








The History of Haskell

The history of Haslell is bestdescribedisingthe wordsof theauthors.The following
text is quotedfrom the publishedversionof the Haslell 98 Report:

In Septembeof 1987a meetingwasheldatthe conferenceon Functional
Programmind-anguagesindComputerArchitecture(FPCA'87) in Port-
land, Oregon, to discussan unfortunatesituationin the functional pro-

grammingcommunity:therehadcomeinto beingmorethana dozennon-
strict, purely functionalprogramminganguagesall similar in expressive

power andsemantiaunderpinnings.Therewasa strongconsensust this
meetingthatmorewidespreadiseof this classof functionallanguagesvas
beinghamperedy thelack of acommonlanguagelt wasdecidedthata
committeeshouldbe formedto designsucha language providing faster
communicatiorof new ideas,a stablefoundationfor realapplicationsde-
velopment,and a vehicle throughwhich otherswould be encouragedo

usefunctionallanguagesThis documentescribesheresultof thatcom-
mittee'sefforts: apurelyfunctionalprogrammindanguagealledHaslell,

namedafterthelogicianHaslell B. Currywhosework providesthelogical
basisfor muchof ours.

Thecommittees primarygoalwasto designalanguagehatsatis edthese
constraints:

1. It shouldbesuitablefor teachingresearchandapplicationsjnclud-
ing building large systems.

2. It shouldbe completelydescribedvia the publicationof a formal
syntaxandsemantics.

3. It shouldbefreely available. Anyoneshouldbe permittedto imple-
mentthelanguageanddistributeit to whomever they please.

4. It shouldbebasednideasthatenjoy awide consensus.

5. It shouldreduceunnecessaryiversity in functional programming
languages.

The committeeintendedthat Haslell would sene as a basisfor future
researchin languagadesign,andhopedthat extensionsor variantsof the
languagewvould appearincorporatingexperimentafeatures.

Haslell hasindeedevolved continuouslysinceits original publication.By
the middle of 1997,therehadbeenfour iterationsof the languagedesign
(thelatestatthatpointbeingHaslell 1.4). At the 1997Haslell Workshop
in Amsterdamit wasdecidedhata stablevariantof Haslell wasneeded;
this stablelanguages the subjectof this Report,andis called “Haskell
98".

Haslell 98 was conceved as a relatively minor tidy-up of Haslell 1.4,
makingsomesimpli cations, andremoving somepitfalls for the unwary.
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Chapter 1

Intr oduction

This tutorial containsa whole host of examplecode, all of which shouldhave been
includedin its distribution. If not, pleasereferto thelinks off of the Haslell web site
(haskell.org ) to getit. This bookis formattedto make examplecodestandout
from therestof thetext.

Code will look like this.

Occasionally we will refer to interactionbetwenyou and the operatingsystem
and/ortheinteractize shell(moreonthisin Section2).

Interaction will look like this.

Stravn throughoutthe tutorial, we will often make additionalnotesto something
written. Theseare oftenfor makingcomparisongo otherprogramminganguage®r
addinghelpful information.

m NOTE m Noteswill appeatikethis.

If we're coveringadif cult or confusingtopic andthereis somethingyou should
watchout for, we will placeawarning.

= WARNING = Warningswill appeatike this.

Finally, we will sometimesnale referenceo built-in functions(so-calledPrelude-
functions).Thiswill look somethindike this:

o ) [l T[]

Within the bodytext, Haslell keywordswill appealtike this: where, identi ers as
map, typesasString andclassesasEq.
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2.2.2 Installation procedures

Onceyou've downloadedGHC, installationdiffers dependingon your platform; how-
ever, installationfor GHC is moreof lessidenticalto installationfor any programon
your platform.

For Windows whenyouclick onthe“msi” le todownload,simplychoosé'Run This
Program”andthe installationwill begin automatically Fromthere,just follow
theon-screerinstructions.

For RPMs usewhatezer RPM installationprogramyou know best.

For source rst gunzipthe le, thenuntarit. Presumablyif you're usinga system
whichisn't otherwisesupportedyou know enoughaboutyour systemto beable
to run con gure scriptsandmalke thingsby hand.

For amoredetaileddescriptiorof theinstallationprocedurelook atthe GHC users
manualunder‘Installing GHC".

2.2.3 How to run the compiler

Runningthe compileris fairly easy Assumingthatyou have a programwritten with a
main functionin a le calledMain.hs , youcancompileit simply by writing:

% ghc --make Main.hs -0 main

The“—make” optiontells GHC thatthisis a programandnotjustalibrary andyou
wantto build it andall modulesit dependn. “Main.hs” stipulatesthe nameof the
le to compile;andthe“-0 main” meanghatyouwantto putthe outputin a le called
“main”.

m NOTE m In Windows, you shouldsay“-0 main.ee” to tell Windows
thatthisis anexecutablele.

You canthenrun the programby simply typing “main” atthe prompt.

2.2.4 How to run the interpreter

GHCiisinvokedwith thecommandghci” or “ghc—interactve”. Oneor moremodules
or lenamescanalsobespeci edonthecommandine; thisinstructsGHCi to loadthe
speci edmodulesor lenames(andall themoduleshey dependn),justasif youhad
said:load modulesatthe GHCi prompt.
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Prelude> 5*(4+3)
35

We can seethat, in additionto the standardarithmetic operationsHaslell also
allows groupingby parenthese$iencethe differencebetweerthevaluesof 5*4+3 and
5*(4+3). Thereasorfor thisis thatthe“understood’groupingof the rst expressioris
(5*4)+3, dueto operator precedence

Also notethatparenthesearent requiredaroundfunctionargumentsFor instance,
we simply wrotesqrt 2, notsqgrt(2) , aswould be requiredin mostotherlan-
guagesYoucouldwrite it with the parenthesedut in Haslell, sincefunctionapplica-
tion is socommon parenthesearent required.

m WARNING = Eventhoughparentheseare not alwaysneededsome-
timesit is betterto leave themin anyway; other peoplewill probably
have to readyour code,andif extra parenthesemale the intent of the
codeclearerusethem.

pd

ow try entering2"5000Q Doesit work?

m NOTE » If you're familiar with programmingn otherlanguagesyou
may nd it odd thatsqrt 2 comesbackwith a decimalpoint (i.e., is a
oating pointnumber)eventhoughtheargumento thefunctionseemgo
beaninteger Thisinterchangbility of numerictypesis dueto Haslell's
systemof typeclassesandwill bediscussedh detailin Sectior4.3).

Exercises

Exercise3.1 We've seerthat multiplicationbindsmore tightly thandivision. Canyou
think of a way to determinewhetherfunction application binds more or lesstightly
thanmultiplication?

3.2 Pairs, Triples and More

In additionto singlevalues,we shouldalsoaddressnultiple values.For instancewe
maywantto referto apositionbyits / coordinatewhichwouldbeapairof integers.
To malke a pair of integersis simple: you enclosethe pair in parenthesisindseparate
themwith acomma.Try thefollowing:

Prelude> (5,3)
(5.3)







cons operator

syntactic sugar
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Prelude> [1,2]
[1.2]

Prelude> [1,2,3]
[1,2,3]

Listsdon't needto have ary elementsTheemptylist is simply[] .

Unlike tuples,we canvery easily add an elementon to the beginning of the list
usingthecolonoperator Thecolonis calledthe“cons” operatorthe procesof adding
an elementis called“consing’ The etymologyof this is that we are congructing a
new list from anelementandanold list. We canseethe consoperatolin actionin the
following examples:

Prelude> 0:[1,2]
[0,1,2]

Prelude> 5:[1,2,3,4]
[5,1,2,3,4]

We canactuallybuild any list by usingthe consoperator(the colon)andthe empty
list:

Prelude> 5:1:2:3:4:
[5,1,2,3,4]

In fact,the[5,1,2,3,4] syntaxis “syntacticsugar” for theexpressiorusingthe
explicit consoperatorandemptylist. If wewrite somethingusingthe[5,1,2,3,4]
notation,the compilersimply translatest to theexpressiorusing(:) and[] .

= NOTE m In general;'syntacticsugar” is astrictly unnecessarlanguage
feature whichis addedto make the syntaxnicer.

Onefurther differencebetweenlists andtuplesis that, while tuplesare heteroge-
neous,lists mustbe homogenous.This meansthat you cannothave a list that holds
bothintegersandstrings.If youtry to, atypeerrorwill bereported.

Of courselists don't have to just containintegersor strings;they canalsocontain
tuplesor evenotherlists. Tuples,similarly, cancontainlists andothertuples.Try some
of thefollowing:

Prelude> [(1,1),(2,4),(3,9),(4,16)]
[(1,1),(2,4),(3,9),(4,16)]

Prelude> ([1,2,3,4],[5,6,7])
([1,2,3,4],[5,6,7])
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=> (1 - 4 -8 -5

=> (-3 -8 -5
==> (11) - 5
==> -16

Notethatoncethefoldl goesaway, the parenthesizatiois exactly the opposite
of thefoldr

m NOTE = foldl  is often moreefcient thanfoldr  for reasonghat
we will discussin Section7.8. However, foldr  canwork on in nite
lists, while foldl  cannot. This is becausebeforefoldl  doesary-
thing, it hasto go to the end of the list. On the other hand, foldr
startsproducingoutputimmediately For instancefoldr  (:) 1
[1,2,3,4,5] simply returnsthe samelist. Evenif thelist werein-
nite, it would produceoutput. A similar functionusingfoldl  would
fail to produceary output.

If this discussionof the folding functionsis still somavhat unclear that's okay.
We'll discusghemfurtherin Section7.8.

EXxercises

Exercise3.3 Usemapto corvert a string into a list of booleansgad elementin the
new list representingwhetheror not the original elementvasa lower-casecharacter
Thatis, it shouldtake thestring “aBCde” andreturn[True,FalseFalsgTrue, True].

Exercise3.4 Usethe functionsmentionedn this section(youwill needtwo of them)
to computethe numberof lower-caseletters in a string. For instance on “aBCde” it
shouldreturn3.

Exercise3.5 We've seenhowto calculatesumsand productsusingfolding functions.
Giventhat the function max returnsthe maximumof two numbes, write a function
usinga fold that will returnthe maximummvaluein a list (andzeio if thelist is empty).
So,whenappliedto [5,10,2,8,1]it will return10. Assumeéhatthevaluesin thelist are
always 0. Explainto yourselfwhyit works.

Exercise3.6 Write a functionthat takes a list of pairs of lengthat least2 and re-
turns the r st componenbf the secondelementin the list. So, whenprovided with
[(5/b",(1,c),(6,a")], it will returnl.

3.4 SourceCodeFiles

As programmersye don't wantto simply evaluatesmall expressiondik e these— we
wantto sit down, write codein our editorof choice,save it andthenuseit.

We alreadysaw in Sections2.2 and2.3 how to write a Hello World programand
how to compileit. Here,we shav how to usefunctionsde ned in a source-codele
in theinteractve ervironment. To do this, createa le calledTest.hs andenterthe
following code:
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comment -} the original comment extends to the
matching end-comment token: -}
f x =
case x of

0->1 - 0 maps to 1

1->5 -- 1 maps to 5

2 > 2 -- 2 maps to 2

> -1 -- everything else maps to -1

This exampleprogramshaws the useof bothline commentsand(embeddedplock
comments.

3.7 Recursion

In imperatize languagedike C andJava, the mostbasiccontrolstructures aloop (like
afor loop). However, for loopsdon't make muchsensen Haslell because¢hey require
destructve update(the index variableis constantlybeing updated). Instead,Haslell
usesrecursion.

A functionis recussiveif it callsitself (seeAppendixB for more).Recursve func-
tions exist alsoin C andJava but areusedlessthanthey arein functionallanguages.
Theprototypicalrecursve functionis thefactorialfunction. In animperative language,
you mightwrite this assomethindik e:

int factorial(int n) {
int fact = 1;
for (int i=2; i <= n; i++)
fact = fact * i

return  fact;

While this codefragmentwill successfullfcomputefactorialsfor positive integers,
it somehav ignoresthe basicde nition of factorial,usuallygivenas:

1 n=1

| =
n n (n 1)! otherwise

This de nition itself is exactly a recursve de nition: namelythe valueof n! de-
pendsonthevalueof (n  1)!. If youthink of ! asafunction,thenit is calling itself.
We cantranslatethis de nition almostverbatiminto Haslell code:

1
n * factorial (n-1)

factorial 1
factorial n

Thisis likely the simplestrecursve functionyou'll everseebutit is correct.
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Similarly, we canconsidetthefilter function. Again, thebasecasds theempty
list, andthe recursve caseis a conslist. However, this time, we're choosingwhether
to keepan elementdependingon whetheror not a particularpredicateholds. We can
de ne the Iter functionas:

my_filter pll =1
my_filter p (xxxs) =
if p x
then x : my filter p Xs
else my_filter p Xxs

In this code,when presentedvith an emptylist, we simply returnan emptylist.
Thisis becauselter cannotaddelementsijt canonly remove them.

Whenpresentedvith alist of theform (x:xs) , we needto decidewhetheror not
to keepthevaluex. To dothis, we useanif statemenandthe predicatep. If p X is
true,thenwe returna list thatbeginswith x followed by theresultof Itering thetail
of thelist. If p x isfalse thenwe excludex andreturntheresultof Itering thetail of
thelist.

We canalsode ne map andboth fold functionsusingexplicit recursion.Seethe
exercisedor thede nition of mapandChapter7 for thefolds.

Exercises

Exercise3.7 The bonacci sequencés de nedby:

1 =lor =2

n- n 2+ n 1 oOtherwise

Write a recussive functionfib  that takes a positiveinteger n as a parameterand
calculates .

Exercise3.8 De ne arecussivefunctionmult thattakestwo positiveintegers a and
b andreturnsa*b , but onlyusesaddition(i.e., nofair justusingmultiplication). Begin
by makinga mathematicatle nition in the styleof the previousexerciseandtherestof
this section.

Exercise3.9 De ne a recussivefunctionmy_mapthat behavesdenticallyto the stan-
dard functionmap.

3.8 Interactivity

If you arefamiliar with bookson other(imperatize) languagesyou might bewonder
ing why you haven't seenmary of the standardprogramswritten in tutorialsof other
languageglik e onesthatasktheuserfor hisnameandthensays‘Hi” to him by name).
Thereasorfor thisis simple: Beinga purefunctionallanguageit is not entirelyclear
how oneshouldhandleoperationdik e userinput.
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incorrect.Here,we will give theincorrectversion,explain why it is wrong,thengive
the correctversion.

Let's saywe're writing a simple programthatrepeatedlyasksthe userto typein a
few words. If atary pointtheuserentergheemptyword (i.e., hejusthits enterwithout
typing arything), the programprints out everythinghe's typedup until thatpoint and
thenexits. The primaryfunction (actually anaction)in this programis onethatasks
theuserfor aword, checksto seeif it's empty andtheneithercontinuesor ends.The
incorrectformulationof this mightlook somethindike:

askForWords = do
putStrLn  "Please enter a word:"
word <- getLine

if word == "
then return ]
else return (word : askForWords)

Beforereadingaheadseeif youcan gure outwhatis wrongwith theabove code.

Theerroris onthelastline, speci cally with thetermword :  askForWords .
Remeberthat whenusing (: ), we are making a list out of an element(in this case
word ) andanothetist (in this case,askForWords ). However, askForWords is
notalist; it is anactionthat,whenrun, will producealist. Thatmeanshatbeforewe
canattacharything to the front, we needto run the actionandtake theresult. In this
casewe wantto do somethindike:

askForWords = do
putStrLn  "Please enter a word:"
word <- getLine

if word == "™
then return ]
else do
rest <- askForWords
return  (word : rest)

Here,we rst runaskForWords , taketheresultandstoreit in thevariablerest .
Then we returnthelist createdrom word andrest .

By now, you shouldhave a goodunderstandingf how to write simplefunctions,
compilethem,testfunctionsandprogramsn theinteractive ervironment,andmanip-
ulatelists.

EXxercises

Exercise3.10 Write a programthatwill repeatedhaskthe userfor numbes until she
typesin zeo, at which pointit will tell her the sumof all the numbes, the productof
all thenumbes, and,for eadh numberits factorial. For instance a sessiormightlook
like:






Chapter 4

Type Basics

Haslell usesa systemof static type cheking. This meansthat every expressionin
Haslell is assigneda type For instance'a’ would have type Cha, for “charactef
Then,if you have a functionwhich expectsanamgumentof a certaintype andyou give
it thewrongtype,a compile-timeerrorwill be generatedthatis, you will notbeable
to compilethe program). This vastly reduceghe numberof bugsthat cancreepinto
your program.

FurthermoreHaslell usesa systemof typeinference This meansthatyou don't
even needto specifythe type of expressionsFor comparisonjn C, whenyou de ne
a variable,you needto specifyits type (for instance,nt, chat etc.). In Haslell, you
neednt do this—thetypewill beinferredfrom context.

m NOTE m If you want, you certainlyare allowed to explicitely specify
thetypeof anexpressionthis oftenhelpsdelugging.In fact,it is some-
timesconsideredyoodstyle to explicitly specifythe typesof outermost
functions.

Both HugsandGHCi allow youto applytypeinferenceto anexpressiorto nd its
type. This is doneby usingthe :t command.For instance startup your favorite shell
andtry thefollowing:

Prelude> it 'c'
‘¢ o Char

This tells us that the expression'c' hastype Cha (the doublecolon :: is used
throughoutHaslell to specifytypes).

4.1 SimpleTypes

Therearea slew of built-in types,including Int (for integers,both positive and neg-
ative), Double (for oating point numbers),Cha (for single characters)String (for
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function de nition sinceit knows you will only apply square to Ints, soit may be
ableto generatdastercode.

If you have extensionsturnedon (“-98” in Hugsor “-fglasgow-exts” in GHC(i)),
you canalsoadda type signatureto expressionsandnot just functions. For instance,
you couldwrite:

square (x i Int) = x*X

which tells the compilerthat x is an Int; however, it leavesthe compiler alone
to infer the type of the restof the expression. What is the type of square in this
example?Make your guesghenyou cancheckit eitherby enteringthis codeinto a le
andloadingit into yourinterpreteror by askingfor thetype of the expression:

Prelude> :t (\M(x = Int) -> Xx*x)

sincethis lambdaabstractioris equivalentto theabove functiondeclaration.

4.4.5 Functional Arguments

In Section3.3we sav examplesof functionstaking otherfunctionsasarguments.For
instancemaptook a functionto applyto eachelementin alist, filter tookafunc-
tion thattold it which elementof alist to keep,andfoldl  tookafunctionwhichtold
it how to combinelist elementsogether As with every otherfunctionin Haslell, these
arewell-typed.

Let's rst think aboutthe map function. It's job is to take a list of elementsand
produceanotherlist of elements.Thesetwo lists don't necessariljhave to have the
sametypesof elements.Somap will take a valueof type [a] andproducea value of
type [b]. How doesit do this? It usesthe usersuppliedfunctionto corvert. In order
to corvertana to a b, this functionmusthave typea! b. Thus,thetypeof mapis
(a! b)y! [a! [b], whichyoucanverify in yourinterpretemvith “:t".

We canapply the samesort of analysisto filter anddiscernthatit hastype
(a! Bool)! [a! [a]. Aswepresentedhefoldl function,youmightbetempted
togiveit type(a! a! a! a! [a! a meaningthatyou take afunctionwhich
combinesgwo asinto anotheione,aninitial valueof typea, alist of asto producea nal
valueoftypea. Infact,foldl hasamoregeneratype:(a! b! a! a! [b]! a
Soit takesafunctionwhichturnanaandab into ana, aninitial valueof typea anda
list of bs. It producesana.

To seethis, we canwrite afunctioncount which countshow mary membersf a
list satisfya givenconstraint.You canof courseyoufilter andlength to dothis,
but we will alsodoit usingfoldr

module Count
where

import  Char












4.5. DATA TYPES 51

4.5.3 Recursive Datatypes

We canalso de ne recussive datatypes. Theseare datatypesvhosede nitions are
basednthemseles.For instancewe couldde ne alist datatypeas:

data List a = Nil
| Cons a (List a)

In thisde nition, we have de ned whatit meango be of typeList a. We saythata
listis eitherempty(Nil ) orit'stheCons of avalueof typea andanothewalueof type
Lista. Thisis almostidenticalto the actualde nition of the list datatypein Haslell,
exceptthat usesspecialsyntaxwhere[] correspondso Nil and: correspondso
Cons. We canwrite ourown length  functionfor ourlists as:

listLength Nil =0
listLength (Cons x xs) = 1 + listLength XS

This function is slightly more complicatedand usesrecursion to calculatethe
lengthof aList . The rst line saysthatthe length of an emptylist (a Nil ) is O.
This muchis obvious. The secondine tells us how to calculatethe lengthof a non-
emptylist. A non-emptylist mustbe of theform Cons x xs for somevaluesof x
andxs . We know thatxs is anothedist andwe know thatwhatever the lengthof the
currentlist is, it's the length of its tail (the value of xs) plus one (to accountfor x).
Thus,we applythelistLength functionto xs andaddoneto theresult. This gives
usthelengthof theentirelist.

EXxercises

Exercise4.8 WritefunctiondistHead , listTall , listFoldl andlistFoldr
which are equivalento their Preludetwins,but functiononour List datatype Don't
worry aboutexceptionalconditionsonthe r sttwo.

4.5.4 Binary Trees

We cande ne datatypeghat are more complicatedthat lists. Supposewe want to
de ne a structurethatlookslike a binarytree. A binarytreeis a structurethathasa
singleroot node;eachnodein thetreeis eithera“leaf” or a“branch’ If it'saleaf, it
holdsavalue;if it'sabranch|t holdsavalueandaleft child andaright child. Eachof
thesechildrenis anothemode.We cande ne sucha datatypeas:

data BinaryTree a
= Leaf a
| Branch (BinaryTree a) a (BinaryTree a)

In this datatypedeclarationwe saythata BinaryTree of as s eithera Leaf
which holdsana, or it's abranchwith aleft child (whichis aBinaryTree of as),a
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main = do
s <- readFile "somefile"
leti =fs

putStrLn (show i)

Here, we use the arrow convention to “get the string out of@haction” and then
applyf to the string (called). We then, for example, print to the screen. Note that
thelet here doesn’t have a corresponding This is because we are ind®d block.
Also note that we don’t writé <- f s becauséd is just a normal function, not an
10 action.

4.4.4 Explicit Type Declarations

It is sometimes desirable to explicitly specify the typesaie elements or functions,
for one (or more) of the following reasons:

e Clarity
e Speed
e Debugging

Some people consider it good software engineering to spwftypes of all top-
level functions. If nothing else, if you're trying to comeil program and you get type
errors that you cannot understand, if you declare the typssroe of your functions
explicitly, it may be easier to figure out where the error is.

Type declarations are written separatly from the functiefirgtion. For instance,
we could explicitly type the functioequare as in the following code (an explicitly
declared type is calledtgpe signaturg

square :: Num a => a -> a
square X = X *X

These two lines do not even have to be next to eachother. Howbe type that you
specify must match the inferred type of the function defimit{or be more specific).
In this definition, you could applgquare to anything which is an instance dfum:
Int, Double, etc. However, if you knew apriori thagquare were only going to be
applied to value of typént, you couldrefineits type as:

square : Int -> Int
square X = X *X

Now, you could only applgquare to values of typént. Moreover, with this def-
inition, the compiler doesn’t have to generate the gene@éspecified in the original
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function definition since it knows you will only applsquare to Ints, so it may be
able to generate faster code.

If you have extensions turned on (“-98” in Hugs or “-fglasgewts” in GHC(i)),
you can also add a type signature to expressions and notjustiéns. For instance,
you could write:

square (x :: Int) = X * X

which tells the compiler thax is anInt; however, it leaves the compiler alone
to infer the type of the rest of the expression. What is thetgpsquare in this
example? Make your guess then you can check it either byiegtidis code into a file
and loading it into your interpreter or by asking for the tyjfehe expression:

Prelude> :t (\(x :: Int) -> X * X)

since this lambda abstraction is equivalent to the abovetimmdeclaration.

4.4.5 Functional Arguments

In Section 3.3 we saw examples of functions taking othertions as arguments. For
instancemaptook a function to apply to each element in a [fiiter took a func-
tion that told it which elements of a list to keep, dottll  took a function which told
it how to combine list elements together. As with every ofnection in Haskell, these
are well-typed.

Let’s first think about thenap function. It's job is to take a list of elements and
produce another list of elements. These two lists don't s&sodly have to have the
same types of elements. &wap will take a value of typda] and produce a value of
type [b]. How does it do this? It uses the user-supplied function toved. In order
to convert ara to ab, this function must have type — b. Thus, the type omapis
(a — b) — [a] — [b], which you can verify in your interpreter with “:t”.

We can apply the same sort of analysisfitter and discern that it has type
(a — Bool) — [a] — [a]. As we presented tHeldl  function, you might be tempted
to give it type(a — a — a) — a — [a] — a, meaning that you take a function which
combines twas into another one, an initial value of typga list ofas to produce a final
value of typea. Infact,foldl hasamore generaltypés — b — a) — a — [b] — a.
So it takes a function which turn anand ab into ana, an initial value of type and a
list of bs. It produces aa.

To see this, we can write a functi@ount which counts how many members of a
list satisfy a given constraint. You can of course Yitter andlength to do this,
but we will also do it usindoldr

module Count
where

import Char
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countl p |
count2 p |

length (filter p 1)
foldr (\x ¢ -> if p x then c+1 else c) O |

The functioning otountl is simple. It filters the list according to the predicate

p, then takes the length of the resulting list. On the othedhemunt2 uses the intial
value (which is an integer) to hold the current count. Fothealement in the list ,

it applies the lambda expression shown. This takes two agegtsic which holds the
current count ana which is the current element in the list that we're looking Ht
checks to see i holds abouk. If it does, it returns the new valwer1, increasing the
count of elements for which the predicate holds. If it dogshjust returnsc, the old
count.

EXxercises

Exercise 4.3 Figure out for yourself, and then verify the types of theofwlhg expres-
sions, if they have a type. Also note if the expression is@ayjor:

1. \x -> [X]

2.\x y z -> (xy:z])
3.\ x > x +5

4. \x -> "hello, world"
5.\x -=> x 'a
6. \X -> X X

7.\X -> X + X

4.5 Data Types

Tuples and lists are nice, common ways to define structurkgsya However, it is
often desirable to be able to define our own data structur@gianctions over them.
So-called “datatypes” are defined using tleea keyword.

451 Pairs

For instance, a definition of a pair of elements (much likedtadard, build-in pair
type) could be:

data Pair a b = Pair a b
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Let’s walk through this code one word at a time. First we sagtdl meaning that
we're defining a datatype. We then give the name of the dagatyhis case, “Pair.”
The “a” and “b” that follow “Pair” are type parameters, juitd the “a” is the type of
the functionmap. So up until this point, we've said that we're going to defingata
structure called “Pair” which is parameterized over twoeyj andb.

After the equals sign, we specify tloenstructorsof this data type. In this case,
there is a single constructor, “Pair” (this doesn’t necelsshave to have the same
name as the type, but in this case it seems to make more sekfse).this pair, we
again write “a b”, which means that in order to construéaar we need two values,
one of typea and one of typé.

This definition introduces a functioRair :: a -> b -> Pair a b that
you can use to construBir s. If you enter this code into a file and load it, you can
see how these are constructed:

Datatypes> :t Pair

Pair :: a -> b -> Pair a b
Datatypes> :t Pair 'a’

Pair 'a’ :: a -> Pair Char a
Datatypes> :t Pair 'a’ "Hello"

't Pair 'a’ "Hello"

Pair ’a’ "Hello" :: Pair Char [Char]

So, by givingPair two values, we have completely constructed a value of type
Pair. We can write functions involving pairs as:

pairFst (Pair x y) = X
pairSnd (Pair x y) = vy

In this, we've used th@attern matching:apabilities of Haskell to look at a pair
an extract values from it. In the definition p&irFst  we take an entir®air and
extract the first element; similarly fgrairSnd . We'll discuss pattern matching in
much more detail in Section 7.4.

EXxercises

Exercise 4.4 Write a data type declaration fofriple , a type which contains three
elements, all of different types. Write functiorngleFst  ,tripleSnd  andtripleThr
to extract respectively the first, second and third elements

Exercise 4.5 Write a datatypeuadruple which holds four elements. However, the
first two elements must be the same type and the last two aemest be the same
type. Write a functiofirstTwo  which returns a list containing the first two elements
and a functionastTwo which returns a list containing the last two elements. Write
type signatures for these functions
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4.5.2 Multiple Constructors

We have seen an example of the data type with one construetr: . It is also
possible (and extremely useful) to have multiple constmsct

Let us consider a simple function which searches througistafdr an element
satisfying a given predicate and then returns the first ef¢seisfying that predicate.
What should we do if none of the elements in the list satisg phedicate? A few
options are listed below:

e Raise an error

Loop indefinitely
e Write a check function

Return the first element

Raising an error is certainly an option (see Section 10.le®w®w to do this).
The problem is that it is difficult/impossible to recoverrficsuch errors. Looping
indefinitely is possible, but not terribly useful. We couldit& a sister function which
checks to see if the list contains an element satisfying dipsée and leave it up to the
user to always use this function first. We could return thé @lsment, but this is very
ad-hoc and difficult to remember.

The fact that there is no basic option to solve this problenpsr means we have to
think about it a little more. What are we trying to do? We'ngrtig to write a function
which might succeed and might not. Furthermore, if it doe=cead, it returns some
sort of value. Let’s write a datatype:

data Maybe a = Nothing
| Just a

This is one of the most common datatypes in Haskell and isegfimthe Prelude.

Here, we're saying that there are two possible ways to createething of type
Maybe a. The first is to use the nullary constructdothing , which takes no ar-
guments (this is what “nullary” means). The second is to hgeconstructodust ,
together with a value of typa.

The Maybe type is useful in all sorts of circumstances. For instanc@psse
we want to write a function (likenead) which returns the first element of a given
list. However, we don’t want the program to die if the givest lis empty. We can
accomplish this with a function like:

firstElement :: [a] -> Maybe a
firstElement [] = Nothing
firstElement (x:xs) = Just X
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The type signature here says tfiedtElement takes a list ofis and produces
something with typévlaybe a. In the first line of code, we match against the empty
list[] . If this match succeeds (i.e., the list is, in fact, emptyg,n@turnNothing . If
the first match fails, then we try to match agairsts which must succeed. In this
case, we returdust x .

For ourfindElement  function, we represent failure by the valNething and
success with valua by Just a . Our function might look something like this:

findElement :: (a -> Bool) -> [a] -> Maybe a
findElement p [] = Nothing
findElement p (x:xs) =

if p x then Just x

else findElement p xs

The first line here gives the type of the function. In this ¢ame first argument
is the predicate (and takes an element of ty@nd returnstrue if and only if the
element satisfies the predicate); the second argumentss @f is. Our return value
is maybeana. That is, if the function succeeds, we will retudost a and if not,
Nothing

Another useful datatype is thi&ther  type, defined as:

data Either a b = Left a
| Right b

This is a way of expressing alternation. That is, somethingme Either a b
is eithera value of typea (using theLeft constructor) or a value of tyge (using the
Right constructor).

EXxercises

Exercise 4.6 Write a datatypduple which can hold one, two, three or four elements,
depending on the constructor (that is, there should be famstructors, one for each
number of arguments). Also provide functidaglel throughtuple4 which take a
tuple and returnJust the value in that position, dlothing if the number is invalid
(i.e., you ask for théuple4 on a tuple holding only two elements).

Exercise 4.7 Based on our definition ofuple from the previous exercise, write a
function which takes &uple and returns either the value (if it's a one-tuple), a
Haskell-pair (i.e.,('a’,5) ) if it's a two-tuple, a Haskell-triple if it's a three-tuple
or a Haskell-quadruple if it's a four-tuple. You will need tise theEither type to
represent this.
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4.5.3 Recursive Datatypes

We can also defineecursive datatypesThese are datatypes whose definitions are
based on themselves. For instance, we could define a ligygeatas:

data List a = Nil
| Cons a (List a)

In this definition, we have defined what it means to be of tyjpea. We say that a
listis either emptyNlil ) or it's theCons of a value of type and another value of type
List a. This is almost identical to the actual definition of the tsttatype in Haskell,
except that uses special syntax whgrecorresponds tiNil and: corresponds to
Cons. We can write our owhength  function for our lists as:

listLength Nil = 0
listLength (Cons x xs) = 1 + listLength xs

This function is slightly more complicated and usesursionto calculate the
length of aList . The first line says that the length of an empty listN# ) is 0.
This much is obvious. The second line tells us how to caleuta¢ length of a non-
empty list. A non-empty list must be of the for@ons x xs for some values oX
andxs . We know thatxs is another list and we know that whatever the length of the
current list is, it's the length of its tail (the value 8§) plus one (to account fax).
Thus, we apply théstLength function toxs and add one to the result. This gives
us the length of the entire list.

Exercises

Exercise 4.8 Write functiondistHead , listTail , listFoldl andlistFoldr
which are equivalent to their Prelude twins, but functioncam List datatype. Don't
worry about exceptional conditions on the first two.

4.5.4 Binary Trees

We can define datatypes that are more complicated than [&ippose we want to
define a structure that looks like a binary tree. A binary tsea structure that has a
single root node; each node in the tree is either a “leaf” dorarich.” If it's a leaf, it
holds a value; if it's a branch, it holds a value and a leftethihd a right child. Each of
these children is another node. We can define such a datagype a

data BinaryTree a
= Leaf a
| Branch (BinaryTree a) a (BinaryTree a)

In this datatype declaration we say thaBmaryTree of as is either aLeaf
which holds arm, or it's a branch with a left child (which is BinaryTree of as), a
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node value (which is aa), and a right child (which is alsoBinaryTree  of as). Itis
simple to modify thdistLength function so that instead of calculating the length
of lists, it calculates the number of nodes iBiaaryTree . Can you figure out how?
We can call this functiotreeSize . The solution is given below:

treeSize (Leaf x) = 1
treeSize (Branch left x right) =
1 + treeSize left + treeSize right

Here, we say that the size of a leafliand the size of a branch is the size of its left
child, plus the size of its right child, plus one.

EXxercises

Exercise 4.9 Write a functiorelements which returns the elements irBanaryTree

in a bottom-up, left-to-right manner (i.e., the first elem@turned in the left-most leaf,
followed by its parent’s value, followed by the other ctgldalue, and so on). The re-
sult type should be a normal Haskell list.

Exercise 4.10Write a fold function forBinaryTree s and rewriteelements in
terms of it (call the new onelements2 ).

455 Enumerated Sets

You can also use datatypes to define things like enumeratedfseinstance, a type
which can only have a constrained number of values. We cafidela color type:

data Color
= Red
| Orange
| Yellow
| Green
| Blue
| Purple
| White
| Black

This would be sufficient to deal with simple colors. Suppogewmere using this to
write a drawing program, we could then write a function to e between &olor
and a RGB triple. We can write@lorToORGB function, as:

colorToRGB Red = (255,0,0)
colorToRGB Orange = (255,128,0)
colorToRGB Yellow = (255,255,0)
colorToRGB Green (0,255,0)
colorToRGB Blue (0,0,255)
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colorToRGB Purple = (255,0,255)
colorToRGB White = (255,255,255)
colorToRGB Black = (0,0,0)

If we wanted also to allow the user to define his own customrsplwve could
change th&olor datatype to something like:

data Color
= Red

| Orange

| Yellow

| Green

| Blue

| Purple

| White

| Black

| Custom Int Int Int -- R G B components

And add a final definition focolorToORGB :

colorToRGB (Custom r g b) = (r,g,b)

4.5.6 The Unittype

A final useful datatype defined in Haskell (from the Preludejhe unit type. It's
definition is:

data () = ()

The only true value of this type {§ . This is essentially the same asad type in
a langauge like C or Java and will be useful when we talk ab@unhIChapter 5.
We'll dwell much more on data types in Sections 7.4 and 8.3.

4.6 Continuation Passing Style

There is a style of functional programming called “Contitioia Passing Style” (also
simply “CPS”). The idea behind CPS is to pass around as aiumatgument what to
do next. | will handwave through an example which is too carpb write out at this
point and then give a real example, though one with less .

Consider the problem of parsing. The idea here is that we hasequence of
tokens (words, letters, whatever) and we want to ascriletstre to them. The task
of converting a string of Java tokens to a Java abstract syrege is an example of a
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parsing problem. So is the task of taking an English sentandecreating a parse tree
(though the latter is quite a bit harder).

Suppose we're parsing something like C or Java where fumctiake arguments
in parentheses. But for simplicity, assume they are notraggé by commas. That
is, a function call looks likenyFunction(x y z) . We want to convert this into
something like a pair containing first the string “myFunatiand then a list with three
string elements: “x”, “y” and “z".

The general approach to solving this would be to write a fionctvhich parses
function calls like this one. First it would look for an idéigr (“myFunction”), then
for an open parenthesis, then for zero or more identifiees) tor a close parenthesis.

One way to do this would be to have two functions:

parseFunction :
[Token] -> Maybe ((String, [String]), [Token])

parseldentifier ::
[Token] -> Maybe (String, [Token])

The idea would be that if we cgllarseFunction | if it doesn’treturrNothing ,
then it returns the pair described earlier, together witlatewer is left after parsing the
function. Similarly,parseldentifier will parse one of the arguments. If it returns
Nothing ,thenit’'s notan argument; if it returdsist something, then that something
is the argument paired with the rest of the tokens.

What theparseFunction function would do is to parse an identifier. If this
fails, it fails itself. Otherwise, it continues and triesgarse a open parenthesis. If that
succeeds, it repeatedly caflarseldentifier until that fails. It then tries to parse
a close parenthesis. If that succeeds, then it's done. Wibeerit fails.

There is, however, another way to think about this problehe advantage to this
solution is that functions no longer need to return the remagitokens (which tends to
get ugly). Instead of the above, we write functions:

parseFunction
[Token] -> ((String, [String]) -> [Token] -> a) ->
([Token] -> a) -> a

parseldentifier ::
[Token] -> (String -> [Token] -> a) ->
([Token] -> a) -> a

Let’'s considewparseldentifier . This takes three arguments: a list of tokens
and twocontinuations The first continuation is what to do when you succeed. The
second continuation is what to do if you fail. Whadrseldentifier does, then,
is try to read an identifier. If this succeeds, it calls thet fisntinuation with that
identifier and the remaining tokens as arguments. If reattiedgdentifier fails, it calls
the second continuation with all the tokens.
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Now considemparseFunction . Recall that it wants to read an identifier, an
open parenthesis, zero or more identifiers and a close passt Thus, the first thing
it does is callparseldentifier . The first argument it gives is the list of tokens.
The first continuation (which is whatarseldentifier should do if it succeeds)
is in turn a function which will look for an open parenthesisro or more arguments
and a close parethesis. The second argument (the failuwenarg) is just going to be
the failure function given tparseFunction

Now, we simply need to define this function which looks for grew parenthesis,
zero or more arguments and a close parethesis. This is easyrite a function which
looks for the open parenthesis and then cplsseldentifier with a success
continuation that looks for more identifiers, and a “failucentinuation which looks
for the close parenthesis (note that this failure doesaltyenean failure — it just means
there are no more arguments left).

| realize this discussion has been quite abstract. | woullthgly give code for all
this parsing, butitis perhaps too complex at the momente&us consider the problem
of folding across a list. We can write a CPS fold as:

cfold f z [] = z
cfold’ f z (xxxs) = f x z (\y -> cfold’ f y xs)

In this codecfold’ take a functiorf which takes three arguments, slightly dif-
ferent from the standard folds. The first is the current listreent X, the second is the
accumulated elemert, and the third is the continuation: basicially, what toroxt

We can write a wrapper function fafold’  that will make it behave more like a
normal fold:

cfold f z | = cfold (\x tg->fx (gt)zl

We can test that this function behaves as we desire:

CPS> cfold (+) 0 [1,2,3,4]
10

CPS> cfold () [] [1,2,3]
[1,2,3]

One thing that's nice about formulatirgfold in terms of the helper function
cfold” is that we can use the helper function directly. This enaldet® change, for
instance, the evaluation order of the fold very easily:

CPS> cfold’ (\x t g -> (x : g t) [] [1..10]
[1,2,3,4,5,6,7,8,9,10]
CPS> cfold’ (\x t g -=> g (x : t) [] [1..10]
[10,9,8,7,6,5,4,3,2,1]
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The only difference between these callgfold’  is whether we call the continu-
ation before or after constructing the list. As it turns dhits slight difference changes
the behavior for being likéoldr  to being likefoldl . We can evaluate both of these
calls as follows (lef be the folding function):

cfold (\x tg-> (x:gt)[ [123]
==> cfold’ f [] [1,2,3]
=> f 1 0 (y -> cfold’ f y [2,3])
=> 1 : ((\y -> cfold” fy [23]) []

==> 1 : (cfold’ f [] [2,3])

==> 1:(f 21 (y -> cfold fy [3])
==> 1:(2 : ((\y -> cfold’ fy [3]) )
==> 1 : (2 : (cfold" f [] [3])

==> 1:2:(f3[(y-> cfold fy))
==> 1 : (2 . (3 : (CfOId, f [] [])))

=> 1:2:@:1)

=> [1,2 3]

cfold (\x t g -> g (xit)) [] [1,2,3]
==> cfold’ f [] [1,2,3]
=> (xtg->9g xt)1l][ (\y->cfold fy [2,3])
==> (\g -> g [1]) (\y -> cfold’ f y [2,3])
==> (\y -> cfold’ f y [2,3]) [1]
==> cfold’ f [1] [2,3]
=> (Xxtg->g9g (xt) 2 [1] (\y -> cfold fy [3])
==> cfold’ f (2:[1]) [3]
==> cfold’ f [2,1] [3]
==> (xtg->g9g xt) 3[21] (\y -> cfold fy [])
==> cfold’ f (3:[2,1]) []
==> [3,2,1]

In general, continuation passing style is a very powerfgti@ation, though it can
be difficult to master. We will revisit the topic more thorduglater in the book.

EXxercises

Exercise 4.11Test whether the CPS-style fold mimicks eithefiotfr  andfoldl
If not, where is the difference?

Exercise 4.12Write map andfilter using continuation passing style.
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Basic Input/Output

As we mentioned earlier, it is difficult to think of a good, ateway to integrate oper-
ations like input/output into a pure functional languagefdde we give the solution,
let’s take a step back and think about the difficulties inhemesuch a task.

Any IO library should provide a host of functions, contaigifat a minimum) op-
erations like:

e print a string to the screen
e read a string from a keyboard
e write data to a file

e read data from a file

There are two issues here. Let’s first consider the initial éexamples and think
about what their types should be. Certainly the first openatl hesitate to call it a
“function”) should take &tring argument and produce something, but what should it
produce? It could produce a urfjt , since there is essentially no return value from
printing a string. The second operation, similarly, shaeltirn aString, but it doesn’t
seem to require an argument.

We want both of these operations to be functions, but theyogréefinition not
functions. The item that reads a string from the keyboarahathe a function, as it
will not return the samé&tring every time. And if the first function simply returifps
every time, there should be no problem with replacing it witunctionf _ = () ,
due to referential transparency. But clearly this does agelihe desired effect.

5.1 The RealWorld Solution
In a sense, the reason that these items are not functionatithtty interact with the

“real world.” Their values depend directly on the real wor8lipposing we had a type
RealWorld, we might write these functions as having type:

57
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printAString :: RealWorld -> String -> RealWorld
readAString :: RealWorld -> (RealWorld, String)

That is, printAString takes a current state of the world and a string to print;
it then modifies the state of the world in such a way that thagis now printed and
returns this new value. SimilarlyeadAString  takes a current state of the world
and returns aewstate of the world, paired with tHgring that was typed.

This would be a possible way to do IO, though it is more thanesshat unweildy.

In this style (assuming an initidRealWorld state were an argument toain ), our
“Name.hs” program from Section 3.8 would look somethinglik

main rwW =
let rW’ = printAString rW "Please enter your name:
(rw”,;name) = readAString rw’
in  printAString rw”
("Hello, " ++ name ++ ", how are you?")

This is not only hard to read, but prone to error, if you acotd#y use the wrong
version of theRealWorld. It also doesn’t model the fact that the program below makes
no sense:

main rwW =
let rW' = printAString rW "Please enter your name:
(rw”,;name) = readAString rw’
in  printAString rw’ -- OOPS!
("Hello, " ++ name ++ ", how are you?")

In this program, the reference t&/” on the last line has been changed to a ref-
erence taW'’ . It is completely unclear what this program should do. Qigedtrmust
read a string in order to have a value fame to be printed. But that means that the
RealWorld has been updated. However, then we try to ignore this updatsibg an
“old version” of theRealWorld. There is clearly something wrong happening here.

Suffice it to say that doing 10 operations in a pure lazy funwdl language is not
trivial.

5.2 Actions

The breakthrough for solving this problem came when Phil Mfackalized that mon-
ads would be a good way to think about IO computations. In facnads are able to
express much more than just the simple operations descaib@ee; we can use them
to express a variety of constructions like concurrencegptians, 10, non-determinism
and much more. Moreover, there is nothing special about thieey can be defined
within Haskell with no special handling from the compiler (thougimpilers often
choose to optimize monadic operations).
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As pointed out before, we cannot think of things like “prirgteing to the screen” or
“read data from a file” as functions, since they are not (inpihiee mathematical sense).
Therefore, we give them another nanaetions Not only do we give them a special
name, we give them a special type. One particularly usefidmats putStrLn , which
prints a string to the screen. This action has type:

putStrLn :: String -> 10 ()

As expectedputStrLn  takes a string argument. What it returns is of tyfe
() . This means that this function is actually an action (thawiet thelO means).
Furthermore, when this actionévaluatedor “run”) , the result will have typ€).

m NOTEm Actually, this type means thautStrLn  is an actiorwithin
the 10 monadbut we will gloss over this for now.

You can probably already guess the typegeflLine

getLine :: 10 String

This means thagetLine is an IO action that, when run, will have tyfSering.

The question immediately arises: “how do you ‘run’ an actiomhis is something
that is left up to the compiler. You cannot actually run ariacyourself; instead, a
program is, itself, a single action that is run when the cdeapprogram is executed.
Thus, the compiler requires that thin function have typéO (), which means that
itis an IO action that returns nothing. The compiled coda vescutes this action.

However, while you are not allowed to run actions yoursetfy are allowed to
combine actions. In fact, we have already seen one way to do this ubi@go
notation (how taeally do this will be revealed in Chapter 9). Let’s consider thgiorl
name program:

main = do
hSetBuffering stdin LineBuffering
putStrLn "Please enter your name: "
name <- getLine
putStrLn ("Hello, " ++ name ++ ", how are you?")

We can consider théo notation as a way to combine a sequence of actions. More-
over, the<- notation is a way to get the value out of an action. So, in thigymam,
we're sequencing four actions: setting bufferinqouaStrLn , agetLine and an-
otherputStrLn . TheputStrLn action has typ&tring — 10 (), so we provide it a
String, so the fully applied action has typ@ (). This is something that we are allowed
to execute.

ThegetLine action has typ¢O String, so it is okay to execute it directly. How-
ever, in order to get the value out of the action, we wnia@ne <- getLine , which
basically means “rugetLine , and put the results in the variable callegime.”
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Normal Haskell constructions liké&'then/elseandcase/ofcan be used within the
do notation, but you need to be somewhat careful. For instainceur “guess the
number” program, we have:

do ...
if (read guess) < num

then do putStrLn "Too low!"
doGuessing num

else if read guess > num
then do putStrLn "Too high!"

doGuessing num

else do putStrLn "You Win!"

If we think about how théf/then/elseconstruction works, it essentially takes three
arguments: the condition, the “then” branch, and the “elsgihnch. The condition
needs to have typBool, and the two branches can have any type, provided that they
have thesametype. The type of the entir@then/elseconstruction is then the type of
the two branches.

In the outermost comparison, we hgvead guess) < num  as the condition.
This clearly has the correct type. Let's just consider theft’ branch. The code here
is:

do putStrLn "Too low!"
doGuessing num

Here, we are sequencing two actioqmitStrLn  anddoGuessing . The first
has typelO (), which is fine. The second also has tyife(), which is fine. The type
result of the entire computation is precisely the type offith& computation. Thus, the
type of the “then” branch is als® (). A similar argument shows that the type of the
“else” branch is als®O (). This means the type of the entiféhen/elseconstruction
is10 (), which is just what we want.

= NOTE m In this code, the last line iselse do putStrLn "You
win!" ". This is somewhat overly verbose. In facglSe putStrLn
"You Win!" "would have been sufficient, sinc® is only necessary tq
sequence actions. Since we have only one action here, ip&flwous.

It is incorrectto think to yourself “Well, | already starteddo block; | don’t need
another one,” and hence write something like:

do if (read guess) < num
then putStrLn "Too low!"
doGuessing num
else ...
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Here, since we didn’t repeat tlde, the compiler doesn’t know that tipeitStrLn
anddoGuessing calls are supposed to be sequenced, and the compiler wik thi
you'retrying to callputStrLn  with three arguments: the string, the functawGuessing
and the integemum. It will certainly complain (though the error may be sometdhi&
ficult to comprehend at this point).

We can write the sam#@goGuessing function using acasestatement. To do this,
we first introduce the Prelude functicompare , which takes two values of the same
type (in theOrd class) and returns one &T, LT, EQ depending on whether the first
is greater than, less than or equal to the second.

doGuessing nhum = do
putStrLn "Enter your guess:"
guess <- getLine
case compare (read guess) num of
LT -> do putStrLn "Too low!"
doGuessing num
GT -> do putStrLn "Too high!"
doGuessing num
EQ -> putStrLn "You Win!"

Here, again, thelos after the-> s are necessary on the first two options, because
we are sequencing actions.

If you're used to programming in an imperative language Gker Java, you might
think thatreturn will exit you from the current function. This is not so in Hak
In Haskell,return simply takes a normal value (for instance, one of typént) and
makes it into an action that returns the given value (forainsg, the value of typlat).
In particular, in an imperative language, you might writis flunction as:

void doGuessing(int num) {
print "Enter your guess:";
int guess = atoi(readLine());

if (guess == num) {
print "You win!";
return ();
}
/I we won't get here if guess == num

if (Qquess < num) {
print "Too low!";
doGuessing(num);

} else {
print "Too high!";
doGuessing(num);

}

}
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Here, because we have thegurn () in the firstif match, we expect the code
to exit there (and in mode imperative languages, it doesjvaver, the equivalent code
in Haskell, which might look something like:

doGuessing num = do
putStrLn "Enter your guess:"
guess <- getLine
case compare (read guess) num of
EQ -> do putStrLn "You win!"
return ()

-- we don't expect to get here unless guess == num
if (read guess < num)
then do print "Too low!";
doGuessing
else do print "Too high!";
doGuessing

will not behave as you expect. First of all, if you guess ccttyeit will first print “You
win!.” but it won’t exit, and it will check whetheguess is less thamum. Of course
it is not, so the else branch is taken, and it will print “Toglhi" and then ask you to
guess again.

On the other hand, if you guess incorrectly, it will try to kxate the case statement
and get eitheL. T or GTas the result of theompare . In either case, it won't have a
pattern that matches, and the program will fail immediatéith an exception.

EXxercises

Exercise 5.1 Write a program that asks the user for his or her name. If thmeas
one of Simon, John or Phil, tell the user that you think Hdskel great programming
language. If the name is Koen, tell them that you think delmggigaskell is fun (Koen
Classen is one of the people who works on Haskell debuggitiggrwise, tell the user
that you don’t know who he or she is.

Write two different versions of this program, one usihgtatements, the other using a
case statement.

5.3 The IO Library

The IO Library (available bymporting thelO module) contains many definitions, the
most common of which are listed below:

data IOMode = ReadMode | WriteMode
| AppendMode | ReadWriteMode

openFile .. FilePath -> IOMode -> IO Handle
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hClose > Handle -=> 10 ()

hiIsEOF > Handle -> 10 Bool
hGetChar > Handle -> 10 Char
hGetLine :» Handle -> IO String
hGetContents :: Handle -> 10 String
getChar ;2 10 Char

getLine 10 String

getContents :: 10 String

hPutChar > Handle -> Char -> 10 ()
hPutStr > Handle -> String -> 10 ()
hPutStrLn ;> Handle -> String -> 10 ()
putChar ;> Char -> 10 ()

putStr ;o String -=> 10 ()

putStrLn o String -=> 10 ()

readFile . FilePath -> 10 String
writeFile . FilePath -> String -> 10 ()
bracket

Oa->(@->10b)->(a->10c) ->10c

m NOTE m The typeFilePath is a type synonynfor String. That is,
there is no difference betwedtilePath and String. So, for instance
thereadFile  function takes &tring (the file to read) and returns g
action that, when run, produces the contents of that file.S&etion 8.1
for more about type synonyms.

=)

Most of these functions are self-explanatory. DpenFile andhClose func-
tions open and close a file, respectively, usingltbilode argument as the mode for
opening the file. hIsEOF tests for end-of file. hGetChar andhGetLine read
a character or line (respectively) from a fileGetContents  reads the entire file.
The getChar , getLine andgetContents  variants read from standard input.
hPutChar prints a character to a fildjPutStr  prints a string; andPutStrLn
prints a string with a newline character at the end. The agsiwithout theh prefix
work on standard output. ThreadFile  andwriteFile functions read an entire
file without having to open it first.

Thebracket function is used to perform actions safely. Consider a fiondhat
opens a file, writes a character to it, and then closes the Wilaen writing such a
function, one needs to be careful to ensure that, if there\warerror at some point,
the file is still successfully closed. Thacket function makes this easy. It takes
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three arguments: The first is the action to perform at thertvéggy. The second is the
action to perform at the end, regardless of whether there&rir or not. The third is
the action to perform in the middle, which might result in aroe For instance, our
character-writing function might look like:

writeChar :: FilePath -> Char -> 10 ()
writeChar fp ¢ =
bracket
(openFile fp ReadMode)
hClose
(\n -> hPutChar h c)

This will open the file, write the character and then closefilee However, if
writing the character failshClose will still be executed, and the exception will be
reraised afterwards. That way, you don’t need to worry to@imabout catching the
exceptions and about closing all of your handles.

5.4 AFile Reading Program

We can write a simple program that allows a user to read arné ¥iles. The interface
is admittedly poor, and it does not catch all errors (try negda non-existant file).
Nevertheless, it should give a fairly complete example ok o use 10. Enter the
following code into “FileRead.hs,” and compile/run:

module Main
where

import 10

main = do
hSetBuffering stdin LineBuffering
doLoop

doLoop = do
putStrLn "Enter a command rFN wFN or g to quit:"
command <- getLine
case command of
'g:_ -> return ()
'rflename -> do putStrLn ("Reading " ++ filename)
doRead filename
doLoop
‘'w’:filename -> do putStrLn ("Writing " ++ filename)
doWrite filename
doLoop
-> doLoop
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doRead filename =
bracket (openFile filename ReadMode) hClose
(\h -> do contents <- hGetContents h
putStrLn "The first 100 chars:”
putStrLn (take 100 contents))

doWrite filename = do
putStrLn "Enter text to go into the file:"
contents <- getLine
bracket (openFile filename WriteMode) hClose
(\n -> hPutStrLn h contents)

What does this program do? First, it issues a short stringsifuctions and reads
a command. It then performscaseswitch on the command and checks first to see if
the first character is a‘q.’ Ifitis, it returns a value of utyipe.

m NOTEm Thereturn function is a function that takes a value of type
a and returns an action of tyd® a. Thus, the type ofeturn () is
10 ().

If the first character of the command wasn'’t a ‘q,’ the progieracks to see if it
was an ' followed by some string that is bound to the vardilename . It then
tells you that it's reading the file, does the read and mwisoop again. The check
for ‘w’ is nearly identical. Otherwise, it matchesthe wildcard character, and loops
to doLoop .

ThedoRead function uses theracket function to make sure there are no prob-
lems reading the file. It opens a fileeadMode, reads its contents and prints the first
100 characters (theake function takes an integer and a list and returns the firat
elements of the list).

The doWrite function asks for some text, reads it from the keyboard, aed t
writes it to the file specified.

= NOTEm Both doRead anddoWrite could have been made simpler
by usingreadFile  andwriteFile , but they were written in the ex
tended fashion to show how the more complex functions aré.use

The only major problem with this program is that it will dieyibu try to read a file
that doesn’t already exists or if you specify some bad fileméke » \"# _@ You may
think that the calls tdoracket in doRead anddoWrite should take care of this,
but they don’t. They only catch exceptions within the maidyyamot within the startup
or shutdown functionsopenFile andhClose , in these cases). We would need to
catch exceptions raised lopenFile , in order to make this complete. We will do this
when we talk about exceptions in more detail in Section 10.1.
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Exercises

Exercise 5.2 Write a program that first asks whether the user wants to read f file,
write to a file or quit. If the user responds quit, the programosld exit. If he responds
read, the program should ask him for a file name and print thatdi the screen (if the
file doesn't exist, the program may crash). If he respondtewitishould ask him for a
file name and then ask him for text to write to the file, with “igsaling completion.
All but the “ should be written to the file.

For example, running this program might produce:

Do you want to [read] a file, [wite] a file or [quit]?
r ead

Enter a file nane to read:

foo

...contents of foo...

Do you want to [read] a file, [wite] a file or [quit]?
write

Enter a file nane to wite:

foo

Enter text (dot on a line by itself to end):

this is some

text for

foo

Do you want to [read] a file, [wite] a file or [quit]?
r ead
Enter a file name to read:

foo

this is some
text for
foo

Do you want to [read] a file, [wite] a file or [quit]?
read

Enter a file name to read:

f oof

Sorry, that file does not exist.

Do you want to [read] a file, [wite] a file or [quit]?
bl ech

| don’t understand the comand bl ech.

Do you want to [read] a file, [wite] a file or [quit]?
qui t

Goodbye!
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Modules

In Haskell, program subcomponents are divided into modd#esh module sits in its
own file and the name of the module should match the name ofléhéaithout the
“.hs” extension, of course), if you wish to ever use that medu a larger program.

For instance, suppose | am writing a game of poker. | may vadiate a separate
module called “Cards” to handle the generation of cardssthifling and the dealing
functions, and then use this “Cards” module in my “Poker” med. That way, if |
ever go back and want to write a blackjack program, | don’etltawewrite all the code
for the cards; | can simply import the old “Cards” module.

6.1 Exports

Suppose as suggested we are writing a cards module. | haveldfie implementation
details, but suppose the skeleton of our module looks santglike this:

module Cards
where

data Card
data Deck

newDeck :: ... -> Deck
newDeck = ...

shuffle :: ... -> Deck -> Deck
shuffle = ...

-- 'deal deck n’ deals 'n’ cards from ’'deck’
deal :: Deck -> Int -> [Card]
deal deck n = dealHelper deck n []

67
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dealHelper = ...

In this code, the functionleal calls a helper functiomlealHelper . The im-
plementation of this helper function is very dependent @netkact data structures you
used forCard andDeck so we don’t want other people to be able to call this function.
In order to do this, we create &xport list which we insert just after the module name
declaration:

module Cards ( Card(),
Deck(),
newDeck,
shuffle,
deal

where

Here, we have specified exactly what functions the moduler/spso people who
use this module won't be able to access dealHelper function. The() after
Card andDeck specify that we are exporting thgpebut none of the constructors.
For instance if our definition a€ard were:

data Card = Card Suit Face
data Suit = Hearts

| Spades

| Diamonds

| Clubs
data Face = Jack

| Queen

| King

| Ace

| Number Int

Then users of our module would be ableusethings of typeCard , but wouldn’t
be able to construct their ow®ard s and wouldn’t be able to extract any of the suit/face
information stored in them.

If we wanted users of our module to be able to access all ofitfismation, we
would have to specify it in the export list:

module Cards ( Card(Card),
Suit(Hearts,Spades,Diamonds,Clubs),
Face(Jack,Queen,King,Ace,Number),



6.2. IMPORTS 69

where

This can get frustrating if you're exporting datatypes withny constructors, so if
you want to export them all, you can simply write) , asin:

module Cards ( Card(..),
Suit(..),
Face(..),

where

And this will automatically export all the constructors.

6.2 Imports

There are a few idiosyncracies in the module import systarhab long as you stay
away from the corner cases, you should be fine. Suppose, aepbgbu wrote a
module called “Cards” which you saved in the file “Cards.h¥bu are now writing
your poker module and you wantitmportall the definitions from the “Cards” module.
To do this, all you need to do is write:

module Poker
where

import Cards

This will enable to you use any of the functions, types andstroictors exported
by the module “Cards”. You may refer to them simply by theimsain the “Cards”
module (as, for instancegwDeck), or you may refer to them explicitely as imported
from “Cards” (as, for instanc&ards.newDeck ). It may be the case that two module
export functions or types of the same name. In these casesgamimport one of
the modulegqualified which means that you would no longer be able to simply use
the newDeck format but must use the long&ards.newDeck format, to remove
ambiguity. If you wanted to import “Cards” in this qualifiedrim, you would write:

import qualified Cards

Another way to avoid problems with overlapping function diifons is to import
only certain functions from modules. Suppose we knew the fomiction from “Cards”
that we wanted wasewDeck, we could import only this function by writing:
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import Cards (newDeck)

On the other hand, suppose we knew that thatited function overlapped with
another module, but that we didn’t need the “Cards” versiahat function. We could
hide the definition ofleal and import everything else by writing:

import Cards hiding (deal)

Finally, suppose we want to import “Cards” as a qualified medout don’t want
to have to typeCards. out all the time and would rather just type, for instanCe—
we could do this using thas keyword:

import qualified Cards as C

These options can be mixed and matched — you can give expiligdrt lists on
qualified/as imports, for instance.

6.3 Hierarchical Imports

Though technically not part of the Haskell 98 standard, riasikell compilers support
hierarchical imports. This was designed to get rid of clutighe directories in which
modules are stored. Hierarchical imports allow you to dpetd a certain degree)
where in the directory structure a module exists. For irgaif you have a “haskell”
directory on your computer and this directory is in your cdens path (see your
compiler notes for how to set this; in GHC it's “-i", in Hugssit*-P"), then you can
specify module locations in subdirectories to that dirgcto

Suppose instead of saving the “Cards” module in your gerrexskell directory,
you created a directory specifically for it called “Cardshelfull path of theCards.hs
file is thenhaskell/Cards/Cards.hs (or, for Windowshaskell \Cards \Cards.hs ).
If you then change the name of the Cards module to “CardssCaad in:

module Cards.Cards(...)
where

You could then import it in any module, regardless of this oet directory, as:

import Cards.Cards

If you start importing these module qualified, | highly reaoend using thes
keyword to shorten the names, so you can write:
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import qualified Cards.Cards as Cards

... Cards.newDeck ...

instead of:

import qualified Cards.Cards

... Cards.Cards.newDeck ...

which tends to get ugly.

6.4 Literate Versus Non-Literate

The idea of literate programming is a relatively simple dng,took quite a while to
become popularized. When we think about programming, wekthbout thecode
being the default mode of entry andmment®eing secondary. That is, we write code
without any special annotation, but comments are annoteétbaceither-- or{- ...

- }. Literate programming swaps these preconceptions.

There are two types of literate programs in Haskell; the {issts so-called Bird-
scripts and the second usé$gX-style markup. Each will be discussed individually.
No matter which you use, literate scripts must have the siterihs instead of hs to
tell the compiler that the program is written in a literatgest

6.4.1 Bird-scripts

In a Bird-style literate program, comments are default amdecis introduced with a
leading greater-than signX"). Everything else remains the same. For example, our
Hello World program would be written in Bird-style as:

This is a simple (literate!) Hello World program.

> module Main
> where

All our main function does is print a string:
> main = putStrLn "Hello World"

Note that the spaces between the lines of code and the “cotshae necessary
(your compiler will probably complain if you are missing thg When compiled or

loaded in an interpreter, this program will have the exaotesaroperties as the non-
literate version from Section 3.4.
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6.4.2 LaTeX-scripts

IATEX is a text-markup language very popular in the academic conityfor publish-
ing. If you are unfamiliar withATEX, you may not find this section terribly useful.
Again, a literate Hello World program written iATEX-style would look like:

This is another simple (literate!) Hello World program.

\begin{code}

module Main
where

\end{code}

All our main function does is print a string:
\begin{code}

main = putStrLn "Hello World"
\end{code}

In IATEX-style scripts, the blank lines armtnecessary.
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Advanced Features

Discussion

7.1 Sections and Infix Operators

We've already seen how to double the values of elements 8t adingmap:

Prelude> map (\x -> x  *2) [1,2,3,4]
[2,4,6,8]

However, there is a more concise way to write this:

Prelude> map ( *2) [1,2,3,4]
[2,4,6,8]

This type of thing can be done for any infix function:

Prelude> map (+5) [1,2,3,4]
[6,7,8,9]

Prelude> map (/2) [1,2,3,4]
[0.5,1.0,1.5,2.0]

Prelude> map (2/) [1,2,3,4]
[2.0,1.0,0.666667,0.5]

You might be tempted to try to subtract values from elememtslist by mapping
-2 across a list. This won't work, though, because while thm +2 is parsed as
the standard plus operator (as there is no ambiguity); time-2 is interpreted as the
unary minus, not the binary minus. Tht& here is thenumber—2, not the function
Ar.x — 2.

In general, these are called sections. For binary infix dpesdlike +), we can
cause the function to become prefix by enclosing it in passtheFor example:

73
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Prelude> (+) 5 3
8
Prelude> (-) 5 3
2

Additionally, we can provide either of its argument to malseation. For example:

Prelude> (+5) 3
8

Prelude> (/3) 6
2.0

Prelude> (3/) 6
0.5

Non-infix functions can be made infix by enclosing them in ltpckes (‘;’). For
example:

Prelude> (+2) ‘map‘ [1..10]
[3,4,5,6,7,8,9,10,11,12]

7.2 Local Declarations

Recall back from Section 3.5, there are many computatiorishmequire using the
result of the same computation in multiple places in a funrctiThere, we considered
the function for computing the roots of a quadratic polynalmi

roots a b ¢ =
((-b + sqrt(b *b - 4xaxc)) / (2 +a),
(-b - sqrt(b *b - 4xaxc)) / (2 +a))

In addition to thdet bindings introduced there, we can do this usingre clause.
where clauses come immediately after function definitions anahice a new level
of layout (see Section 7.11). We write this as:

roots a b ¢ =
((-b + det) / (2 *a), (-b - det) / (2 *a))
where det = sqrt(b  *b-4 *ax*c)

Any values defined in ehere clauseshadowany other values with the same name.
For instance, if we had the following code block:
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det = "Hello World"

roots a b ¢ =
((-b + det) / (2 +xa), (-b - det) / (2 *Q))
where det = sqrt(b  *b-4 *ax*c)

f = det

The value ofroots doesn’t notice the top-level declaration @ét , since it is
shadowed by the local definition (the fact that the types dovdtch doesn’t matter
either). Furthermore, sinde cannot “see inside” ofoots , the only thing it knows
aboutdet is what is available at the top level, which is the string ‘ldéNorld.” Thus,

f is a function which takes any argument to that string.

Where clauses can contain any number of subexpressionbgyunust be aligned
for layout. For instance, we could also pull out thea computation and get the
following code:

roots a b ¢ =
((-b + det) / (a2), (-b - det) / (a2))
where det = sqrt(b  *b-4 xaxc)
a2 2*a

Sub-expressions iwhere clauses must come after function definitions. Some-
times it is more convenient to put the local definitions beftire actual expression
of the function. This can be done by usiteg/in clauses. We have already sdeh
clauseswhere clauses are virtually identical to théét clause cousins except for their
placement. The sanmreots function can be written usinigt as:

roots a b ¢ =
let det = sqgrt (b *b - 4 xaxc)
a2 = 2*a

in (-b + det) / a2, (-b - det) / a2)

Using awhere clause, it looks like:

roots a b ¢ = ((-b + det) / a2, (-b - det) / a2)

where
det = sgrt (b *b - 4 xaxc)
a2 = 2xa

These two types of clauses can be mixed (i.e., you can writ@etibn which has
both alet cause and avhere clause). This is strongly advisedjainst as it tends to
make code difficult to read. However, if you choose to do ituga in thelet clause
shadow those in thehere clause. So if you define the function:
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fx=
let y = x+1
in vy
where y = x+2

The value off 5 is 6, not7. Of course, | plead with you to never ever write
code that looks like this. No one should have to rememberrtidsand by shadowing
where-defined values in ket clause only makes your code difficult to understand.

In general, whether you should uet clauses owhere clauses is largely a matter
of personal preference. Usually, the names you give to thexqressions should be
sufficiently expressive that without reading their deforis any reader of your code
should be able to figure out what they do. In this cageere clauses are probably
more desirable because they allow the reader to see imrabdigiat a function does.
However, in real life, values are often given cryptic namieswhich casdet clauses
may be better. Either is probably okay, though | thivikere clauses are more common.

7.3 Partial Application

Partial application is when you take a function which tak@sguments and you supply
it with < n of them. When discussing sections in Section 7.1, we sawra fir
“partial application” in which functions like- were partially applied. For instance, in
the expressiomap (+1) [1,2,3] , the sectior(+1) is a partial application of.
This is because really takes two arguments, but we've only given it one.

Partial application is very common in function definitiormsdlasometimes goes by
the name “eta reduction”. For instance, suppose we aréngdtfunctiorlicaseString
which converts a whole string into lower case. We could vifite as:

IcaseString s = map toLower s

Here, there is no partial application (though you could erigpat applying no argu-
ments totoLower could be considered partial application). However, weasothat
the application o occurs at the end of botbaseString and ofmap toLower .
In fact, we can remove it by performing eta reduction, to get:

IcaseString = map toLower

Now, we have a partial application ofiap. it expects a function and a list, but
we've only given it the function.

This all is related to type type ahap, which is (a — b) — ([a] — [b]), when
parentheses are all included. In our cdeepwer is of typeChar — Char. Thus, if
we supply this function tonap, we get a function of typgChar] — [Char], as desired.

Now, consider the task of converting a string to lowercagskeramove all non letter
characters. We might write this as:
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IcaselLetters s = map toLower (filter isAlpha s)

But note that we can actually write this in terms of functi@mposition:

IcaseLetters s = (map toLower . filter isAlpha) s

And again, we're left with an eta reducible function:

IcaselLetters = map toLower . filter isAlpha

Writing functions in this style is very common among advahekaskell users. In
factit has a name: point-free programming (not to be cortfugth pointlessprogram- point-free programming
ming). It is call point free because in the original definitiof IcaseLetters , we
can think of the valus as a point on which the function is operating. By removing the
point from the function definition, we have a point-free ftion.

A function similar to(.) is($) . Whereag.) is function composition($) is $
function application. The definition ¢$) from the Prelude is very simple: function application
f$x=1Fx

However, this function is given very low fixity, which mearmt it can be used to
replace parentheses. For instance, we might write a fumctio

foo x y = bar y (baz (fluff (ork x)))

However, using the function application function, we canrite this as:

foo x y = bar y $ baz $ fluff $ ork x

This moderately resembles the function composition syntdee ($) function is
also useful when combined with other infix functions. Fotamge, we cannot write:

Prelude> putStrLn "5+3=" ++ show (5+3)

because thisis interpreted@sitStrLn "5+3=") ++ (show (5+3)) , Which
makes no sense. However, we can fix this by writing instead:

Prelude> putStrLn $ "5+3=" ++ show (5+3)

Which works fine.
Consider now the task of extracting from a list of tuples h# bnes whose first
componentis greater than zero. One way to write this would be
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fstGto | = filter (\ (a,b) -> a>0) |

We can first apply eta reduction to the whole function, yieddi

fstGt0 = filter (\ (a,b) -> a>0)

Now, we can rewrite the lambda function to use fhe function instead of the
pattern matching:

fstGt0 = filter (\x -> fst x > 0)

Now, we can use function composition betwdgsin and> to get:

fstGto = filter (X -> ((>0) . fst) x)

And finally we can eta reduce:

fstGt0 = filter ((>0).fst)

This definition is simultaneously shorter and easier to wstdad than the original.
We can clearly see exactly what it is doing: we're filterindgsa by checking whether
something is greater than zero. What are we checking@stheslement.

While converting to point free style often results in cleazede, this is of course
not always the case. For instance, converting the followirap to point free style
yields something nearly uninterpretable:

foo
foo

map (\x -> sqrt (3+4 *(X"2)))
map (sgrt . (3+) . (4 *) . (72))

There are a handful of combinators defined in the Preludetvdrie useful for point
free programming:

e uncurry takes a function of type — b — c and converts it into a function of
type(a,b) — c. Thisis useful, for example, when mapping across a list o6pa

Prelude> map (uncurry ( *)) [(1,2),(3,4),(5,6)]
[2,12,30]

e curry isthe opposite ofincurry and takes a function of type, b) — cand
produces a function of type— b — c.

e flip reverse the order of arguments to a function. That is, itd@kieinction of
typea — b — c and produces a function of tyge— a — c. For instance, we
can sort a list in reverse order by usitig compare
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Prelude> List.sortBy compare [5,1,8,3]
[1,3,5,8]

Prelude> List.sortBy (flip compare) [5,1,8,3]
[8,5,3,1]

This is the same as saying:

Prelude> List.sortBy (\a b -> compare b a) [5,1,8,3]
[8,5,3,1]

only shorter.

Of course, not all functions can be written in point free sty#or instance:

square X = X *X

Cannot be written in point free style, without some other barators. For instance,
if we can define other functions, we can write:

pair x
square

(%,X)
uncurry ( *) . pair

But in this case, this is not terribly useful.

Exercises

Exercise 7.1 Convert the following functions into point-free style, disgible.

funcl x | = map (\y -> y*x) |
func2 f g | = filter f (map g I)
func3 f | =1 ++ map f |
funcd | = map (\y -> y+2)
(filter (\z ->z ‘elem [1..10])
(5:1))
func5 f I = foldr (\x y ->f (y,x)) 0|
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7.4 Pattern Matching

Pattern matching is one of the most powerful features of Elagnd most functional
programming languages). It is most commonly used in conjonevith caseexpres-
sions, which we have already seen in Section 3.5. Let'smetuiourColor example
from Section 4.5. I'll repeat the definition we already hadtfe datatype:

data Color
= Red

| Orange

| Yellow

| Green

| Blue

| Purple

| White

| Black

| Custom Int Int Int -- R G B components
deriving (Show,EQ)

We then want to write a function that will convert between stimng of typeColor
and a triple ofints, which correspond to the RGB values, respectively. Spadifj if
we see & olor which isRed, we want to returr(255,0,0) , since this is the RGB
value for red. So we write that (remember that piecewisetfanalefinitions are just
casestatements):

colorToRGB Red = (255,0,0)

If we see aColor which isOrange , we want to returrf255,128,0) ; and if we
seeYellow ,we wantto returif255,255,0) , and so on. Finally, if we see a custom
color, which is comprised of three components, we want toevealiple out of these,
SO we write:

colorToRGB Orange = (255,128,0)
colorToRGB Yellow = (255,255,0)
colorToRGB Green = (0,255,0)
colorToRGB Blue = (0,0,255)
colorToRGB Purple = (255,0,255)

colorToORGB White (255,255,255)
colorToRGB Black (0,0,0)
colorToRGB (Custom r g b) = (r,g,b)

Then, in our interpreter, if we type:

Color> colorToRGB Yellow
(255,255,0)
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What is happening is this: we create a value, call, itvhich has valué&red. We
then apply this tacolorTORGB . We check to see if we can “match”againstRed.
This match fails because according to the definitiorEaf Color, Red is not equal
to Yellow . We continue down the definitions ablorTORGB and try to match
Yellow againstOrange . This fails, too. We the try to matckellow against
Yellow , which succeeds, so we use this function definition, whichpsy returns
the valug(255,255,0) , as expected.

Suppose instead, we used a custom color:

Color> colorToRGB (Custom 50 200 100)
(50,200,100)

We apply the same matching process, failing on all values fiReed to Black .
We then get to try to matcBustom 50 200 100 againstCustom r g b . We
can see that thEustom part matches, so then we go see if the subelements match. In
the matching, the variables g andb are essentially wild cards, so there is no trouble
matchingr with 50, g with 200 andb with 100. As a “side-effect” of this matching,
gets the value 5@ gets the value 200 artal gets the value 100. So the entire match
succeeded and we look at the definition of this part of thetian@and bundle up the
triple using the matched valuesiofg andb.

We can also write a function to check to see @alor is a custom color or not:

isCustomColor (Custom _ ) = True
isCustomColor _ = False

When we apply a value tsCustomColor it tries to match that value against
Custom _ _ _. This match will succeed if the value @ustom x y z foranyx,

y andz. The_ (underscore) character is a “wildcard” and will match aiyghbut will
not do the binding that would happen if you put a variable némeee. If this match
succeeds, the function returfirue ; however, if this match fails, it goes on to the next
line, which will match anything and then returalse .

For some reason we might want to define a function which tellwhether a given
color is “bright” or not, where my definition of “bright” is tit one of its RGB compo-
nents is equal to 255 (admittedly and arbitrary definitiaxt,ils simply an example).
We could define this function as:

isBright = isBright' . colorToRGB
where isBright’ (255, , ) = True
isBright' (_,255, ) = True
isBright' (_,_,255) = True
isBright’ _ = False

Let’s dwell on this definition for a second. TheBright  function is the compo-
sition of our previously defined functi@molorTORGB and a helper functioisBright’
which tells us if a given RGB value is bright or not. We couldleee the first line here
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with isBright ¢ = isBright' (colorToRGB c) but there is no need to ex-
plicitly write the parameter here, so we don’t. Again, thisi¢tion composition style
of programming takes some getting used to, so | will try to ii$eequently in this
tutorial.

TheisBright’ helper function takes the RGB triple producectioyorTORGB .

It first tries to match it againg®255, _, ) which succeeds if the value has 255 in
its first position. If this match succeedisBright’ returnsTrue and so does
isBright . The second and third line of definition check for 255 in theosel and
third position in the triple, respectively. The fourth lindefallthrough, matches ev-
erything else and reports it as not bright.

We might want to also write a function to convert between R@Bds andColors.
We could simple stick everything in@ustom constructor, but this would defeat the
purpose; we want to use ti@ustom slot only for values which don’t match the pre-
defined colors. However, we don’t want to allow the user tostact custom colors
like (600,-40,99) since these are invalid RGB values. Wddcthuow an error if such
a value is given, but this can be difficult to deal with. Insteae use theMaybe
datatype. This is defined (in the Prelude) as:

data Maybe a = Nothing
| Just a

The way we use this is as follows: orgbToColor function returns a value of
type Maybe Color . If the RGB value passed to our functioniivalid, we return
Nothing , which corresponds to a failure. If, on the other hand, théBR@lue is
valid, we create the appropriafelor value and returdust that. The code to do this
is:

rgbToColor 255 0 0 = Just Red
rgbToColor 255 128 0 = Just Orange
rgbToColor 255 255 0 = Just Yellow
rgbToColor 0 255 0 = Just Green
rgbToColor O 0 255 = Just Blue
rgbToColor 255 0 255 = Just Purple
rgbToColor 255 255 255 = Just White
rgpToColor O 0 0 = Just Black
rgpbToColor r g b =

if 0 <=1 && r <= 255 &&
0 <= g & g <= 255 &&
0 <= b && b <= 255
then Just (Custom r g b)
else Nothing -- invalid RGB value

The first eight lines match the RGB arguments against theefirestl values and,
if they match,rgbToColor returnsJust the appropriate color. If none of these
matches, the last definition ajbToColor matches the first argument againsthe
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second againg and the third againdt (which causes the side-effect of binding these
values). It then checks to see if these values are valid (sapieater than or equal to
zero and less than or equal to 255). If so, it retulust (Custom r g b) ;ifnot,
it returnsNothing corresponding to an invalid color.

Using this, we can write a function that checks to see if atfiR@B value is valid:

rgbisvalid r g b = rgblsvalid’ (rgbToColor r g b)
where rgblsValid’ (Just ) = True
rgblsvalid’ _ = False

Here, we compose the helper functigiblsValid’ with our functionrgbToColor
The helper function checks to see if the value returnedjbfoColor isJust any-
thing (the wildcard). If so, it returngrue . If not, it matches anything and returns
False .

Pattern matching isn’t magic, though. You can only matchresjalatatypes; you
cannot match against functions. For instance, the follgvsrinvalid:

fx=x+1

g (fx=x

Even though the intended meaninggfs clear (i.,e.g x = x - 1 ), the com-
piler doesn’t know in general thathas an inverse function, so it can’t perform matches
like this.

7.5 Guards

Guards can be thought of as an extension to the pattern mgtfzgility. They enable
you to allow piecewise function definitions to be taken adowy to arbitrary boolean
expressions. Guards appear after all arguments to a furtatithefore the equals sign,
and are begun with a vertical bar. We could use guards to eeiple function which
returns a string telling you the result of comparing two edeis:

comparison X y | x <y = "The first is less"
| x >y = "The second is less"
| otherwise = "They are equal”

You can read the vertical bar as “such that.” So we say thaizhe ofcomparison
X y “such that” x is less than y is “The first is less.” The valuelstitat x is greater
thany is “The second is less” and the vahtberwiseis “They are equal’. The key-
word otherwise is simply defined to be equal firue and thus matches anything
that falls through that far. So, we can see that this works:
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Guards> comparison 5 10
"The first is less"
Guards> comparison 10 5
"The second is less"
Guards> comparison 7 7
"They are equal”

Guards are applied in conjunction with pattern matchingewWa pattern matches,
all of its guards are tried, consecutively, until one maschenone match, then pattern
matching continues with the next pattern.

One nicety about guards is thahere clauses are common to all guards. So another
possible definition for ouisBright ~ function from the previous section would be:

isBright2 ¢ | r == 255 = True
| g == 255 = True
| b == 255 = True
| otherwise = False
where (r,g,b) = colorToRGB c

The function is equivalent to the previous version, but @enfs its calculation
slightly differently. It takes a color;, and appliexolorToRGB to it, yielding an
RGB triple which is matched (using pattern matching!) agg(ing,b) . This match
succeeds and the valuesg andb are bound to their respective values. The first guard
checks to see if is 255 and, if so, returns true. The second and third guardkaofpe
andb against 255, respectively and return true if they match. [&keguard fires as a
last resort and returrizalse .

7.6 Instance Declarations

In order to declare a type to be an instance of a class, youtogadvide an instance
declaration for it. Most classes provide what's called arfimial complete definition.”
This means the functions which must be implemented for tlaisscin order for its
definition to be satisfied. Once you've written these funwifor your type, you can
declare it an instance of the class.

7.6.1 TheEqClass

TheEq class has two members (i.e., two functions):

==) :: Eqg a => a -> a -> Bool
(/=) = Eq a => a -> a -> Bool
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The first of these type signatures reads that the funetiois a function which takes
two as which are members @ q and produces Bool . The type signature @& (not
equal) is identical. A minimal complete definition for thiy class requires that either
one of these functions be defined (if you defire then/= is defined automatically by
negating the result gf=, and vice versa). These declarations must be providedansid
the instance declaration.

This is best demonstrated by example. Suppose we have aure@mple, re-
peded here for convenience:

data Color
= Red

| Orange

| Yellow

| Green

| Blue

| Purple

| White

| Black

| Custom Int Int Int -- R G B components

We can defin€olor to be an instance diq by the following declaration:

instance Eq Color where
Red == Red = True

Orange == Orange = True
Yellow == Yellow = True
Green == Green = True
Blue == Blue = True
Purple == Purple = True

White == White = True

Black == Black = True

(Custom r g b) == (Custom r' g’ b’) =
r==r &% g==¢ && b =0’

== = False

The first line here begins with the keywargtancetelling the compiler that we're
making an instance declaration. It then specifies the clags,and the typeColor
which is going to be an instance of this class. Following,tttere’s thewhere key-
word. Finally there’s the method declaration.

The first eight lines of the method declaration are basiddéwntical. The first one,
for instance, says that the value of the expresfled == Red is equal toTrue .
Lines two through eight are identical. The declaration fasstom colors is a bit differ-
ent. We pattern matcBustom on both sides of=. On the left hand side, we bind
g andb to the components, respectively. On the right hand side,imerb , g’ and
b’ to the components. We then say that these two custom colemscaral precisely
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whenr == ' ,g == g andb == b’ areall equal. The fallthrough says that any
pair we haven't previously declared as equal are unequal.

7.6.2 TheShowClass

The Show class is used to display arbitrary values as strings. Tlasschas three
methods:

show :: Show a => a -> String
showsPrec :: Show a => Int -> a -> String -> String
showList :: Show a => [a] -> String -> String

A minimal complete definition is eitheshow or showsPrec (we will talk about
showsPrec later — it's in there for efficiency reasons). We can define Goilor
datatype to be an instance®how with the following instance declaration:

instance Show Color where

show Red = "Red"

show Orange = "Orange"

show Yellow = "Yellow"

show Green = "Green"

show Blue = "Blue"

show Purple = "Purple”

show White = "White"

show Black = "Black"

show (Custom r g b) =
"Custom " ++ show r ++ " " ++
show g ++ " " ++ show b

This declaration specifies exactly how to convert values/pé Color to Strings.
Again, the first eight lines are identical and simply takéddor and produce a string.
The last line for handling custom colors matches out the R@Bponents and creates
a string by concattenating the result gifowing the components individually (with
spaces in between and “Custom” at the beginning).

7.6.3 Other Important Classes

There are a few other important classes which | will mentioefly because either they
are commonly used or because we will be using them shortlgnivprovide example
instance declarations; how you can do this should be cleaotoy

The Ord Class

The ordering class, the functions are:
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compare :: Ord a => a -> a -> Ordering
(<=) : Ord a => a -> a -> Bool

(>) : Ord a => a -> a -> Bool

(>=) :» Ord a => a -> a -> Bool

(<) »: Ord a == a -> a -> Bool

min :: Ord a => a -> a -> a

max :: Ord a => a -> a -> a

The almost any of the functions alone is a minimal complefendi®n; it is rec-
ommended that you implemeabmpare if you implement only one, though. This
function returns a value of typ@rdering which is defined as:

data Ordering = LT | EQ | GT

So, for instance, we get:

Prelude> compare 5 7
LT
Prelude> compare 6 6
EQ
Prelude> compare 7 5
GT

In order to declare a type to be an instanc®etl you must already have declared
it an instance ofEq (in other words,Ord is a subclassof Eq — more about this in
Section 8.4).

The EnumClass

The Enum class is for enumerated types; that is, for types where dachesit has a
successor and a predecessor. It's methods are:

pred :: Enum a => a -> a

succ :: Enum a => a -> a

toEnum :: Enum a => Int -> a

fromEnum :: Enum a => a -> Int

enumFrom 1 Enum a => a -> [&]

enumFromThen :: Enum a => a -> a -> [a]
enumFromTo :: Enum a => a -> a -> [4]
enumFromThenTo :: Enum a => a -> a -> a -> [q]

The minimal complete definition contains bdttEnum andfromEnum , which
converts from and tonts. Thepred andsucc functions give the predecessor and
successor, respectively. TeRaum functions enumerate lists of elements. For instance,
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enumFrom x lists all elements after; enumFromThen x step lists all elements
starting atx in steps of sizestep . TheTo functions end the enumeration at the given
element.

The NumClass

TheNum class provides the standard arithmetic operations:

() > Num a => a -> a -> a

(*) * Num a =>a -> a -> a

(+) > Num a => a -> a -> a
negate :: Num a => a -> a

signum @ Num a => a -> a

abs :: Num a => a -> a

frominteger :: Num a => Integer -> a

All of these are obvious except for perhapsgate which is the unary minus.
That is,negate x means—z.

The Read Class

TheRead class is the opposite of ti8how class. Itis a way to take a string and read
in from it a value of arbitrary type. The methods lRead are:

readsPrec :: Read a => Int -> String -> [(a, String)]
readList :: String -> [([a], String)]

The minimal complete definition issadsPrec . The most important function
related to this isead , which usegeadsPrec as:

read s = fst (head (readsPrec 0 s))

This will fail if parsing the string fails. You could defineraaybeRead function
as:

maybeRead s =
case readsPrec 0 s of
[(@,)] -> Jdust a
_-> Nothing

How to write and useeadsPrec directly will be discussed further in the exam-
ples.
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7.6.4 Class Contexts

Suppose we are definition tiaybe datatype from scratch. The definition would be
something like:

data Maybe a = Nothing
| Just a

Now, when we go to write the instance declarations, for, Eay,we need to know
thata is an instance adEq otherwise we can’t write a declaration. We express this as:

instance Eq a => Eq (Maybe a) where
Nothing == Nothing = True
(Just x) == (Just xX) = x == X

This first line can be read “Thatis an instance oEq implies(=>) that Maybe a
is an instance cEq.”

7.6.5 Deriving Classes

Writing obviousEq, Ord, Read andShow classes like these is tedious and should be
automated. Luckily for us, itis. If you write a datatype thdsimple enough” (almost
any datatype you’ll write unless you start writing fixed pdiypes), the compiler can
automaticallyderive some of the most basic classes. To do this, you simply add a
deriving clause to after the datatype declaration, as in:

data Color
= Red
| ...
| Custom Int Int Int -- R G B components
deriving (Eq, Ord, Show, Read)

This will automatically create instances of tGelor datatype of the named classes.
Similarly, the declaration:

data Maybe a = Nothing
| Just a
deriving (Eq, Ord, Show, Read)

derives these classes just wheis appropriate.

All in all, you are allowed to derive instances Big, Ord, Enum, Bounded,
Show andRead. There is considerable work in the area of “polytypic prognaing”
or “generic programming” which, among other things, wouldw for instance dec-
larations forany class to be derived. This is much beyond the scope of thisialito
instead, | refer you to the literature.
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7.7 Datatypes Reuvisited

| know by this point you're probably terribly tired of heagrabout datatypes. They
are, however, incredibly important, otherwise | wouldrédte so much time to them.
Datatypes offer a sort of notational convenience if you héoeinstance, a datatype
that holds many many values. These are called named fields.

7.7.1 Named Fields

Consider a datatype whose purpose is to hold configuratitimge Usually when
you extract members from this type, you really only care &boe or possibly two of
the many settings. Moreover, if many of the settings havestime type, you might
often find yourself wondering “wait, was this the fourthfdth element?” One thing
you could do would be to write accessor functions. Considerfollowing made-up
configuration type for a terminal program:

data Configuration =
Configuration String -- user name

String -- local host
String -- remote host
Bool -- is guest?

Bool -- is super user?
String -- current directory
String -- home directory
Integer -- time connected

deriving (Eqg, Show)

You could then write accessor functions, like (I've onlyidig a few):

getUserName (Configuration un _ ) = un
getLocalHost (Configuration _1h ) =1h
getRemoteHost (Configuraton _ _rh _ ) =rh
getlsGuest (Configuration _ _ _ig _ _ _ ) =g

You could also write update functions to update a single ef#gmOf course, how
if you add an element to the configuration, or remove one,fathese functions now
have to take a different number of arguments. This is highlyoging and is an easy
place for bugs to slip in. However, there’s a solution. Wem@ingive names to the
fields in the datatype declaration, as follows:

data Configuration =
Configuration { username ;2 String,
localhost o String,
remotehost .. String,
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isguest . Bool,

issuperuser . Bool,

currentdir ;o String,

homedir .. String,

timeconnected :: Integer
}

This will automatically generate the following accessardtions for us:

username :: Configuration -> String
localhost :: Configuration -> String

Moreover, it gives us very convenient update methods. Heeeshort example
for a “post working directory” and “change directory” likerictions that work on
Configurations:

changeDir :: Configuration -> String -> Configuration
changeDir cfg newDir =
-- make sure the directory exists
if directoryExists newDir
then -- change our current directory
cfg{currentdir = newnDir}
else error "directory does not exist"

postWorkingDir :: Configuration -> String
-- retrieve our current directory
postWorkingDir cfg = currentdir cfg

So, in general, to update the fietdin a datatype to z, you writey {x=z }. You
can change more than one; each should be separated by coilmnirastancey {x=z,
a=b, c=d }.

You can of course continue to pattern match agafistfigurations as you did
before. The named fields are simply syntactic sugar; youtiawste something like:

getUserName (Configuration un _ ) = un

But there is little reason to. Finally, you can pattern matghinst named fields as
in:

getHostData (Configuration {localhost=Ih,remotehost=r h})
= (Ih,rh)
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This matches the variable against thdocalhost  field on theConfiguration
and the variableh against theremotehost field on the Configuration. These
matches of course succeed. You could also constrain thehesatry putting values
instead of variable names in these positions, as you woulstémdard datatypes.

You can create values @bnfiguration in the old way as shown in the first definition
below, or in the named-field’s type, as shown in the seconditiefi below:

initCFG =
Configuration "nobody" "nowhere" "nowhere"
False False "/" "/" O

initCFG’ =
Configuration

{ username="nobody",
localhost="nowhere",
remotehost="nowhere",
isguest=False,
issuperuser=False,
currentdir="/",
homedir="/",
timeconnected=0 }

Though the second is probably much more understandablesupta litter your
code with comments.

7.8 More Lists

todo: put something here

7.8.1 Standard List Functions
Recall that the definition of the built-in Haskell list datgé is equivalent to:

data List a = Nil
| Cons a (List a)

With the exception thallil is called]] andCons x xs is calledx:xs . Thisis
simply to make pattern matching easier and code smallels iwestigate how some
of the standard list functions may be written. Considep. A definition is given
below:

map _ ] = [I
map f (xxxs) = f x : map f xs
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Here, the first line says that when ymapacross an empty list, no matter what the
function is, you get an empty list back. The second line sagswhen younapacross
a list withx as the head anxs as the tail, the result is applied tox consed onto the
result of mappindg onxs.

Thefilter can be defined similarly:

filter _ [] = [1
filter p (xixs) | p x = x : filter p xs
| otherwise = filter p xs

How this works should be clear. For an empty list, we returreapty list. For
a non empty list, we return the filter of the tail, perhaps viite head on the front,
depending on whether it satisfies the predigate not.

We can defindoldr  as:

foldr _z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

Here, the best interpretation is that we are replacing thptefist ([] ) with a
particular value and the list constructor) (with some function. On the first line, we
can see the replacement[pf for z. Using backquotes to makeinfix, we can write
the second line as:

foldr f z (x:xs) = x ‘f* (foldr f z xs)

From this, we can directly see hawis being replaced bfy.
Finally, foldl

foldl _z[] = z
foldl f z (x:xs) = foldl f (f z X) xs

This is slightly more complicated. Remembergan be thought of as the current
state. So if we're folding across a list which is empty, we @ireturn the current
state. On the other hand, if the list is not empty, it's of teix:xs . In this case, we
get a new state by applirfgto the current state and the current list elemertand
then recursively cafioldl  onxs with this new state.

There is another class of functions: thp andunzip functions, which respec-
tively take multiple lists and make one or take one lists aplit hem apart. For
instancezip does the following:

Prelude> zip "hello" [1,2,3,4,5]
[Ch',1),(e'2),(1,3),(1:4).(0' 5)]
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Basically, it pairs the first elements of both lists and makes the first element of
the new list. It then pairs the second elements of both listsraakes that the second
element, etc. What if the lists have unequal length? It sinspdps when the shorter
one stops. A reasonable definition fop is:

zio [l _ =1
zio _[1 =1
zip (x:xs) (y:ys) = (X,y) : zip Xs ys

Theunzip function does the opposite. It takes a zipped list and retthia two
“original” lists:

Prelude> unzip [('f,1),('0’,2),('0",3)]
("foo",[1,2,3])

There are a whole slew dfip andunzip functions, namedip3 , unzip3 ,
zip4 ,unzip4 andsoon;the.3 functions use triples instead of pairs; the
functions use 4-tuples, etc.

Finally, the functiontake takes an integen and a list and returns the first
elements off the list. Correspondingtirop takes an integeti and a list and returns
the result of throwing away the first elements off the list. Neither of these functions
produces an error; i is too large, they both will just return shorter lists.

7.8.2 List Comprehensions

There is some syntactic sugar for dealing with lists whosmehts are members of the
Enum class (see Section 7.6), suchlatsor Char. If we want to create a list of all the
elements fron to 10, we can simply write:

Prelude> [1..10]
[1,2,3,4,5,6,7,8,9,10]

We can also introduce an amount to step by:

Prelude> [1,3..10]
[1,3,5,7,9]
Prelude> [1,4..10]
[1,4,7,10]

These expressions are short handdioumFromTo andenumFromThenTo, re-
spectively. Of course, you don't need to specify an uppembourry the following
(but be ready to hit Control+C to stop the computation!):

Prelude> [1..]
[1,2,3,4,5,6,7,8,9,10,11,12{Interrupted!}
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Probably yours printed a few thousand more elements thanAlsiwe said before,
Haskell is lazy. That means that a list of all numbers from Isqgrerfectly well formed
and that’s exactly what this list is. Of course, if you attértgpprint the list (which
we’re implicitly doing by typing it in the interpreter), it @n’t halt. But if we only
evaluate an initial segment of this list, we're fine:

Prelude> take 3 [1..]

[1,2,3]

Prelude> take 3 (drop 5 [1..])
[6,7,8]

This comes in useful if, say, we want to assign an ID to eacineid in a list.
Without laziness we'd have to write something like this:

assignIiD :: [a] -> [(a,Int)]
assignIiD | = zip | [1..length 1]

Which means that the list will be traversed twice. HoweveGduse of laziness,
we can simply write:

assigniD | = zip | [1..]

And we’ll get exactly what we want. We can see that this works:

Prelude> assignID "hello”
[(h1),(e',2),(1.3),(1'4).(0' 5)]

Finally, there is some useful syntactic sugarruap andfilter  , based on stan-
dard set-notation in mathematics. In math, we would writaething like{ f(z)|x €
sAp(x)} to mean the set of all values gfwhen applied to elements sfwhich satisfy
p. Thisis equivalent to the Haskell statemerdp f (filter p s) . However, we
can also use more math-like notation and wifitex | x <- s, p X] . While in
math the ordering of the statements on the side after theipifree, it is not so in
Haskell. We could not have ppt x beforex <- s otherwise the compiler wouldn’t
know yet whatx was. We can use this to do simple string processing. Suppese w
want to take a string, remove all the lower-case letters andert the rest of the letters
to upper case. We could do this in either of the following twoigalent ways:

Prelude> map toLower (filter isUpper "Hello World")
Ithll

Prelude> [toLower x | x <- "Hello World", isUpper X]
IIthI
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These two are equivalent, and, depending on the exact &unscyiou’re using, one
might be more readable than the other. There’s more you caemdthough. Suppose
you want to create a list of pairs, one for each point betw8ed) @nd (5,7) below the
diagonal. Doing this manually with lists and maps would bebarsome and possibly
difficult to read. It couldn’t be easier than with list compessions:

Prelude> [(x,y) | x <- [1..5], ¥ <- [x..7]]
[(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,2),(2 3),
(2,4),(2,5),(2,6),(2,7),(3,3),(3,4).(3,5),(3,6).(3, 7),
(4,4),(4,5),(4,6),(4,7),(5,5),(5,6),(5,7)]

If you reverse the order of the <- andy <- clauses, the order in which the
space is traversed will be reversed (of course, in that gaseuld no longer depend
onx and you would need to makedepend ory but this is trivial).

7.9 Arrays

Lists are nice for many things. It is easy to add elementseadotfginning of them and
to manipulate them in various ways that change the lengthedfst. However, they are
bad for random access, having average compléXity) to access an arbitrary element
(if you don’t know whatO(. . . ) means, you can either ignore it or take a quick detour
and read Appendix A, a two-page introduction to complexityadry). So, if you're
willing to give up fast insertion and deletion because yoacheandom access, you
should use arrays instead of lists.

In order to use arrays you must import theray module. There are a few
methods for creating arrays, theray function, thelistArray function, and the
accumArray function. Thearray function takes a pair which is the bounds of
the array, and an association list which specifies the Iiniabues of the array. The
listArray function takes bounds and then simply a list of values. Rindhe
accumArray function takes an accumulation function, an initial valand an associ-
ation list and accumulates pairs from the list into the arkégre are some examples of
arrays being created:

Arrays> array (1,5) [(i,2 *i) | i <- [1..5]]
array (1,5) [(1,2),(2,4),(3,6),(4,8),(5,10)]

Arrays> listArray (1,5) [3,7,5,1,10]

array (1,5) [(1,3),(2,7),(3,5),(4,1),(5,10)]

Arrays> accumArray (+) 2 (1,5) [(i,i) | i <- [1..5]]
array (1,5) [(1,3),(2,4),(3,5),(4,6),(5,7)]

When arrays are printed out (via the show function), theypairged with an asso-
ciation list. For instance, in the first example, the assmridist says that the value of
the array afl is 2, the value of the array &tis 4, and so on.

You can extract an element of an array using!thiinction, which takes an array
and an index, as in:



7.10. FINITE MAPS 97

Arrays> (listArray (1,5) [3,7,5,1,10]) ! 3
5

Moreover, you can update elements in the array using/thinction. This takes
an array and an association list and updates the positi@csiggl in the list:

Arrays> (listArray (1,5) [3,7,5,1,10]) //
[(2,99),(3,-99)]
array (1,5) [(1,3),(2,99),(3,-99),(4,1),(5,10)]

There are a few other functions which are of interest:
bounds returns the bounds of an array

indices returns a list of all indices of the array
elems returns a list of all the values in the array in order
assocs returns an association list for the array
If we definearr to belistArray (1,5) [3,7,5,1,10] , the result of

these functions applied &or are:

Arrays> bounds arr

(1,5)

Arrays> indices arr
[1,2,3,4,5]

Arrays> elems arr
[3,7,5,1,10]

Arrays> assocs arr
[(1,3).(2,7).(3,5),(4,1),(5,10)]

Note that while arrays ar@(1) access, they are n@2(1) update. They are in
factO(n) update, since in order to maintain purity, the array mustdgedin order to
make an update. Thus, functional arrays are pretty muchumaful when you're filling
them up once and then only reading. If you need fast accessdate, you should
probably useériniteMap s, which are discussed in Section 7.10 and h@ykegn)
access and update.

7.10 Finite Maps

TheFiniteMap datatype (which is available in tlkéniteMap module, oiData.FiniteMap

module in the hierarchical libraries) is a purely functibingplementation of balanced
trees. Finite maps can be compared to lists and arrays irstefitme time it takes to
perform various operations on those datatypes of a fixed siz& brief comparison

is:
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List | Array | FiniteMap
insert | O(1) | O(n) O(logn)
update| O(n) | O(n) O(logn)
delete | O(n) | O(n) O(logn)
find O(n) | O(1) O(logn)
map O(n) | O(n) | O(nlogn)

As we can see, lists provide fast insertion (but slow evengtlelse), arrays pro-
vide fast lookup (but slow everything else) and finite mapsvigle moderately fast
everything (except mapping, which is a bit slower than listarrays).

The type of a finite map is for the forffiniteMapkeyelt wherekey is the type of
the keys anelt is the type of the elements. That is, finite maps are lookulgsaipom
typekey to typeelt.

The basic finite map functions are:

emptyFM . FiniteMap key elt
addToFM . FiniteMap key elt -> key -> elt ->
FiniteMap key elt
delFromFM :: FiniteMap key elt -> key ->
FiniteMap key elt
elemFM . key -> FiniteMap key elt -> Bool
lookupFM :: FiniteMap key elt -> key -> Maybe elt

In all these cases, the typey must be an instance @rd (and hence also an
instance ofEq).

There are also functiolistToFM andfmToList to convert lists to and from
finite maps. Try the following:

Prelude> :m FiniteMap

FiniteMap> let fm = listToFM
[(a’,5),(h,10),(c’,1),(d",2)]

FiniteMap> let myFM = addToFM fm ’'e’ 6

FiniteMap> fmToList fm

[(a',5),('b’,10),('c’,1),(d",2)]

FiniteMap> fmToList myFM

[(a',5),(b",10),('c’,1),(d",2),(e",6)]

FiniteMap> lookupFM myFM ‘e’

Just 6

FiniteMap> lookupFM fm ’e’

Nothing

You can also experiment with the other commands. Note thattgmnotshow a
finite map, as they are not instancesSbfow:

FiniteMap> show myFM
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<interactive>:1:
No instance for (Show (FiniteMap Char Integer))
arising from use of ‘show’ at <interactive>:1
In the definition of ‘it': show myFM

In order to inspect the elements, you first need tofasBoList

7.11 Layout
7.12 The Final Word on Lists

You are likely tired of hearing about lists at this point, Ity are so fundamental to
Haskell (and really all of functional programming) that ibutd be terrible not to talk
about them some more.

It turns out thatfoldr is actually quite a powerful function: it can compute an
primitive recursivefunction. A primitive recursive function is essentially@which
can be calculated using only “for” loops, but not “while” jo

In fact, we can fairly easily definmapin terms offoldr

map2 f = foldr (\a b -> f a : b) []

Here,b is the accumulator (i.e., the result list) amds the element being currently
considered. In fact, we can simplify this definition throwgbequence of steps:

foldr \a b -> f a : b) []
==> foldr (\a b -> (}) (f @) b) []
==> foldr (\a -> () (f a)) []
==> foldr (\a -> (() . f) a) []
==> foldr () . f) [

This is directly related to the fact thitidr (1) ] is the identity function on
lists. Thisis because, as mentioned beftolelr f z  can be thought of as replacing
the[] inlists byz and the: byf . In this case, we're keeping both the same, so it is
the identity function.

In fact, you can convert any function of the following stytea afoldr

myfunc [] = z
myfunc (x:xs) = f x (myfunc xs)

By writing the last line withf in infix form, this should be obvious:

myfunc [] = z
myfunc (x:xs) = x ‘f* (myfunc xs)

primitive recursive
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Clearly, we are just replacing with z and: with f. Consider thdilter
function:

filter p 1 = []
filter p (x:xs) =
if p x
then x : filter p xs
else filter p xs

This function also follows the form above. Based on the first,|we can figure
out thatz is supposed to bg , just like in themap case. Now, suppose that we call
the result of callindilter p xs simply b, then we can rewrite this as:

filter p 1 = []
filter p (x:xs) =
if p xthen x : b else b

Given this, we can transforfiiter into a fold:

fiter p = foldr \a b -> if p a then ab else b) []

Let’s consider a slightly more complicated functier:. The definition for++ is:

(++) I ys = ys
(++) (x:xs) ys = X : (XS ++ ys)

Now, the question is whether we can write this in fold notatiBirst, we can apply
eta reduction to the first line to give:

++) ] = id

Through a sequence of steps, we can also eta-reduce thaldemon

X 1 ((++) xs ys)
==> (++) (xixs) ys = (x1) ((++) xs ys)
==>  (++) (xixs) ys = ((x}) . (++) xs) ys

(++) (x:xs) ys =
==> (++) (XXs) = ()::) . (++) xs

Thus, we get that an eta-reduced defintior-efis:

++) I = id
(++) (xixs) = (x1) . (++) xs

Now, we can try to put this into fold notation. First, we netithat the base case
convertd] intoid . Now, if we assumé++) xs is calledb andx is calleda, we
can get the following definition in terms &ldr
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(++) = foldr (\a b -> (a:) . b) id

This actually makes sense intuitively. If we only think abapplying++ to one
argument, we can think of it as a function which takes a list areates a function
which, when applied, will prepend this list to another list.the lambda function, we
assume we have a functienwhich will do this for the rest of the list and we need to
create a function which will do this fdy as well as the single elemeat In order to
do this, we first apply and then further add to the front.

We can further reduce this expression to a point-free styleugh the following
sequence:

==> (++) = foldr (\a b -> (a:) . b) id
==> (++) = foldr (\a b -> () (a:)) b) id
==> (++) = foldr (\a -> () (ai)) id
==> (++) = foldr (\a -=> () () a)) id
==> (++) = foldr (\a -> ((.) . () a) id
==> (++) = foldr ((.) . (%) id

This final version is point free, though not necessarily ust@mdable. Presum-
bably the original version is clearer.
As a final example, consideoncat . We can write this as:

concat ] =]
concat (X:xs) = x ++ concat xs

It should be immediately clear that tlzeelement for the fold i§] and that the
recursive function is-+, yielding:

concat = foldr (++) []

Exercises

Exercise 7.2 The functiorand takes a list of booleans and returiisue if and only
if all of them areTrue . It also returnsTrue on the empty list. Write this function in
terms offoldr

Exercise 7.3 The functiorconcatMap behaves such thabncatMap f isthe same
asconcat . map f . Write this function in terms dbldr
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Chapter 8

Advanced Types

As you've probably ascertained by this point, the type sysi® integral to Haskell.
While this chapter is called “Advanced Types”, you will peddly find it to be more
general than that and it must not be skipped simply becausesymot interested in the
type system.

8.1 Type Synonyms

Type synonyms exist in Haskell simply for convenience:rthesinoval would not make
Haskell any less powerful.
Consider the case when you are constantly dealing withdistisree-dimensional
points. For instance, you might have a function with tjffiuble, Double, Double)] — Double — [(Double, Double, Double)]
Since you are a good software engineer, you want to placesigpatures on all your
top-level functions. However, typingDouble, Double, Double)] all the time gets very
tedious. To get around this, you can define a type synonym:

type List3D = [(Double,Double,Double)]

Now, the type signature for your functions may be writtén3D — Double — List3D.
We should note that type synonyms cannot be self-refetefitiat is, you cannot
have:

type BadType = Int -> BadType

This is because this is an “infinite type.” Since Haskell regsotype synonyms
very early on, any instance &adType will be replaced byint — BadType, which
will result in an infinite loop.

Type synonyms can also be parameterized. For instance, ighi want to be able
to change the types of the points in the list of 3D points. Ra, tyou could define:

type List3D a = [(a,a,a)]

103
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Then your references {Double, Double, Double)] would becoméist3D Double.

8.2 Newtypes

Consider the problem in which you need to have a type whichrig much likelnt, but
its ordering is defined differently. Perhaps you wish to otdes first by even numbers
then by odd numbers (that is, all odd numbers are greaterahgameven number and
within the odd/even subsets, ordering is standard).

Unfortunately, you cannot define a new instance(nfd for Int because then
Haskell won't know which one to use. What you want is to defirtgse which is
isomorphicto Int.

m NOTE m “Isomorphic” is a common term in mathematics which basi-
cally means “structurally identical.” For instance, in ginetheory, if you
have two graphs which are identical except they have diftdedoels on
the nodes, they are isomorphic. In our context, two typessaraorphic
if they have the same underlying structure.

One way to do this would be to define a new datatype:

data Myint = Myint Int

We could then write appropriate code for this datatype. Tiodlem (and this is
very subtle) is that this type is not truly isomorphidie: it has one more value. When
we think of the typédnt, we usually think that it takes all values of integers, buedlly
has one more value}_ (pronounced “bottom”), which is used to represent errosesu
undefined computations. Thuslylnt has not only valuedMyint 0 , Myint 1 and
so on, but alsdyInt _|_. However, since datatypes can themselves be undefined, it
has an additional value]_ which differs fromMyint _|_ and this makes the types
non-isomorphic. (See Secti@? for more information on bottom.)

Disregarding that subtlety, there may be efficiency issués this representation:
now, instead of simply storing an integer, we have to storeiater to an integer and
have to follow that pointer whenever we need the value ldfyént.

To get around these problems, Haskell hasatypeconstruction. Anewtypeis a
cross between a datatype and a type synonym: it has a cdiostike a datatype, but
it can have only one constructor and this constructor cae baly one argument. For
instance, we can define:

newtype Myint = Myint Int

But we cannot define any of:

newtype Badl
newtype Bad2

Badla Int | Badlb Double
Bad2 Int Double
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Of course, the fact that we cannot deflB&d2 as above is not a big issue: we can
simply define the following by pairing the types:

newtype Good2 = Good2 (Int,Double)

Now, suppose we've definddyint as anewtype This enables use to write our
desired instance ddrd as:

instance Ord Myint where
Myint i < Myint j
| odd i && odd | =i <]
| even i && even j =i < j
| even i = True
| otherwise = False
where odd x = (x ‘mod' 2) ==
even = not . odd

Like datatype, we can still derive classes IfKeow andEq over newtypes (in fact,
I'm implicitly assuming we have derivellq over Mylnt — where is my assumption in
the above code?).

Moreover, in recent versions of GHC (see Section 2.2), ontyys®g, you are al-
lowed to deriveany class of which the base type (in this cabe) is an instance. For
example, we could derivBlum on Mylnt to provide arithmetic functions over it.

Pattern matching over newtypes is exactly as in datatypesaiWwrite constructor
and destructor functions fddyInt as follows:

mkMylint i = Myint i
unMyint (Myint i) = i

8.3 Datatypes

We've already seen datatypes used in a variety of contexés Section concludes
some of the discussion and introduces some of the commotygdeasain Haskell. It
also provides a more theoretical underpinning to what ypést actually are.

8.3.1 Strict Fields

One of the great things about Haskell is that computatioriopmed lazily. However,
sometimes this leads to inefficiencies. One way around toislem is to use datatypes
with strict fields. Before we talk about the solution, letfgzead some time to get a
bit more comfortable with how bottom works in to the pictufer(more theory, see
Section??).

Suppose we've defined the unit datatype (this one of the sishghtatypes you can
define):
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data Unit = Unit

This datatype has exactly one constructdmjt , which takes no arguments. In a
strict language like ML, there would be exactly one valueypktUnit: namely,Unit .
This is not quite so in Haskell. In fact, there @weo values of typeJnit. One of them
is Unit . The other is bottom (written ).

You can think of bottom as representing a computation whioh'tshalt. For in-
stance, suppose we define the value:

foo = foo

This is perfectly valid Haskell code and simply says thatmieu want to evaluate
foo , all you need to do is evaluateo . Clearly this is an “infinite loop.”

What is the type ofoo ? Simplya. We cannot say anything more about it than
that. The fact thatoo has typea in fact tells us that it must be an infinite loop (or
some other such strange value). However, sfnoe has typea and thus can have any
type, it can also have typénit. We could write, for instance:

foo :: Unit
foo = foo

Thus, we have found a second value with typét. In fact, we have found all
values of typeUnit. Any other non-terminating function or error-producingétion
will have exactly the same effect &0 (though Haskell provides some more utility
with the functionerror ).

This means, for instance, that there are actually values with typeMaybe Unit.
They are:_|_, Nothing , Just _|_andJust Unit . However, it could be the fact
that you, as a programmer, know that you will never come actios third of these.
Namely, you want the argumentdaoist to bestrict. This means that if the argument
to Just is bottom, then the entire structure becomes bottom. Yowanseclamation
point to specify a constructor as strict. We can define atsteision ofMaybe as:

data SMaybe a = SNothing | SJust !a

There are now only three values$iflaybe. We can see the difference by writing
the following program:

module Main where
import System

data SMaybe a = SNothing | SJust 'a deriving Show
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main = do
[cmd] <- getArgs
case cmd of

"a" -> printJust
"b" -> printJust
"c" -> printJust
"d" -> printJust

e" -> printSJust
"' -> printSJust
"g" -> printSJust
"h" -> printSJust

printJust Nothing

printJust :: SMaybe ()
printSJust SNothing
printSJust (SJust x)

undefined
Nothing
(Just undefined)
(Just ()

undefined
SNothing
(SJust undefined)
(Sdust ()

printJust :: Maybe () -> 10 ()
= putStrLn "Nothing"
printJust (Just x) = do putStr "Just "; print x

-=> 10 ()
putStrLn "Nothing"
do putStr "Just "; print X
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Here, depending on what command line argument is passedillowomething
different. The outputs for the various options are:

\% ./strict a
Fail: Prelude.undefined

\% ./strict b
Nothing

\% ./strict ¢
Just
Fail: Prelude.undefined

\% ./strict d
Just ()

\% ./strict e
Fail: Prelude.undefined

\% ./strict f
Nothing

\% ./strict g
Fail: Prelude.undefined
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\% ./strict h
Just ()

The thing worth noting here is the difference between caséarid “g”. In the
“c” case, theJust is printed, because this is printégforethe undefined value is
evaluated. However, in the “g” case, since the construstatrict, as soon as you
match theSJust , you also match the value. In this case, the value is undefaoetthe
whole thing fails before it gets a chance toaloything

8.4 Classes

We have already encountered type classes a few times, huirothle context of pre-
viously existing type classes. This section is about howetiine your own. We will
begin the discussion by talking about Pong and then move anigeful generalization
of computations.

8.4.1 Pong

The discussion here will be motivated by the constructiothefgame Pong (see Ap-
pendix?? for the full code). In Pong, there are three things drawn ensitreen: the

two paddles and the ball. While the paddles and the ball #fierelnt in a few respects,
they share many commonalities, such as position, velaigeleration, color, shape,
and so on. We can express these commonalities by definings fdaPong entities,

which we callEntity. We make such a definition as follows:

class Entity a where
getPosition :: a -> (Int,Int)
getVelocity :: a -> (Int,Int)
getAcceleration :: a -> (Int,Int)
getColor :: a -> Color
getShape :: a -> Shape

This code defines a typeclaBatity. This class has five methodgetPosition
getVelocity , getAcceleration ,getColor andgetShape with the corre-
sponding types.

The first line here uses the keywoethssto introduce a new typeclass. We can
read this typeclass definition as “There is a typeclasst¥néd type 'a’ is an instance
of Entity if it provides the following five functions: ...”. @see how we can write an
instance of this class, let us define a player (paddle) daeaty

data Paddle =
Paddle { paddlePosX, paddlePosY,
paddleVelX, paddleVelY,
paddleAccX, paddleAccY :: Int,
paddleColor :: Color,
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paddleHeight :: Int,
playerNumber :: Int }

Given this data declaration, we can defiheldle to be an instance dintity:

instance Entity Paddle where
getPosition p = (paddlePosX p, paddlePosY p)
getVelocity p = (paddleVelX p, paddleVelY p)
getAcceleration p = (paddleAccX p, paddleAccY p)
getColor = paddleColor
getShape = Rectangle 5 . paddleHeight

The actual Haskell types of the class functions all haveinhed the conteXEntity
a =>. For examplegetPosition has typeEntity a = a — (Int, Int). However,
it will turn out that many of our routines will need entities @lso be instances @&iq.
We can therefore choose to maKatity a subclass oEq: namely, you can only be
an instance oEntity if you are already an instance Biy. To do this, we change the
first line of the class declaration to:

class Eq a => Entity a where

Now, in order to definé’addles to be instances dintity we will first need them
to be instances di.q — we can do this by deriving the class.

8.4.2 Computations

Let’s think back to our original motivation for defining tivaybe datatype from Sec-
tion ??. We wanted to be able to express that functions (i.e., coatipuis) can fail.

Let us consider the case of performing search on a graphwAikto take a small
aside to set up a small graph library:

data Graph v e = Graph [(Int,v)] [(Int,Int,e)]

TheGraph datatype takes two type arguments which correspond toxanig edge
labels. The first argument to tli@aph constructor is a list (set) of vertices; the second
is the list (set) of edges. We will assume these lists areyavgarted and that each
vertex has a unique id and that there is at most one edge betwgeawo vertices.

Suppose we want to search for a path between two verticehapethere is no
path between those vertices. To represent this, we will hedltybe datatype. If
it succeeds, it will return the list of vertices traversedur@®earch function could be
written (naively) as follows:

search :: Graph v e -> Int -> Int -> Maybe [Int]
search g@(Graph vl el) src dst
| src == dst = Just [src]
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| otherwise = search’ el
where search’ [] = Nothing
search’ ((u,v,_):es)
| src == u =
case search g v dst of
Just p -> Just (u:p)
Nothing -> search’ es
| otherwise = search’ es

This algorithm works as follows (try to read along): to sdairc a graphg from
src todst , first we check to see if these are equal. If they are, we hawedf@ur
way and just return the trivial solution. Otherwise, we wemtraverse the edge-list.
If we're traversing the edge-list and it is empty, we've éai) so we returiNothing
Otherwise, we're looking at an edge framto v. If u is our source, then we consider
this step and recursively search the graph frota dst . If this fails, we try the rest of
the edges; if this succeeds, we put our current positiorrbeifie path found and return.
If u is not our source, this edge is useless and we continue siagehe edge-list.

This algorithm is terrible: namely, if the graph containgleg, it can loop indefi-
nitely. Nevertheless, it is sufficent for now. Be sure youenstand it well: things only
get more complicated.

Now, there are cases where thleybe datatype is not sufficient: perhaps we wish
to include an error message together with the failure. Wedcdefine a datatype to
express this as:

data Failable a = Success a | Fail String

Now, failures come with a failure string to express what wenbng. We can
rewrite our search function to use this datatype:

search2 :: Graph v e -> Int -> Int -> Failable [Int]
search2 g@(Graph vl el) src dst
| src == dst = Success [src]
| otherwise = search’ el
where search’ [] = Fail "No path"
search’ ((u,v,_):es)
| Src == =
case search2 g v dst of
Success p -> Success (u:p)
_ -> search’ es
| otherwise = search’ es

This code is a straightforward translation of the above.

There is another option for this computation: perhaps wetwahjust one path,
but all possible paths. We can express this as a functionharkttirns a list of lists of
vertices. The basic idea is the same:
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search3 :: Graph v e -> Int -> Int -> [[Int]]
search3 g@(Graph vl el) src dst
| src == dst = [[src]]
| otherwise = search’ el
where search’ [] = []
search’ ((u,v,_):es)
| src == u =
map (u:) (search3 g v dst) ++
search’ es
| otherwise = search’ es

The code here has gotten a little shorter, thanks to the atdmeludemap func-
tion, though it is essentially the same.

We may ask ourselves what all of these have in common and tgoldle up
those commonalities in a class. In essense, we need somef wegyresenting success
and some way of representing failure. Furthermore, we negdyato combine two
successes (in the first two cases, the first success is chinska;third, they are strung
together). Finally, we need to be able to augment a previstrsess (if there was one)
with some new value. We can fit this all into a class as follows:

class Computation ¢ where
success i a -> Cc a
failure :: String -> ¢ a
augment : ca ->(a->ch)->chb
combine : ca->ca->c a

In this class declaration, we're saying thas an instance of the cla€3omputation
if it provides four functions:success , failure , augment andcombine . The
success function takes a value of typeand returns it wrapped up i) representing
a successful computation. Tfalure  function takes &tring and returns a compu-
tation representing a failure. Tlmbine function takes two previous computation
and produces a new one which is the combination of both.allggnent function is
a bit more complex.

The augment function takes some previously given computation (nameh),
and a function which takes the value of that computation §h&nd returns & and
produces & inside of that computation. Note that in our current sitmtigiving
augment the typec a — (a — a) — c a would have been sufficient, sinaés always
[Int], but we make it this more general time just for generality.

How augment works is probably best shown by example. We can dd¥iagbe,
Failable and]] to be instances dfomputation as:

instance Computation Maybe where
success = Just
failure = const Nothing
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augment (Just x) f = f x
augment Nothing _ = Nothing
combine Nothing y = vy
combine X _ = X

Here, success is represented witist andfailure ignores its argument and
returnaNothing . Thecombine function takes the first success we found and ignores
the rest. The functiomaugment checks to see if we succeeded before (and thus had
aJust something) and, if we did, applidsto it. If we failed before (and thus had a
Nothing ), we ignore the function and retulNothing

instance Computation Failable where
success = Success
failure = Fail
augment (Success x) f = f x
augment (Fail s) _ = Fail s
combine (Fail )y =y
combine X _ = X

These definitions are obvious. Finally:

instance Computation [] where
success a = [a]
failure = const []
augment | f = concat (map f I)
combine = (++)

Here, the value of a successful computation is a singlesbndintaining that value.
Failure is represented with the empty list and to combineipues successes we simply
catenate them. Finally, augmenting a computation amoontsapping the function
across the list of previous computations and concaterttata.twe apply the function
to each element in the list and then concatenate the results.

Using these computations, we can express all of the abogewsrof search as:

searchAll g@(Graph vl el) src dst
| src == dst = success [src]
| otherwise = search’ el
where search’ [] = failure "no path"
search’ ((u,v,_):es)
| src == = (searchAll g v dst ‘augment’
(success . (u3)))
‘combine’ search’ es
| otherwise = search’ es
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In this, we see the uses of all the functions from the cl@ssmputation.

If you've understood this discussion of computations, ymiia a very good posi-
tion as you have understood the concephohadsprobably the most difficult concept
in Haskell. In fact, the&Computation class is almost exactly tHelonad class, ex-
cept thatsuccess is calledreturn , failure  is calledfail andaugment is
called>>= (read “bind”). Thecombine function isn’'t actually required by monads,
but is found in thdMlonadPlus class for reasons which will become obvious later.

If you didn’t understand everything here, read through aiagand then wait for
the proper discussion of monads in Chapter 9.

8.5 Instances
We have already seen how to declare instances of some sitaglkees; allow us to

consider some more advanced classes here. TherFuseator class defined in the
Functor module.

m NOTE m The name “functor”, like “monad” comes from category the-
ory. There, a functor is like a function, but instead of maygpelements
to elements, it maps structures to structures.

The definition of the functor class is:

class Functor f where
fmap :: (@ > b) >fa->fb

The type definition fofmap (not to mention its name) is very similar to the func-
tion map over lists. In factfmap is essentially a generalization nfap to arbitrary
structures (and, of course, lists are already instanc@siattor). However, we can
also define other structures to be instances of functorssi@enthe following datatype
for binary trees:

data BinTree a = Leaf a
| Branch (BinTree a) (BinTree a)

We can immediately identify that tH&inTree type essentially “raises” a typeinto
trees of that type. There is a naturally associated functochvgoes along with this
raising. We can write the instance:

instance Functor BinTree where
fmap f (Leaf a) = Leaf (f a)
fmap f (Branch left right) =
Branch (fmap f left) (fmap f right)




114 CHAPTER 8. ADVANCED TYPES

Now, we've seen how to make something IB&Tree an instance okEq by using
the deriving keyword, but here we will do it by hand. We want to makaTree as
instances oEq but obviously we cannot do this unlesss itself an instance oEq.
We can specify this dependence in the instance declaration:

instance Eq a => Eq (BinTree a) where

Leaf a == Leaf b = a ==
Branch | r == Branch I' v = | == I && r == r
_ == _ = False

The first line of this can be read “i is an instance oEq, thenBinTree a is also
an instance oEq”. We then provide the definitions. If we did not include tHed* a
=>" part, the compiler would complain because we’re trying $e the== function on
as in the second line.

The “Eq a =>" part of the definition is called the “context.” We should adhat
there are some restrictions on what can appear in the comtelxivhat can appear in
the declaration. For instance, we're not allowed to haveirte declarations that don't
contain type constructors on the right hand side. To see wdngsider the following
declarations:

class MyEq a where
myeq . a -> a -> Bool

instance Eq a => MyEq a where
myeq = (==)

As it stands, there doesn’t seem to be anything wrong withdéfinition. However,
if elsewhere in a program we had the definition:

instance MyEq a => Eq a where
::) = myeq

In this case, if we're trying to establish if some type is astémce ofEq, we could
reduce it to trying to find out if that type is an instanceMiyEq, which we could
in turn reduce to trying to find out if that type is an instanéde;, and so on. The
compiler protects itself against this by refusing the finstance declaration.

This is commonly known as thdosed-world assumptiohat is, we're assuming,
when we write a definition like the first one, that there worgtdny declarations like
the second. However, this assumption is invalid because’theothing to prevent the
second declaration (or some equally evil declaration). dlbeed world assumption
can also bite you in cases like:

class Onlyints a where
foo :: a -> a -> Bool
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instance Onlyints Int where
foo == ::)

bar :: Onlylnts a => a -> Bool
bar = foo 5

We've again made the closed-world assumption: we've asduhat the only in-
stance ofOnlylInts is Int, but there’s no reason another instance couldn’t be defined
elsewhere, ruining our defintion bfr .

8.6 Kinds

Let us take a moment and think about what types are availabtaskell. We have
simple types, likdnt, Char, Double and so on. We then have type constructors like
Maybe which take a type (lik&Char) and produce a new typ&)aybe Char. Similarly,

the type constructdf (lists) takes a type (liként) and producefint]. We have more
complex things like— (function arrow) which taketwo types (sayint andBool) and
produces a nhew typet — Bool.

In a sense, these types themselves have type. Typdsiikave some sort of basic
type. Types likeMaybe have a type which takes something of basic type and returns
something of basic type. And so forth.

Talking about the types of types becomes unwieldy and highihiguous, so we
call the types of types “kinds.” What we have been callingsibaypes” have kind
“*”_ Something of kind- is something which can have an actual value. There is also a
single kind constructor~ with which we can build more complex kinds.

ConsiderMaybe. This takes something of kind and produces something of kind
* . Thus, the kind ofMaybe is * -> . Recall the definition oPair from Sec-
tion 4.5.1:

data Pair a b = Pair a b

Here, Pair is a type constructor which takes two arguments, each of kiaad
produces a type of kin€el. Thus, the kind oPairis* -> ( = -> *). However, we
again assume associativity so we just wite> * ->  *,

Let us make a slightly strange datatype definition:

data Strange c a b =
MkStrange (c a) (c b)

Before we analyze the kind &ftrange, let’s think about what it does. It is essen-
tially a pairing constructor, though it doesn’t pair actaEments, but elements within
another constructor. For instance, thinkc@sMaybe. ThenMkStrange pairsMaybes
of the two typesa andb. However,c need not béMaybe but could instead by, or
many other things.
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What do we know about, though? We know that it must have kind->  *.
is because we hawe a on the right hand side. The type variableandb each have

kind *

is, it takes a constructoc) of kind » ->

as before. Thus, the kind Strangeis(* -> *) -> * -> * -> x,

produces something of kind

A gquestion may arise regarding how we knavhas kind* and not some other
kind k. In fact, the inferred kind fo6trange is (k -> *) -> k -> k ->
However, this requires polymorphism on the kind level, vihie too complex, so we
make a default assumption tHat= *.

This

That

* together with two types of kind and

* .

m NOTE = There are extensions to GHC which allow you to specify the

kind of constructors directly. For instance, if you wantediféerent kind,
you could write this explicitly:

data Strange (c :: ( * -> x) -> ) a b = MkStrange

to give a different kind t&btrange.

c a) (c b)

The notation of kinds suggests that we can perform partigliegtion, as we can
for functions. And, in fact, we can. For instance, we couldeha

type

MaybePair = Strange Maybe

The kind ofMaybePair is, not surprisinglys -> * -> =,
We should note here that all of the following definitions aceeptable:

type
type
type

MaybePairl
MaybePair2 a
MaybePair3 a b

Strange Maybe
Strange Maybe a
Strange Maybe a b

These all appear to be the same, but they are in fact not cd¢as far as Haskell's
type system is concerned. The following are all valid typimitgons using the above:

type
type
type

type
type

type

MaybePairla = MaybePairl
MaybePairlb = MaybePairl Int
MaybePairlc = MaybePairl Int Double
MaybePair2b = MaybePair2 Int
MaybePair2c = MaybePair2 Int Double
MaybePair3c = MaybePair3 Int Double

But the following arenotvalid:
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type MaybePair2a = MaybePair2
type MaybePair3a = MaybePair3
type MaybePair3b = MaybePair3 Int

This is because while it is possible to partially apply typastructors on datatypes,
it is not possible on type synonyms. For instance, the red&gePair2a is invalid
is becausdlaybePair2 is defined as a type synonym with one argument and we have
given it none. The same applies for the invalldybePair3 definitions.

8.7 Class Hierarchies

8.8 Default

what is it?
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Chapter 9

Monads

The most difficult concept to master, while learning Haskislthat of understanding

and using monads. We can distinguish two subcomponents KEréearning how
to use existing monads and (2) learning how to write new oregou want to use
Haskell, you must learn to use existing monads. On the otred hyou will only need
to learn to write your own monads if you want to become a “sifaeskell guru.” Still,
if you can grasp writing your own monads, programming in Hiskill be much more
pleasant.

So far we've seen two uses of monads. The first use was IO actila’ve seen

that, by using monads, we can abstract get away from thegrabplaguing the Real-
World solution to 10 presented in Chapter 5. The second use&@esenting different
types of computations in Section 8.4.2. In both cases, wdatka way to sequence

operations and saw that a sufficient definition (at least dongutations) was:

class Computation ¢ where
success i a -> Cc a
failure :: String -> ¢ a
augment : ca ->(@a->cbh)->cb
combine : ca->ca->c a

Let’s see if this definition will enable us to also perform [Essentially, we need
a way to represent taking a value out of an action and perf@sdme new operation

on it (as in the example from Section 4.4.3, rephrased $jight

main = do
s <- readFile "somefile"
putStrLn (show (f s))

But this is exactly whaaugment does. Usinqaugment , we can write the above

code as:

119
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main = -- note the lack of a "do"
readFile "somefile" ‘augment’ \s ->

putStrLn (show (f s))

This certainly seems to be sufficient. And, in fact, it turng to be more than
sufficient.

The definition of a monad is a slightly trimmed-down versidbour Computation
class. TheMonad class has four methods (but the fourth method can be defined in
terms of the third):

class Monad m where
return @ a ->m a
fail o String -> m a
(>>=) Tma->(@->mb)->mb
(>>) Tma->mb->mb

In this definition,return  is equivalent to ousuccess ; fail is equivalent to
ourfailure ;and>>= (read: “bind”) is equivalent to oumugment . The>> (read:
“then” ) method is simply a version of>= that ignores the. This will turn out to be
useful; although, as mentioned before, it can be definedingef>>=:

a>>x:a>>:\_->x

9.1 Do Notation

We have hinted that there is a connection between monad$iadd hotation. Here,
we make that relationship concrete. There is actually ngtmagic about theo
notation — it is simply “syntactic sugar” for monadic opéoat.

As we mentioned earlier, using o@omputation class, we could define our
above program as:

main =
readFile "somefile" ‘augment’ \s ->
putStrLn (show (f s))

But we now know thaaugment is called>>= in the monadic world. Thus, this
program really reads:

main =
readFile "somefile" >>= \s ->
putStrLn (show (f s))
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And this is completely valid Haskell at this point: if you dedd a functiorf ::
Show a => String -> a , you could compile and run this program)
This suggests that we can translate:

X <- f
g x

intof >>= \x -> g x . This is exactly what the compiler does. Talking about
do becomes easier if we do not use implicit layout (see Se@lior how to do this).
There are four translation rules:

1.do {e}—e
2.do {e; es } —e >> do {es}
3. do {let decls; es } —let decls in do {es}

4.do {p <-e; es }—let ok p =do {es} ; ok _ = falil
in e >>= ok

Again, we will elaborate on these one at a time:

Translation Rule 1

The first translation ruledo {e} — e, states (as we have stated before) that when

performing a single action, havingd® or not is irrelevant. This is essentially the base
case for an inductive definition afo. The base case has one action (naneehere);
the other three translation rules handle the cases whareithmore than one action.

Translation Rule 2

This states thado {e; es } —e >> do {es}. Thistells us whatto do if we have
an action €) followed by a list of actionsds). Here, we make use of the> function,
defined earlier. This rule simple states thatito{e; es }, we first perform the action
e, throw away the result, and thelo es.

For instance, ife is putStrLn s  for some strings, then the translation ado
{e; es }is to performe (i.e., print the string) and thegio es. This is clearly what
we want.

Translation Rule 3

This states thado {let decls; es  } — let decls in do {es}. This rule
tells us how to deal witlets inside of ado statement. We lift the declarations within
thelet out anddo whatever comes after the declarations.

let
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Translation Rule 4

Thisstatesthalo {p <- e; es } —let ok p = do {es} ; ok _ = falil
"."in e >>= ok . Again, itis not exactly obvious what is going on here. How-
ever, an alternate formulation of this rule, which is roygddjuivalent, isdo {p <-
e; es } — e >>= \p -> es . Here, itis clear what is happening. We run the
actione, and then send the results irgs, but first give the result the nanpe

The reason for the complex definition is tipatloesn’t need to simply be a variable;
it could be some complex pattern. For instance, the follgvisrvalid code:

foo = do (‘a’b’’c::xixs) <- getLine
putStrLn (X:xs)

In this, we're assuming that the results of the actimiLine  will begin with
the string “abc” and will have at least one more charactere ghestion becomes
what should happen if this pattern match fails. The compmitarld simply throw an
error, like usual, for failed pattern matches. Howevergsiwe're within a monad, we
have access to a specfail  function, and we’d prefer to fail using that function,
rather than the “catch allérror function. Thus, the translation, as defined, allows
the compiler to fill in the...  with an appropriate error message about the pattern
matching having failed. Apart from this, the two definiticare equivalent.

9.2 Definition

There are three rules that all monads must obey called thedddhaws” (and it is up
to youto ensure that your monads obey these rules) :

l.return a >=f =f a
2. f >>= return =f
3.f>>=(\x ->gx>=h) =(f >=¢g) >=h

Let’s look at each of these individually:

Law 1

This states thateturn a >>= f =f a . Suppose we think about monads as com-
putations. This means that if we create a trivial computeatiwat simply returns the
valuea regardless of anything else (this is tregurn a  part); and then bind it to-
gether with some other computatibnthen this is equivalent to simply performing the
computatiorf ona directly.

For example, supposk is the functionputStrLn  anda is the string “Hello
World.” This rule states that binding a computation whossulteis “Hello World”
to putStrLn  is the same as simply printing it to the screen. This seemsakem
sense.

In do notation, this law states that the following two programsequivalent:
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lawla = do
X <- return a
f x
lawlb = do
fa
Law 2
The second monad law states that>= return = f for some computatioh. In

other words, the law states that if we perform the computdtiand then pass the result
onto the trivialreturn  function, then all we have done is to perform the computation
That this law must hold should be obvious. To see this, think asgetLine
(reads a string from the keyboard). This law states thatingeal string and then re-
turning the value read is exactly the same as just readingtiimg.
In do notation, the law states that the following two programseayeivalent:

law2a = do
X <- f
return x

law2b = do
f

Law 3

This states that >>= ( \x -> g x >>= h) = (f >>= g) >>= h . Atfirst
glance, this law is not as easy to grasp as the other two. $sisndially an associativity associative
law for monads.

m NOTE = Outside the world of monads, a functierns associative if
(f-g)-h = f-(g-h). Forinstance;+ and* are associative, since
bracketing on these functions doesn’'t make a difference th@rother
hand,- and/ are not associative since, for example- (3 — 1) #
(5—-3)— 1.

If we throw away the messiness with the lambdas, we see tisalath states:f
>>= (g >>= h) = (f >>= g) >>= h . The intuition behind this law is that
when we string together actions, it doesn’t matter how weigtbem.

For a concrete example, takdo begetLine . Takeg to be an action which takes
a value as input, prints it to the screen, reads anothegstiangetLine , and then
returns that newly read string. Takeo beputStrLn

Let's consider what \x -> g x >>= h) does. It takes a value called and
runsg on it, feeding the results intb. In this instance, this means that it's going to
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take a value, print it, read another value and then print thilaus, the entire left hand
side of the law first reads a string and then does what we'telpscribed.

On the other hand, considéir >>= g) . This action reads a string from the
keyboard, prints it, and then reads another string, retgrtiiat newly read string as a
result. When we bind this with as on the right hand side of the law, we get an action
that does the action described tby>>= g) , and then prints the results.

Clearly, these two actions are the same.

While this explanation is quite complicated, and the texthaf law is also quite
complicated, the actual meaning is simple: if we have thotiems, and we compose
them in the same order, it doesn’t matter where we put thengfaeses. The rest is just
notation.

In do notation, the law says that the following two programs angivedent:

law3a = do
X <- f
doy <-g X
hy
law3b = do
y <- do x < f
g X
hy

9.3 A Simple State Monad

One of the simplest monads that we can craft is a state-gassnad. In Haskell, all
state information usually must be passed to functions eitlglias arguments. Using
monads, we can effectively hide some state information.

Suppose we have a functidnof typea — b, and we need to add state to this
function. In general, if state is of typeate, we can encode it by changing the type of
f toa — state — (state, b). That s, the new version éf takes the original parameter
of typea and a new state parameter. And, in addition to returning &hgevof typeb,
it also returns an updated state, encoded in a tuple.

For instance, suppose we have a binary tree defined as:

data Tree a
= Leaf a
| Branch (Tree a) (Tree a)

Now, we can write a simple map function to apply some funct@each value in
the leaves:

mapTree :: (a -> b) -> Tree a -> Tree b
mapTree f (Leaf a) = Leaf (f a)
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mapTree f (Branch |hs rhs) =
Branch (mapTree f lhs) (mapTree f rhs)

This works fine until we need to write a function that numbées leaves left to
right. In a sense, we need to add state, which keeps trackvohiemy leaves we've
numbered so far, to thmapTree function. We can augment the function to something
like:

mapTreeState :: (a -> state -> (state, b)) ->
Tree a -> state -> (state, Tree b)

mapTreeState f (Leaf a) state =

let (state’, b) = f a state

in (state’, Leaf b)
mapTreeState f (Branch lhs rhs) state =

let (state’ , lhs’) = mapTreeState f lhs state

(state”, rhs’) = mapTreeState f rhs state’
in (state”, Branch l|hs’ rhs’)

This is beginning to get a bit unweildy, and the type sigratsigetting harder and
harder to understand. What we want to do is abstract awaydtegassing part. That
is, the differences betweenapTree andmapTreeState are: (1) the augmentdd
type, (2) we replaced the type Tree b with -> state -> (state, Tree
b) . Notice that both types changed in exactly the same way. Walsstract this away
with a type synonym declaration:

type State st a = st -> (st, a)

To go along with this type, we write two functions:

returnState :: a -> State st a
returnState a = \st -> (st, a)

bindState :: State st a -> (a -> State st b) ->
State st b
bindState m k = \st ->
let (st’, a) = m st
m’ =k a
in m' st

Let's examine each of these in turn. The first functiceturnState |, takes a
value of typea and creates something of tyate st a . If we think of thest
as the state, and the value of typas the value, then this is a function that doesn’t
change the state and returns the value

ThebindState  function looks distinctly like the interidet declarations imapTreeState
It takes two arguments. The first argument is an action thatme something of type
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a with statest . The second is a function that takes thiand produces something of
typeb also with the same state. The resulbaidState is essentially the result of
transforming the into ab.

The definition ofbindState  takes an initial statest . It first applies this to the
State st a argument calleadn This gives back a new stagt and a value. It
then lets the functiok act ona, producing something of typ8tate st b , called
m’. We finally runm’ with the new statst’

We write a new functionmmapTreeStateM and give it the type:

mapTreeStateM :: (a -> State st b) -> Tree a -> State st (Tree b)

Using these “plumbing” functionsréturnState and bindState ) we can
write this function without ever having to explicitly tallbaut the state:

mapTreeStateM f (Leaf a) =
f a ‘bindState’ \b ->
returnState (Leaf b)

mapTreeStateM f (Branch |hs rhs) =
mapTreeStateM f |hs ‘bindState* \Ihs’ ->
mapTreeStateM f rhs ‘bindState’ \rhs’ ->
returnState (Branch Ihs’ rhs’)

In theLeaf case, we apply to a and therbind the result to a function that takes
the result and returnslaeaf with the new value.

IntheBranch case, we recurse on the left-hand-side, binding the resalfunc-
tion that recurses on the right-hand-side, binding thatgorgple function that returns
the newly create@ranch .

As you have probably guessed by this poBtate st is a monadieturnState
is analogous to the overloadexturn  method, andindState  is analogous to the
overloaded>>= method. In fact, we can verify th&tate st a obeys the monad
laws:

Law 1lstatesrreturn a >>= f =f a . Let’s calculate on the left hand side,
substituting our names:

returnState a ‘bindState’ f

==>
\st -> let (st’, a) = (returnState a) st
m'’ =fa
in m’ st
==>
\st -> let (st’, a) = (\st -> (st, a)) st
in (f a) st
==>

\st -> let (st’, a) = (st, a)
in (f a) st
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==>

\st -> (f a) st
==>

fa

In the first step, we simply substitute the definitiorbaidState . In the second
step, we simplify the last two lines and substitute the diédiniof returnState . In
the third step, we applst to the lambda function. In the fourth step, we renatie
tost and remove théet. In the last step, we eta reduce.

Moving on toLaw 2 we need to show thét>>= return =f. Thisis shown
as follows:

f ‘bindState’ returnState

==>
\st -> let (st’, a) = f st
in (returnState a) st’
==>
\st -> let (st, a) = f st
in  (\st -> (st, a)) st
==>
\st -> let (st’, a) = f st
in (st, a)
==>
\st -> f st
==>

f

Finally, we need to show th&tate obeys the third lawf >>= ( \x -> g x
>>= h) = (f >>= g) >>= h . This is much more involved to show, so we will
only sketch the proof here. Notice that we can write the hefitd-side as:

\st -> let (st, a) = f st
in (\x -> g x ‘bindState’ h) a st’

==>
\st -> let (st’, a) = f st
in (g a ‘bindState* h) st’
==>
\st -> let (st, a) = f st
in (\st' -> let (st”, b) = g a
in h b st”) st
==>

\st -> let (st' , a) = f st
(st”, b) = g a st
(st”,c) = h b st”
in  (st”,c)




mapTreeM

128 CHAPTER 9. MONADS

The interesting thing to note here is that we have both acjfpiications on the
samdet level. Sincdet is associative, this means that we can put whichever briacket
we prefer and the results will not change. Of course, thisisformal, “hand waving”
argument and it would take us a few more derivations to agtpabve, but this gives
the general idea.

Now that we know thaBtate st is actually a monad, we'd like to make it an
instance of théMonad class. Unfortunately, the straightforward way of doingsthi
doesn’t work. We can'’t write:

instance Monad (State st) where { ... }

This is because you cannot make instances out of non-fpitjied type synonyms.
Instead, what we need to do instead is convert the type synamy anewtype, as:

newtype State st a = State (st -> (st, a))

Unfortunately, this means that we need to do some packingiapdcking of the
State constructor in théVIonad instance declaration, but it's not terribly difficult:

instance Monad (State state) where
return a = State (\state -> (state, a))
State run >>= action = State run’
where run’ st =

let (st’, a) = run st
State run” = action a
in  run” st

Now, we can write oumapTreeM function as:

mapTreeM :: (a -> State state b) -> Tree a ->
State state (Tree b)
mapTreeM f (Leaf a) = do
b < fa
return (Leaf b)
mapTreeM f (Branch Ihs rhs) = do
Ihs’ <- mapTreeM f |hs
rhs’ <- mapTreeM f rhs
return (Branch lhs’ rhs’)

which is significantly cleaner than before. In fact, if we i@ra the type signature, we
get the more general type:

mapTreeM :: Monad m => (a -> m b) -> Tree a ->
m (Tree b)
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That is,mapTreeM can be run iranymonad, not just ouBtate monad.
Now, the nice thing about encapsulating the stateful aggfe¢be computation like
this is that we can provide functions to get and change theeotistate. These look
like: getState

putState

getState :: State state state
getState = State (\state -> (state, state))

putState :: state -> State state ()
putState new = State (\_ -> (new, ()))

Here, getState is a monadic operation that takes the current state, passes i
through unchanged, and then returns it as the value.puttate  function takes a
new state and produces an action that ignores the currémistd inserts the new one.

Now, we can write ounumberTree function as:

numberTree :: Tree a -> State Int (Tree (a, Int))
numberTree tree = mapTreeM number tree
where number v = do
cur <- getState
putState (cur+1)
return (v,cur)

Finally, we need to be able to run the action by providing dfairstate:

runStateM :. State state a -> state -> a
runStateM (State f) st = snd (f st)

Now, we can provide an example Tree:

testTree =
Branch
(Branch
(Leaf 'a)
(Branch
(Leaf 'b’)
(Leaf ’'c)))
(Branch
(Leaf 'd)
(Leaf ’e")

and number it:

State> runStateM (numberTree testTree) 1
Branch (Branch (Leaf ('a’,1)) (Branch (Leaf ('b’,2))
(Leaf ('c’,3)))) (Branch (Leaf ('d’,4))
(Leaf (’e’,5)))
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This may seem like a large amount of work to do something gmgplowever,
note the new power ahapTreeM. We can also print out the leaves of the tree in a
left-to-right fashion as:

State> mapTreeM print testTree
'a

b

c
ld!
e

This crucially relies on the fact thatapTreeM has the more general type involving
arbitrary monads — not just the state monad. Furthermoreanevrite an action that
will make each leaf value equal to its old value as well ashaialues preceeding:

fluffLeaves tree = mapTreeM fluff tree
where fluff v = do
cur <- getState
putState (v:cur)
return (v:cur)

and can see it in action:

State> runStateM (fluffLeaves testTree) []

Branch (Branch (Leaf "a") (Branch (Leaf "ba")
(Leaf "cba"))) (Branch (Leaf "dcba")
(Leaf "edcba™)

In fact, you don’t even need to write your own monad instanu @atatype. All
this is built in to theControl.Monad.State module. There, ourunStateM
is calledevalState ; ourgetState is calledget ; and ourputState is called
put .

This module also contains gtate transformer monadvhich we will discuss in
Section 9.7.

9.4 Common Monads

It turns out that many of our favorite datatypes are actualnads themselves. Con-
lists sider, for instance, lists. They have a monad definitionltaks something like:

instance Monad [] where
return x = [X]
| >>= f = concatMap f |
fal _ =]
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This enables us to use lists in do notation. For instancengive definition:

cross 11 12 = do
X <- 11
y <- 12
return (X,y)

we get a cross-product function:

Monads> CI’OSS uabu "def"
[Ca,d),(ae),(a,f), (b, d),(be),
(,b,,,f’)]

It is not a coincidence that this looks very much like thedismprehension form:

Prelude> [(x,y) | X <- "ab", y <- "def"]
[(a,d),(ae),(a,F), (b d).(be),
(b’ )]

List comprehension form is simply an abbreviated form of anatic statement
using lists. In fact, in older versions of Haskell, the lisheprehension form could be

used foranymonad — not just lists. However, in the current version ofké#isthis is
no longer allowed.

The Maybe type is also a monad, with failure being representeNeathing and
with success adust . We get the following instance declaration:

instance Monad Maybe where
return a = Just a
Nothing >>= f = Nothing
Just x >>=f = f x
fail _ = Nothing

We can use theamecross product function that we did for lists &faybes. This
is because thdo notation works for any monad, and there’s nothing specifilists
about thecross function.

Monads> cross (Just 'a’) (Just 'b’)

Just (‘'a’,’b")

Monads> cross (Nothing :: Maybe Char) (Just 'b’)
Nothing

Monads> cross (Just ’'a’) (Nothing :: Maybe Char)
Nothing

Monads> cross (Nothing :: Maybe Char)
(Nothing :: Maybe Char)

Nothing

list comprehensions

Maybe
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What this means is that if we write a function (likearchAll  from Section 8.4)
only in terms of monadic operators, we can use it with any dodapending on what
we mean. Using real monadic functions (datnotation), thesearchAll  function
looks something like:

searchAll g@(Graph vl el) src dst
| src == dst = return [src]
| otherwise = search’ el
where search’ [ = fail "no path”
search’ ((u,v,_):es)
| src == u =
searchAll g v dst >>= \path ->
return (u:path)
| otherwise = search’ es

The type of this functionidonad m => Graph v e -> Int -> Int ->
m [Int] . This means that no matter what monad we're using at the mprtres
function will perform the calculation. Suppose we have thiofving graph:

gr = Graph [(0, 'a), (1, 'b), (2, 'c), (3, 'd)]
[(0,2,1), (0,2,/m"), (1,3,'n’), (2,3, mM")]

This represents a graph with four nodes, labelidnicandd. There is an edge
from ato bothb andc. There is also an edge from bdilandc to d. Using theMaybe
monad, we can compute the path frarto d:

Monads> searchAll gr 0 3 :: Maybe [Int]
Just [0,1,3]

We provide the type signature, so that the interpreter knehvat monad we're
using. If we try to search in the opposite direction, theraagpath. The inability to
find a path is represented lsthing in the Maybe monad:

Monads> searchAll gr 3 0 :: Maybe [Int]
Nothing

Note that the string “no path” has disappeared since thacelsay for theMaybe
monad to record this.

If we perform the same impossible search in the list monadyetehe empty list,
indicating no path:

Monads> searchAll gr 3 0 :: [[Int]]
I

see
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If we perform the possible search, we get back a list comgittie first path:

Monads> searchAll gr 0 3 :: [[Int]]
[[0,1,3]]

You may have expected this function call to retathpaths, but, as coded, it does
not. See Section 9.6 for more about using lists to represardeterminism.

If we use the IO monad, we can actually get at the error message 10 knows
how to keep track of error messages:

Monads> searchAll gr 0 3 :: 10 [Int]
Monads> it

[0,1,3]

Monads> searchAll gr 3 0 :: 10 [Int]
*x  Exception: user error

Reason: no path

In the first case, we needed to tyipe to get GHCi to actually evaluate the search.

There is one problem with this implementationsefarchAll  : if it finds an edge
that does not lead to a solution, it won't be able to backtratkis has to do with
the recursive call tgearchAll  inside ofsearch’ . Consider, for instance, what
happens isearchAll g v dst doesn’t find a path. There’s no way for this im-
plementation to recover. For instance, if we remove the éage nodeb to noded,
we should still be able to find a path froato d, but this algorithm can't find it. We
define:

gr2 = Graph [(0, 'a), (1, 'b), (2, 'c), (3, 'd)]
[(0,1,1), (0,2,/m"), (2,3,/m’)]

and then try to search:

Monads> searchAll gr2 0 3
*+  Exception: user error
Reason: no path

To fix this, we need a function likeombine from ourComputation class. We
will see how to do this in Section 9.6.

Exercises

Exercise 9.1 Verify thatMaybe obeys the three monad laws.

Exercise 9.2 The typeEither String is a monad that can keep track of errors. Write an
instance for it, and then try doing the search from this cleapsing this monad.

Hint: Your instance declaration should beginstance Monad (Either String)

where .

nondeterminism
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9.5 Monadic Combinators

TheMonad/Control.Monad library contains a few very useful monadic combina-
tors, which haven’t yet been thoroughly discussed. The arewill discuss in this
section, together with their types, are:

e(=<<) x (@->mb)y->ma->mb

e mapM :: (a -> m b) -> [a] -> m [b]

emapM :: (a->mb) ->[a > m ()

e filterM :: (a -> m Bool) -> [a] -> m [a]

e foldM : (a->b ->ma) ->a ->[b] ->ma
e sequence :: [m a] -> m [a]

e sequence _ :: [m a] -> m ()

o liftM ;. (@ ->b) ->ma->mb

e when :: Bool ->m () -> m ()

ejoin: m(ma -> ma

In the abovemis always assumed to be an instanc@&bfénad.
In general, functions with an underscore at the end are alpuit’to the ones with-

out, except that they do not return any value.

The=<< function is exactly the same as=, except it takes its arguments in the

opposite order. For instance, in the |0 monad, we can writeeedf the following:

Monads> writeFile "foo" "hello world!" >>

hello world!
Monads> writeFile "foo

(readFile "foo" >>= putStrLn)

hello world!" >>
(putStrLn =<< readFile "foo")

hello world!
mapM ThemapM filterM andfoldM are our old friendsnap, filter andfoldr
filterM wrapped up inside of monads. These functions are incredibgful (particularly
foldM foldM ) when working with monads. We can us&pM, for instance, to print a list of

things to the screen:

1

2
3
4
5

Monads> mapM_ print [1,2,3,4,5]
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We can usdoldM to sum a list and print the intermediate sum at each step:

Monads> foldM (\a b ->

putStrLn (show a ++ "+" ++ show b ++
"=" ++ show (atb)) >>

return (a+b)) 0 [1..5]

0+1=1

1+2=3

3+3=6

6+4=10

10+5=15

Monads> it

15

Thesequence andsequence _functions simply “execute” a list of actions. For sequence
instance:

Monads> sequence [print 1, print 2, print 'a’]
1
2
‘a
* Monads> it

[0.0.01

* Monads> sequence_ [print 1, print 2, print 'a’]
1
2
‘a
* Monads> it

0

We can see that the underscored version doesn’t return efwh, while the non-
underscored version returns the list of the return values.
TheliftM  function “lifts” a non-monadic function to a monadic furati. (Do liftM
not confuse this with théft ~ function used for monad transformers in Section 9.7.)
This is useful for shortening code (among other things). ikstance, we might want
to write a function that prepends each line in a file with itelnumber. We can do this
with:

numberFile :: FilePath -> 10 ()
numberFile fp = do
text <- readFile fp
let | = lines text
let n = zipWith (\n t -> show n ++ ' ' : t) [1.] |
mapM_ putStrLn n

However, we can shorten this usiliigM
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numberFile :: FilePath -> 10 ()

numberFile fp = do
| <- lines 'liftM* readFile fp
let n = zipWith (\n t -> show n ++ ' " ) [1.] |
mapM_ putStrLn n

In fact, you can apply any sort of (pure) processing to a filagisftM . For
instance, perhaps we also want to split lines into words; avedo this with:

w <- (map words . lines) 'liftM* readFile fp

Note that the parentheses are required, sincé.thefunction has the same fixity
has'liftM*

Lifting pure functions into monads is also useful in othermads. For instance
liftM  can be used to apply function insideXfst . For instance:

Monads> IliftM (+1) (Just 5)
Just 6
* Monads> liftM (+1) Nothing
Nothing

when Thewhen function executes a monadic action only if a condition is.n$et, if we
only want to print non-empty lines:

Monads> mapM_ (\I -> when (not $ null I) (putStrLn 1))
[""7"abC","def"’"","","ghi"]

abc

def

ghi

Of course, the same could be accomplished Viltdr ~ , but sometimewvhen is
more convenient.

join Finally, thejoin  function is the monadic equivalent obncat on lists. In fact,
whenmis the list monadjoin is exactlyconcat . In other monads, it accomplishes
a similar task:

Monads> join (Just (Just 'a’))

Just ’'a’

Monads> join (Just (Nothing :: Maybe Char))
Nothing

Monads> join (Nothing :: Maybe (Maybe Char))
Nothing
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Monads> join (return (putStrLn "hello"))
hello

Monads> return (putStrLn "hello")
Monads> join [[1,2,3],[4,5]]

[1,2,3,4,5]

These functions will turn out to be even more useful as we nwwvée more ad-
vanced topics in Chapter 10.

9.6 MonadPlus

Given only the>>= andreturn functions, it is impossible to write a function like
combine with typec a — c a — c a. However, such a function is so generally useful
that it exists in another class callddonadPlus. In addition to having @ombine
function, instances oMonadPlus also have a “zero” element that is the identity
under the “plus” (i.e., combine) action. The definition is:

class Monad m => MonadPlus m where
mzero : m a
mplus = ma ->ma ->m a

In order to gain access lonadPlus, you need to import th&onad module
(or Control.Monad in the hierarchical libraries).

In Section 9.4, we showed th#&daybe and list are both monads. In fact, they
are also both instances dlonadPlus. In the case oMaybe, the zero element is
Nothing ;in the case of lists, it is the empty list. Theplus operation orMaybe is
Nothing , if both elements ardlothing ; otherwise, it is the firsjust value. For
lists,mplus is the same as+.

That is, the instance declarations look like:

instance MonadPlus Maybe where
mzero = Nothing
mplus Nothing y = vy
mplus x =X
instance MonadPlus [] where
mzero = []
mplus X y = X ++ y

We can use this class to reimplement the search functionen®en exploring,
such that it will explore all possible paths. The new functiooks like:

searchAll2 g@(Graph vl el) src dst
| src == dst = return [src]

combine
MonadPlus

Maybe
lists
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| otherwise = search’ el
where search’ [| = fail "no path"
search’ ((u,v,_):es)
| src == =
(searchAll2 g v dst >>= \path ->
return (u:path)) ‘mplus’
search’ es
| otherwise = search’ es

Now, when we’re going through the edge listsearch’ , and we come across a
matching edge, not only do we explore this path, but we alstirmoe to explore the
out-edges of the current node in the recursive cadigarch’

The 10 monad is not an instance MonadPlus; we we’re not able to execute
the search with this monad. We can see that when using liskeanonad, we (a) get
all possible paths igr and (b) get a path igr2 .

MPIlus> searchAll2 gr 0 3 :: [[Int]]
[[0,1,3],[0,2,3]]

MPIlus> searchAll2 gr2 0 3 :: [[Int]]
[[0,2,3]]

You might be tempted to implement this as:

searchAll2 g@(Graph vl el) src dst
| src == dst = return [src]
| otherwise = search’ el
where search’ [| = fail "no path"
search’ ((u,v,_):es)
| src == u = do
path <- searchAll2 g v dst
rest <- search’ es
return ((u:path) ‘mplus’ rest)
| otherwise = search’ es

But note that this doesn’t do what we want. Here, if the raearsall tosearchAll2
fails, we don’t try to continue and execldearch’ es . The call tomplus must be
at the top level in order for it to work.

EXxercises

Exercise 9.3 Suppose that we changed the order of argumentaptus . |.e., the
matching case adearch’ looked like:

search’ es ' npl us’
(searchAll2 g v dst >>= \path ->
return (u:path))
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How would you expect this to change the results when usingistheaonad ongr ?
Why?

9.7 Monad Transformers

Often we want to “piggyback” monads on top of each other. Rstance, there might
be a case where you need access to both 10 operations threed tmonad and
state functions through some state monad. In order to adegmnthis, we introduce
aMonadTrans class, which essentially “lifts” the operations of one maireto an-
other. You can think of this astackingmonads on top of eachother. This class has a
simple methodlift . The class declaration fiWlonad Trans is:

class MonadTrans t where
lift : Monad m => m a ->tm a

The idea here is thdt is the outer monad and thatlives inside of it. In order to
execute a command of typdonad m => m awe firstlift  itinto the transformer.

The simplest example of a transformer (and arguably the osesful) is the state
transformer monad, which is a state monad wrapped arountbétraay monad. Be-
fore, we defined a state monad as:

newtype State state a = State (state -> (state, a))

Now, instead of using a function of tygéate -> (state, a) as the monad,
we assume there’s some other monahd make the internal action into something of
typestate -> m (state, a) . This gives rise to the following definition for a
state transformer:

newtype StateT state m a =
StateT (state -> m (state, a))

For instance, we can think @fias 10. In this case, our state transformer monad is
able to execute actions in the IO monad. First, we make thisstance oMonadTrans:

instance MonadTrans (StateT state) where
lift m = StateT (\s -> do a <- m
return (s,a))

Here, lifting a function from the realm ofito the realm oStateT state  simply
involves keeping the state (tlsevalue) constant and executing the action.

Of course, we also need to maltateT a monad, itself. This is relatively
straightforward, provided thais already a monad:

MonadTrans

lift

state monad

state transformer
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instance Monad m => Monad (StateT state m) where
return a = StateT (\s -> return (s,a))
StateT m >>= k = StateT (\s -> do
(s, a) < m s
let StateT m’ = k a
m’ s’)
fail s = StateT (\_ -> fail s)

The idea behind the definition oéturn is that we keep the state constant and
simply return the state/a pair in the enclosed monad. Neatettle use ofeturn in
the definition ofreturn  refers to the enclosed monad, not the state transformer.

In the definition of bind, we create a neBtateT that takes a state as an ar-
gument. First, it applies this state to the first acti®aieT m ) and gets the new
state and answer as a result. It then runsktlaetion on this new state and gets a new
transformer. It finally applies the new state to this transfer. This definition is nearly
identical to the definition of bind for the standard (nomsBrmer)State monad
described in Section 9.3.

Thefail function passes on the call fail in the enclosed monad, since state
transformers don't natively know how to deal with failure.

Of course, in order to actually use this monad, we need toigedunctiongetT
, putT andevalStateT . These are analogous getState , putState and
runStateM from Section 9.3:

getT :: Monad m => StateT s m s
getT = StateT (\s -> return (s, S))

putT :: Monad m => s -> StateT s m ()
putT s = StateT (\_ -> return (s, ()))

evalStateT :: Monad m => StateT s ma ->s -> m a
evalStateT (StateT m) state = do

(s’, a) <- m state

return a

These functions should be straightforward. Note, howékatthe result oévalStateT
is actually a monadic action in the enclosed monad. Thisp&#) of monad trans-
formers: they don’'t know how to actually run things in theirceosed monad (they
only know how tolift ~ actions). Thus, what you get out is a monadic action in the
inside monad (in our case, 10), which you then need to runsedfir

We can use state transformers to reimplement a version ehapi reeM function
from Section 9.3. The only change here is that when we getdéafawe print out the
value of the leaf; when we get to a branch, we just print outtigh.”

mapTreeM action (Leaf a) = do
lift (putStrLn ("Leaf " ++ show a))
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b <- action a
return (Leaf b)
mapTreeM action (Branch lhs rhs) = do
lift (putStrLn "Branch")
Ihs’ <- mapTreeM action lhs
rhs’ <- mapTreeM action rhs
return (Branch Ihs’ rhs’)

The only difference between this function and the one frowti8e 9.3 is the calls
to lift (putStrLn ...) as the first line. Théft  tells us that we're going to
be executing a command in an enclosed monad. In this casentthesed monad is
10, since the command lifted gutStrLn

The type of this function is relatively complex:

mapTreeM :: (MonadTrans t, Monad (t 10), Show a) =>
(a ->t10 al) -> Tree a -> t 10 (Tree al)

Ignoring, for a second, the class constraints, this sayisniagTreeM takes an
action and a tree and returns a tree. This just as before.idnvile require that is
a monad transformer (since we apfiify  in it); we require that 10 is a monad,
since we us@utStrLn  we know that the enclosed monad@; finally, we require
thata is an instance of show — this is simply because weslssv to show the value
of leaves.

Now, we simply changaumberTree to use this version ahapTreeM, and the
new versions ofjet andput , and we end up with:

numberTree tree = mapTreeM number tree
where number v = do
cur <- getT
putT (cur+1)
return (v,cur)

Using this, we can run our monad:

MTrans> evalStateT (numberTree testTree) O
Branch
Branch
Leaf 'a’
Branch
Leaf 'b’
Leaf 'c’
Branch
Leaf 'd’
Leaf e’

* MTrans> it
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Branch (Branch (Leaf ('a’,0))
(Branch (Leaf ('b’,1)) (Leaf ('c’,2))))
(Branch (Leaf ('d’,3)) (Leaf ('e’,4)))

One problem not specified in our discussionMbnadPlus is that our search
algorithm will fail to terminate on graphs with cycles. Cates:

gr3 = Graph [(0, 'a), (1, 'b), (2, 'c), (3, 'd)]
[(0,1,1), (1,0,m"), (0,2,'n"),
(1,30, (2,3,'p")]

In this graph, there is a back edge from nadeack to node. If we attempt to run
searchAll2 | regardless of what monad we use, it will fail to terminateorbbver,
if we move this erroneous edge to the end of the list (and baigr4 ), the result of
searchAll2 gr4 0 3 will contain an infinite number of paths: presumably we
only want paths that don’t contain cycles.

In order to get around this problem, we need to introduce stdamely, we need
to keep track of which nodes we have visited, so that we dasitthem again.

We can do this as follows:

searchAll5 g@(Graph vl el) src dst
| src == dst = do
visited <- getT
putT (src:visited)
return [src]
| otherwise = do
visited <- getT
putT (src:visited)
if src ‘elem’ visited
then mzero
else search’ el
where
search’ [] = mzero
search’ ((u,v,_):es)
| src == u =
(do path <- searchAll5 g v dst
return (u:path)) ‘mplus’
search’ es
| otherwise = search’ es

Here, we implicitly use a state transformer (see the callgetd andputT ) to
keep track of visited states. We only continue to recursenwke encounter a state we
haven't yet visited. Futhermore, when we recurse, we adduhent state to our set
of visited states.

Now, we can run the state transformer and get out only theecbpaths, even on
the cyclic graphs:
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MTrans> evalStateT (searchAll5 gr3 0 3) [] :: [[Int]]
[[0,1,3],[0,2,3]]
MTrans> evalStateT (searchAll5 grd4 0 3) [] :: [[Int]]
[[0,1,3],[0,2,3]]

Here, the empty list provided as an argumengvalStateT s the initial state
(i.e., the initial visited list). In our case, it is empty.

We can also provide aexecStateT method that, instead of returning a result,
returns the final state. This function looks like:

execStateT :: Monad m => StateT s ma ->s ->m s
execStateT (StateT m) state = do

(s’, a) <- m state

return s’

Thisis not so useful in our case, as it will return exactlyriweerse oevalStateT
(try it and find out!), but can be useful in general (if, fortaisce, we need to know how
many numbers are usediumberTree ).

Exercises

Exercise 9.4 Write a functionsearchAll6 , based on the code faearchAll2
that, at every entry to the main function (not the recursiverdghe edge list), prints the
search being conducted. For instance, the output genefatestarchAll6 gr 0

3 should look like:

Exploring 0 ->
Exploring 1 ->
Exploring 3 ->
Exploring 2 ->
Exploring 3 ->
MIrans> it

[[0,1,3],[0,2, 3]]

WwWwwww

In order to do this, you will have to define your own list mon@shsformer and make
appropriate instances of it.

Exercise 9.5 Combine thesearchAll5  function (from this section) with threearchAll6
function (from the previous exercise) into a single funttalledsearchAll7 . This
function should perform 10 as isearchAll6  but should also keep track of state
using a state transformer.



primitives

144 CHAPTER 9. MONADS

9.8 Parsing Monads

It turns out that a certain class of parsers are all monadis. fiikes the construction

of parsing libraries in Haskell very clean. In this chapte,begin by building our own
(small) parsing library in Section 9.8.1 and then introdilneeParsec parsing library in

Section 9.8.2.

9.8.1 A Simple Parsing Monad

Consider the task of parsing. A simple parsing monad is mikehd state monad,
where the state is the unparsed string. We can represeeixtnigly as:

newtype Parser a = Parser
{ runParser :: String -> Either String (String, a) }

We again uséeft err  to be an error condition. This yields standard instances

of Monad andMonadPlus:

instance Monad Parser where
return a = Parser (\xI -> Right (xl,a))
fail s = Parser (\xI -> Left s)
Parser m >>= k = Parser $ x| ->
case m x| of
Left s -> Left s
Right (xI', a) ->
let Parser n = k a
in n xI’

instance MonadPlus Parser where
mzero = Parser (\xI -> Left "mzero")
Parser p ‘mplus’ Parser q = Parser $ x| ->
case p xl of
Right a -> Right a
Left err -> case q xl of
Right a -> Right a
Left _ -> Left err

Now, we want to build up a library of paring “primitives.” Tmeost basic primitive
is a parser that will read a specific character. This fundboks like:

char :: Char -> Parser Char
char ¢ = Parser char
where char’ [] = Left ("expecting " ++ show c ++
" got EOF")
char’ (x:xs)
| x == = Right (xs, )
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| otherwise = Left ("expecting " ++
show ¢ ++
show Xx)

got " ++

Here, the parser succeeds only if the first character of thetiis the expected
character.
We can use this parser to build up a parser for the string tHell

helloParser :: Parser String
helloParser = do
char 'H’
char ’e’
char I
char I
char 'o
return "Hello"

This shows how easy it is to combine these parsers. We doext teeworry about
the underlying string — the monad takes care of that for ud. wal need to do is
combine these parser primatives. We can test this parsesibgunParser and by

supplying input:

Parsing> runParser helloParser "Hello"

Right (","Hello")

Parsing> runParser helloParser "Hello World!"
Right (" World!","Hello")

Parsing> runParser helloParser "hello World!"
Left "expecting 'H got 'h™

We can have a slightly more general function, which will nhegiay character fitting
a description:

matchChar :: (Char -> Bool) -> Parser Char
matchChar ¢ = Parser matchChar’
where matchChar’ [] =
Left ("expecting char, got EOF")
matchChar’ (x:xs)

| ¢ x = Right (xs, X)
| otherwise =
Left ("expecting char, got " ++
show x)

Using this, we can write a case-insensitive “Hello” parser:

runParser
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ciHelloParser = do
cl <- matchChar (‘elem‘ "Hh")
c2 <- matchChar (‘elem’ "Ee")
c3 <- matchChar (‘elem‘ "LI")
c4 <- matchChar (‘elem‘ "LI")
c5 <- matchChar (‘elem’ "Oo0")
return [c1,c2,c3,c4,c5]

Of course, we could have used something fik@chChar ((=="h’) . toLower)
but the above implementation works just as well. We can késftinction:

Parsing> runParser ciHelloParser "hELIO world!"
Right (" world!","hELIO")

Finally, we can have a function, which will match any chaeact

anyChar :: Parser Char
anyChar = Parser anyChar’
where anyChar’ [] =
Left ("expecting character, got EOF")
anyChar’ (x:xs) = Right (xs, X)

many On top of these primitives, we usually build some combiratdhemany combi-
nator, for instance, will take a parser that parses entifiégpea and will make it into
a parser that parses entities of tfpg (this is a Kleene-star operator):

many :: Parser a -> Parser [a]
many (Parser p) = Parser many’
where many’ x| =
case p xl of
Left err -> Right (xI, [])
Right (xI'’a) ->
let Right (xI”, rest) = many’ xI’
in  Right (xI”, a:rest)

The idea here is that first we try to apply the given parself this fails, wesucceed
but return the empty list. Ip succeeds, we recurse and keep trying to appmtil it
fails. We then return the list of successes we've accumdilate

In general, there would be many more functions of this sod,they would be hid-
den away in a library, so that users couldn’t actually lookide theParser type.
However, using them, you could build up, for instance, a grateat parses (non-
negative) integers:
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int :: Parser Int

int = do
t1 <- matchChar isDigit
tr <- many (matchChar isDigit)
return (read (tl:tr))

In this function, we first match a digit (thisDigit ~ function comes from the
moduleChar /Data.Char ) and then match as many more digits as we can. We then
read the result and return it. We can test this parser as before:

Parsing> runParser int "54"
Right (™,54)

* Parsing> runParser int "54abc"
Right ("abc",54)

* Parsing> runParser int "a54abc"
Left "expecting char, got 'a™

Now, suppose we want to parse a Haskell-style lishts. This becomes somewhat
difficult because, at some point, we're either going to parsemma or a close brace,
but we don’t know when this will happen. This is where the fheit Parser is an
instance ofMonadPlus comes in handy: first we try one, then we try the other.

Consider the following code:

intList :: Parser [Int]
intList = do
char T
intList’ ‘mplus‘ (char '] >> return [])
where intList’” = do
i <-int
r <- (char ') >> intList’) ‘mplus’
(char T >> return [])
return (i:r)

The first thing this code does is parse and open brace. Thieig,mglus , it tries mplus
one of two things: parsing usingtList’ , Or parsing a close brace and returning an
empty list.
TheintList’ function assumes that we're not yet at the end of the list,santl
first parses an int. It then parses the rest of the list. Howé@woesn't know whether
we’re at the end yet, so it again usaplus . On the one hand, it tries to parse a comma
and then recurse; on the other, it parses a close brace amdséte empty list. Either
way, it simply prepends the int it parsed itself to the begign
One thing that you should be careful of is the order in which gopply arguments
to mplus . Consider the following parser:
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tricky =
mplus (string "Hal") (string "Hall")

You might expect this parser to parse both the words “Hal”‘&all;” however, it
only parses the former. You can see this with:

Parsing> runParser tricky "Hal"
Right (IIII’IIHalll)
Parsing> runParser tricky "Hall"
Right ("I","Hal")

This is because it tries to parse “Hal,” which succeeds, hed it doesn’t bother
trying to parse “Hall.”

You can attempt to fix this by providing a parser primitive jefhdetects end-of-file
(really, end-of-string) as:

eof :: Parser ()
eof = Parser eof
where eof [] = Right ([I, ()
eof xI = Left ("Expecting EOF, got " ++
show (take 10 xI))

You might then rewritdricky  usingeof as:

tricky2 = do
s <- mplus (string "Hal") (string "Hall")
eof
return s

But this also doesn’t work, as we can easily see:

Parsing> runParser tricky2 "Hal"

Right (*,())
Parsing> runParser tricky2 "Hall"

Left "Expecting EOF, got \"I\""

This is because, again, timeplus doesn’t know that it needs to parse the whole
input. So, when you provide it with “Hall,” it parses just “Hand leaves the last “I’
lying around to be parsed later. This causet to produce an error message.

The correct way to implement this is:

tricky3 =
mplus (do s <- string "Hal"
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eof
return s)
(do s <- string "Hall"
eof
return s)

We can see that this works:

Parsing> runParser tricky3 "Hal"
Right (","Hal")
Parsing> runParser tricky3 "Hall"
Right (","Hall")

This works precisely because each side ofriipdus knows that it must read the
end.

In this case, fixing the parser to accept both “Hal” and “Hal#is fairly simple,
due to the fact that we assumed we would be reading an entkafrfinediately af-
terwards. Unfortunately, if we cannot disambiguate imratsly, life becomes signifi-
cantly more complicated. This is a general problem in patsind has little to do with
monadic parsing. The solution most parser libraries (€grsec, see Section 9.8.2)
have adopted is to only recognize “LL(1)” grammars: that nsghat you must be able
to disambiguate the input with a one token look-ahead.

EXxercises

Exercise 9.6 Write a parserintListSpace that will parse int lists but will allow
arbitrary white space (spaces, tabs or newlines) betweemrtéimmas and brackets.

Given this monadic parser, it is fairly easy to add informatregarding source
position. For instance, if we're parsing a large file, it niidpe helpful to report the
line number on which an error occurred. We could do this synigyl extending the
Parser type and by modifying the instances and the primitives:

newtype Parser a = Parser
{ runParser :: Int -> String ->
Either String (Int, String, a) }

instance Monad Parser where
return a = Parser (\n xI -> Right (n,xl,a))
fall s = Parser (\n xI -> Left (show n ++
T+t s))
Parser m >>= k = Parser $ \n x| ->
case m n x| of
Left s -> Left s
Right (n’, xI', a) ->
let Parser m2 = k a

line numbers
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in m2 n xI

instance MonadPlus Parser where
mzero = Parser (\n xlI -> Left "mzero")
Parser p ‘mplus' Parser q = Parser $ \n x|l ->
case p n x| of
Right a -> Right a
Left err -> case q n xl of
Right a -> Right a
Left _ -> Left err

matchChar :: (Char -> Bool) -> Parser Char
matchChar ¢ = Parser matchChar’
where matchChar’ n [] =
Left ("expecting char, got EOF")
matchChar’ n (X:xs)

| ¢ x =
Right (n+if x=="\n’ then 1 else 0
. XS, X)
| otherwise =
Left ("expecting char, got " ++
show x)

The definitions foichar andanyChar are not given, since they can be written in
terms ofmatchChar . Themany function needs to be modified only to include the
new state.

Now, when we run a parser and there is an error, it will tell il line number
contains the error:

Parsing2> runParser helloParser 1 "Hello"
Right (1,","Hello")

Parsing2> runParser int 1 "a54"

Left "1: expecting char, got 'a™
Parsing2> runParser intList 1 "[1,2,3,a]"
Left "1: expecting T got "1™

We can use thmtListSpace parser from the prior exercise to see that this does
in fact work:

Parsing2> runParser intListSpace 1
1,2, 4 \n\n ,a\n]"
Left "3: expecting char, got 'a™
Parsing2> runParser intListSpace 1
“1,2, 4 \n\n\n ,a\n]"
Left "4: expecting char, got 'a™
Parsing2> runParser intListSpace 1
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“T \n2 , 4 \n\n\n ,a\n]"
Left "5: expecting char, got 'a™

We can see that the line number, on which the error occurseases as we add
additional newlines before the erroneous “a”.

9.8.2 Parsec

As you continue developing your parser, you might want to mude and more fea-
tures. Luckily, Graham Hutton and Daan Leijen have alreaatyedthis for us in the
Parsec library. This section is intended to be an introdadt the Parsec library; it by
no means covers the whole library, but it should be enougletyau started.

Like our libarary, Parsec provides a few basic functionsuitdiparsers from char-
acters. These arehar , which is the same as oahar ; anyChar , which is the same
as ouranyChar ; satisfy , which is the same as ounatchChar ; oneOf , which
takes a list ofChars and matches any of them; andneOf , which is the opposite of
oneOf .

The primary function Parsec uses to run a parseaise . However, in addition to
a parser, this function takes a string that represents tine é the file you’re parsing.
Thisis so it can give better error messages. We can try gansth the above functions:

Parsecl> parse (char 'a’) "stdin" "a"
Right ’'a’

Parsecl> parse (char 'a’) "stdin" "ab"
Right 'a’

Parsecl> parse (char ’'a’) "stdin" "b"
Left "stdin" (line 1, column 1):
unexpected "b"

expecting "a"

Parsecl> parse (char 'H’ >> char 'a’ >> char I
"stdin" "Hal"

Right I’

Parsecl> parse (char 'H’ >> char 'a’ >> char ")
"stdin” "Hap"

Left "stdin" (line 1, column 3):
unexpected "p"
expecting "I"

Here, we can see a few differences between our parser anecPdirst, the rest

of the string isn’t returned when we ryrarse . Second, the error messages produced

are much better.

In addition to the basic character parsing functions, Rausevides primitives for:
spaces , which is the same as ourspace which parses a single spadefter
which parses a lettedigit , which parses a digitstring , which is the same as
ours; and a few others.

We can write ouint  andintList functions in Parsec as:

char
anyChar
satisfy
oneOf

noneOf
parse

spaces
space
letter
digit
string
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int :: CharParser st Int
int = do
i1 <- digit
ir <- many digit
return (read (il:ir))

intList :: CharParser st [Int]
intList = do
char T
intList’ ‘mplus’ (char T >> return [])
where intList’” = do
i <-int
r <- (char '} >> intList) ‘mplus’
(char T >> return [])
return (ixr)

First, note the type signatures. Tsie type variable is simply a state variable that
we are not using. In thmt function, we use thenany function (built in to Parsec)
together with thealigit  function (also built in to Parsec). ThetList function is
actually identical to the one we wrote before.

Note, however, that usingnplus explicitly is not the preferred method of com-
bining parsers: Parsec providesje function that is a synonym ahplus , but that
looks nicer:

intList :: CharParser st [Int]
intList = do
char T
intList’ <|> (char '] >> return [])
where intList’” = do
i <-int
r <- (char ') >> intList) <[>
(char ' >> return [])
return (i:r)

We can test this:

Parsecl> parse intList "stdin" "[3,5,2,10]"
Right [3,5,2,10]

Parsecl> parse intList "stdin" "[3,5,a,10]"
Left "stdin" (line 1, column 6):
unexpected "a"

expecting digit

In addition to these basic combinators, Parsec providew atleer useful ones:
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e choice takes a list of parsers and performsaroperation €|> ) between all
of them.

e option takes a default value of typeand a parser that returns something of
typea. It then tries to parse with the parser, but it uses the defallie as the
return, if the parsing fails.

e optional takes a parser that returf)s and optionally runs it.

e between takes three parsers: an open parser, a close parser and eebetw
parser. It runs them in order and returns the value of the dmtwparser. This
can be used, for instance, to take care of the brackets ointhist parser.

e notFollowedBy takes a parser and returns one that succeeds only if the given
parser would have failed.

Suppose we want to parse a simple calculator language tbladas only plus
and times. Furthermore, for simplicity, assume each emdx@dpression must be
enclosed in parentheses. We can give a datatype for thindgegas:

data Expr = Value Int
| Expr :+: Expr
| Expr : =: Expr
deriving (Eq, Ord, Show)

And then write a parser for this language as:

parseExpr :: Parser Expr
parseExpr = choice

[ do i <- int; return (Value i)

, between (char () (char ") $ do
el <- parseExpr
op <- oneOf "+ =
e2 <- parseExpr

case op of
'+ -> return (el :+: e2)
T+ > return (el : *. e2)

Here, the parser alternates between two options (we cowlel hsed<|> , but |
wanted to show thehoice combinator in action). The first simply parses an int and
then wraps it up in th&alue constructor. The second option usetween to parse
text between parentheses. What it parses is first an expnegben one of plus or
times, then another expression. Depending on what the tmpésait returns eitheel
+: e2 orel 1 x: e2.

We can modify this parser, so that instead of computingspr , it simply com-
putes the value:



154 CHAPTER 9. MONADS

parseValue :. Parser Int
parseValue = choice
[int
,between (char () (char ’)) $ do
el <- parseValue
op <- oneOf "+ ="
e2 <- parseValue

case op of
'+ -> return (el + e2)
"*7 -> return (el * e2)

We can use this as:

Parsecl> parse parseValue "stdin" "(3 * (4+3))"
Right 21
bindings Now, suppose we want to introduce bindings into our langudgpat is, we want
to also be able to say “let x = 5 in” inside of our expressiors gien use the variables
getState we've defined. In order to do this, we need to useghtState  andsetState  (or
setState updateState ) functions built in to Parsec.

updateState

parseValuelLet :: CharParser (FiniteMap Char Int) Int
parseValuelLet = choice
[ int
, do string "let "
c <- letter
char '=
e <- parseValuelet
string " in "
updateState (\fm -> addToFM fm c e)
parseValueLet
, do c <- letter
fm <- getState
case lookupFM fm c of
Nothing -> unexpected ("variable " ++ show c ++
" unbound")
Just i -> return i
, between (char () (char ’)) $ do
el <- parseValuelet
op <- oneOf "+ =*"
e2 <- parseValuelet
case op of
'+ -> return (el + e2)
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*' -> return (el * e2)

Theint and recursive cases remain the same. We add two more casds,dweal
with let-bindings, the other to deal with usages.

Inthe let-bindings case, we first parse a “let” string, foléa by the character we're
binding (theletter  function is a Parsec primitive that parses alphabetic ctars),
followed by it's value (gparseValueLet ). Then, we parse the “in ” and update the
state to include this binding. Finally, we continue and pdhe rest.

In the usage case, we simply parse the character and therit lopkn the state.
However, if it doesn’t exist, we use the Parsec primitiveexpected to report an
error.

We can see this parser in action using theParser command, which enables
us to provide an initial state:

Parsecl> runParser parseValueLet emptyFM "stdin"
"let ¢c=5 in ((5+4) *C)"
Right 45
* Parsecl> runParser parseValueLet emptyFM "stdin"
“let c=5 in ((5+4) *let x=2 in (c+x))"
Right 63
* Parsecl> runParser parseValueLet emptyFM "stdin"
“((let x=2 in 3+4) *X)"
Right 14

Note that the bracketing does not affect the definitions efvthriables. For in-
stance, in the last example, the use of “x” is, in some sengsjde the scope of the
definition. However, our parser doesn’t notice this, sincgperates in a strictly left-
to-right fashion. In order to fix this omission, bindings vidhave to be removed (see
the exercises).

Exercises

Exercise 9.7 Modify theparseValueLet  parser, so that it obeys bracketing. In
order to do this, you will need to change the state to somgthke FiniteMap
Char [Int] ,where thdInt] is a stack of definitions.

runParser
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Appendix A

Brief Complexity Theory

Complexity Theory is the study of how long a program will ta&erun, depending on
the size of its input. There are many good introductory bdok®mplexity theory and
the basics are explained in any good algorithms book. I#kthe discussion here to
a minimum.

The idea is to say how well a program scales with more dataadtave a program
that runs quickly on very small amounts of data but chokeswayetamounts of data,
it's not very useful (unless you know you'll only be workingttv small amounts of
data, of course). Consider the following Haskell functionréturn the sum of the
elementsin a list:

sum [] = O
sum (X:Xxs) = X + sum XS

How long does it take this function to complete? That's a \dffjcult question; it
would depend on all sorts of things: your processor spead,amount of memory, the
exact way in which the addition is carried out, the lengthh&f list, how many other
programs are running on your computer, and so on. This is@amiuch to deal with, so
we need to invent a simpler model. The model we use is sort aeflaitrary “machine
step.” So the question is “how many machine steps will it thiethis program to
complete?” In this case, it only depends on the length ofribatilist.

If the input list is of lengthD, the function will take eithe® or 1 or 2 or some very
small number of machine steps, depending exactly on how gaantd¢hem (perhapsk
step to do the pattern matching ahdhore to return the valu@). What if the list is of
lengthl. Well, it would take however much time the list of lengthvould take, plus a
few more steps for doing the first (and only element).

If the input list is of lengthn, it will take however many steps an empty list would
take (call this valugy) and then, for each element it would take a certain number of
steps to do the addition and the recursive call (call thislmemn). Then, the total time
this function will take isnz + y since it needs to do those additiomsnany times.
Theser andy values are calledonstant valuessince they are independentmofand
actually dependent only on exactly how we define a machine stewe really don’t

159
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want to consider them all that important. Therefore, we baythe complexity of this
sumfunctionisO(n) (read “ordem”). Basically saying something 9 (n) means that
for some constant factoisandy, the function takegx + y machine steps to complete.

Consider the following sorting algorithm for lists (comntprcalled “insertion
sort”):

sort [ =]
sort [x] = [X]
sort (x:xs) = insert (sort xs)
where insert [| = [X]
insert (y:ys) | x <=y =X :Yy:.YVys
| otherwise = vy : insert ys

The way this algorithm works is as follow: if we want to sort@mpty list or a list
of just one element, we return them as they are, as they a@dylisorted. Otherwise,
we have a list of the formx:xs . In this case, we sorts and then want to insex
in the appropriate location. That's what thsert  function does. It traverses the
now-sorted tail and insertswherever it naturally fits.

Let's analyze how long this function takes to complete. Sigept taked (n) stepts
to sort a list of lengtm. Then, in order to sort a list of-many elements, we first have
to sort the tail of the list first, which take§n — 1) time. Then, we have to insextinto
this new list. Ifx has to go at the end, this will take(n — 1) = O(n) steps. Putting
all of this together, we see that we have to@@:) amount of work?(n) many times,
which means that the entire complexity of this sorting altipon is O(n?). Here, the
squared is not a constant value, so we cannot throw it out.

What does this mean? Simply that for really long lists,she function won’t take
very long, but that thesort function will take quite some time. Of course there are
algorithms that run much more slowly that simg(n?) and there are ones that run
more quickly tharO(n).

Consider the random access functions for lists and arrayshd worst case, ac-
cessing an arbitrary element in a list of lengthwill take O(n) time (think about
accessing the last element). However with arrays, you ca@saany element imme-
diately, which is said to be inonstantime, orO(1), which is basically as fast an any
algorithm can go.

There’s much more in complexity theory than this, but thiewdtl be enough to
allow you to understand all the discussions in this tutodabkt keep in mind tha® (1)
is faster tharO(n) is faster tharO(n?), etc.
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Recursion and Induction

Informally, a function is recursive if its definition dependn itself. The prototypical
example is factorial, whose definition is:

1 n=20
fact(n):{ n#* fact(in —1) n>0

Here, we can see that in order to calculftet(5), we need to calculatéact(4),
but in order to calculatguct(4), we need to calculatgact(3), and so on.

Recursive function definitions always contain a number ofrecursive base cases
and a number of recursive cases. In the case of factorial,ave dne of each. The
base case is when= 0 and the recursive case is when> 0.

One can actually think of the natural numbers themselves@sgsive (in fact, if
you ask set theorists about this, they’'ll say tisifiow it is). That is, there is a zero
element and then for every element, it has a successor. $hatd succ(0),2 =
succ(l),...,573 = succ(572), ... and so on forever. We can actually implement this
system of natural numbers in Haskell:

data Nat = Zero | Succ Nat

This is a recursive type definition. Here, we represent onSues Zero and
three asSucc (Succ (Succ Zero)) . One thing we might want to do is be able
to convert back and forth beweétats andints. Clearly, we can write a base case as:

natTolnt Zero = 0

In order to write the recursive case, we realize that we'iegto have something
of the formSucc n. We can make the assumption that we’ll be able to talkend
produce arint . Assuming we can do this, all we need to do is add one to thidtres
This gives rise to our recursive case:

natTolnt (Succ n) = natToint n + 1

161
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There is a close connection between recursion and matheghiaiuction. Induc-
tion is a proof technique which typically breaks problemsvdanto base cases and
“inductive” cases, very analogous to our analysis of reonrs

Let's say we want to prove the statemeht> n for all n > 0. First we formulate
a base case: namely, we wish to prove the statementwhefn. Whenn = 0,n! =1
by definition. Sincex! =1 > 0 = n, we get thad! > 0 as desired.

Now, suppose that > 0. Thenn = k + 1 for some valug:. We now invoke the
inductive hypothesiand claim that the statement holds for= k. That is, we assume
thatk! > k. Now, we use to formate the statement for our valuerofThat is,n! > n
if and only iff (k + 1)! > (k + 1). We now apply the definition of factorial and get
(k+1)! = (k+1) = k!. Now, we knowk! > k, so(k + 1) = k! > k + 1 if and only if
k + 1> 1. But we know that: > 0, which means + 1 > 1. Thus it is proven.

It may seem a bit counter-intuitive that we are assumingttietlaim is true fok
in our proof that it is true for.. You can think of it like this: we've proved the statement
for the case when = 0. Now, we know it's true fom = 0 so using this we use our
inductive argument to show that it's true far= 1. Now, we know that it is true for
n = 1 S0 we reuse our inductive argument to show that it's truenfer 2. We can
continue this argument as long as we want and then see thatig for alln.

It's much like pushing down dominoes. You know that when yosipdown the
first domino, it's going to knock over the second one. Thiguimm will knock over the
third, and so on. The base case is like pushing down the firstrdg and the inductive
case is like showing that pushing down dominwill cause the: + 1st domino to fall.

In fact, we can use induction to prove that eatTolnt  function does the right
thing. First we prove the base case: doasloint Zero  evaluate td? Yes, obvi-
ously it does. Now, we can assume thatToInt n  evaluates to the correct value
(this is the inductive hypothesis) and ask whethatTolnt (Succ n) produces
the correct value. Again, it is obvious that it does, by siyripbking at the definition.

Let’s consider a more complex example: additioNats. We can write this con-
cisely as:

addNat Zero m = m
addNat (Succ n) m = addNat n (Succ m)

Now, let’s prove that this does the correct thing. First hestiase case, suppose the
first argumentiZero . We know that) + m = m regardless of what is; thus in the
base case the algorithm does the correct thing. Now, supgpasddNat n m does
the correct thing for almand we want to show thaiddNat (Succ n) m does the
correct thing. We know thatr + 1) + m = n + (m + 1) and thus sincaddNat
n (Succ m) does the correct thing (by the inductive hypothesis), oagmm is
correct.
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Solutions To Exercises

Solution 3.1

It binds more tightly; actually, function application bmdnore tightly than anything
else. To see this, we can do something like:

Prelude> sqgrt 3 * 3
5.19615

If multiplication bound more tightly, the result would halveen 3.

Solution 3.2

Solution:snd (fst ((1,’a’),"foo")) . This is because first we want to take
the first half the the tuple(l1,’a’) and then out of this we want to take the second
half, yielding justa’

If you triedfst (snd ((1,’a’),"foo")) you will have gotten a type error.
This is because the applicationsfd will leave you withfst "foo" . However, the
string “foo” isn’t a tuple, so you cannot applgt to it.

Solution 3.3

Solution: map Char.isLower "aBCde”

Solution 3.4
Solution: length (filter Char.isLower "aBCde”)

Solution 3.5

foldr max 0 [5,10,2,8,1]. You could also use foldl. The fotdrse is easier to explain:
we replace each cons with an application of max and the engbtyith 0. Thus, the
inner-most application will take the maximum of 0 and the Element of the list (if
it exists). Then, the next-most inner application will metdhe maximum of what-
ever was the maximum before and the second-to-last eleriiéig.will continue on,
carrying to current maximum all the way back to the beginmahthe list.
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In the foldl case, we can think of this as looking at each elarirethe list in order.
We start off our “state” with 0. We pull off the first elementdhnheck to see if it's
bigger than our current state. If it is, we replace our cursgate with that number and
the continue. This happens for each element and thus eWgnetarns the maximal
element.

Solution 3.6

fst (head (tail [(5,'b’),(1,C’),(6,a)]))

Solution 3.7

We can define a fibonacci function as:

fib 1
fib 2
fib n

1
1
fib (n-1) + fib (n-2)

We could also write it using explicif statements, like:

fib n =
ifn==1]| n==
then 1
else fib (n-1) + fib (n-2)

Either is acceptable, but the first is perhaps more natutdbskell.

Solution 3.8
We can define:
poloa b=1
@*P= ) a+ax(b—1) otherwise
And then type out code:
mult a 1 = a
mult a b = a + mult a (b-1)

Note that it doesn’t matter that afandb we do the recursion on. We could just as
well have defined it as:

mult 1 b =b
mult a b = b + mult (a-1) b
Solution 3.9

We can defineny_mapas:
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my_map f [] = []
my map f (xxxs) = f x : my_map f xs

Recall that theny_mapfunction is supposed to apply a functibrio every element
in the list. In the case that the list is empty, there are nmelds to apply the function
to, so we just return the empty list.

In the case that the list is non-empty, it is an elemerfollowed by a listxs .
Assuming we've already properly appliedy_mapto xs, then all we're left to do is
applyf to x and then stick the results together. This is exactly whas#wond line
does.

Solution 3.10

The code below appearsMumbers.hs . The only tricky parts are the recursive calls
in getNums andshowFactorials

module Main
where

import 10

main = do
nums <- getNums
putStrLn ("The sum is " ++ show (sum nums))
putStrLn ("The product is " ++ show (product nums))
showFactorials nums

getNums = do
putStrLn "Give me a number (or O to stop):"
num <- getLine
if read num ==
then return []
else do rest <- getNums
return ((read num :: Int):rest)

showFactorials [] = return ()
showFactorials (x:xs) = do
putStrLn (show x ++ " factorial is " ++
show (factorial X))
showFactorials xs

1
n * factorial (n-1)

factorial 1
factorial n

The idea forgetNums is just as spelled out in the hint. FelhowFactorials
we consider first the recursive call. Suppose we have a listuaibers, the first of
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which isx. First we print out the string showing the factorial. Then pvint out the
rest, hence the recursive call. But what should we do in tise cd the empty list?
Clearly we are done, so we don’t need to do anything at all, ssimplyreturn
0.

Note that this must beeturn () instead of jus{) because if we simply wrote
showFactorials [] = () then this wouldn’t be an 10 action, as it needs to be.
For more clarification on this, you should probably just kesgding the tutorial.

Solution 4.1
String or [Char]

2. type error: lists are homogenous
3. Num a = (a, Char)
4. Int

5. type error: cannot add values of different types

Solution 4.2
The types:

1. (a,b)— > b

2
3
4. [a]— > a
5

Solution 4.3
The types:

1. a— > [a]. This function takes an element and returns the list coimgionly that
element.

2. a— > b— > b— > (a, [b]). The second and third argument must be of the same
type, since they go into the same list. The first element caof bay type.

3. Num a => a— > a. Since we apply+) toa, it must be an instance M um.
4. a— > String. This ignores the first argument, so it can be any type.

5. (Char— > a)— > a. In this expressiorns must be a function which take<Ghar
as an argument. We don’t know anything about what it produbesigh, so we
call it a.
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6. Type error. Here, we assurrenas typea. But x is applied to itself, so it must
have typeb— > c. But then it must have typgb— > c)— > c, but then it must
have typg(b— > ¢)— > ¢)— > c and so on, leading to an infinite type.

7. Num a => a— > a. Again, since we apply+) , this must be an instance of
Num.

Solution 4.4

The definitions will be something like:

data Triple a b ¢ = Triple a b ¢

tripleFst (Triple x y z) = x
tripleSnd (Triple x y z) =y
tripleThr (Triple x y z) = z

Solution 4.5

The code, with type signatures, is:

data Quadruple a b = Quadruple a a b b

firstTwo :: Quadruple a b -> [a]
firstTwo (Quadruple x y z t) = [X,y]

lastTwo :: Quadruple a b -> [b]
lastTwo (Quadruple x y z t) = [z,]

We note here that there are only two type variabkesand b associated with
Quadruple .

Solution 4.6

The code:

data Tuple a b ¢ d e = One a
| Two a b
| Three a b ¢
| Four a b cd

tuplel (One a ) = Just a
tuplel (Two a b ) = Just a
tuplel (Three a b ¢ ) = Just a
tuplel (Four a b ¢ d) = Just a
tuple2 (One a ) = Nothing
tuple2 (Two a b ) = Just b

tuple2 (Three a b ¢ ) = Just b
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tuple2 (Four a b c d) = Just b

tuple3 (One a ) = Nothing

tuple3 (Two ab ) = Nothing

tuple3 (Three a b ¢ ) = Just ¢

tuple3 (Four a b ¢ d) = Just ¢

tuple4 (One a ) = Nothing

tuple4 (Two ab ) = Nothing

tuple4 (Three a b ¢ ) = Nothing

tuple4 (Four a b ¢ d) = Just d

Solution 4.7

The code:

fromTuple :: Tuple a b ¢ d -> Either (Either a (a,b)) (Either (a
fromTuple (One a ) = Left (Left a
fromTuple (Two a b ) = Left (Right (a,b) )

fromTuple (Three a b ¢ ) = Right (Left (a,b,c) )
fromTuple (Four a b ¢ d) = Right (Right (a,b,c,d))

Here, we use embedd&ither s to represent the fact that there are four (instead

of two) options.

Solution 4.8

The code:

listHead (Cons x Xxs) = X
listTail (Cons X Xs) = Xs

listFoldl f y Nil =y
listFoldl f y (Cons x xs) = listFoldl f (f y X) xs

listFoldr f y Nil = vy
listFoldr f y (Cons x xs) = f x (listFoldr f y xs)

Solution 4.9

The code:

elements (Leaf x) = [X]
elements (Branch Ihs x rhs) =
elements lhs ++ [x] ++ elements rhs

Solution 4.10

The code:

,b,c) (a,b,c,d))
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foldTree :: (a -> b -> b) -> b -> BinaryTree a -> b
foldTree f z (Leaf x) = f x z
foldTree f z (Branch lhs x rhs) =

foldTree f (f x (foldTree f z rhs)) lhs

elements2 = foldTree (:) []

or:

elements2 tree = foldTree (\a b -> a:b) [] tree

The firstelements2 is simply a more compact version of the second.

Solution 4.11

It mimicks neither exactly. It's behavior most closely neddesfoldr , but differs
slightly in its treatment of the initial value. We can obsetlie difference in an inter-
preter:

CPS> foldr (-) 0 [1,2,3]
2
CPS> foldl (-) 0 [1,2,3]
-6
CPS> fold (-) 0 [1,2,3]
-2

Clearly it behaves differently. By writing down the deriiaats offold andfoldr
we can see exactly where they diverge:

foldr (-) 0 [1,2,3]
==> 1 - foldr (-) 0 [2,3]
==>
==> 1 - (2 - (3 - foldr (-) 0 []))
=> 1-@2-(3-0)
==> 2

fold (-) 0 [1,2,3]
==> fold’ (-) (\y > 0 - vy) [1,2,3]
==> 0 - fold (-) (\y -> 1 - V) [2,3]
==> 0- (1 - fold (-) (\y > 2 -y) [3])
=> 0-@1-(2-23)
=> -2

Essentially, the primary difference is that in tteddr  case, the “initial value” is
used at the end (replacifig ), whereas in the CPS case, the initial value is used at the
beginning.
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Solution 4.12

Solution 5.1

Usingif, we get something like:

main = do
putStrLn "Please enter your name:"
name <- getLine
if name == "Simon" || name == "John" || name == "Phil"
then putStrLn "Haskell is great!"
else if name == "Koen"
then putStrLn "Debugging Haskell is fun!"
else putStrLn "I don’t know who you are."

Note that we don’t need to repeat ttes inside thefs, since these are only one

action commands.
We could also be a bit smarter and usedlem command which is built in to the

Prelude:

main = do
putStrLn "Please enter your name:"
name <- getLine
if name ‘elem’ ['Simon", "John", "Phil"]
then putStrLn "Haskell is great!"
else if name == "Koen"
then putStrLn "Debugging Haskell is fun!"
else putStrLn "I don’t know who you are."

Of course, we needn’t put all theutStrLn s inside thedf statements. We could

instead write:

main = do
putStrLn "Please enter your name:"
name <- getLine
putStrLn
(if name ‘elem’ ['Simon", "John", "Phil"]
then "Haskell is great!"
else if name == "Koen"
then "Debugging Haskell is fun!"
else "I don't know who you are.")

Usingcase we get something like:
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main = do

putStrLn "Please enter your name:"

name <- getLine

case name of
"Simon" -> putStrLn "Haskell is great!"
"John" -> putStrLn "Haskell is great!"
"Phil" -> putStrLn "Haskell is great!"
"Koen" -> putStrLn "Debugging Haskell is fun!"

-> putStrLn "I don’t know who you are."

Which, in this case, is actually not much cleaner.

Solution 5.2

The code might look something like:

module DoFile where
import 10

main = do
putStrLn "Do you want to [read] a file, ...?"
cmd <- getLine
case cmd of
"quit”  -> return ()
"read" -> do doRead; main
"write" -> do doWrite; main
-> do putStrLn
("l don’t understand the command "
++ cmd ++ ")
main

doRead = do
putStrLn "Enter a file name to read:"
fn <- getLine
bracket (openFile fn ReadMode) hClose
(\n -> do txt <- hGetContents h
putStrLn txt)

doWrite = do
putStrLn "Enter a file name to write:"
fn <- getLine
bracket (openFile fn WriteMode) hClose
(\n -> do putStrLn
"Enter text (...):"
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writeLoop h)

writeLoop h = do
| <- getLine
if | ==""
then return ()
else do hPutStrLn h |
writeLoop h

The only interesting things here are the callbtacket , which ensure the that the
program lives on, regardless of whether there’s a failuneady and thenriteLoop
function. Note that we need to pass the handle returnedganFile (through
bracket to this function, so it knows where to write the input to).

Solution 7.1

Functionfunc3 cannot be converted into point-free style. The others l@vkething
like:

funcl x = map ( *x)
func2 f g = filter f . map g

funcd = map (+2) . filter (‘elem’ [1..10]) . (5))

funcs = foldr (flip $ curry f) 0

You might have been tempted to try to wriienc2 asfilter f . map ,
trying to eta-reduce off thg. In this case, this isn't possible. This is because the
function composition operator | has type(b — ¢) — (a — b) — (a — c). In this
case, we're trying to usenap as the second argument. Buaptakes two arguments,
while () expects a function which takes only one.

Solution 7.2

We can start out with a recursive definition:

and [] = True
and (x:xs) = X && and xs

From here, we can clearly rewrite this as:

and = foldr (&&) True

Solution 7.3

We can write this recursively as:
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concatMap f [] = ]
concatMap f (xixs) = f x ++ concatMap f xs

This hints that we can write this as:

concatMap f = foldr \a b -> f a ++ b) []

Now, we can do point elimination to get:

foldr \a b -> f a ++ b)

0

==> foldr (\a b -> (++) (f a) b) []
==> foldr (\a -> (++) (f a)) []
==> foldr (\a -> ((++) . f) a) []
==> foldr ((++) . f) []

Solution 9.1

The first law is:return a >>= f

==>
==>
==>

The second law ist >>= return

==>
==>

return a >>= f

Just a >>= \x -> f X
(\x > f x) a

fa

f >>= return
f >>= \x -> return x
f >>= \x -> Just x

=f a . Inthe case oMaybe, we get:

=f . Here, we get:

At this point, there are two cases depending on whedthisNothing or not. In
the first case, we get:

==>
==>
==>

Nothing >>= \x -> Just X

Nothing
f

In the second casé,is Just a . Then, we get:

==>
==>
==>
==>

Just a >>= \x -> Just X
(\x -> Just x) a

Just a

f
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And the second law is shown. The third law states:>= ( \x -> g x >>=
h) =@ >>=¢g) >>=h

If f is Nothing , then the left-hand-side clearly reducesNothing . The right-
hand-side reduces tdothing >>= h  which in turn reduces tdlothing , so they
are the same.

Supposd is Just a . Then the LHS reduces ® a >>= h and the RHS re-
ducestdJust a >>= \x -> g x) >>= h whichinturnreducestg a >>=
h, so these two are the same.

Solution 9.2
The idea is that we wish to use theft constructor to represent errors on fRight
constructor to represent successes. This leads to andéesdiaclaration like:

instance Monad (Either String) where
return X = Right x
Left s >>= = Left s
Right x >>= f = f x
fail s = Left s

If we try to use this monad to do search, we get:

Monads> searchAll gr 0 3 :: Either String [Int]
Right [0,1,3]

Monads> searchAll gr 3 0 :: Either String [Int]
Left "no path"

which is exactly what we want.

Solution 9.3
The order tanplus essentially determins the search order. When the recural/to
searchAll2  comes first, we are doing depth-first search. When the reeucsil to
search’ comes first, we are doing breadth-first search. Thus, usmgighmonad,
we expect the solutions to come in the other order:

MPlus> searchAll3 gr 0 3 :: [[Int]]
[[0,2,3],[0,1,3]]

Just as we expected.

Solution 9.4
This is a very difficult problem; if you found that you were skummediately, please
just read as much of this solution as you need to try it yotirsel

First, we need to define a list transformer monad. This loiles |
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newtype ListT m e = ListT { unListT :: m [e] }

TheListT constructor simply wraps a monadic action (in mongw/hich returns

a list.
We now need to make this a monad:

instance Monad m => Monad (ListT m) where
return x = ListT (return [X])
fail s = ListT (return [] )
ListT m >>= k = ListT $ do
| <-m
' <- mapM (unListT . k) |
return (concat I')

Here, success is designated by a monadic action which sstusgingleton list.
Failure (like in the standard list monad) is representedrbgrapty list: of course, it's
actually an empty list returned from the enclosed monaddiBiophappens essentially
by running the action which will result in a li$t. This has typde] . We now need
to applyk to each of these elements (which will result in somethingypéListT m
[e2] . We need to get rid of theistT s around this (by usingnListT ) and then

concatenate them to make a single list.
Now, we need to make it an instancelfonad Plus

instance Monad m => MonadPlus (ListT m) where
mzero = ListT (return [])
ListT ml ‘mplus’ ListT m2 = ListT $ do
1 <- ml
2 <- m2
return (11 ++ 12)

Here, the zero element is a monadic action which returns gotyelist. Addition is
done by executing both actions and then concatenating sétse
Finally, we need to make it an instanceMfonad Trans:

instance MonadTrans ListT where
lift x = ListT (do a <- x; return [a])

Lifting an action intoListT  simply involves running it and getting the value (in

this casea) out and then returning the singleton list.
Once we have all this together, writisgarchAll6 s fairly straightforward:

searchAll6 g@(Graph vl el) src dst
| src == dst = do
lift $ putStrLn $
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"Exploring " ++ show src ++ " -> " ++ show dst
return [src]
| otherwise = do
lift $ putStrLn $
"Exploring " ++ show src ++ " -> " ++ show dst
search’ el
where
search’ [] = mzero
search’ ((u,v,_):es)
| Src == =
(do path <- searchAll6 g v dst
return (u:path)) ‘mplus’
search’ es
| otherwise = search’ es

The only change (besides changing the recursive call t@ealichAll6  instead
of searchAll2 ) here is that we calputStrLn  with appropriate arguments, lifted
into the monad.

If we look at the type oearchAll6  , we see that the result (i.e., after applying a
graph and two ints) has typdonadTrans t, MonadPlus (t 10) => t IO
[Int]) . Intheory, we could use this with any appropriate monadstiamer; in our
case, we want to udastT . Thus, we can run this by:

MTrans> unListT (searchAll6 gr 0 3)
Exploring 0 ->
Exploring 1 ->
Exploring 3 ->
Exploring 2 ->
Exploring 3 ->
MTrans> it

[[0,1,3],[0,2,3]]

wWwwww

This is precisely what we were looking for.

Solution 9.5

This exercise is actually simpler than the previous onew&lheed to do is incorporate
the calls toputT andgetT into searchAll6  and add an extra lift to the 10 calls.
This extra lift is required because now we're stacking tvamsformers on top of 10

instead of just one.

searchAll7 g@(Graph vl el) src dst
| src == dst = do
lift $ lift $ putStrLn $
"Exploring " ++ show src ++ " -> " ++ show dst
visited <- getT
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putT (src:visited)
return [src]
| otherwise = do
lift $ lift $ putStrLn $
"Exploring " ++ show src ++ " -> " ++ show dst
visited <- getT
putT (src:visited)
if src ‘elem' visited
then mzero
else search’ el
where
search’ [] = mzero
search’ ((u,v,_):es)
| src == u =
(do path <- searchAll7 g v dst
return (u:path)) ‘mplus’
search’ es
| otherwise = search’ es

The type of this has grown significantly. After applying thajgh and two ints, this
has typeMonad (t 10), MonadTrans t, MonadPlus (StateT [Int]
(t 10)) => StateT [Int] (t 10) [Int] .

Essentially this means that we've got something that's te stansformer wrapped
on top of some other arbitrary transformeén (vhich itself sits on top ofO. In our
caset is going to beListT . Thus, we run this beast by saying:

MTrans> unListT (evalStateT (searchAll7 gr4 0 3) [])
Exploring 0 -> 3

Exploring 1 ->
Exploring 3 ->
Exploring 0 ->
Exploring 2 ->
Exploring 3 ->
MTrans> it
[10,1,3],[0,2,3]]

wWwwww

And it works, even orgr4 .

Solution 9.6

First we write a functiorspaces which will parse out whitespaces:

spaces . Parser ()
spaces = many (matchChar isSpace) >> return ()

Now, using this, we simply sprinkle calls &paces throughintList to get
intListSpace
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intListSpace :: Parser [Int]
intListSpace = do
char T
spaces
intList’ ‘mplus‘ (char '] >> return [])
where intList’” = do

i <-int

spaces

r <- (char '’} >> spaces >> intList’)
‘mplus’
(char ' >> return [])

return (i:r)

We can test that this works:

Parsing> runParser intListSpace "[1 ,2 , 4 \n\n ,5\n]"
Right (",[1,2,4,5])

Parsing> runParser intListSpace "[1 ,2 , 4 \n\n ,a\n]"
Left "expecting char, got 'a™

Solution 9.7

We do this by replacing the state functions with push and paptfons as follows:

parseValuelLet?2 :: CharParser (FiniteMap Char [Int]) Int
parseValuelLet2 = choice
[ int
, do string "let "
Cc <- letter
char '=
e <- parseValuelLet2
string " in
pushBinding ¢ e
v <- parseValuelLet2
popBinding ¢
return v
, do c <- letter
fm <- getState
case lookupFM fm c of
Nothing -> unexpected ("variable " ++
show c ++
" unbound")

Just (i:_) -> return i
, between (char () (char ’)) $ do
el <- parseValuelLet2
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op <- oneOf "+ =
e2 <- parseValuelLet?

case op of
'+ -> return (el + e2)
T+’ > return (el * e2)
]
where

pushBinding ¢ v = do
fm <- getState
case lookupFM fm c of
Nothing -> setState (addToFM fm c [v])
Just | -> setState (addToFM fm c (v:l))
popBinding ¢ = do
fm <- getState
case lookupFM fm c of
Just [ ] -> setState (delFromFM fm c)
Just (_:l) -> setState (addToFM fm c 1)

The primary difference here is that instead of callupglateState , we use two
local functions,pushBinding  andpopBinding . ThepushBinding function
takes a variable name and a value and adds the value ontcatti@tihe list pointed to
in the staté~initeMap . ThepopBinding function looks at the value and if there is
only one element on the stack, it completely removes thé $tam theFiniteMap
otherwise it just removes the first element. This means thsbrmething is in the
FiniteMap , the stack is never empty.

This enables us to modify only slightly the usage case; this,twe simply take
the top element off the stack when we need to inspect the wdla@ariable.

We can test that this works:

Parsecl> runParser parseValueLet2 emptyFM "stdin"
“((let x=2 in 3+4) *X)"

Left "stdin" (line 1, column 20):

unexpected variable 'x’ unbound
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definition of, 122-124
laws, 122
plus, 137-139
st, 157
state, 124-130
transformer, 139-143
monads-combinators, 137
mutable seeimmutable

named fields, 90-92
NHC, 5,9
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null 43 tuples, 14-15
Num, 88 type, 37, 117
numeric types, 41 checking, 37
classes, 40-42,108-113

openFile ,62 instances, 84-89, 113-115
operator precedence, 14 datatypes, 47-53, 89-92, 105-108
Ord, 86-87 constructors, 48-50
output,seelO recursive, 50-51

_ strict, 105-108
pairs,seetuples default, 117

parentheses, 14

errors, 38
parsing, 143-155

explicit declarations, 45-46

partial applica.tion, 76-79 hierarchy, 117
pattern matching, 48_, 79-83 higher-order, 42—44
po_lnt—_free programming, 7 inference, 37
pr|m|t|_ve recursive, 99 10, 44—45

pure, i, 12 kinds, 115-117
putChar , 62

newtype, 104-105
polymorphic, 39—-40
signatures, 45
synonyms, 63, 103-104

putStr , 62
putStrLn , 22,62

random numbers, 33
randomRIO , 33

Read, 88 unit, 53

read , 17 unzip ,93 ;

readFile .62 user inputseeinteractive programs
recursion, 29-31 wildcard, 81

references, 157 writeFile 62

referential tranparency, 13

regular expressions, 157 zip , 93

sections, 73-74

shadowing, 74

Show, 86

show, 17, 41

snd, 15

sqrt , 13

standard, iv

state, i

strict, i, 11, 105-108

strings, 17
converting from/to, 17

tail ,17,43
take , 94
toUpper , 18
true,seeboolean



