
Design and Build Maintainable Systems
Using Component-Oriented Programming

Juval Löwy

.NET
Components

Programming

Programming.NET
Components

Programming.NET
Components

Juval Löwy

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

Chapter 1 CHAPTER 1

Introducing Component-Oriented
Programming
Over the last decade, component-oriented programming has established itself as the
predominant software development methodology. The software industry is moving
away from giant, monolithic, hard-to-maintain code bases. Practitioners have discov-
ered that by breaking a system down into binary components, they can attain much
greater reusability, extensibility, and maintainability. These benefits can, in turn,
lead to faster time to market, more robust and highly scalable applications, and
lower development and long-term maintenance costs. Consequently, it’s no coinci-
dence that component-oriented programming has caught on in a big way.

Several component technologies, such as DCOM, CORBA, and Java Beans now give
programmers the means to implement component-oriented applications. However,
each technology has its drawbacks; for example, DCOM is too difficult to master,
and Java doesn’t support interoperation with other languages.

.NET is the newest entrant, and as you will see later in this chapter and in the rest of
the book, it addresses the requirements of component-oriented programming in a
way that is unique and vastly easier to use. This is little surprise because the .NET
architects learned from the mistakes of previous technologies, as well as from their
successes.

In this chapter, I’ll define the basic terms of component-oriented programming and
summarize the core principles and corresponding benefits of component-oriented
programming. These principles apply throughout the book, and I’ll refer to them in
later chapters when describing the motivation for a particular .NET design pattern.
Component-oriented programming is different from object-oriented programming,
although the two methodologies have things in common. You could say that compo-
nent-oriented programming sprouted from the well of object-oriented programming
methodologies. Therefore, this chapter also contrasts component-oriented program-
ming and object-oriented programming, and briefly discusses .NET as a component
technology.
This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

1

Basic Terminology
The term component is probably one of the most overloaded and therefore most con-
fusing terms in modern software engineering, and the .NET documentation has its
fair share of inconsistency in its handling of this concept. The confusion arises in
deciding where to draw the line between a class that implements some logic, the
physical entity that contains it (typically a DLL), and the associated logic used to
deploy and use it, including type information, security policy, and versioning infor-
mation (called the assembly in .NET). In this book, a component is a .NET class. For
example, this is a .NET component:

public class MyClass
{
 public string GetMessage()
 {
 return "Hello";
 }
}

Chapter 2 discusses DLLs and assemblies, and explains the rationale behind physi-
cal and logical packaging, as well as why it is that every .NET class is a binary com-
ponent, unlike traditional object-oriented classes.

A component is responsible for exposing business logic to clients. A client is any entity
that uses the component, although typically, clients are simply other classes. The cli-
ent’s code can be packaged in the same physical unit as the component, in the same
logical unit but in a separate physical unit, or in separate physical and logical units
altogether. The client code should not have to make any assumptions about such
details. An object is an instance of a component, a definition that is similar to the clas-
sic object-oriented definition of an object as an instance of a class. The object is also
sometimes referred to as the server because the relationship between client and object,
often called the client-server model. In this model, the client creates an object and
accesses its functionality via a publicly available entry point, traditionally a public
method but preferably an interface, as illustrated by Figure 1-1. Note that in the fig-
ure an object is an instance of a component; the “lollipop” denotes an interface.

I’ll discuss .NET interface-based programming in detail in Chapter 3. For now, it’s
important to emphasize that while .NET doesn’t enforce interface-based program-
ming, as you will see shortly, you should strive to do so with your own code when-
ever possible. To emphasize this practice, I represent the entry points of the

Figure 1-1. A client accessing an object

Client Object .NET interface

Method call on
interface
This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

2 | Chapter 1: Introducing Component-Oriented Programming

components that appear in my design diagrams as interfaces rather than mere public
methods.

Although the object depicted in Figure 1-1 is drawn like a COM object
with its characteristic lollipop icon, use of this icon isn’t restricted to
COM, but is accepted as the standard UML symbol for an interface,
regardless of the component technology and development platform
that implement it.

Interface-based programming promotes encapsulation, or the hiding of information
from the client. The less a client knows about the way an object is implemented, the
better. The more the details of an implementation are encapsulated, the greater the
likelihood that you can change a method or property without affecting the client
code. Interfaces maximize encapsulation because the client interacts with an abstract
service definition instead of an actual object. Encapsulation is key to successfully
applying both object-oriented and component-oriented methodologies.

Another important term originating from object-oriented programming is
polymorphism. Two objects are said to be polymorphic with respect to each other
when both derive from a common base type (such as an interface) and implement
the exact set of operations defined by the base type. If a client is written to use the
operations of the base type, the same client code can interact with any object that is
polymorphic with the base type. When polymorphism is used properly, changing
from one object to another has no effect on the client; it simplifies maintenance of
the application to which the client and object belong.

Component-Oriented Versus
Object-Oriented Programming
If every .NET class is a component, and if both classes and components share so
many qualities, then what is the difference between traditional object-oriented pro-
gramming and component-oriented programming? In a nutshell, object-oriented pro-
gramming focuses on the relationship between classes that are combined into one
large binary executable. Component-oriented programming instead focuses on inter-
changeable code modules that work independently and don’t require you to be
familiar with their inner workings to use them.

Building Blocks Versus Monolithic Applications
The fundamental difference between the two methodologies is the way in which they
view the final application. In the traditional object-oriented world, even though you
may factor the business logic into many fine-grained classes, once these classes are
compiled, the result is monolithic binary code. All the classes share the same physical
This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

Component-Oriented Versus Object-Oriented Programming | 3

deployment unit (typically an EXE), process, address space, security privileges, and
so on. If multiple developers work on the same code base, they have to share source
files. In such an application, a change made to one class can trigger a massive relink-
ing of the entire application and necessitate retesting and redeployment of all other
classes.

On the other hand, a component-oriented application comprises a collection of
interacting binary application modules—that is, its components and the calls that
bind them (see Figure 1-2).

A particular binary component may not do much on its own. Some may be general-
purpose components such as communication wrappers or file-access components.
Others may be highly specialized and developed specifically for the application. An
application implements and executes its required business logic by gluing together
the functionality offered by the individual components. Component-enabling tech-
nologies such as COM, J2EE, CORBA, and .NET provide the “plumbing” or infra-
structure needed to connect binary components in a seamless manner, and the main
distinction between these technologies is the ease with which they allow you to con-
nect those components.

The motivation for breaking down a monolithic application into multiple binary
components is analogous to that for placing the code for different classes into differ-
ent files. By placing the code for each class in an application into its own file, you
loosen the coupling between the classes and the developers responsible for them. A
change made to one class may require recompilation only of the source file for that
class, although the entire application will have to go through relinking.

However, there is more to component-oriented programming than simple software
project management. Because a component-based application is a collection of
binary building blocks, you can treat its components like Legos, adding and remov-
ing them as you see fit. If you need to modify a component, changes are contained to
that component only. No existing client of the component requires recompilation or

Figure 1-2. A component-oriented application
This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

4 | Chapter 1: Introducing Component-Oriented Programming

redeployment. Components can even be updated while a client application is run-
ning, as long as the components aren’t currently being used.

In addition, improvements, enhancements and fixes made to one component are
immediately available to all applications using that component, on the same machine
or perhaps across the network.

A component-oriented application is easier to extend as well. When you have new
requirements to implement, you can provide them in new components, without hav-
ing to touch existing components not affected by the new requirements.

These factors enable component-oriented programming to reduce the cost of long-
term maintenance, a factor essential to almost any business, which explains the
widespread adoption of component technologies.

Component-oriented applications usually have a faster time to market because you
can select from a range of available components, either from inhouse collections or
from third-party component vendors, and thus avoid repeatedly reinventing the
wheel. For example, consider the rapid development enjoyed by many Visual Basic
projects, which rely on libraries of ActiveX controls for almost every aspect of the
application.

Interfaces Versus Inheritance
Another important difference between object-oriented and component-oriented
applications is the emphasis the two models place on inheritance and reuse models.

In object-oriented analysis and design, you often model applications as complex hier-
archies of classes, which are designed to approximate as much as possible the busi-
ness problem being solved. Existing code is reused by inheriting from an existing
base class and specializing its behavior. The problem is that inheritance is a poor way
to reuse. When you derive a subclass from a base class, you must be intimately aware
of the implementation details of the base class. For example: what is the side effect of
changing the value of a member variable? How does it affect the code in the base
class? Will overriding a base class method and providing a different behavior break
the code of clients that expect the base behavior?

This form of reuse is commonly known as white box reuse because you are required
to be familiar with the details of its implementation. White box reuse simply doesn’t
allow for economy of scale in large organizations’ reuse programs or easy adoption of
third-party frameworks.

Component-oriented programming promotes black box reuse instead, which allows
you to use an existing component without caring about its internals, as long as the
component complies with some predefined set of operations or interfaces. Instead of
investing in designing complex class hierarchies, component-oriented developers
This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

Component-Oriented Versus Object-Oriented Programming | 5

spend most of their time factoring out the interfaces used as contracts between com-
ponents and clients.

.NET does allow components to use inheritance of implementation,
and you can certainly use this technique to develop complex class hier-
archies. However, you should keep your class hierarchies as simple
and as flat as possible, and focus instead on factoring interfaces. Doing
so promotes black-box reuse of your component instead of white-box
reuse via inheritance.

Finally, object-oriented programming provides few tools or design patterns for deal-
ing with the runtime aspects of the application, such as multithreading and concur-
rency management, security, distributed applications, deployment, or version
control. Object-oriented developers are more or less left to their own devices when it
comes to providing infrastructure for handling these common requirements. As you
will see throughout the book, .NET supports you by providing a superb component-
development infrastructure. Using .NET, you can focus on the business problem at
hand instead of the software infrastructure needed to build the solution.

Principles of Component-Oriented
Programming
Systems that support component-oriented programming and the programmers that
use them adhere to a set of core principles that continues to evolve. The most impor-
tant of these include:

• Separation of interface and implementation

• Binary compatibility

• Language independence

• Location transparency

• Concurrency management

• Version control

• Component-based security

Often, it’s hard to tell the difference between a true principle and a mere feature of
the component technology being used. Component programming requires both sys-
tems that support the approach and programmers that adhere to its discipline. As the
supporting technologies become more powerful, no doubt software engineering will
extend its understanding of what constitutes component-oriented programming and
embrace new ideas. The following sections discuss these seven important principles
of component-oriented programming.
This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

6 | Chapter 1: Introducing Component-Oriented Programming

Separation of Interface from Implementation
The fundamental principle of component-oriented programming is that the basic
unit in an application is a binary-compatible interface. The interface provides an
abstract service definition between a client and the object. This principle contrasts
with the object-oriented view of the world that places the object rather than its inter-
face at the center. An interface is a logical grouping of method definitions that acts as
the contract between the client and the service provider. Each provider is free to pro-
vide its own interpretation of the interface—that is, its own implementation. The
interface is implemented by a black-box binary component that completely encapsu-
lates its interior. This principle is known as separation of interface from
implementation.

To use a component, the client needs to know only the interface definition (the ser-
vice contract) and be able to access a binary component that implements that inter-
face. This extra level of indirection between the client and the object allows one
implementation of an interface to be replaced by another without affecting client
code. The client doesn’t need to be recompiled to use a new version. Sometimes the
client doesn’t even need to be shut down to do the upgrade. Provided the interface is
immutable, objects implementing the interface are free to evolve, and new versions
can be introduced. To implement the functionality promised by an interface inside a
component, you use traditional object-oriented methodologies, but the resulting
class hierarchies are usually simpler and easier to manage.

Another effect of using interfaces is that they enable reuse. In object oriented-pro-
gramming, the basic unit of reuse is the object. In theory, different clients should be
able to use the same object. Each reuse instance saves the reusing party the amount
of time and effort spent implementing the object. Reuse initiatives have the potential
for significant cost reduction and reduced product-development cycle time. One rea-
son why the industry adopted object-oriented programming so avidly was its desire
to reap the benefits of reuse.

In reality, however, objects are rarely reusable. Objects are often specific to the prob-
lem and the particular context they were developed for, and unless the objects are
“nuts and bolts,” that is, simple and generic, the objects can’t be reused even in very
similar contexts. This reality is true in many engineering disciplines, including
mechanical and electrical engineering. For example, consider the computer mouse
you use with your workstation. Each part of this mouse is designed and manufac-
tured specifically for your make and model. For reasons of branding and electronics,
parts such as the body case can’t be used in the manufacturing of any other type of
mouse (even very similar ones), whether made by the same manufacturer or others.
However, the interface between mouse and human hand is well defined, and any
human (not just yourself) can use the mouse. Similarly, the typical USB interface
between mouse and computer is well defined, and your mouse can plug into almost
This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

Principles of Component-Oriented Programming | 7

any computer adhering to the interface. The basic units of reuse in the computer
mouse are the interfaces the mouse complies with, not the mouse parts themselves.

In component-oriented programming, the basic unit of reuse is the interface, not a
particular component. By separating interfaces from implementation in your applica-
tion, and using predefined interfaces or defining new interfaces, you enable that
application to reuse existing components and enable reuse of your new components
in other applications.

Binary Compatibility Between Client and Server
Another core principle of component-oriented programming is binary compatibility
between client and server. Traditional object-oriented programming requires all the
parties involved—clients and servers—to be part of one monolithic application. Dur-
ing compilation, the compiler inserts the address of the server entry points into the
client code. Component-oriented programming revolves around packaging code into
components, i.e., binary building blocks. Changes to the component code are con-
tained in the binary unit hosting it; you don’t need to recompile and redeploy the cli-
ents. However, the ability to replace and plug in new binary versions of the server
implies binary compatibility between the client and the server, meaning that the cli-
ent’s code must interact at runtime with exactly what it expects as far as the binary
layout in memory of the component entry points. This binary compatibility is the
basis for the contract between the component and the client. As long as the new ver-
sion of the component abides by this contract, the client isn’t affected. In Chapter 2,
you will see how .NET provides binary compatibility.

Language Independence
Unlike traditional object-oriented programming, in component-oriented program-
ming, the server is developed independently of the client. Because the client interacts
with the server only at runtime, the only thing that binds the two is binary compati-
bility. A corollary is that the programming languages that implement the client and
server should not affect their ability to interact at runtime. Language independence
means exactly that: when you develop and deploy components your choice of pro-
gramming language should be irrelevant. Language independence promotes the
interchangeability of components, and their adoption and reuse. .NET achieves lan-
guage independence through an architecture and implementation called the Com-
mon Language Runtime (CLR), which is discussed further in Chapter 2.

Location Transparency
A component-based application contains multiple binary components. These com-
ponents can all exist in the same process, in different processes on the same machine,
This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

8 | Chapter 1: Introducing Component-Oriented Programming

or on different machines on a network. Recently, with the advent of web services,
components can also be distributed across the Internet.

The underlying component technology is required to provide a client with location
transparency, which allows the client code to be independent of the actual location
of the object it uses. Location transparency means there is nothing in the client’s
code pertaining to where the object executes. The same client code must be able to
handle all cases of object location (see Figure 1-3), although the client should be able
to insist on a specific location as well. Note that in the figure, the object can be in the
same process (e.g., Process 1 on Machine A), in different processes on the same
machine (e.g., Process 1 and Process 2 on Machine A), on different machines in the
same local network, or even across the Internet (e.g., Machines B and C).

Location transparency is crucial to component-oriented programming for a number
of reasons. First, it lets you develop the client and components locally (which leads
to easier and more productive debugging), yet deploy the same code base in distrib-
uted scenarios. Second, the choice of using the same process for all components, or
multiple processes for multiple machines, has a significant impact on performance
and ease of management versus scalability, availability, robustness, throughput, and
security. Organizations have different priorities and preferences for these tradeoffs,
yet the same set of components from a particular vendor or team should be able to
handle all scenarios. Third, the location of components tends to change as the appli-
cation’s requirements evolve over time.

To minimize the cost of long-term maintenance and extensibility, you should avoid
having client code make any assumptions regarding the location of the objects it uses
and avoid making explicit calls across processes or across machines. .NET remoting
is the name of the technology that enables remote calls in .NET. Chapter 10 is dedi-
cated to .NET remoting and discusses .NET support for location transparency.

Figure 1-3. Location transparency enables client code to be oblivious of the actual object location

Client ObjectObject

ObjectObject

Process 1

Process 2

Machine A

Process 1

Machine B

Process 1

Machine C

WWW
This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

Principles of Component-Oriented Programming | 9

Concurrency Management
A component developer can’t possibly know in advance all the possible ways in
which a component will be used and particularly whether it will be accessed concur-
rently by multiple threads. The safest course is for you to assume that the compo-
nent will be used in concurrent situations and to provide some mechanism inside the
component for synchronizing access. However, this approach has two flaws. First, it
may lead to deadlocks; if every component in the application has its own synchroni-
zation lock, a deadlock can occur if two components on different threads try to
access each other. Second, it’s an inefficient use of system resources for all compo-
nents in the application to be accessed by the same thread.

The underlying component technology must provide a concurrency management ser-
vice—way for components to participate in some application-wide synchronization
mechanism, even when the components are developed separately. In addition, the
underlying component technology should allow components and clients to provide
their own synchronization solutions for fine-grained control and optimized perfor-
mance. .NET concurrency management support is discussed in Chapter 8 as part of
developing multithreaded .NET applications.

Versioning Support
Component-oriented programming must allow clients and components to evolve
separately. Component developers should be able to deploy new versions (or just
fixes) of existing components without affecting existing client applications. Client
developers should be able to deploy new versions of the client application and expect
it to work with older versions of components. The underlying component technol-
ogy should support versioning, which allows a component to evolve along different
paths, and for different versions of the same component to be deployed on the same
machine, or side by side. The component technology should also detect incompatibil-
ity as soon as possible and alert the client. .NET’s solution to version control is dis-
cussed in Chapter 6.

Component-Based Security
In component-oriented programming, components are developed separately from
the client applications that use them. Component developers have no way of know-
ing how a client application or end user will try to use their work. A benign compo-
nent could be used maliciously to corrupt data or transfer funds between accounts
without proper authorization or authentication. Similarly, a client application has no
way to know whether it’s interacting with a malicious component that will abuse the
credentials the client provides. In addition, even if both the client and the compo-
nent have no ill intent, the end application user can still try to hack into the system
or do some other damage (even by mistake).
This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

10 | Chapter 1: Introducing Component-Oriented Programming

To lessen the danger, a component technology must provide a security infrastruc-
ture to deal with these scenarios, without coupling components and client applica-
tions to each other. In addition, security requirements, policies, and events (such as
new users) are among the most volatile aspects of the application lifecycle, not to
mention the fact that security policies vary between applications and customers. A
productive component technology should allow for the components to have as few
security policies and as little security awareness as possible in the code itself. It
should also allow system administrators to customize and manage the application
security policy without requiring you to make changes to the code. .NET’s rich secu-
rity infrastructure is the subject of Chapter 12.

.NET Adherence to Component Principles
One challenge facing the software industry today is the skill gap between what devel-
opers should know and what they do know. Even if you have formal training in com-
puter science, you may lack effective component-oriented design skills, which are

Version Control and DLL Hell
Historically, the versioning problem has been the source of much aggravation. Early
attempts at component technology using DLL and DLL-exported functions created the
predicament known as DLL Hell. A typical DLL Hell scenario involved two client
applications, say A1.0 and B1.0, each using Version C1.0 of a component in the mydll.
dll file. Both A1.0 and B1.0 install a copy of the mydll.dll in some global location such
as the System directory. When Version A1.1 is installed, it also installs Version C1.1 of
the component, providing new functionality in addition to the functionality defined in
C1.0. Note that mydll.dll can contain C1.1 and still serve both old and new client appli-
cation versions because the old clients aren’t aware of the new functionality, and the
old functionality is still supported. Binary compatibility is maintained via strict man-
agement of ordinal numbers for the exported functions (a source for another set of
problems associated with DLL Hell). The problem starts when Application B1.0 is
reinstalled. As part of installing B1.0, Version C1.0 is reinstalled, overriding C1.1. As
a result, A1.1 can’t execute.

Interestingly enough, addressing the issue of DLL Hell was one of the driving forces
behind COM. Even though COM makes wide use of objects in DLLs, COM can com-
pletely eliminate DLL Hell. However, COM is difficult to learn and apply, and conse-
quently can be misused or abused, resulting in problems similar to DLL Hell.

Like COM in its time, .NET was designed with DLL Hell in mind. .NET doesn’t elimi-
nate all chances of DLL Hell but reduces its likelihood substantially. The default .NET
versioning and deployment policies don’t allow for DLL Hell. However, .NET is an
extensible platform. You can choose to override the default behavior for some advanced
need or to provide your own custom version control policy, but you risk DLL Hell.
This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

.NET Adherence to Component Principles | 11

primarily acquired through experience. Today’s aggressive deadlines, tight budgets,
and a continuing shortage of developers precludes, for many, the opportunity to
attend formal training sessions or to receive effective on-the-job training. Nowhere is

.NET Versus COM
If you’re a seasoned COM developer, .NET might seem to be missing many of the ele-
ments you have taken for granted as part of your component development environ-
ment. If you have no COM background, you can skip this section. If you are still
reading, you should know that the seemingly missing elements remain in .NET,
although they are expressed differently:

• There is no base interface such as IUnknown that all components derive from.
Instead, all components derive from the class System.Object. Every .NET object
is therefore polymorphic with System.Object.

• There are no class factories. In .NET, the runtime resolves a type declaration to
the assembly containing it and the exact class or struct within the assembly.
Chapter 2 discusses this mechanism.

• There is no reference counting of objects. .NET has a sophisticated garbage col-
lection mechanism that detects when an object is no longer used by clients and
then destroys it. Chapter 4 describes the .NET garbage collection mechanism
and the various ways you can manage resources held by objects.

• There are no IDL files or type libraries to describe your interfaces and custom
types. Instead, you put those definitions in your source code. The compiler is
responsible for embedding the type definitions in a special format in your assem-
bly, called metadata. Metadata is described in Chapter 2.

• Component dependencies are captured by the compiler during compilation and
persisted in a special format in your assembly, called a manifest. The manifest is
described in Chapter 2.

• Identification isn’t based on globally unique identifiers (GUIDs). Uniqueness of
type (class or interface) is provided by scoping the types with the namespace and
assembly name. When an assembly is shared between clients, the assembly must
contain a strong name—i.e., a unique digital signature generated by using an
encryption key. The strong name also guarantees component authenticity, and
.NET refuses to execute a mismatch. In essence, these are GUIDs, but you don’t
have to manage them any more. Chapter 6 discusses shared assemblies and
strong names.

• There are no apartments. By default, every .NET component executes in a free-
threaded environment, and it’s up to you to synchronize access. Synchroniza-
tion can be done either by using manual synchronization locks or by relying on
automatic .NET synchronization domains. .NET multithreading and synchroni-
zation are discussed in Chapter 8.
This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

12 | Chapter 1: Introducing Component-Oriented Programming

the skill gap more apparent than among developers at companies who attempt to
adhere to component development principles. In contrast, object-oriented concepts
are easier to understand and apply, partly because they have been around much
longer, so a larger number of developers are familiar with them, and partly because
of the added degree of complexity involved with component development compared
to monolithic applications.

A primary goal of the .NET platform is to simplify the development and use of
binary components and to make component-oriented programming accessible. As a
result, .NET doesn’t enforce some core principles of component-oriented program-
ming, such as separation of interface from implementation, and unlike COM, .NET
allows binary inheritance of implementation. Instead, .NET merely enforces a few of
the concepts and enables the rest. Doing so caters to both ends of the skill spectrum.
If you understand only object-oriented concepts, you will develop .NET “objects,”
but because every .NET class is consumed as a binary component by its clients, you
can gain many of the benefits of component-oriented programming. If you under-
stand and master how to apply component-oriented principles, you can fully maxi-
mize the benefit of .NET as a powerful component-development technology.

This duality can be confusing. Throughout the book, whenever applicable, I will
point out the places where .NET doesn’t enforce a core principle and suggest meth-
ods to stick with it nonetheless.

Developing .NET Components
A component technology is more than just a set of rules and guidelines on how to
build components. A successful component technology must provide a development
environment and tools that will allow you to rapidly develop components. .NET
offers a superb development environment and semantics that are the product of
years of observing the way you use COM and the hurdles you face. All .NET pro-
gramming languages are component-oriented in their very nature, and the primary
development environment (Visual Studio.NET) provides views, wizards, and tools
that are oriented toward developing components. .NET shields you from the under-
lying raw operating services and provides instead operating system-like services (such
as filesystem access or threading) in a component-oriented manner. The services are
factored to various components in a logical and consistent fashion, resulting in a uni-
form programming model. You will see numerous examples of these services
throughout this book. The following sections detail key factors that enable .NET to
significantly simplify component development.
This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

Developing .NET Components | 13

The .NET Base Classes
When you develop .NET components, there is no need for a hard-to-learn compo-
nent development framework such as the Active Template Library (ATL), which was
used to develop COM components in C++. .NET takes care of all the underlying
plumbing. In addition, to help you develop your business logic faster, .NET pro-
vides you with more than 8,000 base classes (from message boxes to security permis-
sions), available through a common library available to all .NET languages. The base
classes are easy to learn and apply. You can use the base classes as-is or derive from
them to extend and specialize their behavior. You will see examples of how to use
these base classes throughout the book.

Attribute-Based Programming
When developing components, you can use attributes to declare their special runtime
and other needs, rather than coding them. This is analogous to the way COM devel-
opers declare the threading model attribute of their components. .NET offers numer-
ous attributes, allowing you to focus on the domain problem at hand. You can also
define your own attributes or extend existing ones. Appendix C discusses reflection
and custom attributes.

Component-Oriented Security
The classic Windows NT security model is based on what a given user is allowed to
do. This model emerged at a time when COM was in its infancy, and applications
were usually standalone and monolithic. In today’s highly distributed, component-
oriented environment, there is a need for a security model based on what a given piece
of code, a component, is allowed to do, not only on what its caller is allowed to do.

.NET allows you to configure permissions for a piece of code and to provide evi-
dence proving the code has the right credentials to access a resource or perform sen-
sitive work. Evidence is tightly related to the component’s origin. System
administrators can decide that they trust all code that came from a particular vendor
but distrust everything else, from downloaded components to malicious attacks. A
component can also demand that a permission check be performed to verify that all
callers in its call chain have the right permissions before it proceeds to do its work.
Chapter 12 is dedicated to .NET’s rich security infrastructure.

Simplified Deployment
Installing a .NET component can be as simple as copying it to the directory of the
application using it. This is in contrast to COM, which relies on the Registry for com-
ponent deployment to let it know where to look for the component file and how to
treat it. .NET maintains tight version control, enabling side-by-side execution of new
This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

14 | Chapter 1: Introducing Component-Oriented Programming

and old versions of a shared component on the same machine. The net result is a zero-
impact install; by default, you can’t harm another application by installing yours, thus
ending DLL Hell. The .NET motto is: it just works. If you want to install components
to be shared by multiple applications, you can install them in a storage area called the
Global Assembly Cache (GAC). If the GAC already contains a previous version of your
assembly, it keeps it, for use by clients that were built against the old version. You can
purge old versions as well, but that isn’t the default. .NET shared deployment and
version control is discussed in Chapter 2.
This is the Title of the Book, eMatter Edition
Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.

Developing .NET Components | 15

	Programming .NET Components
	Introducing Component-Oriented Programming
	Basic Terminology
	Component-Oriented Versus Object-Oriented Programming
	Building Blocks Versus Monolithic Applications
	Interfaces Versus Inheritance

	Principles of Component-Oriented Programming
	Separation of Interface from Implementation
	Binary Compatibility Between Client and Server
	Language Independence
	Location Transparency
	Concurrency Management
	Versioning Support
	Component-Based Security

	.NET Adherence to Component Principles
	Developing .NET Components
	The .NET Base Classes
	Attribute-Based Programming
	Component-Oriented Security
	Simplified Deployment

