructor (c) of kind * -> * together with two types of kind* and
produces something of kind* .

A question may arise regarding how we knowa has kind* and not some other
kind k . In fact, the inferred kind forStrange is (k -> * ) -> k -> k -> * .
However, this requires polymorphism on the kind level, which is too complex, so we
make a default assumption thatk = * .

NOTE There are extensions to GHC which allow you to specify the
kind of constructors directly. For instance, if you wanted adifferent kind,
you could write this explicitly:

data Strange (c :: ( * -> * ) -> * ) a b = MkStrange (c a) (c b)

to give a different kind toStrange.

The notation of kinds suggests that we can perform partial application, as we can
for functions. And, in fact, we can. For instance, we could have:

type MaybePair = Strange Maybe

The kind ofMaybePair is, not surprisingly,* -> * -> * .
We should note here that all of the following definitions are acceptable:

type MaybePair1 = Strange Maybe
type MaybePair2 a = Strange Maybe a
type MaybePair3 a b = Strange Maybe a b

These all appear to be the same, but they are in fact not identical as far as Haskell’s
type system is concerned. The following are all valid type definitions using the above:

type MaybePair1a = MaybePair1
type MaybePair1b = MaybePair1 Int
type MaybePair1c = MaybePair1 Int Double

type MaybePair2b = MaybePair2 Int
type MaybePair2c = MaybePair2 Int Double

type MaybePair3c = MaybePair3 Int Double

But the following arenot valid:
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type MaybePair2a = MaybePair2

type MaybePair3a = MaybePair3
type MaybePair3b = MaybePair3 Int

This is because while it is possible to partially apply type constructors on datatypes,
it is not possible on type synonyms. For instance, the reasonMaybePair2a is invalid
is becauseMaybePair2 is defined as a type synonym with one argument and we have
given it none. The same applies for the invalidMaybePair3 definitions.

8.7 Class Hierarchies

8.8 Default

what is it?
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Chapter 9

Monads

The most difficult concept to master, while learning Haskell, is that of understanding
and using monads. We can distinguish two subcomponents here: (1) learning how
to use existing monads and (2) learning how to write new ones.If you want to use
Haskell, you must learn to use existing monads. On the other hand, you will only need
to learn to write your own monads if you want to become a “superHaskell guru.” Still,
if you can grasp writing your own monads, programming in Haskell will be much more
pleasant.

So far we’ve seen two uses of monads. The first use was IO actions: We’ve seen
that, by using monads, we can abstract get away from the problems plaguing the Real-
World solution to IO presented in Chapter 5. The second use was representing different
types of computations in Section 8.4.2. In both cases, we needed a way to sequence
operations and saw that a sufficient definition (at least for computations) was: computations

class Computation c where
success :: a -> c a
failure :: String -> c a
augment :: c a -> (a -> c b) -> c b
combine :: c a -> c a -> c a

Let’s see if this definition will enable us to also perform IO.Essentially, we need
a way to represent taking a value out of an action and performing some new operation
on it (as in the example from Section 4.4.3, rephrased slightly):

main = do
s <- readFile "somefile"
putStrLn (show (f s))

But this is exactly whataugment does. Usingaugment , we can write the above
code as:

119
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main = -- note the lack of a "do"
readFile "somefile" ‘augment‘ \s ->
putStrLn (show (f s))

This certainly seems to be sufficient. And, in fact, it turns out to be more than
sufficient.

The definition of a monad is a slightly trimmed-down version of ourComputation

class. TheMonad class has four methods (but the fourth method can be defined in
terms of the third):

class Monad m where
return :: a -> m a
fail :: String -> m a
(>>=) :: m a -> (a -> m b) -> m b
(>>) :: m a -> m b -> m b

In this definition,return is equivalent to oursuccess ; fail is equivalent to
our failure ; and>>= (read: “bind” ) is equivalent to ouraugment . The>> (read:bind
“then” ) method is simply a version of>>= that ignores thea. This will turn out to bethen
useful; although, as mentioned before, it can be defined in terms of>>=:

a >> x = a >>= \_ -> x

9.1 Do Notation

We have hinted that there is a connection between monads and thedo notation. Here,
we make that relationship concrete. There is actually nothing magic about thedo
notation – it is simply “syntactic sugar” for monadic operations.syntactic sugar

As we mentioned earlier, using ourComputation class, we could define our
above program as:

main =
readFile "somefile" ‘augment‘ \s ->
putStrLn (show (f s))

But we now know thataugment is called>>= in the monadic world. Thus, this
program really reads:

main =
readFile "somefile" >>= \s ->
putStrLn (show (f s))
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And this is completely valid Haskell at this point: if you defined a functionf ::
Show a => String -> a , you could compile and run this program)

This suggests that we can translate:

x <- f
g x

into f >>= \x -> g x . This is exactly what the compiler does. Talking about
do becomes easier if we do not use implicit layout (see Section?? for how to do this).
There are four translation rules:

1. do {e} → e

2. do {e; es } → e >> do {es}

3. do {let decls; es } → let decls in do {es}

4. do {p <- e; es }→ let ok p = do {es} ; ok = fail "..."
in e >>= ok

Again, we will elaborate on these one at a time:

Translation Rule 1

The first translation rule,do {e} → e, states (as we have stated before) that when
performing a single action, having ado or not is irrelevant. This is essentially the base
case for an inductive definition ofdo. The base case has one action (namelye here);
the other three translation rules handle the cases where there is more than one action.

Translation Rule 2

This states thatdo {e; es }→ e >> do {es}. This tells us what to do if we have
an action (e) followed by a list of actions (es ). Here, we make use of the>> function,
defined earlier. This rule simple states that todo {e; es }, we first perform the action
e, throw away the result, and thendo es .

For instance, ife is putStrLn s for some strings , then the translation ofdo
{e; es } is to performe (i.e., print the string) and thendo es . This is clearly what
we want.

Translation Rule 3

This states thatdo {let decls; es } → let decls in do {es}. This rule
tells us how to deal withlets inside of ado statement. We lift the declarations within let
the let out anddo whatever comes after the declarations.
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Translation Rule 4

This states thatdo {p <- e; es }→ let ok p = do {es} ; ok = fail
"..." in e >>= ok . Again, it is not exactly obvious what is going on here. How-
ever, an alternate formulation of this rule, which is roughly equivalent, is:do {p <-
e; es } → e >>= \p -> es . Here, it is clear what is happening. We run the
actione, and then send the results intoes , but first give the result the namep.

The reason for the complex definition is thatp doesn’t need to simply be a variable;
it could be some complex pattern. For instance, the following is valid code:

foo = do (’a’:’b’:’c’:x:xs) <- getLine
putStrLn (x:xs)

In this, we’re assuming that the results of the actiongetLine will begin with
the string “abc” and will have at least one more character. The question becomes
what should happen if this pattern match fails. The compilercould simply throw an
error, like usual, for failed pattern matches. However, since we’re within a monad, we
have access to a specialfail function, and we’d prefer to fail using that function,
rather than the “catch all”error function. Thus, the translation, as defined, allows
the compiler to fill in the... with an appropriate error message about the pattern
matching having failed. Apart from this, the two definitionsare equivalent.

9.2 Definition

There are three rules that all monads must obey called the “Monad Laws” (and it is upmonad laws
to youto ensure that your monads obey these rules) :

1. return a >>= f ≡ f a

2. f >>= return ≡ f

3. f >>= ( \x -> g x >>= h) ≡ (f >>= g) >>= h

Let’s look at each of these individually:

Law 1

This states thatreturn a >>= f ≡ f a . Suppose we think about monads as com-
putations. This means that if we create a trivial computation that simply returns the
valuea regardless of anything else (this is thereturn a part); and then bind it to-
gether with some other computationf , then this is equivalent to simply performing the
computationf ona directly.

For example, supposef is the functionputStrLn and a is the string “Hello
World.” This rule states that binding a computation whose result is “Hello World”
to putStrLn is the same as simply printing it to the screen. This seems to make
sense.

In do notation, this law states that the following two programs are equivalent:
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law1a = do
x <- return a
f x

law1b = do
f a

Law 2

The second monad law states thatf >>= return ≡ f for some computationf . In
other words, the law states that if we perform the computation f and then pass the result
on to the trivialreturn function, then all we have done is to perform the computation.

That this law must hold should be obvious. To see this, think of f asgetLine
(reads a string from the keyboard). This law states that reading a string and then re-
turning the value read is exactly the same as just reading thestring.

In do notation, the law states that the following two programs areequivalent:

law2a = do
x <- f
return x

law2b = do
f

Law 3

This states thatf >>= ( \x -> g x >>= h) ≡ (f >>= g) >>= h . At first
glance, this law is not as easy to grasp as the other two. It is essentially an associativity associative
law for monads.

NOTE Outside the world of monads, a function· is associative if
(f · g) · h = f · (g · h). For instance,+ and * are associative, since
bracketing on these functions doesn’t make a difference. Onthe other
hand,- and / are not associative since, for example,5 − (3 − 1) 6=
(5 − 3) − 1.

If we throw away the messiness with the lambdas, we see that this law states:f
>>= (g >>= h) ≡ (f >>= g) >>= h . The intuition behind this law is that
when we string together actions, it doesn’t matter how we group them.

For a concrete example, takef to begetLine . Takeg to be an action which takes
a value as input, prints it to the screen, reads another string via getLine , and then
returns that newly read string. Takeh to beputStrLn .

Let’s consider what( \x -> g x >>= h) does. It takes a value calledx , and
runsg on it, feeding the results intoh. In this instance, this means that it’s going to
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take a value, print it, read another value and then print that. Thus, the entire left hand
side of the law first reads a string and then does what we’ve just described.

On the other hand, consider(f >>= g) . This action reads a string from the
keyboard, prints it, and then reads another string, returning that newly read string as a
result. When we bind this withh as on the right hand side of the law, we get an action
that does the action described by(f >>= g) , and then prints the results.

Clearly, these two actions are the same.
While this explanation is quite complicated, and the text ofthe law is also quite

complicated, the actual meaning is simple: if we have three actions, and we compose
them in the same order, it doesn’t matter where we put the parentheses. The rest is just
notation.

In do notation, the law says that the following two programs are equivalent:

law3a = do
x <- f
do y <- g x

h y

law3b = do
y <- do x <- f

g x
h y

9.3 A Simple State Monad

One of the simplest monads that we can craft is a state-passing monad. In Haskell, all
state information usually must be passed to functions explicitly as arguments. Using
monads, we can effectively hide some state information.

Suppose we have a functionf of type a → b, and we need to add state to this
function. In general, if state is of typestate, we can encode it by changing the type of
f to a → state → (state, b). That is, the new version off takes the original parameter
of typea and a new state parameter. And, in addition to returning the value of typeb,
it also returns an updated state, encoded in a tuple.

For instance, suppose we have a binary tree defined as:

data Tree a
= Leaf a
| Branch (Tree a) (Tree a)

Now, we can write a simple map function to apply some functionto each value in
the leaves:

mapTree :: (a -> b) -> Tree a -> Tree b
mapTree f (Leaf a) = Leaf (f a)
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mapTree f (Branch lhs rhs) =
Branch (mapTree f lhs) (mapTree f rhs)

This works fine until we need to write a function that numbers the leaves left to
right. In a sense, we need to add state, which keeps track of how many leaves we’ve
numbered so far, to themapTree function. We can augment the function to something
like:

mapTreeState :: (a -> state -> (state, b)) ->
Tree a -> state -> (state, Tree b)

mapTreeState f (Leaf a) state =
let (state’, b) = f a state
in (state’, Leaf b)

mapTreeState f (Branch lhs rhs) state =
let (state’ , lhs’) = mapTreeState f lhs state

(state’’, rhs’) = mapTreeState f rhs state’
in (state’’, Branch lhs’ rhs’)

This is beginning to get a bit unweildy, and the type signature is getting harder and
harder to understand. What we want to do is abstract away the state passing part. That
is, the differences betweenmapTree andmapTreeState are: (1) the augmentedf
type, (2) we replaced the type-> Tree b with -> state -> (state, Tree
b) . Notice that both types changed in exactly the same way. We can abstract this away
with a type synonym declaration:

type State st a = st -> (st, a)

To go along with this type, we write two functions:

returnState :: a -> State st a
returnState a = \st -> (st, a)

bindState :: State st a -> (a -> State st b) ->
State st b

bindState m k = \st ->
let (st’, a) = m st

m’ = k a
in m’ st’

Let’s examine each of these in turn. The first function,returnState , takes a
value of typea and creates something of typeState st a . If we think of thest
as the state, and the value of typea as the value, then this is a function that doesn’t
change the state and returns the valuea.

ThebindState function looks distinctly like the interiorlet declarations inmapTreeState .
It takes two arguments. The first argument is an action that returns something of type
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a with statest . The second is a function that takes thisa and produces something of
typeb also with the same state. The result ofbindState is essentially the result of
transforming thea into ab.

The definition ofbindState takes an initial state,st . It first applies this to the
State st a argument calledm. This gives back a new statest’ and a valuea. It
then lets the functionk act ona, producing something of typeState st b , called
m’ . We finally runm’ with the new statest’ .

We write a new function,mapTreeStateM and give it the type:

mapTreeStateM :: (a -> State st b) -> Tree a -> State st (Tree b)

Using these “plumbing” functions (returnState and bindState ) we can
write this function without ever having to explicitly talk about the state:

mapTreeStateM f (Leaf a) =
f a ‘bindState‘ \b ->
returnState (Leaf b)

mapTreeStateM f (Branch lhs rhs) =
mapTreeStateM f lhs ‘bindState‘ \lhs’ ->
mapTreeStateM f rhs ‘bindState‘ \rhs’ ->
returnState (Branch lhs’ rhs’)

In theLeaf case, we applyf to a and thenbind the result to a function that takes
the result and returns aLeaf with the new value.

In theBranch case, we recurse on the left-hand-side, binding the result to a func-
tion that recurses on the right-hand-side, binding that to asimple function that returns
the newly createdBranch .

As you have probably guessed by this point,State st is a monad,returnState
is analogous to the overloadedreturn method, andbindState is analogous to the
overloaded>>= method. In fact, we can verify thatState st a obeys the monad
laws:

Law 1 states:return a >>= f ≡ f a . Let’s calculate on the left hand side,
substituting our names:

returnState a ‘bindState‘ f
==>

\st -> let (st’, a) = (returnState a) st
m’ = f a

in m’ st’
==>

\st -> let (st’, a) = (\st -> (st, a)) st
in (f a) st’

==>
\st -> let (st’, a) = (st, a)

in (f a) st’
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==>
\st -> (f a) st

==>
f a

In the first step, we simply substitute the definition ofbindState . In the second
step, we simplify the last two lines and substitute the definition of returnState . In
the third step, we applyst to the lambda function. In the fourth step, we renamest’
to st and remove thelet. In the last step, we eta reduce.

Moving on toLaw 2, we need to show thatf >>= return ≡ f . This is shown
as follows:

f ‘bindState‘ returnState
==>

\st -> let (st’, a) = f st
in (returnState a) st’

==>
\st -> let (st’, a) = f st

in (\st -> (st, a)) st’
==>

\st -> let (st’, a) = f st
in (st’, a)

==>
\st -> f st

==>
f

Finally, we need to show thatState obeys the third law:f >>= ( \x -> g x
>>= h) ≡ (f >>= g) >>= h . This is much more involved to show, so we will
only sketch the proof here. Notice that we can write the left-hand-side as:

\st -> let (st’, a) = f st
in (\x -> g x ‘bindState‘ h) a st’

==>
\st -> let (st’, a) = f st

in (g a ‘bindState‘ h) st’
==>

\st -> let (st’, a) = f st
in (\st’ -> let (st’’, b) = g a

in h b st’’) st’
==>

\st -> let (st’ , a) = f st
(st’’, b) = g a st’
(st’’’,c) = h b st’’

in (st’’’,c)
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The interesting thing to note here is that we have both actionapplications on the
samelet level. Sincelet is associative, this means that we can put whichever bracketing
we prefer and the results will not change. Of course, this is an informal, “hand waving”
argument and it would take us a few more derivations to actually prove, but this gives
the general idea.

Now that we know thatState st is actually a monad, we’d like to make it an
instance of theMonad class. Unfortunately, the straightforward way of doing this
doesn’t work. We can’t write:

instance Monad (State st) where { ... }

This is because you cannot make instances out of non-fully-applied type synonyms.
Instead, what we need to do instead is convert the type synonym into anewtype, as:

newtype State st a = State (st -> (st, a))

Unfortunately, this means that we need to do some packing andunpacking of the
State constructor in theMonad instance declaration, but it’s not terribly difficult:

instance Monad (State state) where
return a = State (\state -> (state, a))
State run >>= action = State run’

where run’ st =
let (st’, a) = run st

State run’’ = action a
in run’’ st’

Now, we can write ourmapTreeM function as:mapTreeM

mapTreeM :: (a -> State state b) -> Tree a ->
State state (Tree b)

mapTreeM f (Leaf a) = do
b <- f a
return (Leaf b)

mapTreeM f (Branch lhs rhs) = do
lhs’ <- mapTreeM f lhs
rhs’ <- mapTreeM f rhs
return (Branch lhs’ rhs’)

which is significantly cleaner than before. In fact, if we remove the type signature, we
get the more general type:

mapTreeM :: Monad m => (a -> m b) -> Tree a ->
m (Tree b)



9.3. A SIMPLE STATE MONAD 129

That is,mapTreeM can be run inanymonad, not just ourState monad.
Now, the nice thing about encapsulating the stateful aspectof the computation like

this is that we can provide functions to get and change the current state. These look
like: getState

putStategetState :: State state state
getState = State (\state -> (state, state))

putState :: state -> State state ()
putState new = State (\_ -> (new, ()))

Here, getState is a monadic operation that takes the current state, passes it
through unchanged, and then returns it as the value. TheputState function takes a
new state and produces an action that ignores the current state and inserts the new one.

Now, we can write ournumberTree function as:

numberTree :: Tree a -> State Int (Tree (a, Int))
numberTree tree = mapTreeM number tree

where number v = do
cur <- getState
putState (cur+1)
return (v,cur)

Finally, we need to be able to run the action by providing an initial state:

runStateM :: State state a -> state -> a
runStateM (State f) st = snd (f st)

Now, we can provide an example Tree:

testTree =
Branch

(Branch
(Leaf ’a’)
(Branch

(Leaf ’b’)
(Leaf ’c’)))

(Branch
(Leaf ’d’)
(Leaf ’e’))

and number it:

State> runStateM (numberTree testTree) 1
Branch (Branch (Leaf (’a’,1)) (Branch (Leaf (’b’,2))

(Leaf (’c’,3)))) (Branch (Leaf (’d’,4))
(Leaf (’e’,5)))
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This may seem like a large amount of work to do something simple. However,
note the new power ofmapTreeM. We can also print out the leaves of the tree in a
left-to-right fashion as:

State> mapTreeM print testTree
’a’
’b’
’c’
’d’
’e’

This crucially relies on the fact thatmapTreeMhas the more general type involving
arbitrary monads – not just the state monad. Furthermore, wecan write an action that
will make each leaf value equal to its old value as well as all the values preceeding:

fluffLeaves tree = mapTreeM fluff tree
where fluff v = do

cur <- getState
putState (v:cur)
return (v:cur)

and can see it in action:

State> runStateM (fluffLeaves testTree) []
Branch (Branch (Leaf "a") (Branch (Leaf "ba")

(Leaf "cba"))) (Branch (Leaf "dcba")
(Leaf "edcba"))

In fact, you don’t even need to write your own monad instance and datatype. All
this is built in to theControl.Monad.State module. There, ourrunStateM
is calledevalState ; our getState is calledget ; and ourputState is called
put .

This module also contains astate transformer monad, which we will discuss in
Section 9.7.

9.4 Common Monads

It turns out that many of our favorite datatypes are actuallymonads themselves. Con-
sider, for instance, lists. They have a monad definition thatlooks something like:lists

instance Monad [] where
return x = [x]
l >>= f = concatMap f l
fail _ = []
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This enables us to use lists in do notation. For instance, given the definition:

cross l1 l2 = do
x <- l1
y <- l2
return (x,y)

we get a cross-product function:

Monads> cross "ab" "def"
[(’a’,’d’),(’a’,’e’),(’a’,’f’),(’b’,’d’),(’b’,’e’),

(’b’,’f’)]

It is not a coincidence that this looks very much like the listcomprehension form: list comprehensions

Prelude> [(x,y) | x <- "ab", y <- "def"]
[(’a’,’d’),(’a’,’e’),(’a’,’f’),(’b’,’d’),(’b’,’e’),

(’b’,’f’)]

List comprehension form is simply an abbreviated form of a monadic statement
using lists. In fact, in older versions of Haskell, the list comprehension form could be
used foranymonad – not just lists. However, in the current version of Haskell, this is
no longer allowed.

TheMaybe type is also a monad, with failure being represented asNothing and Maybe
with success asJust . We get the following instance declaration:

instance Monad Maybe where
return a = Just a
Nothing >>= f = Nothing
Just x >>= f = f x
fail _ = Nothing

We can use thesamecross product function that we did for lists onMaybes. This
is because thedo notation works for any monad, and there’s nothing specific tolists
about thecross function.

Monads> cross (Just ’a’) (Just ’b’)
Just (’a’,’b’)
Monads> cross (Nothing :: Maybe Char) (Just ’b’)
Nothing
Monads> cross (Just ’a’) (Nothing :: Maybe Char)
Nothing
Monads> cross (Nothing :: Maybe Char)

(Nothing :: Maybe Char)
Nothing
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What this means is that if we write a function (likesearchAll from Section 8.4) searchAll
only in terms of monadic operators, we can use it with any monad, depending on what
we mean. Using real monadic functions (notdo notation), thesearchAll function
looks something like:

searchAll g@(Graph vl el) src dst
| src == dst = return [src]
| otherwise = search’ el
where search’ [] = fail "no path"

search’ ((u,v,_):es)
| src == u =

searchAll g v dst >>= \path ->
return (u:path)

| otherwise = search’ es

The type of this function isMonad m => Graph v e -> Int -> Int ->
m [Int] . This means that no matter what monad we’re using at the moment, this
function will perform the calculation. Suppose we have the following graph:

gr = Graph [(0, ’a’), (1, ’b’), (2, ’c’), (3, ’d’)]
[(0,1,’l’), (0,2,’m’), (1,3,’n’), (2,3,’m’)]

This represents a graph with four nodes, labelleda,b,c andd. There is an edge
from a to bothb andc. There is also an edge from bothb andc to d. Using theMaybe

monad, we can compute the path froma to d:

Monads> searchAll gr 0 3 :: Maybe [Int]
Just [0,1,3]

We provide the type signature, so that the interpreter knowswhat monad we’re
using. If we try to search in the opposite direction, there isno path. The inability to
find a path is represented asNothing in theMaybe monad:

Monads> searchAll gr 3 0 :: Maybe [Int]
Nothing

Note that the string “no path” has disappeared since there’sno way for theMaybe

monad to record this.
If we perform the same impossible search in the list monad, weget the empty list,

indicating no path:

Monads> searchAll gr 3 0 :: [[Int]]
[]
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If we perform the possible search, we get back a list containing the first path:

Monads> searchAll gr 0 3 :: [[Int]]
[[0,1,3]]

You may have expected this function call to returnall paths, but, as coded, it does
not. See Section 9.6 for more about using lists to represent nondeterminism. nondeterminism

If we use the IO monad, we can actually get at the error message, since IO knows
how to keep track of error messages:

Monads> searchAll gr 0 3 :: IO [Int]
Monads> it
[0,1,3]
Monads> searchAll gr 3 0 :: IO [Int]

*** Exception: user error
Reason: no path

In the first case, we needed to typeit to get GHCi to actually evaluate the search.
There is one problem with this implementation ofsearchAll : if it finds an edge

that does not lead to a solution, it won’t be able to backtrack. This has to do with
the recursive call tosearchAll inside ofsearch’ . Consider, for instance, what
happens ifsearchAll g v dst doesn’t find a path. There’s no way for this im-
plementation to recover. For instance, if we remove the edgefrom nodeb to noded,
we should still be able to find a path froma to d, but this algorithm can’t find it. We
define:

gr2 = Graph [(0, ’a’), (1, ’b’), (2, ’c’), (3, ’d’)]
[(0,1,’l’), (0,2,’m’), (2,3,’m’)]

and then try to search:

Monads> searchAll gr2 0 3

*** Exception: user error
Reason: no path

To fix this, we need a function likecombine from ourComputation class. We
will see how to do this in Section 9.6.

Exercises
Exercise 9.1Verify thatMaybe obeys the three monad laws.

Exercise 9.2The typeEither String is a monad that can keep track of errors. Write an
instance for it, and then try doing the search from this chapter using this monad.
Hint: Your instance declaration should begin:instance Monad (Either String)
where .
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9.5 Monadic Combinators

TheMonad/Control.Monad library contains a few very useful monadic combina-
tors, which haven’t yet been thoroughly discussed. The oneswe will discuss in this
section, together with their types, are:

• (=<<) :: (a -> m b) -> m a -> m b

• mapM :: (a -> m b) -> [a] -> m [b]

• mapM :: (a -> m b) -> [a] -> m ()

• filterM :: (a -> m Bool) -> [a] -> m [a]

• foldM :: (a -> b -> m a) -> a -> [b] -> m a

• sequence :: [m a] -> m [a]

• sequence :: [m a] -> m ()

• liftM :: (a -> b) -> m a -> m b

• when :: Bool -> m () -> m ()

• join :: m (m a) -> m a

In the above,mis always assumed to be an instance ofMonad.
In general, functions with an underscore at the end are equivalent to the ones with-

out, except that they do not return any value.
The=<< function is exactly the same as>>=, except it takes its arguments in the

opposite order. For instance, in the IO monad, we can write either of the following:

Monads> writeFile "foo" "hello world!" >>
(readFile "foo" >>= putStrLn)

hello world!
Monads> writeFile "foo" "hello world!" >>

(putStrLn =<< readFile "foo")
hello world!

ThemapM, filterM andfoldM are our old friendsmap, filter andfoldrmapM

filterM
foldM

wrapped up inside of monads. These functions are incrediblyuseful (particularly
foldM ) when working with monads. We can usemapM, for instance, to print a list of
things to the screen:

Monads> mapM_ print [1,2,3,4,5]
1
2
3
4
5
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We can usefoldM to sum a list and print the intermediate sum at each step:

Monads> foldM (\a b ->
putStrLn (show a ++ "+" ++ show b ++

"=" ++ show (a+b)) >>
return (a+b)) 0 [1..5]

0+1=1
1+2=3
3+3=6
6+4=10
10+5=15
Monads> it
15

Thesequence andsequence functions simply “execute” a list of actions. For sequence
instance:

Monads> sequence [print 1, print 2, print ’a’]
1
2
’a’

* Monads> it
[(),(),()]

* Monads> sequence_ [print 1, print 2, print ’a’]
1
2
’a’

* Monads> it
()

We can see that the underscored version doesn’t return each value, while the non-
underscored version returns the list of the return values.

The liftM function “lifts” a non-monadic function to a monadic function. (Do liftM
not confuse this with thelift function used for monad transformers in Section 9.7.)
This is useful for shortening code (among other things). Forinstance, we might want
to write a function that prepends each line in a file with its line number. We can do this
with:

numberFile :: FilePath -> IO ()
numberFile fp = do

text <- readFile fp
let l = lines text
let n = zipWith (\n t -> show n ++ ’ ’ : t) [1..] l
mapM_ putStrLn n

However, we can shorten this usingliftM :
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numberFile :: FilePath -> IO ()
numberFile fp = do

l <- lines ‘liftM‘ readFile fp
let n = zipWith (\n t -> show n ++ ’ ’ : t) [1..] l
mapM_ putStrLn n

In fact, you can apply any sort of (pure) processing to a file using liftM . For
instance, perhaps we also want to split lines into words; we can do this with:

...
w <- (map words . lines) ‘liftM‘ readFile fp
...

Note that the parentheses are required, since the(.) function has the same fixity
has‘liftM‘ .

Lifting pure functions into monads is also useful in other monads. For instance
liftM can be used to apply function inside ofJust . For instance:

Monads> liftM (+1) (Just 5)
Just 6

* Monads> liftM (+1) Nothing
Nothing

Thewhen function executes a monadic action only if a condition is met. So, if wewhen
only want to print non-empty lines:

Monads> mapM_ (\l -> when (not $ null l) (putStrLn l))
["","abc","def","","","ghi"]

abc
def
ghi

Of course, the same could be accomplished withfilter , but sometimeswhen is
more convenient.

Finally, thejoin function is the monadic equivalent ofconcat on lists. In fact,join
whenmis the list monad,join is exactlyconcat . In other monads, it accomplishes
a similar task:

Monads> join (Just (Just ’a’))
Just ’a’
Monads> join (Just (Nothing :: Maybe Char))
Nothing
Monads> join (Nothing :: Maybe (Maybe Char))
Nothing
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Monads> join (return (putStrLn "hello"))
hello
Monads> return (putStrLn "hello")
Monads> join [[1,2,3],[4,5]]
[1,2,3,4,5]

These functions will turn out to be even more useful as we moveon to more ad-
vanced topics in Chapter 10.

9.6 MonadPlus

Given only the>>= andreturn functions, it is impossible to write a function like
combine with typec a → c a → c a. However, such a function is so generally useful combine
that it exists in another class calledMonadPlus. In addition to having acombine MonadPlus
function, instances ofMonadPlus also have a “zero” element that is the identity
under the “plus” (i.e., combine) action. The definition is:

class Monad m => MonadPlus m where
mzero :: m a
mplus :: m a -> m a -> m a

In order to gain access toMonadPlus, you need to import theMonad module
(or Control.Monad in the hierarchical libraries).

In Section 9.4, we showed thatMaybe and list are both monads. In fact, they Maybe

listsare also both instances ofMonadPlus. In the case ofMaybe, the zero element is
Nothing ; in the case of lists, it is the empty list. Themplus operation onMaybe is
Nothing , if both elements areNothing ; otherwise, it is the firstJust value. For
lists,mplus is the same as++.

That is, the instance declarations look like:

instance MonadPlus Maybe where
mzero = Nothing
mplus Nothing y = y
mplus x _ = x

instance MonadPlus [] where
mzero = []
mplus x y = x ++ y

We can use this class to reimplement the search function we’ve been exploring,
such that it will explore all possible paths. The new function looks like:

searchAll2 g@(Graph vl el) src dst
| src == dst = return [src]
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| otherwise = search’ el
where search’ [] = fail "no path"

search’ ((u,v,_):es)
| src == u =

(searchAll2 g v dst >>= \path ->
return (u:path)) ‘mplus‘

search’ es
| otherwise = search’ es

Now, when we’re going through the edge list insearch’ , and we come across a
matching edge, not only do we explore this path, but we also continue to explore the
out-edges of the current node in the recursive call tosearch’ .

The IO monad is not an instance ofMonadPlus; we we’re not able to execute
the search with this monad. We can see that when using lists asthe monad, we (a) get
all possible paths ingr and (b) get a path ingr2 .

MPlus> searchAll2 gr 0 3 :: [[Int]]
[[0,1,3],[0,2,3]]
MPlus> searchAll2 gr2 0 3 :: [[Int]]
[[0,2,3]]

You might be tempted to implement this as:

searchAll2 g@(Graph vl el) src dst
| src == dst = return [src]
| otherwise = search’ el
where search’ [] = fail "no path"

search’ ((u,v,_):es)
| src == u = do

path <- searchAll2 g v dst
rest <- search’ es
return ((u:path) ‘mplus‘ rest)

| otherwise = search’ es

But note that this doesn’t do what we want. Here, if the recursive call tosearchAll2
fails, we don’t try to continue and executesearch’ es . The call tomplus must be
at the top level in order for it to work.

Exercises
Exercise 9.3Suppose that we changed the order of arguments tomplus . I.e., the
matching case ofsearch’ looked like:

search’ es ‘mplus‘
(searchAll2 g v dst >>= \path ->
return (u:path))
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How would you expect this to change the results when using thelist monad ongr ?
Why?

9.7 Monad Transformers

Often we want to “piggyback” monads on top of each other. For instance, there might
be a case where you need access to both IO operations through the IO monad and
state functions through some state monad. In order to accomplish this, we introduce
aMonadTrans class, which essentially “lifts” the operations of one monad into an- MonadTrans
other. You can think of this asstackingmonads on top of eachother. This class has a
simple method:lift . The class declaration forMonadTrans is: lift

class MonadTrans t where
lift :: Monad m => m a -> t m a

The idea here is thatt is the outer monad and thatmlives inside of it. In order to
execute a command of typeMonad m => m a, we firstlift it into the transformer.

The simplest example of a transformer (and arguably the mostuseful) is the state
transformer monad, which is a state monad wrapped around an arbitrary monad. Be- state monad
fore, we defined a state monad as:

newtype State state a = State (state -> (state, a))

Now, instead of using a function of typestate -> (state, a) as the monad,
we assume there’s some other monadmand make the internal action into something of
typestate -> m (state, a) . This gives rise to the following definition for a
state transformer: state transformer

newtype StateT state m a =
StateT (state -> m (state, a))

For instance, we can think ofmas IO. In this case, our state transformer monad is
able to execute actions in the IO monad. First, we make this aninstance ofMonadTrans:

instance MonadTrans (StateT state) where
lift m = StateT (\s -> do a <- m

return (s,a))

Here, lifting a function from the realm ofmto the realm ofStateT state simply
involves keeping the state (thes value) constant and executing the action.

Of course, we also need to makeStateT a monad, itself. This is relatively
straightforward, provided thatmis already a monad:
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instance Monad m => Monad (StateT state m) where
return a = StateT (\s -> return (s,a))
StateT m >>= k = StateT (\s -> do

(s’, a) <- m s
let StateT m’ = k a
m’ s’)

fail s = StateT (\_ -> fail s)

The idea behind the definition ofreturn is that we keep the state constant and
simply return the state/a pair in the enclosed monad. Note that the use ofreturn in
the definition ofreturn refers to the enclosed monad, not the state transformer.

In the definition of bind, we create a newStateT that takes a states as an ar-
gument. First, it applies this state to the first action (StateT m ) and gets the new
state and answer as a result. It then runs thek action on this new state and gets a new
transformer. It finally applies the new state to this transformer. This definition is nearly
identical to the definition of bind for the standard (non-transformer)State monad
described in Section 9.3.

The fail function passes on the call tofail in the enclosed monad, since state
transformers don’t natively know how to deal with failure.

Of course, in order to actually use this monad, we need to provide functiongetT
, putT andevalStateT . These are analogous togetState , putState andgetT

putT

evalStateT

runStateM from Section 9.3:

getT :: Monad m => StateT s m s
getT = StateT (\s -> return (s, s))

putT :: Monad m => s -> StateT s m ()
putT s = StateT (\_ -> return (s, ()))

evalStateT :: Monad m => StateT s m a -> s -> m a
evalStateT (StateT m) state = do

(s’, a) <- m state
return a

These functions should be straightforward. Note, however,that the result ofevalStateT
is actually a monadic action in the enclosed monad. This is typical of monad trans-
formers: they don’t know how to actually run things in their enclosed monad (they
only know how tolift actions). Thus, what you get out is a monadic action in the
inside monad (in our case, IO), which you then need to run yourself.

We can use state transformers to reimplement a version of ourmapTreeM function
from Section 9.3. The only change here is that when we get to a leaf, we print out the
value of the leaf; when we get to a branch, we just print out “Branch.”

mapTreeM action (Leaf a) = do
lift (putStrLn ("Leaf " ++ show a))
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b <- action a
return (Leaf b)

mapTreeM action (Branch lhs rhs) = do
lift (putStrLn "Branch")
lhs’ <- mapTreeM action lhs
rhs’ <- mapTreeM action rhs
return (Branch lhs’ rhs’)

The only difference between this function and the one from Section 9.3 is the calls
to lift (putStrLn ...) as the first line. Thelift tells us that we’re going to
be executing a command in an enclosed monad. In this case, theenclosed monad is
IO , since the command lifted isputStrLn .

The type of this function is relatively complex:

mapTreeM :: (MonadTrans t, Monad (t IO), Show a) =>
(a -> t IO a1) -> Tree a -> t IO (Tree a1)

Ignoring, for a second, the class constraints, this says that mapTreeM takes an
action and a tree and returns a tree. This just as before. In this, we require thatt is
a monad transformer (since we applylift in it); we require thatt IO is a monad,
since we useputStrLn we know that the enclosed monad isIO ; finally, we require
thata is an instance of show – this is simply because we useshow to show the value
of leaves.

Now, we simply changenumberTree to use this version ofmapTreeM, and the
new versions ofget andput , and we end up with:

numberTree tree = mapTreeM number tree
where number v = do

cur <- getT
putT (cur+1)
return (v,cur)

Using this, we can run our monad:

MTrans> evalStateT (numberTree testTree) 0
Branch
Branch
Leaf ’a’
Branch
Leaf ’b’
Leaf ’c’
Branch
Leaf ’d’
Leaf ’e’

* MTrans> it
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Branch (Branch (Leaf (’a’,0))
(Branch (Leaf (’b’,1)) (Leaf (’c’,2))))
(Branch (Leaf (’d’,3)) (Leaf (’e’,4)))

One problem not specified in our discussion ofMonadPlus is that our search
algorithm will fail to terminate on graphs with cycles. Consider:cycles

gr3 = Graph [(0, ’a’), (1, ’b’), (2, ’c’), (3, ’d’)]
[(0,1,’l’), (1,0,’m’), (0,2,’n’),

(1,3,’o’), (2,3,’p’)]

In this graph, there is a back edge from nodeb back to nodea. If we attempt to run
searchAll2 , regardless of what monad we use, it will fail to terminate. Moreover,
if we move this erroneous edge to the end of the list (and call this gr4 ), the result of
searchAll2 gr4 0 3 will contain an infinite number of paths: presumably we
only want paths that don’t contain cycles.

In order to get around this problem, we need to introduce state. Namely, we need
to keep track of which nodes we have visited, so that we don’t visit them again.

We can do this as follows:

searchAll5 g@(Graph vl el) src dst
| src == dst = do

visited <- getT
putT (src:visited)
return [src]

| otherwise = do
visited <- getT
putT (src:visited)
if src ‘elem‘ visited

then mzero
else search’ el

where
search’ [] = mzero
search’ ((u,v,_):es)

| src == u =
(do path <- searchAll5 g v dst

return (u:path)) ‘mplus‘
search’ es

| otherwise = search’ es

Here, we implicitly use a state transformer (see the calls togetT andputT ) to
keep track of visited states. We only continue to recurse, when we encounter a state we
haven’t yet visited. Futhermore, when we recurse, we add thecurrent state to our set
of visited states.

Now, we can run the state transformer and get out only the correct paths, even on
the cyclic graphs:
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MTrans> evalStateT (searchAll5 gr3 0 3) [] :: [[Int]]
[[0,1,3],[0,2,3]]
MTrans> evalStateT (searchAll5 gr4 0 3) [] :: [[Int]]
[[0,1,3],[0,2,3]]

Here, the empty list provided as an argument toevalStateT is the initial state
(i.e., the initial visited list). In our case, it is empty.

We can also provide anexecStateT method that, instead of returning a result,
returns the final state. This function looks like:

execStateT :: Monad m => StateT s m a -> s -> m s
execStateT (StateT m) state = do

(s’, a) <- m state
return s’

This is not so useful in our case, as it will return exactly thereverse ofevalStateT
(try it and find out!), but can be useful in general (if, for instance, we need to know how
many numbers are used innumberTree ).

Exercises

Exercise 9.4Write a functionsearchAll6 , based on the code forsearchAll2 ,
that, at every entry to the main function (not the recursion over the edge list), prints the
search being conducted. For instance, the output generatedfor searchAll6 gr 0
3 should look like:

Exploring 0 -> 3
Exploring 1 -> 3
Exploring 3 -> 3
Exploring 2 -> 3
Exploring 3 -> 3
MTrans> it
[[0,1,3],[0,2,3]]

In order to do this, you will have to define your own list monad transformer and make
appropriate instances of it.

Exercise 9.5Combine thesearchAll5 function (from this section) with thesearchAll6
function (from the previous exercise) into a single function calledsearchAll7 . This
function should perform IO as insearchAll6 but should also keep track of state
using a state transformer.
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9.8 Parsing Monads

It turns out that a certain class of parsers are all monads. This makes the construction
of parsing libraries in Haskell very clean. In this chapter,we begin by building our own
(small) parsing library in Section 9.8.1 and then introducethe Parsec parsing library in
Section 9.8.2.

9.8.1 A Simple Parsing Monad

Consider the task of parsing. A simple parsing monad is much like a state monad,
where the state is the unparsed string. We can represent thisexactly as:

newtype Parser a = Parser
{ runParser :: String -> Either String (String, a) }

We again useLeft err to be an error condition. This yields standard instances
of Monad andMonadPlus:

instance Monad Parser where
return a = Parser (\xl -> Right (xl,a))
fail s = Parser (\xl -> Left s)
Parser m >>= k = Parser $ \xl ->

case m xl of
Left s -> Left s
Right (xl’, a) ->

let Parser n = k a
in n xl’

instance MonadPlus Parser where
mzero = Parser (\xl -> Left "mzero")
Parser p ‘mplus‘ Parser q = Parser $ \xl ->

case p xl of
Right a -> Right a
Left err -> case q xl of

Right a -> Right a
Left _ -> Left err

Now, we want to build up a library of paring “primitives.” Themost basic primitiveprimitives
is a parser that will read a specific character. This functionlooks like:

char :: Char -> Parser Char
char c = Parser char’

where char’ [] = Left ("expecting " ++ show c ++
" got EOF")

char’ (x:xs)
| x == c = Right (xs, c)
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| otherwise = Left ("expecting " ++
show c ++ " got " ++
show x)

Here, the parser succeeds only if the first character of the input is the expected
character.

We can use this parser to build up a parser for the string “Hello”:

helloParser :: Parser String
helloParser = do

char ’H’
char ’e’
char ’l’
char ’l’
char ’o’
return "Hello"

This shows how easy it is to combine these parsers. We don’t need to worry about
the underlying string – the monad takes care of that for us. All we need to do is
combine these parser primatives. We can test this parser by usingrunParser and by runParser
supplying input:

Parsing> runParser helloParser "Hello"
Right ("","Hello")
Parsing> runParser helloParser "Hello World!"
Right (" World!","Hello")
Parsing> runParser helloParser "hello World!"
Left "expecting ’H’ got ’h’"

We can have a slightly more general function, which will match any character fitting
a description:

matchChar :: (Char -> Bool) -> Parser Char
matchChar c = Parser matchChar’

where matchChar’ [] =
Left ("expecting char, got EOF")

matchChar’ (x:xs)
| c x = Right (xs, x)
| otherwise =

Left ("expecting char, got " ++
show x)

Using this, we can write a case-insensitive “Hello” parser:
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ciHelloParser = do
c1 <- matchChar (‘elem‘ "Hh")
c2 <- matchChar (‘elem‘ "Ee")
c3 <- matchChar (‘elem‘ "Ll")
c4 <- matchChar (‘elem‘ "Ll")
c5 <- matchChar (‘elem‘ "Oo")
return [c1,c2,c3,c4,c5]

Of course, we could have used something likematchChar ((==’h’) . toLower) ,
but the above implementation works just as well. We can test this function:

Parsing> runParser ciHelloParser "hELlO world!"
Right (" world!","hELlO")

Finally, we can have a function, which will match any character:

anyChar :: Parser Char
anyChar = Parser anyChar’

where anyChar’ [] =
Left ("expecting character, got EOF")

anyChar’ (x:xs) = Right (xs, x)

On top of these primitives, we usually build some combinators. Themany combi-many
nator, for instance, will take a parser that parses entitiesof typea and will make it into
a parser that parses entities of type[a] (this is a Kleene-star operator):

many :: Parser a -> Parser [a]
many (Parser p) = Parser many’

where many’ xl =
case p xl of

Left err -> Right (xl, [])
Right (xl’,a) ->

let Right (xl’’, rest) = many’ xl’
in Right (xl’’, a:rest)

The idea here is that first we try to apply the given parser,p. If this fails, wesucceed
but return the empty list. Ifp succeeds, we recurse and keep trying to applyp until it
fails. We then return the list of successes we’ve accumulated.

In general, there would be many more functions of this sort, and they would be hid-
den away in a library, so that users couldn’t actually look inside theParser type.
However, using them, you could build up, for instance, a parser that parses (non-
negative) integers:
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int :: Parser Int
int = do

t1 <- matchChar isDigit
tr <- many (matchChar isDigit)
return (read (t1:tr))

In this function, we first match a digit (theisDigit function comes from the
moduleChar /Data.Char ) and then match as many more digits as we can. We then
read the result and return it. We can test this parser as before:

Parsing> runParser int "54"
Right ("",54)

* Parsing> runParser int "54abc"
Right ("abc",54)

* Parsing> runParser int "a54abc"
Left "expecting char, got ’a’"

Now, suppose we want to parse a Haskell-style list ofInts. This becomes somewhat
difficult because, at some point, we’re either going to parsea comma or a close brace,
but we don’t know when this will happen. This is where the factthatParser is an
instance ofMonadPlus comes in handy: first we try one, then we try the other.

Consider the following code:

intList :: Parser [Int]
intList = do

char ’[’
intList’ ‘mplus‘ (char ’]’ >> return [])

where intList’ = do
i <- int
r <- (char ’,’ >> intList’) ‘mplus‘

(char ’]’ >> return [])
return (i:r)

The first thing this code does is parse and open brace. Then, using mplus , it tries mplus
one of two things: parsing usingintList’ , or parsing a close brace and returning an
empty list.

The intList’ function assumes that we’re not yet at the end of the list, andso it
first parses an int. It then parses the rest of the list. However, it doesn’t know whether
we’re at the end yet, so it again usesmplus . On the one hand, it tries to parse a comma
and then recurse; on the other, it parses a close brace and returns the empty list. Either
way, it simply prepends the int it parsed itself to the beginning.

One thing that you should be careful of is the order in which you supply arguments
to mplus . Consider the following parser:
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tricky =
mplus (string "Hal") (string "Hall")

You might expect this parser to parse both the words “Hal” and“Hall;” however, it
only parses the former. You can see this with:

Parsing> runParser tricky "Hal"
Right ("","Hal")
Parsing> runParser tricky "Hall"
Right ("l","Hal")

This is because it tries to parse “Hal,” which succeeds, and then it doesn’t bother
trying to parse “Hall.”

You can attempt to fix this by providing a parser primitive, which detects end-of-file
(really, end-of-string) as:

eof :: Parser ()
eof = Parser eof’

where eof’ [] = Right ([], ())
eof’ xl = Left ("Expecting EOF, got " ++

show (take 10 xl))

You might then rewritetricky usingeof as:

tricky2 = do
s <- mplus (string "Hal") (string "Hall")
eof
return s

But this also doesn’t work, as we can easily see:

Parsing> runParser tricky2 "Hal"
Right ("",())
Parsing> runParser tricky2 "Hall"
Left "Expecting EOF, got \"l\""

This is because, again, themplus doesn’t know that it needs to parse the whole
input. So, when you provide it with “Hall,” it parses just “Hal” and leaves the last “l”
lying around to be parsed later. This causeseof to produce an error message.

The correct way to implement this is:

tricky3 =
mplus (do s <- string "Hal"
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eof
return s)

(do s <- string "Hall"
eof
return s)

We can see that this works:

Parsing> runParser tricky3 "Hal"
Right ("","Hal")
Parsing> runParser tricky3 "Hall"
Right ("","Hall")

This works precisely because each side of themplus knows that it must read the
end.

In this case, fixing the parser to accept both “Hal” and “Hall”was fairly simple,
due to the fact that we assumed we would be reading an end-of-file immediately af-
terwards. Unfortunately, if we cannot disambiguate immediately, life becomes signifi-
cantly more complicated. This is a general problem in parsing, and has little to do with
monadic parsing. The solution most parser libraries (e.g.,Parsec, see Section 9.8.2)
have adopted is to only recognize “LL(1)” grammars: that means that you must be able
to disambiguate the input with a one token look-ahead.

Exercises
Exercise 9.6Write a parserintListSpace that will parse int lists but will allow
arbitrary white space (spaces, tabs or newlines) between the commas and brackets.

Given this monadic parser, it is fairly easy to add information regarding source
position. For instance, if we’re parsing a large file, it might be helpful to report the
line number on which an error occurred. We could do this simply by extending the line numbers
Parser type and by modifying the instances and the primitives:

newtype Parser a = Parser
{ runParser :: Int -> String ->

Either String (Int, String, a) }

instance Monad Parser where
return a = Parser (\n xl -> Right (n,xl,a))
fail s = Parser (\n xl -> Left (show n ++

": " ++ s))
Parser m >>= k = Parser $ \n xl ->

case m n xl of
Left s -> Left s
Right (n’, xl’, a) ->

let Parser m2 = k a
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in m2 n’ xl’

instance MonadPlus Parser where
mzero = Parser (\n xl -> Left "mzero")
Parser p ‘mplus‘ Parser q = Parser $ \n xl ->

case p n xl of
Right a -> Right a
Left err -> case q n xl of

Right a -> Right a
Left _ -> Left err

matchChar :: (Char -> Bool) -> Parser Char
matchChar c = Parser matchChar’

where matchChar’ n [] =
Left ("expecting char, got EOF")

matchChar’ n (x:xs)
| c x =

Right (n+if x==’\n’ then 1 else 0
, xs, x)

| otherwise =
Left ("expecting char, got " ++

show x)

The definitions forchar andanyChar are not given, since they can be written in
terms ofmatchChar . Themany function needs to be modified only to include the
new state.

Now, when we run a parser and there is an error, it will tell us which line number
contains the error:

Parsing2> runParser helloParser 1 "Hello"
Right (1,"","Hello")
Parsing2> runParser int 1 "a54"
Left "1: expecting char, got ’a’"
Parsing2> runParser intList 1 "[1,2,3,a]"
Left "1: expecting ’]’ got ’1’"

We can use theintListSpace parser from the prior exercise to see that this does
in fact work:

Parsing2> runParser intListSpace 1
"[1 ,2 , 4 \n\n ,a\n]"

Left "3: expecting char, got ’a’"
Parsing2> runParser intListSpace 1

"[1 ,2 , 4 \n\n\n ,a\n]"
Left "4: expecting char, got ’a’"
Parsing2> runParser intListSpace 1



9.8. PARSING MONADS 151

"[1 ,\n2 , 4 \n\n\n ,a\n]"
Left "5: expecting char, got ’a’"

We can see that the line number, on which the error occurs, increases as we add
additional newlines before the erroneous “a”.

9.8.2 Parsec

As you continue developing your parser, you might want to addmore and more fea-
tures. Luckily, Graham Hutton and Daan Leijen have already done this for us in the
Parsec library. This section is intended to be an introduction to the Parsec library; it by
no means covers the whole library, but it should be enough to get you started.

Like our libarary, Parsec provides a few basic functions to build parsers from char-
acters. These are:char , which is the same as ourchar ; anyChar , which is the same char

anyCharas ouranyChar ; satisfy , which is the same as ourmatchChar ; oneOf , which
satisfy

oneOf

takes a list ofChars and matches any of them; andnoneOf , which is the opposite of

noneOf

oneOf .
The primary function Parsec uses to run a parser isparse . However, in addition to

parsea parser, this function takes a string that represents the name of the file you’re parsing.
This is so it can give better error messages. We can try parsing with the above functions:

ParsecI> parse (char ’a’) "stdin" "a"
Right ’a’
ParsecI> parse (char ’a’) "stdin" "ab"
Right ’a’
ParsecI> parse (char ’a’) "stdin" "b"
Left "stdin" (line 1, column 1):
unexpected "b"
expecting "a"
ParsecI> parse (char ’H’ >> char ’a’ >> char ’l’)

"stdin" "Hal"
Right ’l’
ParsecI> parse (char ’H’ >> char ’a’ >> char ’l’)

"stdin" "Hap"
Left "stdin" (line 1, column 3):
unexpected "p"
expecting "l"

Here, we can see a few differences between our parser and Parsec: first, the rest
of the string isn’t returned when we runparse . Second, the error messages produced
are much better.

In addition to the basic character parsing functions, Parsec provides primitives for:
spaces , which is the same as ours;space which parses a single space;letter , spaces

space

letter

which parses a letter;digit , which parses a digit;string , which is the same as

digit

string

ours; and a few others.
We can write ourint andintList functions in Parsec as:
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int :: CharParser st Int
int = do

i1 <- digit
ir <- many digit
return (read (i1:ir))

intList :: CharParser st [Int]
intList = do

char ’[’
intList’ ‘mplus‘ (char ’]’ >> return [])

where intList’ = do
i <- int
r <- (char ’,’ >> intList’) ‘mplus‘

(char ’]’ >> return [])
return (i:r)

First, note the type signatures. Thest type variable is simply a state variable that
we are not using. In theint function, we use themany function (built in to Parsec)
together with thedigit function (also built in to Parsec). TheintList function is
actually identical to the one we wrote before.

Note, however, that usingmplus explicitly is not the preferred method of com-
bining parsers: Parsec provides a<|> function that is a synonym ofmplus , but that
looks nicer:

intList :: CharParser st [Int]
intList = do

char ’[’
intList’ <|> (char ’]’ >> return [])

where intList’ = do
i <- int
r <- (char ’,’ >> intList’) <|>

(char ’]’ >> return [])
return (i:r)

We can test this:

ParsecI> parse intList "stdin" "[3,5,2,10]"
Right [3,5,2,10]
ParsecI> parse intList "stdin" "[3,5,a,10]"
Left "stdin" (line 1, column 6):
unexpected "a"
expecting digit

In addition to these basic combinators, Parsec provides a few other useful ones:
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• choice takes a list of parsers and performs anor operation (<|> ) between all
of them.

• option takes a default value of typea and a parser that returns something of
typea. It then tries to parse with the parser, but it uses the default value as the
return, if the parsing fails.

• optional takes a parser that returns() and optionally runs it.

• between takes three parsers: an open parser, a close parser and a between
parser. It runs them in order and returns the value of the between parser. This
can be used, for instance, to take care of the brackets on ourintList parser.

• notFollowedBy takes a parser and returns one that succeeds only if the given
parser would have failed.

Suppose we want to parse a simple calculator language that includes only plus
and times. Furthermore, for simplicity, assume each embedded expression must be
enclosed in parentheses. We can give a datatype for this language as:

data Expr = Value Int
| Expr :+: Expr
| Expr : * : Expr
deriving (Eq, Ord, Show)

And then write a parser for this language as:

parseExpr :: Parser Expr
parseExpr = choice

[ do i <- int; return (Value i)
, between (char ’(’) (char ’)’) $ do

e1 <- parseExpr
op <- oneOf "+ * "
e2 <- parseExpr
case op of

’+’ -> return (e1 :+: e2)
’ * ’ -> return (e1 : * : e2)

]

Here, the parser alternates between two options (we could have used<|> , but I
wanted to show thechoice combinator in action). The first simply parses an int and
then wraps it up in theValue constructor. The second option usesbetween to parse
text between parentheses. What it parses is first an expression, then one of plus or
times, then another expression. Depending on what the operator is, it returns eithere1
:+: e2 or e1 : * : e2 .

We can modify this parser, so that instead of computing anExpr , it simply com-
putes the value:
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parseValue :: Parser Int
parseValue = choice

[int
,between (char ’(’) (char ’)’) $ do

e1 <- parseValue
op <- oneOf "+ * "
e2 <- parseValue
case op of

’+’ -> return (e1 + e2)
’ * ’ -> return (e1 * e2)

]

We can use this as:

ParsecI> parse parseValue "stdin" "(3 * (4+3))"
Right 21

Now, suppose we want to introduce bindings into our language. That is, we wantbindings
to also be able to say “let x = 5 in” inside of our expressions and then use the variables
we’ve defined. In order to do this, we need to use thegetState andsetState (orgetState

setState updateState ) functions built in to Parsec.
updateState

parseValueLet :: CharParser (FiniteMap Char Int) Int
parseValueLet = choice

[ int
, do string "let "

c <- letter
char ’=’
e <- parseValueLet
string " in "
updateState (\fm -> addToFM fm c e)
parseValueLet

, do c <- letter
fm <- getState
case lookupFM fm c of

Nothing -> unexpected ("variable " ++ show c ++
" unbound")

Just i -> return i
, between (char ’(’) (char ’)’) $ do

e1 <- parseValueLet
op <- oneOf "+ * "
e2 <- parseValueLet
case op of

’+’ -> return (e1 + e2)
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’ * ’ -> return (e1 * e2)
]

Theint and recursive cases remain the same. We add two more cases, one to deal
with let-bindings, the other to deal with usages.

In the let-bindings case, we first parse a “let” string, followed by the character we’re
binding (theletter function is a Parsec primitive that parses alphabetic characters),
followed by it’s value (aparseValueLet ). Then, we parse the “ in ” and update the
state to include this binding. Finally, we continue and parse the rest.

In the usage case, we simply parse the character and then lookit up in the state.
However, if it doesn’t exist, we use the Parsec primitiveunexpected to report an
error.

We can see this parser in action using therunParser command, which enables runParser
us to provide an initial state:

ParsecI> runParser parseValueLet emptyFM "stdin"
"let c=5 in ((5+4) * c)"

Right 45

* ParsecI> runParser parseValueLet emptyFM "stdin"
"let c=5 in ((5+4) * let x=2 in (c+x))"

Right 63

* ParsecI> runParser parseValueLet emptyFM "stdin"
"((let x=2 in 3+4) * x)"

Right 14

Note that the bracketing does not affect the definitions of the variables. For in-
stance, in the last example, the use of “x” is, in some sense, outside the scope of the
definition. However, our parser doesn’t notice this, since it operates in a strictly left-
to-right fashion. In order to fix this omission, bindings would have to be removed (see
the exercises).

Exercises
Exercise 9.7Modify theparseValueLet parser, so that it obeys bracketing. In
order to do this, you will need to change the state to something like FiniteMap
Char [Int] , where the[Int] is a stack of definitions.
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Appendix A

Brief Complexity Theory

Complexity Theory is the study of how long a program will taketo run, depending on
the size of its input. There are many good introductory booksto complexity theory and
the basics are explained in any good algorithms book. I’ll keep the discussion here to
a minimum.

The idea is to say how well a program scales with more data. If you have a program
that runs quickly on very small amounts of data but chokes on huge amounts of data,
it’s not very useful (unless you know you’ll only be working with small amounts of
data, of course). Consider the following Haskell function to return the sum of the
elements in a list:

sum [] = 0
sum (x:xs) = x + sum xs

How long does it take this function to complete? That’s a verydifficult question; it
would depend on all sorts of things: your processor speed, your amount of memory, the
exact way in which the addition is carried out, the length of the list, how many other
programs are running on your computer, and so on. This is far too much to deal with, so
we need to invent a simpler model. The model we use is sort of anarbitrary “machine
step.” So the question is “how many machine steps will it takefor this program to
complete?” In this case, it only depends on the length of the input list.

If the input list is of length0, the function will take either0 or 1 or 2 or some very
small number of machine steps, depending exactly on how you count them (perhaps1
step to do the pattern matching and1 more to return the value0). What if the list is of
length1. Well, it would take however much time the list of length0 would take, plus a
few more steps for doing the first (and only element).

If the input list is of lengthn, it will take however many steps an empty list would
take (call this valuey) and then, for each element it would take a certain number of
steps to do the addition and the recursive call (call this numberx). Then, the total time
this function will take isnx + y since it needs to do those additionsn many times.
Thesex andy values are calledconstant values, since they are independent ofn, and
actually dependent only on exactly how we define a machine step, so we really don’t
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want to consider them all that important. Therefore, we say that the complexity of this
sum function isO(n) (read “ordern”). Basically saying something isO(n) means that
for some constant factorsx andy, the function takesnx+y machine steps to complete.

Consider the following sorting algorithm for lists (commonly called “insertion
sort”):

sort [] = []
sort [x] = [x]
sort (x:xs) = insert (sort xs)

where insert [] = [x]
insert (y:ys) | x <= y = x : y : ys

| otherwise = y : insert ys

The way this algorithm works is as follow: if we want to sort anempty list or a list
of just one element, we return them as they are, as they are already sorted. Otherwise,
we have a list of the formx:xs . In this case, we sortxs and then want to insertx
in the appropriate location. That’s what theinsert function does. It traverses the
now-sorted tail and insertsx wherever it naturally fits.

Let’s analyze how long this function takes to complete. Suppose it takesf(n) stepts
to sort a list of lengthn. Then, in order to sort a list ofn-many elements, we first have
to sort the tail of the list first, which takesf(n−1) time. Then, we have to insertx into
this new list. Ifx has to go at the end, this will takeO(n − 1) = O(n) steps. Putting
all of this together, we see that we have to doO(n) amount of workO(n) many times,
which means that the entire complexity of this sorting algorithm isO(n2). Here, the
squared is not a constant value, so we cannot throw it out.

What does this mean? Simply that for really long lists, thesum function won’t take
very long, but that thesort function will take quite some time. Of course there are
algorithms that run much more slowly that simplyO(n2) and there are ones that run
more quickly thanO(n).

Consider the random access functions for lists and arrays. In the worst case, ac-
cessing an arbitrary element in a list of lengthn will take O(n) time (think about
accessing the last element). However with arrays, you can access any element imme-
diately, which is said to be inconstanttime, orO(1), which is basically as fast an any
algorithm can go.

There’s much more in complexity theory than this, but this should be enough to
allow you to understand all the discussions in this tutorial. Just keep in mind thatO(1)
is faster thanO(n) is faster thanO(n2), etc.
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Recursion and Induction

Informally, a function is recursive if its definition depends on itself. The prototypical
example is factorial, whose definition is:

fact(n) =

{

1 n = 0
n ∗ fact(n − 1) n > 0

Here, we can see that in order to calculatefact(5), we need to calculatefact(4),
but in order to calculatefact(4), we need to calculatefact(3), and so on.

Recursive function definitions always contain a number of non-recursive base cases
and a number of recursive cases. In the case of factorial, we have one of each. The
base case is whenn = 0 and the recursive case is whenn > 0.

One can actually think of the natural numbers themselves as recursive (in fact, if
you ask set theorists about this, they’ll say thisis how it is). That is, there is a zero
element and then for every element, it has a successor. That is 1 = succ(0), 2 =
succ(1), . . . , 573 = succ(572), . . . and so on forever. We can actually implement this
system of natural numbers in Haskell:

data Nat = Zero | Succ Nat

This is a recursive type definition. Here, we represent one asSucc Zero and
three asSucc (Succ (Succ Zero)) . One thing we might want to do is be able
to convert back and forth beweenNats andInts. Clearly, we can write a base case as:

natToInt Zero = 0

In order to write the recursive case, we realize that we’re going to have something
of the formSucc n . We can make the assumption that we’ll be able to taken and
produce anInt . Assuming we can do this, all we need to do is add one to this result.
This gives rise to our recursive case:

natToInt (Succ n) = natToInt n + 1
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There is a close connection between recursion and mathematical induction. Induc-
tion is a proof technique which typically breaks problems down into base cases and
“inductive” cases, very analogous to our analysis of recursion.

Let’s say we want to prove the statementn! ≥ n for all n ≥ 0. First we formulate
a base case: namely, we wish to prove the statement whenn = 0. Whenn = 0, n! = 1
by definition. Sincen! = 1 > 0 = n, we get that0! ≥ 0 as desired.

Now, suppose thatn > 0. Thenn = k + 1 for some valuek. We now invoke the
inductive hypothesisand claim that the statement holds forn = k. That is, we assume
thatk! ≥ k. Now, we usek to formate the statement for our value ofn. That is,n! ≥ n
if and only iff (k + 1)! ≥ (k + 1). We now apply the definition of factorial and get
(k + 1)! = (k + 1) ∗ k!. Now, we knowk! ≥ k, so(k + 1) ∗ k! ≥ k + 1 if and only if
k + 1 ≥ 1. But we know thatk ≥ 0, which meansk + 1 ≥ 1. Thus it is proven.

It may seem a bit counter-intuitive that we are assuming thatthe claim is true fork
in our proof that it is true forn. You can think of it like this: we’ve proved the statement
for the case whenn = 0. Now, we know it’s true forn = 0 so using this we use our
inductive argument to show that it’s true forn = 1. Now, we know that it is true for
n = 1 so we reuse our inductive argument to show that it’s true forn = 2. We can
continue this argument as long as we want and then see that it’s true for alln.

It’s much like pushing down dominoes. You know that when you push down the
first domino, it’s going to knock over the second one. This, inturn will knock over the
third, and so on. The base case is like pushing down the first domino, and the inductive
case is like showing that pushing down dominok will cause thek + 1st domino to fall.

In fact, we can use induction to prove that ournatToInt function does the right
thing. First we prove the base case: doesnatToInt Zero evaluate to0? Yes, obvi-
ously it does. Now, we can assume thatnatToInt n evaluates to the correct value
(this is the inductive hypothesis) and ask whethernatToInt (Succ n) produces
the correct value. Again, it is obvious that it does, by simply looking at the definition.

Let’s consider a more complex example: addition ofNats. We can write this con-
cisely as:

addNat Zero m = m
addNat (Succ n) m = addNat n (Succ m)

Now, let’s prove that this does the correct thing. First, as the base case, suppose the
first argument isZero . We know that0 + m = m regardless of whatm is; thus in the
base case the algorithm does the correct thing. Now, supposethataddNat n m does
the correct thing for allmand we want to show thataddNat (Succ n) m does the
correct thing. We know that(n + 1) + m = n + (m + 1) and thus sinceaddNat
n (Succ m) does the correct thing (by the inductive hypothesis), our program is
correct.
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Solutions To Exercises

Solution 3.1
It binds more tightly; actually, function application binds more tightly than anything
else. To see this, we can do something like:

Prelude> sqrt 3 * 3
5.19615

If multiplication bound more tightly, the result would havebeen 3.

Solution 3.2
Solution: snd (fst ((1,’a’),"foo")) . This is because first we want to take
the first half the the tuple:(1,’a’) and then out of this we want to take the second
half, yielding just’a’ .

If you tried fst (snd ((1,’a’),"foo")) you will have gotten a type error.
This is because the application ofsnd will leave you withfst "foo" . However, the
string “foo” isn’t a tuple, so you cannot applyfst to it.

Solution 3.3
Solution: map Char.isLower ”aBCde”

Solution 3.4
Solution: length (filter Char.isLower ”aBCde”)

Solution 3.5
foldr max 0 [5,10,2,8,1]. You could also use foldl. The foldrcase is easier to explain:
we replace each cons with an application of max and the empty list with 0. Thus, the
inner-most application will take the maximum of 0 and the last element of the list (if
it exists). Then, the next-most inner application will return the maximum of what-
ever was the maximum before and the second-to-last element.This will continue on,
carrying to current maximum all the way back to the beginningof the list.
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In the foldl case, we can think of this as looking at each element in the list in order.
We start off our “state” with 0. We pull off the first element and check to see if it’s
bigger than our current state. If it is, we replace our current state with that number and
the continue. This happens for each element and thus eventually returns the maximal
element.

Solution 3.6
fst (head (tail [(5,’b’),(1,’c’),(6,’a’)]))

Solution 3.7
We can define a fibonacci function as:

fib 1 = 1
fib 2 = 1
fib n = fib (n-1) + fib (n-2)

We could also write it using explicitif statements, like:

fib n =
if n == 1 || n == 2

then 1
else fib (n-1) + fib (n-2)

Either is acceptable, but the first is perhaps more natural inHaskell.

Solution 3.8
We can define:

a ∗ b =

{

a b = 1
a + a ∗ (b − 1) otherwise

And then type out code:

mult a 1 = a
mult a b = a + mult a (b-1)

Note that it doesn’t matter that ofa andb we do the recursion on. We could just as
well have defined it as:

mult 1 b = b
mult a b = b + mult (a-1) b

Solution 3.9
We can definemy mapas:
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my_map f [] = []
my_map f (x:xs) = f x : my_map f xs

Recall that themy mapfunction is supposed to apply a functionf to every element
in the list. In the case that the list is empty, there are no elements to apply the function
to, so we just return the empty list.

In the case that the list is non-empty, it is an elementx followed by a listxs .
Assuming we’ve already properly appliedmy map to xs , then all we’re left to do is
apply f to x and then stick the results together. This is exactly what thesecond line
does.

Solution 3.10
The code below appears inNumbers.hs . The only tricky parts are the recursive calls
in getNums andshowFactorials .

module Main
where

import IO

main = do
nums <- getNums
putStrLn ("The sum is " ++ show (sum nums))
putStrLn ("The product is " ++ show (product nums))
showFactorials nums

getNums = do
putStrLn "Give me a number (or 0 to stop):"
num <- getLine
if read num == 0

then return []
else do rest <- getNums

return ((read num :: Int):rest)

showFactorials [] = return ()
showFactorials (x:xs) = do

putStrLn (show x ++ " factorial is " ++
show (factorial x))

showFactorials xs

factorial 1 = 1
factorial n = n * factorial (n-1)

The idea forgetNums is just as spelled out in the hint. ForshowFactorials ,
we consider first the recursive call. Suppose we have a list ofnumbers, the first of
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which isx . First we print out the string showing the factorial. Then weprint out the
rest, hence the recursive call. But what should we do in the case of the empty list?
Clearly we are done, so we don’t need to do anything at all, so we simplyreturn
() .

Note that this must bereturn () instead of just() because if we simply wrote
showFactorials [] = () then this wouldn’t be an IO action, as it needs to be.
For more clarification on this, you should probably just keepreading the tutorial.

Solution 4.1 1.

String or [Char]

2. type error: lists are homogenous

3. Num a ⇒ (a, Char)

4. Int

5. type error: cannot add values of different types

Solution 4.2
The types:

1. (a, b)− > b

2. [a]− > a

3. [a]− > Bool

4. [a]− > a

5. [[a]]− > a

Solution 4.3
The types:

1. a− > [a]. This function takes an element and returns the list containing only that
element.

2. a− > b− > b− > (a, [b]). The second and third argument must be of the same
type, since they go into the same list. The first element can beof any type.

3. Num a => a− > a. Since we apply(+) to a, it must be an instance ofNum.

4. a− > String. This ignores the first argument, so it can be any type.

5. (Char− > a)− > a. In this expression,x must be a function which takes aChar

as an argument. We don’t know anything about what it produces, though, so we
call it a.



167

6. Type error. Here, we assumex has typea. But x is applied to itself, so it must
have typeb− > c. But then it must have type(b− > c)− > c, but then it must
have type((b− > c)− > c)− > c and so on, leading to an infinite type.

7. Num a => a− > a. Again, since we apply(+) , this must be an instance of
Num.

Solution 4.4
The definitions will be something like:

data Triple a b c = Triple a b c

tripleFst (Triple x y z) = x
tripleSnd (Triple x y z) = y
tripleThr (Triple x y z) = z

Solution 4.5
The code, with type signatures, is:

data Quadruple a b = Quadruple a a b b

firstTwo :: Quadruple a b -> [a]
firstTwo (Quadruple x y z t) = [x,y]

lastTwo :: Quadruple a b -> [b]
lastTwo (Quadruple x y z t) = [z,t]

We note here that there are only two type variables,a and b associated with
Quadruple .

Solution 4.6
The code:

data Tuple a b c d e = One a
| Two a b
| Three a b c
| Four a b c d

tuple1 (One a ) = Just a
tuple1 (Two a b ) = Just a
tuple1 (Three a b c ) = Just a
tuple1 (Four a b c d) = Just a

tuple2 (One a ) = Nothing
tuple2 (Two a b ) = Just b
tuple2 (Three a b c ) = Just b
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tuple2 (Four a b c d) = Just b

tuple3 (One a ) = Nothing
tuple3 (Two a b ) = Nothing
tuple3 (Three a b c ) = Just c
tuple3 (Four a b c d) = Just c

tuple4 (One a ) = Nothing
tuple4 (Two a b ) = Nothing
tuple4 (Three a b c ) = Nothing
tuple4 (Four a b c d) = Just d

Solution 4.7
The code:

fromTuple :: Tuple a b c d -> Either (Either a (a,b)) (Either (a ,b,c) (a,b,c,d))
fromTuple (One a ) = Left (Left a )
fromTuple (Two a b ) = Left (Right (a,b) )
fromTuple (Three a b c ) = Right (Left (a,b,c) )
fromTuple (Four a b c d) = Right (Right (a,b,c,d))

Here, we use embeddedEither s to represent the fact that there are four (instead
of two) options.

Solution 4.8
The code:

listHead (Cons x xs) = x
listTail (Cons x xs) = xs

listFoldl f y Nil = y
listFoldl f y (Cons x xs) = listFoldl f (f y x) xs

listFoldr f y Nil = y
listFoldr f y (Cons x xs) = f x (listFoldr f y xs)

Solution 4.9
The code:

elements (Leaf x) = [x]
elements (Branch lhs x rhs) =

elements lhs ++ [x] ++ elements rhs

Solution 4.10
The code:
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foldTree :: (a -> b -> b) -> b -> BinaryTree a -> b
foldTree f z (Leaf x) = f x z
foldTree f z (Branch lhs x rhs) =

foldTree f (f x (foldTree f z rhs)) lhs

elements2 = foldTree (:) []

or:

elements2 tree = foldTree (\a b -> a:b) [] tree

The firstelements2 is simply a more compact version of the second.

Solution 4.11
It mimicks neither exactly. It’s behavior most closely resemblesfoldr , but differs
slightly in its treatment of the initial value. We can observe the difference in an inter-
preter:

CPS> foldr (-) 0 [1,2,3]
2
CPS> foldl (-) 0 [1,2,3]
-6
CPS> fold (-) 0 [1,2,3]
-2

Clearly it behaves differently. By writing down the derivations offold andfoldr
we can see exactly where they diverge:

foldr (-) 0 [1,2,3]
==> 1 - foldr (-) 0 [2,3]
==> ...
==> 1 - (2 - (3 - foldr (-) 0 []))
==> 1 - (2 - (3 - 0))
==> 2

fold (-) 0 [1,2,3]
==> fold’ (-) (\y -> 0 - y) [1,2,3]
==> 0 - fold’ (-) (\y -> 1 - y) [2,3]
==> 0 - (1 - fold’ (-) (\y -> 2 - y) [3])
==> 0 - (1 - (2 - 3))
==> -2

Essentially, the primary difference is that in thefoldr case, the “initial value” is
used at the end (replacing[] ), whereas in the CPS case, the initial value is used at the
beginning.
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Solution 4.12

Solution 5.1
Using if , we get something like:

main = do
putStrLn "Please enter your name:"
name <- getLine
if name == "Simon" || name == "John" || name == "Phil"

then putStrLn "Haskell is great!"
else if name == "Koen"

then putStrLn "Debugging Haskell is fun!"
else putStrLn "I don’t know who you are."

Note that we don’t need to repeat thedos inside theifs, since these are only one
action commands.

We could also be a bit smarter and use theelem command which is built in to the
Prelude:

main = do
putStrLn "Please enter your name:"
name <- getLine
if name ‘elem‘ ["Simon", "John", "Phil"]

then putStrLn "Haskell is great!"
else if name == "Koen"

then putStrLn "Debugging Haskell is fun!"
else putStrLn "I don’t know who you are."

Of course, we needn’t put all theputStrLn s inside theif statements. We could
instead write:

main = do
putStrLn "Please enter your name:"
name <- getLine
putStrLn

(if name ‘elem‘ ["Simon", "John", "Phil"]
then "Haskell is great!"
else if name == "Koen"

then "Debugging Haskell is fun!"
else "I don’t know who you are.")

Usingcase, we get something like:
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main = do
putStrLn "Please enter your name:"
name <- getLine
case name of

"Simon" -> putStrLn "Haskell is great!"
"John" -> putStrLn "Haskell is great!"
"Phil" -> putStrLn "Haskell is great!"
"Koen" -> putStrLn "Debugging Haskell is fun!"
_ -> putStrLn "I don’t know who you are."

Which, in this case, is actually not much cleaner.

Solution 5.2
The code might look something like:

module DoFile where

import IO

main = do
putStrLn "Do you want to [read] a file, ...?"
cmd <- getLine
case cmd of

"quit" -> return ()
"read" -> do doRead; main
"write" -> do doWrite; main
_ -> do putStrLn

("I don’t understand the command "
++ cmd ++ ".")

main

doRead = do
putStrLn "Enter a file name to read:"
fn <- getLine
bracket (openFile fn ReadMode) hClose

(\h -> do txt <- hGetContents h
putStrLn txt)

doWrite = do
putStrLn "Enter a file name to write:"
fn <- getLine
bracket (openFile fn WriteMode) hClose

(\h -> do putStrLn
"Enter text (...):"
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writeLoop h)

writeLoop h = do
l <- getLine
if l == "."

then return ()
else do hPutStrLn h l

writeLoop h

The only interesting things here are the calls tobracket , which ensure the that the
program lives on, regardless of whether there’s a failure ornot; and thewriteLoop
function. Note that we need to pass the handle returned byopenFile (through
bracket to this function, so it knows where to write the input to).

Solution 7.1
Functionfunc3 cannot be converted into point-free style. The others look something
like:

func1 x = map ( * x)

func2 f g = filter f . map g

func4 = map (+2) . filter (‘elem‘ [1..10]) . (5:)

func5 = foldr (flip $ curry f) 0

You might have been tempted to try to writefunc2 as filter f . map ,
trying to eta-reduce off theg. In this case, this isn’t possible. This is because the
function composition operator (. ) has type(b → c) → (a → b) → (a → c). In this
case, we’re trying to usemapas the second argument. Butmap takes two arguments,
while (.) expects a function which takes only one.

Solution 7.2
We can start out with a recursive definition:

and [] = True
and (x:xs) = x && and xs

From here, we can clearly rewrite this as:

and = foldr (&&) True

Solution 7.3
We can write this recursively as:
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concatMap f [] = []
concatMap f (x:xs) = f x ++ concatMap f xs

This hints that we can write this as:

concatMap f = foldr (\a b -> f a ++ b) []

Now, we can do point elimination to get:

foldr (\a b -> f a ++ b) []
==> foldr (\a b -> (++) (f a) b) []
==> foldr (\a -> (++) (f a)) []
==> foldr (\a -> ((++) . f) a) []
==> foldr ((++) . f) []

Solution 9.1
The first law is:return a >>= f ≡ f a . In the case ofMaybe, we get:

return a >>= f
==> Just a >>= \x -> f x
==> (\x -> f x) a
==> f a

The second law is:f >>= return ≡ f . Here, we get:

f >>= return
==> f >>= \x -> return x
==> f >>= \x -> Just x

At this point, there are two cases depending on whetherf is Nothing or not. In
the first case, we get:

==> Nothing >>= \x -> Just x
==> Nothing
==> f

In the second case,f is Just a . Then, we get:

==> Just a >>= \x -> Just x
==> (\x -> Just x) a
==> Just a
==> f
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And the second law is shown. The third law states:f >>= ( \x -> g x >>=
h) ≡ (f >>= g) >>= h .

If f is Nothing , then the left-hand-side clearly reduces toNothing . The right-
hand-side reduces toNothing >>= h which in turn reduces toNothing , so they
are the same.

Supposef is Just a . Then the LHS reduces tog a >>= h and the RHS re-
duces to(Just a >>= \x -> g x) >>= h which in turn reduces tog a >>=
h, so these two are the same.

Solution 9.2
The idea is that we wish to use theLeft constructor to represent errors on theRight
constructor to represent successes. This leads to an instance declaration like:

instance Monad (Either String) where
return x = Right x
Left s >>= _ = Left s
Right x >>= f = f x
fail s = Left s

If we try to use this monad to do search, we get:

Monads> searchAll gr 0 3 :: Either String [Int]
Right [0,1,3]
Monads> searchAll gr 3 0 :: Either String [Int]
Left "no path"

which is exactly what we want.

Solution 9.3
The order tomplus essentially determins the search order. When the recursivecall to
searchAll2 comes first, we are doing depth-first search. When the recursive call to
search’ comes first, we are doing breadth-first search. Thus, using the list monad,
we expect the solutions to come in the other order:

MPlus> searchAll3 gr 0 3 :: [[Int]]
[[0,2,3],[0,1,3]]

Just as we expected.

Solution 9.4
This is a very difficult problem; if you found that you were stuck immediately, please
just read as much of this solution as you need to try it yourself.

First, we need to define a list transformer monad. This looks like:
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newtype ListT m e = ListT { unListT :: m [e] }

TheListT constructor simply wraps a monadic action (in monadm) which returns
a list.

We now need to make this a monad:

instance Monad m => Monad (ListT m) where
return x = ListT (return [x])
fail s = ListT (return [] )
ListT m >>= k = ListT $ do

l <- m
l’ <- mapM (unListT . k) l
return (concat l’)

Here, success is designated by a monadic action which returns a singleton list.
Failure (like in the standard list monad) is represented by an empty list: of course, it’s
actually an empty list returned from the enclosed monad. Binding happens essentially
by running the action which will result in a listl . This has type[e] . We now need
to applyk to each of these elements (which will result in something of typeListT m
[e2] . We need to get rid of theListT s around this (by usingunListT ) and then
concatenate them to make a single list.

Now, we need to make it an instance ofMonadPlus

instance Monad m => MonadPlus (ListT m) where
mzero = ListT (return [])
ListT m1 ‘mplus‘ ListT m2 = ListT $ do

l1 <- m1
l2 <- m2
return (l1 ++ l2)

Here, the zero element is a monadic action which returns an empty list. Addition is
done by executing both actions and then concatenating the results.

Finally, we need to make it an instance ofMonadTrans:

instance MonadTrans ListT where
lift x = ListT (do a <- x; return [a])

Lifting an action intoListT simply involves running it and getting the value (in
this case,a) out and then returning the singleton list.

Once we have all this together, writingsearchAll6 is fairly straightforward:

searchAll6 g@(Graph vl el) src dst
| src == dst = do

lift $ putStrLn $



176 APPENDIX C. SOLUTIONS TO EXERCISES

"Exploring " ++ show src ++ " -> " ++ show dst
return [src]

| otherwise = do
lift $ putStrLn $

"Exploring " ++ show src ++ " -> " ++ show dst
search’ el

where
search’ [] = mzero
search’ ((u,v,_):es)

| src == u =
(do path <- searchAll6 g v dst

return (u:path)) ‘mplus‘
search’ es

| otherwise = search’ es

The only change (besides changing the recursive call to callsearchAll6 instead
of searchAll2 ) here is that we callputStrLn with appropriate arguments, lifted
into the monad.

If we look at the type ofsearchAll6 , we see that the result (i.e., after applying a
graph and two ints) has typeMonadTrans t, MonadPlus (t IO) => t IO
[Int]) . In theory, we could use this with any appropriate monad transformer; in our
case, we want to useListT . Thus, we can run this by:

MTrans> unListT (searchAll6 gr 0 3)
Exploring 0 -> 3
Exploring 1 -> 3
Exploring 3 -> 3
Exploring 2 -> 3
Exploring 3 -> 3
MTrans> it
[[0,1,3],[0,2,3]]

This is precisely what we were looking for.

Solution 9.5
This exercise is actually simpler than the previous one. Allwe need to do is incorporate
the calls toputT andgetT into searchAll6 and add an extra lift to the IO calls.
This extra lift is required because now we’re stacking two transformers on top of IO
instead of just one.

searchAll7 g@(Graph vl el) src dst
| src == dst = do

lift $ lift $ putStrLn $
"Exploring " ++ show src ++ " -> " ++ show dst

visited <- getT
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putT (src:visited)
return [src]

| otherwise = do
lift $ lift $ putStrLn $

"Exploring " ++ show src ++ " -> " ++ show dst
visited <- getT
putT (src:visited)
if src ‘elem‘ visited

then mzero
else search’ el

where
search’ [] = mzero
search’ ((u,v,_):es)

| src == u =
(do path <- searchAll7 g v dst

return (u:path)) ‘mplus‘
search’ es

| otherwise = search’ es

The type of this has grown significantly. After applying the graph and two ints, this
has typeMonad (t IO), MonadTrans t, MonadPlus (StateT [Int]
(t IO)) => StateT [Int] (t IO) [Int] .

Essentially this means that we’ve got something that’s a state transformer wrapped
on top of some other arbitrary transformer (t ) which itself sits on top ofIO . In our
case,t is going to beListT . Thus, we run this beast by saying:

MTrans> unListT (evalStateT (searchAll7 gr4 0 3) [])
Exploring 0 -> 3
Exploring 1 -> 3
Exploring 3 -> 3
Exploring 0 -> 3
Exploring 2 -> 3
Exploring 3 -> 3
MTrans> it
[[0,1,3],[0,2,3]]

And it works, even ongr4 .

Solution 9.6
First we write a functionspaces which will parse out whitespaces:

spaces :: Parser ()
spaces = many (matchChar isSpace) >> return ()

Now, using this, we simply sprinkle calls tospaces throughintList to get
intListSpace :
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intListSpace :: Parser [Int]
intListSpace = do

char ’[’
spaces
intList’ ‘mplus‘ (char ’]’ >> return [])

where intList’ = do
i <- int
spaces
r <- (char ’,’ >> spaces >> intList’)

‘mplus‘
(char ’]’ >> return [])

return (i:r)

We can test that this works:

Parsing> runParser intListSpace "[1 ,2 , 4 \n\n ,5\n]"
Right ("",[1,2,4,5])
Parsing> runParser intListSpace "[1 ,2 , 4 \n\n ,a\n]"
Left "expecting char, got ’a’"

Solution 9.7
We do this by replacing the state functions with push and pop functions as follows:

parseValueLet2 :: CharParser (FiniteMap Char [Int]) Int
parseValueLet2 = choice

[ int
, do string "let "

c <- letter
char ’=’
e <- parseValueLet2
string " in "
pushBinding c e
v <- parseValueLet2
popBinding c
return v

, do c <- letter
fm <- getState
case lookupFM fm c of

Nothing -> unexpected ("variable " ++
show c ++
" unbound")

Just (i:_) -> return i
, between (char ’(’) (char ’)’) $ do

e1 <- parseValueLet2
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op <- oneOf "+ * "
e2 <- parseValueLet2
case op of

’+’ -> return (e1 + e2)
’ * ’ -> return (e1 * e2)

]
where

pushBinding c v = do
fm <- getState
case lookupFM fm c of

Nothing -> setState (addToFM fm c [v])
Just l -> setState (addToFM fm c (v:l))

popBinding c = do
fm <- getState
case lookupFM fm c of

Just [_] -> setState (delFromFM fm c)
Just (_:l) -> setState (addToFM fm c l)

The primary difference here is that instead of callingupdateState , we use two
local functions,pushBinding andpopBinding . The pushBinding function
takes a variable name and a value and adds the value onto the head of the list pointed to
in the stateFiniteMap . ThepopBinding function looks at the value and if there is
only one element on the stack, it completely removes the stack from theFiniteMap ;
otherwise it just removes the first element. This means that if something is in the
FiniteMap , the stack is never empty.

This enables us to modify only slightly the usage case; this time, we simply take
the top element off the stack when we need to inspect the valueof a variable.

We can test that this works:

ParsecI> runParser parseValueLet2 emptyFM "stdin"
"((let x=2 in 3+4) * x)"

Left "stdin" (line 1, column 20):
unexpected variable ’x’ unbound
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